hrtimer: Add tracepoint for hrtimers
[deliverable/linux.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c
GA
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
c0a31329 61 */
54cdfdb4 62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 63{
3c8aa39d
TG
64
65 .clock_base =
c0a31329 66 {
3c8aa39d
TG
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
76 },
77 }
c0a31329
TG
78};
79
92127c7a
TG
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
3c8aa39d 84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
85{
86 ktime_t xtim, tomono;
ad28d94a 87 struct timespec xts, tom;
92127c7a
TG
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
2c6b47de 92 xts = current_kernel_time();
ad28d94a 93 tom = wall_to_monotonic;
92127c7a
TG
94 } while (read_seqretry(&xtime_lock, seq));
95
f4304ab2 96 xtim = timespec_to_ktime(xts);
ad28d94a 97 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
92127c7a
TG
101}
102
c0a31329
TG
103/*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107#ifdef CONFIG_SMP
108
c0a31329
TG
109/*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
3c8aa39d
TG
121static
122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
c0a31329 124{
3c8aa39d 125 struct hrtimer_clock_base *base;
c0a31329
TG
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
3c8aa39d 130 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
3c8aa39d 134 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
135 }
136 cpu_relax();
137 }
138}
139
6ff7041d
TG
140
141/*
142 * Get the preferred target CPU for NOHZ
143 */
144static int hrtimer_get_target(int this_cpu, int pinned)
145{
146#ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
148 int preferred_cpu = get_nohz_load_balancer();
149
150 if (preferred_cpu >= 0)
151 return preferred_cpu;
152 }
153#endif
154 return this_cpu;
155}
156
157/*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164static int
165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166{
167#ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175#else
176 return 0;
177#endif
178}
179
c0a31329
TG
180/*
181 * Switch the timer base to the current CPU when possible.
182 */
3c8aa39d 183static inline struct hrtimer_clock_base *
597d0275
AB
184switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 int pinned)
c0a31329 186{
3c8aa39d
TG
187 struct hrtimer_clock_base *new_base;
188 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
189 int this_cpu = smp_processor_id();
190 int cpu = hrtimer_get_target(this_cpu, pinned);
c0a31329 191
eea08f32
AB
192again:
193 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 194 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
195
196 if (base != new_base) {
197 /*
6ff7041d 198 * We are trying to move timer to new_base.
c0a31329
TG
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
205 */
54cdfdb4 206 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
207 return base;
208
209 /* See the comment in lock_timer_base() */
210 timer->base = NULL;
3c8aa39d
TG
211 spin_unlock(&base->cpu_base->lock);
212 spin_lock(&new_base->cpu_base->lock);
eea08f32 213
6ff7041d
TG
214 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
215 cpu = this_cpu;
216 spin_unlock(&new_base->cpu_base->lock);
217 spin_lock(&base->cpu_base->lock);
218 timer->base = base;
219 goto again;
eea08f32 220 }
c0a31329
TG
221 timer->base = new_base;
222 }
223 return new_base;
224}
225
226#else /* CONFIG_SMP */
227
3c8aa39d 228static inline struct hrtimer_clock_base *
c0a31329
TG
229lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230{
3c8aa39d 231 struct hrtimer_clock_base *base = timer->base;
c0a31329 232
3c8aa39d 233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
234
235 return base;
236}
237
eea08f32 238# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
239
240#endif /* !CONFIG_SMP */
241
242/*
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
245 */
246#if BITS_PER_LONG < 64
247# ifndef CONFIG_KTIME_SCALAR
248/**
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
252 *
253 * Returns the sum of kt and nsec in ktime_t format
254 */
255ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256{
257 ktime_t tmp;
258
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263
264 tmp = ktime_set((long)nsec, rem);
265 }
266
267 return ktime_add(kt, tmp);
268}
b8b8fd2d
DH
269
270EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
271
272/**
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
276 *
277 * Returns the subtraction of @nsec from @kt in ktime_t format
278 */
279ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280{
281 ktime_t tmp;
282
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_sub(kt, tmp);
292}
293
294EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
295# endif /* !CONFIG_KTIME_SCALAR */
296
297/*
298 * Divide a ktime value by a nanosecond value
299 */
4d672e7a 300u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 301{
900cfa46 302 u64 dclc;
c0a31329
TG
303 int sft = 0;
304
900cfa46 305 dclc = ktime_to_ns(kt);
c0a31329
TG
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
310 }
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
313
4d672e7a 314 return dclc;
c0a31329 315}
c0a31329
TG
316#endif /* BITS_PER_LONG >= 64 */
317
5a7780e7
TG
318/*
319 * Add two ktime values and do a safety check for overflow:
320 */
321ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322{
323 ktime_t res = ktime_add(lhs, rhs);
324
325 /*
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
328 */
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
331
332 return res;
333}
334
8daa21e6
AB
335EXPORT_SYMBOL_GPL(ktime_add_safe);
336
237fc6e7
TG
337#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
338
339static struct debug_obj_descr hrtimer_debug_descr;
340
341/*
342 * fixup_init is called when:
343 * - an active object is initialized
344 */
345static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
346{
347 struct hrtimer *timer = addr;
348
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
356 }
357}
358
359/*
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
363 */
364static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
365{
366 switch (state) {
367
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378}
379
380/*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
385{
386 struct hrtimer *timer = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396}
397
398static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
403};
404
405static inline void debug_hrtimer_init(struct hrtimer *timer)
406{
407 debug_object_init(timer, &hrtimer_debug_descr);
408}
409
410static inline void debug_hrtimer_activate(struct hrtimer *timer)
411{
412 debug_object_activate(timer, &hrtimer_debug_descr);
413}
414
415static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
416{
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
418}
419
420static inline void debug_hrtimer_free(struct hrtimer *timer)
421{
422 debug_object_free(timer, &hrtimer_debug_descr);
423}
424
425static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
427
428void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
430{
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
433}
434
435void destroy_hrtimer_on_stack(struct hrtimer *timer)
436{
437 debug_object_free(timer, &hrtimer_debug_descr);
438}
439
440#else
441static inline void debug_hrtimer_init(struct hrtimer *timer) { }
442static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
443static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
444#endif
445
c6a2a177
XG
446static inline void
447debug_init(struct hrtimer *timer, clockid_t clockid,
448 enum hrtimer_mode mode)
449{
450 debug_hrtimer_init(timer);
451 trace_hrtimer_init(timer, clockid, mode);
452}
453
454static inline void debug_activate(struct hrtimer *timer)
455{
456 debug_hrtimer_activate(timer);
457 trace_hrtimer_start(timer);
458}
459
460static inline void debug_deactivate(struct hrtimer *timer)
461{
462 debug_hrtimer_deactivate(timer);
463 trace_hrtimer_cancel(timer);
464}
465
54cdfdb4
TG
466/* High resolution timer related functions */
467#ifdef CONFIG_HIGH_RES_TIMERS
468
469/*
470 * High resolution timer enabled ?
