hrtimer: Add tracepoint for hrtimers
[deliverable/linux.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
1da177e4 11
f06febc9
FM
12/*
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
14 */
15void update_rlimit_cpu(unsigned long rlim_new)
16{
42c4ab41
SG
17 cputime_t cputime = secs_to_cputime(rlim_new);
18 struct signal_struct *const sig = current->signal;
f06febc9 19
42c4ab41
SG
20 if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) ||
21 cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) {
f06febc9
FM
22 spin_lock_irq(&current->sighand->siglock);
23 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24 spin_unlock_irq(&current->sighand->siglock);
25 }
26}
27
a924b04d 28static int check_clock(const clockid_t which_clock)
1da177e4
LT
29{
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
33
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
36
37 if (pid == 0)
38 return 0;
39
40 read_lock(&tasklist_lock);
8dc86af0 41 p = find_task_by_vpid(pid);
bac0abd6
PE
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
1da177e4
LT
44 error = -EINVAL;
45 }
46 read_unlock(&tasklist_lock);
47
48 return error;
49}
50
51static inline union cpu_time_count
a924b04d 52timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
53{
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
60 }
61 return ret;
62}
63
a924b04d 64static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
65 union cpu_time_count cpu,
66 struct timespec *tp)
67{
f8bd2258
RZ
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
1da177e4 71 cputime_to_timespec(cpu.cpu, tp);
1da177e4
LT
72}
73
a924b04d 74static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
75 union cpu_time_count now,
76 union cpu_time_count then)
77{
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
82 }
83}
a924b04d 84static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
85 union cpu_time_count *acc,
86 union cpu_time_count val)
87{
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
92 }
93}
a924b04d 94static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
95 union cpu_time_count a,
96 union cpu_time_count b)
97{
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
102 }
103 return a;
104}
105
ac08c264
TG
106/*
107 * Divide and limit the result to res >= 1
108 *
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
111 */
112static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113{
114 cputime_t res = cputime_div(time, div);
115
116 return max_t(cputime_t, res, 1);
117}
118
1da177e4
LT
119/*
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
122 */
7a4ed937 123static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
124 union cpu_time_count now)
125{
126 int i;
127
128 if (timer->it.cpu.incr.sched == 0)
129 return;
130
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
133
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 142 if (delta < incr)
1da177e4
LT
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
147 }
148 } else {
149 cputime_t delta, incr;
150
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
7a4ed937 160 if (cputime_lt(delta, incr))
1da177e4
LT
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
166 }
167 }
168}
169
170static inline cputime_t prof_ticks(struct task_struct *p)
171{
172 return cputime_add(p->utime, p->stime);
173}
174static inline cputime_t virt_ticks(struct task_struct *p)
175{
176 return p->utime;
177}
1da177e4 178
a924b04d 179int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
180{
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 /*
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
190 */
191 tp->tv_nsec = 1;
192 }
193 }
194 return error;
195}
196
a924b04d 197int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
198{
199 /*
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
202 */
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
206 }
207 return error;
208}
209
210
211/*
212 * Sample a per-thread clock for the given task.
213 */
a924b04d 214static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
215 union cpu_time_count *cpu)
216{
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
c5f8d995 227 cpu->sched = task_sched_runtime(p);
1da177e4
LT
228 break;
229 }
230 return 0;
231}
232
4cd4c1b4
PZ
233void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234{
235 struct sighand_struct *sighand;
236 struct signal_struct *sig;
237 struct task_struct *t;
238
239 *times = INIT_CPUTIME;
240
241 rcu_read_lock();
242 sighand = rcu_dereference(tsk->sighand);
243 if (!sighand)
244 goto out;
245
246 sig = tsk->signal;
247
248 t = tsk;
249 do {
250 times->utime = cputime_add(times->utime, t->utime);
251 times->stime = cputime_add(times->stime, t->stime);
252 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254 t = next_thread(t);
255 } while (t != tsk);
256
257 times->utime = cputime_add(times->utime, sig->utime);
258 times->stime = cputime_add(times->stime, sig->stime);
259 times->sum_exec_runtime += sig->sum_sched_runtime;
260out:
261 rcu_read_unlock();
262}
263
4da94d49
PZ
264static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265{
266 if (cputime_gt(b->utime, a->utime))
267 a->utime = b->utime;
268
269 if (cputime_gt(b->stime, a->stime))
270 a->stime = b->stime;
271
272 if (b->sum_exec_runtime > a->sum_exec_runtime)
273 a->sum_exec_runtime = b->sum_exec_runtime;
274}
275
276void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277{
278 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279 struct task_cputime sum;
280 unsigned long flags;
281
282 spin_lock_irqsave(&cputimer->lock, flags);
283 if (!cputimer->running) {
284 cputimer->running = 1;
285 /*
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
289 * it.
290 */
291 thread_group_cputime(tsk, &sum);
292 update_gt_cputime(&cputimer->cputime, &sum);
293 }
294 *times = cputimer->cputime;
295 spin_unlock_irqrestore(&cputimer->lock, flags);
296}
297
1da177e4
LT
298/*
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
1da177e4 301 */
bb34d92f
FM
302static int cpu_clock_sample_group(const clockid_t which_clock,
303 struct task_struct *p,
304 union cpu_time_count *cpu)
1da177e4 305{
f06febc9
FM
306 struct task_cputime cputime;
307
eccdaeaf 308 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
309 default:
310 return -EINVAL;
311 case CPUCLOCK_PROF:
c5f8d995 312 thread_group_cputime(p, &cputime);
f06febc9 313 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
1da177e4
LT
314 break;
315 case CPUCLOCK_VIRT:
c5f8d995 316 thread_group_cputime(p, &cputime);
f06febc9 317 cpu->cpu = cputime.utime;
1da177e4
LT
318 break;
319 case CPUCLOCK_SCHED:
c5f8d995 320 cpu->sched = thread_group_sched_runtime(p);
1da177e4
LT
321 break;
322 }
323 return 0;
324}
325
1da177e4 326
a924b04d 327int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
328{
329 const pid_t pid = CPUCLOCK_PID(which_clock);
330 int error = -EINVAL;
331 union cpu_time_count rtn;
332
333 if (pid == 0) {
334 /*
335 * Special case constant value for our own clocks.
336 * We don't have to do any lookup to find ourselves.
337 */
338 if (CPUCLOCK_PERTHREAD(which_clock)) {
339 /*
340 * Sampling just ourselves we can do with no locking.
