locking/mutex: In mutex_spin_on_owner(), return true when owner changes
[deliverable/linux.git] / kernel / locking / mutex.c
CommitLineData
6053ee3b 1/*
67a6de49 2 * kernel/locking/mutex.c
6053ee3b
IM
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
214e0aed 18 * Also see Documentation/locking/mutex-design.txt.
6053ee3b
IM
19 */
20#include <linux/mutex.h>
1b375dc3 21#include <linux/ww_mutex.h>
6053ee3b 22#include <linux/sched.h>
8bd75c77 23#include <linux/sched/rt.h>
9984de1a 24#include <linux/export.h>
6053ee3b
IM
25#include <linux/spinlock.h>
26#include <linux/interrupt.h>
9a11b49a 27#include <linux/debug_locks.h>
c9122da1 28#include "mcs_spinlock.h"
6053ee3b
IM
29
30/*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34#ifdef CONFIG_DEBUG_MUTEXES
35# include "mutex-debug.h"
36# include <asm-generic/mutex-null.h>
6f008e72
PZ
37/*
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
41 */
42# undef __mutex_slowpath_needs_to_unlock
43# define __mutex_slowpath_needs_to_unlock() 0
6053ee3b
IM
44#else
45# include "mutex.h"
46# include <asm/mutex.h>
47#endif
48
ef5d4707
IM
49void
50__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b
IM
51{
52 atomic_set(&lock->count, 1);
53 spin_lock_init(&lock->wait_lock);
54 INIT_LIST_HEAD(&lock->wait_list);
0d66bf6d 55 mutex_clear_owner(lock);
2bd2c92c 56#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4d9d951e 57 osq_lock_init(&lock->osq);
2bd2c92c 58#endif
6053ee3b 59
ef5d4707 60 debug_mutex_init(lock, name, key);
6053ee3b
IM
61}
62
63EXPORT_SYMBOL(__mutex_init);
64
e4564f79 65#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
66/*
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
71 */
22d9fd34 72__visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
6053ee3b 73
ef5dc121 74/**
6053ee3b
IM
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
139b6fd2 84 * memory where the mutex resides must not be freed with
6053ee3b
IM
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
b09d2501 95void __sched mutex_lock(struct mutex *lock)
6053ee3b 96{
c544bdb1 97 might_sleep();
6053ee3b
IM
98 /*
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
6053ee3b
IM
101 */
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
0d66bf6d 103 mutex_set_owner(lock);
6053ee3b
IM
104}
105
106EXPORT_SYMBOL(mutex_lock);
e4564f79 107#endif
6053ee3b 108
76916515
DB
109static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 struct ww_acquire_ctx *ww_ctx)
111{
112#ifdef CONFIG_DEBUG_MUTEXES
113 /*
114 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 * but released with a normal mutex_unlock in this call.
116 *
117 * This should never happen, always use ww_mutex_unlock.
118 */
119 DEBUG_LOCKS_WARN_ON(ww->ctx);
120
121 /*
122 * Not quite done after calling ww_acquire_done() ?
123 */
124 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125
126 if (ww_ctx->contending_lock) {
127 /*
128 * After -EDEADLK you tried to
129 * acquire a different ww_mutex? Bad!
130 */
131 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132
133 /*
134 * You called ww_mutex_lock after receiving -EDEADLK,
135 * but 'forgot' to unlock everything else first?
136 */
137 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 ww_ctx->contending_lock = NULL;
139 }
140
141 /*
142 * Naughty, using a different class will lead to undefined behavior!
143 */
144 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145#endif
146 ww_ctx->acquired++;
147}
148
149/*
4bd19084 150 * After acquiring lock with fastpath or when we lost out in contested
76916515
DB
151 * slowpath, set ctx and wake up any waiters so they can recheck.
152 *
153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154 * as the fastpath and opportunistic spinning are disabled in that case.
155 */
156static __always_inline void
157ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 struct ww_acquire_ctx *ctx)
159{
160 unsigned long flags;
161 struct mutex_waiter *cur;
162
163 ww_mutex_lock_acquired(lock, ctx);
164
165 lock->ctx = ctx;
166
167 /*
168 * The lock->ctx update should be visible on all cores before
169 * the atomic read is done, otherwise contended waiters might be
170 * missed. The contended waiters will either see ww_ctx == NULL
171 * and keep spinning, or it will acquire wait_lock, add itself
172 * to waiter list and sleep.
