rtmutex: Cleanup deadlock detector debug logic
[deliverable/linux.git] / kernel / locking / rtmutex.c
CommitLineData
23f78d4a
IM
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
d07fe82c
SR
10 *
11 * See Documentation/rt-mutex-design.txt for details.
23f78d4a
IM
12 */
13#include <linux/spinlock.h>
9984de1a 14#include <linux/export.h>
23f78d4a 15#include <linux/sched.h>
8bd75c77 16#include <linux/sched/rt.h>
fb00aca4 17#include <linux/sched/deadline.h>
23f78d4a
IM
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
23f78d4a
IM
22/*
23 * lock->owner state tracking:
24 *
8161239a
LJ
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
23f78d4a 27 *
8161239a
LJ
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
23f78d4a
IM
34 *
35 * The fast atomic compare exchange based acquire and release is only
8161239a
LJ
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
23f78d4a 42 *
8161239a
LJ
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
23f78d4a
IM
47 */
48
bd197234 49static void
8161239a 50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
23f78d4a 51{
8161239a 52 unsigned long val = (unsigned long)owner;
23f78d4a
IM
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68 if (!rt_mutex_has_waiters(lock))
69 clear_rt_mutex_waiters(lock);
70}
71
bd197234
TG
72/*
73 * We can speed up the acquire/release, if the architecture
74 * supports cmpxchg and if there's no debugging state to be set up
75 */
76#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
78static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79{
80 unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82 do {
83 owner = *p;
84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85}
27e35715
TG
86
87/*
88 * Safe fastpath aware unlock:
89 * 1) Clear the waiters bit
90 * 2) Drop lock->wait_lock
91 * 3) Try to unlock the lock with cmpxchg
92 */
93static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 __releases(lock->wait_lock)
95{
96 struct task_struct *owner = rt_mutex_owner(lock);
97
98 clear_rt_mutex_waiters(lock);
99 raw_spin_unlock(&lock->wait_lock);
100 /*
101 * If a new waiter comes in between the unlock and the cmpxchg
102 * we have two situations:
103 *
104 * unlock(wait_lock);
105 * lock(wait_lock);
106 * cmpxchg(p, owner, 0) == owner
107 * mark_rt_mutex_waiters(lock);
108 * acquire(lock);
109 * or:
110 *
111 * unlock(wait_lock);
112 * lock(wait_lock);
113 * mark_rt_mutex_waiters(lock);
114 *
115 * cmpxchg(p, owner, 0) != owner
116 * enqueue_waiter();
117 * unlock(wait_lock);
118 * lock(wait_lock);
119 * wake waiter();
120 * unlock(wait_lock);
121 * lock(wait_lock);
122 * acquire(lock);
123 */
124 return rt_mutex_cmpxchg(lock, owner, NULL);
125}
126
bd197234
TG
127#else
128# define rt_mutex_cmpxchg(l,c,n) (0)
129static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130{
131 lock->owner = (struct task_struct *)
132 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133}
27e35715
TG
134
135/*
136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 */
138static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 __releases(lock->wait_lock)
140{
141 lock->owner = NULL;
142 raw_spin_unlock(&lock->wait_lock);
143 return true;
144}
bd197234
TG
145#endif
146
fb00aca4
PZ
147static inline int
148rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 struct rt_mutex_waiter *right)
150{
2d3d891d 151 if (left->prio < right->prio)
fb00aca4
PZ
152 return 1;
153
154 /*
2d3d891d
DF
155 * If both waiters have dl_prio(), we check the deadlines of the
156 * associated tasks.
157 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 * then right waiter has a dl_prio() too.
fb00aca4 159 */
2d3d891d 160 if (dl_prio(left->prio))
fb00aca4
PZ
161 return (left->task->dl.deadline < right->task->dl.deadline);
162
163 return 0;
164}
165
166static void
167rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168{
169 struct rb_node **link = &lock->waiters.rb_node;
170 struct rb_node *parent = NULL;
171 struct rt_mutex_waiter *entry;
172 int leftmost = 1;
173
174 while (*link) {
175 parent = *link;
176 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 if (rt_mutex_waiter_less(waiter, entry)) {
178 link = &parent->rb_left;
179 } else {
180 link = &parent->rb_right;
181 leftmost = 0;
182 }
183 }
184
185 if (leftmost)
186 lock->waiters_leftmost = &waiter->tree_entry;
187
188 rb_link_node(&waiter->tree_entry, parent, link);
189 rb_insert_color(&waiter->tree_entry, &lock->waiters);
190}
191
192static void
193rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194{
195 if (RB_EMPTY_NODE(&waiter->tree_entry))
196 return;
197
198 if (lock->waiters_leftmost == &waiter->tree_entry)
199 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201 rb_erase(&waiter->tree_entry, &lock->waiters);
202 RB_CLEAR_NODE(&waiter->tree_entry);
203}
204
205static void
206rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207{
208 struct rb_node **link = &task->pi_waiters.rb_node;
209 struct rb_node *parent = NULL;
210 struct rt_mutex_waiter *entry;
211 int leftmost = 1;
212
213 while (*link) {
214 parent = *link;
215 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 if (rt_mutex_waiter_less(waiter, entry)) {
217 link = &parent->rb_left;
218 } else {
219 link = &parent->rb_right;
220 leftmost = 0;
221 }
222 }
223
224 if (leftmost)
225 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227 rb_link_node(&waiter->pi_tree_entry, parent, link);
228 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229}
230
231static void
232rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233{
234 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 return;
236
237 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 RB_CLEAR_NODE(&waiter->pi_tree_entry);
242}
243
23f78d4a 244/*
fb00aca4 245 * Calculate task priority from the waiter tree priority
23f78d4a 246 *
fb00aca4 247 * Return task->normal_prio when the waiter tree is empty or when
23f78d4a
IM
248 * the waiter is not allowed to do priority boosting
249 */
250int rt_mutex_getprio(struct task_struct *task)
251{
252 if (likely(!task_has_pi_waiters(task)))
253 return task->normal_prio;
254
2d3d891d 255 return min(task_top_pi_waiter(task)->prio,
23f78d4a
IM
256 task->normal_prio);
257}
258
2d3d891d
DF
259struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260{
261 if (likely(!task_has_pi_waiters(task)))
262 return NULL;
263
264 return task_top_pi_waiter(task)->task;
265}
266
c365c292
TG
267/*
268 * Called by sched_setscheduler() to check whether the priority change
269 * is overruled by a possible priority boosting.
270 */
271int rt_mutex_check_prio(struct task_struct *task, int newprio)
272{
273 if (!task_has_pi_waiters(task))
274 return 0;
275
276 return task_top_pi_waiter(task)->task->prio <= newprio;
277}
278
23f78d4a
IM
279/*
280 * Adjust the priority of a task, after its pi_waiters got modified.