341 */
342 error = cpu_clock_sample(which_clock,
343 current, &rtn);
344 } else {
345 read_lock(&tasklist_lock);
346 error = cpu_clock_sample_group(which_clock,
347 current, &rtn);
348 read_unlock(&tasklist_lock);
349 }
350 } else {
351 /*
352 * Find the given PID, and validate that the caller
353 * should be able to see it.
354 */
355 struct task_struct *p;
1f2ea083 356 rcu_read_lock();
8dc86af0 357 p = find_task_by_vpid(pid);
1da177e4
LT
358 if (p) {
359 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 360 if (same_thread_group(p, current)) {
1da177e4
LT
361 error = cpu_clock_sample(which_clock,
362 p, &rtn);
363 }
1f2ea083
PM
364 } else {
365 read_lock(&tasklist_lock);
bac0abd6 366 if (thread_group_leader(p) && p->signal) {
1f2ea083
PM
367 error =
368 cpu_clock_sample_group(which_clock,
369 p, &rtn);
370 }
371 read_unlock(&tasklist_lock);
1da177e4
LT
372 }
373 }
1f2ea083 374 rcu_read_unlock();
1da177e4
LT
375 }
376
377 if (error)
378 return error;
379 sample_to_timespec(which_clock, rtn, tp);
380 return 0;
381}
382
383
384/*
385 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
386 * This is called from sys_timer_create with the new timer already locked.
387 */
388int posix_cpu_timer_create(struct k_itimer *new_timer)
389{
390 int ret = 0;
391 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
392 struct task_struct *p;
393
394 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
395 return -EINVAL;
396
397 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
398 new_timer->it.cpu.incr.sched = 0;
399 new_timer->it.cpu.expires.sched = 0;
400
401 read_lock(&tasklist_lock);
402 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
403 if (pid == 0) {
404 p = current;
405 } else {
8dc86af0 406 p = find_task_by_vpid(pid);
bac0abd6 407 if (p && !same_thread_group(p, current))
1da177e4
LT
408 p = NULL;
409 }
410 } else {
411 if (pid == 0) {
412 p = current->group_leader;
413 } else {
8dc86af0 414 p = find_task_by_vpid(pid);
bac0abd6 415 if (p && !thread_group_leader(p))
1da177e4
LT
416 p = NULL;
417 }
418 }
419 new_timer->it.cpu.task = p;
420 if (p) {
421 get_task_struct(p);
422 } else {
423 ret = -EINVAL;
424 }
425 read_unlock(&tasklist_lock);
426
427 return ret;
428}
429
430/*
431 * Clean up a CPU-clock timer that is about to be destroyed.
432 * This is called from timer deletion with the timer already locked.
433 * If we return TIMER_RETRY, it's necessary to release the timer's lock
434 * and try again. (This happens when the timer is in the middle of firing.)
435 */
436int posix_cpu_timer_del(struct k_itimer *timer)
437{
438 struct task_struct *p = timer->it.cpu.task;
108150ea 439 int ret = 0;
1da177e4 440
108150ea 441 if (likely(p != NULL)) {
9465bee8
LT
442 read_lock(&tasklist_lock);
443 if (unlikely(p->signal == NULL)) {
444 /*
445 * We raced with the reaping of the task.
446 * The deletion should have cleared us off the list.
447 */
448 BUG_ON(!list_empty(&timer->it.cpu.entry));
449 } else {
9465bee8 450 spin_lock(&p->sighand->siglock);
108150ea
ON
451 if (timer->it.cpu.firing)
452 ret = TIMER_RETRY;
453 else
454 list_del(&timer->it.cpu.entry);
9465bee8
LT
455 spin_unlock(&p->sighand->siglock);
456 }
457 read_unlock(&tasklist_lock);
108150ea
ON
458
459 if (!ret)
460 put_task_struct(p);
1da177e4 461 }
1da177e4 462
108150ea 463 return ret;
1da177e4
LT
464}
465
466/*
467 * Clean out CPU timers still ticking when a thread exited. The task
468 * pointer is cleared, and the expiry time is replaced with the residual
469 * time for later timer_gettime calls to return.
470 * This must be called with the siglock held.
471 */
472static void cleanup_timers(struct list_head *head,
473 cputime_t utime, cputime_t stime,
41b86e9c 474 unsigned long long sum_exec_runtime)
1da177e4
LT
475{
476 struct cpu_timer_list *timer, *next;
477 cputime_t ptime = cputime_add(utime, stime);
478
479 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
480 list_del_init(&timer->entry);
481 if (cputime_lt(timer->expires.cpu, ptime)) {
482 timer->expires.cpu = cputime_zero;
483 } else {
484 timer->expires.cpu = cputime_sub(timer->expires.cpu,
485 ptime);
486 }
487 }
488
489 ++head;
490 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4
LT
491 list_del_init(&timer->entry);
492 if (cputime_lt(timer->expires.cpu, utime)) {
493 timer->expires.cpu = cputime_zero;
494 } else {
495 timer->expires.cpu = cputime_sub(timer->expires.cpu,
496 utime);
497 }
498 }
499
500 ++head;
501 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 502 list_del_init(&timer->entry);
41b86e9c 503 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
504 timer->expires.sched = 0;
505 } else {
41b86e9c 506 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
507 }
508 }
509}
510
511/*
512 * These are both called with the siglock held, when the current thread
513 * is being reaped. When the final (leader) thread in the group is reaped,
514 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515 */
516void posix_cpu_timers_exit(struct task_struct *tsk)
517{
518 cleanup_timers(tsk->cpu_timers,
41b86e9c 519 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
1da177e4
LT
520
521}
522void posix_cpu_timers_exit_group(struct task_struct *tsk)
523{
17d42c1c 524 struct signal_struct *const sig = tsk->signal;
ca531a0a 525
f06febc9 526 cleanup_timers(tsk->signal->cpu_timers,
17d42c1c
SG
527 cputime_add(tsk->utime, sig->utime),
528 cputime_add(tsk->stime, sig->stime),
529 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
1da177e4
LT
530}
531
532static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
533{
534 /*
535 * That's all for this thread or process.
536 * We leave our residual in expires to be reported.
537 */
538 put_task_struct(timer->it.cpu.task);
539 timer->it.cpu.task = NULL;
540 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
541 timer->it.cpu.expires,
542 now);
543}
544
d1e3b6d1
SG
545static inline int expires_gt(cputime_t expires, cputime_t new_exp)
546{
547 return cputime_eq(expires, cputime_zero) ||
548 cputime_gt(expires, new_exp);
549}
550
551static inline int expires_le(cputime_t expires, cputime_t new_exp)
552{
553 return !cputime_eq(expires, cputime_zero) &&
554 cputime_le(expires, new_exp);
555}
1da177e4
LT
556/*
557 * Insert the timer on the appropriate list before any timers that
558 * expire later. This must be called with the tasklist_lock held
559 * for reading, and interrupts disabled.
