rtmutex: No need to keep task ref for lock owner check
[deliverable/linux.git] / kernel / locking / rtmutex.c
CommitLineData
23f78d4a
IM
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
d07fe82c
SR
10 *
11 * See Documentation/rt-mutex-design.txt for details.
23f78d4a
IM
12 */
13#include <linux/spinlock.h>
9984de1a 14#include <linux/export.h>
23f78d4a 15#include <linux/sched.h>
8bd75c77 16#include <linux/sched/rt.h>
fb00aca4 17#include <linux/sched/deadline.h>
23f78d4a
IM
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
23f78d4a
IM
22/*
23 * lock->owner state tracking:
24 *
8161239a
LJ
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
23f78d4a 27 *
8161239a
LJ
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
23f78d4a
IM
34 *
35 * The fast atomic compare exchange based acquire and release is only
8161239a
LJ
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
23f78d4a 42 *
8161239a
LJ
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
23f78d4a
IM
47 */
48
bd197234 49static void
8161239a 50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
23f78d4a 51{
8161239a 52 unsigned long val = (unsigned long)owner;
23f78d4a
IM
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68 if (!rt_mutex_has_waiters(lock))
69 clear_rt_mutex_waiters(lock);
70}
71
bd197234
TG
72/*
73 * We can speed up the acquire/release, if the architecture
74 * supports cmpxchg and if there's no debugging state to be set up
75 */
76#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
78static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79{
80 unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82 do {
83 owner = *p;
84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85}
27e35715
TG
86
87/*
88 * Safe fastpath aware unlock:
89 * 1) Clear the waiters bit
90 * 2) Drop lock->wait_lock
91 * 3) Try to unlock the lock with cmpxchg
92 */
93static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 __releases(lock->wait_lock)
95{
96 struct task_struct *owner = rt_mutex_owner(lock);
97
98 clear_rt_mutex_waiters(lock);
99 raw_spin_unlock(&lock->wait_lock);
100 /*
101 * If a new waiter comes in between the unlock and the cmpxchg
102 * we have two situations:
103 *
104 * unlock(wait_lock);
105 * lock(wait_lock);
106 * cmpxchg(p, owner, 0) == owner
107 * mark_rt_mutex_waiters(lock);
108 * acquire(lock);
109 * or:
110 *
111 * unlock(wait_lock);
112 * lock(wait_lock);
113 * mark_rt_mutex_waiters(lock);
114 *
115 * cmpxchg(p, owner, 0) != owner
116 * enqueue_waiter();
117 * unlock(wait_lock);
118 * lock(wait_lock);
119 * wake waiter();
120 * unlock(wait_lock);
121 * lock(wait_lock);
122 * acquire(lock);
123 */
124 return rt_mutex_cmpxchg(lock, owner, NULL);
125}
126
bd197234
TG
127#else
128# define rt_mutex_cmpxchg(l,c,n) (0)
129static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130{
131 lock->owner = (struct task_struct *)
132 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133}
27e35715
TG
134
135/*
136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 */
138static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 __releases(lock->wait_lock)
140{
141 lock->owner = NULL;
142 raw_spin_unlock(&lock->wait_lock);
143 return true;
144}
bd197234
TG
145#endif
146
fb00aca4
PZ
147static inline int
148rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 struct rt_mutex_waiter *right)
150{
2d3d891d 151 if (left->prio < right->prio)
fb00aca4
PZ
152 return 1;
153
154 /*
2d3d891d
DF
155 * If both waiters have dl_prio(), we check the deadlines of the
156 * associated tasks.
157 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 * then right waiter has a dl_prio() too.
fb00aca4 159 */
2d3d891d 160 if (dl_prio(left->prio))
fb00aca4
PZ
161 return (left->task->dl.deadline < right->task->dl.deadline);
162
163 return 0;
164}
165
166static void
167rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168{
169 struct rb_node **link = &lock->waiters.rb_node;
170 struct rb_node *parent = NULL;
171 struct rt_mutex_waiter *entry;
172 int leftmost = 1;
173
174 while (*link) {
175 parent = *link;
176 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 if (rt_mutex_waiter_less(waiter, entry)) {
178 link = &parent->rb_left;
179 } else {
180 link = &parent->rb_right;
181 leftmost = 0;
182 }
183 }
184
185 if (leftmost)
186 lock->waiters_leftmost = &waiter->tree_entry;
187
188 rb_link_node(&waiter->tree_entry, parent, link);
189 rb_insert_color(&waiter->tree_entry, &lock->waiters);
190}
191
192static void
193rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194{
195 if (RB_EMPTY_NODE(&waiter->tree_entry))
196 return;
197
198 if (lock->waiters_leftmost == &waiter->tree_entry)
199 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201 rb_erase(&waiter->tree_entry, &lock->waiters);
202 RB_CLEAR_NODE(&waiter->tree_entry);
203}
204
205static void
206rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207{
208 struct rb_node **link = &task->pi_waiters.rb_node;
209 struct rb_node *parent = NULL;
210 struct rt_mutex_waiter *entry;
211 int leftmost = 1;
212
213 while (*link) {
214 parent = *link;
215 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 if (rt_mutex_waiter_less(waiter, entry)) {
217 link = &parent->rb_left;
218 } else {
219 link = &parent->rb_right;
220 leftmost = 0;
221 }
222 }
223
224 if (leftmost)
225 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227 rb_link_node(&waiter->pi_tree_entry, parent, link);
228 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229}
230
231static void
232rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233{
234 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 return;
236
237 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 RB_CLEAR_NODE(&waiter->pi_tree_entry);
242}
243
23f78d4a 244/*
fb00aca4 245 * Calculate task priority from the waiter tree priority
23f78d4a 246 *
fb00aca4 247 * Return task->normal_prio when the waiter tree is empty or when
23f78d4a
IM
248 * the waiter is not allowed to do priority boosting
249 */
250int rt_mutex_getprio(struct task_struct *task)
251{
252 if (likely(!task_has_pi_waiters(task)))
253 return task->normal_prio;
254
2d3d891d 255 return min(task_top_pi_waiter(task)->prio,
23f78d4a
IM
256 task->normal_prio);
257}
258
2d3d891d
DF
259struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260{
261 if (likely(!task_has_pi_waiters(task)))
262 return NULL;
263
264 return task_top_pi_waiter(task)->task;
265}
266
c365c292
TG
267/*
268 * Called by sched_setscheduler() to check whether the priority change
269 * is overruled by a possible priority boosting.
