rtmutex: Simplify and document try_to_take_rtmutex()
[deliverable/linux.git] / kernel / locking / rtmutex.c
CommitLineData
23f78d4a
IM
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
d07fe82c
SR
10 *
11 * See Documentation/rt-mutex-design.txt for details.
23f78d4a
IM
12 */
13#include <linux/spinlock.h>
9984de1a 14#include <linux/export.h>
23f78d4a 15#include <linux/sched.h>
8bd75c77 16#include <linux/sched/rt.h>
fb00aca4 17#include <linux/sched/deadline.h>
23f78d4a
IM
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
23f78d4a
IM
22/*
23 * lock->owner state tracking:
24 *
8161239a
LJ
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
23f78d4a 27 *
8161239a
LJ
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
23f78d4a
IM
34 *
35 * The fast atomic compare exchange based acquire and release is only
8161239a
LJ
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
23f78d4a 42 *
8161239a
LJ
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
23f78d4a
IM
47 */
48
bd197234 49static void
8161239a 50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
23f78d4a 51{
8161239a 52 unsigned long val = (unsigned long)owner;
23f78d4a
IM
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68 if (!rt_mutex_has_waiters(lock))
69 clear_rt_mutex_waiters(lock);
70}
71
bd197234
TG
72/*
73 * We can speed up the acquire/release, if the architecture
74 * supports cmpxchg and if there's no debugging state to be set up
75 */
76#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
78static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79{
80 unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82 do {
83 owner = *p;
84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85}
27e35715
TG
86
87/*
88 * Safe fastpath aware unlock:
89 * 1) Clear the waiters bit
90 * 2) Drop lock->wait_lock
91 * 3) Try to unlock the lock with cmpxchg
92 */
93static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 __releases(lock->wait_lock)
95{
96 struct task_struct *owner = rt_mutex_owner(lock);
97
98 clear_rt_mutex_waiters(lock);
99 raw_spin_unlock(&lock->wait_lock);
100 /*
101 * If a new waiter comes in between the unlock and the cmpxchg
102 * we have two situations:
103 *
104 * unlock(wait_lock);
105 * lock(wait_lock);
106 * cmpxchg(p, owner, 0) == owner
107 * mark_rt_mutex_waiters(lock);
108 * acquire(lock);
109 * or:
110 *
111 * unlock(wait_lock);
112 * lock(wait_lock);
113 * mark_rt_mutex_waiters(lock);
114 *
115 * cmpxchg(p, owner, 0) != owner
116 * enqueue_waiter();
117 * unlock(wait_lock);
118 * lock(wait_lock);
119 * wake waiter();
120 * unlock(wait_lock);
121 * lock(wait_lock);
122 * acquire(lock);
123 */
124 return rt_mutex_cmpxchg(lock, owner, NULL);
125}
126
bd197234
TG
127#else
128# define rt_mutex_cmpxchg(l,c,n) (0)
129static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130{
131 lock->owner = (struct task_struct *)
132 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133}
27e35715
TG
134
135/*
136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 */
138static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 __releases(lock->wait_lock)
140{
141 lock->owner = NULL;
142 raw_spin_unlock(&lock->wait_lock);
143 return true;
144}
bd197234
TG
145#endif
146
fb00aca4
PZ
147static inline int
148rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 struct rt_mutex_waiter *right)
150{
2d3d891d 151 if (left->prio < right->prio)
fb00aca4
PZ
152 return 1;
153
154 /*
2d3d891d
DF
155 * If both waiters have dl_prio(), we check the deadlines of the
156 * associated tasks.
157 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 * then right waiter has a dl_prio() too.
fb00aca4 159 */
2d3d891d 160 if (dl_prio(left->prio))
fb00aca4
PZ
161 return (left->task->dl.deadline < right->task->dl.deadline);
162
163 return 0;
164}
165
166static void
167rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168{
169 struct rb_node **link = &lock->waiters.rb_node;
170 struct rb_node *parent = NULL;
171 struct rt_mutex_waiter *entry;
172 int leftmost = 1;
173
174 while (*link) {
175 parent = *link;
176 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 if (rt_mutex_waiter_less(waiter, entry)) {
178 link = &parent->rb_left;
179 } else {
180 link = &parent->rb_right;
181 leftmost = 0;
182 }
183 }
184
185 if (leftmost)
186 lock->waiters_leftmost = &waiter->tree_entry;
187
188 rb_link_node(&waiter->tree_entry, parent, link);
189 rb_insert_color(&waiter->tree_entry, &lock->waiters);
190}
191
192static void
193rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194{
195 if (RB_EMPTY_NODE(&waiter->tree_entry))
196 return;
197
198 if (lock->waiters_leftmost == &waiter->tree_entry)
199 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201 rb_erase(&waiter->tree_entry, &lock->waiters);
202 RB_CLEAR_NODE(&waiter->tree_entry);
203}
204
205static void
206rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207{
208 struct rb_node **link = &task->pi_waiters.rb_node;
209 struct rb_node *parent = NULL;
210 struct rt_mutex_waiter *entry;
211 int leftmost = 1;
212
213 while (*link) {
214 parent = *link;
215 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 if (rt_mutex_waiter_less(waiter, entry)) {
217 link = &parent->rb_left;
218 } else {
219 link = &parent->rb_right;
220 leftmost = 0;
221 }
222 }
223
224 if (leftmost)
225 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227 rb_link_node(&waiter->pi_tree_entry, parent, link);
228 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229}
230
231static void
232rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233{
234 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 return;
236
237 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 RB_CLEAR_NODE(&waiter->pi_tree_entry);
242}
243
23f78d4a 244/*
fb00aca4 245 * Calculate task priority from the waiter tree priority
23f78d4a 246 *
fb00aca4 247 * Return task->normal_prio when the waiter tree is empty or when
23f78d4a
IM
248 * the waiter is not allowed to do priority boosting
249 */
250int rt_mutex_getprio(struct task_struct *task)
251{
252 if (likely(!task_has_pi_waiters(task)))
253 return task->normal_prio;
254
2d3d891d 255 return min(task_top_pi_waiter(task)->prio,
23f78d4a
IM
256 task->normal_prio);
257}
258
2d3d891d
DF
259struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260{
261 if (likely(!task_has_pi_waiters(task)))
262 return NULL;
263
264 return task_top_pi_waiter(task)->task;
265}
266
c365c292
TG
267/*
268 * Called by sched_setscheduler() to check whether the priority change
269 * is overruled by a possible priority boosting.
