posix-timers: Use sighand lock instead of tasklist_lock on timer deletion
[deliverable/linux.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
3f0a525e 11#include <trace/events/timer.h>
61337054 12#include <linux/random.h>
a8572160
FW
13#include <linux/tick.h>
14#include <linux/workqueue.h>
1da177e4 15
f06febc9 16/*
f55db609
SG
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
f06febc9 21 */
5ab46b34 22void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 23{
42c4ab41 24 cputime_t cputime = secs_to_cputime(rlim_new);
f06febc9 25
5ab46b34
JS
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
29}
30
a924b04d 31static int check_clock(const clockid_t which_clock)
1da177e4
LT
32{
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
c0deae8c 43 rcu_read_lock();
8dc86af0 44 p = find_task_by_vpid(pid);
bac0abd6 45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
c0deae8c 46 same_thread_group(p, current) : has_group_leader_pid(p))) {
1da177e4
LT
47 error = -EINVAL;
48 }
c0deae8c 49 rcu_read_unlock();
1da177e4
LT
50
51 return error;
52}
53
55ccb616 54static inline unsigned long long
a924b04d 55timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4 56{
55ccb616
FW
57 unsigned long long ret;
58
59 ret = 0; /* high half always zero when .cpu used */
1da177e4 60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
55ccb616 61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4 62 } else {
55ccb616 63 ret = cputime_to_expires(timespec_to_cputime(tp));
1da177e4
LT
64 }
65 return ret;
66}
67
a924b04d 68static void sample_to_timespec(const clockid_t which_clock,
55ccb616 69 unsigned long long expires,
1da177e4
LT
70 struct timespec *tp)
71{
f8bd2258 72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
55ccb616 73 *tp = ns_to_timespec(expires);
f8bd2258 74 else
55ccb616 75 cputime_to_timespec((__force cputime_t)expires, tp);
1da177e4
LT
76}
77
78/*
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
81 */
7a4ed937 82static void bump_cpu_timer(struct k_itimer *timer,
55ccb616 83 unsigned long long now)
1da177e4
LT
84{
85 int i;
55ccb616 86 unsigned long long delta, incr;
1da177e4 87
55ccb616 88 if (timer->it.cpu.incr == 0)
1da177e4
LT
89 return;
90
55ccb616
FW
91 if (now < timer->it.cpu.expires)
92 return;
1da177e4 93
55ccb616
FW
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
1da177e4 96
55ccb616
FW
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
100
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
104
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1 << i;
107 delta -= incr;
1da177e4
LT
108 }
109}
110
555347f6
FW
111/**
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 *
114 * @cputime: The struct to compare.
115 *
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
118 */
119static inline int task_cputime_zero(const struct task_cputime *cputime)
120{
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
124}
125
55ccb616 126static inline unsigned long long prof_ticks(struct task_struct *p)
1da177e4 127{
6fac4829
FW
128 cputime_t utime, stime;
129
130 task_cputime(p, &utime, &stime);
131
55ccb616 132 return cputime_to_expires(utime + stime);
1da177e4 133}
55ccb616 134static inline unsigned long long virt_ticks(struct task_struct *p)
1da177e4 135{
6fac4829
FW
136 cputime_t utime;
137
138 task_cputime(p, &utime, NULL);
139
55ccb616 140 return cputime_to_expires(utime);
1da177e4 141}
1da177e4 142
bc2c8ea4
TG
143static int
144posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
145{
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 /*
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
155 */
156 tp->tv_nsec = 1;
157 }
158 }
159 return error;
160}
161
bc2c8ea4
TG
162static int
163posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
164{
165 /*
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
168 */
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
172 }
173 return error;
174}
175
176
177/*
178 * Sample a per-thread clock for the given task.
179 */
a924b04d 180static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
55ccb616 181 unsigned long long *sample)
1da177e4
LT
182{
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
55ccb616 187 *sample = prof_ticks(p);
1da177e4
LT
188 break;
189 case CPUCLOCK_VIRT:
55ccb616 190 *sample = virt_ticks(p);
1da177e4
LT
191 break;
192 case CPUCLOCK_SCHED:
55ccb616 193 *sample = task_sched_runtime(p);
1da177e4
LT
194 break;
195 }
196 return 0;
197}
198
4da94d49
PZ
199static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200{
64861634 201 if (b->utime > a->utime)
4da94d49
PZ
202 a->utime = b->utime;
203
64861634 204 if (b->stime > a->stime)
4da94d49
PZ
205 a->stime = b->stime;
206
207 if (b->sum_exec_runtime > a->sum_exec_runtime)
208 a->sum_exec_runtime = b->sum_exec_runtime;
209}
210
211void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212{
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
215 unsigned long flags;
216
4da94d49 217 if (!cputimer->running) {
4da94d49
PZ
218 /*
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start
222 * it.
223 */
224 thread_group_cputime(tsk, &sum);
3cfef952 225 raw_spin_lock_irqsave(&cputimer->lock, flags);
bcd5cff7 226 cputimer->running = 1;
4da94d49 227 update_gt_cputime(&cputimer->cputime, &sum);
bcd5cff7 228 } else
3cfef952 229 raw_spin_lock_irqsave(&cputimer->lock, flags);
4da94d49 230 *times = cputimer->cputime;
ee30a7b2 231 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
4da94d49
PZ
232}
233
1da177e4
LT
234/*
235 * Sample a process (thread group) clock for the given group_leader task.
236 * Must be called with tasklist_lock held for reading.