281 *
282 * This can be both boosting and unboosting. task->pi_lock must be held.
283 */
bd197234 284static void __rt_mutex_adjust_prio(struct task_struct *task)
23f78d4a
IM
285{
286 int prio = rt_mutex_getprio(task);
287
2d3d891d 288 if (task->prio != prio || dl_prio(prio))
23f78d4a
IM
289 rt_mutex_setprio(task, prio);
290}
291
292/*
293 * Adjust task priority (undo boosting). Called from the exit path of
294 * rt_mutex_slowunlock() and rt_mutex_slowlock().
295 *
296 * (Note: We do this outside of the protection of lock->wait_lock to
297 * allow the lock to be taken while or before we readjust the priority
298 * of task. We do not use the spin_xx_mutex() variants here as we are
299 * outside of the debug path.)
300 */
301static void rt_mutex_adjust_prio(struct task_struct *task)
302{
303 unsigned long flags;
304
1d615482 305 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 306 __rt_mutex_adjust_prio(task);
1d615482 307 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
308}
309
8930ed80
TG
310/*
311 * Deadlock detection is conditional:
312 *
313 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
314 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
315 *
316 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
317 * conducted independent of the detect argument.
318 *
319 * If the waiter argument is NULL this indicates the deboost path and
320 * deadlock detection is disabled independent of the detect argument
321 * and the config settings.
322 */
323static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
324 enum rtmutex_chainwalk chwalk)
325{
326 /*
327 * This is just a wrapper function for the following call,
328 * because debug_rt_mutex_detect_deadlock() smells like a magic
329 * debug feature and I wanted to keep the cond function in the
330 * main source file along with the comments instead of having
331 * two of the same in the headers.
332 */
333 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
334}
335
23f78d4a
IM
336/*
337 * Max number of times we'll walk the boosting chain:
338 */
339int max_lock_depth = 1024;
340
82084984
TG
341static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
342{
343 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
344}
345
23f78d4a
IM
346/*
347 * Adjust the priority chain. Also used for deadlock detection.
348 * Decreases task's usage by one - may thus free the task.
0c106173 349 *
82084984
TG
350 * @task: the task owning the mutex (owner) for which a chain walk is
351 * probably needed
0c106173 352 * @deadlock_detect: do we have to carry out deadlock detection?
82084984
TG
353 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
354 * things for a task that has just got its priority adjusted, and
355 * is waiting on a mutex)
356 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
357 * we dropped its pi_lock. Is never dereferenced, only used for
358 * comparison to detect lock chain changes.
0c106173 359 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
82084984
TG
360 * its priority to the mutex owner (can be NULL in the case
361 * depicted above or if the top waiter is gone away and we are
362 * actually deboosting the owner)
363 * @top_task: the current top waiter
0c106173 364 *
23f78d4a 365 * Returns 0 or -EDEADLK.
3eb65aea
TG
366 *
367 * Chain walk basics and protection scope
368 *
369 * [R] refcount on task
370 * [P] task->pi_lock held
371 * [L] rtmutex->wait_lock held
372 *
373 * Step Description Protected by
374 * function arguments:
375 * @task [R]
376 * @orig_lock if != NULL @top_task is blocked on it
377 * @next_lock Unprotected. Cannot be
378 * dereferenced. Only used for
379 * comparison.
380 * @orig_waiter if != NULL @top_task is blocked on it
381 * @top_task current, or in case of proxy
382 * locking protected by calling
383 * code
384 * again:
385 * loop_sanity_check();
386 * retry:
387 * [1] lock(task->pi_lock); [R] acquire [P]
388 * [2] waiter = task->pi_blocked_on; [P]
389 * [3] check_exit_conditions_1(); [P]
390 * [4] lock = waiter->lock; [P]
391 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
392 * unlock(task->pi_lock); release [P]
393 * goto retry;
394 * }
395 * [6] check_exit_conditions_2(); [P] + [L]
396 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
397 * [8] unlock(task->pi_lock); release [P]
398 * put_task_struct(task); release [R]
399 * [9] check_exit_conditions_3(); [L]
400 * [10] task = owner(lock); [L]
401 * get_task_struct(task); [L] acquire [R]
402 * lock(task->pi_lock); [L] acquire [P]
403 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
404 * [12] check_exit_conditions_4(); [P] + [L]
405 * [13] unlock(task->pi_lock); release [P]
406 * unlock(lock->wait_lock); release [L]
407 * goto again;
23f78d4a 408 */
bd197234 409static int rt_mutex_adjust_prio_chain(struct task_struct *task,
8930ed80 410 enum rtmutex_chainwalk chwalk,
bd197234 411 struct rt_mutex *orig_lock,
82084984 412 struct rt_mutex *next_lock,
bd197234
TG
413 struct rt_mutex_waiter *orig_waiter,
414 struct task_struct *top_task)
23f78d4a 415{
23f78d4a 416 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
a57594a1 417 struct rt_mutex_waiter *prerequeue_top_waiter;
8930ed80 418 int ret = 0, depth = 0;
a57594a1 419 struct rt_mutex *lock;
8930ed80 420 bool detect_deadlock;
23f78d4a
IM
421 unsigned long flags;
422
8930ed80 423 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
23f78d4a
IM
424
425 /*
426 * The (de)boosting is a step by step approach with a lot of
427 * pitfalls. We want this to be preemptible and we want hold a
428 * maximum of two locks per step. So we have to check
429 * carefully whether things change under us.
430 */
431 again:
3eb65aea
TG
432 /*
433 * We limit the lock chain length for each invocation.
434 */
23f78d4a
IM
435 if (++depth > max_lock_depth) {
436 static int prev_max;
437
438 /*
439 * Print this only once. If the admin changes the limit,
440 * print a new message when reaching the limit again.
441 */
442 if (prev_max != max_lock_depth) {
443 prev_max = max_lock_depth;
444 printk(KERN_WARNING "Maximum lock depth %d reached "
445 "task: %s (%d)\n", max_lock_depth,
ba25f9dc 446 top_task->comm, task_pid_nr(top_task));
23f78d4a
IM
447 }
448 put_task_struct(task);
449
3d5c9340 450 return -EDEADLK;
23f78d4a 451 }
3eb65aea
TG
452
453 /*
454 * We are fully preemptible here and only hold the refcount on
455 * @task. So everything can have changed under us since the
456 * caller or our own code below (goto retry/again) dropped all
457 * locks.
458 */
23f78d4a
IM
459 retry:
460 /*
3eb65aea 461 * [1] Task cannot go away as we did a get_task() before !
