posix-timers: Convert clock_nanosleep_restart to clockid_to_kclock()
[deliverable/linux.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
65da528d
TG
84/*
85 * parisc wants ENOTSUP instead of EOPNOTSUPP
86 */
87#ifndef ENOTSUP
88# define ENANOSLEEP_NOTSUP EOPNOTSUPP
89#else
90# define ENANOSLEEP_NOTSUP ENOTSUP
91#endif
1da177e4
LT
92
93/*
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
96 *
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
100 */
101
102/*
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 127 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
128 * fields are not modified by timer code.
129 *
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
133 *
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
140 */
141
142static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 143
1da177e4 144/*
becf8b5d 145 * These ones are defined below.
1da177e4 146 */
becf8b5d
TG
147static int common_nsleep(const clockid_t, int flags, struct timespec *t,
148 struct timespec __user *rmtp);
149static void common_timer_get(struct k_itimer *, struct itimerspec *);
150static int common_timer_set(struct k_itimer *, int,
151 struct itimerspec *, struct itimerspec *);
152static int common_timer_del(struct k_itimer *timer);
1da177e4 153
c9cb2e3d 154static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4 155
20f33a03
NK
156static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
157
158#define lock_timer(tid, flags) \
159({ struct k_itimer *__timr; \
160 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
161 __timr; \
162})
1da177e4
LT
163
164static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
165{
166 spin_unlock_irqrestore(&timr->it_lock, flags);
167}
168
169/*
170 * Call the k_clock hook function if non-null, or the default function.
171 */
172#define CLOCK_DISPATCH(clock, call, arglist) \
173 ((clock) < 0 ? posix_cpu_##call arglist : \
174 (posix_clocks[clock].call != NULL \
175 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
176
177/*
178 * Default clock hook functions when the struct k_clock passed
179 * to register_posix_clock leaves a function pointer null.
180 *
181 * The function common_CALL is the default implementation for
182 * the function pointer CALL in struct k_clock.
183 */
184
a924b04d 185static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
186 struct timespec *tp)
187{
188 tp->tv_sec = 0;
189 tp->tv_nsec = posix_clocks[which_clock].res;
190 return 0;
191}
192
becf8b5d
TG
193/*
194 * Get real time for posix timers
195 */
196static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 197{
becf8b5d 198 ktime_get_real_ts(tp);
1da177e4
LT
199 return 0;
200}
201
a924b04d 202static inline int common_clock_set(const clockid_t which_clock,
1e6d7679 203 const struct timespec *tp)
1da177e4
LT
204{
205 return do_sys_settimeofday(tp, NULL);
206}
207
858119e1 208static int common_timer_create(struct k_itimer *new_timer)
1da177e4 209{
7978672c 210 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
211 return 0;
212}
213
3d44cc3e
TG
214static int no_timer_create(struct k_itimer *new_timer)
215{
216 return -EOPNOTSUPP;
217}
218
1da177e4 219/*
becf8b5d 220 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 221 */
a924b04d 222static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
223{
224 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
225 return 0;
226 if ((unsigned) which_clock >= MAX_CLOCKS)
227 return 1;
228 if (posix_clocks[which_clock].clock_getres != NULL)
229 return 0;
1da177e4
LT
230 if (posix_clocks[which_clock].res != 0)
231 return 0;
1da177e4
LT
232 return 1;
233}
234
becf8b5d
TG
235/*
236 * Get monotonic time for posix timers
237 */
238static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
239{
240 ktime_get_ts(tp);
241 return 0;
242}
1da177e4 243
2d42244a
JS
244/*
245 * Get monotonic time for posix timers
246 */
247static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
248{
249 getrawmonotonic(tp);
250 return 0;
251}
252
da15cfda 253
254static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
255{
256 *tp = current_kernel_time();
257 return 0;
258}
259
260static int posix_get_monotonic_coarse(clockid_t which_clock,