173 */
174 smp_mb(); /* ^^^ */
175
176 /*
177 * Check if lock is contended, if not there is nobody to wake up
178 */
179 if (likely(atomic_read(&lock->base.count) == 0))
180 return;
181
182 /*
183 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 * so they can see the new lock->ctx.
185 */
186 spin_lock_mutex(&lock->base.wait_lock, flags);
187 list_for_each_entry(cur, &lock->base.wait_list, list) {
188 debug_mutex_wake_waiter(&lock->base, cur);
189 wake_up_process(cur->task);
190 }
191 spin_unlock_mutex(&lock->base.wait_lock, flags);
192}
193
4bd19084
DB
194/*
195 * After acquiring lock in the slowpath set ctx and wake up any
196 * waiters so they can recheck.
197 *
198 * Callers must hold the mutex wait_lock.
199 */
200static __always_inline void
201ww_mutex_set_context_slowpath(struct ww_mutex *lock,
202 struct ww_acquire_ctx *ctx)
203{
204 struct mutex_waiter *cur;
205
206 ww_mutex_lock_acquired(lock, ctx);
207 lock->ctx = ctx;
208
209 /*
210 * Give any possible sleeping processes the chance to wake up,
211 * so they can recheck if they have to back off.
212 */
213 list_for_each_entry(cur, &lock->base.wait_list, list) {
214 debug_mutex_wake_waiter(&lock->base, cur);
215 wake_up_process(cur->task);
216 }
217}
76916515 218
41fcb9f2 219#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
41fcb9f2
WL
220static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
221{
222 if (lock->owner != owner)
223 return false;
224
225 /*
226 * Ensure we emit the owner->on_cpu, dereference _after_ checking
227 * lock->owner still matches owner, if that fails, owner might
228 * point to free()d memory, if it still matches, the rcu_read_lock()
229 * ensures the memory stays valid.
230 */
231 barrier();
232
233 return owner->on_cpu;
234}
235
236/*
237 * Look out! "owner" is an entirely speculative pointer
238 * access and not reliable.
239 */
240static noinline
241int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
242{
243 rcu_read_lock();
244 while (owner_running(lock, owner)) {
245 if (need_resched())
246 break;
247
3a6bfbc9 248 cpu_relax_lowlatency();
41fcb9f2
WL
249 }
250 rcu_read_unlock();
251
252 /*
07d2413a
JL
253 * We break out of the loop above on either need_resched(), when
254 * the owner is not running, or when the lock owner changed.
255 * Return success only when the lock owner changed.
41fcb9f2 256 */
07d2413a 257 return lock->owner != owner;
41fcb9f2 258}
2bd2c92c
WL
259
260/*
261 * Initial check for entering the mutex spinning loop
262 */
263static inline int mutex_can_spin_on_owner(struct mutex *lock)
264{
1e40c2ed 265 struct task_struct *owner;
2bd2c92c
WL
266 int retval = 1;
267
46af29e4
JL
268 if (need_resched())
269 return 0;
270
2bd2c92c 271 rcu_read_lock();
1e40c2ed
PZ
272 owner = ACCESS_ONCE(lock->owner);
273 if (owner)
274 retval = owner->on_cpu;
2bd2c92c
WL
275 rcu_read_unlock();
276 /*
277 * if lock->owner is not set, the mutex owner may have just acquired
278 * it and not set the owner yet or the mutex has been released.
279 */
280 return retval;
281}
76916515
DB
282
283/*
284 * Atomically try to take the lock when it is available
285 */
286static inline bool mutex_try_to_acquire(struct mutex *lock)
287{
288 return !mutex_is_locked(lock) &&
289 (atomic_cmpxchg(&lock->count, 1, 0) == 1);
290}
291
292/*
293 * Optimistic spinning.
294 *
295 * We try to spin for acquisition when we find that the lock owner
296 * is currently running on a (different) CPU and while we don't
297 * need to reschedule. The rationale is that if the lock owner is
298 * running, it is likely to release the lock soon.
299 *
300 * Since this needs the lock owner, and this mutex implementation
301 * doesn't track the owner atomically in the lock field, we need to
302 * track it non-atomically.
303 *
304 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
305 * to serialize everything.
306 *
307 * The mutex spinners are queued up using MCS lock so that only one
308 * spinner can compete for the mutex. However, if mutex spinning isn't
309 * going to happen, there is no point in going through the lock/unlock
310 * overhead.