270 */
271int rt_mutex_check_prio(struct task_struct *task, int newprio)
272{
273 if (!task_has_pi_waiters(task))
274 return 0;
275
276 return task_top_pi_waiter(task)->task->prio <= newprio;
277}
278
23f78d4a
IM
279/*
280 * Adjust the priority of a task, after its pi_waiters got modified.
281 *
282 * This can be both boosting and unboosting. task->pi_lock must be held.
283 */
bd197234 284static void __rt_mutex_adjust_prio(struct task_struct *task)
23f78d4a
IM
285{
286 int prio = rt_mutex_getprio(task);
287
2d3d891d 288 if (task->prio != prio || dl_prio(prio))
23f78d4a
IM
289 rt_mutex_setprio(task, prio);
290}
291
292/*
293 * Adjust task priority (undo boosting). Called from the exit path of
294 * rt_mutex_slowunlock() and rt_mutex_slowlock().
295 *
296 * (Note: We do this outside of the protection of lock->wait_lock to
297 * allow the lock to be taken while or before we readjust the priority
298 * of task. We do not use the spin_xx_mutex() variants here as we are
299 * outside of the debug path.)
300 */
301static void rt_mutex_adjust_prio(struct task_struct *task)
302{
303 unsigned long flags;
304
1d615482 305 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 306 __rt_mutex_adjust_prio(task);
1d615482 307 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
308}
309
310/*
311 * Max number of times we'll walk the boosting chain:
312 */
313int max_lock_depth = 1024;
314
82084984
TG
315static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
316{
317 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
318}
319
23f78d4a
IM
320/*
321 * Adjust the priority chain. Also used for deadlock detection.
322 * Decreases task's usage by one - may thus free the task.
0c106173 323 *
82084984
TG
324 * @task: the task owning the mutex (owner) for which a chain walk is
325 * probably needed
0c106173 326 * @deadlock_detect: do we have to carry out deadlock detection?
82084984
TG
327 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
328 * things for a task that has just got its priority adjusted, and
329 * is waiting on a mutex)
330 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
331 * we dropped its pi_lock. Is never dereferenced, only used for
332 * comparison to detect lock chain changes.
0c106173 333 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
82084984
TG
334 * its priority to the mutex owner (can be NULL in the case
335 * depicted above or if the top waiter is gone away and we are
336 * actually deboosting the owner)
337 * @top_task: the current top waiter
0c106173 338 *
23f78d4a
IM
339 * Returns 0 or -EDEADLK.
340 */
bd197234
TG
341static int rt_mutex_adjust_prio_chain(struct task_struct *task,
342 int deadlock_detect,
343 struct rt_mutex *orig_lock,
82084984 344 struct rt_mutex *next_lock,
bd197234
TG
345 struct rt_mutex_waiter *orig_waiter,
346 struct task_struct *top_task)
23f78d4a
IM
347{
348 struct rt_mutex *lock;
349 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
350 int detect_deadlock, ret = 0, depth = 0;
351 unsigned long flags;
352
353 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
354 deadlock_detect);
355
356 /*
357 * The (de)boosting is a step by step approach with a lot of
358 * pitfalls. We want this to be preemptible and we want hold a
359 * maximum of two locks per step. So we have to check
360 * carefully whether things change under us.
361 */
362 again:
363 if (++depth > max_lock_depth) {
364 static int prev_max;
365
366 /*
367 * Print this only once. If the admin changes the limit,
368 * print a new message when reaching the limit again.
369 */
370 if (prev_max != max_lock_depth) {
371 prev_max = max_lock_depth;
372 printk(KERN_WARNING "Maximum lock depth %d reached "
373 "task: %s (%d)\n", max_lock_depth,
ba25f9dc 374 top_task->comm, task_pid_nr(top_task));
23f78d4a
IM
375 }
376 put_task_struct(task);
377
3d5c9340 378 return -EDEADLK;
23f78d4a
IM
379 }
380 retry:
381 /*
382 * Task can not go away as we did a get_task() before !
383 */
1d615482 384 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a
IM
385
386 waiter = task->pi_blocked_on;
387 /*
388 * Check whether the end of the boosting chain has been
389 * reached or the state of the chain has changed while we
390 * dropped the locks.
391 */
8161239a 392 if (!waiter)
23f78d4a
IM
393 goto out_unlock_pi;
394
1a539a87
TG
395 /*
396 * Check the orig_waiter state. After we dropped the locks,
8161239a 397 * the previous owner of the lock might have released the lock.
1a539a87 398 */
8161239a 399 if (orig_waiter && !rt_mutex_owner(orig_lock))
1a539a87
TG
400 goto out_unlock_pi;
401
82084984
TG
402 /*
403 * We dropped all locks after taking a refcount on @task, so
404 * the task might have moved on in the lock chain or even left
405 * the chain completely and blocks now on an unrelated lock or
406 * on @orig_lock.
407 *
408 * We stored the lock on which @task was blocked in @next_lock,
409 * so we can detect the chain change.
410 */
411 if (next_lock != waiter->lock)
412 goto out_unlock_pi;
413
1a539a87
TG
414 /*
415 * Drop out, when the task has no waiters. Note,
416 * top_waiter can be NULL, when we are in the deboosting
417 * mode!