23f78d4a 462 */
1d615482 463 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 464
3eb65aea
TG
465 /*
466 * [2] Get the waiter on which @task is blocked on.
467 */
23f78d4a 468 waiter = task->pi_blocked_on;
3eb65aea
TG
469
470 /*
471 * [3] check_exit_conditions_1() protected by task->pi_lock.
472 */
473
23f78d4a
IM
474 /*
475 * Check whether the end of the boosting chain has been
476 * reached or the state of the chain has changed while we
477 * dropped the locks.
478 */
8161239a 479 if (!waiter)
23f78d4a
IM
480 goto out_unlock_pi;
481
1a539a87
TG
482 /*
483 * Check the orig_waiter state. After we dropped the locks,
8161239a 484 * the previous owner of the lock might have released the lock.
1a539a87 485 */
8161239a 486 if (orig_waiter && !rt_mutex_owner(orig_lock))
1a539a87
TG
487 goto out_unlock_pi;
488
82084984
TG
489 /*
490 * We dropped all locks after taking a refcount on @task, so
491 * the task might have moved on in the lock chain or even left
492 * the chain completely and blocks now on an unrelated lock or
493 * on @orig_lock.
494 *
495 * We stored the lock on which @task was blocked in @next_lock,
496 * so we can detect the chain change.
497 */
498 if (next_lock != waiter->lock)
499 goto out_unlock_pi;
500
1a539a87
TG
501 /*
502 * Drop out, when the task has no waiters. Note,
503 * top_waiter can be NULL, when we are in the deboosting
504 * mode!
505 */
397335f0
TG
506 if (top_waiter) {
507 if (!task_has_pi_waiters(task))
508 goto out_unlock_pi;
509 /*
510 * If deadlock detection is off, we stop here if we
511 * are not the top pi waiter of the task.
512 */
513 if (!detect_deadlock && top_waiter != task_top_pi_waiter(task))
514 goto out_unlock_pi;
515 }
23f78d4a
IM
516
517 /*
518 * When deadlock detection is off then we check, if further
519 * priority adjustment is necessary.
520 */
2d3d891d 521 if (!detect_deadlock && waiter->prio == task->prio)
23f78d4a
IM
522 goto out_unlock_pi;
523
3eb65aea
TG
524 /*
525 * [4] Get the next lock
526 */
23f78d4a 527 lock = waiter->lock;
3eb65aea
TG
528 /*
529 * [5] We need to trylock here as we are holding task->pi_lock,
530 * which is the reverse lock order versus the other rtmutex
531 * operations.
532 */
d209d74d 533 if (!raw_spin_trylock(&lock->wait_lock)) {
1d615482 534 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
535 cpu_relax();
536 goto retry;
537 }
538
397335f0 539 /*
3eb65aea
TG
540 * [6] check_exit_conditions_2() protected by task->pi_lock and
541 * lock->wait_lock.
542 *
397335f0
TG
543 * Deadlock detection. If the lock is the same as the original
544 * lock which caused us to walk the lock chain or if the
545 * current lock is owned by the task which initiated the chain
546 * walk, we detected a deadlock.
547 */
95e02ca9 548 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
8930ed80 549 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
d209d74d 550 raw_spin_unlock(&lock->wait_lock);
3d5c9340 551 ret = -EDEADLK;
23f78d4a
IM
552 goto out_unlock_pi;
553 }
554
a57594a1
TG
555 /*
556 * Store the current top waiter before doing the requeue
557 * operation on @lock. We need it for the boost/deboost
558 * decision below.
559 */
560 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
23f78d4a 561
3eb65aea 562 /* [7] Requeue the waiter in the lock waiter list. */
fb00aca4 563 rt_mutex_dequeue(lock, waiter);
2d3d891d 564 waiter->prio = task->prio;
fb00aca4 565 rt_mutex_enqueue(lock, waiter);
23f78d4a 566
3eb65aea 567 /* [8] Release the task */
1d615482 568 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
2ffa5a5c
TG
569 put_task_struct(task);
570
a57594a1 571 /*
3eb65aea
TG
572 * [9] check_exit_conditions_3 protected by lock->wait_lock.
573 *
a57594a1
TG
574 * We must abort the chain walk if there is no lock owner even
575 * in the dead lock detection case, as we have nothing to
576 * follow here. This is the end of the chain we are walking.
577 */
8161239a
LJ
578 if (!rt_mutex_owner(lock)) {
579 /*
3eb65aea
TG
580 * If the requeue [7] above changed the top waiter,
581 * then we need to wake the new top waiter up to try
582 * to get the lock.
8161239a 583 */
a57594a1 584 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
8161239a
LJ
585 wake_up_process(rt_mutex_top_waiter(lock)->task);
586 raw_spin_unlock(&lock->wait_lock);
2ffa5a5c 587 return 0;
8161239a 588 }
23f78d4a 589
3eb65aea 590 /* [10] Grab the next task, i.e. the owner of @lock */
23f78d4a 591 task = rt_mutex_owner(lock);
db630637 592 get_task_struct(task);
1d615482 593 raw_spin_lock_irqsave(&task->pi_lock, flags);
23f78d4a 594
3eb65aea 595 /* [11] requeue the pi waiters if necessary */
23f78d4a 596 if (waiter == rt_mutex_top_waiter(lock)) {
a57594a1
TG
597 /*
598 * The waiter became the new top (highest priority)
599 * waiter on the lock. Replace the previous top waiter
600 * in the owner tasks pi waiters list with this waiter
601 * and adjust the priority of the owner.
602 */
603 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
fb00aca4 604 rt_mutex_enqueue_pi(task, waiter);
23f78d4a
IM
605 __rt_mutex_adjust_prio(task);
606
a57594a1
TG
607 } else if (prerequeue_top_waiter == waiter) {
608 /*
609 * The waiter was the top waiter on the lock, but is
610 * no longer the top prority waiter. Replace waiter in
611 * the owner tasks pi waiters list with the new top
612 * (highest priority) waiter and adjust the priority
613 * of the owner.
614 * The new top waiter is stored in @waiter so that
615 * @waiter == @top_waiter evaluates to true below and
616 * we continue to deboost the rest of the chain.
617 */
fb00aca4 618 rt_mutex_dequeue_pi(task, waiter);
23f78d4a 619 waiter = rt_mutex_top_waiter(lock);
fb00aca4 620 rt_mutex_enqueue_pi(task, waiter);
23f78d4a 621 __rt_mutex_adjust_prio(task);
a57594a1
TG
622 } else {
623 /*
624 * Nothing changed. No need to do any priority
625 * adjustment.
626 */
23f78d4a
IM
627 }
628
82084984 629 /*
3eb65aea
TG
630 * [12] check_exit_conditions_4() protected by task->pi_lock
631 * and lock->wait_lock. The actual decisions are made after we
632 * dropped the locks.