270 */
271int rt_mutex_check_prio(struct task_struct *task, int newprio)
272{
273 if (!task_has_pi_waiters(task))
274 return 0;
275
276 return task_top_pi_waiter(task)->task->prio <= newprio;
277}
278
23f78d4a
IM
279/*
280 * Adjust the priority of a task, after its pi_waiters got modified.
281 *
282 * This can be both boosting and unboosting. task->pi_lock must be held.
283 */
bd197234 284static void __rt_mutex_adjust_prio(struct task_struct *task)
23f78d4a
IM
285{
286 int prio = rt_mutex_getprio(task);
287
2d3d891d 288 if (task->prio != prio || dl_prio(prio))
23f78d4a
IM
289 rt_mutex_setprio(task, prio);
290}
291
292/*
293 * Adjust task priority (undo boosting). Called from the exit path of
294 * rt_mutex_slowunlock() and rt_mutex_slowlock().
295 *
296 * (Note: We do this outside of the protection of lock->wait_lock to
297 * allow the lock to be taken while or before we readjust the priority
298 * of task. We do not use the spin_xx_mutex() variants here as we are
299 * outside of the debug path.)
300 */
301static void rt_mutex_adjust_prio(struct task_struct *task)
302{
303 unsigned long flags;
304
1d615482 305 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 306 __rt_mutex_adjust_prio(task);
1d615482 307 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
308}
309
310/*
311 * Max number of times we'll walk the boosting chain:
312 */
313int max_lock_depth = 1024;
314
82084984
TG
315static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
316{
317 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
318}
319
23f78d4a
IM
320/*
321 * Adjust the priority chain. Also used for deadlock detection.
322 * Decreases task's usage by one - may thus free the task.
0c106173 323 *
82084984
TG
324 * @task: the task owning the mutex (owner) for which a chain walk is
325 * probably needed
0c106173 326 * @deadlock_detect: do we have to carry out deadlock detection?
82084984
TG
327 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
328 * things for a task that has just got its priority adjusted, and
329 * is waiting on a mutex)
330 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
331 * we dropped its pi_lock. Is never dereferenced, only used for
332 * comparison to detect lock chain changes.
0c106173 333 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
82084984
TG
334 * its priority to the mutex owner (can be NULL in the case
335 * depicted above or if the top waiter is gone away and we are
336 * actually deboosting the owner)
337 * @top_task: the current top waiter
0c106173 338 *
23f78d4a
IM
339 * Returns 0 or -EDEADLK.
340 */
bd197234
TG
341static int rt_mutex_adjust_prio_chain(struct task_struct *task,
342 int deadlock_detect,
343 struct rt_mutex *orig_lock,
82084984 344 struct rt_mutex *next_lock,
bd197234
TG
345 struct rt_mutex_waiter *orig_waiter,
346 struct task_struct *top_task)
23f78d4a
IM
347{
348 struct rt_mutex *lock;
349 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
350 int detect_deadlock, ret = 0, depth = 0;
351 unsigned long flags;
352
353 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
354 deadlock_detect);
355
356 /*
357 * The (de)boosting is a step by step approach with a lot of
358 * pitfalls. We want this to be preemptible and we want hold a
359 * maximum of two locks per step. So we have to check
360 * carefully whether things change under us.
361 */
362 again:
363 if (++depth > max_lock_depth) {
364 static int prev_max;
365
366 /*
367 * Print this only once. If the admin changes the limit,
368 * print a new message when reaching the limit again.
369 */
370 if (prev_max != max_lock_depth) {
371 prev_max = max_lock_depth;
372 printk(KERN_WARNING "Maximum lock depth %d reached "
373 "task: %s (%d)\n", max_lock_depth,
ba25f9dc 374 top_task->comm, task_pid_nr(top_task));
23f78d4a
IM
375 }
376 put_task_struct(task);
377
3d5c9340 378 return -EDEADLK;
23f78d4a
IM
379 }
380 retry:
381 /*
382 * Task can not go away as we did a get_task() before !
383 */
1d615482 384 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a
IM
385
386 waiter = task->pi_blocked_on;
387 /*
388 * Check whether the end of the boosting chain has been
389 * reached or the state of the chain has changed while we
390 * dropped the locks.
391 */
8161239a 392 if (!waiter)
23f78d4a
IM
393 goto out_unlock_pi;
394
1a539a87
TG
395 /*
396 * Check the orig_waiter state. After we dropped the locks,
8161239a 397 * the previous owner of the lock might have released the lock.
1a539a87 398 */
8161239a 399 if (orig_waiter && !rt_mutex_owner(orig_lock))
1a539a87
TG
400 goto out_unlock_pi;
401
82084984
TG
402 /*
403 * We dropped all locks after taking a refcount on @task, so
404 * the task might have moved on in the lock chain or even left
405 * the chain completely and blocks now on an unrelated lock or
406 * on @orig_lock.
407 *
408 * We stored the lock on which @task was blocked in @next_lock,
409 * so we can detect the chain change.
410 */
411 if (next_lock != waiter->lock)
412 goto out_unlock_pi;
413
1a539a87
TG
414 /*
415 * Drop out, when the task has no waiters. Note,
416 * top_waiter can be NULL, when we are in the deboosting
417 * mode!
