reboot: move shutdown/reboot related functions to kernel/reboot.c
[deliverable/linux.git] / kernel / mutex.c
CommitLineData
6053ee3b
IM
1/*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
6053ee3b
IM
18 * Also see Documentation/mutex-design.txt.
19 */
20#include <linux/mutex.h>
21#include <linux/sched.h>
8bd75c77 22#include <linux/sched/rt.h>
9984de1a 23#include <linux/export.h>
6053ee3b
IM
24#include <linux/spinlock.h>
25#include <linux/interrupt.h>
9a11b49a 26#include <linux/debug_locks.h>
6053ee3b
IM
27
28/*
29 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
30 * which forces all calls into the slowpath:
31 */
32#ifdef CONFIG_DEBUG_MUTEXES
33# include "mutex-debug.h"
34# include <asm-generic/mutex-null.h>
35#else
36# include "mutex.h"
37# include <asm/mutex.h>
38#endif
39
0dc8c730 40/*
cc189d25
WL
41 * A negative mutex count indicates that waiters are sleeping waiting for the
42 * mutex.
0dc8c730 43 */
0dc8c730 44#define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
0dc8c730 45
ef5d4707
IM
46void
47__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b
IM
48{
49 atomic_set(&lock->count, 1);
50 spin_lock_init(&lock->wait_lock);
51 INIT_LIST_HEAD(&lock->wait_list);
0d66bf6d 52 mutex_clear_owner(lock);
2bd2c92c
WL
53#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
54 lock->spin_mlock = NULL;
55#endif
6053ee3b 56
ef5d4707 57 debug_mutex_init(lock, name, key);
6053ee3b
IM
58}
59
60EXPORT_SYMBOL(__mutex_init);
61
e4564f79 62#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
63/*
64 * We split the mutex lock/unlock logic into separate fastpath and
65 * slowpath functions, to reduce the register pressure on the fastpath.
66 * We also put the fastpath first in the kernel image, to make sure the
67 * branch is predicted by the CPU as default-untaken.
68 */
7918baa5 69static __used noinline void __sched
9a11b49a 70__mutex_lock_slowpath(atomic_t *lock_count);
6053ee3b 71
ef5dc121 72/**
6053ee3b
IM
73 * mutex_lock - acquire the mutex
74 * @lock: the mutex to be acquired
75 *
76 * Lock the mutex exclusively for this task. If the mutex is not
77 * available right now, it will sleep until it can get it.
78 *
79 * The mutex must later on be released by the same task that
80 * acquired it. Recursive locking is not allowed. The task
81 * may not exit without first unlocking the mutex. Also, kernel
82 * memory where the mutex resides mutex must not be freed with
83 * the mutex still locked. The mutex must first be initialized
84 * (or statically defined) before it can be locked. memset()-ing
85 * the mutex to 0 is not allowed.
86 *
87 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
88 * checks that will enforce the restrictions and will also do
89 * deadlock debugging. )
90 *
91 * This function is similar to (but not equivalent to) down().
92 */
b09d2501 93void __sched mutex_lock(struct mutex *lock)
6053ee3b 94{
c544bdb1 95 might_sleep();
6053ee3b
IM
96 /*
97 * The locking fastpath is the 1->0 transition from
98 * 'unlocked' into 'locked' state.
6053ee3b
IM
99 */
100 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
0d66bf6d 101 mutex_set_owner(lock);
6053ee3b
IM
102}
103
104EXPORT_SYMBOL(mutex_lock);
e4564f79 105#endif
6053ee3b 106
41fcb9f2 107#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2bd2c92c
WL
108/*
109 * In order to avoid a stampede of mutex spinners from acquiring the mutex
110 * more or less simultaneously, the spinners need to acquire a MCS lock
111 * first before spinning on the owner field.
112 *
113 * We don't inline mspin_lock() so that perf can correctly account for the
114 * time spent in this lock function.