560 */
561static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
562{
563 struct task_struct *p = timer->it.cpu.task;
564 struct list_head *head, *listpos;
565 struct cpu_timer_list *const nt = &timer->it.cpu;
566 struct cpu_timer_list *next;
567 unsigned long i;
568
569 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
570 p->cpu_timers : p->signal->cpu_timers);
571 head += CPUCLOCK_WHICH(timer->it_clock);
572
573 BUG_ON(!irqs_disabled());
574 spin_lock(&p->sighand->siglock);
575
576 listpos = head;
577 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
578 list_for_each_entry(next, head, entry) {
70ab81c2 579 if (next->expires.sched > nt->expires.sched)
1da177e4 580 break;
70ab81c2 581 listpos = &next->entry;
1da177e4
LT
582 }
583 } else {
584 list_for_each_entry(next, head, entry) {
70ab81c2 585 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
1da177e4 586 break;
70ab81c2 587 listpos = &next->entry;
1da177e4
LT
588 }
589 }
590 list_add(&nt->entry, listpos);
591
592 if (listpos == head) {
593 /*
594 * We are the new earliest-expiring timer.
595 * If we are a thread timer, there can always
596 * be a process timer telling us to stop earlier.
597 */
598
599 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
d1e3b6d1
SG
600 union cpu_time_count *exp = &nt->expires;
601
1da177e4
LT
602 switch (CPUCLOCK_WHICH(timer->it_clock)) {
603 default:
604 BUG();
605 case CPUCLOCK_PROF:
d1e3b6d1
SG
606 if (expires_gt(p->cputime_expires.prof_exp,
607 exp->cpu))
608 p->cputime_expires.prof_exp = exp->cpu;
1da177e4
LT
609 break;
610 case CPUCLOCK_VIRT:
d1e3b6d1
SG
611 if (expires_gt(p->cputime_expires.virt_exp,
612 exp->cpu))
613 p->cputime_expires.virt_exp = exp->cpu;
1da177e4
LT
614 break;
615 case CPUCLOCK_SCHED:
f06febc9 616 if (p->cputime_expires.sched_exp == 0 ||
d1e3b6d1 617 p->cputime_expires.sched_exp > exp->sched)
f06febc9 618 p->cputime_expires.sched_exp =
d1e3b6d1 619 exp->sched;
1da177e4
LT
620 break;
621 }
622 } else {
42c4ab41
SG
623 struct signal_struct *const sig = p->signal;
624 union cpu_time_count *exp = &timer->it.cpu.expires;
625
1da177e4 626 /*
f06febc9 627 * For a process timer, set the cached expiration time.
1da177e4
LT
628 */
629 switch (CPUCLOCK_WHICH(timer->it_clock)) {
630 default:
631 BUG();
632 case CPUCLOCK_VIRT:
d1e3b6d1 633 if (expires_le(sig->it[CPUCLOCK_VIRT].expires,
42c4ab41 634 exp->cpu))
1da177e4 635 break;
42c4ab41 636 sig->cputime_expires.virt_exp = exp->cpu;
f06febc9 637 break;
1da177e4 638 case CPUCLOCK_PROF:
d1e3b6d1 639 if (expires_le(sig->it[CPUCLOCK_PROF].expires,
42c4ab41 640 exp->cpu))
1da177e4 641 break;
42c4ab41 642 i = sig->rlim[RLIMIT_CPU].rlim_cur;
1da177e4 643 if (i != RLIM_INFINITY &&
42c4ab41 644 i <= cputime_to_secs(exp->cpu))
1da177e4 645 break;
42c4ab41 646 sig->cputime_expires.prof_exp = exp->cpu;
f06febc9 647 break;
1da177e4 648 case CPUCLOCK_SCHED:
42c4ab41 649 sig->cputime_expires.sched_exp = exp->sched;
1da177e4
LT
650 break;
651 }
652 }
653 }
654
655 spin_unlock(&p->sighand->siglock);
656}
657
658/*
659 * The timer is locked, fire it and arrange for its reload.
660 */
661static void cpu_timer_fire(struct k_itimer *timer)
662{
663 if (unlikely(timer->sigq == NULL)) {
664 /*
665 * This a special case for clock_nanosleep,
666 * not a normal timer from sys_timer_create.
667 */
668 wake_up_process(timer->it_process);
669 timer->it.cpu.expires.sched = 0;
670 } else if (timer->it.cpu.incr.sched == 0) {
671 /*
672 * One-shot timer. Clear it as soon as it's fired.
673 */
674 posix_timer_event(timer, 0);
675 timer->it.cpu.expires.sched = 0;
676 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
677 /*
678 * The signal did not get queued because the signal
679 * was ignored, so we won't get any callback to
680 * reload the timer. But we need to keep it
681 * ticking in case the signal is deliverable next time.
682 */
683 posix_cpu_timer_schedule(timer);
684 }
685}
686
3997ad31
PZ
687/*
688 * Sample a process (thread group) timer for the given group_leader task.
689 * Must be called with tasklist_lock held for reading.
690 */
691static int cpu_timer_sample_group(const clockid_t which_clock,
692 struct task_struct *p,
693 union cpu_time_count *cpu)
694{
695 struct task_cputime cputime;
696
697 thread_group_cputimer(p, &cputime);
698 switch (CPUCLOCK_WHICH(which_clock)) {
699 default:
700 return -EINVAL;
701 case CPUCLOCK_PROF:
702 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
703 break;
704 case CPUCLOCK_VIRT:
705 cpu->cpu = cputime.utime;
706 break;
707 case CPUCLOCK_SCHED:
708 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
709 break;
710 }
711 return 0;
712}
713
1da177e4
LT
714/*
715 * Guts of sys_timer_settime for CPU timers.
716 * This is called with the timer locked and interrupts disabled.
717 * If we return TIMER_RETRY, it's necessary to release the timer's lock
718 * and try again. (This happens when the timer is in the middle of firing.)
719 */
720int posix_cpu_timer_set(struct k_itimer *timer, int flags,
721 struct itimerspec *new, struct itimerspec *old)
722{
723 struct task_struct *p = timer->it.cpu.task;
724 union cpu_time_count old_expires, new_expires, val;
725 int ret;
726
727 if (unlikely(p == NULL)) {
728 /*
729 * Timer refers to a dead task's clock.
730 */
731 return -ESRCH;
732 }
733
734 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
735
736 read_lock(&tasklist_lock);
737 /*
738 * We need the tasklist_lock to protect against reaping that
739 * clears p->signal. If p has just been reaped, we can no
740 * longer get any information about it at all.