261 struct timespec *tp)
262{
263 *tp = get_monotonic_coarse();
264 return 0;
265}
266
6622e670 267static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda 268{
269 *tp = ktime_to_timespec(KTIME_LOW_RES);
270 return 0;
271}
1da177e4
LT
272/*
273 * Initialize everything, well, just everything in Posix clocks/timers ;)
274 */
275static __init int init_posix_timers(void)
276{
becf8b5d 277 struct k_clock clock_realtime = {
2fd1f040 278 .clock_getres = hrtimer_get_res,
a5cd2880 279 .nsleep = common_nsleep,
59bd5bc2 280 .nsleep_restart = hrtimer_nanosleep_restart,
1da177e4 281 };
becf8b5d 282 struct k_clock clock_monotonic = {
2fd1f040
TG
283 .clock_getres = hrtimer_get_res,
284 .clock_get = posix_ktime_get_ts,
285 .clock_set = do_posix_clock_nosettime,
a5cd2880 286 .nsleep = common_nsleep,
59bd5bc2 287 .nsleep_restart = hrtimer_nanosleep_restart,
1da177e4 288 };
2d42244a 289 struct k_clock clock_monotonic_raw = {
2fd1f040
TG
290 .clock_getres = hrtimer_get_res,
291 .clock_get = posix_get_monotonic_raw,
292 .clock_set = do_posix_clock_nosettime,
293 .timer_create = no_timer_create,
2d42244a 294 };
da15cfda 295 struct k_clock clock_realtime_coarse = {
2fd1f040
TG
296 .clock_getres = posix_get_coarse_res,
297 .clock_get = posix_get_realtime_coarse,
298 .clock_set = do_posix_clock_nosettime,
299 .timer_create = no_timer_create,
da15cfda 300 };
301 struct k_clock clock_monotonic_coarse = {
2fd1f040
TG
302 .clock_getres = posix_get_coarse_res,
303 .clock_get = posix_get_monotonic_coarse,
304 .clock_set = do_posix_clock_nosettime,
305 .timer_create = no_timer_create,
da15cfda 306 };
1da177e4
LT
307
308 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
309 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 310 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
da15cfda 311 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
312 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
1da177e4
LT
313
314 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
315 sizeof (struct k_itimer), 0, SLAB_PANIC,
316 NULL);
1da177e4
LT
317 idr_init(&posix_timers_id);
318 return 0;
319}
320
321__initcall(init_posix_timers);
322
1da177e4
LT
323static void schedule_next_timer(struct k_itimer *timr)
324{
44f21475
RZ
325 struct hrtimer *timer = &timr->it.real.timer;
326
becf8b5d 327 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
328 return;
329
4d672e7a
DL
330 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
331 timer->base->get_time(),
332 timr->it.real.interval);
44f21475 333
1da177e4
LT
334 timr->it_overrun_last = timr->it_overrun;
335 timr->it_overrun = -1;
336 ++timr->it_requeue_pending;
44f21475 337 hrtimer_restart(timer);
1da177e4
LT
338}
339
340/*
341 * This function is exported for use by the signal deliver code. It is
342 * called just prior to the info block being released and passes that
343 * block to us. It's function is to update the overrun entry AND to
344 * restart the timer. It should only be called if the timer is to be
345 * restarted (i.e. we have flagged this in the sys_private entry of the
346 * info block).
347 *
348 * To protect aginst the timer going away while the interrupt is queued,
349 * we require that the it_requeue_pending flag be set.
350 */
351void do_schedule_next_timer(struct siginfo *info)
352{
353 struct k_itimer *timr;
354 unsigned long flags;
355
356 timr = lock_timer(info->si_tid, &flags);
357
becf8b5d
TG
358 if (timr && timr->it_requeue_pending == info->si_sys_private) {
359 if (timr->it_clock < 0)
360 posix_cpu_timer_schedule(timr);
361 else
362 schedule_next_timer(timr);
1da177e4 363
54da1174 364 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
365 }
366
b6557fbc
TG
367 if (timr)
368 unlock_timer(timr, flags);
1da177e4
LT
369}
370
ba661292 371int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 372{
27af4245
ON
373 struct task_struct *task;
374 int shared, ret = -1;
ba661292
ON
375 /*
376 * FIXME: if ->sigq is queued we can race with
377 * dequeue_signal()->do_schedule_next_timer().
378 *
379 * If dequeue_signal() sees the "right" value of
380 * si_sys_private it calls do_schedule_next_timer().