115 */
116struct mspin_node {
117 struct mspin_node *next ;
118 int locked; /* 1 if lock acquired */
119};
120#define MLOCK(mutex) ((struct mspin_node **)&((mutex)->spin_mlock))
121
122static noinline
123void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
124{
125 struct mspin_node *prev;
126
127 /* Init node */
128 node->locked = 0;
129 node->next = NULL;
130
131 prev = xchg(lock, node);
132 if (likely(prev == NULL)) {
133 /* Lock acquired */
134 node->locked = 1;
135 return;
136 }
137 ACCESS_ONCE(prev->next) = node;
138 smp_wmb();
139 /* Wait until the lock holder passes the lock down */
140 while (!ACCESS_ONCE(node->locked))
141 arch_mutex_cpu_relax();
142}
143
144static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
145{
146 struct mspin_node *next = ACCESS_ONCE(node->next);
147
148 if (likely(!next)) {
149 /*
150 * Release the lock by setting it to NULL
151 */
152 if (cmpxchg(lock, node, NULL) == node)
153 return;
154 /* Wait until the next pointer is set */
155 while (!(next = ACCESS_ONCE(node->next)))
156 arch_mutex_cpu_relax();
157 }
158 ACCESS_ONCE(next->locked) = 1;
159 smp_wmb();
160}
161
41fcb9f2
WL
162/*
163 * Mutex spinning code migrated from kernel/sched/core.c
164 */
165
166static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
167{
168 if (lock->owner != owner)
169 return false;
170
171 /*
172 * Ensure we emit the owner->on_cpu, dereference _after_ checking
173 * lock->owner still matches owner, if that fails, owner might
174 * point to free()d memory, if it still matches, the rcu_read_lock()
175 * ensures the memory stays valid.
176 */
177 barrier();
178
179 return owner->on_cpu;
180}
181
182/*
183 * Look out! "owner" is an entirely speculative pointer
184 * access and not reliable.
185 */
186static noinline
187int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
188{
189 rcu_read_lock();
190 while (owner_running(lock, owner)) {
191 if (need_resched())
192 break;
193
194 arch_mutex_cpu_relax();
195 }
196 rcu_read_unlock();
197
198 /*
199 * We break out the loop above on need_resched() and when the
200 * owner changed, which is a sign for heavy contention. Return
201 * success only when lock->owner is NULL.
202 */
203 return lock->owner == NULL;
204}
2bd2c92c
WL
205
206/*
207 * Initial check for entering the mutex spinning loop
208 */
209static inline int mutex_can_spin_on_owner(struct mutex *lock)
210{
211 int retval = 1;
212
213 rcu_read_lock();
214 if (lock->owner)
215 retval = lock->owner->on_cpu;
216 rcu_read_unlock();
217 /*
218 * if lock->owner is not set, the mutex owner may have just acquired
219 * it and not set the owner yet or the mutex has been released.
220 */
221 return retval;
222}
41fcb9f2
WL
223#endif
224
7918baa5 225static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
6053ee3b 226
ef5dc121 227/**
6053ee3b
IM
228 * mutex_unlock - release the mutex
229 * @lock: the mutex to be released
230 *
231 * Unlock a mutex that has been locked by this task previously.
232 *
233 * This function must not be used in interrupt context. Unlocking
234 * of a not locked mutex is not allowed.
235 *
236 * This function is similar to (but not equivalent to) up().
237 */
7ad5b3a5 238void __sched mutex_unlock(struct mutex *lock)
6053ee3b
IM
239{
240 /*
241 * The unlocking fastpath is the 0->1 transition from 'locked'
242 * into 'unlocked' state:
6053ee3b 243 */
0d66bf6d
PZ
244#ifndef CONFIG_DEBUG_MUTEXES
245 /*
246 * When debugging is enabled we must not clear the owner before time,
247 * the slow path will always be taken, and that clears the owner field
248 * after verifying that it was indeed current.