1da177e4 237 */
bb34d92f
FM
238static int cpu_clock_sample_group(const clockid_t which_clock,
239 struct task_struct *p,
55ccb616 240 unsigned long long *sample)
1da177e4 241{
f06febc9
FM
242 struct task_cputime cputime;
243
eccdaeaf 244 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
245 default:
246 return -EINVAL;
247 case CPUCLOCK_PROF:
c5f8d995 248 thread_group_cputime(p, &cputime);
55ccb616 249 *sample = cputime_to_expires(cputime.utime + cputime.stime);
1da177e4
LT
250 break;
251 case CPUCLOCK_VIRT:
c5f8d995 252 thread_group_cputime(p, &cputime);
55ccb616 253 *sample = cputime_to_expires(cputime.utime);
1da177e4
LT
254 break;
255 case CPUCLOCK_SCHED:
d670ec13 256 thread_group_cputime(p, &cputime);
55ccb616 257 *sample = cputime.sum_exec_runtime;
1da177e4
LT
258 break;
259 }
260 return 0;
261}
262
33ab0fec
FW
263static int posix_cpu_clock_get_task(struct task_struct *tsk,
264 const clockid_t which_clock,
265 struct timespec *tp)
266{
267 int err = -EINVAL;
268 unsigned long long rtn;
269
270 if (CPUCLOCK_PERTHREAD(which_clock)) {
271 if (same_thread_group(tsk, current))
272 err = cpu_clock_sample(which_clock, tsk, &rtn);
273 } else {
50875788
FW
274 unsigned long flags;
275 struct sighand_struct *sighand;
33ab0fec 276
50875788
FW
277 /*
278 * while_each_thread() is not yet entirely RCU safe,
279 * keep locking the group while sampling process
280 * clock for now.
281 */
282 sighand = lock_task_sighand(tsk, &flags);
283 if (!sighand)
284 return err;
285
286 if (tsk == current || thread_group_leader(tsk))
33ab0fec
FW
287 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
288
50875788 289 unlock_task_sighand(tsk, &flags);
33ab0fec
FW
290 }
291
292 if (!err)
293 sample_to_timespec(which_clock, rtn, tp);
294
295 return err;
296}
297
1da177e4 298
bc2c8ea4 299static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
300{
301 const pid_t pid = CPUCLOCK_PID(which_clock);
33ab0fec 302 int err = -EINVAL;
1da177e4
LT
303
304 if (pid == 0) {
305 /*
306 * Special case constant value for our own clocks.
307 * We don't have to do any lookup to find ourselves.
308 */
33ab0fec 309 err = posix_cpu_clock_get_task(current, which_clock, tp);
1da177e4
LT
310 } else {
311 /*
312 * Find the given PID, and validate that the caller
313 * should be able to see it.
314 */
315 struct task_struct *p;
1f2ea083 316 rcu_read_lock();
8dc86af0 317 p = find_task_by_vpid(pid);
33ab0fec
FW
318 if (p)
319 err = posix_cpu_clock_get_task(p, which_clock, tp);
1f2ea083 320 rcu_read_unlock();
1da177e4
LT
321 }
322
33ab0fec 323 return err;
1da177e4
LT
324}
325
326
327/*
328 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
329 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
330 * new timer already all-zeros initialized.
1da177e4 331 */
bc2c8ea4 332static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4
LT
333{
334 int ret = 0;
335 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
336 struct task_struct *p;
337
338 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
339 return -EINVAL;
340
341 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 342
c0deae8c 343 rcu_read_lock();
1da177e4
LT
344 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
345 if (pid == 0) {
346 p = current;
347 } else {
8dc86af0 348 p = find_task_by_vpid(pid);
bac0abd6 349 if (p && !same_thread_group(p, current))
1da177e4
LT
350 p = NULL;
351 }
352 } else {
353 if (pid == 0) {
354 p = current->group_leader;
355 } else {
8dc86af0 356 p = find_task_by_vpid(pid);
c0deae8c 357 if (p && !has_group_leader_pid(p))
1da177e4
LT
358 p = NULL;
359 }
360 }
361 new_timer->it.cpu.task = p;
362 if (p) {
363 get_task_struct(p);
364 } else {
365 ret = -EINVAL;
366 }
c0deae8c 367 rcu_read_unlock();
1da177e4
LT
368
369 return ret;
370}
371
372/*
373 * Clean up a CPU-clock timer that is about to be destroyed.
374 * This is called from timer deletion with the timer already locked.
375 * If we return TIMER_RETRY, it's necessary to release the timer's lock
376 * and try again. (This happens when the timer is in the middle of firing.)
377 */
bc2c8ea4 378static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4 379{
108150ea 380 int ret = 0;
3d7a1427
FW
381 unsigned long flags;
382 struct sighand_struct *sighand;
383 struct task_struct *p = timer->it.cpu.task;
1da177e4 384
a3222f88 385 WARN_ON_ONCE(p == NULL);
108150ea 386
3d7a1427
FW
387 /*
388 * Protect against sighand release/switch in exit/exec and process/
389 * thread timer list entry concurrent read/writes.
390 */
391 sighand = lock_task_sighand(p, &flags);
392 if (unlikely(sighand == NULL)) {
a3222f88
FW
393 /*
394 * We raced with the reaping of the task.
395 * The deletion should have cleared us off the list.
396 */
397 BUG_ON(!list_empty(&timer->it.cpu.entry));
398 } else {
a3222f88
FW
399 if (timer->it.cpu.firing)
400 ret = TIMER_RETRY;
401 else
402 list_del(&timer->it.cpu.entry);
3d7a1427
FW
403
404 unlock_task_sighand(p, &flags);
1da177e4 405 }
a3222f88
FW
406
407 if (!ret)
408 put_task_struct(p);
1da177e4 409
108150ea 410 return ret;
1da177e4
LT
411}
412
af82eb3c 413static void cleanup_timers_list(struct list_head *head)
1a7fa510
FW
414{
415 struct cpu_timer_list *timer, *next;
416
a0b2062b 417 list_for_each_entry_safe(timer, next, head, entry)
1a7fa510 418 list_del_init(&timer->entry);
1a7fa510
FW
419}
420
1da177e4
LT
421/*
422 * Clean out CPU timers still ticking when a thread exited. The task
423 * pointer is cleared, and the expiry time is replaced with the residual
424 * time for later timer_gettime calls to return.
425 * This must be called with the siglock held.