311 *
312 * Returns true when the lock was taken, otherwise false, indicating
313 * that we need to jump to the slowpath and sleep.
314 */
315static bool mutex_optimistic_spin(struct mutex *lock,
316 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
317{
318 struct task_struct *task = current;
319
320 if (!mutex_can_spin_on_owner(lock))
321 goto done;
322
e42f678a
DB
323 /*
324 * In order to avoid a stampede of mutex spinners trying to
325 * acquire the mutex all at once, the spinners need to take a
326 * MCS (queued) lock first before spinning on the owner field.
327 */
76916515
DB
328 if (!osq_lock(&lock->osq))
329 goto done;
330
331 while (true) {
332 struct task_struct *owner;
333
334 if (use_ww_ctx && ww_ctx->acquired > 0) {
335 struct ww_mutex *ww;
336
337 ww = container_of(lock, struct ww_mutex, base);
338 /*
339 * If ww->ctx is set the contents are undefined, only
340 * by acquiring wait_lock there is a guarantee that
341 * they are not invalid when reading.
342 *
343 * As such, when deadlock detection needs to be
344 * performed the optimistic spinning cannot be done.
345 */
346 if (ACCESS_ONCE(ww->ctx))
347 break;
348 }
349
350 /*
351 * If there's an owner, wait for it to either
352 * release the lock or go to sleep.
353 */
354 owner = ACCESS_ONCE(lock->owner);
355 if (owner && !mutex_spin_on_owner(lock, owner))
356 break;
357
358 /* Try to acquire the mutex if it is unlocked. */
359 if (mutex_try_to_acquire(lock)) {
360 lock_acquired(&lock->dep_map, ip);
361
362 if (use_ww_ctx) {
363 struct ww_mutex *ww;
364 ww = container_of(lock, struct ww_mutex, base);
365
366 ww_mutex_set_context_fastpath(ww, ww_ctx);
367 }
368
369 mutex_set_owner(lock);
370 osq_unlock(&lock->osq);
371 return true;
372 }
373
374 /*
375 * When there's no owner, we might have preempted between the
376 * owner acquiring the lock and setting the owner field. If
377 * we're an RT task that will live-lock because we won't let
378 * the owner complete.
379 */
380 if (!owner && (need_resched() || rt_task(task)))
381 break;
382
383 /*
384 * The cpu_relax() call is a compiler barrier which forces
385 * everything in this loop to be re-loaded. We don't need
386 * memory barriers as we'll eventually observe the right
387 * values at the cost of a few extra spins.
388 */
389 cpu_relax_lowlatency();
390 }
391
392 osq_unlock(&lock->osq);
393done:
394 /*
395 * If we fell out of the spin path because of need_resched(),
396 * reschedule now, before we try-lock the mutex. This avoids getting
397 * scheduled out right after we obtained the mutex.
398 */
6f942a1f
PZ
399 if (need_resched()) {
400 /*
401 * We _should_ have TASK_RUNNING here, but just in case
402 * we do not, make it so, otherwise we might get stuck.
403 */
404 __set_current_state(TASK_RUNNING);
76916515 405 schedule_preempt_disabled();
6f942a1f 406 }
76916515
DB
407
408 return false;
409}
410#else
411static bool mutex_optimistic_spin(struct mutex *lock,
412 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
413{
414 return false;
415}
41fcb9f2
WL
416#endif
417
22d9fd34
AK
418__visible __used noinline
419void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
6053ee3b 420
ef5dc121 421/**
6053ee3b
IM
422 * mutex_unlock - release the mutex
423 * @lock: the mutex to be released
424 *
425 * Unlock a mutex that has been locked by this task previously.
426 *
427 * This function must not be used in interrupt context. Unlocking
428 * of a not locked mutex is not allowed.
429 *
430 * This function is similar to (but not equivalent to) up().
431 */
7ad5b3a5 432void __sched mutex_unlock(struct mutex *lock)
6053ee3b
IM
433{
434 /*
435 * The unlocking fastpath is the 0->1 transition from 'locked'
436 * into 'unlocked' state:
6053ee3b 437 */
0d66bf6d
PZ
438#ifndef CONFIG_DEBUG_MUTEXES
439 /*
440 * When debugging is enabled we must not clear the owner before time,
441 * the slow path will always be taken, and that clears the owner field
442 * after verifying that it was indeed current.
