Merge remote-tracking branches 'asoc/topic/tas571x', 'asoc/topic/tlv320aic31xx',...
[deliverable/linux.git] / kernel / locking / qspinlock.c
CommitLineData
a33fda35
WL
1/*
2 * Queued spinlock
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15 * (C) Copyright 2013-2014 Red Hat, Inc.
16 * (C) Copyright 2015 Intel Corp.
64d816cb 17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
a33fda35 18 *
64d816cb 19 * Authors: Waiman Long <waiman.long@hpe.com>
a33fda35
WL
20 * Peter Zijlstra <peterz@infradead.org>
21 */
a23db284
WL
22
23#ifndef _GEN_PV_LOCK_SLOWPATH
24
a33fda35
WL
25#include <linux/smp.h>
26#include <linux/bug.h>
27#include <linux/cpumask.h>
28#include <linux/percpu.h>
29#include <linux/hardirq.h>
30#include <linux/mutex.h>
69f9cae9 31#include <asm/byteorder.h>
a33fda35
WL
32#include <asm/qspinlock.h>
33
34/*
35 * The basic principle of a queue-based spinlock can best be understood
36 * by studying a classic queue-based spinlock implementation called the
37 * MCS lock. The paper below provides a good description for this kind
38 * of lock.
39 *
40 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
41 *
42 * This queued spinlock implementation is based on the MCS lock, however to make
43 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
44 * API, we must modify it somehow.
45 *
46 * In particular; where the traditional MCS lock consists of a tail pointer
47 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
48 * unlock the next pending (next->locked), we compress both these: {tail,
49 * next->locked} into a single u32 value.
50 *
51 * Since a spinlock disables recursion of its own context and there is a limit
52 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
53 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
54 * we can encode the tail by combining the 2-bit nesting level with the cpu
55 * number. With one byte for the lock value and 3 bytes for the tail, only a
56 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
57 * we extend it to a full byte to achieve better performance for architectures
58 * that support atomic byte write.
59 *
60 * We also change the first spinner to spin on the lock bit instead of its
61 * node; whereby avoiding the need to carry a node from lock to unlock, and
62 * preserving existing lock API. This also makes the unlock code simpler and
63 * faster.
69f9cae9
PZI
64 *
65 * N.B. The current implementation only supports architectures that allow
66 * atomic operations on smaller 8-bit and 16-bit data types.
67 *
a33fda35
WL
68 */
69
70#include "mcs_spinlock.h"
71
a23db284
WL
72#ifdef CONFIG_PARAVIRT_SPINLOCKS
73#define MAX_NODES 8
74#else
75#define MAX_NODES 4
76#endif
77
a33fda35
WL
78/*
79 * Per-CPU queue node structures; we can never have more than 4 nested
80 * contexts: task, softirq, hardirq, nmi.
81 *
82 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
a23db284
WL
83 *
84 * PV doubles the storage and uses the second cacheline for PV state.
a33fda35 85 */
a23db284 86static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
a33fda35
WL
87
88/*
89 * We must be able to distinguish between no-tail and the tail at 0:0,
90 * therefore increment the cpu number by one.
91 */
92
93static inline u32 encode_tail(int cpu, int idx)
94{
95 u32 tail;
96
97#ifdef CONFIG_DEBUG_SPINLOCK
98 BUG_ON(idx > 3);
99#endif
100 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
101 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
102
103 return tail;
104}
105
106static inline struct mcs_spinlock *decode_tail(u32 tail)
107{
108 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
109 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
110
111 return per_cpu_ptr(&mcs_nodes[idx], cpu);
112}
113
c1fb159d
PZI
114#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
115
69f9cae9
PZI
116/*
117 * By using the whole 2nd least significant byte for the pending bit, we
118 * can allow better optimization of the lock acquisition for the pending
119 * bit holder.
2c83e8e9
WL
120 *
121 * This internal structure is also used by the set_locked function which
122 * is not restricted to _Q_PENDING_BITS == 8.
69f9cae9 123 */
69f9cae9
PZI
124struct __qspinlock {
125 union {
126 atomic_t val;
69f9cae9 127#ifdef __LITTLE_ENDIAN
2c83e8e9
WL
128 struct {
129 u8 locked;
130 u8 pending;
131 };
132 struct {
69f9cae9
PZI
133 u16 locked_pending;
134 u16 tail;
2c83e8e9 135 };
69f9cae9 136#else
2c83e8e9 137 struct {
69f9cae9
PZI
138 u16 tail;
139 u16 locked_pending;
69f9cae9 140 };
2c83e8e9
WL
141 struct {
142 u8 reserved[2];
143 u8 pending;
144 u8 locked;
145 };
146#endif
69f9cae9
PZI
147 };
148};
149
2c83e8e9 150#if _Q_PENDING_BITS == 8
69f9cae9
PZI
151/**
152 * clear_pending_set_locked - take ownership and clear the pending bit.