418 */
397335f0
TG
419 if (top_waiter) {
420 if (!task_has_pi_waiters(task))
421 goto out_unlock_pi;
422 /*
423 * If deadlock detection is off, we stop here if we
424 * are not the top pi waiter of the task.
425 */
426 if (!detect_deadlock && top_waiter != task_top_pi_waiter(task))
427 goto out_unlock_pi;
428 }
23f78d4a
IM
429
430 /*
431 * When deadlock detection is off then we check, if further
432 * priority adjustment is necessary.
433 */
2d3d891d 434 if (!detect_deadlock && waiter->prio == task->prio)
23f78d4a
IM
435 goto out_unlock_pi;
436
437 lock = waiter->lock;
d209d74d 438 if (!raw_spin_trylock(&lock->wait_lock)) {
1d615482 439 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
440 cpu_relax();
441 goto retry;
442 }
443
397335f0
TG
444 /*
445 * Deadlock detection. If the lock is the same as the original
446 * lock which caused us to walk the lock chain or if the
447 * current lock is owned by the task which initiated the chain
448 * walk, we detected a deadlock.
449 */
95e02ca9 450 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
23f78d4a 451 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
d209d74d 452 raw_spin_unlock(&lock->wait_lock);
3d5c9340 453 ret = -EDEADLK;
23f78d4a
IM
454 goto out_unlock_pi;
455 }
456
457 top_waiter = rt_mutex_top_waiter(lock);
458
459 /* Requeue the waiter */
fb00aca4 460 rt_mutex_dequeue(lock, waiter);
2d3d891d 461 waiter->prio = task->prio;
fb00aca4 462 rt_mutex_enqueue(lock, waiter);
23f78d4a
IM
463
464 /* Release the task */
1d615482 465 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
2ffa5a5c
TG
466 put_task_struct(task);
467
8161239a
LJ
468 if (!rt_mutex_owner(lock)) {
469 /*
470 * If the requeue above changed the top waiter, then we need
471 * to wake the new top waiter up to try to get the lock.
472 */
473
474 if (top_waiter != rt_mutex_top_waiter(lock))
475 wake_up_process(rt_mutex_top_waiter(lock)->task);
476 raw_spin_unlock(&lock->wait_lock);
2ffa5a5c 477 return 0;
8161239a 478 }
23f78d4a
IM
479
480 /* Grab the next task */
481 task = rt_mutex_owner(lock);
db630637 482 get_task_struct(task);
1d615482 483 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a
IM
484
485 if (waiter == rt_mutex_top_waiter(lock)) {
486 /* Boost the owner */
fb00aca4
PZ
487 rt_mutex_dequeue_pi(task, top_waiter);
488 rt_mutex_enqueue_pi(task, waiter);
23f78d4a
IM
489 __rt_mutex_adjust_prio(task);
490
491 } else if (top_waiter == waiter) {
492 /* Deboost the owner */
fb00aca4 493 rt_mutex_dequeue_pi(task, waiter);
23f78d4a 494 waiter = rt_mutex_top_waiter(lock);
fb00aca4 495 rt_mutex_enqueue_pi(task, waiter);
23f78d4a
IM
496 __rt_mutex_adjust_prio(task);
497 }
498
82084984
TG
499 /*
500 * Check whether the task which owns the current lock is pi
501 * blocked itself. If yes we store a pointer to the lock for
502 * the lock chain change detection above. After we dropped
503 * task->pi_lock next_lock cannot be dereferenced anymore.
504 */
505 next_lock = task_blocked_on_lock(task);
506
1d615482 507 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
508
509 top_waiter = rt_mutex_top_waiter(lock);
d209d74d 510 raw_spin_unlock(&lock->wait_lock);
23f78d4a 511
82084984
TG
512 /*
513 * We reached the end of the lock chain. Stop right here. No
514 * point to go back just to figure that out.
515 */
516 if (!next_lock)
517 goto out_put_task;
518
23f78d4a
IM
519 if (!detect_deadlock && waiter != top_waiter)
520 goto out_put_task;
521
522 goto again;
523
524 out_unlock_pi:
1d615482 525 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
526 out_put_task:
527 put_task_struct(task);
36c8b586 528
23f78d4a
IM
529 return ret;
530}
531
23f78d4a
IM
532/*
533 * Try to take an rt-mutex
534 *
23f78d4a 535 * Must be called with lock->wait_lock held.
8161239a 536 *
358c331f
TG
537 * @lock: The lock to be acquired.
538 * @task: The task which wants to acquire the lock
539 * @waiter: The waiter that is queued to the lock's wait list if the
540 * callsite called task_blocked_on_lock(), otherwise NULL
23f78d4a 541 */
8161239a 542static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
358c331f 543 struct rt_mutex_waiter *waiter)
23f78d4a 544{
358c331f
TG
545 unsigned long flags;
546
23f78d4a 547 /*
358c331f
TG
548 * Before testing whether we can acquire @lock, we set the
549 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
550 * other tasks which try to modify @lock into the slow path
551 * and they serialize on @lock->wait_lock.
23f78d4a 552 *
358c331f
TG
553 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
554 * as explained at the top of this file if and only if:
23f78d4a 555 *
358c331f
TG
556 * - There is a lock owner. The caller must fixup the
557 * transient state if it does a trylock or leaves the lock
558 * function due to a signal or timeout.
559 *
560 * - @task acquires the lock and there are no other
561 * waiters. This is undone in rt_mutex_set_owner(@task) at
562 * the end of this function.
23f78d4a
IM
563 */
564 mark_rt_mutex_waiters(lock);
565
358c331f
TG
566 /*
567 * If @lock has an owner, give up.
568 */
8161239a 569 if (rt_mutex_owner(lock))
23f78d4a
IM
570 return 0;
571
8161239a 572 /*
358c331f
TG
573 * If @waiter != NULL, @task has already enqueued the waiter
574 * into @lock waiter list. If @waiter == NULL then this is a
575 * trylock attempt.