381 * We re-queue ->sigq and drop ->it_lock().
382 * do_schedule_next_timer() locks the timer
383 * and re-schedules it while ->sigq is pending.
384 * Not really bad, but not that we want.
385 */
1da177e4 386 timr->sigq->info.si_sys_private = si_private;
1da177e4 387
27af4245
ON
388 rcu_read_lock();
389 task = pid_task(timr->it_pid, PIDTYPE_PID);
390 if (task) {
391 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
392 ret = send_sigqueue(timr->sigq, task, shared);
393 }
394 rcu_read_unlock();
4aa73611
ON
395 /* If we failed to send the signal the timer stops. */
396 return ret > 0;
1da177e4
LT
397}
398EXPORT_SYMBOL_GPL(posix_timer_event);
399
400/*
401 * This function gets called when a POSIX.1b interval timer expires. It
402 * is used as a callback from the kernel internal timer. The
403 * run_timer_list code ALWAYS calls with interrupts on.
404
405 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
406 */
c9cb2e3d 407static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 408{
05cfb614 409 struct k_itimer *timr;
1da177e4 410 unsigned long flags;
becf8b5d 411 int si_private = 0;
c9cb2e3d 412 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 413
05cfb614 414 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 415 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 416
becf8b5d
TG
417 if (timr->it.real.interval.tv64 != 0)
418 si_private = ++timr->it_requeue_pending;
1da177e4 419
becf8b5d
TG
420 if (posix_timer_event(timr, si_private)) {
421 /*
422 * signal was not sent because of sig_ignor
423 * we will not get a call back to restart it AND
424 * it should be restarted.
425 */
426 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
427 ktime_t now = hrtimer_cb_get_time(timer);
428
429 /*
430 * FIXME: What we really want, is to stop this
431 * timer completely and restart it in case the
432 * SIG_IGN is removed. This is a non trivial
433 * change which involves sighand locking
434 * (sigh !), which we don't want to do late in
435 * the release cycle.
436 *
437 * For now we just let timers with an interval
438 * less than a jiffie expire every jiffie to
439 * avoid softirq starvation in case of SIG_IGN
440 * and a very small interval, which would put
441 * the timer right back on the softirq pending
442 * list. By moving now ahead of time we trick
443 * hrtimer_forward() to expire the timer
444 * later, while we still maintain the overrun
445 * accuracy, but have some inconsistency in
446 * the timer_gettime() case. This is at least
447 * better than a starved softirq. A more
448 * complex fix which solves also another related
449 * inconsistency is already in the pipeline.
450 */
451#ifdef CONFIG_HIGH_RES_TIMERS
452 {
453 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
454
455 if (timr->it.real.interval.tv64 < kj.tv64)
456 now = ktime_add(now, kj);
457 }
458#endif
4d672e7a 459 timr->it_overrun += (unsigned int)
58229a18 460 hrtimer_forward(timer, now,
becf8b5d
TG
461 timr->it.real.interval);
462 ret = HRTIMER_RESTART;
a0a0c28c 463 ++timr->it_requeue_pending;
1da177e4 464 }
1da177e4 465 }
1da177e4 466
becf8b5d
TG
467 unlock_timer(timr, flags);
468 return ret;
469}
1da177e4 470
27af4245 471static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
472{
473 struct task_struct *rtn = current->group_leader;
474
475 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 476 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 477 !same_thread_group(rtn, current) ||
1da177e4
LT
478 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
479 return NULL;
480
481 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
482 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
483 return NULL;
484
27af4245 485 return task_pid(rtn);
1da177e4
LT
486}
487
a924b04d 488void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
489{
490 if ((unsigned) clock_id >= MAX_CLOCKS) {
491 printk("POSIX clock register failed for clock_id %d\n",
492 clock_id);
493 return;
494 }
495
496 posix_clocks[clock_id] = *new_clock;
497}
498EXPORT_SYMBOL_GPL(register_posix_clock);
499
500static struct k_itimer * alloc_posix_timer(void)
501{
502 struct k_itimer *tmr;
c3762229 503 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
504 if (!tmr)
505 return tmr;
1da177e4
LT