633 *
82084984
TG
634 * Check whether the task which owns the current lock is pi
635 * blocked itself. If yes we store a pointer to the lock for
636 * the lock chain change detection above. After we dropped
637 * task->pi_lock next_lock cannot be dereferenced anymore.
638 */
639 next_lock = task_blocked_on_lock(task);
a57594a1
TG
640 /*
641 * Store the top waiter of @lock for the end of chain walk
642 * decision below.
643 */
23f78d4a 644 top_waiter = rt_mutex_top_waiter(lock);
3eb65aea
TG
645
646 /* [13] Drop the locks */
647 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
d209d74d 648 raw_spin_unlock(&lock->wait_lock);
23f78d4a 649
82084984 650 /*
3eb65aea
TG
651 * Make the actual exit decisions [12], based on the stored
652 * values.
653 *
82084984
TG
654 * We reached the end of the lock chain. Stop right here. No
655 * point to go back just to figure that out.
656 */
657 if (!next_lock)
658 goto out_put_task;
659
a57594a1
TG
660 /*
661 * If the current waiter is not the top waiter on the lock,
662 * then we can stop the chain walk here if we are not in full
663 * deadlock detection mode.
664 */
23f78d4a
IM
665 if (!detect_deadlock && waiter != top_waiter)
666 goto out_put_task;
667
668 goto again;
669
670 out_unlock_pi:
1d615482 671 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a
IM
672 out_put_task:
673 put_task_struct(task);
36c8b586 674
23f78d4a
IM
675 return ret;
676}
677
23f78d4a
IM
678/*
679 * Try to take an rt-mutex
680 *
23f78d4a 681 * Must be called with lock->wait_lock held.
8161239a 682 *
358c331f
TG
683 * @lock: The lock to be acquired.
684 * @task: The task which wants to acquire the lock
685 * @waiter: The waiter that is queued to the lock's wait list if the
686 * callsite called task_blocked_on_lock(), otherwise NULL
23f78d4a 687 */
8161239a 688static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
358c331f 689 struct rt_mutex_waiter *waiter)
23f78d4a 690{
358c331f
TG
691 unsigned long flags;
692
23f78d4a 693 /*
358c331f
TG
694 * Before testing whether we can acquire @lock, we set the
695 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
696 * other tasks which try to modify @lock into the slow path
697 * and they serialize on @lock->wait_lock.
23f78d4a 698 *
358c331f
TG
699 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
700 * as explained at the top of this file if and only if:
23f78d4a 701 *
358c331f
TG
702 * - There is a lock owner. The caller must fixup the
703 * transient state if it does a trylock or leaves the lock
704 * function due to a signal or timeout.
705 *
706 * - @task acquires the lock and there are no other
707 * waiters. This is undone in rt_mutex_set_owner(@task) at
708 * the end of this function.
23f78d4a
IM
709 */
710 mark_rt_mutex_waiters(lock);
711
358c331f
TG
712 /*
713 * If @lock has an owner, give up.
714 */
8161239a 715 if (rt_mutex_owner(lock))
23f78d4a
IM
716 return 0;
717
8161239a 718 /*
358c331f
TG
719 * If @waiter != NULL, @task has already enqueued the waiter
720 * into @lock waiter list. If @waiter == NULL then this is a
721 * trylock attempt.
8161239a 722 */
358c331f
TG
723 if (waiter) {
724 /*
725 * If waiter is not the highest priority waiter of
726 * @lock, give up.
727 */
728 if (waiter != rt_mutex_top_waiter(lock))
729 return 0;
8161239a 730
358c331f
TG
731 /*
732 * We can acquire the lock. Remove the waiter from the
733 * lock waiters list.
734 */
735 rt_mutex_dequeue(lock, waiter);
8161239a 736
358c331f 737 } else {
8161239a 738 /*
358c331f
TG
739 * If the lock has waiters already we check whether @task is
740 * eligible to take over the lock.
741 *
742 * If there are no other waiters, @task can acquire
743 * the lock. @task->pi_blocked_on is NULL, so it does
744 * not need to be dequeued.
8161239a
LJ
745 */
746 if (rt_mutex_has_waiters(lock)) {
358c331f
TG
747 /*
748 * If @task->prio is greater than or equal to
749 * the top waiter priority (kernel view),
750 * @task lost.
751 */
752 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
753 return 0;
754
755 /*
756 * The current top waiter stays enqueued. We
757 * don't have to change anything in the lock
758 * waiters order.
759 */
760 } else {
761 /*
762 * No waiters. Take the lock without the
763 * pi_lock dance.@task->pi_blocked_on is NULL
764 * and we have no waiters to enqueue in @task
765 * pi waiters list.
766 */
767 goto takeit;
8161239a 768 }
8161239a
LJ
769 }
770
358c331f
TG
771 /*
772 * Clear @task->pi_blocked_on. Requires protection by
773 * @task->pi_lock. Redundant operation for the @waiter == NULL
774 * case, but conditionals are more expensive than a redundant
775 * store.
776 */
777 raw_spin_lock_irqsave(&task->pi_lock, flags);
778 task->pi_blocked_on = NULL;
779 /*
780 * Finish the lock acquisition. @task is the new owner. If
781 * other waiters exist we have to insert the highest priority
782 * waiter into @task->pi_waiters list.
783 */
784 if (rt_mutex_has_waiters(lock))
785 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
786 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
787
788takeit:
23f78d4a 789 /* We got the lock. */
9a11b49a 790 debug_rt_mutex_lock(lock);
23f78d4a 791
358c331f
TG
792 /*
793 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
794 * are still waiters or clears it.
795 */
8161239a 796 rt_mutex_set_owner(lock, task);
23f78d4a 797
8161239a 798 rt_mutex_deadlock_account_lock(lock, task);
23f78d4a
IM
799
800 return 1;
801}
802
803/*
804 * Task blocks on lock.
805 *
806 * Prepare waiter and propagate pi chain
807 *
808 * This must be called with lock->wait_lock held.
809 */
810static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
811 struct rt_mutex_waiter *waiter,
8dac456a 812 struct task_struct *task,
8930ed80 813 enum rtmutex_chainwalk chwalk)
23f78d4a 814{
36c8b586 815 struct task_struct *owner = rt_mutex_owner(lock);
23f78d4a 816 struct rt_mutex_waiter *top_waiter = waiter;
82084984 817 struct rt_mutex *next_lock;
db630637 818 int chain_walk = 0, res;
82084984 819 unsigned long flags;
23f78d4a 820
397335f0
TG
821 /*
822 * Early deadlock detection. We really don't want the task to
823 * enqueue on itself just to untangle the mess later. It's not
824 * only an optimization. We drop the locks, so another waiter
825 * can come in before the chain walk detects the deadlock. So
826 * the other will detect the deadlock and return -EDEADLOCK,
827 * which is wrong, as the other waiter is not in a deadlock
828 * situation.