8161239a 576 */
358c331f
TG
577 if (waiter) {
578 /*
579 * If waiter is not the highest priority waiter of
580 * @lock, give up.
581 */
582 if (waiter != rt_mutex_top_waiter(lock))
583 return 0;
8161239a 584
358c331f
TG
585 /*
586 * We can acquire the lock. Remove the waiter from the
587 * lock waiters list.
588 */
589 rt_mutex_dequeue(lock, waiter);
8161239a 590
358c331f 591 } else {
8161239a 592 /*
358c331f
TG
593 * If the lock has waiters already we check whether @task is
594 * eligible to take over the lock.
595 *
596 * If there are no other waiters, @task can acquire
597 * the lock. @task->pi_blocked_on is NULL, so it does
598 * not need to be dequeued.
8161239a
LJ
599 */
600 if (rt_mutex_has_waiters(lock)) {
358c331f
TG
601 /*
602 * If @task->prio is greater than or equal to
603 * the top waiter priority (kernel view),
604 * @task lost.
605 */
606 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
607 return 0;
608
609 /*
610 * The current top waiter stays enqueued. We
611 * don't have to change anything in the lock
612 * waiters order.
613 */
614 } else {
615 /*
616 * No waiters. Take the lock without the
617 * pi_lock dance.@task->pi_blocked_on is NULL
618 * and we have no waiters to enqueue in @task
619 * pi waiters list.
620 */
621 goto takeit;
8161239a 622 }
8161239a
LJ
623 }
624
358c331f
TG
625 /*
626 * Clear @task->pi_blocked_on. Requires protection by
627 * @task->pi_lock. Redundant operation for the @waiter == NULL
628 * case, but conditionals are more expensive than a redundant
629 * store.
630 */
631 raw_spin_lock_irqsave(&task->pi_lock, flags);
632 task->pi_blocked_on = NULL;
633 /*
634 * Finish the lock acquisition. @task is the new owner. If
635 * other waiters exist we have to insert the highest priority
636 * waiter into @task->pi_waiters list.
637 */
638 if (rt_mutex_has_waiters(lock))
639 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
640 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
641
642takeit:
23f78d4a 643 /* We got the lock. */
9a11b49a 644 debug_rt_mutex_lock(lock);
23f78d4a 645
358c331f
TG
646 /*
647 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
648 * are still waiters or clears it.
649 */
8161239a 650 rt_mutex_set_owner(lock, task);
23f78d4a 651
8161239a 652 rt_mutex_deadlock_account_lock(lock, task);
23f78d4a
IM
653
654 return 1;
655}
656
657/*
658 * Task blocks on lock.
659 *
660 * Prepare waiter and propagate pi chain
661 *
662 * This must be called with lock->wait_lock held.
663 */
664static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
665 struct rt_mutex_waiter *waiter,
8dac456a 666 struct task_struct *task,
9a11b49a 667 int detect_deadlock)
23f78d4a 668{
36c8b586 669 struct task_struct *owner = rt_mutex_owner(lock);
23f78d4a 670 struct rt_mutex_waiter *top_waiter = waiter;
82084984 671 struct rt_mutex *next_lock;
db630637 672 int chain_walk = 0, res;
82084984 673 unsigned long flags;
23f78d4a 674
397335f0
TG
675 /*
676 * Early deadlock detection. We really don't want the task to
677 * enqueue on itself just to untangle the mess later. It's not
678 * only an optimization. We drop the locks, so another waiter
679 * can come in before the chain walk detects the deadlock. So
680 * the other will detect the deadlock and return -EDEADLOCK,
681 * which is wrong, as the other waiter is not in a deadlock
682 * situation.
683 */
3d5c9340 684 if (owner == task)
397335f0
TG
685 return -EDEADLK;
686
1d615482 687 raw_spin_lock_irqsave(&task->pi_lock, flags);
8dac456a
DH
688 __rt_mutex_adjust_prio(task);
689 waiter->task = task;
23f78d4a 690 waiter->lock = lock;
2d3d891d 691 waiter->prio = task->prio;
23f78d4a
IM
692
693 /* Get the top priority waiter on the lock */
694 if (rt_mutex_has_waiters(lock))
695 top_waiter = rt_mutex_top_waiter(lock);
fb00aca4 696 rt_mutex_enqueue(lock, waiter);
23f78d4a 697
8dac456a 698 task->pi_blocked_on = waiter;
23f78d4a 699
1d615482 700 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a 701
8161239a
LJ
702 if (!owner)
703 return 0;
704
82084984 705 raw_spin_lock_irqsave(&owner->pi_lock, flags);
23f78d4a 706 if (waiter == rt_mutex_top_waiter(lock)) {
fb00aca4
PZ
707 rt_mutex_dequeue_pi(owner, top_waiter);
708 rt_mutex_enqueue_pi(owner, waiter);
23f78d4a
IM
709
710 __rt_mutex_adjust_prio(owner);
db630637
SR
711 if (owner->pi_blocked_on)
712 chain_walk = 1;
82084984 713 } else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) {
db630637 714 chain_walk = 1;
82084984 715 }
db630637 716
82084984
TG
717 /* Store the lock on which owner is blocked or NULL */
718 next_lock = task_blocked_on_lock(owner);
719
720 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
721 /*
722 * Even if full deadlock detection is on, if the owner is not
723 * blocked itself, we can avoid finding this out in the chain
724 * walk.
725 */
726 if (!chain_walk || !next_lock)
23f78d4a
IM
727 return 0;
728
db630637
SR
729 /*
730 * The owner can't disappear while holding a lock,
731 * so the owner struct is protected by wait_lock.
732 * Gets dropped in rt_mutex_adjust_prio_chain()!