506 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
507 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 508 return NULL;
1da177e4 509 }
ba661292 510 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
511 return tmr;
512}
513
514#define IT_ID_SET 1
515#define IT_ID_NOT_SET 0
516static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
517{
518 if (it_id_set) {
519 unsigned long flags;
520 spin_lock_irqsave(&idr_lock, flags);
521 idr_remove(&posix_timers_id, tmr->it_id);
522 spin_unlock_irqrestore(&idr_lock, flags);
523 }
89992102 524 put_pid(tmr->it_pid);
1da177e4 525 sigqueue_free(tmr->sigq);
1da177e4
LT
526 kmem_cache_free(posix_timers_cache, tmr);
527}
528
cc785ac2
TG
529static struct k_clock *clockid_to_kclock(const clockid_t id)
530{
531 if (id < 0)
532 return &clock_posix_cpu;
533
534 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
535 return NULL;
536 return &posix_clocks[id];
537}
538
1da177e4
LT
539/* Create a POSIX.1b interval timer. */
540
362e9c07
HC
541SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
542 struct sigevent __user *, timer_event_spec,
543 timer_t __user *, created_timer_id)
1da177e4 544{
2cd499e3 545 struct k_itimer *new_timer;
ef864c95 546 int error, new_timer_id;
1da177e4
LT
547 sigevent_t event;
548 int it_id_set = IT_ID_NOT_SET;
549
550 if (invalid_clockid(which_clock))
551 return -EINVAL;
552
553 new_timer = alloc_posix_timer();
554 if (unlikely(!new_timer))
555 return -EAGAIN;
556
557 spin_lock_init(&new_timer->it_lock);
558 retry:
559 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
560 error = -EAGAIN;
561 goto out;
562 }
563 spin_lock_irq(&idr_lock);
5a51b713 564 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 565 spin_unlock_irq(&idr_lock);
ef864c95
ON
566 if (error) {
567 if (error == -EAGAIN)
568 goto retry;
1da177e4 569 /*
0b0a3e7b 570 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
571 * full (proper POSIX return value for this)
572 */
573 error = -EAGAIN;
574 goto out;
575 }
576
577 it_id_set = IT_ID_SET;
578 new_timer->it_id = (timer_t) new_timer_id;
579 new_timer->it_clock = which_clock;
580 new_timer->it_overrun = -1;
1da177e4 581
1da177e4
LT
582 if (timer_event_spec) {
583 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
584 error = -EFAULT;
585 goto out;
586 }
36b2f046 587 rcu_read_lock();
89992102 588 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 589 rcu_read_unlock();
89992102 590 if (!new_timer->it_pid) {
1da177e4
LT
591 error = -EINVAL;
592 goto out;
593 }
594 } else {
5a9fa730
ON
595 event.sigev_notify = SIGEV_SIGNAL;
596 event.sigev_signo = SIGALRM;
597 event.sigev_value.sival_int = new_timer->it_id;
89992102 598 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
599 }
600
5a9fa730
ON
601 new_timer->it_sigev_notify = event.sigev_notify;
602 new_timer->sigq->info.si_signo = event.sigev_signo;
603 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 604 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 605 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 606
2b08de00
AV
607 if (copy_to_user(created_timer_id,
608 &new_timer_id, sizeof (new_timer_id))) {
609 error = -EFAULT;
610 goto out;
611 }
612
45e0fffc
AV
613 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
614 if (error)
615 goto out;
616
36b2f046 617 spin_lock_irq(&current->sighand->siglock);
27af4245 618 new_timer->it_signal = current->signal;
36b2f046
ON
619 list_add(&new_timer->list, &current->signal->posix_timers);
620 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
621
622 return 0;
1da177e4
LT
623 /*
624 * In the case of the timer belonging to another task, after
625 * the task is unlocked, the timer is owned by the other task
626 * and may cease to exist at any time. Don't use or modify
627 * new_timer after the unlock call.
628 */
1da177e4 629out:
ef864c95 630 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
631 return error;
632}
633
1da177e4
LT
634/*
635 * Locking issues: We need to protect the result of the id look up until
636 * we get the timer locked down so it is not deleted under us. The
637 * removal is done under the idr spinlock so we use that here to bridge
638 * the find to the timer lock. To avoid a dead lock, the timer id MUST
639 * be release with out holding the timer lock.