249 */
250 mutex_clear_owner(lock);
251#endif
6053ee3b
IM
252 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
253}
254
255EXPORT_SYMBOL(mutex_unlock);
256
040a0a37
ML
257/**
258 * ww_mutex_unlock - release the w/w mutex
259 * @lock: the mutex to be released
260 *
261 * Unlock a mutex that has been locked by this task previously with any of the
262 * ww_mutex_lock* functions (with or without an acquire context). It is
263 * forbidden to release the locks after releasing the acquire context.
264 *
265 * This function must not be used in interrupt context. Unlocking
266 * of a unlocked mutex is not allowed.
267 */
268void __sched ww_mutex_unlock(struct ww_mutex *lock)
269{
270 /*
271 * The unlocking fastpath is the 0->1 transition from 'locked'
272 * into 'unlocked' state:
273 */
274 if (lock->ctx) {
275#ifdef CONFIG_DEBUG_MUTEXES
276 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
277#endif
278 if (lock->ctx->acquired > 0)
279 lock->ctx->acquired--;
280 lock->ctx = NULL;
281 }
282
283#ifndef CONFIG_DEBUG_MUTEXES
284 /*
285 * When debugging is enabled we must not clear the owner before time,
286 * the slow path will always be taken, and that clears the owner field
287 * after verifying that it was indeed current.
288 */
289 mutex_clear_owner(&lock->base);
290#endif
291 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
292}
293EXPORT_SYMBOL(ww_mutex_unlock);
294
295static inline int __sched
296__mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
297{
298 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
299 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
300
301 if (!hold_ctx)
302 return 0;
303
304 if (unlikely(ctx == hold_ctx))
305 return -EALREADY;
306
307 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
308 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
309#ifdef CONFIG_DEBUG_MUTEXES
310 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
311 ctx->contending_lock = ww;
312#endif
313 return -EDEADLK;
314 }
315
316 return 0;
317}
318
319static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
320 struct ww_acquire_ctx *ww_ctx)
321{
322#ifdef CONFIG_DEBUG_MUTEXES
323 /*
324 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
325 * but released with a normal mutex_unlock in this call.
326 *
327 * This should never happen, always use ww_mutex_unlock.
328 */
329 DEBUG_LOCKS_WARN_ON(ww->ctx);
330
331 /*
332 * Not quite done after calling ww_acquire_done() ?
333 */
334 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
335
336 if (ww_ctx->contending_lock) {
337 /*
338 * After -EDEADLK you tried to
339 * acquire a different ww_mutex? Bad!
340 */
341 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
342
343 /*
344 * You called ww_mutex_lock after receiving -EDEADLK,
345 * but 'forgot' to unlock everything else first?
346 */
347 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
348 ww_ctx->contending_lock = NULL;
349 }
350
351 /*
352 * Naughty, using a different class will lead to undefined behavior!
353 */
354 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
355#endif
356 ww_ctx->acquired++;
357}
358
359/*
360 * after acquiring lock with fastpath or when we lost out in contested
361 * slowpath, set ctx and wake up any waiters so they can recheck.
362 *
363 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
364 * as the fastpath and opportunistic spinning are disabled in that case.
365 */
366static __always_inline void
367ww_mutex_set_context_fastpath(struct ww_mutex *lock,
368 struct ww_acquire_ctx *ctx)
369{
370 unsigned long flags;
371 struct mutex_waiter *cur;
372
373 ww_mutex_lock_acquired(lock, ctx);
374
375 lock->ctx = ctx;
376
377 /*
378 * The lock->ctx update should be visible on all cores before
379 * the atomic read is done, otherwise contended waiters might be
380 * missed. The contended waiters will either see ww_ctx == NULL
381 * and keep spinning, or it will acquire wait_lock, add itself
382 * to waiter list and sleep.