443 */
444 mutex_clear_owner(lock);
445#endif
6053ee3b
IM
446 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
447}
448
449EXPORT_SYMBOL(mutex_unlock);
450
040a0a37
ML
451/**
452 * ww_mutex_unlock - release the w/w mutex
453 * @lock: the mutex to be released
454 *
455 * Unlock a mutex that has been locked by this task previously with any of the
456 * ww_mutex_lock* functions (with or without an acquire context). It is
457 * forbidden to release the locks after releasing the acquire context.
458 *
459 * This function must not be used in interrupt context. Unlocking
460 * of a unlocked mutex is not allowed.
461 */
462void __sched ww_mutex_unlock(struct ww_mutex *lock)
463{
464 /*
465 * The unlocking fastpath is the 0->1 transition from 'locked'
466 * into 'unlocked' state:
467 */
468 if (lock->ctx) {
469#ifdef CONFIG_DEBUG_MUTEXES
470 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
471#endif
472 if (lock->ctx->acquired > 0)
473 lock->ctx->acquired--;
474 lock->ctx = NULL;
475 }
476
477#ifndef CONFIG_DEBUG_MUTEXES
478 /*
479 * When debugging is enabled we must not clear the owner before time,
480 * the slow path will always be taken, and that clears the owner field
481 * after verifying that it was indeed current.
482 */
483 mutex_clear_owner(&lock->base);
484#endif
485 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
486}
487EXPORT_SYMBOL(ww_mutex_unlock);
488
489static inline int __sched
63dc47e9 490__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37
ML
491{
492 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
493 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
494
495 if (!hold_ctx)
496 return 0;
497
498 if (unlikely(ctx == hold_ctx))
499 return -EALREADY;
500
501 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
502 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
503#ifdef CONFIG_DEBUG_MUTEXES
504 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
505 ctx->contending_lock = ww;
506#endif
507 return -EDEADLK;
508 }
509
510 return 0;
511}
512
6053ee3b
IM
513/*
514 * Lock a mutex (possibly interruptible), slowpath:
515 */
040a0a37 516static __always_inline int __sched
e4564f79 517__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37 518 struct lockdep_map *nest_lock, unsigned long ip,
b0267507 519 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
6053ee3b
IM
520{
521 struct task_struct *task = current;
522 struct mutex_waiter waiter;
1fb00c6c 523 unsigned long flags;
040a0a37 524 int ret;
6053ee3b 525
41719b03 526 preempt_disable();
e4c70a66 527 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027 528
76916515
DB
529 if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
530 /* got the lock, yay! */
531 preempt_enable();
532 return 0;
0d66bf6d 533 }
76916515 534
1fb00c6c 535 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 536
1e820c96
JL
537 /*
538 * Once more, try to acquire the lock. Only try-lock the mutex if
0d968dd8 539 * it is unlocked to reduce unnecessary xchg() operations.
1e820c96 540 */
0d968dd8 541 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
ec83f425
DB
542 goto skip_wait;
543
9a11b49a 544 debug_mutex_lock_common(lock, &waiter);
c9f4f06d 545 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
6053ee3b
IM
546
547 /* add waiting tasks to the end of the waitqueue (FIFO): */
548 list_add_tail(&waiter.list, &lock->wait_list);
549 waiter.task = task;
550
e4564f79 551 lock_contended(&lock->dep_map, ip);
4fe87745 552
6053ee3b
IM
553 for (;;) {
554 /*
555 * Lets try to take the lock again - this is needed even if
556 * we get here for the first time (shortly after failing to
557 * acquire the lock), to make sure that we get a wakeup once
558 * it's unlocked. Later on, if we sleep, this is the
559 * operation that gives us the lock. We xchg it to -1, so
560 * that when we release the lock, we properly wake up the
1e820c96
JL
561 * other waiters. We only attempt the xchg if the count is
562 * non-negative in order to avoid unnecessary xchg operations:
6053ee3b 563 */
1e820c96 564 if (atomic_read(&lock->count) >= 0 &&
ec83f425 565 (atomic_xchg(&lock->count, -1) == 1))
6053ee3b
IM
566 break;
567
568 /*
569 * got a signal? (This code gets eliminated in the
570 * TASK_UNINTERRUPTIBLE case.)