418 */
397335f0
TG
419 if (top_waiter) {
420 if (!task_has_pi_waiters(task))
421 goto out_unlock_pi;
422 /*
423 * If deadlock detection is off, we stop here if we
424 * are not the top pi waiter of the task.
425 */
426 if (!detect_deadlock && top_waiter != task_top_pi_waiter(task))
427 goto out_unlock_pi;
428 }
23f78d4a
IM
429
430 /*
431 * When deadlock detection is off then we check, if further
432 * priority adjustment is necessary.
433 */
2d3d891d 434 if (!detect_deadlock && waiter->prio == task->prio)
23f78d4a
IM
435 goto out_unlock_pi;
436
437 lock = waiter->lock;
d209d74d 438 if (!raw_spin_trylock(&lock->wait_lock)) {
1d615482 439 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
440 cpu_relax();
441 goto retry;
442 }
443
397335f0
TG
444 /*
445 * Deadlock detection. If the lock is the same as the original
446 * lock which caused us to walk the lock chain or if the
447 * current lock is owned by the task which initiated the chain
448 * walk, we detected a deadlock.
449 */
95e02ca9 450 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
23f78d4a 451 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
d209d74d 452 raw_spin_unlock(&lock->wait_lock);
3d5c9340 453 ret = -EDEADLK;
23f78d4a
IM
454 goto out_unlock_pi;
455 }
456
457 top_waiter = rt_mutex_top_waiter(lock);
458
459 /* Requeue the waiter */
fb00aca4 460 rt_mutex_dequeue(lock, waiter);
2d3d891d 461 waiter->prio = task->prio;
fb00aca4 462 rt_mutex_enqueue(lock, waiter);
23f78d4a
IM
463
464 /* Release the task */
1d615482 465 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
8161239a
LJ
466 if (!rt_mutex_owner(lock)) {
467 /*
468 * If the requeue above changed the top waiter, then we need
469 * to wake the new top waiter up to try to get the lock.
470 */
471
472 if (top_waiter != rt_mutex_top_waiter(lock))
473 wake_up_process(rt_mutex_top_waiter(lock)->task);
474 raw_spin_unlock(&lock->wait_lock);
475 goto out_put_task;
476 }
23f78d4a
IM
477 put_task_struct(task);
478
479 /* Grab the next task */
480 task = rt_mutex_owner(lock);
db630637 481 get_task_struct(task);
1d615482 482 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a
IM
483
484 if (waiter == rt_mutex_top_waiter(lock)) {
485 /* Boost the owner */
fb00aca4
PZ
486 rt_mutex_dequeue_pi(task, top_waiter);
487 rt_mutex_enqueue_pi(task, waiter);
23f78d4a
IM
488 __rt_mutex_adjust_prio(task);
489
490 } else if (top_waiter == waiter) {
491 /* Deboost the owner */
fb00aca4 492 rt_mutex_dequeue_pi(task, waiter);
23f78d4a 493 waiter = rt_mutex_top_waiter(lock);
fb00aca4 494 rt_mutex_enqueue_pi(task, waiter);
23f78d4a
IM
495 __rt_mutex_adjust_prio(task);
496 }
497
82084984
TG
498 /*
499 * Check whether the task which owns the current lock is pi
500 * blocked itself. If yes we store a pointer to the lock for
501 * the lock chain change detection above. After we dropped
502 * task->pi_lock next_lock cannot be dereferenced anymore.
503 */
504 next_lock = task_blocked_on_lock(task);
505
1d615482 506 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
507
508 top_waiter = rt_mutex_top_waiter(lock);
d209d74d 509 raw_spin_unlock(&lock->wait_lock);
23f78d4a 510
82084984
TG
511 /*
512 * We reached the end of the lock chain. Stop right here. No
513 * point to go back just to figure that out.
514 */
515 if (!next_lock)
516 goto out_put_task;
517
23f78d4a
IM
518 if (!detect_deadlock && waiter != top_waiter)
519 goto out_put_task;
520
521 goto again;
522
523 out_unlock_pi:
1d615482 524 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
525 out_put_task:
526 put_task_struct(task);
36c8b586 527
23f78d4a
IM
528 return ret;
529}
530
23f78d4a
IM
531/*
532 * Try to take an rt-mutex
533 *
23f78d4a 534 * Must be called with lock->wait_lock held.
8161239a 535 *
358c331f
TG
536 * @lock: The lock to be acquired.
537 * @task: The task which wants to acquire the lock
538 * @waiter: The waiter that is queued to the lock's wait list if the
539 * callsite called task_blocked_on_lock(), otherwise NULL
23f78d4a 540 */
8161239a 541static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
358c331f 542 struct rt_mutex_waiter *waiter)
23f78d4a 543{
358c331f
TG
544 unsigned long flags;
545
23f78d4a 546 /*
358c331f
TG
547 * Before testing whether we can acquire @lock, we set the
548 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
549 * other tasks which try to modify @lock into the slow path
550 * and they serialize on @lock->wait_lock.
23f78d4a 551 *
358c331f
TG
552 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
553 * as explained at the top of this file if and only if:
23f78d4a 554 *
358c331f
TG
555 * - There is a lock owner. The caller must fixup the
556 * transient state if it does a trylock or leaves the lock
557 * function due to a signal or timeout.
558 *
559 * - @task acquires the lock and there are no other
560 * waiters. This is undone in rt_mutex_set_owner(@task) at
561 * the end of this function.
23f78d4a
IM
562 */
563 mark_rt_mutex_waiters(lock);
564
358c331f
TG
565 /*
566 * If @lock has an owner, give up.
567 */
8161239a 568 if (rt_mutex_owner(lock))
23f78d4a
IM
569 return 0;
570
8161239a 571 /*
358c331f
TG
572 * If @waiter != NULL, @task has already enqueued the waiter
573 * into @lock waiter list. If @waiter == NULL then this is a
574 * trylock attempt.