471 */
472static int hrtimer_hres_enabled __read_mostly = 1;
473
474/*
475 * Enable / Disable high resolution mode
476 */
477static int __init setup_hrtimer_hres(char *str)
478{
479 if (!strcmp(str, "off"))
480 hrtimer_hres_enabled = 0;
481 else if (!strcmp(str, "on"))
482 hrtimer_hres_enabled = 1;
483 else
484 return 0;
485 return 1;
486}
487
488__setup("highres=", setup_hrtimer_hres);
489
490/*
491 * hrtimer_high_res_enabled - query, if the highres mode is enabled
492 */
493static inline int hrtimer_is_hres_enabled(void)
494{
495 return hrtimer_hres_enabled;
496}
497
498/*
499 * Is the high resolution mode active ?
500 */
501static inline int hrtimer_hres_active(void)
502{
503 return __get_cpu_var(hrtimer_bases).hres_active;
504}
505
506/*
507 * Reprogram the event source with checking both queues for the
508 * next event
509 * Called with interrupts disabled and base->lock held
510 */
511static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
512{
513 int i;
514 struct hrtimer_clock_base *base = cpu_base->clock_base;
515 ktime_t expires;
516
517 cpu_base->expires_next.tv64 = KTIME_MAX;
518
519 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
520 struct hrtimer *timer;
521
522 if (!base->first)
523 continue;
524 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 525 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
526 /*
527 * clock_was_set() has changed base->offset so the
528 * result might be negative. Fix it up to prevent a
529 * false positive in clockevents_program_event()
530 */
531 if (expires.tv64 < 0)
532 expires.tv64 = 0;
54cdfdb4
TG
533 if (expires.tv64 < cpu_base->expires_next.tv64)
534 cpu_base->expires_next = expires;
535 }
536
537 if (cpu_base->expires_next.tv64 != KTIME_MAX)
538 tick_program_event(cpu_base->expires_next, 1);
539}
540
541/*
542 * Shared reprogramming for clock_realtime and clock_monotonic
543 *
544 * When a timer is enqueued and expires earlier than the already enqueued
545 * timers, we have to check, whether it expires earlier than the timer for
546 * which the clock event device was armed.
547 *
548 * Called with interrupts disabled and base->cpu_base.lock held
549 */
550static int hrtimer_reprogram(struct hrtimer *timer,
551 struct hrtimer_clock_base *base)
552{
553 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
cc584b21 554 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
555 int res;
556
cc584b21 557 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 558
54cdfdb4
TG
559 /*
560 * When the callback is running, we do not reprogram the clock event
561 * device. The timer callback is either running on a different CPU or
3a4fa0a2 562 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
563 * reprogramming is handled either by the softirq, which called the
564 * callback or at the end of the hrtimer_interrupt.
565 */
566 if (hrtimer_callback_running(timer))
567 return 0;
568
63070a79
TG
569 /*
570 * CLOCK_REALTIME timer might be requested with an absolute
571 * expiry time which is less than base->offset. Nothing wrong
572 * about that, just avoid to call into the tick code, which
573 * has now objections against negative expiry values.
574 */
575 if (expires.tv64 < 0)
576 return -ETIME;
577
54cdfdb4
TG
578 if (expires.tv64 >= expires_next->tv64)
579 return 0;
580
581 /*
582 * Clockevents returns -ETIME, when the event was in the past.
583 */
584 res = tick_program_event(expires, 0);
585 if (!IS_ERR_VALUE(res))
586 *expires_next = expires;
587 return res;
588}
589
590
591/*
592 * Retrigger next event is called after clock was set
593 *
594 * Called with interrupts disabled via on_each_cpu()
595 */
596static void retrigger_next_event(void *arg)
597{
598 struct hrtimer_cpu_base *base;
599 struct timespec realtime_offset;
600 unsigned long seq;
601
602 if (!hrtimer_hres_active())
603 return;
604
605 do {
606 seq = read_seqbegin(&xtime_lock);
607 set_normalized_timespec(&realtime_offset,
608 -wall_to_monotonic.tv_sec,
609 -wall_to_monotonic.tv_nsec);
610 } while (read_seqretry(&xtime_lock, seq));
611
612 base = &__get_cpu_var(hrtimer_bases);
613
614 /* Adjust CLOCK_REALTIME offset */
615 spin_lock(&base->lock);
616 base->clock_base[CLOCK_REALTIME].offset =
617 timespec_to_ktime(realtime_offset);
618
619 hrtimer_force_reprogram(base);
620 spin_unlock(&base->lock);
621}
622
623/*
624 * Clock realtime was set
625 *
626 * Change the offset of the realtime clock vs. the monotonic
627 * clock.
628 *
629 * We might have to reprogram the high resolution timer interrupt. On
630 * SMP we call the architecture specific code to retrigger _all_ high
631 * resolution timer interrupts. On UP we just disable interrupts and
632 * call the high resolution interrupt code.