383 */
384 smp_mb(); /* ^^^ */
385
386 /*
387 * Check if lock is contended, if not there is nobody to wake up
388 */
389 if (likely(atomic_read(&lock->base.count) == 0))
390 return;
391
392 /*
393 * Uh oh, we raced in fastpath, wake up everyone in this case,
394 * so they can see the new lock->ctx.
395 */
396 spin_lock_mutex(&lock->base.wait_lock, flags);
397 list_for_each_entry(cur, &lock->base.wait_list, list) {
398 debug_mutex_wake_waiter(&lock->base, cur);
399 wake_up_process(cur->task);
400 }
401 spin_unlock_mutex(&lock->base.wait_lock, flags);
402}
403
6053ee3b
IM
404/*
405 * Lock a mutex (possibly interruptible), slowpath:
406 */
040a0a37 407static __always_inline int __sched
e4564f79 408__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37
ML
409 struct lockdep_map *nest_lock, unsigned long ip,
410 struct ww_acquire_ctx *ww_ctx)
6053ee3b
IM
411{
412 struct task_struct *task = current;
413 struct mutex_waiter waiter;
1fb00c6c 414 unsigned long flags;
040a0a37 415 int ret;
6053ee3b 416
41719b03 417 preempt_disable();
e4c70a66 418 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027
FW
419
420#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
421 /*
422 * Optimistic spinning.
423 *
424 * We try to spin for acquisition when we find that there are no
425 * pending waiters and the lock owner is currently running on a
426 * (different) CPU.
427 *
428 * The rationale is that if the lock owner is running, it is likely to
429 * release the lock soon.
430 *
431 * Since this needs the lock owner, and this mutex implementation
432 * doesn't track the owner atomically in the lock field, we need to
433 * track it non-atomically.
434 *
435 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
436 * to serialize everything.
2bd2c92c
WL
437 *
438 * The mutex spinners are queued up using MCS lock so that only one
439 * spinner can compete for the mutex. However, if mutex spinning isn't
440 * going to happen, there is no point in going through the lock/unlock
441 * overhead.
0d66bf6d 442 */
2bd2c92c
WL
443 if (!mutex_can_spin_on_owner(lock))
444 goto slowpath;
0d66bf6d
PZ
445
446 for (;;) {
c6eb3dda 447 struct task_struct *owner;
2bd2c92c 448 struct mspin_node node;
0d66bf6d 449
040a0a37
ML
450 if (!__builtin_constant_p(ww_ctx == NULL) && ww_ctx->acquired > 0) {
451 struct ww_mutex *ww;
452
453 ww = container_of(lock, struct ww_mutex, base);
454 /*
455 * If ww->ctx is set the contents are undefined, only
456 * by acquiring wait_lock there is a guarantee that
457 * they are not invalid when reading.
458 *
459 * As such, when deadlock detection needs to be
460 * performed the optimistic spinning cannot be done.
461 */
462 if (ACCESS_ONCE(ww->ctx))
463 break;
464 }
465
0d66bf6d
PZ
466 /*
467 * If there's an owner, wait for it to either
468 * release the lock or go to sleep.
469 */
2bd2c92c 470 mspin_lock(MLOCK(lock), &node);
0d66bf6d 471 owner = ACCESS_ONCE(lock->owner);
2bd2c92c
WL
472 if (owner && !mutex_spin_on_owner(lock, owner)) {
473 mspin_unlock(MLOCK(lock), &node);
0d66bf6d 474 break;
2bd2c92c 475 }
0d66bf6d 476
0dc8c730
WL
477 if ((atomic_read(&lock->count) == 1) &&
478 (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
ac6e60ee 479 lock_acquired(&lock->dep_map, ip);
040a0a37
ML
480 if (!__builtin_constant_p(ww_ctx == NULL)) {
481 struct ww_mutex *ww;
482 ww = container_of(lock, struct ww_mutex, base);
483
484 ww_mutex_set_context_fastpath(ww, ww_ctx);
485 }
486
ac6e60ee 487 mutex_set_owner(lock);
2bd2c92c 488 mspin_unlock(MLOCK(lock), &node);
ac6e60ee
CM
489 preempt_enable();
490 return 0;
491 }
2bd2c92c 492 mspin_unlock(MLOCK(lock), &node);
ac6e60ee 493
0d66bf6d
PZ
494 /*
495 * When there's no owner, we might have preempted between the
496 * owner acquiring the lock and setting the owner field. If
497 * we're an RT task that will live-lock because we won't let
498 * the owner complete.
