PM / hibernate: Add missing braces in hibernate_setup()
[deliverable/linux.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
52f5684c 30#include <linux/compiler.h>
db597605 31#include <linux/ktime.h>
25761b6e
RW
32
33#include <asm/uaccess.h>
34#include <asm/mmu_context.h>
35#include <asm/pgtable.h>
36#include <asm/tlbflush.h>
37#include <asm/io.h>
38
25761b6e
RW
39#include "power.h"
40
74dfd666
RW
41static int swsusp_page_is_free(struct page *);
42static void swsusp_set_page_forbidden(struct page *);
43static void swsusp_unset_page_forbidden(struct page *);
44
ddeb6487
RW
45/*
46 * Number of bytes to reserve for memory allocations made by device drivers
47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
48 * cause image creation to fail (tunable via /sys/power/reserved_size).
49 */
50unsigned long reserved_size;
51
52void __init hibernate_reserved_size_init(void)
53{
54 reserved_size = SPARE_PAGES * PAGE_SIZE;
55}
56
fe419535
RW
57/*
58 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
59 * When it is set to N, swsusp will do its best to ensure the image
60 * size will not exceed N bytes, but if that is impossible, it will
61 * try to create the smallest image possible.
fe419535 62 */
ac5c24ec
RW
63unsigned long image_size;
64
65void __init hibernate_image_size_init(void)
66{
1c1be3a9 67 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 68}
fe419535 69
8357376d
RW
70/* List of PBEs needed for restoring the pages that were allocated before
71 * the suspend and included in the suspend image, but have also been
72 * allocated by the "resume" kernel, so their contents cannot be written
73 * directly to their "original" page frames.
74 */
75534b50
RW
75struct pbe *restore_pblist;
76
9c744481
RW
77/* struct linked_page is used to build chains of pages */
78
79#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
80
81struct linked_page {
82 struct linked_page *next;
83 char data[LINKED_PAGE_DATA_SIZE];
84} __packed;
85
86/*
87 * List of "safe" pages (ie. pages that were not used by the image kernel
88 * before hibernation) that may be used as temporary storage for image kernel
89 * memory contents.
90 */
91static struct linked_page *safe_pages_list;
92
8357376d 93/* Pointer to an auxiliary buffer (1 page) */
940864dd 94static void *buffer;
7088a5c0 95
f6143aa6
RW
96/**
97 * @safe_needed - on resume, for storing the PBE list and the image,
98 * we can only use memory pages that do not conflict with the pages
8357376d
RW
99 * used before suspend. The unsafe pages have PageNosaveFree set
100 * and we count them using unsafe_pages.
f6143aa6 101 *
8357376d
RW
102 * Each allocated image page is marked as PageNosave and PageNosaveFree
103 * so that swsusp_free() can release it.
f6143aa6
RW
104 */
105
0bcd888d
RW
106#define PG_ANY 0
107#define PG_SAFE 1
108#define PG_UNSAFE_CLEAR 1
109#define PG_UNSAFE_KEEP 0
110
940864dd 111static unsigned int allocated_unsafe_pages;
f6143aa6 112
8357376d 113static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
114{
115 void *res;
116
117 res = (void *)get_zeroed_page(gfp_mask);
118 if (safe_needed)
7be98234 119 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 120 /* The page is unsafe, mark it for swsusp_free() */
7be98234 121 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 122 allocated_unsafe_pages++;
f6143aa6
RW
123 res = (void *)get_zeroed_page(gfp_mask);
124 }
125 if (res) {
7be98234
RW
126 swsusp_set_page_forbidden(virt_to_page(res));
127 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
128 }
129 return res;
130}
131
9c744481
RW
132static void *__get_safe_page(gfp_t gfp_mask)
133{
134 if (safe_pages_list) {
135 void *ret = safe_pages_list;
136
137 safe_pages_list = safe_pages_list->next;
138 memset(ret, 0, PAGE_SIZE);
139 return ret;
140 }
141 return get_image_page(gfp_mask, PG_SAFE);
142}
143
f6143aa6
RW
144unsigned long get_safe_page(gfp_t gfp_mask)
145{
9c744481 146 return (unsigned long)__get_safe_page(gfp_mask);
8357376d
RW
147}
148
5b6d15de
RW
149static struct page *alloc_image_page(gfp_t gfp_mask)