426 */
af82eb3c 427static void cleanup_timers(struct list_head *head)
1da177e4 428{
af82eb3c
FW
429 cleanup_timers_list(head);
430 cleanup_timers_list(++head);
431 cleanup_timers_list(++head);
1da177e4
LT
432}
433
434/*
435 * These are both called with the siglock held, when the current thread
436 * is being reaped. When the final (leader) thread in the group is reaped,
437 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
438 */
439void posix_cpu_timers_exit(struct task_struct *tsk)
440{
61337054
NK
441 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
442 sizeof(unsigned long long));
af82eb3c 443 cleanup_timers(tsk->cpu_timers);
1da177e4
LT
444
445}
446void posix_cpu_timers_exit_group(struct task_struct *tsk)
447{
af82eb3c 448 cleanup_timers(tsk->signal->cpu_timers);
1da177e4
LT
449}
450
d1e3b6d1
SG
451static inline int expires_gt(cputime_t expires, cputime_t new_exp)
452{
64861634 453 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
454}
455
1da177e4
LT
456/*
457 * Insert the timer on the appropriate list before any timers that
458 * expire later. This must be called with the tasklist_lock held
c2873937 459 * for reading, interrupts disabled and p->sighand->siglock taken.
1da177e4 460 */
5eb9aa64 461static void arm_timer(struct k_itimer *timer)
1da177e4
LT
462{
463 struct task_struct *p = timer->it.cpu.task;
464 struct list_head *head, *listpos;
5eb9aa64 465 struct task_cputime *cputime_expires;
1da177e4
LT
466 struct cpu_timer_list *const nt = &timer->it.cpu;
467 struct cpu_timer_list *next;
1da177e4 468
5eb9aa64
SG
469 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
470 head = p->cpu_timers;
471 cputime_expires = &p->cputime_expires;
472 } else {
473 head = p->signal->cpu_timers;
474 cputime_expires = &p->signal->cputime_expires;
475 }
1da177e4
LT
476 head += CPUCLOCK_WHICH(timer->it_clock);
477
1da177e4 478 listpos = head;
5eb9aa64 479 list_for_each_entry(next, head, entry) {
55ccb616 480 if (nt->expires < next->expires)
5eb9aa64
SG
481 break;
482 listpos = &next->entry;
1da177e4
LT
483 }
484 list_add(&nt->entry, listpos);
485
486 if (listpos == head) {
55ccb616 487 unsigned long long exp = nt->expires;
5eb9aa64 488
1da177e4 489 /*
5eb9aa64
SG
490 * We are the new earliest-expiring POSIX 1.b timer, hence
491 * need to update expiration cache. Take into account that
492 * for process timers we share expiration cache with itimers
493 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
494 */
495
5eb9aa64
SG
496 switch (CPUCLOCK_WHICH(timer->it_clock)) {
497 case CPUCLOCK_PROF:
55ccb616
FW
498 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
499 cputime_expires->prof_exp = expires_to_cputime(exp);
5eb9aa64
SG
500 break;
501 case CPUCLOCK_VIRT:
55ccb616
FW
502 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
503 cputime_expires->virt_exp = expires_to_cputime(exp);
5eb9aa64
SG
504 break;
505 case CPUCLOCK_SCHED:
506 if (cputime_expires->sched_exp == 0 ||
55ccb616
FW
507 cputime_expires->sched_exp > exp)
508 cputime_expires->sched_exp = exp;
5eb9aa64 509 break;
1da177e4
LT
510 }
511 }
1da177e4
LT
512}
513
514/*
515 * The timer is locked, fire it and arrange for its reload.
516 */
517static void cpu_timer_fire(struct k_itimer *timer)
518{
1f169f84
SG
519 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
520 /*
521 * User don't want any signal.
522 */
55ccb616 523 timer->it.cpu.expires = 0;
1f169f84 524 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
525 /*
526 * This a special case for clock_nanosleep,
527 * not a normal timer from sys_timer_create.
528 */
529 wake_up_process(timer->it_process);
55ccb616
FW
530 timer->it.cpu.expires = 0;
531 } else if (timer->it.cpu.incr == 0) {
1da177e4
LT
532 /*
533 * One-shot timer. Clear it as soon as it's fired.
534 */
535 posix_timer_event(timer, 0);
55ccb616 536 timer->it.cpu.expires = 0;
1da177e4
LT
537 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
538 /*
539 * The signal did not get queued because the signal
540 * was ignored, so we won't get any callback to
541 * reload the timer. But we need to keep it
542 * ticking in case the signal is deliverable next time.
543 */
544 posix_cpu_timer_schedule(timer);
545 }
546}
547
3997ad31
PZ
548/*
549 * Sample a process (thread group) timer for the given group_leader task.
550 * Must be called with tasklist_lock held for reading.
551 */
552static int cpu_timer_sample_group(const clockid_t which_clock,
553 struct task_struct *p,
55ccb616 554 unsigned long long *sample)
3997ad31
PZ
555{
556 struct task_cputime cputime;
557
558 thread_group_cputimer(p, &cputime);
559 switch (CPUCLOCK_WHICH(which_clock)) {
560 default:
561 return -EINVAL;
562 case CPUCLOCK_PROF:
55ccb616 563 *sample = cputime_to_expires(cputime.utime + cputime.stime);
3997ad31
PZ
564 break;
565 case CPUCLOCK_VIRT:
55ccb616 566 *sample = cputime_to_expires(cputime.utime);
3997ad31
PZ
567 break;
568 case CPUCLOCK_SCHED:
55ccb616 569 *sample = cputime.sum_exec_runtime + task_delta_exec(p);
3997ad31
PZ
570 break;
571 }
572 return 0;
573}
574
a8572160
FW
575#ifdef CONFIG_NO_HZ_FULL
576static void nohz_kick_work_fn(struct work_struct *work)
577{
578 tick_nohz_full_kick_all();
579}
580
581static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
582
583/*
584 * We need the IPIs to be sent from sane process context.
585 * The posix cpu timers are always set with irqs disabled.
586 */
587static void posix_cpu_timer_kick_nohz(void)
588{
d4283c65
FW
589 if (context_tracking_is_enabled())
590 schedule_work(&nohz_kick_work);
a8572160 591}
555347f6
FW
592
593bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
594{
595 if (!task_cputime_zero(&tsk->cputime_expires))
6ac29178 596 return false;
555347f6
FW
597
598 if (tsk->signal->cputimer.running)
6ac29178 599 return false;
555347f6 600
6ac29178 601 return true;
555347f6 602}
a8572160
FW
603#else
604static inline void posix_cpu_timer_kick_nohz(void) { }
605#endif
606
1da177e4
LT
607/*
608 * Guts of sys_timer_settime for CPU timers.