741 */
742 if (unlikely(p->signal == NULL)) {
743 read_unlock(&tasklist_lock);
744 put_task_struct(p);
745 timer->it.cpu.task = NULL;
746 return -ESRCH;
747 }
748
749 /*
750 * Disarm any old timer after extracting its expiry time.
751 */
752 BUG_ON(!irqs_disabled());
a69ac4a7
ON
753
754 ret = 0;
1da177e4
LT
755 spin_lock(&p->sighand->siglock);
756 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
757 if (unlikely(timer->it.cpu.firing)) {
758 timer->it.cpu.firing = -1;
759 ret = TIMER_RETRY;
760 } else
761 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
762 spin_unlock(&p->sighand->siglock);
763
764 /*
765 * We need to sample the current value to convert the new
766 * value from to relative and absolute, and to convert the
767 * old value from absolute to relative. To set a process
768 * timer, we need a sample to balance the thread expiry
769 * times (in arm_timer). With an absolute time, we must
770 * check if it's already passed. In short, we need a sample.
771 */
772 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
773 cpu_clock_sample(timer->it_clock, p, &val);
774 } else {
3997ad31 775 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
776 }
777
778 if (old) {
779 if (old_expires.sched == 0) {
780 old->it_value.tv_sec = 0;
781 old->it_value.tv_nsec = 0;
782 } else {
783 /*
784 * Update the timer in case it has
785 * overrun already. If it has,
786 * we'll report it as having overrun
787 * and with the next reloaded timer
788 * already ticking, though we are
789 * swallowing that pending
790 * notification here to install the
791 * new setting.
792 */
793 bump_cpu_timer(timer, val);
794 if (cpu_time_before(timer->it_clock, val,
795 timer->it.cpu.expires)) {
796 old_expires = cpu_time_sub(
797 timer->it_clock,
798 timer->it.cpu.expires, val);
799 sample_to_timespec(timer->it_clock,
800 old_expires,
801 &old->it_value);
802 } else {
803 old->it_value.tv_nsec = 1;
804 old->it_value.tv_sec = 0;
805 }
806 }
807 }
808
a69ac4a7 809 if (unlikely(ret)) {
1da177e4
LT
810 /*
811 * We are colliding with the timer actually firing.
812 * Punt after filling in the timer's old value, and
813 * disable this firing since we are already reporting
814 * it as an overrun (thanks to bump_cpu_timer above).
815 */
816 read_unlock(&tasklist_lock);
1da177e4
LT
817 goto out;
818 }
819
820 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
821 cpu_time_add(timer->it_clock, &new_expires, val);
822 }
823
824 /*
825 * Install the new expiry time (or zero).
826 * For a timer with no notification action, we don't actually
827 * arm the timer (we'll just fake it for timer_gettime).
828 */
829 timer->it.cpu.expires = new_expires;
830 if (new_expires.sched != 0 &&
831 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
832 cpu_time_before(timer->it_clock, val, new_expires)) {
833 arm_timer(timer, val);
834 }
835
836 read_unlock(&tasklist_lock);
837
838 /*
839 * Install the new reload setting, and
840 * set up the signal and overrun bookkeeping.
841 */
842 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
843 &new->it_interval);
844
845 /*
846 * This acts as a modification timestamp for the timer,
847 * so any automatic reload attempt will punt on seeing
848 * that we have reset the timer manually.
849 */
850 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
851 ~REQUEUE_PENDING;
852 timer->it_overrun_last = 0;
853 timer->it_overrun = -1;
854
855 if (new_expires.sched != 0 &&
856 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
857 !cpu_time_before(timer->it_clock, val, new_expires)) {
858 /*
859 * The designated time already passed, so we notify
860 * immediately, even if the thread never runs to
861 * accumulate more time on this clock.
862 */
863 cpu_timer_fire(timer);
864 }
865
866 ret = 0;
867 out:
868 if (old) {
869 sample_to_timespec(timer->it_clock,
870 timer->it.cpu.incr, &old->it_interval);
871 }
872 return ret;
873}
874
875void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
876{
877 union cpu_time_count now;
878 struct task_struct *p = timer->it.cpu.task;
879 int clear_dead;
880
881 /*
882 * Easy part: convert the reload time.
883 */
884 sample_to_timespec(timer->it_clock,
885 timer->it.cpu.incr, &itp->it_interval);
886
887 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
888 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
889 return;
890 }
891
892 if (unlikely(p == NULL)) {
893 /*
894 * This task already died and the timer will never fire.
895 * In this case, expires is actually the dead value.
896 */
897 dead:
898 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
899 &itp->it_value);
900 return;
901 }
902
903 /*
904 * Sample the clock to take the difference with the expiry time.
905 */
906 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
907 cpu_clock_sample(timer->it_clock, p, &now);
908 clear_dead = p->exit_state;
909 } else {
910 read_lock(&tasklist_lock);
911 if (unlikely(p->signal == NULL)) {
912 /*
913 * The process has been reaped.
914 * We can't even collect a sample any more.
915 * Call the timer disarmed, nothing else to do.
916 */
917 put_task_struct(p);
918 timer->it.cpu.task = NULL;
919 timer->it.cpu.expires.sched = 0;
920 read_unlock(&tasklist_lock);
921 goto dead;
922 } else {
3997ad31 923 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
924 clear_dead = (unlikely(p->exit_state) &&
925 thread_group_empty(p));
926 }
927 read_unlock(&tasklist_lock);
928 }
929
930 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
931 if (timer->it.cpu.incr.sched == 0 &&
932 cpu_time_before(timer->it_clock,
933 timer->it.cpu.expires, now)) {
934 /*
935 * Do-nothing timer expired and has no reload,
936 * so it's as if it was never set.
937 */
938 timer->it.cpu.expires.sched = 0;
939 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
940 return;
941 }
942 /*
943 * Account for any expirations and reloads that should
944 * have happened.
945 */
946 bump_cpu_timer(timer, now);
947 }
948
949 if (unlikely(clear_dead)) {
950 /*
951 * We've noticed that the thread is dead, but
952 * not yet reaped. Take this opportunity to
953 * drop our task ref.
954 */
955 clear_dead_task(timer, now);
956 goto dead;
957 }
958
959 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
960 sample_to_timespec(timer->it_clock,
961 cpu_time_sub(timer->it_clock,
962 timer->it.cpu.expires, now),
963 &itp->it_value);
964 } else {
965 /*
966 * The timer should have expired already, but the firing
967 * hasn't taken place yet. Say it's just about to expire.