153 * @lock: Pointer to queued spinlock structure
154 *
155 * *,1,0 -> *,0,1
156 *
157 * Lock stealing is not allowed if this function is used.
158 */
159static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
160{
161 struct __qspinlock *l = (void *)lock;
162
163 WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
164}
165
166/*
167 * xchg_tail - Put in the new queue tail code word & retrieve previous one
168 * @lock : Pointer to queued spinlock structure
169 * @tail : The new queue tail code word
170 * Return: The previous queue tail code word
171 *
172 * xchg(lock, tail)
173 *
174 * p,*,* -> n,*,* ; prev = xchg(lock, node)
175 */
176static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177{
178 struct __qspinlock *l = (void *)lock;
179
64d816cb
WL
180 /*
181 * Use release semantics to make sure that the MCS node is properly
182 * initialized before changing the tail code.
183 */
184 return (u32)xchg_release(&l->tail,
185 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
69f9cae9
PZI
186}
187
188#else /* _Q_PENDING_BITS == 8 */
189
6403bd7d
WL
190/**
191 * clear_pending_set_locked - take ownership and clear the pending bit.
192 * @lock: Pointer to queued spinlock structure
193 *
194 * *,1,0 -> *,0,1
195 */
196static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
197{
198 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
199}
200
201/**
202 * xchg_tail - Put in the new queue tail code word & retrieve previous one
203 * @lock : Pointer to queued spinlock structure
204 * @tail : The new queue tail code word
205 * Return: The previous queue tail code word
206 *
207 * xchg(lock, tail)
208 *
209 * p,*,* -> n,*,* ; prev = xchg(lock, node)
210 */
211static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
212{
213 u32 old, new, val = atomic_read(&lock->val);
214
215 for (;;) {
216 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
64d816cb
WL
217 /*
218 * Use release semantics to make sure that the MCS node is
219 * properly initialized before changing the tail code.
220 */
221 old = atomic_cmpxchg_release(&lock->val, val, new);
6403bd7d
WL
222 if (old == val)
223 break;
224
225 val = old;
226 }
227 return old;
228}
69f9cae9 229#endif /* _Q_PENDING_BITS == 8 */
6403bd7d 230
2c83e8e9
WL
231/**
232 * set_locked - Set the lock bit and own the lock
233 * @lock: Pointer to queued spinlock structure
234 *
235 * *,*,0 -> *,0,1
236 */
237static __always_inline void set_locked(struct qspinlock *lock)
238{
239 struct __qspinlock *l = (void *)lock;
240
241 WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
242}
243
a23db284
WL
244
245/*
246 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
247 * all the PV callbacks.
248 */
249
250static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
cd0272fa
WL
251static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
252 struct mcs_spinlock *prev) { }
75d22702
WL
253static __always_inline void __pv_kick_node(struct qspinlock *lock,
254 struct mcs_spinlock *node) { }
1c4941fd
WL
255static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
256 struct mcs_spinlock *node)
257 { return 0; }
a23db284
WL
258
259#define pv_enabled() false
260
261#define pv_init_node __pv_init_node
262#define pv_wait_node __pv_wait_node
263#define pv_kick_node __pv_kick_node
1c4941fd 264#define pv_wait_head_or_lock __pv_wait_head_or_lock
a23db284
WL
265
266#ifdef CONFIG_PARAVIRT_SPINLOCKS
267#define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
268#endif
269
2c610022
PZ
270/*
271 * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
272 * issuing an _unordered_ store to set _Q_LOCKED_VAL.
273 *
274 * This means that the store can be delayed, but no later than the
275 * store-release from the unlock. This means that simply observing
276 * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
277 *
278 * There are two paths that can issue the unordered store:
279 *
280 * (1) clear_pending_set_locked(): *,1,0 -> *,0,1
281 *
282 * (2) set_locked(): t,0,0 -> t,0,1 ; t != 0
283 * atomic_cmpxchg_relaxed(): t,0,0 -> 0,0,1
284 *
285 * However, in both cases we have other !0 state we've set before to queue
286 * ourseves:
287 *
288 * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
289 * load is constrained by that ACQUIRE to not pass before that, and thus must
290 * observe the store.
291 *
292 * For (2) we have a more intersting scenario. We enqueue ourselves using
293 * xchg_tail(), which ends up being a RELEASE. This in itself is not
294 * sufficient, however that is followed by an smp_cond_acquire() on the same
295 * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
296 * guarantees we must observe that store.
297 *
298 * Therefore both cases have other !0 state that is observable before the
299 * unordered locked byte store comes through. This means we can use that to
300 * wait for the lock store, and then wait for an unlock.