8161239a 575 */
358c331f
TG
576 if (waiter) {
577 /*
578 * If waiter is not the highest priority waiter of
579 * @lock, give up.
580 */
581 if (waiter != rt_mutex_top_waiter(lock))
582 return 0;
8161239a 583
358c331f
TG
584 /*
585 * We can acquire the lock. Remove the waiter from the
586 * lock waiters list.
587 */
588 rt_mutex_dequeue(lock, waiter);
8161239a 589
358c331f 590 } else {
8161239a 591 /*
358c331f
TG
592 * If the lock has waiters already we check whether @task is
593 * eligible to take over the lock.
594 *
595 * If there are no other waiters, @task can acquire
596 * the lock. @task->pi_blocked_on is NULL, so it does
597 * not need to be dequeued.
8161239a
LJ
598 */
599 if (rt_mutex_has_waiters(lock)) {
358c331f
TG
600 /*
601 * If @task->prio is greater than or equal to
602 * the top waiter priority (kernel view),
603 * @task lost.
604 */
605 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
606 return 0;
607
608 /*
609 * The current top waiter stays enqueued. We
610 * don't have to change anything in the lock
611 * waiters order.
612 */
613 } else {
614 /*
615 * No waiters. Take the lock without the
616 * pi_lock dance.@task->pi_blocked_on is NULL
617 * and we have no waiters to enqueue in @task
618 * pi waiters list.
619 */
620 goto takeit;
8161239a 621 }
8161239a
LJ
622 }
623
358c331f
TG
624 /*
625 * Clear @task->pi_blocked_on. Requires protection by
626 * @task->pi_lock. Redundant operation for the @waiter == NULL
627 * case, but conditionals are more expensive than a redundant
628 * store.
629 */
630 raw_spin_lock_irqsave(&task->pi_lock, flags);
631 task->pi_blocked_on = NULL;
632 /*
633 * Finish the lock acquisition. @task is the new owner. If
634 * other waiters exist we have to insert the highest priority
635 * waiter into @task->pi_waiters list.
636 */
637 if (rt_mutex_has_waiters(lock))
638 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
639 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
640
641takeit:
23f78d4a 642 /* We got the lock. */
9a11b49a 643 debug_rt_mutex_lock(lock);
23f78d4a 644
358c331f
TG
645 /*
646 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
647 * are still waiters or clears it.
648 */
8161239a 649 rt_mutex_set_owner(lock, task);
23f78d4a 650
8161239a 651 rt_mutex_deadlock_account_lock(lock, task);
23f78d4a
IM
652
653 return 1;
654}
655
656/*
657 * Task blocks on lock.
658 *
659 * Prepare waiter and propagate pi chain
660 *
661 * This must be called with lock->wait_lock held.
662 */
663static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
664 struct rt_mutex_waiter *waiter,
8dac456a 665 struct task_struct *task,
9a11b49a 666 int detect_deadlock)
23f78d4a 667{
36c8b586 668 struct task_struct *owner = rt_mutex_owner(lock);
23f78d4a 669 struct rt_mutex_waiter *top_waiter = waiter;
82084984 670 struct rt_mutex *next_lock;
db630637 671 int chain_walk = 0, res;
82084984 672 unsigned long flags;
23f78d4a 673
397335f0
TG
674 /*
675 * Early deadlock detection. We really don't want the task to
676 * enqueue on itself just to untangle the mess later. It's not
677 * only an optimization. We drop the locks, so another waiter
678 * can come in before the chain walk detects the deadlock. So
679 * the other will detect the deadlock and return -EDEADLOCK,
680 * which is wrong, as the other waiter is not in a deadlock
681 * situation.
682 */
3d5c9340 683 if (owner == task)
397335f0
TG
684 return -EDEADLK;
685
1d615482 686 raw_spin_lock_irqsave(&task->pi_lock, flags);
8dac456a
DH
687 __rt_mutex_adjust_prio(task);
688 waiter->task = task;
23f78d4a 689 waiter->lock = lock;
2d3d891d 690 waiter->prio = task->prio;
23f78d4a
IM
691
692 /* Get the top priority waiter on the lock */
693 if (rt_mutex_has_waiters(lock))
694 top_waiter = rt_mutex_top_waiter(lock);
fb00aca4 695 rt_mutex_enqueue(lock, waiter);
23f78d4a 696
8dac456a 697 task->pi_blocked_on = waiter;
23f78d4a 698
1d615482 699 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a 700
8161239a
LJ
701 if (!owner)
702 return 0;
703
82084984 704 raw_spin_lock_irqsave(&owner->pi_lock, flags);
23f78d4a 705 if (waiter == rt_mutex_top_waiter(lock)) {
fb00aca4
PZ
706 rt_mutex_dequeue_pi(owner, top_waiter);
707 rt_mutex_enqueue_pi(owner, waiter);
23f78d4a
IM
708
709 __rt_mutex_adjust_prio(owner);
db630637
SR
710 if (owner->pi_blocked_on)
711 chain_walk = 1;
82084984 712 } else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) {
db630637 713 chain_walk = 1;
82084984 714 }
db630637 715
82084984
TG
716 /* Store the lock on which owner is blocked or NULL */
717 next_lock = task_blocked_on_lock(owner);
718
719 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
720 /*
721 * Even if full deadlock detection is on, if the owner is not
722 * blocked itself, we can avoid finding this out in the chain
723 * walk.
724 */
725 if (!chain_walk || !next_lock)
23f78d4a
IM
726 return 0;
727
db630637
SR
728 /*
729 * The owner can't disappear while holding a lock,
730 * so the owner struct is protected by wait_lock.
731 * Gets dropped in rt_mutex_adjust_prio_chain()!