733 */
734 get_task_struct(owner);
735
d209d74d 736 raw_spin_unlock(&lock->wait_lock);
23f78d4a 737
82084984
TG
738 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock,
739 next_lock, waiter, task);
23f78d4a 740
d209d74d 741 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
742
743 return res;
744}
745
746/*
747 * Wake up the next waiter on the lock.
748 *
27e35715
TG
749 * Remove the top waiter from the current tasks pi waiter list and
750 * wake it up.
23f78d4a
IM
751 *
752 * Called with lock->wait_lock held.
753 */
754static void wakeup_next_waiter(struct rt_mutex *lock)
755{
756 struct rt_mutex_waiter *waiter;
23f78d4a
IM
757 unsigned long flags;
758
1d615482 759 raw_spin_lock_irqsave(&current->pi_lock, flags);
23f78d4a
IM
760
761 waiter = rt_mutex_top_waiter(lock);
23f78d4a
IM
762
763 /*
764 * Remove it from current->pi_waiters. We do not adjust a
765 * possible priority boost right now. We execute wakeup in the
766 * boosted mode and go back to normal after releasing
767 * lock->wait_lock.
768 */
fb00aca4 769 rt_mutex_dequeue_pi(current, waiter);
23f78d4a 770
27e35715
TG
771 /*
772 * As we are waking up the top waiter, and the waiter stays
773 * queued on the lock until it gets the lock, this lock
774 * obviously has waiters. Just set the bit here and this has
775 * the added benefit of forcing all new tasks into the
776 * slow path making sure no task of lower priority than
777 * the top waiter can steal this lock.
778 */
779 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
23f78d4a 780
1d615482 781 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
23f78d4a 782
27e35715
TG
783 /*
784 * It's safe to dereference waiter as it cannot go away as
785 * long as we hold lock->wait_lock. The waiter task needs to
786 * acquire it in order to dequeue the waiter.
787 */
8161239a 788 wake_up_process(waiter->task);
23f78d4a
IM
789}
790
791/*
8161239a 792 * Remove a waiter from a lock and give up
23f78d4a 793 *
8161239a
LJ
794 * Must be called with lock->wait_lock held and
795 * have just failed to try_to_take_rt_mutex().
23f78d4a 796 */
bd197234
TG
797static void remove_waiter(struct rt_mutex *lock,
798 struct rt_mutex_waiter *waiter)
23f78d4a
IM
799{
800 int first = (waiter == rt_mutex_top_waiter(lock));
36c8b586 801 struct task_struct *owner = rt_mutex_owner(lock);
82084984 802 struct rt_mutex *next_lock = NULL;
23f78d4a
IM
803 unsigned long flags;
804
1d615482 805 raw_spin_lock_irqsave(&current->pi_lock, flags);
fb00aca4 806 rt_mutex_dequeue(lock, waiter);
23f78d4a 807 current->pi_blocked_on = NULL;
1d615482 808 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
23f78d4a 809
8161239a
LJ
810 if (!owner)
811 return;
812
813 if (first) {
23f78d4a 814
1d615482 815 raw_spin_lock_irqsave(&owner->pi_lock, flags);
23f78d4a 816
fb00aca4 817 rt_mutex_dequeue_pi(owner, waiter);
23f78d4a
IM
818
819 if (rt_mutex_has_waiters(lock)) {
820 struct rt_mutex_waiter *next;
821
822 next = rt_mutex_top_waiter(lock);
fb00aca4 823 rt_mutex_enqueue_pi(owner, next);
23f78d4a
IM
824 }
825 __rt_mutex_adjust_prio(owner);
826
82084984
TG
827 /* Store the lock on which owner is blocked or NULL */
828 next_lock = task_blocked_on_lock(owner);
db630637 829
1d615482 830 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
23f78d4a
IM
831 }
832
82084984 833 if (!next_lock)
23f78d4a
IM
834 return;
835
db630637
SR
836 /* gets dropped in rt_mutex_adjust_prio_chain()! */
837 get_task_struct(owner);
838
d209d74d 839 raw_spin_unlock(&lock->wait_lock);
23f78d4a 840
82084984 841 rt_mutex_adjust_prio_chain(owner, 0, lock, next_lock, NULL, current);
23f78d4a 842
d209d74d 843 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
844}
845
95e02ca9
TG
846/*
847 * Recheck the pi chain, in case we got a priority setting
848 *
849 * Called from sched_setscheduler
850 */
851void rt_mutex_adjust_pi(struct task_struct *task)
852{
853 struct rt_mutex_waiter *waiter;
82084984 854 struct rt_mutex *next_lock;
95e02ca9
TG
855 unsigned long flags;
856
1d615482 857 raw_spin_lock_irqsave(&task->pi_lock, flags);
95e02ca9
TG
858
859 waiter = task->pi_blocked_on;
2d3d891d
DF
860 if (!waiter || (waiter->prio == task->prio &&
861 !dl_prio(task->prio))) {
1d615482 862 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9
TG
863 return;
864 }
82084984 865 next_lock = waiter->lock;
1d615482 866 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9 867
db630637
SR
868 /* gets dropped in rt_mutex_adjust_prio_chain()! */
869 get_task_struct(task);
82084984
TG
870
871 rt_mutex_adjust_prio_chain(task, 0, NULL, next_lock, NULL, task);
95e02ca9
TG
872}
873
8dac456a
DH
874/**
875 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
876 * @lock: the rt_mutex to take
877 * @state: the state the task should block in (TASK_INTERRUPTIBLE
878 * or TASK_UNINTERRUPTIBLE)
879 * @timeout: the pre-initialized and started timer, or NULL for none
880 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a
DH
881 *
882 * lock->wait_lock must be held by the caller.