150{
8357376d
RW
151 struct page *page;
152
153 page = alloc_page(gfp_mask);
154 if (page) {
7be98234
RW
155 swsusp_set_page_forbidden(page);
156 swsusp_set_page_free(page);
8357376d
RW
157 }
158 return page;
f6143aa6
RW
159}
160
307c5971
RW
161static void recycle_safe_page(void *page_address)
162{
163 struct linked_page *lp = page_address;
164
165 lp->next = safe_pages_list;
166 safe_pages_list = lp;
167}
168
f6143aa6
RW
169/**
170 * free_image_page - free page represented by @addr, allocated with
8357376d 171 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
172 */
173
174static inline void free_image_page(void *addr, int clear_nosave_free)
175{
8357376d
RW
176 struct page *page;
177
178 BUG_ON(!virt_addr_valid(addr));
179
180 page = virt_to_page(addr);
181
7be98234 182 swsusp_unset_page_forbidden(page);
f6143aa6 183 if (clear_nosave_free)
7be98234 184 swsusp_unset_page_free(page);
8357376d
RW
185
186 __free_page(page);
f6143aa6
RW
187}
188
b788db79
RW
189static inline void
190free_list_of_pages(struct linked_page *list, int clear_page_nosave)
191{
192 while (list) {
193 struct linked_page *lp = list->next;
194
195 free_image_page(list, clear_page_nosave);
196 list = lp;
197 }
198}
199
200/**
201 * struct chain_allocator is used for allocating small objects out of
202 * a linked list of pages called 'the chain'.
203 *
204 * The chain grows each time when there is no room for a new object in
205 * the current page. The allocated objects cannot be freed individually.
206 * It is only possible to free them all at once, by freeing the entire
207 * chain.
208 *
209 * NOTE: The chain allocator may be inefficient if the allocated objects
210 * are not much smaller than PAGE_SIZE.
211 */
212
213struct chain_allocator {
214 struct linked_page *chain; /* the chain */
215 unsigned int used_space; /* total size of objects allocated out
216 * of the current page
217 */
218 gfp_t gfp_mask; /* mask for allocating pages */
219 int safe_needed; /* if set, only "safe" pages are allocated */
220};
221
222static void
223chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
224{
225 ca->chain = NULL;
226 ca->used_space = LINKED_PAGE_DATA_SIZE;
227 ca->gfp_mask = gfp_mask;
228 ca->safe_needed = safe_needed;
229}
230
231static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
232{
233 void *ret;
234
235 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
236 struct linked_page *lp;
237
9c744481
RW
238 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
239 get_image_page(ca->gfp_mask, PG_ANY);
b788db79
RW
240 if (!lp)
241 return NULL;
242
243 lp->next = ca->chain;
244 ca->chain = lp;
245 ca->used_space = 0;
246 }
247 ret = ca->chain->data + ca->used_space;
248 ca->used_space += size;
249 return ret;
250}
251
b788db79
RW
252/**
253 * Data types related to memory bitmaps.
254 *
255 * Memory bitmap is a structure consiting of many linked lists of
256 * objects. The main list's elements are of type struct zone_bitmap
257 * and each of them corresonds to one zone. For each zone bitmap
258 * object there is a list of objects of type struct bm_block that
0d83304c 259 * represent each blocks of bitmap in which information is stored.
b788db79
RW
260 *
261 * struct memory_bitmap contains a pointer to the main list of zone
262 * bitmap objects, a struct bm_position used for browsing the bitmap,
263 * and a pointer to the list of pages used for allocating all of the
264 * zone bitmap objects and bitmap block objects.
265 *
266 * NOTE: It has to be possible to lay out the bitmap in memory
267 * using only allocations of order 0. Additionally, the bitmap is
268 * designed to work with arbitrary number of zones (this is over the
269 * top for now, but let's avoid making unnecessary assumptions ;-).
270 *
271 * struct zone_bitmap contains a pointer to a list of bitmap block
272 * objects and a pointer to the bitmap block object that has been
273 * most recently used for setting bits. Additionally, it contains the
274 * pfns that correspond to the start and end of the represented zone.