301 */
302#ifndef queued_spin_unlock_wait
303void queued_spin_unlock_wait(struct qspinlock *lock)
304{
305 u32 val;
306
307 for (;;) {
308 val = atomic_read(&lock->val);
309
310 if (!val) /* not locked, we're done */
311 goto done;
312
313 if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
314 break;
315
316 /* not locked, but pending, wait until we observe the lock */
317 cpu_relax();
318 }
319
320 /* any unlock is good */
321 while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
322 cpu_relax();
323
324done:
325 smp_rmb(); /* CTRL + RMB -> ACQUIRE */
326}
327EXPORT_SYMBOL(queued_spin_unlock_wait);
328#endif
329
a23db284
WL
330#endif /* _GEN_PV_LOCK_SLOWPATH */
331
a33fda35
WL
332/**
333 * queued_spin_lock_slowpath - acquire the queued spinlock
334 * @lock: Pointer to queued spinlock structure
335 * @val: Current value of the queued spinlock 32-bit word
336 *
c1fb159d 337 * (queue tail, pending bit, lock value)
a33fda35 338 *
c1fb159d
PZI
339 * fast : slow : unlock
340 * : :
341 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
342 * : | ^--------.------. / :
343 * : v \ \ | :
344 * pending : (0,1,1) +--> (0,1,0) \ | :
345 * : | ^--' | | :
346 * : v | | :
347 * uncontended : (n,x,y) +--> (n,0,0) --' | :
348 * queue : | ^--' | :
349 * : v | :
350 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
351 * queue : ^--' :
a33fda35
WL
352 */
353void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
354{
355 struct mcs_spinlock *prev, *next, *node;
356 u32 new, old, tail;
357 int idx;
358
359 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
360
a23db284
WL
361 if (pv_enabled())
362 goto queue;
363
43b3f028 364 if (virt_spin_lock(lock))
2aa79af6
PZI
365 return;
366
c1fb159d
PZI
367 /*
368 * wait for in-progress pending->locked hand-overs
369 *
370 * 0,1,0 -> 0,0,1
371 */
372 if (val == _Q_PENDING_VAL) {
373 while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
374 cpu_relax();
375 }
376
377 /*
378 * trylock || pending
379 *
380 * 0,0,0 -> 0,0,1 ; trylock
381 * 0,0,1 -> 0,1,1 ; pending
382 */
383 for (;;) {
384 /*
385 * If we observe any contention; queue.
386 */
387 if (val & ~_Q_LOCKED_MASK)
388 goto queue;
389
390 new = _Q_LOCKED_VAL;
391 if (val == new)
392 new |= _Q_PENDING_VAL;
393
64d816cb
WL
394 /*
395 * Acquire semantic is required here as the function may
396 * return immediately if the lock was free.
397 */
398 old = atomic_cmpxchg_acquire(&lock->val, val, new);
c1fb159d
PZI
399 if (old == val)
400 break;
401
402 val = old;
403 }
404
405 /*
406 * we won the trylock
407 */
408 if (new == _Q_LOCKED_VAL)
409 return;
410
411 /*
412 * we're pending, wait for the owner to go away.
413 *
414 * *,1,1 -> *,1,0
69f9cae9
PZI
415 *
416 * this wait loop must be a load-acquire such that we match the
417 * store-release that clears the locked bit and create lock
418 * sequentiality; this is because not all clear_pending_set_locked()
419 * implementations imply full barriers.
c1fb159d 420 */
cb037fda 421 smp_cond_acquire(!(atomic_read(&lock->val) & _Q_LOCKED_MASK));
c1fb159d
PZI
422
423 /*
424 * take ownership and clear the pending bit.
425 *
426 * *,1,0 -> *,0,1
427 */
6403bd7d 428 clear_pending_set_locked(lock);
c1fb159d
PZI
429 return;
430
431 /*
432 * End of pending bit optimistic spinning and beginning of MCS
433 * queuing.
434 */
435queue:
a33fda35
WL
436 node = this_cpu_ptr(&mcs_nodes[0]);
437 idx = node->count++;
438 tail = encode_tail(smp_processor_id(), idx);
439
440 node += idx;
441 node->locked = 0;
442 node->next = NULL;
a23db284 443 pv_init_node(node);
a33fda35
WL
444
445 /*
6403bd7d
WL
446 * We touched a (possibly) cold cacheline in the per-cpu queue node;
447 * attempt the trylock once more in the hope someone let go while we
448 * weren't watching.
a33fda35 449 */
6403bd7d
WL
450 if (queued_spin_trylock(lock))
451 goto release;
a33fda35
WL
452
453 /*
6403bd7d
WL
454 * We have already touched the queueing cacheline; don't bother with
455 * pending stuff.