968 */
969 itp->it_value.tv_nsec = 1;
970 itp->it_value.tv_sec = 0;
971 }
972}
973
974/*
975 * Check for any per-thread CPU timers that have fired and move them off
976 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
977 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
978 */
979static void check_thread_timers(struct task_struct *tsk,
980 struct list_head *firing)
981{
e80eda94 982 int maxfire;
1da177e4 983 struct list_head *timers = tsk->cpu_timers;
78f2c7db 984 struct signal_struct *const sig = tsk->signal;
1da177e4 985
e80eda94 986 maxfire = 20;
f06febc9 987 tsk->cputime_expires.prof_exp = cputime_zero;
1da177e4 988 while (!list_empty(timers)) {
b5e61818 989 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
990 struct cpu_timer_list,
991 entry);
e80eda94 992 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
f06febc9 993 tsk->cputime_expires.prof_exp = t->expires.cpu;
1da177e4
LT
994 break;
995 }
996 t->firing = 1;
997 list_move_tail(&t->entry, firing);
998 }
999
1000 ++timers;
e80eda94 1001 maxfire = 20;
f06febc9 1002 tsk->cputime_expires.virt_exp = cputime_zero;
1da177e4 1003 while (!list_empty(timers)) {
b5e61818 1004 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1005 struct cpu_timer_list,
1006 entry);
e80eda94 1007 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
f06febc9 1008 tsk->cputime_expires.virt_exp = t->expires.cpu;
1da177e4
LT
1009 break;
1010 }
1011 t->firing = 1;
1012 list_move_tail(&t->entry, firing);
1013 }
1014
1015 ++timers;
e80eda94 1016 maxfire = 20;
f06febc9 1017 tsk->cputime_expires.sched_exp = 0;
1da177e4 1018 while (!list_empty(timers)) {
b5e61818 1019 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
1020 struct cpu_timer_list,
1021 entry);
41b86e9c 1022 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
f06febc9 1023 tsk->cputime_expires.sched_exp = t->expires.sched;
1da177e4
LT
1024 break;
1025 }
1026 t->firing = 1;
1027 list_move_tail(&t->entry, firing);
1028 }
78f2c7db
PZ
1029
1030 /*
1031 * Check for the special case thread timers.
1032 */
1033 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1034 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1035 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1036
5a52dd50
PZ
1037 if (hard != RLIM_INFINITY &&
1038 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
1039 /*
1040 * At the hard limit, we just die.
1041 * No need to calculate anything else now.
1042 */
1043 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1044 return;
1045 }
1046 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1047 /*
1048 * At the soft limit, send a SIGXCPU every second.
1049 */
1050 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1051 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1052 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1053 USEC_PER_SEC;
1054 }
81d50bb2
HS
1055 printk(KERN_INFO
1056 "RT Watchdog Timeout: %s[%d]\n",
1057 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
1058 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1059 }
1060 }
1da177e4
LT
1061}
1062
3fccfd67
PZ
1063static void stop_process_timers(struct task_struct *tsk)
1064{
1065 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1066 unsigned long flags;
1067
1068 if (!cputimer->running)
1069 return;
1070
1071 spin_lock_irqsave(&cputimer->lock, flags);
1072 cputimer->running = 0;
1073 spin_unlock_irqrestore(&cputimer->lock, flags);
1074}
1075
8356b5f9
SG
1076static u32 onecputick;
1077
42c4ab41
SG
1078static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
1079 cputime_t *expires, cputime_t cur_time, int signo)
1080{
1081 if (cputime_eq(it->expires, cputime_zero))
1082 return;
1083
1084 if (cputime_ge(cur_time, it->expires)) {
8356b5f9
SG
1085 if (!cputime_eq(it->incr, cputime_zero)) {
1086 it->expires = cputime_add(it->expires, it->incr);
1087 it->error += it->incr_error;
1088 if (it->error >= onecputick) {
1089 it->expires = cputime_sub(it->expires,
a42548a1 1090 cputime_one_jiffy);
8356b5f9
SG
1091 it->error -= onecputick;
1092 }
1093 } else
1094 it->expires = cputime_zero;
42c4ab41
SG
1095
1096 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1097 }
1098
1099 if (!cputime_eq(it->expires, cputime_zero) &&
1100 (cputime_eq(*expires, cputime_zero) ||
1101 cputime_lt(it->expires, *expires))) {
1102 *expires = it->expires;
1103 }
1104}
1105
1da177e4
LT
1106/*
1107 * Check for any per-thread CPU timers that have fired and move them
1108 * off the tsk->*_timers list onto the firing list. Per-thread timers
1109 * have already been taken off.
1110 */
1111static void check_process_timers(struct task_struct *tsk,
1112 struct list_head *firing)
1113{
e80eda94 1114 int maxfire;
1da177e4 1115 struct signal_struct *const sig = tsk->signal;
f06febc9 1116 cputime_t utime, ptime, virt_expires, prof_expires;
41b86e9c 1117 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 1118 struct list_head *timers = sig->cpu_timers;
f06febc9 1119 struct task_cputime cputime;
1da177e4
LT
1120
1121 /*
1122 * Don't sample the current process CPU clocks if there are no timers.
1123 */
1124 if (list_empty(&timers[CPUCLOCK_PROF]) &&
42c4ab41 1125 cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) &&
1da177e4
LT
1126 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1127 list_empty(&timers[CPUCLOCK_VIRT]) &&
42c4ab41 1128 cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) &&
4cd4c1b4
PZ
1129 list_empty(&timers[CPUCLOCK_SCHED])) {
1130 stop_process_timers(tsk);
1da177e4 1131 return;
4cd4c1b4 1132 }
1da177e4
LT
1133
1134 /*
1135 * Collect the current process totals.
1136 */
4cd4c1b4 1137 thread_group_cputimer(tsk, &cputime);
f06febc9
FM
1138 utime = cputime.utime;
1139 ptime = cputime_add(utime, cputime.stime);
1140 sum_sched_runtime = cputime.sum_exec_runtime;
e80eda94 1141 maxfire = 20;
1da177e4
LT
1142 prof_expires = cputime_zero;
1143 while (!list_empty(timers)) {
ee7dd205 1144 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1145 struct cpu_timer_list,
1146 entry);
ee7dd205
WC
1147 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1148 prof_expires = tl->expires.cpu;
1da177e4
LT
1149 break;
1150 }
ee7dd205
WC
1151 tl->firing = 1;
1152 list_move_tail(&tl->entry, firing);
1da177e4
LT
1153 }
1154
1155 ++timers;
e80eda94 1156 maxfire = 20;
1da177e4
LT
1157 virt_expires = cputime_zero;
1158 while (!list_empty(timers)) {
ee7dd205 1159 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1160 struct cpu_timer_list,
1161 entry);
ee7dd205
WC
1162 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1163 virt_expires = tl->expires.cpu;
1da177e4
LT
1164 break;
1165 }
ee7dd205
WC
1166 tl->firing = 1;
1167 list_move_tail(&tl->entry, firing);
1da177e4
LT
1168 }
1169
1170 ++timers;
e80eda94 1171 maxfire = 20;
1da177e4
LT
1172 sched_expires = 0;
1173 while (!list_empty(timers)) {
ee7dd205 1174 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1175 struct cpu_timer_list,
1176 entry);
ee7dd205
WC
1177 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1178 sched_expires = tl->expires.sched;
1da177e4
LT
1179 break;
1180 }
ee7dd205
WC
1181 tl->firing = 1;
1182 list_move_tail(&tl->entry, firing);
1da177e4
LT
1183 }
1184
1185 /*
1186 * Check for the special case process timers.