732 */
733 get_task_struct(owner);
734
d209d74d 735 raw_spin_unlock(&lock->wait_lock);
23f78d4a 736
82084984
TG
737 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock,
738 next_lock, waiter, task);
23f78d4a 739
d209d74d 740 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
741
742 return res;
743}
744
745/*
746 * Wake up the next waiter on the lock.
747 *
27e35715
TG
748 * Remove the top waiter from the current tasks pi waiter list and
749 * wake it up.
23f78d4a
IM
750 *
751 * Called with lock->wait_lock held.
752 */
753static void wakeup_next_waiter(struct rt_mutex *lock)
754{
755 struct rt_mutex_waiter *waiter;
23f78d4a
IM
756 unsigned long flags;
757
1d615482 758 raw_spin_lock_irqsave(&current->pi_lock, flags);
23f78d4a
IM
759
760 waiter = rt_mutex_top_waiter(lock);
23f78d4a
IM
761
762 /*
763 * Remove it from current->pi_waiters. We do not adjust a
764 * possible priority boost right now. We execute wakeup in the
765 * boosted mode and go back to normal after releasing
766 * lock->wait_lock.
767 */
fb00aca4 768 rt_mutex_dequeue_pi(current, waiter);
23f78d4a 769
27e35715
TG
770 /*
771 * As we are waking up the top waiter, and the waiter stays
772 * queued on the lock until it gets the lock, this lock
773 * obviously has waiters. Just set the bit here and this has
774 * the added benefit of forcing all new tasks into the
775 * slow path making sure no task of lower priority than
776 * the top waiter can steal this lock.
777 */
778 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
23f78d4a 779
1d615482 780 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
23f78d4a 781
27e35715
TG
782 /*
783 * It's safe to dereference waiter as it cannot go away as
784 * long as we hold lock->wait_lock. The waiter task needs to
785 * acquire it in order to dequeue the waiter.
786 */
8161239a 787 wake_up_process(waiter->task);
23f78d4a
IM
788}
789
790/*
8161239a 791 * Remove a waiter from a lock and give up
23f78d4a 792 *
8161239a
LJ
793 * Must be called with lock->wait_lock held and
794 * have just failed to try_to_take_rt_mutex().
23f78d4a 795 */
bd197234
TG
796static void remove_waiter(struct rt_mutex *lock,
797 struct rt_mutex_waiter *waiter)
23f78d4a
IM
798{
799 int first = (waiter == rt_mutex_top_waiter(lock));
36c8b586 800 struct task_struct *owner = rt_mutex_owner(lock);
82084984 801 struct rt_mutex *next_lock = NULL;
23f78d4a
IM
802 unsigned long flags;
803
1d615482 804 raw_spin_lock_irqsave(&current->pi_lock, flags);
fb00aca4 805 rt_mutex_dequeue(lock, waiter);
23f78d4a 806 current->pi_blocked_on = NULL;
1d615482 807 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
23f78d4a 808
8161239a
LJ
809 if (!owner)
810 return;
811
812 if (first) {
23f78d4a 813
1d615482 814 raw_spin_lock_irqsave(&owner->pi_lock, flags);
23f78d4a 815
fb00aca4 816 rt_mutex_dequeue_pi(owner, waiter);
23f78d4a
IM
817
818 if (rt_mutex_has_waiters(lock)) {
819 struct rt_mutex_waiter *next;
820
821 next = rt_mutex_top_waiter(lock);
fb00aca4 822 rt_mutex_enqueue_pi(owner, next);
23f78d4a
IM
823 }
824 __rt_mutex_adjust_prio(owner);
825
82084984
TG
826 /* Store the lock on which owner is blocked or NULL */
827 next_lock = task_blocked_on_lock(owner);
db630637 828
1d615482 829 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
23f78d4a
IM
830 }
831
82084984 832 if (!next_lock)
23f78d4a
IM
833 return;
834
db630637
SR
835 /* gets dropped in rt_mutex_adjust_prio_chain()! */
836 get_task_struct(owner);
837
d209d74d 838 raw_spin_unlock(&lock->wait_lock);
23f78d4a 839
82084984 840 rt_mutex_adjust_prio_chain(owner, 0, lock, next_lock, NULL, current);
23f78d4a 841
d209d74d 842 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
843}
844
95e02ca9
TG
845/*
846 * Recheck the pi chain, in case we got a priority setting
847 *
848 * Called from sched_setscheduler
849 */
850void rt_mutex_adjust_pi(struct task_struct *task)
851{
852 struct rt_mutex_waiter *waiter;
82084984 853 struct rt_mutex *next_lock;
95e02ca9
TG
854 unsigned long flags;
855
1d615482 856 raw_spin_lock_irqsave(&task->pi_lock, flags);
95e02ca9
TG
857
858 waiter = task->pi_blocked_on;
2d3d891d
DF
859 if (!waiter || (waiter->prio == task->prio &&
860 !dl_prio(task->prio))) {
1d615482 861 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9
TG
862 return;
863 }
82084984 864 next_lock = waiter->lock;
1d615482 865 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9 866
db630637
SR
867 /* gets dropped in rt_mutex_adjust_prio_chain()! */
868 get_task_struct(task);
82084984
TG
869
870 rt_mutex_adjust_prio_chain(task, 0, NULL, next_lock, NULL, task);
95e02ca9
TG
871}
872
8dac456a
DH
873/**
874 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
875 * @lock: the rt_mutex to take
876 * @state: the state the task should block in (TASK_INTERRUPTIBLE
877 * or TASK_UNINTERRUPTIBLE)
878 * @timeout: the pre-initialized and started timer, or NULL for none
879 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a
DH
880 *
881 * lock->wait_lock must be held by the caller.