456 *
457 * p,*,* -> n,*,*
a33fda35 458 */
6403bd7d 459 old = xchg_tail(lock, tail);
aa68744f 460 next = NULL;
a33fda35
WL
461
462 /*
463 * if there was a previous node; link it and wait until reaching the
464 * head of the waitqueue.
465 */
6403bd7d 466 if (old & _Q_TAIL_MASK) {
a33fda35
WL
467 prev = decode_tail(old);
468 WRITE_ONCE(prev->next, node);
469
cd0272fa 470 pv_wait_node(node, prev);
a33fda35 471 arch_mcs_spin_lock_contended(&node->locked);
81b55986
WL
472
473 /*
474 * While waiting for the MCS lock, the next pointer may have
475 * been set by another lock waiter. We optimistically load
476 * the next pointer & prefetch the cacheline for writing
477 * to reduce latency in the upcoming MCS unlock operation.
478 */
479 next = READ_ONCE(node->next);
480 if (next)
481 prefetchw(next);
a33fda35
WL
482 }
483
484 /*
c1fb159d
PZI
485 * we're at the head of the waitqueue, wait for the owner & pending to
486 * go away.
a33fda35 487 *
c1fb159d 488 * *,x,y -> *,0,0
2c83e8e9
WL
489 *
490 * this wait loop must use a load-acquire such that we match the
491 * store-release that clears the locked bit and create lock
492 * sequentiality; this is because the set_locked() function below
493 * does not imply a full barrier.
494 *
1c4941fd
WL
495 * The PV pv_wait_head_or_lock function, if active, will acquire
496 * the lock and return a non-zero value. So we have to skip the
cb037fda 497 * smp_cond_acquire() call. As the next PV queue head hasn't been
1c4941fd
WL
498 * designated yet, there is no way for the locked value to become
499 * _Q_SLOW_VAL. So both the set_locked() and the
500 * atomic_cmpxchg_relaxed() calls will be safe.
501 *
502 * If PV isn't active, 0 will be returned instead.
503 *
a33fda35 504 */
1c4941fd
WL
505 if ((val = pv_wait_head_or_lock(lock, node)))
506 goto locked;
507
b3e0b1b6 508 smp_cond_acquire(!((val = atomic_read(&lock->val)) & _Q_LOCKED_PENDING_MASK));
a33fda35 509
1c4941fd 510locked:
a33fda35
WL
511 /*
512 * claim the lock:
513 *
c1fb159d
PZI
514 * n,0,0 -> 0,0,1 : lock, uncontended
515 * *,0,0 -> *,0,1 : lock, contended
2c83e8e9
WL
516 *
517 * If the queue head is the only one in the queue (lock value == tail),
518 * clear the tail code and grab the lock. Otherwise, we only need
519 * to grab the lock.
a33fda35
WL
520 */
521 for (;;) {
1c4941fd
WL
522 /* In the PV case we might already have _Q_LOCKED_VAL set */
523 if ((val & _Q_TAIL_MASK) != tail) {
2c83e8e9 524 set_locked(lock);
a33fda35 525 break;
2c83e8e9 526 }
64d816cb 527 /*
cb037fda 528 * The smp_cond_acquire() call above has provided the necessary
64d816cb
WL
529 * acquire semantics required for locking. At most two
530 * iterations of this loop may be ran.
531 */
532 old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
2c83e8e9
WL
533 if (old == val)
534 goto release; /* No contention */
a33fda35
WL
535
536 val = old;
537 }
538
539 /*
aa68744f 540 * contended path; wait for next if not observed yet, release.
a33fda35 541 */
aa68744f
WL
542 if (!next) {
543 while (!(next = READ_ONCE(node->next)))
544 cpu_relax();
545 }
a33fda35 546
2c83e8e9 547 arch_mcs_spin_unlock_contended(&next->locked);
75d22702 548 pv_kick_node(lock, next);
a33fda35
WL
549
550release:
551 /*
552 * release the node
553 */
554 this_cpu_dec(mcs_nodes[0].count);
555}
556EXPORT_SYMBOL(queued_spin_lock_slowpath);
a23db284
WL
557
558/*
559 * Generate the paravirt code for queued_spin_unlock_slowpath().
560 */
561#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
562#define _GEN_PV_LOCK_SLOWPATH
563
564#undef pv_enabled
565#define pv_enabled() true
566
567#undef pv_init_node
568#undef pv_wait_node
569#undef pv_kick_node
1c4941fd 570#undef pv_wait_head_or_lock
a23db284
WL
571
572#undef queued_spin_lock_slowpath
573#define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
574
575#include "qspinlock_paravirt.h"
576#include "qspinlock.c"
577
578#endif
This page took 0.103772 seconds and 5 git commands to generate.