829 */
3d5c9340 830 if (owner == task)
397335f0
TG
831 return -EDEADLK;
832
1d615482 833 raw_spin_lock_irqsave(&task->pi_lock, flags);
8dac456a
DH
834 __rt_mutex_adjust_prio(task);
835 waiter->task = task;
23f78d4a 836 waiter->lock = lock;
2d3d891d 837 waiter->prio = task->prio;
23f78d4a
IM
838
839 /* Get the top priority waiter on the lock */
840 if (rt_mutex_has_waiters(lock))
841 top_waiter = rt_mutex_top_waiter(lock);
fb00aca4 842 rt_mutex_enqueue(lock, waiter);
23f78d4a 843
8dac456a 844 task->pi_blocked_on = waiter;
23f78d4a 845
1d615482 846 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
23f78d4a 847
8161239a
LJ
848 if (!owner)
849 return 0;
850
82084984 851 raw_spin_lock_irqsave(&owner->pi_lock, flags);
23f78d4a 852 if (waiter == rt_mutex_top_waiter(lock)) {
fb00aca4
PZ
853 rt_mutex_dequeue_pi(owner, top_waiter);
854 rt_mutex_enqueue_pi(owner, waiter);
23f78d4a
IM
855
856 __rt_mutex_adjust_prio(owner);
db630637
SR
857 if (owner->pi_blocked_on)
858 chain_walk = 1;
8930ed80 859 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
db630637 860 chain_walk = 1;
82084984 861 }
db630637 862
82084984
TG
863 /* Store the lock on which owner is blocked or NULL */
864 next_lock = task_blocked_on_lock(owner);
865
866 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
867 /*
868 * Even if full deadlock detection is on, if the owner is not
869 * blocked itself, we can avoid finding this out in the chain
870 * walk.
871 */
872 if (!chain_walk || !next_lock)
23f78d4a
IM
873 return 0;
874
db630637
SR
875 /*
876 * The owner can't disappear while holding a lock,
877 * so the owner struct is protected by wait_lock.
878 * Gets dropped in rt_mutex_adjust_prio_chain()!
879 */
880 get_task_struct(owner);
881
d209d74d 882 raw_spin_unlock(&lock->wait_lock);
23f78d4a 883
8930ed80 884 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
82084984 885 next_lock, waiter, task);
23f78d4a 886
d209d74d 887 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
888
889 return res;
890}
891
892/*
893 * Wake up the next waiter on the lock.
894 *
27e35715
TG
895 * Remove the top waiter from the current tasks pi waiter list and
896 * wake it up.
23f78d4a
IM
897 *
898 * Called with lock->wait_lock held.
899 */
900static void wakeup_next_waiter(struct rt_mutex *lock)
901{
902 struct rt_mutex_waiter *waiter;
23f78d4a
IM
903 unsigned long flags;
904
1d615482 905 raw_spin_lock_irqsave(&current->pi_lock, flags);
23f78d4a
IM
906
907 waiter = rt_mutex_top_waiter(lock);
23f78d4a
IM
908
909 /*
910 * Remove it from current->pi_waiters. We do not adjust a
911 * possible priority boost right now. We execute wakeup in the
912 * boosted mode and go back to normal after releasing
913 * lock->wait_lock.
914 */
fb00aca4 915 rt_mutex_dequeue_pi(current, waiter);
23f78d4a 916
27e35715
TG
917 /*
918 * As we are waking up the top waiter, and the waiter stays
919 * queued on the lock until it gets the lock, this lock
920 * obviously has waiters. Just set the bit here and this has
921 * the added benefit of forcing all new tasks into the
922 * slow path making sure no task of lower priority than
923 * the top waiter can steal this lock.
924 */
925 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
23f78d4a 926
1d615482 927 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
23f78d4a 928
27e35715
TG
929 /*
930 * It's safe to dereference waiter as it cannot go away as
931 * long as we hold lock->wait_lock. The waiter task needs to
932 * acquire it in order to dequeue the waiter.
933 */
8161239a 934 wake_up_process(waiter->task);
23f78d4a
IM
935}
936
937/*
8161239a 938 * Remove a waiter from a lock and give up
23f78d4a 939 *
8161239a
LJ
940 * Must be called with lock->wait_lock held and
941 * have just failed to try_to_take_rt_mutex().
23f78d4a 942 */
bd197234
TG
943static void remove_waiter(struct rt_mutex *lock,
944 struct rt_mutex_waiter *waiter)
23f78d4a 945{
1ca7b860 946 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
36c8b586 947 struct task_struct *owner = rt_mutex_owner(lock);
1ca7b860 948 struct rt_mutex *next_lock;
23f78d4a
IM
949 unsigned long flags;
950
1d615482 951 raw_spin_lock_irqsave(&current->pi_lock, flags);
fb00aca4 952 rt_mutex_dequeue(lock, waiter);
23f78d4a 953 current->pi_blocked_on = NULL;
1d615482 954 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
23f78d4a 955
1ca7b860
TG
956 /*
957 * Only update priority if the waiter was the highest priority
958 * waiter of the lock and there is an owner to update.
959 */
960 if (!owner || !is_top_waiter)
8161239a
LJ
961 return;
962
1ca7b860 963 raw_spin_lock_irqsave(&owner->pi_lock, flags);
23f78d4a 964
1ca7b860 965 rt_mutex_dequeue_pi(owner, waiter);
23f78d4a 966
1ca7b860
TG
967 if (rt_mutex_has_waiters(lock))
968 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
23f78d4a 969
1ca7b860 970 __rt_mutex_adjust_prio(owner);
23f78d4a 971
1ca7b860
TG
972 /* Store the lock on which owner is blocked or NULL */
973 next_lock = task_blocked_on_lock(owner);
db630637 974
1ca7b860 975 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
23f78d4a 976
1ca7b860
TG
977 /*
978 * Don't walk the chain, if the owner task is not blocked
979 * itself.