640 */
20f33a03 641static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
642{
643 struct k_itimer *timr;
644 /*
645 * Watch out here. We do a irqsave on the idr_lock and pass the
646 * flags part over to the timer lock. Must not let interrupts in
647 * while we are moving the lock.
648 */
1da177e4 649 spin_lock_irqsave(&idr_lock, *flags);
31d92845 650 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
651 if (timr) {
652 spin_lock(&timr->it_lock);
89992102 653 if (timr->it_signal == current->signal) {
179394af 654 spin_unlock(&idr_lock);
31d92845
ON
655 return timr;
656 }
657 spin_unlock(&timr->it_lock);
658 }
659 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 660
31d92845 661 return NULL;
1da177e4
LT
662}
663
664/*
665 * Get the time remaining on a POSIX.1b interval timer. This function
666 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
667 * mess with irq.
668 *
669 * We have a couple of messes to clean up here. First there is the case
670 * of a timer that has a requeue pending. These timers should appear to
671 * be in the timer list with an expiry as if we were to requeue them
672 * now.
673 *
674 * The second issue is the SIGEV_NONE timer which may be active but is
675 * not really ever put in the timer list (to save system resources).
676 * This timer may be expired, and if so, we will do it here. Otherwise
677 * it is the same as a requeue pending timer WRT to what we should
678 * report.
679 */
680static void
681common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
682{
3b98a532 683 ktime_t now, remaining, iv;
becf8b5d 684 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 685
becf8b5d 686 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 687
3b98a532
RZ
688 iv = timr->it.real.interval;
689
becf8b5d 690 /* interval timer ? */
3b98a532
RZ
691 if (iv.tv64)
692 cur_setting->it_interval = ktime_to_timespec(iv);
693 else if (!hrtimer_active(timer) &&
694 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 695 return;
3b98a532
RZ
696
697 now = timer->base->get_time();
698
becf8b5d 699 /*
3b98a532
RZ
700 * When a requeue is pending or this is a SIGEV_NONE
701 * timer move the expiry time forward by intervals, so
702 * expiry is > now.
becf8b5d 703 */
3b98a532
RZ
704 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
705 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 706 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 707
cc584b21 708 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 709 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
710 if (remaining.tv64 <= 0) {
711 /*
712 * A single shot SIGEV_NONE timer must return 0, when
713 * it is expired !
714 */
715 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
716 cur_setting->it_value.tv_nsec = 1;
717 } else
becf8b5d 718 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
719}
720
721/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
722SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
723 struct itimerspec __user *, setting)
1da177e4
LT
724{
725 struct k_itimer *timr;
726 struct itimerspec cur_setting;
727 unsigned long flags;
728
729 timr = lock_timer(timer_id, &flags);
730 if (!timr)
731 return -EINVAL;
732
733 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
734
735 unlock_timer(timr, flags);
736
737 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
738 return -EFAULT;
739
740 return 0;
741}
becf8b5d 742
1da177e4
LT
743/*
744 * Get the number of overruns of a POSIX.1b interval timer. This is to
745 * be the overrun of the timer last delivered. At the same time we are
746 * accumulating overruns on the next timer. The overrun is frozen when
747 * the signal is delivered, either at the notify time (if the info block
748 * is not queued) or at the actual delivery time (as we are informed by
749 * the call back to do_schedule_next_timer(). So all we need to do is
750 * to pick up the frozen overrun.