571 */
6ad36762 572 if (unlikely(signal_pending_state(state, task))) {
040a0a37
ML
573 ret = -EINTR;
574 goto err;
575 }
6053ee3b 576
b0267507 577 if (use_ww_ctx && ww_ctx->acquired > 0) {
63dc47e9 578 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
040a0a37
ML
579 if (ret)
580 goto err;
6053ee3b 581 }
040a0a37 582
6053ee3b
IM
583 __set_task_state(task, state);
584
25985edc 585 /* didn't get the lock, go to sleep: */
1fb00c6c 586 spin_unlock_mutex(&lock->wait_lock, flags);
bd2f5536 587 schedule_preempt_disabled();
1fb00c6c 588 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 589 }
51587bcf
DB
590 __set_task_state(task, TASK_RUNNING);
591
ec83f425
DB
592 mutex_remove_waiter(lock, &waiter, current_thread_info());
593 /* set it to 0 if there are no waiters left: */
594 if (likely(list_empty(&lock->wait_list)))
595 atomic_set(&lock->count, 0);
596 debug_mutex_free_waiter(&waiter);
6053ee3b 597
ec83f425
DB
598skip_wait:
599 /* got the lock - cleanup and rejoice! */
c7e78cff 600 lock_acquired(&lock->dep_map, ip);
0d66bf6d 601 mutex_set_owner(lock);
6053ee3b 602
b0267507 603 if (use_ww_ctx) {
ec83f425 604 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
4bd19084 605 ww_mutex_set_context_slowpath(ww, ww_ctx);
040a0a37
ML
606 }
607
1fb00c6c 608 spin_unlock_mutex(&lock->wait_lock, flags);
41719b03 609 preempt_enable();
6053ee3b 610 return 0;
040a0a37
ML
611
612err:
613 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
614 spin_unlock_mutex(&lock->wait_lock, flags);
615 debug_mutex_free_waiter(&waiter);
616 mutex_release(&lock->dep_map, 1, ip);
617 preempt_enable();
618 return ret;
6053ee3b
IM
619}
620
ef5d4707
IM
621#ifdef CONFIG_DEBUG_LOCK_ALLOC
622void __sched
623mutex_lock_nested(struct mutex *lock, unsigned int subclass)
624{
625 might_sleep();
040a0a37 626 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 627 subclass, NULL, _RET_IP_, NULL, 0);
ef5d4707
IM
628}
629
630EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 631
e4c70a66
PZ
632void __sched
633_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
634{
635 might_sleep();
040a0a37 636 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 637 0, nest, _RET_IP_, NULL, 0);
e4c70a66
PZ
638}
639
640EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
641
ad776537
LH
642int __sched
643mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
644{
645 might_sleep();
040a0a37 646 return __mutex_lock_common(lock, TASK_KILLABLE,
b0267507 647 subclass, NULL, _RET_IP_, NULL, 0);
ad776537
LH
648}
649EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
650
d63a5a74
N
651int __sched
652mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
653{
654 might_sleep();
0d66bf6d 655 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
b0267507 656 subclass, NULL, _RET_IP_, NULL, 0);
d63a5a74
N
657}
658
659EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 660
23010027
DV
661static inline int
662ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
663{
664#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
665 unsigned tmp;
666
667 if (ctx->deadlock_inject_countdown-- == 0) {
668 tmp = ctx->deadlock_inject_interval;
669 if (tmp > UINT_MAX/4)
670 tmp = UINT_MAX;
671 else
672 tmp = tmp*2 + tmp + tmp/2;
673
674 ctx->deadlock_inject_interval = tmp;
675 ctx->deadlock_inject_countdown = tmp;
676 ctx->contending_lock = lock;
677
678 ww_mutex_unlock(lock);
679
680 return -EDEADLK;
681 }
682#endif
683
684 return 0;
685}
040a0a37
ML
686
687int __sched
688__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
689{
23010027
DV
690 int ret;
691
040a0a37 692 might_sleep();
23010027 693 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
b0267507 694 0, &ctx->dep_map, _RET_IP_, ctx, 1);
85f48961 695 if (!ret && ctx->acquired > 1)
23010027
DV
696 return ww_mutex_deadlock_injection(lock, ctx);
697
698 return ret;
040a0a37
ML
699}
700EXPORT_SYMBOL_GPL(__ww_mutex_lock);
701
702int __sched
703__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
704{
23010027
DV
705 int ret;
706
040a0a37 707 might_sleep();
23010027 708 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
b0267507 709 0, &ctx->dep_map, _RET_IP_, ctx, 1);
23010027 710
85f48961 711 if (!ret && ctx->acquired > 1)
23010027
DV
712 return ww_mutex_deadlock_injection(lock, ctx);
713
714 return ret;
040a0a37
ML
715}
716EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
717
ef5d4707
IM
718#endif
719
6053ee3b
IM
720/*
721 * Release the lock, slowpath:
722 */
7ad5b3a5 723static inline void
242489cf 724__mutex_unlock_common_slowpath(struct mutex *lock, int nested)
6053ee3b 725{
1fb00c6c 726 unsigned long flags;
6053ee3b 727
6053ee3b 728 /*
42fa566b
DB
729 * As a performance measurement, release the lock before doing other
730 * wakeup related duties to follow. This allows other tasks to acquire
731 * the lock sooner, while still handling cleanups in past unlock calls.