633 */
634void clock_was_set(void)
635{
636 /* Retrigger the CPU local events everywhere */
15c8b6c1 637 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
638}
639
995f054f
IM
640/*
641 * During resume we might have to reprogram the high resolution timer
642 * interrupt (on the local CPU):
643 */
644void hres_timers_resume(void)
645{
1d4a7f1c
PZ
646 WARN_ONCE(!irqs_disabled(),
647 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
648
995f054f
IM
649 retrigger_next_event(NULL);
650}
651
54cdfdb4
TG
652/*
653 * Initialize the high resolution related parts of cpu_base
654 */
655static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
656{
657 base->expires_next.tv64 = KTIME_MAX;
658 base->hres_active = 0;
54cdfdb4
TG
659}
660
661/*
662 * Initialize the high resolution related parts of a hrtimer
663 */
664static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
665{
54cdfdb4
TG
666}
667
ca109491 668
54cdfdb4
TG
669/*
670 * When High resolution timers are active, try to reprogram. Note, that in case
671 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
672 * check happens. The timer gets enqueued into the rbtree. The reprogramming
673 * and expiry check is done in the hrtimer_interrupt or in the softirq.
674 */
675static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
676 struct hrtimer_clock_base *base,
677 int wakeup)
54cdfdb4
TG
678{
679 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9
PZ
680 if (wakeup) {
681 spin_unlock(&base->cpu_base->lock);
682 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
683 spin_lock(&base->cpu_base->lock);
684 } else
685 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
686
ca109491 687 return 1;
54cdfdb4 688 }
7f1e2ca9 689
54cdfdb4
TG
690 return 0;
691}
692
693/*
694 * Switch to high resolution mode
695 */
f8953856 696static int hrtimer_switch_to_hres(void)
54cdfdb4 697{
820de5c3
IM
698 int cpu = smp_processor_id();
699 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
700 unsigned long flags;
701
702 if (base->hres_active)
f8953856 703 return 1;
54cdfdb4
TG
704
705 local_irq_save(flags);
706
707 if (tick_init_highres()) {
708 local_irq_restore(flags);
820de5c3
IM
709 printk(KERN_WARNING "Could not switch to high resolution "
710 "mode on CPU %d\n", cpu);
f8953856 711 return 0;
54cdfdb4
TG
712 }
713 base->hres_active = 1;
714 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
715 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
716
717 tick_setup_sched_timer();
718
719 /* "Retrigger" the interrupt to get things going */
720 retrigger_next_event(NULL);
721 local_irq_restore(flags);
edfed66e 722 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
54cdfdb4 723 smp_processor_id());
f8953856 724 return 1;
54cdfdb4
TG
725}
726
727#else
728
729static inline int hrtimer_hres_active(void) { return 0; }
730static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 731static inline int hrtimer_switch_to_hres(void) { return 0; }
54cdfdb4
TG
732static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
733static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
734 struct hrtimer_clock_base *base,
735 int wakeup)
54cdfdb4
TG
736{
737 return 0;
738}
54cdfdb4
TG
739static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
740static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
741
742#endif /* CONFIG_HIGH_RES_TIMERS */
743
82f67cd9
IM
744#ifdef CONFIG_TIMER_STATS
745void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
746{
747 if (timer->start_site)
748 return;
749
750 timer->start_site = addr;
751 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
752 timer->start_pid = current->pid;
753}
754#endif
755
c0a31329 756/*
6506f2aa 757 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
758 */
759static inline
760void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
761{
3c8aa39d 762 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
763}
764
765/**
766 * hrtimer_forward - forward the timer expiry
c0a31329 767 * @timer: hrtimer to forward
44f21475 768 * @now: forward past this time
c0a31329
TG
769 * @interval: the interval to forward
770 *
771 * Forward the timer expiry so it will expire in the future.
8dca6f33 772 * Returns the number of overruns.
c0a31329 773 */
4d672e7a 774u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 775{
4d672e7a 776 u64 orun = 1;
44f21475 777 ktime_t delta;
c0a31329 778
cc584b21 779 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
780
781 if (delta.tv64 < 0)
782 return 0;
783
c9db4fa1
TG
784 if (interval.tv64 < timer->base->resolution.tv64)
785 interval.tv64 = timer->base->resolution.tv64;
786
c0a31329 787 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 788 s64 incr = ktime_to_ns(interval);
c0a31329
TG
789
790 orun = ktime_divns(delta, incr);
cc584b21
AV
791 hrtimer_add_expires_ns(timer, incr * orun);
792 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
793 return orun;
794 /*
795 * This (and the ktime_add() below) is the
796 * correction for exact:
797 */
798 orun++;
799 }
cc584b21 800 hrtimer_add_expires(timer, interval);
c0a31329
TG
801
802 return orun;
803}
6bdb6b62 804EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
805
806/*
807 * enqueue_hrtimer - internal function to (re)start a timer
808 *
809 * The timer is inserted in expiry order. Insertion into the
810 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
811 *
812 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 813 */
a6037b61
PZ
814static int enqueue_hrtimer(struct hrtimer *timer,
815 struct hrtimer_clock_base *base)
c0a31329
TG
816{
817 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
818 struct rb_node *parent = NULL;
819 struct hrtimer *entry;
99bc2fcb 820 int leftmost = 1;
c0a31329 821
c6a2a177 822 debug_activate(timer);
237fc6e7 823
c0a31329
TG
824 /*
825 * Find the right place in the rbtree:
826 */
827 while (*link) {
828 parent = *link;
829 entry = rb_entry(parent, struct hrtimer, node);
830 /*
831 * We dont care about collisions. Nodes with
832 * the same expiry time stay together.
833 */
cc584b21
AV
834 if (hrtimer_get_expires_tv64(timer) <
835 hrtimer_get_expires_tv64(entry)) {
c0a31329 836 link = &(*link)->rb_left;
99bc2fcb 837 } else {
c0a31329 838 link = &(*link)->rb_right;
99bc2fcb
IM
839 leftmost = 0;
840 }
c0a31329
TG
841 }
842
843 /*
288867ec
TG
844 * Insert the timer to the rbtree and check whether it
845 * replaces the first pending timer
c0a31329 846 */
a6037b61 847 if (leftmost)
54cdfdb4 848 base->first = &timer->node;
54cdfdb4 849
c0a31329
TG
850 rb_link_node(&timer->node, parent, link);
851 rb_insert_color(&timer->node, &base->active);
303e967f
TG
852 /*
853 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
854 * state of a possibly running callback.