751 */
362e9c07 752SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
753{
754 struct k_itimer *timr;
755 int overrun;
5ba25331 756 unsigned long flags;
1da177e4
LT
757
758 timr = lock_timer(timer_id, &flags);
759 if (!timr)
760 return -EINVAL;
761
762 overrun = timr->it_overrun_last;
763 unlock_timer(timr, flags);
764
765 return overrun;
766}
1da177e4
LT
767
768/* Set a POSIX.1b interval timer. */
769/* timr->it_lock is taken. */
858119e1 770static int
1da177e4
LT
771common_timer_set(struct k_itimer *timr, int flags,
772 struct itimerspec *new_setting, struct itimerspec *old_setting)
773{
becf8b5d 774 struct hrtimer *timer = &timr->it.real.timer;
7978672c 775 enum hrtimer_mode mode;
1da177e4
LT
776
777 if (old_setting)
778 common_timer_get(timr, old_setting);
779
780 /* disable the timer */
becf8b5d 781 timr->it.real.interval.tv64 = 0;
1da177e4
LT
782 /*
783 * careful here. If smp we could be in the "fire" routine which will
784 * be spinning as we hold the lock. But this is ONLY an SMP issue.
785 */
becf8b5d 786 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 787 return TIMER_RETRY;
1da177e4
LT
788
789 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
790 ~REQUEUE_PENDING;
791 timr->it_overrun_last = 0;
1da177e4 792
becf8b5d
TG
793 /* switch off the timer when it_value is zero */
794 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
795 return 0;
1da177e4 796
c9cb2e3d 797 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 798 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 799 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 800
cc584b21 801 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
802
803 /* Convert interval */
804 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
805
806 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
807 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
808 /* Setup correct expiry time for relative timers */
5a7780e7 809 if (mode == HRTIMER_MODE_REL) {
cc584b21 810 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 811 }
becf8b5d 812 return 0;
952bbc87 813 }
becf8b5d 814
cc584b21 815 hrtimer_start_expires(timer, mode);
1da177e4
LT
816 return 0;
817}
818
819/* Set a POSIX.1b interval timer */
362e9c07
HC
820SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
821 const struct itimerspec __user *, new_setting,
822 struct itimerspec __user *, old_setting)
1da177e4
LT
823{
824 struct k_itimer *timr;
825 struct itimerspec new_spec, old_spec;
826 int error = 0;
5ba25331 827 unsigned long flag;
1da177e4
LT
828 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
829
830 if (!new_setting)
831 return -EINVAL;
832
833 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
834 return -EFAULT;
835
becf8b5d
TG
836 if (!timespec_valid(&new_spec.it_interval) ||
837 !timespec_valid(&new_spec.it_value))
1da177e4
LT
838 return -EINVAL;
839retry:
840 timr = lock_timer(timer_id, &flag);
841 if (!timr)
842 return -EINVAL;
843
844 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
845 (timr, flags, &new_spec, rtn));
846
847 unlock_timer(timr, flag);
848 if (error == TIMER_RETRY) {
849 rtn = NULL; // We already got the old time...
850 goto retry;
851 }
852
becf8b5d
TG
853 if (old_setting && !error &&
854 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
855 error = -EFAULT;
856
857 return error;
858}
859
860static inline int common_timer_del(struct k_itimer *timer)
861{
becf8b5d 862 timer->it.real.interval.tv64 = 0;
f972be33 863
becf8b5d 864 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 865 return TIMER_RETRY;
1da177e4
LT
866 return 0;
867}
868
869static inline int timer_delete_hook(struct k_itimer *timer)
870{
871 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
872}
873
874/* Delete a POSIX.1b interval timer. */
362e9c07 875SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
876{
877 struct k_itimer *timer;
5ba25331 878 unsigned long flags;
1da177e4 879
1da177e4 880retry_delete:
1da177e4
LT
881 timer = lock_timer(timer_id, &flags);
882 if (!timer)
883 return -EINVAL;
884
becf8b5d 885 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
886 unlock_timer(timer, flags);
887 goto retry_delete;
888 }
becf8b5d 889
1da177e4
LT
890 spin_lock(&current->sighand->siglock);
891 list_del(&timer->list);
892 spin_unlock(&current->sighand->siglock);
893 /*
894 * This keeps any tasks waiting on the spin lock from thinking
895 * they got something (see the lock code above).