732 * This can be done as we do not enforce strict equivalence between the
733 * mutex counter and wait_list.
734 *
735 *
736 * Some architectures leave the lock unlocked in the fastpath failure
6053ee3b 737 * case, others need to leave it locked. In the later case we have to
42fa566b 738 * unlock it here - as the lock counter is currently 0 or negative.
6053ee3b
IM
739 */
740 if (__mutex_slowpath_needs_to_unlock())
741 atomic_set(&lock->count, 1);
742
1d8fe7dc
JL
743 spin_lock_mutex(&lock->wait_lock, flags);
744 mutex_release(&lock->dep_map, nested, _RET_IP_);
745 debug_mutex_unlock(lock);
746
6053ee3b
IM
747 if (!list_empty(&lock->wait_list)) {
748 /* get the first entry from the wait-list: */
749 struct mutex_waiter *waiter =
750 list_entry(lock->wait_list.next,
751 struct mutex_waiter, list);
752
753 debug_mutex_wake_waiter(lock, waiter);
754
755 wake_up_process(waiter->task);
756 }
757
1fb00c6c 758 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
759}
760
9a11b49a
IM
761/*
762 * Release the lock, slowpath:
763 */
22d9fd34 764__visible void
9a11b49a
IM
765__mutex_unlock_slowpath(atomic_t *lock_count)
766{
242489cf
DB
767 struct mutex *lock = container_of(lock_count, struct mutex, count);
768
769 __mutex_unlock_common_slowpath(lock, 1);
9a11b49a
IM
770}
771
e4564f79 772#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
773/*
774 * Here come the less common (and hence less performance-critical) APIs:
775 * mutex_lock_interruptible() and mutex_trylock().
776 */
7ad5b3a5 777static noinline int __sched
a41b56ef 778__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 779
7ad5b3a5 780static noinline int __sched
a41b56ef 781__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 782
ef5dc121
RD
783/**
784 * mutex_lock_interruptible - acquire the mutex, interruptible
6053ee3b
IM
785 * @lock: the mutex to be acquired
786 *
787 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
788 * been acquired or sleep until the mutex becomes available. If a
789 * signal arrives while waiting for the lock then this function
790 * returns -EINTR.
791 *
792 * This function is similar to (but not equivalent to) down_interruptible().