855 */
856 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
857
858 return leftmost;
288867ec 859}
c0a31329
TG
860
861/*
862 * __remove_hrtimer - internal function to remove a timer
863 *
864 * Caller must hold the base lock.
54cdfdb4
TG
865 *
866 * High resolution timer mode reprograms the clock event device when the
867 * timer is the one which expires next. The caller can disable this by setting
868 * reprogram to zero. This is useful, when the context does a reprogramming
869 * anyway (e.g. timer interrupt)
c0a31329 870 */
3c8aa39d 871static void __remove_hrtimer(struct hrtimer *timer,
303e967f 872 struct hrtimer_clock_base *base,
54cdfdb4 873 unsigned long newstate, int reprogram)
c0a31329 874{
ca109491 875 if (timer->state & HRTIMER_STATE_ENQUEUED) {
54cdfdb4
TG
876 /*
877 * Remove the timer from the rbtree and replace the
878 * first entry pointer if necessary.
879 */
880 if (base->first == &timer->node) {
881 base->first = rb_next(&timer->node);
882 /* Reprogram the clock event device. if enabled */
883 if (reprogram && hrtimer_hres_active())
884 hrtimer_force_reprogram(base->cpu_base);
885 }
886 rb_erase(&timer->node, &base->active);
887 }
303e967f 888 timer->state = newstate;
c0a31329
TG
889}
890
891/*
892 * remove hrtimer, called with base lock held
893 */
894static inline int
3c8aa39d 895remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 896{
303e967f 897 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
898 int reprogram;
899
900 /*
901 * Remove the timer and force reprogramming when high
902 * resolution mode is active and the timer is on the current
903 * CPU. If we remove a timer on another CPU, reprogramming is
904 * skipped. The interrupt event on this CPU is fired and
905 * reprogramming happens in the interrupt handler. This is a
906 * rare case and less expensive than a smp call.
907 */
c6a2a177 908 debug_deactivate(timer);
82f67cd9 909 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
910 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
911 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
912 reprogram);
c0a31329
TG
913 return 1;
914 }
915 return 0;
916}
917
7f1e2ca9
PZ
918int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
919 unsigned long delta_ns, const enum hrtimer_mode mode,
920 int wakeup)
c0a31329 921{
3c8aa39d 922 struct hrtimer_clock_base *base, *new_base;
c0a31329 923 unsigned long flags;
a6037b61 924 int ret, leftmost;
c0a31329
TG
925
926 base = lock_hrtimer_base(timer, &flags);
927
928 /* Remove an active timer from the queue: */
929 ret = remove_hrtimer(timer, base);
930
931 /* Switch the timer base, if necessary: */
597d0275 932 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 933
597d0275 934 if (mode & HRTIMER_MODE_REL) {
5a7780e7 935 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
936 /*
937 * CONFIG_TIME_LOW_RES is a temporary way for architectures
938 * to signal that they simply return xtime in
939 * do_gettimeoffset(). In this case we want to round up by
940 * resolution when starting a relative timer, to avoid short
941 * timeouts. This will go away with the GTOD framework.
942 */
943#ifdef CONFIG_TIME_LOW_RES
5a7780e7 944 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
945#endif
946 }
237fc6e7 947
da8f2e17 948 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 949
82f67cd9
IM
950 timer_stats_hrtimer_set_start_info(timer);
951
a6037b61
PZ
952 leftmost = enqueue_hrtimer(timer, new_base);
953
935c631d
IM
954 /*
955 * Only allow reprogramming if the new base is on this CPU.
956 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
957 *
958 * XXX send_remote_softirq() ?
935c631d 959 */
a6037b61 960 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 961 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
962
963 unlock_hrtimer_base(timer, &flags);
964
965 return ret;
966}
7f1e2ca9
PZ
967
968/**
969 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
970 * @timer: the timer to be added
971 * @tim: expiry time
972 * @delta_ns: "slack" range for the timer
973 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
974 *
975 * Returns:
976 * 0 on success
977 * 1 when the timer was active
978 */
979int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
980 unsigned long delta_ns, const enum hrtimer_mode mode)
981{
982 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
983}
da8f2e17
AV
984EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
985
986/**
e1dd7bc5 987 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
988 * @timer: the timer to be added
989 * @tim: expiry time
990 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
991 *
992 * Returns:
993 * 0 on success
994 * 1 when the timer was active
995 */
996int
997hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
998{
7f1e2ca9 999 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1000}
8d16b764 1001EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1002
da8f2e17 1003
c0a31329
TG
1004/**
1005 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1006 * @timer: hrtimer to stop
1007 *
1008 * Returns:
1009 * 0 when the timer was not active
1010 * 1 when the timer was active
1011 * -1 when the timer is currently excuting the callback function and
fa9799e3 1012 * cannot be stopped
c0a31329
TG
1013 */
1014int hrtimer_try_to_cancel(struct hrtimer *timer)
1015{
3c8aa39d 1016 struct hrtimer_clock_base *base;
c0a31329
TG
1017 unsigned long flags;
1018 int ret = -1;
1019
1020 base = lock_hrtimer_base(timer, &flags);
1021
303e967f 1022 if (!hrtimer_callback_running(timer))
c0a31329
TG
1023 ret = remove_hrtimer(timer, base);
1024
1025 unlock_hrtimer_base(timer, &flags);
1026
1027 return ret;
1028
1029}
8d16b764 1030EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1031
1032/**
1033 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1034 * @timer: the timer to be cancelled
1035 *
1036 * Returns:
1037 * 0 when the timer was not active
1038 * 1 when the timer was active
1039 */
1040int hrtimer_cancel(struct hrtimer *timer)
1041{
1042 for (;;) {
1043 int ret = hrtimer_try_to_cancel(timer);
1044
1045 if (ret >= 0)
1046 return ret;
5ef37b19 1047 cpu_relax();
c0a31329
TG
1048 }
1049}
8d16b764 1050EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1051
1052/**
1053 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1054 * @timer: the timer to read
1055 */
1056ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1057{
3c8aa39d 1058 struct hrtimer_clock_base *base;
c0a31329
TG
1059 unsigned long flags;
1060 ktime_t rem;
1061
1062 base = lock_hrtimer_base(timer, &flags);
cc584b21 1063 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1064 unlock_hrtimer_base(timer, &flags);
1065
1066 return rem;
1067}
8d16b764 1068EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1069
ee9c5785 1070#ifdef CONFIG_NO_HZ
69239749
TL
1071/**
1072 * hrtimer_get_next_event - get the time until next expiry event
1073 *
1074 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1075 * is pending.