609 * This is called with the timer locked and interrupts disabled.
610 * If we return TIMER_RETRY, it's necessary to release the timer's lock
611 * and try again. (This happens when the timer is in the middle of firing.)
612 */
bc2c8ea4
TG
613static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
614 struct itimerspec *new, struct itimerspec *old)
1da177e4
LT
615{
616 struct task_struct *p = timer->it.cpu.task;
55ccb616 617 unsigned long long old_expires, new_expires, old_incr, val;
1da177e4
LT
618 int ret;
619
a3222f88 620 WARN_ON_ONCE(p == NULL);
1da177e4
LT
621
622 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
623
624 read_lock(&tasklist_lock);
625 /*
626 * We need the tasklist_lock to protect against reaping that
d30fda35 627 * clears p->sighand. If p has just been reaped, we can no
1da177e4
LT
628 * longer get any information about it at all.
629 */
d30fda35 630 if (unlikely(p->sighand == NULL)) {
1da177e4 631 read_unlock(&tasklist_lock);
1da177e4
LT
632 return -ESRCH;
633 }
634
635 /*
636 * Disarm any old timer after extracting its expiry time.
637 */
638 BUG_ON(!irqs_disabled());
a69ac4a7
ON
639
640 ret = 0;
ae1a78ee 641 old_incr = timer->it.cpu.incr;
1da177e4
LT
642 spin_lock(&p->sighand->siglock);
643 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
644 if (unlikely(timer->it.cpu.firing)) {
645 timer->it.cpu.firing = -1;
646 ret = TIMER_RETRY;
647 } else
648 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
649
650 /*
651 * We need to sample the current value to convert the new
652 * value from to relative and absolute, and to convert the
653 * old value from absolute to relative. To set a process
654 * timer, we need a sample to balance the thread expiry
655 * times (in arm_timer). With an absolute time, we must
656 * check if it's already passed. In short, we need a sample.
657 */
658 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
659 cpu_clock_sample(timer->it_clock, p, &val);
660 } else {
3997ad31 661 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
662 }
663
664 if (old) {
55ccb616 665 if (old_expires == 0) {
1da177e4
LT
666 old->it_value.tv_sec = 0;
667 old->it_value.tv_nsec = 0;
668 } else {
669 /*
670 * Update the timer in case it has
671 * overrun already. If it has,
672 * we'll report it as having overrun
673 * and with the next reloaded timer
674 * already ticking, though we are
675 * swallowing that pending
676 * notification here to install the
677 * new setting.
678 */
679 bump_cpu_timer(timer, val);
55ccb616
FW
680 if (val < timer->it.cpu.expires) {
681 old_expires = timer->it.cpu.expires - val;
1da177e4
LT
682 sample_to_timespec(timer->it_clock,
683 old_expires,
684 &old->it_value);
685 } else {
686 old->it_value.tv_nsec = 1;
687 old->it_value.tv_sec = 0;
688 }
689 }
690 }
691
a69ac4a7 692 if (unlikely(ret)) {
1da177e4
LT
693 /*
694 * We are colliding with the timer actually firing.
695 * Punt after filling in the timer's old value, and
696 * disable this firing since we are already reporting
697 * it as an overrun (thanks to bump_cpu_timer above).
698 */
c2873937 699 spin_unlock(&p->sighand->siglock);
1da177e4 700 read_unlock(&tasklist_lock);
1da177e4
LT
701 goto out;
702 }
703
55ccb616
FW
704 if (new_expires != 0 && !(flags & TIMER_ABSTIME)) {
705 new_expires += val;
1da177e4
LT
706 }
707
708 /*
709 * Install the new expiry time (or zero).
710 * For a timer with no notification action, we don't actually
711 * arm the timer (we'll just fake it for timer_gettime).
712 */
713 timer->it.cpu.expires = new_expires;
55ccb616 714 if (new_expires != 0 && val < new_expires) {
5eb9aa64 715 arm_timer(timer);
1da177e4
LT
716 }
717
c2873937 718 spin_unlock(&p->sighand->siglock);
1da177e4
LT
719 read_unlock(&tasklist_lock);
720
721 /*
722 * Install the new reload setting, and
723 * set up the signal and overrun bookkeeping.
724 */
725 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
726 &new->it_interval);
727
728 /*
729 * This acts as a modification timestamp for the timer,
730 * so any automatic reload attempt will punt on seeing
731 * that we have reset the timer manually.
732 */
733 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
734 ~REQUEUE_PENDING;
735 timer->it_overrun_last = 0;
736 timer->it_overrun = -1;
737
55ccb616 738 if (new_expires != 0 && !(val < new_expires)) {
1da177e4
LT
739 /*
740 * The designated time already passed, so we notify
741 * immediately, even if the thread never runs to
742 * accumulate more time on this clock.
743 */
744 cpu_timer_fire(timer);
745 }
746
747 ret = 0;
748 out:
749 if (old) {
750 sample_to_timespec(timer->it_clock,
ae1a78ee 751 old_incr, &old->it_interval);
1da177e4 752 }
a8572160
FW
753 if (!ret)
754 posix_cpu_timer_kick_nohz();
1da177e4
LT
755 return ret;
756}
757
bc2c8ea4 758static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
1da177e4 759{
55ccb616 760 unsigned long long now;
1da177e4 761 struct task_struct *p = timer->it.cpu.task;
1da177e4 762
a3222f88
FW
763 WARN_ON_ONCE(p == NULL);
764
1da177e4
LT
765 /*
766 * Easy part: convert the reload time.
767 */
768 sample_to_timespec(timer->it_clock,
769 timer->it.cpu.incr, &itp->it_interval);
770
55ccb616 771 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
1da177e4
LT
772 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
773 return;
774 }
775
1da177e4
LT
776 /*
777 * Sample the clock to take the difference with the expiry time.
778 */
779 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
780 cpu_clock_sample(timer->it_clock, p, &now);
1da177e4
LT
781 } else {
782 read_lock(&tasklist_lock);
d30fda35 783 if (unlikely(p->sighand == NULL)) {
1da177e4
LT
784 /*
785 * The process has been reaped.