499 */
500 if (!owner && (need_resched() || rt_task(task)))
501 break;
502
0d66bf6d
PZ
503 /*
504 * The cpu_relax() call is a compiler barrier which forces
505 * everything in this loop to be re-loaded. We don't need
506 * memory barriers as we'll eventually observe the right
507 * values at the cost of a few extra spins.
508 */
335d7afb 509 arch_mutex_cpu_relax();
0d66bf6d 510 }
2bd2c92c 511slowpath:
0d66bf6d 512#endif
1fb00c6c 513 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 514
9a11b49a 515 debug_mutex_lock_common(lock, &waiter);
c9f4f06d 516 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
6053ee3b
IM
517
518 /* add waiting tasks to the end of the waitqueue (FIFO): */
519 list_add_tail(&waiter.list, &lock->wait_list);
520 waiter.task = task;
521
0dc8c730 522 if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, -1) == 1))
4fe87745
PZ
523 goto done;
524
e4564f79 525 lock_contended(&lock->dep_map, ip);
4fe87745 526
6053ee3b
IM
527 for (;;) {
528 /*
529 * Lets try to take the lock again - this is needed even if
530 * we get here for the first time (shortly after failing to
531 * acquire the lock), to make sure that we get a wakeup once
532 * it's unlocked. Later on, if we sleep, this is the
533 * operation that gives us the lock. We xchg it to -1, so
534 * that when we release the lock, we properly wake up the
535 * other waiters:
536 */
0dc8c730
WL
537 if (MUTEX_SHOW_NO_WAITER(lock) &&
538 (atomic_xchg(&lock->count, -1) == 1))
6053ee3b
IM
539 break;
540
541 /*
542 * got a signal? (This code gets eliminated in the
543 * TASK_UNINTERRUPTIBLE case.)
544 */
6ad36762 545 if (unlikely(signal_pending_state(state, task))) {
040a0a37
ML
546 ret = -EINTR;
547 goto err;
548 }
6053ee3b 549
040a0a37
ML
550 if (!__builtin_constant_p(ww_ctx == NULL) && ww_ctx->acquired > 0) {
551 ret = __mutex_lock_check_stamp(lock, ww_ctx);
552 if (ret)
553 goto err;
6053ee3b 554 }
040a0a37 555
6053ee3b
IM
556 __set_task_state(task, state);
557
25985edc 558 /* didn't get the lock, go to sleep: */
1fb00c6c 559 spin_unlock_mutex(&lock->wait_lock, flags);
bd2f5536 560 schedule_preempt_disabled();
1fb00c6c 561 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
562 }
563
4fe87745 564done:
c7e78cff 565 lock_acquired(&lock->dep_map, ip);
6053ee3b 566 /* got the lock - rejoice! */
0d66bf6d
PZ
567 mutex_remove_waiter(lock, &waiter, current_thread_info());
568 mutex_set_owner(lock);
6053ee3b 569
040a0a37
ML
570 if (!__builtin_constant_p(ww_ctx == NULL)) {
571 struct ww_mutex *ww = container_of(lock,
572 struct ww_mutex,
573 base);
574 struct mutex_waiter *cur;
575
576 /*
577 * This branch gets optimized out for the common case,
578 * and is only important for ww_mutex_lock.