1076 */
1077ktime_t hrtimer_get_next_event(void)
1078{
3c8aa39d
TG
1079 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1080 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1081 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1082 unsigned long flags;
1083 int i;
1084
3c8aa39d
TG
1085 spin_lock_irqsave(&cpu_base->lock, flags);
1086
54cdfdb4
TG
1087 if (!hrtimer_hres_active()) {
1088 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1089 struct hrtimer *timer;
69239749 1090
54cdfdb4
TG
1091 if (!base->first)
1092 continue;
3c8aa39d 1093
54cdfdb4 1094 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1095 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1096 delta = ktime_sub(delta, base->get_time());
1097 if (delta.tv64 < mindelta.tv64)
1098 mindelta.tv64 = delta.tv64;
1099 }
69239749 1100 }
3c8aa39d
TG
1101
1102 spin_unlock_irqrestore(&cpu_base->lock, flags);
1103
69239749
TL
1104 if (mindelta.tv64 < 0)
1105 mindelta.tv64 = 0;
1106 return mindelta;
1107}
1108#endif
1109
237fc6e7
TG
1110static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1111 enum hrtimer_mode mode)
c0a31329 1112{
3c8aa39d 1113 struct hrtimer_cpu_base *cpu_base;
c0a31329 1114
7978672c
GA
1115 memset(timer, 0, sizeof(struct hrtimer));
1116
3c8aa39d 1117 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1118
c9cb2e3d 1119 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1120 clock_id = CLOCK_MONOTONIC;
1121
3c8aa39d 1122 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1123 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1124
1125#ifdef CONFIG_TIMER_STATS
1126 timer->start_site = NULL;
1127 timer->start_pid = -1;
1128 memset(timer->start_comm, 0, TASK_COMM_LEN);
1129#endif
c0a31329 1130}
237fc6e7
TG
1131
1132/**
1133 * hrtimer_init - initialize a timer to the given clock
1134 * @timer: the timer to be initialized
1135 * @clock_id: the clock to be used
1136 * @mode: timer mode abs/rel
1137 */
1138void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1139 enum hrtimer_mode mode)
1140{
c6a2a177 1141 debug_init(timer, clock_id, mode);
237fc6e7
TG
1142 __hrtimer_init(timer, clock_id, mode);
1143}
8d16b764 1144EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1145
1146/**
1147 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1148 * @which_clock: which clock to query
1149 * @tp: pointer to timespec variable to store the resolution
1150 *
72fd4a35
RD
1151 * Store the resolution of the clock selected by @which_clock in the
1152 * variable pointed to by @tp.
c0a31329
TG
1153 */
1154int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1155{
3c8aa39d 1156 struct hrtimer_cpu_base *cpu_base;
c0a31329 1157
3c8aa39d
TG
1158 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1159 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1160
1161 return 0;
1162}
8d16b764 1163EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1164
c6a2a177 1165static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1166{
1167 struct hrtimer_clock_base *base = timer->base;
1168 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1169 enum hrtimer_restart (*fn)(struct hrtimer *);
1170 int restart;
1171
ca109491
PZ
1172 WARN_ON(!irqs_disabled());
1173
c6a2a177 1174 debug_deactivate(timer);
d3d74453
PZ
1175 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1176 timer_stats_account_hrtimer(timer);
d3d74453 1177 fn = timer->function;
ca109491
PZ
1178
1179 /*
1180 * Because we run timers from hardirq context, there is no chance
1181 * they get migrated to another cpu, therefore its safe to unlock
1182 * the timer base.
1183 */
1184 spin_unlock(&cpu_base->lock);
c6a2a177 1185 trace_hrtimer_expire_entry(timer, now);
ca109491 1186 restart = fn(timer);
c6a2a177 1187 trace_hrtimer_expire_exit(timer);
ca109491 1188 spin_lock(&cpu_base->lock);
d3d74453
PZ
1189
1190 /*
e3f1d883
TG
1191 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1192 * we do not reprogramm the event hardware. Happens either in
1193 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1194 */
1195 if (restart != HRTIMER_NORESTART) {
1196 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1197 enqueue_hrtimer(timer, base);
d3d74453
PZ
1198 }
1199 timer->state &= ~HRTIMER_STATE_CALLBACK;
1200}
1201
54cdfdb4
TG
1202#ifdef CONFIG_HIGH_RES_TIMERS
1203
7f22391c
FW
1204static int force_clock_reprogram;
1205
1206/*
1207 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1208 * is hanging, which could happen with something that slows the interrupt
1209 * such as the tracing. Then we force the clock reprogramming for each future
1210 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1211 * threshold that we will overwrite.
1212 * The next tick event will be scheduled to 3 times we currently spend on
1213 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1214 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1215 * let it running without serious starvation.
1216 */
1217
1218static inline void
1219hrtimer_interrupt_hanging(struct clock_event_device *dev,
1220 ktime_t try_time)
1221{
1222 force_clock_reprogram = 1;
1223 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1224 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1225 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1226}
54cdfdb4
TG
1227/*
1228 * High resolution timer interrupt
1229 * Called with interrupts disabled
1230 */
1231void hrtimer_interrupt(struct clock_event_device *dev)
1232{
1233 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1234 struct hrtimer_clock_base *base;
1235 ktime_t expires_next, now;
7f22391c 1236 int nr_retries = 0;
ca109491 1237 int i;
54cdfdb4
TG
1238
1239 BUG_ON(!cpu_base->hres_active);
1240 cpu_base->nr_events++;
1241 dev->next_event.tv64 = KTIME_MAX;
1242
1243 retry:
7f22391c
FW
1244 /* 5 retries is enough to notice a hang */
1245 if (!(++nr_retries % 5))
1246 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1247
54cdfdb4
TG
1248 now = ktime_get();
1249
1250 expires_next.tv64 = KTIME_MAX;
1251
6ff7041d
TG
1252 spin_lock(&cpu_base->lock);
1253 /*
1254 * We set expires_next to KTIME_MAX here with cpu_base->lock
1255 * held to prevent that a timer is enqueued in our queue via
1256 * the migration code. This does not affect enqueueing of
1257 * timers which run their callback and need to be requeued on
1258 * this CPU.