786 * We can't even collect a sample any more.
787 * Call the timer disarmed, nothing else to do.
788 */
55ccb616 789 timer->it.cpu.expires = 0;
a3222f88
FW
790 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
791 &itp->it_value);
1da177e4 792 read_unlock(&tasklist_lock);
1da177e4 793 } else {
3997ad31 794 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
795 }
796 read_unlock(&tasklist_lock);
797 }
798
55ccb616 799 if (now < timer->it.cpu.expires) {
1da177e4 800 sample_to_timespec(timer->it_clock,
55ccb616 801 timer->it.cpu.expires - now,
1da177e4
LT
802 &itp->it_value);
803 } else {
804 /*
805 * The timer should have expired already, but the firing
806 * hasn't taken place yet. Say it's just about to expire.
807 */
808 itp->it_value.tv_nsec = 1;
809 itp->it_value.tv_sec = 0;
810 }
811}
812
2473f3e7
FW
813static unsigned long long
814check_timers_list(struct list_head *timers,
815 struct list_head *firing,
816 unsigned long long curr)
817{
818 int maxfire = 20;
819
820 while (!list_empty(timers)) {
821 struct cpu_timer_list *t;
822
823 t = list_first_entry(timers, struct cpu_timer_list, entry);
824
825 if (!--maxfire || curr < t->expires)
826 return t->expires;
827
828 t->firing = 1;
829 list_move_tail(&t->entry, firing);
830 }
831
832 return 0;
833}
834
1da177e4
LT
835/*
836 * Check for any per-thread CPU timers that have fired and move them off
837 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
838 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
839 */
840static void check_thread_timers(struct task_struct *tsk,
841 struct list_head *firing)
842{
843 struct list_head *timers = tsk->cpu_timers;
78f2c7db 844 struct signal_struct *const sig = tsk->signal;
2473f3e7
FW
845 struct task_cputime *tsk_expires = &tsk->cputime_expires;
846 unsigned long long expires;
d4bb5274 847 unsigned long soft;
1da177e4 848
2473f3e7
FW
849 expires = check_timers_list(timers, firing, prof_ticks(tsk));
850 tsk_expires->prof_exp = expires_to_cputime(expires);
1da177e4 851
2473f3e7
FW
852 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
853 tsk_expires->virt_exp = expires_to_cputime(expires);
1da177e4 854
2473f3e7
FW
855 tsk_expires->sched_exp = check_timers_list(++timers, firing,
856 tsk->se.sum_exec_runtime);
78f2c7db
PZ
857
858 /*
859 * Check for the special case thread timers.
860 */
78d7d407 861 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 862 if (soft != RLIM_INFINITY) {
78d7d407
JS
863 unsigned long hard =
864 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 865
5a52dd50
PZ
866 if (hard != RLIM_INFINITY &&
867 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
868 /*
869 * At the hard limit, we just die.
870 * No need to calculate anything else now.
871 */
872 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
873 return;
874 }
d4bb5274 875 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
876 /*
877 * At the soft limit, send a SIGXCPU every second.
878 */
d4bb5274
JS
879 if (soft < hard) {
880 soft += USEC_PER_SEC;
881 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 882 }
81d50bb2
HS
883 printk(KERN_INFO
884 "RT Watchdog Timeout: %s[%d]\n",
885 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
886 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
887 }
888 }
1da177e4
LT
889}
890
15365c10 891static void stop_process_timers(struct signal_struct *sig)
3fccfd67 892{
15365c10 893 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67
PZ
894 unsigned long flags;
895
ee30a7b2 896 raw_spin_lock_irqsave(&cputimer->lock, flags);
3fccfd67 897 cputimer->running = 0;
ee30a7b2 898 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
3fccfd67
PZ
899}
900
8356b5f9
SG
901static u32 onecputick;
902
42c4ab41 903static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
55ccb616
FW
904 unsigned long long *expires,
905 unsigned long long cur_time, int signo)
42c4ab41 906{
64861634 907 if (!it->expires)
42c4ab41
SG
908 return;
909
64861634
MS
910 if (cur_time >= it->expires) {
911 if (it->incr) {
912 it->expires += it->incr;
8356b5f9
SG
913 it->error += it->incr_error;
914 if (it->error >= onecputick) {
64861634 915 it->expires -= cputime_one_jiffy;
8356b5f9
SG
916 it->error -= onecputick;
917 }
3f0a525e 918 } else {
64861634 919 it->expires = 0;
3f0a525e 920 }
42c4ab41 921
3f0a525e
XG
922 trace_itimer_expire(signo == SIGPROF ?
923 ITIMER_PROF : ITIMER_VIRTUAL,
924 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
925 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
926 }
927
64861634 928 if (it->expires && (!*expires || it->expires < *expires)) {
42c4ab41
SG
929 *expires = it->expires;
930 }
931}
932
1da177e4
LT
933/*
934 * Check for any per-thread CPU timers that have fired and move them
935 * off the tsk->*_timers list onto the firing list. Per-thread timers
936 * have already been taken off.
937 */
938static void check_process_timers(struct task_struct *tsk,
939 struct list_head *firing)
940{
941 struct signal_struct *const sig = tsk->signal;
55ccb616 942 unsigned long long utime, ptime, virt_expires, prof_expires;
41b86e9c 943 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 944 struct list_head *timers = sig->cpu_timers;
f06febc9 945 struct task_cputime cputime;
d4bb5274 946 unsigned long soft;
1da177e4 947
1da177e4
LT
948 /*
949 * Collect the current process totals.
950 */
4cd4c1b4 951 thread_group_cputimer(tsk, &cputime);
55ccb616
FW
952 utime = cputime_to_expires(cputime.utime);
953 ptime = utime + cputime_to_expires(cputime.stime);
f06febc9 954 sum_sched_runtime = cputime.sum_exec_runtime;
1da177e4 955
2473f3e7
FW
956 prof_expires = check_timers_list(timers, firing, ptime);
957 virt_expires = check_timers_list(++timers, firing, utime);
958 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
1da177e4
LT
959
960 /*
961 * Check for the special case process timers.