1187 */
42c4ab41
SG
1188 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1189 SIGPROF);
1190 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1191 SIGVTALRM);
1192
1da177e4
LT
1193 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1194 unsigned long psecs = cputime_to_secs(ptime);
1195 cputime_t x;
1196 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1197 /*
1198 * At the hard limit, we just die.
1199 * No need to calculate anything else now.
1200 */
1201 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1202 return;
1203 }
1204 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1205 /*
1206 * At the soft limit, send a SIGXCPU every second.
1207 */
1208 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1209 if (sig->rlim[RLIMIT_CPU].rlim_cur
1210 < sig->rlim[RLIMIT_CPU].rlim_max) {
1211 sig->rlim[RLIMIT_CPU].rlim_cur++;
1212 }
1213 }
1214 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1215 if (cputime_eq(prof_expires, cputime_zero) ||
1216 cputime_lt(x, prof_expires)) {
1217 prof_expires = x;
1218 }
1219 }
1220
f06febc9
FM
1221 if (!cputime_eq(prof_expires, cputime_zero) &&
1222 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1223 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1224 sig->cputime_expires.prof_exp = prof_expires;
1225 if (!cputime_eq(virt_expires, cputime_zero) &&
1226 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1227 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1228 sig->cputime_expires.virt_exp = virt_expires;
1229 if (sched_expires != 0 &&
1230 (sig->cputime_expires.sched_exp == 0 ||
1231 sig->cputime_expires.sched_exp > sched_expires))
1232 sig->cputime_expires.sched_exp = sched_expires;
1da177e4
LT
1233}
1234
1235/*
1236 * This is called from the signal code (via do_schedule_next_timer)
1237 * when the last timer signal was delivered and we have to reload the timer.
1238 */
1239void posix_cpu_timer_schedule(struct k_itimer *timer)
1240{
1241 struct task_struct *p = timer->it.cpu.task;
1242 union cpu_time_count now;
1243
1244 if (unlikely(p == NULL))
1245 /*
1246 * The task was cleaned up already, no future firings.
1247 */
708f430d 1248 goto out;
1da177e4
LT
1249
1250 /*
1251 * Fetch the current sample and update the timer's expiry time.
1252 */
1253 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1254 cpu_clock_sample(timer->it_clock, p, &now);
1255 bump_cpu_timer(timer, now);
1256 if (unlikely(p->exit_state)) {
1257 clear_dead_task(timer, now);
708f430d 1258 goto out;
1da177e4
LT
1259 }
1260 read_lock(&tasklist_lock); /* arm_timer needs it. */
1261 } else {
1262 read_lock(&tasklist_lock);
1263 if (unlikely(p->signal == NULL)) {
1264 /*
1265 * The process has been reaped.
1266 * We can't even collect a sample any more.
1267 */
1268 put_task_struct(p);
1269 timer->it.cpu.task = p = NULL;
1270 timer->it.cpu.expires.sched = 0;
708f430d 1271 goto out_unlock;
1da177e4
LT
1272 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1273 /*
1274 * We've noticed that the thread is dead, but
1275 * not yet reaped. Take this opportunity to
1276 * drop our task ref.
1277 */
1278 clear_dead_task(timer, now);
708f430d 1279 goto out_unlock;
1da177e4 1280 }
3997ad31 1281 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
1282 bump_cpu_timer(timer, now);
1283 /* Leave the tasklist_lock locked for the call below. */
1284 }
1285
1286 /*
1287 * Now re-arm for the new expiry time.
1288 */
1289 arm_timer(timer, now);
1290
708f430d 1291out_unlock:
1da177e4 1292 read_unlock(&tasklist_lock);
708f430d
RM
1293
1294out:
1295 timer->it_overrun_last = timer->it_overrun;
1296 timer->it_overrun = -1;
1297 ++timer->it_requeue_pending;
1da177e4
LT
1298}
1299
f06febc9
FM
1300/**
1301 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1302 *
1303 * @cputime: The struct to compare.
1304 *
1305 * Checks @cputime to see if all fields are zero. Returns true if all fields
1306 * are zero, false if any field is nonzero.
1307 */
1308static inline int task_cputime_zero(const struct task_cputime *cputime)
1309{
1310 if (cputime_eq(cputime->utime, cputime_zero) &&
1311 cputime_eq(cputime->stime, cputime_zero) &&
1312 cputime->sum_exec_runtime == 0)
1313 return 1;
1314 return 0;
1315}
1316
1317/**
1318 * task_cputime_expired - Compare two task_cputime entities.
1319 *
1320 * @sample: The task_cputime structure to be checked for expiration.
1321 * @expires: Expiration times, against which @sample will be checked.
1322 *
1323 * Checks @sample against @expires to see if any field of @sample has expired.
1324 * Returns true if any field of the former is greater than the corresponding
1325 * field of the latter if the latter field is set. Otherwise returns false.
1326 */
1327static inline int task_cputime_expired(const struct task_cputime *sample,
1328 const struct task_cputime *expires)
1329{
1330 if (!cputime_eq(expires->utime, cputime_zero) &&
1331 cputime_ge(sample->utime, expires->utime))
1332 return 1;
1333 if (!cputime_eq(expires->stime, cputime_zero) &&
1334 cputime_ge(cputime_add(sample->utime, sample->stime),
1335 expires->stime))
1336 return 1;
1337 if (expires->sum_exec_runtime != 0 &&
1338 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1339 return 1;
1340 return 0;
1341}
1342
1343/**
1344 * fastpath_timer_check - POSIX CPU timers fast path.