1259 */
1260 cpu_base->expires_next.tv64 = KTIME_MAX;
1261
54cdfdb4
TG
1262 base = cpu_base->clock_base;
1263
1264 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1265 ktime_t basenow;
1266 struct rb_node *node;
1267
54cdfdb4
TG
1268 basenow = ktime_add(now, base->offset);
1269
1270 while ((node = base->first)) {
1271 struct hrtimer *timer;
1272
1273 timer = rb_entry(node, struct hrtimer, node);
1274
654c8e0b
AV
1275 /*
1276 * The immediate goal for using the softexpires is
1277 * minimizing wakeups, not running timers at the
1278 * earliest interrupt after their soft expiration.
1279 * This allows us to avoid using a Priority Search
1280 * Tree, which can answer a stabbing querry for
1281 * overlapping intervals and instead use the simple
1282 * BST we already have.
1283 * We don't add extra wakeups by delaying timers that
1284 * are right-of a not yet expired timer, because that
1285 * timer will have to trigger a wakeup anyway.
1286 */
1287
1288 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1289 ktime_t expires;
1290
cc584b21 1291 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1292 base->offset);
1293 if (expires.tv64 < expires_next.tv64)
1294 expires_next = expires;
1295 break;
1296 }
1297
c6a2a177 1298 __run_hrtimer(timer, &basenow);
54cdfdb4 1299 }
54cdfdb4
TG
1300 base++;
1301 }
1302
6ff7041d
TG
1303 /*
1304 * Store the new expiry value so the migration code can verify
1305 * against it.
1306 */
54cdfdb4 1307 cpu_base->expires_next = expires_next;
6ff7041d 1308 spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1309
1310 /* Reprogramming necessary ? */
1311 if (expires_next.tv64 != KTIME_MAX) {
7f22391c 1312 if (tick_program_event(expires_next, force_clock_reprogram))
54cdfdb4
TG
1313 goto retry;
1314 }
54cdfdb4
TG
1315}
1316
8bdec955
TG
1317/*
1318 * local version of hrtimer_peek_ahead_timers() called with interrupts
1319 * disabled.
1320 */
1321static void __hrtimer_peek_ahead_timers(void)
1322{
1323 struct tick_device *td;
1324
1325 if (!hrtimer_hres_active())
1326 return;
1327
1328 td = &__get_cpu_var(tick_cpu_device);
1329 if (td && td->evtdev)
1330 hrtimer_interrupt(td->evtdev);
1331}
1332
2e94d1f7
AV
1333/**
1334 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1335 *
1336 * hrtimer_peek_ahead_timers will peek at the timer queue of
1337 * the current cpu and check if there are any timers for which
1338 * the soft expires time has passed. If any such timers exist,
1339 * they are run immediately and then removed from the timer queue.
1340 *
1341 */
1342void hrtimer_peek_ahead_timers(void)
1343{
643bdf68 1344 unsigned long flags;
dc4304f7 1345
2e94d1f7 1346 local_irq_save(flags);
8bdec955 1347 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1348 local_irq_restore(flags);
1349}
1350
a6037b61
PZ
1351static void run_hrtimer_softirq(struct softirq_action *h)
1352{
1353 hrtimer_peek_ahead_timers();
1354}
1355
82c5b7b5
IM
1356#else /* CONFIG_HIGH_RES_TIMERS */
1357
1358static inline void __hrtimer_peek_ahead_timers(void) { }
1359
1360#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1361
d3d74453
PZ
1362/*
1363 * Called from timer softirq every jiffy, expire hrtimers:
1364 *
1365 * For HRT its the fall back code to run the softirq in the timer
1366 * softirq context in case the hrtimer initialization failed or has
1367 * not been done yet.
1368 */
1369void hrtimer_run_pending(void)
1370{
d3d74453
PZ
1371 if (hrtimer_hres_active())
1372 return;
54cdfdb4 1373
d3d74453
PZ
1374 /*
1375 * This _is_ ugly: We have to check in the softirq context,
1376 * whether we can switch to highres and / or nohz mode. The
1377 * clocksource switch happens in the timer interrupt with
1378 * xtime_lock held. Notification from there only sets the
1379 * check bit in the tick_oneshot code, otherwise we might
1380 * deadlock vs. xtime_lock.