962 */
42c4ab41
SG
963 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
964 SIGPROF);
965 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
966 SIGVTALRM);
78d7d407 967 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 968 if (soft != RLIM_INFINITY) {
1da177e4 969 unsigned long psecs = cputime_to_secs(ptime);
78d7d407
JS
970 unsigned long hard =
971 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1da177e4 972 cputime_t x;
d4bb5274 973 if (psecs >= hard) {
1da177e4
LT
974 /*
975 * At the hard limit, we just die.
976 * No need to calculate anything else now.
977 */
978 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
979 return;
980 }
d4bb5274 981 if (psecs >= soft) {
1da177e4
LT
982 /*
983 * At the soft limit, send a SIGXCPU every second.
984 */
985 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
986 if (soft < hard) {
987 soft++;
988 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
989 }
990 }
d4bb5274 991 x = secs_to_cputime(soft);
64861634 992 if (!prof_expires || x < prof_expires) {
1da177e4
LT
993 prof_expires = x;
994 }
995 }
996
55ccb616
FW
997 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
998 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
29f87b79
SG
999 sig->cputime_expires.sched_exp = sched_expires;
1000 if (task_cputime_zero(&sig->cputime_expires))
1001 stop_process_timers(sig);
1da177e4
LT
1002}
1003
1004/*
1005 * This is called from the signal code (via do_schedule_next_timer)
1006 * when the last timer signal was delivered and we have to reload the timer.
1007 */
1008void posix_cpu_timer_schedule(struct k_itimer *timer)
1009{
1010 struct task_struct *p = timer->it.cpu.task;
55ccb616 1011 unsigned long long now;
1da177e4 1012
a3222f88 1013 WARN_ON_ONCE(p == NULL);
1da177e4
LT
1014
1015 /*
1016 * Fetch the current sample and update the timer's expiry time.
1017 */
1018 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1019 cpu_clock_sample(timer->it_clock, p, &now);
1020 bump_cpu_timer(timer, now);
724a3713 1021 if (unlikely(p->exit_state))
708f430d 1022 goto out;
724a3713 1023
1da177e4 1024 read_lock(&tasklist_lock); /* arm_timer needs it. */
c2873937 1025 spin_lock(&p->sighand->siglock);
1da177e4
LT
1026 } else {
1027 read_lock(&tasklist_lock);
d30fda35 1028 if (unlikely(p->sighand == NULL)) {
1da177e4
LT
1029 /*
1030 * The process has been reaped.
1031 * We can't even collect a sample any more.
1032 */
55ccb616 1033 timer->it.cpu.expires = 0;
c925077c
FW
1034 read_unlock(&tasklist_lock);
1035 goto out;
1da177e4 1036 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
c925077c 1037 read_unlock(&tasklist_lock);
d430b917 1038 /* Optimizations: if the process is dying, no need to rearm */
c925077c 1039 goto out;
1da177e4 1040 }
c2873937 1041 spin_lock(&p->sighand->siglock);
3997ad31 1042 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
1043 bump_cpu_timer(timer, now);
1044 /* Leave the tasklist_lock locked for the call below. */
1045 }
1046
1047 /*
1048 * Now re-arm for the new expiry time.
1049 */
c2873937 1050 BUG_ON(!irqs_disabled());
5eb9aa64 1051 arm_timer(timer);
c2873937 1052 spin_unlock(&p->sighand->siglock);
1da177e4 1053 read_unlock(&tasklist_lock);
708f430d 1054
c925077c
FW
1055 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1056 posix_cpu_timer_kick_nohz();
1057
708f430d
RM
1058out:
1059 timer->it_overrun_last = timer->it_overrun;
1060 timer->it_overrun = -1;
1061 ++timer->it_requeue_pending;
1da177e4
LT
1062}
1063
f06febc9
FM
1064/**
1065 * task_cputime_expired - Compare two task_cputime entities.
1066 *
1067 * @sample: The task_cputime structure to be checked for expiration.
1068 * @expires: Expiration times, against which @sample will be checked.
1069 *
1070 * Checks @sample against @expires to see if any field of @sample has expired.
1071 * Returns true if any field of the former is greater than the corresponding
1072 * field of the latter if the latter field is set. Otherwise returns false.
1073 */
1074static inline int task_cputime_expired(const struct task_cputime *sample,
1075 const struct task_cputime *expires)
1076{
64861634 1077 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1078 return 1;
64861634 1079 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1080 return 1;
1081 if (expires->sum_exec_runtime != 0 &&
1082 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1083 return 1;
1084 return 0;
1085}
1086
1087/**
1088 * fastpath_timer_check - POSIX CPU timers fast path.
1089 *
1090 * @tsk: The task (thread) being checked.
f06febc9 1091 *
bb34d92f
FM
1092 * Check the task and thread group timers. If both are zero (there are no
1093 * timers set) return false. Otherwise snapshot the task and thread group
1094 * timers and compare them with the corresponding expiration times. Return
1095 * true if a timer has expired, else return false.
f06febc9 1096 */
bb34d92f 1097static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1098{
ad133ba3 1099 struct signal_struct *sig;
6fac4829
FW
1100 cputime_t utime, stime;
1101
1102 task_cputime(tsk, &utime, &stime);
bb34d92f 1103
bb34d92f
FM
1104 if (!task_cputime_zero(&tsk->cputime_expires)) {
1105 struct task_cputime task_sample = {
6fac4829
FW
1106 .utime = utime,
1107 .stime = stime,
bb34d92f
FM
1108 .sum_exec_runtime = tsk->se.sum_exec_runtime
1109 };
1110
1111 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1112 return 1;
1113 }
ad133ba3
ON
1114
1115 sig = tsk->signal;
29f87b79 1116 if (sig->cputimer.running) {
bb34d92f
FM
1117 struct task_cputime group_sample;
1118
ee30a7b2 1119 raw_spin_lock(&sig->cputimer.lock);
8d1f431c 1120 group_sample = sig->cputimer.cputime;
ee30a7b2 1121 raw_spin_unlock(&sig->cputimer.lock);
8d1f431c 1122
bb34d92f
FM
1123 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1124 return 1;
1125 }
37bebc70 1126
f55db609 1127 return 0;
f06febc9
FM
1128}
1129
1da177e4
LT
1130/*
1131 * This is called from the timer interrupt handler. The irq handler has
1132 * already updated our counts. We need to check if any timers fire now.