275 *
276 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
277 * information is stored (in the form of a block of bitmap)
278 * It also contains the pfns that correspond to the start and end of
279 * the represented memory area.
f469f02d
JR
280 *
281 * The memory bitmap is organized as a radix tree to guarantee fast random
282 * access to the bits. There is one radix tree for each zone (as returned
283 * from create_mem_extents).
284 *
285 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
286 * two linked lists for the nodes of the tree, one for the inner nodes and
287 * one for the leave nodes. The linked leave nodes are used for fast linear
288 * access of the memory bitmap.
289 *
290 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
291 */
292
293#define BM_END_OF_MAP (~0UL)
294
8de03073 295#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
296#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
297#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79 298
f469f02d
JR
299/*
300 * struct rtree_node is a wrapper struct to link the nodes
301 * of the rtree together for easy linear iteration over
302 * bits and easy freeing
303 */
304struct rtree_node {
305 struct list_head list;
306 unsigned long *data;
307};
308
309/*
310 * struct mem_zone_bm_rtree represents a bitmap used for one
311 * populated memory zone.
312 */
313struct mem_zone_bm_rtree {
314 struct list_head list; /* Link Zones together */
315 struct list_head nodes; /* Radix Tree inner nodes */
316 struct list_head leaves; /* Radix Tree leaves */
317 unsigned long start_pfn; /* Zone start page frame */
318 unsigned long end_pfn; /* Zone end page frame + 1 */
319 struct rtree_node *rtree; /* Radix Tree Root */
320 int levels; /* Number of Radix Tree Levels */
321 unsigned int blocks; /* Number of Bitmap Blocks */
322};
323
b788db79
RW
324/* strcut bm_position is used for browsing memory bitmaps */
325
326struct bm_position {
3a20cb17
JR
327 struct mem_zone_bm_rtree *zone;
328 struct rtree_node *node;
329 unsigned long node_pfn;
330 int node_bit;
b788db79
RW
331};
332
333struct memory_bitmap {
f469f02d 334 struct list_head zones;
b788db79
RW
335 struct linked_page *p_list; /* list of pages used to store zone
336 * bitmap objects and bitmap block
337 * objects
338 */
339 struct bm_position cur; /* most recently used bit position */
340};
341
342/* Functions that operate on memory bitmaps */
343
f469f02d
JR
344#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
345#if BITS_PER_LONG == 32
346#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
347#else
348#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
349#endif
350#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
351
352/*
353 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
354 *
355 * This function is used to allocate inner nodes as well as the
356 * leave nodes of the radix tree. It also adds the node to the
357 * corresponding linked list passed in by the *list parameter.
358 */
359static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
360 struct chain_allocator *ca,
361 struct list_head *list)
362{
363 struct rtree_node *node;
364
365 node = chain_alloc(ca, sizeof(struct rtree_node));
366 if (!node)
367 return NULL;
368
369 node->data = get_image_page(gfp_mask, safe_needed);
370 if (!node->data)
371 return NULL;
372
373 list_add_tail(&node->list, list);
374
375 return node;
376}
377
378/*
379 * add_rtree_block - Add a new leave node to the radix tree
380 *
381 * The leave nodes need to be allocated in order to keep the leaves
382 * linked list in order. This is guaranteed by the zone->blocks
383 * counter.
384 */
385static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
386 int safe_needed, struct chain_allocator *ca)
387{
388 struct rtree_node *node, *block, **dst;
389 unsigned int levels_needed, block_nr;
390 int i;
391
392 block_nr = zone->blocks;
393 levels_needed = 0;
394
395 /* How many levels do we need for this block nr? */
396 while (block_nr) {
397 levels_needed += 1;
398 block_nr >>= BM_RTREE_LEVEL_SHIFT;
399 }
400
401 /* Make sure the rtree has enough levels */
402 for (i = zone->levels; i < levels_needed; i++) {
403 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
404 &zone->nodes);
405 if (!node)
406 return -ENOMEM;
407
408 node->data[0] = (unsigned long)zone->rtree;
409 zone->rtree = node;
410 zone->levels += 1;
411 }
412
413 /* Allocate new block */
414 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
415 if (!block)
416 return -ENOMEM;
417
418 /* Now walk the rtree to insert the block */
419 node = zone->rtree;
420 dst = &zone->rtree;
421 block_nr = zone->blocks;
422 for (i = zone->levels; i > 0; i--) {
423 int index;
424
425 if (!node) {
426 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
427 &zone->nodes);
428 if (!node)
429 return -ENOMEM;
430 *dst = node;
431 }
432
433 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
434 index &= BM_RTREE_LEVEL_MASK;
435 dst = (struct rtree_node **)&((*dst)->data[index]);
436 node = *dst;
437 }
438
439 zone->blocks += 1;
440 *dst = block;
441
442 return 0;
443}
444
445static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
446 int clear_nosave_free);
447
448/*
449 * create_zone_bm_rtree - create a radix tree for one zone
450 *
451 * Allocated the mem_zone_bm_rtree structure and initializes it.