23f78d4a
IM
882 */
883static int __sched
8dac456a
DH
884__rt_mutex_slowlock(struct rt_mutex *lock, int state,
885 struct hrtimer_sleeper *timeout,
8161239a 886 struct rt_mutex_waiter *waiter)
23f78d4a 887{
23f78d4a
IM
888 int ret = 0;
889
23f78d4a
IM
890 for (;;) {
891 /* Try to acquire the lock: */
8161239a 892 if (try_to_take_rt_mutex(lock, current, waiter))
23f78d4a
IM
893 break;
894
895 /*
896 * TASK_INTERRUPTIBLE checks for signals and
897 * timeout. Ignored otherwise.
898 */
899 if (unlikely(state == TASK_INTERRUPTIBLE)) {
900 /* Signal pending? */
901 if (signal_pending(current))
902 ret = -EINTR;
903 if (timeout && !timeout->task)
904 ret = -ETIMEDOUT;
905 if (ret)
906 break;
907 }
908
d209d74d 909 raw_spin_unlock(&lock->wait_lock);
23f78d4a 910
8dac456a 911 debug_rt_mutex_print_deadlock(waiter);
23f78d4a 912
8161239a 913 schedule_rt_mutex(lock);
23f78d4a 914
d209d74d 915 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
916 set_current_state(state);
917 }
918
8dac456a
DH
919 return ret;
920}
921
3d5c9340
TG
922static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
923 struct rt_mutex_waiter *w)
924{
925 /*
926 * If the result is not -EDEADLOCK or the caller requested
927 * deadlock detection, nothing to do here.
928 */
929 if (res != -EDEADLOCK || detect_deadlock)
930 return;
931
932 /*
933 * Yell lowdly and stop the task right here.
934 */
935 rt_mutex_print_deadlock(w);
936 while (1) {
937 set_current_state(TASK_INTERRUPTIBLE);
938 schedule();
939 }
940}
941
8dac456a
DH
942/*
943 * Slow path lock function:
944 */
945static int __sched
946rt_mutex_slowlock(struct rt_mutex *lock, int state,
947 struct hrtimer_sleeper *timeout,
948 int detect_deadlock)
949{
950 struct rt_mutex_waiter waiter;
951 int ret = 0;
952
953 debug_rt_mutex_init_waiter(&waiter);
fb00aca4
PZ
954 RB_CLEAR_NODE(&waiter.pi_tree_entry);
955 RB_CLEAR_NODE(&waiter.tree_entry);
8dac456a 956
d209d74d 957 raw_spin_lock(&lock->wait_lock);
8dac456a
DH
958
959 /* Try to acquire the lock again: */
8161239a 960 if (try_to_take_rt_mutex(lock, current, NULL)) {
d209d74d 961 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
962 return 0;
963 }
964
965 set_current_state(state);
966
967 /* Setup the timer, when timeout != NULL */
968 if (unlikely(timeout)) {
969 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
970 if (!hrtimer_active(&timeout->timer))
971 timeout->task = NULL;
972 }
973
8161239a
LJ
974 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
975
976 if (likely(!ret))
977 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
8dac456a 978
23f78d4a
IM
979 set_current_state(TASK_RUNNING);
980
3d5c9340 981 if (unlikely(ret)) {
9a11b49a 982 remove_waiter(lock, &waiter);
3d5c9340
TG
983 rt_mutex_handle_deadlock(ret, detect_deadlock, &waiter);
984 }
23f78d4a
IM
985
986 /*
987 * try_to_take_rt_mutex() sets the waiter bit
988 * unconditionally. We might have to fix that up.
989 */
990 fixup_rt_mutex_waiters(lock);
991
d209d74d 992 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
993
994 /* Remove pending timer: */
995 if (unlikely(timeout))
996 hrtimer_cancel(&timeout->timer);
997
23f78d4a
IM
998 debug_rt_mutex_free_waiter(&waiter);
999
1000 return ret;
1001}
1002
1003/*
1004 * Slow path try-lock function:
1005 */
88f2b4c1 1006static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
23f78d4a 1007{
88f2b4c1
TG
1008 int ret;
1009
1010 /*
1011 * If the lock already has an owner we fail to get the lock.
1012 * This can be done without taking the @lock->wait_lock as
1013 * it is only being read, and this is a trylock anyway.
1014 */
1015 if (rt_mutex_owner(lock))
1016 return 0;
23f78d4a 1017
88f2b4c1
TG
1018 /*
1019 * The mutex has currently no owner. Lock the wait lock and
1020 * try to acquire the lock.
1021 */
d209d74d 1022 raw_spin_lock(&lock->wait_lock);
23f78d4a 1023
88f2b4c1 1024 ret = try_to_take_rt_mutex(lock, current, NULL);
23f78d4a 1025
88f2b4c1
TG
1026 /*
1027 * try_to_take_rt_mutex() sets the lock waiters bit
1028 * unconditionally. Clean this up.
1029 */
1030 fixup_rt_mutex_waiters(lock);
23f78d4a 1031
d209d74d 1032 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1033
1034 return ret;
1035}
1036
1037/*
1038 * Slow path to release a rt-mutex:
1039 */
1040static void __sched
1041rt_mutex_slowunlock(struct rt_mutex *lock)
1042{
d209d74d 1043 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1044
1045 debug_rt_mutex_unlock(lock);
1046
1047 rt_mutex_deadlock_account_unlock(current);
1048
27e35715
TG
1049 /*
1050 * We must be careful here if the fast path is enabled. If we
1051 * have no waiters queued we cannot set owner to NULL here
1052 * because of:
1053 *
1054 * foo->lock->owner = NULL;
1055 * rtmutex_lock(foo->lock); <- fast path
1056 * free = atomic_dec_and_test(foo->refcnt);
1057 * rtmutex_unlock(foo->lock); <- fast path
1058 * if (free)
1059 * kfree(foo);
1060 * raw_spin_unlock(foo->lock->wait_lock);
1061 *
1062 * So for the fastpath enabled kernel:
1063 *
1064 * Nothing can set the waiters bit as long as we hold
1065 * lock->wait_lock. So we do the following sequence:
1066 *
1067 * owner = rt_mutex_owner(lock);
1068 * clear_rt_mutex_waiters(lock);
1069 * raw_spin_unlock(&lock->wait_lock);
1070 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1071 * return;
1072 * goto retry;
1073 *
1074 * The fastpath disabled variant is simple as all access to
1075 * lock->owner is serialized by lock->wait_lock:
1076 *
1077 * lock->owner = NULL;
1078 * raw_spin_unlock(&lock->wait_lock);
1079 */
1080 while (!rt_mutex_has_waiters(lock)) {
1081 /* Drops lock->wait_lock ! */
1082 if (unlock_rt_mutex_safe(lock) == true)
1083 return;
1084 /* Relock the rtmutex and try again */
1085 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1086 }
1087
27e35715
TG
1088 /*
1089 * The wakeup next waiter path does not suffer from the above
1090 * race. See the comments there.