1133 * Interrupts are disabled.
1134 */
1135void run_posix_cpu_timers(struct task_struct *tsk)
1136{
1137 LIST_HEAD(firing);
1138 struct k_itimer *timer, *next;
0bdd2ed4 1139 unsigned long flags;
1da177e4
LT
1140
1141 BUG_ON(!irqs_disabled());
1142
1da177e4 1143 /*
f06febc9 1144 * The fast path checks that there are no expired thread or thread
bb34d92f 1145 * group timers. If that's so, just return.
1da177e4 1146 */
bb34d92f 1147 if (!fastpath_timer_check(tsk))
f06febc9 1148 return;
5ce73a4a 1149
0bdd2ed4
ON
1150 if (!lock_task_sighand(tsk, &flags))
1151 return;
bb34d92f
FM
1152 /*
1153 * Here we take off tsk->signal->cpu_timers[N] and
1154 * tsk->cpu_timers[N] all the timers that are firing, and
1155 * put them on the firing list.
1156 */
1157 check_thread_timers(tsk, &firing);
29f87b79
SG
1158 /*
1159 * If there are any active process wide timers (POSIX 1.b, itimers,
1160 * RLIMIT_CPU) cputimer must be running.
1161 */
1162 if (tsk->signal->cputimer.running)
1163 check_process_timers(tsk, &firing);
1da177e4 1164
bb34d92f
FM
1165 /*
1166 * We must release these locks before taking any timer's lock.
1167 * There is a potential race with timer deletion here, as the
1168 * siglock now protects our private firing list. We have set
1169 * the firing flag in each timer, so that a deletion attempt
1170 * that gets the timer lock before we do will give it up and
1171 * spin until we've taken care of that timer below.
1172 */
0bdd2ed4 1173 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1174
1175 /*
1176 * Now that all the timers on our list have the firing flag,
25985edc 1177 * no one will touch their list entries but us. We'll take
1da177e4
LT
1178 * each timer's lock before clearing its firing flag, so no
1179 * timer call will interfere.
1180 */
1181 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1182 int cpu_firing;
1183
1da177e4
LT
1184 spin_lock(&timer->it_lock);
1185 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1186 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1187 timer->it.cpu.firing = 0;
1188 /*
1189 * The firing flag is -1 if we collided with a reset
1190 * of the timer, which already reported this
1191 * almost-firing as an overrun. So don't generate an event.
1192 */
6e85c5ba 1193 if (likely(cpu_firing >= 0))
1da177e4 1194 cpu_timer_fire(timer);
1da177e4
LT
1195 spin_unlock(&timer->it_lock);
1196 }
1197}
1198
1199/*
f55db609 1200 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1201 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1202 */
1203void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1204 cputime_t *newval, cputime_t *oldval)
1205{
55ccb616 1206 unsigned long long now;
1da177e4
LT
1207
1208 BUG_ON(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1209 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1210
1211 if (oldval) {
f55db609
SG
1212 /*
1213 * We are setting itimer. The *oldval is absolute and we update
1214 * it to be relative, *newval argument is relative and we update
1215 * it to be absolute.
1216 */
64861634 1217 if (*oldval) {
55ccb616 1218 if (*oldval <= now) {
1da177e4 1219 /* Just about to fire. */
a42548a1 1220 *oldval = cputime_one_jiffy;
1da177e4 1221 } else {
55ccb616 1222 *oldval -= now;
1da177e4
LT
1223 }
1224 }
1225
64861634 1226 if (!*newval)
a8572160 1227 goto out;
55ccb616 1228 *newval += now;
1da177e4
LT
1229 }
1230
1231 /*
f55db609
SG
1232 * Update expiration cache if we are the earliest timer, or eventually
1233 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1234 */
f55db609
SG
1235 switch (clock_idx) {
1236 case CPUCLOCK_PROF:
1237 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
f06febc9 1238 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1239 break;
1240 case CPUCLOCK_VIRT:
1241 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
f06febc9 1242 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1243 break;
1da177e4 1244 }
a8572160
FW
1245out:
1246 posix_cpu_timer_kick_nohz();
1da177e4
LT
1247}
1248
e4b76555
TA
1249static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1250 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1251{
1da177e4
LT
1252 struct k_itimer timer;
1253 int error;
1254
1da177e4
LT
1255 /*
1256 * Set up a temporary timer and then wait for it to go off.
1257 */
1258 memset(&timer, 0, sizeof timer);
1259 spin_lock_init(&timer.it_lock);
1260 timer.it_clock = which_clock;
1261 timer.it_overrun = -1;
1262 error = posix_cpu_timer_create(&timer);
1263 timer.it_process = current;
1264 if (!error) {
1da177e4 1265 static struct itimerspec zero_it;
e4b76555
TA
1266
1267 memset(it, 0, sizeof *it);
1268 it->it_value = *rqtp;
1da177e4
LT
1269
1270 spin_lock_irq(&timer.it_lock);
e4b76555 1271 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1272 if (error) {
1273 spin_unlock_irq(&timer.it_lock);
1274 return error;
1275 }
1276
1277 while (!signal_pending(current)) {
55ccb616 1278 if (timer.it.cpu.expires == 0) {
1da177e4 1279 /*
e6c42c29
SG
1280 * Our timer fired and was reset, below
1281 * deletion can not fail.
1da177e4 1282 */
e6c42c29 1283 posix_cpu_timer_del(&timer);
1da177e4
LT
1284 spin_unlock_irq(&timer.it_lock);
1285 return 0;
1286 }
1287
1288 /*
1289 * Block until cpu_timer_fire (or a signal) wakes us.
1290 */
1291 __set_current_state(TASK_INTERRUPTIBLE);
1292 spin_unlock_irq(&timer.it_lock);
1293 schedule();
1294 spin_lock_irq(&timer.it_lock);
1295 }
1296
1297 /*
1298 * We were interrupted by a signal.
1299 */
1300 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e6c42c29
SG
1301 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1302 if (!error) {
1303 /*
1304 * Timer is now unarmed, deletion can not fail.