23f78d4a
IM
883 */
884static int __sched
8dac456a
DH
885__rt_mutex_slowlock(struct rt_mutex *lock, int state,
886 struct hrtimer_sleeper *timeout,
8161239a 887 struct rt_mutex_waiter *waiter)
23f78d4a 888{
23f78d4a
IM
889 int ret = 0;
890
23f78d4a
IM
891 for (;;) {
892 /* Try to acquire the lock: */
8161239a 893 if (try_to_take_rt_mutex(lock, current, waiter))
23f78d4a
IM
894 break;
895
896 /*
897 * TASK_INTERRUPTIBLE checks for signals and
898 * timeout. Ignored otherwise.
899 */
900 if (unlikely(state == TASK_INTERRUPTIBLE)) {
901 /* Signal pending? */
902 if (signal_pending(current))
903 ret = -EINTR;
904 if (timeout && !timeout->task)
905 ret = -ETIMEDOUT;
906 if (ret)
907 break;
908 }
909
d209d74d 910 raw_spin_unlock(&lock->wait_lock);
23f78d4a 911
8dac456a 912 debug_rt_mutex_print_deadlock(waiter);
23f78d4a 913
8161239a 914 schedule_rt_mutex(lock);
23f78d4a 915
d209d74d 916 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
917 set_current_state(state);
918 }
919
8dac456a
DH
920 return ret;
921}
922
3d5c9340
TG
923static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
924 struct rt_mutex_waiter *w)
925{
926 /*
927 * If the result is not -EDEADLOCK or the caller requested
928 * deadlock detection, nothing to do here.
929 */
930 if (res != -EDEADLOCK || detect_deadlock)
931 return;
932
933 /*
934 * Yell lowdly and stop the task right here.
935 */
936 rt_mutex_print_deadlock(w);
937 while (1) {
938 set_current_state(TASK_INTERRUPTIBLE);
939 schedule();
940 }
941}
942
8dac456a
DH
943/*
944 * Slow path lock function:
945 */
946static int __sched
947rt_mutex_slowlock(struct rt_mutex *lock, int state,
948 struct hrtimer_sleeper *timeout,
949 int detect_deadlock)
950{
951 struct rt_mutex_waiter waiter;
952 int ret = 0;
953
954 debug_rt_mutex_init_waiter(&waiter);
fb00aca4
PZ
955 RB_CLEAR_NODE(&waiter.pi_tree_entry);
956 RB_CLEAR_NODE(&waiter.tree_entry);
8dac456a 957
d209d74d 958 raw_spin_lock(&lock->wait_lock);
8dac456a
DH
959
960 /* Try to acquire the lock again: */
8161239a 961 if (try_to_take_rt_mutex(lock, current, NULL)) {
d209d74d 962 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
963 return 0;
964 }
965
966 set_current_state(state);
967
968 /* Setup the timer, when timeout != NULL */
969 if (unlikely(timeout)) {
970 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
971 if (!hrtimer_active(&timeout->timer))
972 timeout->task = NULL;
973 }
974
8161239a
LJ
975 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
976
977 if (likely(!ret))
978 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
8dac456a 979
23f78d4a
IM
980 set_current_state(TASK_RUNNING);
981
3d5c9340 982 if (unlikely(ret)) {
9a11b49a 983 remove_waiter(lock, &waiter);
3d5c9340
TG
984 rt_mutex_handle_deadlock(ret, detect_deadlock, &waiter);
985 }
23f78d4a
IM
986
987 /*
988 * try_to_take_rt_mutex() sets the waiter bit
989 * unconditionally. We might have to fix that up.
990 */
991 fixup_rt_mutex_waiters(lock);
992
d209d74d 993 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
994
995 /* Remove pending timer: */
996 if (unlikely(timeout))
997 hrtimer_cancel(&timeout->timer);
998
23f78d4a
IM
999 debug_rt_mutex_free_waiter(&waiter);
1000
1001 return ret;
1002}
1003
1004/*
1005 * Slow path try-lock function:
1006 */
88f2b4c1 1007static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
23f78d4a 1008{
88f2b4c1
TG
1009 int ret;
1010
1011 /*
1012 * If the lock already has an owner we fail to get the lock.
1013 * This can be done without taking the @lock->wait_lock as
1014 * it is only being read, and this is a trylock anyway.
1015 */
1016 if (rt_mutex_owner(lock))
1017 return 0;
23f78d4a 1018
88f2b4c1
TG
1019 /*
1020 * The mutex has currently no owner. Lock the wait lock and
1021 * try to acquire the lock.
1022 */
d209d74d 1023 raw_spin_lock(&lock->wait_lock);
23f78d4a 1024
88f2b4c1 1025 ret = try_to_take_rt_mutex(lock, current, NULL);
23f78d4a 1026
88f2b4c1
TG
1027 /*
1028 * try_to_take_rt_mutex() sets the lock waiters bit
1029 * unconditionally. Clean this up.
1030 */
1031 fixup_rt_mutex_waiters(lock);
23f78d4a 1032
d209d74d 1033 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1034
1035 return ret;
1036}
1037
1038/*
1039 * Slow path to release a rt-mutex:
1040 */
1041static void __sched
1042rt_mutex_slowunlock(struct rt_mutex *lock)
1043{
d209d74d 1044 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1045
1046 debug_rt_mutex_unlock(lock);
1047
1048 rt_mutex_deadlock_account_unlock(current);
1049
27e35715
TG
1050 /*
1051 * We must be careful here if the fast path is enabled. If we
1052 * have no waiters queued we cannot set owner to NULL here
1053 * because of:
1054 *
1055 * foo->lock->owner = NULL;
1056 * rtmutex_lock(foo->lock); <- fast path
1057 * free = atomic_dec_and_test(foo->refcnt);
1058 * rtmutex_unlock(foo->lock); <- fast path
1059 * if (free)
1060 * kfree(foo);
1061 * raw_spin_unlock(foo->lock->wait_lock);
1062 *
1063 * So for the fastpath enabled kernel:
1064 *
1065 * Nothing can set the waiters bit as long as we hold
1066 * lock->wait_lock. So we do the following sequence:
1067 *
1068 * owner = rt_mutex_owner(lock);
1069 * clear_rt_mutex_waiters(lock);
1070 * raw_spin_unlock(&lock->wait_lock);
1071 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1072 * return;
1073 * goto retry;
1074 *
1075 * The fastpath disabled variant is simple as all access to
1076 * lock->owner is serialized by lock->wait_lock:
1077 *
1078 * lock->owner = NULL;
1079 * raw_spin_unlock(&lock->wait_lock);
1080 */
1081 while (!rt_mutex_has_waiters(lock)) {
1082 /* Drops lock->wait_lock ! */
1083 if (unlock_rt_mutex_safe(lock) == true)
1084 return;
1085 /* Relock the rtmutex and try again */
1086 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1087 }
1088
27e35715
TG
1089 /*
1090 * The wakeup next waiter path does not suffer from the above
1091 * race. See the comments there.