1345 *
1346 * @tsk: The task (thread) being checked.
f06febc9 1347 *
bb34d92f
FM
1348 * Check the task and thread group timers. If both are zero (there are no
1349 * timers set) return false. Otherwise snapshot the task and thread group
1350 * timers and compare them with the corresponding expiration times. Return
1351 * true if a timer has expired, else return false.
f06febc9 1352 */
bb34d92f 1353static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1354{
ad133ba3 1355 struct signal_struct *sig;
bb34d92f 1356
ad133ba3
ON
1357 /* tsk == current, ensure it is safe to use ->signal/sighand */
1358 if (unlikely(tsk->exit_state))
f06febc9 1359 return 0;
bb34d92f
FM
1360
1361 if (!task_cputime_zero(&tsk->cputime_expires)) {
1362 struct task_cputime task_sample = {
1363 .utime = tsk->utime,
1364 .stime = tsk->stime,
1365 .sum_exec_runtime = tsk->se.sum_exec_runtime
1366 };
1367
1368 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1369 return 1;
1370 }
ad133ba3
ON
1371
1372 sig = tsk->signal;
bb34d92f
FM
1373 if (!task_cputime_zero(&sig->cputime_expires)) {
1374 struct task_cputime group_sample;
1375
4cd4c1b4 1376 thread_group_cputimer(tsk, &group_sample);
bb34d92f
FM
1377 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1378 return 1;
1379 }
37bebc70
ON
1380
1381 return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
f06febc9
FM
1382}
1383
1da177e4
LT
1384/*
1385 * This is called from the timer interrupt handler. The irq handler has
1386 * already updated our counts. We need to check if any timers fire now.
1387 * Interrupts are disabled.
1388 */
1389void run_posix_cpu_timers(struct task_struct *tsk)
1390{
1391 LIST_HEAD(firing);
1392 struct k_itimer *timer, *next;
1393
1394 BUG_ON(!irqs_disabled());
1395
1da177e4 1396 /*
f06febc9 1397 * The fast path checks that there are no expired thread or thread
bb34d92f 1398 * group timers. If that's so, just return.
1da177e4 1399 */
bb34d92f 1400 if (!fastpath_timer_check(tsk))
f06febc9 1401 return;
5ce73a4a 1402
bb34d92f
FM
1403 spin_lock(&tsk->sighand->siglock);
1404 /*
1405 * Here we take off tsk->signal->cpu_timers[N] and
1406 * tsk->cpu_timers[N] all the timers that are firing, and
1407 * put them on the firing list.
1408 */
1409 check_thread_timers(tsk, &firing);
1410 check_process_timers(tsk, &firing);
1da177e4 1411
bb34d92f
FM
1412 /*
1413 * We must release these locks before taking any timer's lock.
1414 * There is a potential race with timer deletion here, as the
1415 * siglock now protects our private firing list. We have set
1416 * the firing flag in each timer, so that a deletion attempt
1417 * that gets the timer lock before we do will give it up and
1418 * spin until we've taken care of that timer below.
1419 */
1420 spin_unlock(&tsk->sighand->siglock);
1da177e4
LT
1421
1422 /*
1423 * Now that all the timers on our list have the firing flag,
1424 * noone will touch their list entries but us. We'll take
1425 * each timer's lock before clearing its firing flag, so no
1426 * timer call will interfere.
1427 */
1428 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1429 int cpu_firing;
1430
1da177e4
LT
1431 spin_lock(&timer->it_lock);
1432 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1433 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1434 timer->it.cpu.firing = 0;
1435 /*
1436 * The firing flag is -1 if we collided with a reset
1437 * of the timer, which already reported this
1438 * almost-firing as an overrun. So don't generate an event.
1439 */
6e85c5ba 1440 if (likely(cpu_firing >= 0))
1da177e4 1441 cpu_timer_fire(timer);
1da177e4
LT
1442 spin_unlock(&timer->it_lock);
1443 }
1444}
1445
1446/*
1447 * Set one of the process-wide special case CPU timers.
f06febc9
FM
1448 * The tsk->sighand->siglock must be held by the caller.
1449 * The *newval argument is relative and we update it to be absolute, *oldval
1450 * is absolute and we update it to be relative.
1da177e4
LT
1451 */
1452void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1453 cputime_t *newval, cputime_t *oldval)
1454{
1455 union cpu_time_count now;
1456 struct list_head *head;
1457
1458 BUG_ON(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1459 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1460
1461 if (oldval) {
1462 if (!cputime_eq(*oldval, cputime_zero)) {
1463 if (cputime_le(*oldval, now.cpu)) {
1464 /* Just about to fire. */
a42548a1 1465 *oldval = cputime_one_jiffy;
1da177e4
LT
1466 } else {
1467 *oldval = cputime_sub(*oldval, now.cpu);
1468 }
1469 }
1470
1471 if (cputime_eq(*newval, cputime_zero))
1472 return;
1473 *newval = cputime_add(*newval, now.cpu);
1474
1475 /*
1476 * If the RLIMIT_CPU timer will expire before the
1477 * ITIMER_PROF timer, we have nothing else to do.
1478 */
1479 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1480 < cputime_to_secs(*newval))
1481 return;
1482 }
1483
1484 /*
1485 * Check whether there are any process timers already set to fire
1486 * before this one. If so, we don't have anything more to do.
1487 */
1488 head = &tsk->signal->cpu_timers[clock_idx];
1489 if (list_empty(head) ||
b5e61818 1490 cputime_ge(list_first_entry(head,
1da177e4
LT
1491 struct cpu_timer_list, entry)->expires.cpu,
1492 *newval)) {
f06febc9
FM
1493 switch (clock_idx) {
1494 case CPUCLOCK_PROF:
1495 tsk->signal->cputime_expires.prof_exp = *newval;
1496 break;
1497 case CPUCLOCK_VIRT:
1498 tsk->signal->cputime_expires.virt_exp = *newval;
1499 break;
1500 }
1da177e4
LT
1501 }
1502}
1503
e4b76555
TA
1504static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1505 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1506{
1da177e4
LT
1507 struct k_itimer timer;
1508 int error;
1509
1da177e4
LT
1510 /*
1511 * Set up a temporary timer and then wait for it to go off.
1512 */
1513 memset(&timer, 0, sizeof timer);
1514 spin_lock_init(&timer.it_lock);
1515 timer.it_clock = which_clock;
1516 timer.it_overrun = -1;
1517 error = posix_cpu_timer_create(&timer);
1518 timer.it_process = current;
1519 if (!error) {
1da177e4 1520 static struct itimerspec zero_it;
e4b76555
TA
1521
1522 memset(it, 0, sizeof *it);
1523 it->it_value = *rqtp;
1da177e4
LT
1524
1525 spin_lock_irq(&timer.it_lock);
e4b76555 1526 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1527 if (error) {
1528 spin_unlock_irq(&timer.it_lock);
1529 return error;
1530 }
1531
1532 while (!signal_pending(current)) {
1533 if (timer.it.cpu.expires.sched == 0) {
1534 /*
1535 * Our timer fired and was reset.