793 */
7ad5b3a5 794int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 795{
0d66bf6d
PZ
796 int ret;
797
c544bdb1 798 might_sleep();
a41b56ef
ML
799 ret = __mutex_fastpath_lock_retval(&lock->count);
800 if (likely(!ret)) {
0d66bf6d 801 mutex_set_owner(lock);
a41b56ef
ML
802 return 0;
803 } else
804 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
805}
806
807EXPORT_SYMBOL(mutex_lock_interruptible);
808
7ad5b3a5 809int __sched mutex_lock_killable(struct mutex *lock)
ad776537 810{
0d66bf6d
PZ
811 int ret;
812
ad776537 813 might_sleep();
a41b56ef
ML
814 ret = __mutex_fastpath_lock_retval(&lock->count);
815 if (likely(!ret)) {
0d66bf6d 816 mutex_set_owner(lock);
a41b56ef
ML
817 return 0;
818 } else
819 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
820}
821EXPORT_SYMBOL(mutex_lock_killable);
822
22d9fd34 823__visible void __sched
e4564f79
PZ
824__mutex_lock_slowpath(atomic_t *lock_count)
825{
826 struct mutex *lock = container_of(lock_count, struct mutex, count);
827
040a0a37 828 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
b0267507 829 NULL, _RET_IP_, NULL, 0);
e4564f79
PZ
830}
831
7ad5b3a5 832static noinline int __sched
a41b56ef 833__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 834{
040a0a37 835 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
b0267507 836 NULL, _RET_IP_, NULL, 0);
ad776537
LH
837}
838
7ad5b3a5 839static noinline int __sched
a41b56ef 840__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 841{
040a0a37 842 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
b0267507 843 NULL, _RET_IP_, NULL, 0);
040a0a37
ML
844}
845
846static noinline int __sched
847__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
848{
849 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
b0267507 850 NULL, _RET_IP_, ctx, 1);
6053ee3b 851}
040a0a37
ML
852
853static noinline int __sched
854__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
855 struct ww_acquire_ctx *ctx)
856{
857 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
b0267507 858 NULL, _RET_IP_, ctx, 1);
040a0a37
ML
859}
860
e4564f79 861#endif
6053ee3b
IM
862
863/*
864 * Spinlock based trylock, we take the spinlock and check whether we
865 * can get the lock:
866 */
867static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
868{
869 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 870 unsigned long flags;
6053ee3b
IM
871 int prev;
872
72d5305d
JL
873 /* No need to trylock if the mutex is locked. */
874 if (mutex_is_locked(lock))
875 return 0;
876
1fb00c6c 877 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
878
879 prev = atomic_xchg(&lock->count, -1);
ef5d4707 880 if (likely(prev == 1)) {
0d66bf6d 881 mutex_set_owner(lock);
ef5d4707
IM
882 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
883 }
0d66bf6d 884
6053ee3b
IM
885 /* Set it back to 0 if there are no waiters: */
886 if (likely(list_empty(&lock->wait_list)))
887 atomic_set(&lock->count, 0);
888
1fb00c6c 889 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
890
891 return prev == 1;
892}
893
ef5dc121
RD
894/**
895 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
896 * @lock: the mutex to be acquired
897 *
898 * Try to acquire the mutex atomically. Returns 1 if the mutex
899 * has been acquired successfully, and 0 on contention.
900 *
901 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 902 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
903 * about this when converting semaphore users to mutexes.
904 *
905 * This function must not be used in interrupt context. The
906 * mutex must be released by the same task that acquired it.
907 */
7ad5b3a5 908int __sched mutex_trylock(struct mutex *lock)
6053ee3b 909{
0d66bf6d
PZ
910 int ret;
911
912 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
913 if (ret)
914 mutex_set_owner(lock);
915
916 return ret;
6053ee3b 917}
6053ee3b 918EXPORT_SYMBOL(mutex_trylock);
a511e3f9 919
040a0a37
ML
920#ifndef CONFIG_DEBUG_LOCK_ALLOC
921int __sched
922__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
923{
924 int ret;
925
926 might_sleep();
927
928 ret = __mutex_fastpath_lock_retval(&lock->base.count);
929
930 if (likely(!ret)) {
931 ww_mutex_set_context_fastpath(lock, ctx);
932 mutex_set_owner(&lock->base);
933 } else
934 ret = __ww_mutex_lock_slowpath(lock, ctx);
935 return ret;
936}
937EXPORT_SYMBOL(__ww_mutex_lock);
938
939int __sched
940__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
941{
942 int ret;
943
944 might_sleep();
945
946 ret = __mutex_fastpath_lock_retval(&lock->base.count);
947
948 if (likely(!ret)) {
949 ww_mutex_set_context_fastpath(lock, ctx);
950 mutex_set_owner(&lock->base);
951 } else
952 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
953 return ret;
954}
955EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
956
957#endif
958
a511e3f9
AM
959/**
960 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
961 * @cnt: the atomic which we are to dec
962 * @lock: the mutex to return holding if we dec to 0
963 *
964 * return true and hold lock if we dec to 0, return false otherwise
965 */
966int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
967{
968 /* dec if we can't possibly hit 0 */
969 if (atomic_add_unless(cnt, -1, 1))
970 return 0;
971 /* we might hit 0, so take the lock */
972 mutex_lock(lock);
973 if (!atomic_dec_and_test(cnt)) {
974 /* when we actually did the dec, we didn't hit 0 */
975 mutex_unlock(lock);
976 return 0;
977 }
978 /* we hit 0, and we hold the lock */
979 return 1;
980}
981EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
This page took 0.957878 seconds and 5 git commands to generate.