980 */
82084984 981 if (!next_lock)
23f78d4a
IM
982 return;
983
db630637
SR
984 /* gets dropped in rt_mutex_adjust_prio_chain()! */
985 get_task_struct(owner);
986
d209d74d 987 raw_spin_unlock(&lock->wait_lock);
23f78d4a 988
8930ed80
TG
989 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
990 next_lock, NULL, current);
23f78d4a 991
d209d74d 992 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
993}
994
95e02ca9
TG
995/*
996 * Recheck the pi chain, in case we got a priority setting
997 *
998 * Called from sched_setscheduler
999 */
1000void rt_mutex_adjust_pi(struct task_struct *task)
1001{
1002 struct rt_mutex_waiter *waiter;
82084984 1003 struct rt_mutex *next_lock;
95e02ca9
TG
1004 unsigned long flags;
1005
1d615482 1006 raw_spin_lock_irqsave(&task->pi_lock, flags);
95e02ca9
TG
1007
1008 waiter = task->pi_blocked_on;
2d3d891d
DF
1009 if (!waiter || (waiter->prio == task->prio &&
1010 !dl_prio(task->prio))) {
1d615482 1011 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9
TG
1012 return;
1013 }
82084984 1014 next_lock = waiter->lock;
1d615482 1015 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9 1016
db630637
SR
1017 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1018 get_task_struct(task);
82084984 1019
8930ed80
TG
1020 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1021 next_lock, NULL, task);
95e02ca9
TG
1022}
1023
8dac456a
DH
1024/**
1025 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1026 * @lock: the rt_mutex to take
1027 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1028 * or TASK_UNINTERRUPTIBLE)
1029 * @timeout: the pre-initialized and started timer, or NULL for none
1030 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a
DH
1031 *
1032 * lock->wait_lock must be held by the caller.
23f78d4a
IM
1033 */
1034static int __sched
8dac456a
DH
1035__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1036 struct hrtimer_sleeper *timeout,
8161239a 1037 struct rt_mutex_waiter *waiter)
23f78d4a 1038{
23f78d4a
IM
1039 int ret = 0;
1040
23f78d4a
IM
1041 for (;;) {
1042 /* Try to acquire the lock: */
8161239a 1043 if (try_to_take_rt_mutex(lock, current, waiter))
23f78d4a
IM
1044 break;
1045
1046 /*
1047 * TASK_INTERRUPTIBLE checks for signals and
1048 * timeout. Ignored otherwise.
1049 */
1050 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1051 /* Signal pending? */
1052 if (signal_pending(current))
1053 ret = -EINTR;
1054 if (timeout && !timeout->task)
1055 ret = -ETIMEDOUT;
1056 if (ret)
1057 break;
1058 }
1059
d209d74d 1060 raw_spin_unlock(&lock->wait_lock);
23f78d4a 1061
8dac456a 1062 debug_rt_mutex_print_deadlock(waiter);
23f78d4a 1063
8161239a 1064 schedule_rt_mutex(lock);
23f78d4a 1065
d209d74d 1066 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1067 set_current_state(state);
1068 }
1069
8dac456a
DH
1070 return ret;
1071}
1072
3d5c9340
TG
1073static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1074 struct rt_mutex_waiter *w)
1075{
1076 /*
1077 * If the result is not -EDEADLOCK or the caller requested
1078 * deadlock detection, nothing to do here.
1079 */
1080 if (res != -EDEADLOCK || detect_deadlock)
1081 return;
1082
1083 /*
1084 * Yell lowdly and stop the task right here.
1085 */
1086 rt_mutex_print_deadlock(w);
1087 while (1) {
1088 set_current_state(TASK_INTERRUPTIBLE);
1089 schedule();
1090 }
1091}
1092
8dac456a
DH
1093/*
1094 * Slow path lock function:
1095 */
1096static int __sched
1097rt_mutex_slowlock(struct rt_mutex *lock, int state,
1098 struct hrtimer_sleeper *timeout,
8930ed80 1099 enum rtmutex_chainwalk chwalk)
8dac456a
DH
1100{
1101 struct rt_mutex_waiter waiter;
1102 int ret = 0;
1103
1104 debug_rt_mutex_init_waiter(&waiter);
fb00aca4
PZ
1105 RB_CLEAR_NODE(&waiter.pi_tree_entry);
1106 RB_CLEAR_NODE(&waiter.tree_entry);
8dac456a 1107
d209d74d 1108 raw_spin_lock(&lock->wait_lock);
8dac456a
DH
1109
1110 /* Try to acquire the lock again: */
8161239a 1111 if (try_to_take_rt_mutex(lock, current, NULL)) {
d209d74d 1112 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1113 return 0;
1114 }
1115
1116 set_current_state(state);
1117
1118 /* Setup the timer, when timeout != NULL */
1119 if (unlikely(timeout)) {
1120 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1121 if (!hrtimer_active(&timeout->timer))
1122 timeout->task = NULL;
1123 }
1124
8930ed80 1125 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
8161239a
LJ
1126
1127 if (likely(!ret))
1128 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
8dac456a 1129
23f78d4a
IM
1130 set_current_state(TASK_RUNNING);
1131
3d5c9340 1132 if (unlikely(ret)) {
9a11b49a 1133 remove_waiter(lock, &waiter);
8930ed80 1134 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
3d5c9340 1135 }
23f78d4a
IM
1136
1137 /*
1138 * try_to_take_rt_mutex() sets the waiter bit
1139 * unconditionally. We might have to fix that up.
1140 */
1141 fixup_rt_mutex_waiters(lock);
1142
d209d74d 1143 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1144
1145 /* Remove pending timer: */
1146 if (unlikely(timeout))
1147 hrtimer_cancel(&timeout->timer);
1148
23f78d4a
IM
1149 debug_rt_mutex_free_waiter(&waiter);
1150
1151 return ret;
1152}
1153
1154/*
1155 * Slow path try-lock function:
1156 */
88f2b4c1 1157static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
23f78d4a 1158{
88f2b4c1
TG
1159 int ret;
1160
1161 /*
1162 * If the lock already has an owner we fail to get the lock.
1163 * This can be done without taking the @lock->wait_lock as
1164 * it is only being read, and this is a trylock anyway.
1165 */
1166 if (rt_mutex_owner(lock))
1167 return 0;
23f78d4a 1168
88f2b4c1
TG
1169 /*
1170 * The mutex has currently no owner. Lock the wait lock and
1171 * try to acquire the lock.
1172 */
d209d74d 1173 raw_spin_lock(&lock->wait_lock);
23f78d4a 1174
88f2b4c1 1175 ret = try_to_take_rt_mutex(lock, current, NULL);
23f78d4a 1176
88f2b4c1
TG
1177 /*
1178 * try_to_take_rt_mutex() sets the lock waiters bit
1179 * unconditionally. Clean this up.