579 */
580
581 ww_mutex_lock_acquired(ww, ww_ctx);
582 ww->ctx = ww_ctx;
583
584 /*
585 * Give any possible sleeping processes the chance to wake up,
586 * so they can recheck if they have to back off.
587 */
588 list_for_each_entry(cur, &lock->wait_list, list) {
589 debug_mutex_wake_waiter(lock, cur);
590 wake_up_process(cur->task);
591 }
592 }
593
6053ee3b
IM
594 /* set it to 0 if there are no waiters left: */
595 if (likely(list_empty(&lock->wait_list)))
596 atomic_set(&lock->count, 0);
597
1fb00c6c 598 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
599
600 debug_mutex_free_waiter(&waiter);
41719b03 601 preempt_enable();
6053ee3b 602
6053ee3b 603 return 0;
040a0a37
ML
604
605err:
606 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
607 spin_unlock_mutex(&lock->wait_lock, flags);
608 debug_mutex_free_waiter(&waiter);
609 mutex_release(&lock->dep_map, 1, ip);
610 preempt_enable();
611 return ret;
6053ee3b
IM
612}
613
ef5d4707
IM
614#ifdef CONFIG_DEBUG_LOCK_ALLOC
615void __sched
616mutex_lock_nested(struct mutex *lock, unsigned int subclass)
617{
618 might_sleep();
040a0a37
ML
619 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
620 subclass, NULL, _RET_IP_, NULL);
ef5d4707
IM
621}
622
623EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 624
e4c70a66
PZ
625void __sched
626_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
627{
628 might_sleep();
040a0a37
ML
629 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
630 0, nest, _RET_IP_, NULL);
e4c70a66
PZ
631}
632
633EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
634
ad776537
LH
635int __sched
636mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
637{
638 might_sleep();
040a0a37
ML
639 return __mutex_lock_common(lock, TASK_KILLABLE,
640 subclass, NULL, _RET_IP_, NULL);
ad776537
LH
641}
642EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
643
d63a5a74
N
644int __sched
645mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
646{
647 might_sleep();
0d66bf6d 648 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
040a0a37 649 subclass, NULL, _RET_IP_, NULL);
d63a5a74
N
650}
651
652EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 653
23010027
DV
654static inline int
655ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
656{
657#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
658 unsigned tmp;
659
660 if (ctx->deadlock_inject_countdown-- == 0) {
661 tmp = ctx->deadlock_inject_interval;
662 if (tmp > UINT_MAX/4)
663 tmp = UINT_MAX;
664 else
665 tmp = tmp*2 + tmp + tmp/2;
666
667 ctx->deadlock_inject_interval = tmp;
668 ctx->deadlock_inject_countdown = tmp;
669 ctx->contending_lock = lock;
670
671 ww_mutex_unlock(lock);
672
673 return -EDEADLK;
674 }
675#endif
676
677 return 0;
678}
040a0a37
ML
679
680int __sched
681__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
682{
23010027
DV
683 int ret;
684
040a0a37 685 might_sleep();
23010027 686 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
040a0a37 687 0, &ctx->dep_map, _RET_IP_, ctx);
23010027
DV
688 if (!ret && ctx->acquired > 0)
689 return ww_mutex_deadlock_injection(lock, ctx);
690
691 return ret;
040a0a37
ML
692}
693EXPORT_SYMBOL_GPL(__ww_mutex_lock);
694
695int __sched
696__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
697{
23010027
DV
698 int ret;
699
040a0a37 700 might_sleep();
23010027
DV
701 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
702 0, &ctx->dep_map, _RET_IP_, ctx);
703
704 if (!ret && ctx->acquired > 0)
705 return ww_mutex_deadlock_injection(lock, ctx);
706
707 return ret;
040a0a37
ML
708}
709EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
710
ef5d4707
IM
711#endif
712
6053ee3b
IM
713/*
714 * Release the lock, slowpath:
715 */
7ad5b3a5 716static inline void
ef5d4707 717__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