1091 */
23f78d4a
IM
1092 wakeup_next_waiter(lock);
1093
d209d74d 1094 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1095
1096 /* Undo pi boosting if necessary: */
1097 rt_mutex_adjust_prio(current);
1098}
1099
1100/*
1101 * debug aware fast / slowpath lock,trylock,unlock
1102 *
1103 * The atomic acquire/release ops are compiled away, when either the
1104 * architecture does not support cmpxchg or when debugging is enabled.
1105 */
1106static inline int
1107rt_mutex_fastlock(struct rt_mutex *lock, int state,
1108 int detect_deadlock,
1109 int (*slowfn)(struct rt_mutex *lock, int state,
1110 struct hrtimer_sleeper *timeout,
9a11b49a 1111 int detect_deadlock))
23f78d4a
IM
1112{
1113 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1114 rt_mutex_deadlock_account_lock(lock, current);
1115 return 0;
1116 } else
9a11b49a 1117 return slowfn(lock, state, NULL, detect_deadlock);
23f78d4a
IM
1118}
1119
1120static inline int
1121rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1122 struct hrtimer_sleeper *timeout, int detect_deadlock,
1123 int (*slowfn)(struct rt_mutex *lock, int state,
1124 struct hrtimer_sleeper *timeout,
9a11b49a 1125 int detect_deadlock))
23f78d4a
IM
1126{
1127 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1128 rt_mutex_deadlock_account_lock(lock, current);
1129 return 0;
1130 } else
9a11b49a 1131 return slowfn(lock, state, timeout, detect_deadlock);
23f78d4a
IM
1132}
1133
1134static inline int
1135rt_mutex_fasttrylock(struct rt_mutex *lock,
9a11b49a 1136 int (*slowfn)(struct rt_mutex *lock))
23f78d4a
IM
1137{
1138 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1139 rt_mutex_deadlock_account_lock(lock, current);
1140 return 1;
1141 }
9a11b49a 1142 return slowfn(lock);
23f78d4a
IM
1143}
1144
1145static inline void
1146rt_mutex_fastunlock(struct rt_mutex *lock,
1147 void (*slowfn)(struct rt_mutex *lock))
1148{
1149 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1150 rt_mutex_deadlock_account_unlock(current);
1151 else
1152 slowfn(lock);
1153}
1154
1155/**
1156 * rt_mutex_lock - lock a rt_mutex
1157 *
1158 * @lock: the rt_mutex to be locked
1159 */
1160void __sched rt_mutex_lock(struct rt_mutex *lock)
1161{
1162 might_sleep();
1163
1164 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
1165}
1166EXPORT_SYMBOL_GPL(rt_mutex_lock);
1167
1168/**
1169 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1170 *
1171 * @lock: the rt_mutex to be locked
1172 * @detect_deadlock: deadlock detection on/off
1173 *
1174 * Returns:
1175 * 0 on success
1176 * -EINTR when interrupted by a signal
1177 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
1178 */
1179int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
1180 int detect_deadlock)
1181{
1182 might_sleep();
1183
1184 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
1185 detect_deadlock, rt_mutex_slowlock);
1186}
1187EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1188
1189/**
23b94b96
LH
1190 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1191 * the timeout structure is provided
1192 * by the caller
23f78d4a
IM
1193 *
1194 * @lock: the rt_mutex to be locked
1195 * @timeout: timeout structure or NULL (no timeout)
1196 * @detect_deadlock: deadlock detection on/off
1197 *
1198 * Returns:
1199 * 0 on success
1200 * -EINTR when interrupted by a signal
3ac49a1c 1201 * -ETIMEDOUT when the timeout expired
23f78d4a
IM
1202 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
1203 */
1204int
1205rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
1206 int detect_deadlock)
1207{
1208 might_sleep();
1209
1210 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1211 detect_deadlock, rt_mutex_slowlock);
1212}
1213EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1214
1215/**
1216 * rt_mutex_trylock - try to lock a rt_mutex
1217 *
1218 * @lock: the rt_mutex to be locked
1219 *
1220 * Returns 1 on success and 0 on contention
1221 */
1222int __sched rt_mutex_trylock(struct rt_mutex *lock)
1223{
1224 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1225}
1226EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1227
1228/**
1229 * rt_mutex_unlock - unlock a rt_mutex
1230 *
1231 * @lock: the rt_mutex to be unlocked
1232 */
1233void __sched rt_mutex_unlock(struct rt_mutex *lock)
1234{
1235 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1236}
1237EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1238
23b94b96 1239/**
23f78d4a
IM
1240 * rt_mutex_destroy - mark a mutex unusable
1241 * @lock: the mutex to be destroyed
1242 *
1243 * This function marks the mutex uninitialized, and any subsequent
1244 * use of the mutex is forbidden. The mutex must not be locked when
1245 * this function is called.