1180 */
1181 fixup_rt_mutex_waiters(lock);
23f78d4a 1182
d209d74d 1183 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1184
1185 return ret;
1186}
1187
1188/*
1189 * Slow path to release a rt-mutex:
1190 */
1191static void __sched
1192rt_mutex_slowunlock(struct rt_mutex *lock)
1193{
d209d74d 1194 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1195
1196 debug_rt_mutex_unlock(lock);
1197
1198 rt_mutex_deadlock_account_unlock(current);
1199
27e35715
TG
1200 /*
1201 * We must be careful here if the fast path is enabled. If we
1202 * have no waiters queued we cannot set owner to NULL here
1203 * because of:
1204 *
1205 * foo->lock->owner = NULL;
1206 * rtmutex_lock(foo->lock); <- fast path
1207 * free = atomic_dec_and_test(foo->refcnt);
1208 * rtmutex_unlock(foo->lock); <- fast path
1209 * if (free)
1210 * kfree(foo);
1211 * raw_spin_unlock(foo->lock->wait_lock);
1212 *
1213 * So for the fastpath enabled kernel:
1214 *
1215 * Nothing can set the waiters bit as long as we hold
1216 * lock->wait_lock. So we do the following sequence:
1217 *
1218 * owner = rt_mutex_owner(lock);
1219 * clear_rt_mutex_waiters(lock);
1220 * raw_spin_unlock(&lock->wait_lock);
1221 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1222 * return;
1223 * goto retry;
1224 *
1225 * The fastpath disabled variant is simple as all access to
1226 * lock->owner is serialized by lock->wait_lock:
1227 *
1228 * lock->owner = NULL;
1229 * raw_spin_unlock(&lock->wait_lock);
1230 */
1231 while (!rt_mutex_has_waiters(lock)) {
1232 /* Drops lock->wait_lock ! */
1233 if (unlock_rt_mutex_safe(lock) == true)
1234 return;
1235 /* Relock the rtmutex and try again */
1236 raw_spin_lock(&lock->wait_lock);
23f78d4a
IM
1237 }
1238
27e35715
TG
1239 /*
1240 * The wakeup next waiter path does not suffer from the above
1241 * race. See the comments there.
1242 */
23f78d4a
IM
1243 wakeup_next_waiter(lock);
1244
d209d74d 1245 raw_spin_unlock(&lock->wait_lock);
23f78d4a
IM
1246
1247 /* Undo pi boosting if necessary: */
1248 rt_mutex_adjust_prio(current);
1249}
1250
1251/*
1252 * debug aware fast / slowpath lock,trylock,unlock
1253 *
1254 * The atomic acquire/release ops are compiled away, when either the
1255 * architecture does not support cmpxchg or when debugging is enabled.
1256 */
1257static inline int
1258rt_mutex_fastlock(struct rt_mutex *lock, int state,
23f78d4a
IM
1259 int (*slowfn)(struct rt_mutex *lock, int state,
1260 struct hrtimer_sleeper *timeout,
8930ed80 1261 enum rtmutex_chainwalk chwalk))
23f78d4a 1262{
c051b21f 1263 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
23f78d4a
IM
1264 rt_mutex_deadlock_account_lock(lock, current);
1265 return 0;
1266 } else
8930ed80 1267 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
23f78d4a
IM
1268}
1269
1270static inline int
1271rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
8930ed80
TG
1272 struct hrtimer_sleeper *timeout,
1273 enum rtmutex_chainwalk chwalk,
23f78d4a
IM
1274 int (*slowfn)(struct rt_mutex *lock, int state,
1275 struct hrtimer_sleeper *timeout,
8930ed80 1276 enum rtmutex_chainwalk chwalk))
23f78d4a 1277{
8930ed80
TG
1278 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1279 likely(rt_mutex_cmpxchg(lock, NULL, current))) {
23f78d4a
IM
1280 rt_mutex_deadlock_account_lock(lock, current);
1281 return 0;
1282 } else
8930ed80 1283 return slowfn(lock, state, timeout, chwalk);
23f78d4a
IM
1284}
1285
1286static inline int
1287rt_mutex_fasttrylock(struct rt_mutex *lock,
9a11b49a 1288 int (*slowfn)(struct rt_mutex *lock))
23f78d4a
IM
1289{
1290 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1291 rt_mutex_deadlock_account_lock(lock, current);
1292 return 1;
1293 }
9a11b49a 1294 return slowfn(lock);
23f78d4a
IM
1295}
1296
1297static inline void
1298rt_mutex_fastunlock(struct rt_mutex *lock,
1299 void (*slowfn)(struct rt_mutex *lock))
1300{
1301 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1302 rt_mutex_deadlock_account_unlock(current);
1303 else
1304 slowfn(lock);
1305}
1306
1307/**
1308 * rt_mutex_lock - lock a rt_mutex
1309 *
1310 * @lock: the rt_mutex to be locked
1311 */
1312void __sched rt_mutex_lock(struct rt_mutex *lock)
1313{
1314 might_sleep();
1315
c051b21f 1316 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
23f78d4a
IM
1317}
1318EXPORT_SYMBOL_GPL(rt_mutex_lock);
1319
1320/**
1321 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1322 *
c051b21f 1323 * @lock: the rt_mutex to be locked
23f78d4a
IM
1324 *
1325 * Returns:
c051b21f
TG
1326 * 0 on success
1327 * -EINTR when interrupted by a signal
23f78d4a 1328 */
c051b21f 1329int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
23f78d4a
IM
1330{
1331 might_sleep();
1332
c051b21f 1333 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
23f78d4a
IM
1334}
1335EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1336
c051b21f
TG
1337/*
1338 * Futex variant with full deadlock detection.
1339 */
1340int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1341 struct hrtimer_sleeper *timeout)
1342{
1343 might_sleep();
1344
8930ed80
TG
1345 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1346 RT_MUTEX_FULL_CHAINWALK,
c051b21f
TG
1347 rt_mutex_slowlock);
1348}
1349
23f78d4a 1350/**
23b94b96
LH
1351 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1352 * the timeout structure is provided
1353 * by the caller
23f78d4a 1354 *
c051b21f 1355 * @lock: the rt_mutex to be locked
23f78d4a 1356 * @timeout: timeout structure or NULL (no timeout)
23f78d4a
IM
1357 *
1358 * Returns:
c051b21f
TG
1359 * 0 on success
1360 * -EINTR when interrupted by a signal
3ac49a1c 1361 * -ETIMEDOUT when the timeout expired
23f78d4a
IM
1362 */
1363int
c051b21f 1364rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
23f78d4a
IM
1365{
1366 might_sleep();
1367
8930ed80
TG
1368 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1369 RT_MUTEX_MIN_CHAINWALK,
c051b21f 1370 rt_mutex_slowlock);
23f78d4a
IM
1371}
1372EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1373
1374/**
1375 * rt_mutex_trylock - try to lock a rt_mutex
1376 *
1377 * @lock: the rt_mutex to be locked
1378 *
1379 * Returns 1 on success and 0 on contention
1380 */
1381int __sched rt_mutex_trylock(struct rt_mutex *lock)
1382{
1383 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1384}
1385EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1386
1387/**
1388 * rt_mutex_unlock - unlock a rt_mutex
1389 *
1390 * @lock: the rt_mutex to be unlocked
1391 */
1392void __sched rt_mutex_unlock(struct rt_mutex *lock)
1393{
1394 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1395}
1396EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1397
23b94b96 1398/**
23f78d4a
IM
1399 * rt_mutex_destroy - mark a mutex unusable
1400 * @lock: the mutex to be destroyed
1401 *
1402 * This function marks the mutex uninitialized, and any subsequent
1403 * use of the mutex is forbidden. The mutex must not be locked when
1404 * this function is called.