1381 */
1382 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1383 hrtimer_switch_to_hres();
54cdfdb4
TG
1384}
1385
c0a31329 1386/*
d3d74453 1387 * Called from hardirq context every jiffy
c0a31329 1388 */
833883d9 1389void hrtimer_run_queues(void)
c0a31329 1390{
288867ec 1391 struct rb_node *node;
833883d9
DS
1392 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1393 struct hrtimer_clock_base *base;
1394 int index, gettime = 1;
c0a31329 1395
833883d9 1396 if (hrtimer_hres_active())
3055adda
DS
1397 return;
1398
833883d9
DS
1399 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1400 base = &cpu_base->clock_base[index];
c0a31329 1401
833883d9 1402 if (!base->first)
d3d74453 1403 continue;
833883d9 1404
d7cfb60c 1405 if (gettime) {
833883d9
DS
1406 hrtimer_get_softirq_time(cpu_base);
1407 gettime = 0;
b75f7a51 1408 }
d3d74453 1409
833883d9 1410 spin_lock(&cpu_base->lock);
c0a31329 1411
833883d9
DS
1412 while ((node = base->first)) {
1413 struct hrtimer *timer;
54cdfdb4 1414
833883d9 1415 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1416 if (base->softirq_time.tv64 <=
1417 hrtimer_get_expires_tv64(timer))
833883d9
DS
1418 break;
1419
c6a2a177 1420 __run_hrtimer(timer, &base->softirq_time);
833883d9
DS
1421 }
1422 spin_unlock(&cpu_base->lock);
1423 }
c0a31329
TG
1424}
1425
10c94ec1
TG
1426/*
1427 * Sleep related functions:
1428 */
c9cb2e3d 1429static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1430{
1431 struct hrtimer_sleeper *t =
1432 container_of(timer, struct hrtimer_sleeper, timer);
1433 struct task_struct *task = t->task;
1434
1435 t->task = NULL;
1436 if (task)
1437 wake_up_process(task);
1438
1439 return HRTIMER_NORESTART;
1440}
1441
36c8b586 1442void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1443{
1444 sl->timer.function = hrtimer_wakeup;
1445 sl->task = task;
1446}
1447
669d7868 1448static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1449{
669d7868 1450 hrtimer_init_sleeper(t, current);
10c94ec1 1451
432569bb
RZ
1452 do {
1453 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1454 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1455 if (!hrtimer_active(&t->timer))
1456 t->task = NULL;
432569bb 1457
54cdfdb4
TG
1458 if (likely(t->task))
1459 schedule();
432569bb 1460
669d7868 1461 hrtimer_cancel(&t->timer);
c9cb2e3d 1462 mode = HRTIMER_MODE_ABS;
669d7868
TG
1463
1464 } while (t->task && !signal_pending(current));
432569bb 1465
3588a085
PZ
1466 __set_current_state(TASK_RUNNING);
1467
669d7868 1468 return t->task == NULL;
10c94ec1
TG
1469}
1470
080344b9
ON
1471static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1472{
1473 struct timespec rmt;
1474 ktime_t rem;
1475
cc584b21 1476 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1477 if (rem.tv64 <= 0)
1478 return 0;
1479 rmt = ktime_to_timespec(rem);
1480
1481 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1482 return -EFAULT;
1483
1484 return 1;
1485}
1486
1711ef38 1487long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1488{
669d7868 1489 struct hrtimer_sleeper t;
080344b9 1490 struct timespec __user *rmtp;
237fc6e7 1491 int ret = 0;
10c94ec1 1492
237fc6e7
TG
1493 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1494 HRTIMER_MODE_ABS);
cc584b21 1495 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1496
c9cb2e3d 1497 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1498 goto out;
10c94ec1 1499
029a07e0 1500 rmtp = restart->nanosleep.rmtp;
432569bb 1501 if (rmtp) {
237fc6e7 1502 ret = update_rmtp(&t.timer, rmtp);
080344b9 1503 if (ret <= 0)
237fc6e7 1504 goto out;
432569bb 1505 }
10c94ec1 1506
10c94ec1 1507 /* The other values in restart are already filled in */
237fc6e7
TG
1508 ret = -ERESTART_RESTARTBLOCK;
1509out:
1510 destroy_hrtimer_on_stack(&t.timer);
1511 return ret;
10c94ec1
TG
1512}
1513
080344b9 1514long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1515 const enum hrtimer_mode mode, const clockid_t clockid)
1516{
1517 struct restart_block *restart;
669d7868 1518 struct hrtimer_sleeper t;
237fc6e7 1519 int ret = 0;
3bd01206
AV
1520 unsigned long slack;
1521
1522 slack = current->timer_slack_ns;
1523 if (rt_task(current))
1524 slack = 0;
10c94ec1 1525
237fc6e7 1526 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1527 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1528 if (do_nanosleep(&t, mode))
237fc6e7 1529 goto out;
10c94ec1 1530
7978672c 1531 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1532 if (mode == HRTIMER_MODE_ABS) {
1533 ret = -ERESTARTNOHAND;
1534 goto out;
1535 }
10c94ec1 1536
432569bb 1537 if (rmtp) {
237fc6e7 1538 ret = update_rmtp(&t.timer, rmtp);
080344b9 1539 if (ret <= 0)
237fc6e7 1540 goto out;
432569bb 1541 }
10c94ec1
TG
1542
1543 restart = &current_thread_info()->restart_block;
1711ef38 1544 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1545 restart->nanosleep.index = t.timer.base->index;
1546 restart->nanosleep.rmtp = rmtp;
cc584b21 1547 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1548
237fc6e7
TG
1549 ret = -ERESTART_RESTARTBLOCK;
1550out:
1551 destroy_hrtimer_on_stack(&t.timer);
1552 return ret;
10c94ec1
TG
1553}
1554
58fd3aa2
HC
1555SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1556 struct timespec __user *, rmtp)
6ba1b912 1557{
080344b9 1558 struct timespec tu;
6ba1b912
TG
1559
1560 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1561 return -EFAULT;
1562
1563 if (!timespec_valid(&tu))
1564 return -EINVAL;
1565
080344b9 1566 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1567}
1568
c0a31329
TG
1569/*
1570 * Functions related to boot-time initialization:
1571 */
0ec160dd 1572static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1573{
3c8aa39d 1574 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1575 int i;
1576
3c8aa39d 1577 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1578
1579 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1580 cpu_base->clock_base[i].cpu_base = cpu_base;
1581
54cdfdb4 1582 hrtimer_init_hres(cpu_base);
c0a31329
TG
1583}
1584
1585#ifdef CONFIG_HOTPLUG_CPU
1586
ca109491 1587static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1588 struct hrtimer_clock_base *new_base)
c0a31329
TG
1589{
1590 struct hrtimer *timer;
1591 struct rb_node *node;
1592
1593 while ((node = rb_first(&old_base->active))) {
1594 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1595 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1596 debug_deactivate(timer);
b00c1a99
TG
1597
1598 /*
1599 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1600 * timer could be seen as !active and just vanish away
1601 * under us on another CPU
1602 */
1603 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1604 timer->base = new_base;
54cdfdb4 1605 /*
e3f1d883
TG
1606 * Enqueue the timers on the new cpu. This does not
1607 * reprogram the event device in case the timer
1608 * expires before the earliest on this CPU, but we run
1609 * hrtimer_interrupt after we migrated everything to
1610 * sort out already expired timers and reprogram the
1611 * event device.