1092 */
23f78d4a
IM
1093 wakeup_next_waiter(lock);
1094
d209d74d 1095 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1096
1097 /* Undo pi boosting if necessary: */
1098 rt_mutex_adjust_prio(current);
1099}
1100
1101/*
1102 * debug aware fast / slowpath lock,trylock,unlock
1103 *
1104 * The atomic acquire/release ops are compiled away, when either the
1105 * architecture does not support cmpxchg or when debugging is enabled.
1106 */
1107static inline int
1108rt_mutex_fastlock(struct rt_mutex *lock, int state,
1109 int detect_deadlock,
1110 int (*slowfn)(struct rt_mutex *lock, int state,
1111 struct hrtimer_sleeper *timeout,
9a11b49a 1112 int detect_deadlock))
23f78d4a
IM
1113{
1114 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1115 rt_mutex_deadlock_account_lock(lock, current);
1116 return 0;
1117 } else
9a11b49a 1118 return slowfn(lock, state, NULL, detect_deadlock);
23f78d4a
IM
1119}
1120
1121static inline int
1122rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1123 struct hrtimer_sleeper *timeout, int detect_deadlock,
1124 int (*slowfn)(struct rt_mutex *lock, int state,
1125 struct hrtimer_sleeper *timeout,
9a11b49a 1126 int detect_deadlock))
23f78d4a
IM
1127{
1128 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1129 rt_mutex_deadlock_account_lock(lock, current);
1130 return 0;
1131 } else
9a11b49a 1132 return slowfn(lock, state, timeout, detect_deadlock);
23f78d4a
IM
1133}
1134
1135static inline int
1136rt_mutex_fasttrylock(struct rt_mutex *lock,
9a11b49a 1137 int (*slowfn)(struct rt_mutex *lock))
23f78d4a
IM
1138{
1139 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1140 rt_mutex_deadlock_account_lock(lock, current);
1141 return 1;
1142 }
9a11b49a 1143 return slowfn(lock);
23f78d4a
IM
1144}
1145
1146static inline void
1147rt_mutex_fastunlock(struct rt_mutex *lock,
1148 void (*slowfn)(struct rt_mutex *lock))
1149{
1150 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1151 rt_mutex_deadlock_account_unlock(current);
1152 else
1153 slowfn(lock);
1154}
1155
1156/**
1157 * rt_mutex_lock - lock a rt_mutex
1158 *
1159 * @lock: the rt_mutex to be locked
1160 */
1161void __sched rt_mutex_lock(struct rt_mutex *lock)
1162{
1163 might_sleep();
1164
1165 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
1166}
1167EXPORT_SYMBOL_GPL(rt_mutex_lock);
1168
1169/**
1170 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1171 *
1172 * @lock: the rt_mutex to be locked
1173 * @detect_deadlock: deadlock detection on/off
1174 *
1175 * Returns:
1176 * 0 on success
1177 * -EINTR when interrupted by a signal
1178 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
1179 */
1180int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
1181 int detect_deadlock)
1182{
1183 might_sleep();
1184
1185 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
1186 detect_deadlock, rt_mutex_slowlock);
1187}
1188EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1189
1190/**
23b94b96
LH
1191 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1192 * the timeout structure is provided
1193 * by the caller
23f78d4a
IM
1194 *
1195 * @lock: the rt_mutex to be locked
1196 * @timeout: timeout structure or NULL (no timeout)
1197 * @detect_deadlock: deadlock detection on/off
1198 *
1199 * Returns:
1200 * 0 on success
1201 * -EINTR when interrupted by a signal
3ac49a1c 1202 * -ETIMEDOUT when the timeout expired
23f78d4a
IM
1203 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
1204 */
1205int
1206rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
1207 int detect_deadlock)
1208{
1209 might_sleep();
1210
1211 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1212 detect_deadlock, rt_mutex_slowlock);
1213}
1214EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1215
1216/**
1217 * rt_mutex_trylock - try to lock a rt_mutex
1218 *
1219 * @lock: the rt_mutex to be locked
1220 *
1221 * Returns 1 on success and 0 on contention
1222 */
1223int __sched rt_mutex_trylock(struct rt_mutex *lock)
1224{
1225 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1226}
1227EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1228
1229/**
1230 * rt_mutex_unlock - unlock a rt_mutex
1231 *
1232 * @lock: the rt_mutex to be unlocked
1233 */
1234void __sched rt_mutex_unlock(struct rt_mutex *lock)
1235{
1236 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1237}
1238EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1239
23b94b96 1240/**
23f78d4a
IM
1241 * rt_mutex_destroy - mark a mutex unusable
1242 * @lock: the mutex to be destroyed
1243 *
1244 * This function marks the mutex uninitialized, and any subsequent
1245 * use of the mutex is forbidden. The mutex must not be locked when
1246 * this function is called.