1405 */
1406void rt_mutex_destroy(struct rt_mutex *lock)
1407{
1408 WARN_ON(rt_mutex_is_locked(lock));
1409#ifdef CONFIG_DEBUG_RT_MUTEXES
1410 lock->magic = NULL;
1411#endif
1412}
1413
1414EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1415
1416/**
1417 * __rt_mutex_init - initialize the rt lock
1418 *
1419 * @lock: the rt lock to be initialized
1420 *
1421 * Initialize the rt lock to unlocked state.
1422 *
1423 * Initializing of a locked rt lock is not allowed
1424 */
1425void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1426{
1427 lock->owner = NULL;
d209d74d 1428 raw_spin_lock_init(&lock->wait_lock);
fb00aca4
PZ
1429 lock->waiters = RB_ROOT;
1430 lock->waiters_leftmost = NULL;
23f78d4a
IM
1431
1432 debug_rt_mutex_init(lock, name);
1433}
1434EXPORT_SYMBOL_GPL(__rt_mutex_init);
0cdbee99
IM
1435
1436/**
1437 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1438 * proxy owner
1439 *
1440 * @lock: the rt_mutex to be locked
1441 * @proxy_owner:the task to set as owner
1442 *
1443 * No locking. Caller has to do serializing itself
1444 * Special API call for PI-futex support
1445 */
1446void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1447 struct task_struct *proxy_owner)
1448{
1449 __rt_mutex_init(lock, NULL);
9a11b49a 1450 debug_rt_mutex_proxy_lock(lock, proxy_owner);
8161239a 1451 rt_mutex_set_owner(lock, proxy_owner);
0cdbee99
IM
1452 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1453}
1454
1455/**
1456 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1457 *
1458 * @lock: the rt_mutex to be locked
1459 *
1460 * No locking. Caller has to do serializing itself
1461 * Special API call for PI-futex support
1462 */
1463void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1464 struct task_struct *proxy_owner)
1465{
1466 debug_rt_mutex_proxy_unlock(lock);
8161239a 1467 rt_mutex_set_owner(lock, NULL);
0cdbee99
IM
1468 rt_mutex_deadlock_account_unlock(proxy_owner);
1469}
1470
8dac456a
DH
1471/**
1472 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1473 * @lock: the rt_mutex to take
1474 * @waiter: the pre-initialized rt_mutex_waiter
1475 * @task: the task to prepare
8dac456a
DH
1476 *
1477 * Returns:
1478 * 0 - task blocked on lock
1479 * 1 - acquired the lock for task, caller should wake it up
1480 * <0 - error
1481 *
1482 * Special API call for FUTEX_REQUEUE_PI support.
1483 */
1484int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1485 struct rt_mutex_waiter *waiter,
c051b21f 1486 struct task_struct *task)
8dac456a
DH
1487{
1488 int ret;
1489
d209d74d 1490 raw_spin_lock(&lock->wait_lock);
8dac456a 1491
8161239a 1492 if (try_to_take_rt_mutex(lock, task, NULL)) {
d209d74d 1493 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1494 return 1;
1495 }
1496
3d5c9340 1497 /* We enforce deadlock detection for futexes */
8930ed80
TG
1498 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1499 RT_MUTEX_FULL_CHAINWALK);
8dac456a 1500
8161239a 1501 if (ret && !rt_mutex_owner(lock)) {
8dac456a
DH
1502 /*
1503 * Reset the return value. We might have
1504 * returned with -EDEADLK and the owner
1505 * released the lock while we were walking the
1506 * pi chain. Let the waiter sort it out.
1507 */
1508 ret = 0;
1509 }
8161239a
LJ
1510
1511 if (unlikely(ret))
1512 remove_waiter(lock, waiter);
1513
d209d74d 1514 raw_spin_unlock(&lock->wait_lock);
8dac456a
DH
1515
1516 debug_rt_mutex_print_deadlock(waiter);
1517
1518 return ret;
1519}
1520
0cdbee99
IM
1521/**
1522 * rt_mutex_next_owner - return the next owner of the lock
1523 *
1524 * @lock: the rt lock query
1525 *
1526 * Returns the next owner of the lock or NULL
1527 *
1528 * Caller has to serialize against other accessors to the lock
1529 * itself.
1530 *
1531 * Special API call for PI-futex support
1532 */
1533struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1534{
1535 if (!rt_mutex_has_waiters(lock))
1536 return NULL;
1537
1538 return rt_mutex_top_waiter(lock)->task;
1539}
8dac456a
DH
1540
1541/**
1542 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1543 * @lock: the rt_mutex we were woken on
1544 * @to: the timeout, null if none. hrtimer should already have
c051b21f 1545 * been started.
8dac456a 1546 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a
DH
1547 *
1548 * Complete the lock acquisition started our behalf by another thread.
1549 *
1550 * Returns:
1551 * 0 - success
c051b21f 1552 * <0 - error, one of -EINTR, -ETIMEDOUT
8dac456a
DH
1553 *
1554 * Special API call for PI-futex requeue support
1555 */
1556int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1557 struct hrtimer_sleeper *to,
c051b21f 1558 struct rt_mutex_waiter *waiter)
8dac456a
DH
1559{
1560 int ret;
1561
d209d74d 1562 raw_spin_lock(&lock->wait_lock);
8dac456a
DH
1563
1564 set_current_state(TASK_INTERRUPTIBLE);
1565
8161239a 1566 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
8dac456a
DH
1567
1568 set_current_state(TASK_RUNNING);
1569
8161239a 1570 if (unlikely(ret))
8dac456a
DH
1571 remove_waiter(lock, waiter);
1572
1573 /*
1574 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1575 * have to fix that up.
1576 */
1577 fixup_rt_mutex_waiters(lock);
1578
d209d74d 1579 raw_spin_unlock(&lock->wait_lock);
8dac456a 1580
8dac456a
DH
1581 return ret;
1582}
This page took 0.907324 seconds and 5 git commands to generate.