896 */
89992102 897 timer->it_signal = NULL;
4b7a1304 898
1da177e4
LT
899 unlock_timer(timer, flags);
900 release_posix_timer(timer, IT_ID_SET);
901 return 0;
902}
becf8b5d 903
1da177e4
LT
904/*
905 * return timer owned by the process, used by exit_itimers
906 */
858119e1 907static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
908{
909 unsigned long flags;
910
1da177e4 911retry_delete:
1da177e4
LT
912 spin_lock_irqsave(&timer->it_lock, flags);
913
becf8b5d 914 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
915 unlock_timer(timer, flags);
916 goto retry_delete;
917 }
1da177e4
LT
918 list_del(&timer->list);
919 /*
920 * This keeps any tasks waiting on the spin lock from thinking
921 * they got something (see the lock code above).
922 */
89992102 923 timer->it_signal = NULL;
4b7a1304 924
1da177e4
LT
925 unlock_timer(timer, flags);
926 release_posix_timer(timer, IT_ID_SET);
927}
928
929/*
25f407f0 930 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
931 * references to the shared signal_struct.
932 */
933void exit_itimers(struct signal_struct *sig)
934{
935 struct k_itimer *tmr;
936
937 while (!list_empty(&sig->posix_timers)) {
938 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
939 itimer_delete(tmr);
940 }
941}
942
becf8b5d 943/* Not available / possible... functions */
1e6d7679 944int do_posix_clock_nosettime(const clockid_t clockid, const struct timespec *tp)
1da177e4
LT
945{
946 return -EINVAL;
947}
948EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
949
362e9c07
HC
950SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
951 const struct timespec __user *, tp)
1da177e4
LT
952{
953 struct timespec new_tp;
954
955 if (invalid_clockid(which_clock))
956 return -EINVAL;
957 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
958 return -EFAULT;
959
960 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
961}
962
362e9c07
HC
963SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
964 struct timespec __user *,tp)
1da177e4
LT
965{
966 struct timespec kernel_tp;
967 int error;
968
969 if (invalid_clockid(which_clock))
970 return -EINVAL;
971 error = CLOCK_DISPATCH(which_clock, clock_get,
972 (which_clock, &kernel_tp));
973 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
974 error = -EFAULT;
975
976 return error;
977
978}
979
362e9c07
HC
980SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
981 struct timespec __user *, tp)
1da177e4
LT
982{
983 struct timespec rtn_tp;
984 int error;
985
986 if (invalid_clockid(which_clock))
987 return -EINVAL;
988
989 error = CLOCK_DISPATCH(which_clock, clock_getres,
990 (which_clock, &rtn_tp));
991
992 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
993 error = -EFAULT;
994 }
995
996 return error;
997}
998
97735f25
TG
999/*
1000 * nanosleep for monotonic and realtime clocks
1001 */
1002static int common_nsleep(const clockid_t which_clock, int flags,
1003 struct timespec *tsave, struct timespec __user *rmtp)
1004{
080344b9
ON
1005 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1006 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1007 which_clock);
97735f25 1008}
1da177e4 1009
362e9c07
HC
1010SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1011 const struct timespec __user *, rqtp,
1012 struct timespec __user *, rmtp)
1da177e4 1013{
a5cd2880 1014 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4 1015 struct timespec t;
1da177e4 1016
a5cd2880 1017 if (!kc)
1da177e4 1018 return -EINVAL;
a5cd2880
TG
1019 if (!kc->nsleep)
1020 return -ENANOSLEEP_NOTSUP;
1da177e4
LT
1021
1022 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1023 return -EFAULT;
1024
5f82b2b7 1025 if (!timespec_valid(&t))
1da177e4
LT
1026 return -EINVAL;
1027
a5cd2880 1028 return kc->nsleep(which_clock, flags, &t, rmtp);
1da177e4 1029}
1711ef38 1030
1711ef38
TA
1031/*
1032 * This will restart clock_nanosleep. This is required only by
1033 * compat_clock_nanosleep_restart for now.
1034 */
59bd5bc2 1035long clock_nanosleep_restart(struct restart_block *restart_block)
1711ef38
TA
1036{
1037 clockid_t which_clock = restart_block->arg0;
59bd5bc2
TG
1038 struct k_clock *kc = clockid_to_kclock(which_clock);
1039
1040 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1041 return -EINVAL;
1711ef38 1042
59bd5bc2 1043 return kc->nsleep_restart(restart_block);
1711ef38 1044}
This page took 0.681406 seconds and 5 git commands to generate.