1247 */
1248void rt_mutex_destroy(struct rt_mutex *lock)
1249{
1250 WARN_ON(rt_mutex_is_locked(lock));
1251#ifdef CONFIG_DEBUG_RT_MUTEXES
1252 lock->magic = NULL;
1253#endif
1254}
1255
1256EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1257
1258/**
1259 * __rt_mutex_init - initialize the rt lock
1260 *
1261 * @lock: the rt lock to be initialized
1262 *
1263 * Initialize the rt lock to unlocked state.
1264 *
1265 * Initializing of a locked rt lock is not allowed
1266 */
1267void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1268{
1269 lock->owner = NULL;
d209d74d 1270 raw_spin_lock_init(&lock->wait_lock);
fb00aca4
PZ
1271 lock->waiters = RB_ROOT;
1272 lock->waiters_leftmost = NULL;
23f78d4a
IM
1273
1274 debug_rt_mutex_init(lock, name);
1275}
1276EXPORT_SYMBOL_GPL(__rt_mutex_init);
0cdbee99
IM
1277
1278/**
1279 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1280 * proxy owner
1281 *
1282 * @lock: the rt_mutex to be locked
1283 * @proxy_owner:the task to set as owner
1284 *
1285 * No locking. Caller has to do serializing itself
1286 * Special API call for PI-futex support
1287 */
1288void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1289 struct task_struct *proxy_owner)
1290{
1291 __rt_mutex_init(lock, NULL);
9a11b49a 1292 debug_rt_mutex_proxy_lock(lock, proxy_owner);
8161239a 1293 rt_mutex_set_owner(lock, proxy_owner);
0cdbee99
IM
1294 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1295}
1296
1297/**
1298 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1299 *
1300 * @lock: the rt_mutex to be locked
1301 *
1302 * No locking. Caller has to do serializing itself
1303 * Special API call for PI-futex support
1304 */
1305void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1306 struct task_struct *proxy_owner)
1307{
1308 debug_rt_mutex_proxy_unlock(lock);
8161239a 1309 rt_mutex_set_owner(lock, NULL);
0cdbee99
IM
1310 rt_mutex_deadlock_account_unlock(proxy_owner);
1311}
1312
8dac456a
DH
1313/**
1314 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1315 * @lock: the rt_mutex to take
1316 * @waiter: the pre-initialized rt_mutex_waiter
1317 * @task: the task to prepare
1318 * @detect_deadlock: perform deadlock detection (1) or not (0)
1319 *
1320 * Returns:
1321 * 0 - task blocked on lock
1322 * 1 - acquired the lock for task, caller should wake it up
1323 * <0 - error
1324 *
1325 * Special API call for FUTEX_REQUEUE_PI support.
1326 */
1327int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1328 struct rt_mutex_waiter *waiter,
1329 struct task_struct *task, int detect_deadlock)
1330{
1331 int ret;
1332
d209d74d 1333 raw_spin_lock(&lock->wait_lock);
8dac456a 1334
8161239a 1335 if (try_to_take_rt_mutex(lock, task, NULL)) {
d209d74d 1336 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1337 return 1;
1338 }
1339
3d5c9340
TG
1340 /* We enforce deadlock detection for futexes */
1341 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1);
8dac456a 1342
8161239a 1343 if (ret && !rt_mutex_owner(lock)) {
8dac456a
DH
1344 /*
1345 * Reset the return value. We might have
1346 * returned with -EDEADLK and the owner
1347 * released the lock while we were walking the
1348 * pi chain. Let the waiter sort it out.
1349 */
1350 ret = 0;
1351 }
8161239a
LJ
1352
1353 if (unlikely(ret))
1354 remove_waiter(lock, waiter);
1355
d209d74d 1356 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1357
1358 debug_rt_mutex_print_deadlock(waiter);
1359
1360 return ret;
1361}
1362
0cdbee99
IM
1363/**
1364 * rt_mutex_next_owner - return the next owner of the lock
1365 *
1366 * @lock: the rt lock query
1367 *
1368 * Returns the next owner of the lock or NULL
1369 *
1370 * Caller has to serialize against other accessors to the lock
1371 * itself.
1372 *
1373 * Special API call for PI-futex support
1374 */
1375struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1376{
1377 if (!rt_mutex_has_waiters(lock))
1378 return NULL;
1379
1380 return rt_mutex_top_waiter(lock)->task;
1381}
8dac456a
DH
1382
1383/**
1384 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1385 * @lock: the rt_mutex we were woken on
1386 * @to: the timeout, null if none. hrtimer should already have
1387 * been started.
1388 * @waiter: the pre-initialized rt_mutex_waiter
1389 * @detect_deadlock: perform deadlock detection (1) or not (0)
1390 *
1391 * Complete the lock acquisition started our behalf by another thread.
1392 *
1393 * Returns:
1394 * 0 - success
1395 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1396 *
1397 * Special API call for PI-futex requeue support
1398 */
1399int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1400 struct hrtimer_sleeper *to,
1401 struct rt_mutex_waiter *waiter,
1402 int detect_deadlock)
1403{
1404 int ret;
1405
d209d74d 1406 raw_spin_lock(&lock->wait_lock);
8dac456a
DH
1407
1408 set_current_state(TASK_INTERRUPTIBLE);
1409
8161239a 1410 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
8dac456a
DH
1411
1412 set_current_state(TASK_RUNNING);
1413
8161239a 1414 if (unlikely(ret))
8dac456a
DH
1415 remove_waiter(lock, waiter);
1416
1417 /*
1418 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1419 * have to fix that up.
1420 */
1421 fixup_rt_mutex_waiters(lock);
1422
d209d74d 1423 raw_spin_unlock(&lock->wait_lock);
8dac456a 1424
8dac456a
DH
1425 return ret;
1426}
This page took 0.788596 seconds and 5 git commands to generate.