452 * This function also allocated and builds the radix tree for the
453 * zone.
454 */
455static struct mem_zone_bm_rtree *
456create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
457 struct chain_allocator *ca,
458 unsigned long start, unsigned long end)
459{
460 struct mem_zone_bm_rtree *zone;
461 unsigned int i, nr_blocks;
462 unsigned long pages;
463
464 pages = end - start;
465 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
466 if (!zone)
467 return NULL;
468
469 INIT_LIST_HEAD(&zone->nodes);
470 INIT_LIST_HEAD(&zone->leaves);
471 zone->start_pfn = start;
472 zone->end_pfn = end;
473 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
474
475 for (i = 0; i < nr_blocks; i++) {
476 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
477 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
478 return NULL;
479 }
480 }
481
482 return zone;
483}
484
485/*
486 * free_zone_bm_rtree - Free the memory of the radix tree
487 *
488 * Free all node pages of the radix tree. The mem_zone_bm_rtree
489 * structure itself is not freed here nor are the rtree_node
490 * structs.
491 */
492static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
493 int clear_nosave_free)
494{
495 struct rtree_node *node;
496
497 list_for_each_entry(node, &zone->nodes, list)
498 free_image_page(node->data, clear_nosave_free);
499
500 list_for_each_entry(node, &zone->leaves, list)
501 free_image_page(node->data, clear_nosave_free);
502}
503
b788db79
RW
504static void memory_bm_position_reset(struct memory_bitmap *bm)
505{
3a20cb17
JR
506 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
507 list);
508 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
509 struct rtree_node, list);
510 bm->cur.node_pfn = 0;
511 bm->cur.node_bit = 0;
b788db79
RW
512}
513
514static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
515
846705de
RW
516struct mem_extent {
517 struct list_head hook;
518 unsigned long start;
519 unsigned long end;
520};
521
b788db79 522/**
846705de
RW
523 * free_mem_extents - free a list of memory extents
524 * @list - list of extents to empty
b788db79 525 */
846705de
RW
526static void free_mem_extents(struct list_head *list)
527{
528 struct mem_extent *ext, *aux;
b788db79 529
846705de
RW
530 list_for_each_entry_safe(ext, aux, list, hook) {
531 list_del(&ext->hook);
532 kfree(ext);
533 }
534}
535
536/**
537 * create_mem_extents - create a list of memory extents representing
538 * contiguous ranges of PFNs
539 * @list - list to put the extents into
540 * @gfp_mask - mask to use for memory allocations
541 */
542static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 543{
846705de 544 struct zone *zone;
b788db79 545
846705de 546 INIT_LIST_HEAD(list);
b788db79 547
ee99c71c 548 for_each_populated_zone(zone) {
846705de
RW
549 unsigned long zone_start, zone_end;
550 struct mem_extent *ext, *cur, *aux;
551
846705de 552 zone_start = zone->zone_start_pfn;
c33bc315 553 zone_end = zone_end_pfn(zone);
846705de
RW
554
555 list_for_each_entry(ext, list, hook)
556 if (zone_start <= ext->end)
557 break;
b788db79 558
846705de
RW
559 if (&ext->hook == list || zone_end < ext->start) {
560 /* New extent is necessary */
561 struct mem_extent *new_ext;
562
563 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
564 if (!new_ext) {
565 free_mem_extents(list);
566 return -ENOMEM;
567 }
568 new_ext->start = zone_start;
569 new_ext->end = zone_end;
570 list_add_tail(&new_ext->hook, &ext->hook);
571 continue;
572 }
573
574 /* Merge this zone's range of PFNs with the existing one */
575 if (zone_start < ext->start)
576 ext->start = zone_start;
577 if (zone_end > ext->end)