1536 */
1537 spin_unlock_irq(&timer.it_lock);
1538 return 0;
1539 }
1540
1541 /*
1542 * Block until cpu_timer_fire (or a signal) wakes us.
1543 */
1544 __set_current_state(TASK_INTERRUPTIBLE);
1545 spin_unlock_irq(&timer.it_lock);
1546 schedule();
1547 spin_lock_irq(&timer.it_lock);
1548 }
1549
1550 /*
1551 * We were interrupted by a signal.
1552 */
1553 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e4b76555 1554 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1da177e4
LT
1555 spin_unlock_irq(&timer.it_lock);
1556
e4b76555 1557 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1558 /*
1559 * It actually did fire already.
1560 */
1561 return 0;
1562 }
1563
e4b76555
TA
1564 error = -ERESTART_RESTARTBLOCK;
1565 }
1566
1567 return error;
1568}
1569
1570int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1571 struct timespec *rqtp, struct timespec __user *rmtp)
1572{
1573 struct restart_block *restart_block =
1574 &current_thread_info()->restart_block;
1575 struct itimerspec it;
1576 int error;
1577
1578 /*
1579 * Diagnose required errors first.
1580 */
1581 if (CPUCLOCK_PERTHREAD(which_clock) &&
1582 (CPUCLOCK_PID(which_clock) == 0 ||
1583 CPUCLOCK_PID(which_clock) == current->pid))
1584 return -EINVAL;
1585
1586 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1587
1588 if (error == -ERESTART_RESTARTBLOCK) {
1589
1590 if (flags & TIMER_ABSTIME)
1591 return -ERESTARTNOHAND;
1da177e4 1592 /*
e4b76555
TA
1593 * Report back to the user the time still remaining.
1594 */
1595 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1596 return -EFAULT;
1597
1711ef38 1598 restart_block->fn = posix_cpu_nsleep_restart;
1da177e4 1599 restart_block->arg0 = which_clock;
97735f25 1600 restart_block->arg1 = (unsigned long) rmtp;
1da177e4
LT
1601 restart_block->arg2 = rqtp->tv_sec;
1602 restart_block->arg3 = rqtp->tv_nsec;
1da177e4 1603 }
1da177e4
LT
1604 return error;
1605}
1606
1711ef38 1607long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4
LT
1608{
1609 clockid_t which_clock = restart_block->arg0;
97735f25
TG
1610 struct timespec __user *rmtp;
1611 struct timespec t;
e4b76555
TA
1612 struct itimerspec it;
1613 int error;
97735f25
TG
1614
1615 rmtp = (struct timespec __user *) restart_block->arg1;
1616 t.tv_sec = restart_block->arg2;
1617 t.tv_nsec = restart_block->arg3;
1618
1da177e4 1619 restart_block->fn = do_no_restart_syscall;
e4b76555
TA
1620 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1621
1622 if (error == -ERESTART_RESTARTBLOCK) {
1623 /*
1624 * Report back to the user the time still remaining.
1625 */
1626 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1627 return -EFAULT;
1628
1629 restart_block->fn = posix_cpu_nsleep_restart;
1630 restart_block->arg0 = which_clock;
1631 restart_block->arg1 = (unsigned long) rmtp;
1632 restart_block->arg2 = t.tv_sec;
1633 restart_block->arg3 = t.tv_nsec;
1634 }
1635 return error;
1636
1da177e4
LT
1637}
1638
1639
1640#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1641#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1642
a924b04d
TG
1643static int process_cpu_clock_getres(const clockid_t which_clock,
1644 struct timespec *tp)
1da177e4
LT
1645{
1646 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1647}
a924b04d
TG
1648static int process_cpu_clock_get(const clockid_t which_clock,
1649 struct timespec *tp)
1da177e4
LT
1650{
1651 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1652}
1653static int process_cpu_timer_create(struct k_itimer *timer)
1654{
1655 timer->it_clock = PROCESS_CLOCK;
1656 return posix_cpu_timer_create(timer);
1657}
a924b04d 1658static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1659 struct timespec *rqtp,
1660 struct timespec __user *rmtp)
1da177e4 1661{
97735f25 1662 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1663}
1711ef38
TA
1664static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1665{
1666 return -EINVAL;
1667}
a924b04d
TG
1668static int thread_cpu_clock_getres(const clockid_t which_clock,
1669 struct timespec *tp)
1da177e4
LT
1670{
1671 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1672}
a924b04d
TG
1673static int thread_cpu_clock_get(const clockid_t which_clock,
1674 struct timespec *tp)
1da177e4
LT
1675{
1676 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1677}
1678static int thread_cpu_timer_create(struct k_itimer *timer)
1679{
1680 timer->it_clock = THREAD_CLOCK;
1681 return posix_cpu_timer_create(timer);
1682}
a924b04d 1683static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25 1684 struct timespec *rqtp, struct timespec __user *rmtp)
1da177e4
LT
1685{
1686 return -EINVAL;
1687}
1711ef38
TA
1688static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1689{
1690 return -EINVAL;
1691}
1da177e4
LT
1692
1693static __init int init_posix_cpu_timers(void)
1694{
1695 struct k_clock process = {
1696 .clock_getres = process_cpu_clock_getres,
1697 .clock_get = process_cpu_clock_get,
1698 .clock_set = do_posix_clock_nosettime,
1699 .timer_create = process_cpu_timer_create,
1700 .nsleep = process_cpu_nsleep,
1711ef38 1701 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1702 };
1703 struct k_clock thread = {
1704 .clock_getres = thread_cpu_clock_getres,
1705 .clock_get = thread_cpu_clock_get,
1706 .clock_set = do_posix_clock_nosettime,
1707 .timer_create = thread_cpu_timer_create,
1708 .nsleep = thread_cpu_nsleep,
1711ef38 1709 .nsleep_restart = thread_cpu_nsleep_restart,
1da177e4 1710 };
8356b5f9 1711 struct timespec ts;
1da177e4
LT
1712
1713 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1714 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1715
a42548a1 1716 cputime_to_timespec(cputime_one_jiffy, &ts);
8356b5f9
SG
1717 onecputick = ts.tv_nsec;
1718 WARN_ON(ts.tv_sec != 0);
1719
1da177e4
LT
1720 return 0;
1721}
1722__initcall(init_posix_cpu_timers);
This page took 0.458395 seconds and 5 git commands to generate.