54cdfdb4 1612 */
a6037b61 1613 enqueue_hrtimer(timer, new_base);
41e1022e 1614
b00c1a99
TG
1615 /* Clear the migration state bit */
1616 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1617 }
1618}
1619
d5fd43c4 1620static void migrate_hrtimers(int scpu)
c0a31329 1621{
3c8aa39d 1622 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1623 int i;
c0a31329 1624
37810659 1625 BUG_ON(cpu_online(scpu));
37810659 1626 tick_cancel_sched_timer(scpu);
731a55ba
TG
1627
1628 local_irq_disable();
1629 old_base = &per_cpu(hrtimer_bases, scpu);
1630 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1631 /*
1632 * The caller is globally serialized and nobody else
1633 * takes two locks at once, deadlock is not possible.
1634 */
731a55ba 1635 spin_lock(&new_base->lock);
8e60e05f 1636 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1637
3c8aa39d 1638 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1639 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1640 &new_base->clock_base[i]);
c0a31329
TG
1641 }
1642
8e60e05f 1643 spin_unlock(&old_base->lock);
731a55ba 1644 spin_unlock(&new_base->lock);
37810659 1645
731a55ba
TG
1646 /* Check, if we got expired work to do */
1647 __hrtimer_peek_ahead_timers();
1648 local_irq_enable();
c0a31329 1649}
37810659 1650
c0a31329
TG
1651#endif /* CONFIG_HOTPLUG_CPU */
1652
8c78f307 1653static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1654 unsigned long action, void *hcpu)
1655{
b2e3c0ad 1656 int scpu = (long)hcpu;
c0a31329
TG
1657
1658 switch (action) {
1659
1660 case CPU_UP_PREPARE:
8bb78442 1661 case CPU_UP_PREPARE_FROZEN:
37810659 1662 init_hrtimers_cpu(scpu);
c0a31329
TG
1663 break;
1664
1665#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1666 case CPU_DYING:
1667 case CPU_DYING_FROZEN:
1668 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1669 break;
c0a31329 1670 case CPU_DEAD:
8bb78442 1671 case CPU_DEAD_FROZEN:
b2e3c0ad 1672 {
37810659 1673 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1674 migrate_hrtimers(scpu);
c0a31329 1675 break;
b2e3c0ad 1676 }
c0a31329
TG
1677#endif
1678
1679 default:
1680 break;
1681 }
1682
1683 return NOTIFY_OK;
1684}
1685
8c78f307 1686static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1687 .notifier_call = hrtimer_cpu_notify,
1688};
1689
1690void __init hrtimers_init(void)
1691{
1692 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1693 (void *)(long)smp_processor_id());
1694 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1695#ifdef CONFIG_HIGH_RES_TIMERS
1696 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1697#endif
c0a31329
TG
1698}
1699
7bb67439 1700/**
654c8e0b 1701 * schedule_hrtimeout_range - sleep until timeout
7bb67439 1702 * @expires: timeout value (ktime_t)
654c8e0b 1703 * @delta: slack in expires timeout (ktime_t)
7bb67439
AV
1704 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1705 *
1706 * Make the current task sleep until the given expiry time has
1707 * elapsed. The routine will return immediately unless
1708 * the current task state has been set (see set_current_state()).
1709 *
654c8e0b
AV
1710 * The @delta argument gives the kernel the freedom to schedule the
1711 * actual wakeup to a time that is both power and performance friendly.
1712 * The kernel give the normal best effort behavior for "@expires+@delta",
1713 * but may decide to fire the timer earlier, but no earlier than @expires.
1714 *
7bb67439
AV
1715 * You can set the task state as follows -
1716 *
1717 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1718 * pass before the routine returns.
1719 *
1720 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1721 * delivered to the current task.
1722 *
1723 * The current task state is guaranteed to be TASK_RUNNING when this
1724 * routine returns.
1725 *
1726 * Returns 0 when the timer has expired otherwise -EINTR
1727 */
654c8e0b 1728int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
7bb67439
AV
1729 const enum hrtimer_mode mode)
1730{
1731 struct hrtimer_sleeper t;
1732
1733 /*
1734 * Optimize when a zero timeout value is given. It does not
1735 * matter whether this is an absolute or a relative time.
1736 */
1737 if (expires && !expires->tv64) {
1738 __set_current_state(TASK_RUNNING);
1739 return 0;
1740 }
1741
1742 /*
1743 * A NULL parameter means "inifinte"
1744 */
1745 if (!expires) {
1746 schedule();
1747 __set_current_state(TASK_RUNNING);
1748 return -EINTR;
1749 }
1750
1751 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
654c8e0b 1752 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1753
1754 hrtimer_init_sleeper(&t, current);
1755
cc584b21 1756 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1757 if (!hrtimer_active(&t.timer))
1758 t.task = NULL;
1759
1760 if (likely(t.task))
1761 schedule();
1762
1763 hrtimer_cancel(&t.timer);
1764 destroy_hrtimer_on_stack(&t.timer);
1765
1766 __set_current_state(TASK_RUNNING);
1767
1768 return !t.task ? 0 : -EINTR;
1769}
654c8e0b
AV
1770EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1771
1772/**
1773 * schedule_hrtimeout - sleep until timeout
1774 * @expires: timeout value (ktime_t)
1775 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1776 *
1777 * Make the current task sleep until the given expiry time has
1778 * elapsed. The routine will return immediately unless
1779 * the current task state has been set (see set_current_state()).
1780 *
1781 * You can set the task state as follows -
1782 *
1783 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1784 * pass before the routine returns.
1785 *
1786 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1787 * delivered to the current task.
1788 *
1789 * The current task state is guaranteed to be TASK_RUNNING when this
1790 * routine returns.
1791 *
1792 * Returns 0 when the timer has expired otherwise -EINTR
1793 */
1794int __sched schedule_hrtimeout(ktime_t *expires,
1795 const enum hrtimer_mode mode)
1796{
1797 return schedule_hrtimeout_range(expires, 0, mode);
1798}
7bb67439 1799EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.521543 seconds and 5 git commands to generate.