1246 */
1247void rt_mutex_destroy(struct rt_mutex *lock)
1248{
1249 WARN_ON(rt_mutex_is_locked(lock));
1250#ifdef CONFIG_DEBUG_RT_MUTEXES
1251 lock->magic = NULL;
1252#endif
1253}
1254
1255EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1256
1257/**
1258 * __rt_mutex_init - initialize the rt lock
1259 *
1260 * @lock: the rt lock to be initialized
1261 *
1262 * Initialize the rt lock to unlocked state.
1263 *
1264 * Initializing of a locked rt lock is not allowed
1265 */
1266void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1267{
1268 lock->owner = NULL;
d209d74d 1269 raw_spin_lock_init(&lock->wait_lock);
fb00aca4
PZ
1270 lock->waiters = RB_ROOT;
1271 lock->waiters_leftmost = NULL;
23f78d4a
IM
1272
1273 debug_rt_mutex_init(lock, name);
1274}
1275EXPORT_SYMBOL_GPL(__rt_mutex_init);
0cdbee99
IM
1276
1277/**
1278 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1279 * proxy owner
1280 *
1281 * @lock: the rt_mutex to be locked
1282 * @proxy_owner:the task to set as owner
1283 *
1284 * No locking. Caller has to do serializing itself
1285 * Special API call for PI-futex support
1286 */
1287void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1288 struct task_struct *proxy_owner)
1289{
1290 __rt_mutex_init(lock, NULL);
9a11b49a 1291 debug_rt_mutex_proxy_lock(lock, proxy_owner);
8161239a 1292 rt_mutex_set_owner(lock, proxy_owner);
0cdbee99
IM
1293 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1294}
1295
1296/**
1297 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1298 *
1299 * @lock: the rt_mutex to be locked
1300 *
1301 * No locking. Caller has to do serializing itself
1302 * Special API call for PI-futex support
1303 */
1304void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1305 struct task_struct *proxy_owner)
1306{
1307 debug_rt_mutex_proxy_unlock(lock);
8161239a 1308 rt_mutex_set_owner(lock, NULL);
0cdbee99
IM
1309 rt_mutex_deadlock_account_unlock(proxy_owner);
1310}
1311
8dac456a
DH
1312/**
1313 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1314 * @lock: the rt_mutex to take
1315 * @waiter: the pre-initialized rt_mutex_waiter
1316 * @task: the task to prepare
1317 * @detect_deadlock: perform deadlock detection (1) or not (0)
1318 *
1319 * Returns:
1320 * 0 - task blocked on lock
1321 * 1 - acquired the lock for task, caller should wake it up
1322 * <0 - error
1323 *
1324 * Special API call for FUTEX_REQUEUE_PI support.
1325 */
1326int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1327 struct rt_mutex_waiter *waiter,
1328 struct task_struct *task, int detect_deadlock)
1329{
1330 int ret;
1331
d209d74d 1332 raw_spin_lock(&lock->wait_lock);
8dac456a 1333
8161239a 1334 if (try_to_take_rt_mutex(lock, task, NULL)) {
d209d74d 1335 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1336 return 1;
1337 }
1338
3d5c9340
TG
1339 /* We enforce deadlock detection for futexes */
1340 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1);
8dac456a 1341
8161239a 1342 if (ret && !rt_mutex_owner(lock)) {
8dac456a
DH
1343 /*
1344 * Reset the return value. We might have
1345 * returned with -EDEADLK and the owner
1346 * released the lock while we were walking the
1347 * pi chain. Let the waiter sort it out.
1348 */
1349 ret = 0;
1350 }
8161239a
LJ
1351
1352 if (unlikely(ret))
1353 remove_waiter(lock, waiter);
1354
d209d74d 1355 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1356
1357 debug_rt_mutex_print_deadlock(waiter);
1358
1359 return ret;
1360}
1361
0cdbee99
IM
1362/**
1363 * rt_mutex_next_owner - return the next owner of the lock
1364 *
1365 * @lock: the rt lock query
1366 *
1367 * Returns the next owner of the lock or NULL
1368 *
1369 * Caller has to serialize against other accessors to the lock
1370 * itself.
1371 *
1372 * Special API call for PI-futex support
1373 */
1374struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1375{
1376 if (!rt_mutex_has_waiters(lock))
1377 return NULL;
1378
1379 return rt_mutex_top_waiter(lock)->task;
1380}
8dac456a
DH
1381
1382/**
1383 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1384 * @lock: the rt_mutex we were woken on
1385 * @to: the timeout, null if none. hrtimer should already have
1386 * been started.
1387 * @waiter: the pre-initialized rt_mutex_waiter
1388 * @detect_deadlock: perform deadlock detection (1) or not (0)
1389 *
1390 * Complete the lock acquisition started our behalf by another thread.
1391 *
1392 * Returns:
1393 * 0 - success
1394 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1395 *
1396 * Special API call for PI-futex requeue support
1397 */
1398int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1399 struct hrtimer_sleeper *to,
1400 struct rt_mutex_waiter *waiter,
1401 int detect_deadlock)
1402{
1403 int ret;
1404
d209d74d 1405 raw_spin_lock(&lock->wait_lock);
8dac456a
DH
1406
1407 set_current_state(TASK_INTERRUPTIBLE);
1408
8161239a 1409 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
8dac456a
DH
1410
1411 set_current_state(TASK_RUNNING);
1412
8161239a 1413 if (unlikely(ret))
8dac456a
DH
1414 remove_waiter(lock, waiter);
1415
1416 /*
1417 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1418 * have to fix that up.
1419 */
1420 fixup_rt_mutex_waiters(lock);
1421
d209d74d 1422 raw_spin_unlock(&lock->wait_lock);
8dac456a 1423
8dac456a
DH
1424 return ret;
1425}
This page took 0.58165 seconds and 5 git commands to generate.