6053ee3b 718{
02706647 719 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 720 unsigned long flags;
6053ee3b 721
1fb00c6c 722 spin_lock_mutex(&lock->wait_lock, flags);
ef5d4707 723 mutex_release(&lock->dep_map, nested, _RET_IP_);
9a11b49a 724 debug_mutex_unlock(lock);
6053ee3b
IM
725
726 /*
727 * some architectures leave the lock unlocked in the fastpath failure
728 * case, others need to leave it locked. In the later case we have to
729 * unlock it here
730 */
731 if (__mutex_slowpath_needs_to_unlock())
732 atomic_set(&lock->count, 1);
733
6053ee3b
IM
734 if (!list_empty(&lock->wait_list)) {
735 /* get the first entry from the wait-list: */
736 struct mutex_waiter *waiter =
737 list_entry(lock->wait_list.next,
738 struct mutex_waiter, list);
739
740 debug_mutex_wake_waiter(lock, waiter);
741
742 wake_up_process(waiter->task);
743 }
744
1fb00c6c 745 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
746}
747
9a11b49a
IM
748/*
749 * Release the lock, slowpath:
750 */
7918baa5 751static __used noinline void
9a11b49a
IM
752__mutex_unlock_slowpath(atomic_t *lock_count)
753{
ef5d4707 754 __mutex_unlock_common_slowpath(lock_count, 1);
9a11b49a
IM
755}
756
e4564f79 757#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
758/*
759 * Here come the less common (and hence less performance-critical) APIs:
760 * mutex_lock_interruptible() and mutex_trylock().
761 */
7ad5b3a5 762static noinline int __sched
a41b56ef 763__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 764
7ad5b3a5 765static noinline int __sched
a41b56ef 766__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 767
ef5dc121
RD
768/**
769 * mutex_lock_interruptible - acquire the mutex, interruptible
6053ee3b
IM
770 * @lock: the mutex to be acquired
771 *
772 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
773 * been acquired or sleep until the mutex becomes available. If a
774 * signal arrives while waiting for the lock then this function
775 * returns -EINTR.
776 *
777 * This function is similar to (but not equivalent to) down_interruptible().
778 */
7ad5b3a5 779int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 780{
0d66bf6d
PZ
781 int ret;
782
c544bdb1 783 might_sleep();
a41b56ef
ML
784 ret = __mutex_fastpath_lock_retval(&lock->count);
785 if (likely(!ret)) {
0d66bf6d 786 mutex_set_owner(lock);
a41b56ef
ML
787 return 0;
788 } else
789 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
790}
791
792EXPORT_SYMBOL(mutex_lock_interruptible);
793
7ad5b3a5 794int __sched mutex_lock_killable(struct mutex *lock)
ad776537 795{
0d66bf6d
PZ
796 int ret;
797
ad776537 798 might_sleep();
a41b56ef
ML
799 ret = __mutex_fastpath_lock_retval(&lock->count);
800 if (likely(!ret)) {
0d66bf6d 801 mutex_set_owner(lock);
a41b56ef
ML
802 return 0;
803 } else
804 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
805}
806EXPORT_SYMBOL(mutex_lock_killable);
807
7918baa5 808static __used noinline void __sched
e4564f79
PZ
809__mutex_lock_slowpath(atomic_t *lock_count)
810{
811 struct mutex *lock = container_of(lock_count, struct mutex, count);
812
040a0a37
ML
813 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
814 NULL, _RET_IP_, NULL);
e4564f79
PZ
815}
816
7ad5b3a5 817static noinline int __sched
a41b56ef 818__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 819{
040a0a37
ML
820 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
821 NULL, _RET_IP_, NULL);
ad776537
LH
822}
823
7ad5b3a5 824static noinline int __sched
a41b56ef 825__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 826{
040a0a37
ML
827 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
828 NULL, _RET_IP_, NULL);
829}
830
831static noinline int __sched
832__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
833{