1305 */
1306 posix_cpu_timer_del(&timer);
1307 }
1da177e4
LT
1308 spin_unlock_irq(&timer.it_lock);
1309
e6c42c29
SG
1310 while (error == TIMER_RETRY) {
1311 /*
1312 * We need to handle case when timer was or is in the
1313 * middle of firing. In other cases we already freed
1314 * resources.
1315 */
1316 spin_lock_irq(&timer.it_lock);
1317 error = posix_cpu_timer_del(&timer);
1318 spin_unlock_irq(&timer.it_lock);
1319 }
1320
e4b76555 1321 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1322 /*
1323 * It actually did fire already.
1324 */
1325 return 0;
1326 }
1327
e4b76555
TA
1328 error = -ERESTART_RESTARTBLOCK;
1329 }
1330
1331 return error;
1332}
1333
bc2c8ea4
TG
1334static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1335
1336static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1337 struct timespec *rqtp, struct timespec __user *rmtp)
e4b76555
TA
1338{
1339 struct restart_block *restart_block =
3751f9f2 1340 &current_thread_info()->restart_block;
e4b76555
TA
1341 struct itimerspec it;
1342 int error;
1343
1344 /*
1345 * Diagnose required errors first.
1346 */
1347 if (CPUCLOCK_PERTHREAD(which_clock) &&
1348 (CPUCLOCK_PID(which_clock) == 0 ||
1349 CPUCLOCK_PID(which_clock) == current->pid))
1350 return -EINVAL;
1351
1352 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1353
1354 if (error == -ERESTART_RESTARTBLOCK) {
1355
3751f9f2 1356 if (flags & TIMER_ABSTIME)
e4b76555 1357 return -ERESTARTNOHAND;
1da177e4 1358 /*
3751f9f2
TG
1359 * Report back to the user the time still remaining.
1360 */
1361 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1362 return -EFAULT;
1363
1711ef38 1364 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1365 restart_block->nanosleep.clockid = which_clock;
3751f9f2
TG
1366 restart_block->nanosleep.rmtp = rmtp;
1367 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1da177e4 1368 }
1da177e4
LT
1369 return error;
1370}
1371
bc2c8ea4 1372static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1373{
ab8177bc 1374 clockid_t which_clock = restart_block->nanosleep.clockid;
97735f25 1375 struct timespec t;
e4b76555
TA
1376 struct itimerspec it;
1377 int error;
97735f25 1378
3751f9f2 1379 t = ns_to_timespec(restart_block->nanosleep.expires);
97735f25 1380
e4b76555
TA
1381 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1382
1383 if (error == -ERESTART_RESTARTBLOCK) {
3751f9f2 1384 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
e4b76555 1385 /*
3751f9f2
TG
1386 * Report back to the user the time still remaining.
1387 */
1388 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
e4b76555
TA
1389 return -EFAULT;
1390
3751f9f2 1391 restart_block->nanosleep.expires = timespec_to_ns(&t);
e4b76555
TA
1392 }
1393 return error;
1394
1da177e4
LT
1395}
1396
1da177e4
LT
1397#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1398#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1399
a924b04d
TG
1400static int process_cpu_clock_getres(const clockid_t which_clock,
1401 struct timespec *tp)
1da177e4
LT
1402{
1403 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1404}
a924b04d
TG
1405static int process_cpu_clock_get(const clockid_t which_clock,
1406 struct timespec *tp)
1da177e4
LT
1407{
1408 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1409}
1410static int process_cpu_timer_create(struct k_itimer *timer)
1411{
1412 timer->it_clock = PROCESS_CLOCK;
1413 return posix_cpu_timer_create(timer);
1414}
a924b04d 1415static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1416 struct timespec *rqtp,
1417 struct timespec __user *rmtp)
1da177e4 1418{
97735f25 1419 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1420}
1711ef38
TA
1421static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1422{
1423 return -EINVAL;
1424}
a924b04d
TG
1425static int thread_cpu_clock_getres(const clockid_t which_clock,
1426 struct timespec *tp)
1da177e4
LT
1427{
1428 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1429}
a924b04d
TG
1430static int thread_cpu_clock_get(const clockid_t which_clock,
1431 struct timespec *tp)
1da177e4
LT
1432{
1433 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1434}
1435static int thread_cpu_timer_create(struct k_itimer *timer)
1436{
1437 timer->it_clock = THREAD_CLOCK;
1438 return posix_cpu_timer_create(timer);
1439}
1da177e4 1440
1976945e
TG
1441struct k_clock clock_posix_cpu = {
1442 .clock_getres = posix_cpu_clock_getres,
1443 .clock_set = posix_cpu_clock_set,
1444 .clock_get = posix_cpu_clock_get,
1445 .timer_create = posix_cpu_timer_create,
1446 .nsleep = posix_cpu_nsleep,
1447 .nsleep_restart = posix_cpu_nsleep_restart,
1448 .timer_set = posix_cpu_timer_set,
1449 .timer_del = posix_cpu_timer_del,
1450 .timer_get = posix_cpu_timer_get,
1451};
1452
1da177e4
LT
1453static __init int init_posix_cpu_timers(void)
1454{
1455 struct k_clock process = {
2fd1f040
TG
1456 .clock_getres = process_cpu_clock_getres,
1457 .clock_get = process_cpu_clock_get,
2fd1f040
TG
1458 .timer_create = process_cpu_timer_create,
1459 .nsleep = process_cpu_nsleep,
1460 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1461 };
1462 struct k_clock thread = {
2fd1f040
TG
1463 .clock_getres = thread_cpu_clock_getres,
1464 .clock_get = thread_cpu_clock_get,
2fd1f040 1465 .timer_create = thread_cpu_timer_create,
1da177e4 1466 };
8356b5f9 1467 struct timespec ts;
1da177e4 1468
52708737
TG
1469 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1470 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1da177e4 1471
a42548a1 1472 cputime_to_timespec(cputime_one_jiffy, &ts);
8356b5f9
SG
1473 onecputick = ts.tv_nsec;
1474 WARN_ON(ts.tv_sec != 0);
1475
1da177e4
LT
1476 return 0;
1477}
1478__initcall(init_posix_cpu_timers);
This page took 0.658755 seconds and 5 git commands to generate.