834 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
835 NULL, _RET_IP_, ctx);
6053ee3b 836}
040a0a37
ML
837
838static noinline int __sched
839__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
840 struct ww_acquire_ctx *ctx)
841{
842 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
843 NULL, _RET_IP_, ctx);
844}
845
e4564f79 846#endif
6053ee3b
IM
847
848/*
849 * Spinlock based trylock, we take the spinlock and check whether we
850 * can get the lock:
851 */
852static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
853{
854 struct mutex *lock = container_of(lock_count, struct mutex, count);
1fb00c6c 855 unsigned long flags;
6053ee3b
IM
856 int prev;
857
1fb00c6c 858 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
859
860 prev = atomic_xchg(&lock->count, -1);
ef5d4707 861 if (likely(prev == 1)) {
0d66bf6d 862 mutex_set_owner(lock);
ef5d4707
IM
863 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
864 }
0d66bf6d 865
6053ee3b
IM
866 /* Set it back to 0 if there are no waiters: */
867 if (likely(list_empty(&lock->wait_list)))
868 atomic_set(&lock->count, 0);
869
1fb00c6c 870 spin_unlock_mutex(&lock->wait_lock, flags);
6053ee3b
IM
871
872 return prev == 1;
873}
874
ef5dc121
RD
875/**
876 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
877 * @lock: the mutex to be acquired
878 *
879 * Try to acquire the mutex atomically. Returns 1 if the mutex
880 * has been acquired successfully, and 0 on contention.
881 *
882 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 883 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
884 * about this when converting semaphore users to mutexes.
885 *
886 * This function must not be used in interrupt context. The
887 * mutex must be released by the same task that acquired it.
888 */
7ad5b3a5 889int __sched mutex_trylock(struct mutex *lock)
6053ee3b 890{
0d66bf6d
PZ
891 int ret;
892
893 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
894 if (ret)
895 mutex_set_owner(lock);
896
897 return ret;
6053ee3b 898}
6053ee3b 899EXPORT_SYMBOL(mutex_trylock);
a511e3f9 900
040a0a37
ML
901#ifndef CONFIG_DEBUG_LOCK_ALLOC
902int __sched
903__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
904{
905 int ret;
906
907 might_sleep();
908
909 ret = __mutex_fastpath_lock_retval(&lock->base.count);
910
911 if (likely(!ret)) {
912 ww_mutex_set_context_fastpath(lock, ctx);
913 mutex_set_owner(&lock->base);
914 } else
915 ret = __ww_mutex_lock_slowpath(lock, ctx);
916 return ret;
917}
918EXPORT_SYMBOL(__ww_mutex_lock);
919
920int __sched
921__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
922{
923 int ret;
924
925 might_sleep();
926
927 ret = __mutex_fastpath_lock_retval(&lock->base.count);
928
929 if (likely(!ret)) {
930 ww_mutex_set_context_fastpath(lock, ctx);
931 mutex_set_owner(&lock->base);
932 } else
933 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
934 return ret;
935}
936EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
937
938#endif
939
a511e3f9
AM
940/**
941 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
942 * @cnt: the atomic which we are to dec
943 * @lock: the mutex to return holding if we dec to 0
944 *
945 * return true and hold lock if we dec to 0, return false otherwise
946 */
947int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
948{
949 /* dec if we can't possibly hit 0 */
950 if (atomic_add_unless(cnt, -1, 1))
951 return 0;
952 /* we might hit 0, so take the lock */
953 mutex_lock(lock);
954 if (!atomic_dec_and_test(cnt)) {
955 /* when we actually did the dec, we didn't hit 0 */
956 mutex_unlock(lock);
957 return 0;
958 }
959 /* we hit 0, and we hold the lock */
960 return 1;
961}
962EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
This page took 0.639979 seconds and 5 git commands to generate.