578 ext->end = zone_end;
579
580 /* More merging may be possible */
581 cur = ext;
582 list_for_each_entry_safe_continue(cur, aux, list, hook) {
583 if (zone_end < cur->start)
584 break;
585 if (zone_end < cur->end)
586 ext->end = cur->end;
587 list_del(&cur->hook);
588 kfree(cur);
589 }
b788db79 590 }
846705de
RW
591
592 return 0;
b788db79
RW
593}
594
595/**
596 * memory_bm_create - allocate memory for a memory bitmap
597 */
b788db79
RW
598static int
599memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
600{
601 struct chain_allocator ca;
846705de
RW
602 struct list_head mem_extents;
603 struct mem_extent *ext;
604 int error;
b788db79
RW
605
606 chain_init(&ca, gfp_mask, safe_needed);
f469f02d 607 INIT_LIST_HEAD(&bm->zones);
b788db79 608
846705de
RW
609 error = create_mem_extents(&mem_extents, gfp_mask);
610 if (error)
611 return error;
b788db79 612
846705de 613 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 614 struct mem_zone_bm_rtree *zone;
f469f02d
JR
615
616 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
617 ext->start, ext->end);
9047eb62
JR
618 if (!zone) {
619 error = -ENOMEM;
f469f02d 620 goto Error;
9047eb62 621 }
f469f02d 622 list_add_tail(&zone->list, &bm->zones);
b788db79 623 }
846705de 624
b788db79
RW
625 bm->p_list = ca.chain;
626 memory_bm_position_reset(bm);
846705de
RW
627 Exit:
628 free_mem_extents(&mem_extents);
629 return error;
b788db79 630
846705de 631 Error:
b788db79
RW
632 bm->p_list = ca.chain;
633 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 634 goto Exit;
b788db79
RW
635}
636
637/**
638 * memory_bm_free - free memory occupied by the memory bitmap @bm
639 */
b788db79
RW
640static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
641{
f469f02d 642 struct mem_zone_bm_rtree *zone;
b788db79 643
f469f02d
JR
644 list_for_each_entry(zone, &bm->zones, list)
645 free_zone_bm_rtree(zone, clear_nosave_free);
646
b788db79 647 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 648
f469f02d 649 INIT_LIST_HEAD(&bm->zones);
b788db79
RW
650}
651
652/**
9047eb62
JR
653 * memory_bm_find_bit - Find the bit for pfn in the memory
654 * bitmap
07a33823 655 *
9047eb62
JR
656 * Find the bit in the bitmap @bm that corresponds to given pfn.
657 * The cur.zone, cur.block and cur.node_pfn member of @bm are
658 * updated.
659 * It walks the radix tree to find the page which contains the bit for
07a33823
JR
660 * pfn and returns the bit position in **addr and *bit_nr.
661 */
9047eb62
JR
662static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
663 void **addr, unsigned int *bit_nr)
07a33823
JR
664{
665 struct mem_zone_bm_rtree *curr, *zone;
666 struct rtree_node *node;
667 int i, block_nr;
668
3a20cb17
JR
669 zone = bm->cur.zone;
670
671 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
672 goto zone_found;
673
07a33823
JR
674 zone = NULL;
675
676 /* Find the right zone */
677 list_for_each_entry(curr, &bm->zones, list) {
678 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
679 zone = curr;
680 break;
681 }
682 }
683
684 if (!zone)
685 return -EFAULT;
686
3a20cb17 687zone_found:
07a33823
JR
688 /*
689 * We have a zone. Now walk the radix tree to find the leave
690 * node for our pfn.
691 */
3a20cb17
JR
692
693 node = bm->cur.node;
694 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
695 goto node_found;
696
07a33823
JR
697 node = zone->rtree;
698 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
699
700 for (i = zone->levels; i > 0; i--) {
701 int index;
702
703 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
704 index &= BM_RTREE_LEVEL_MASK;
705 BUG_ON(node->data[index] == 0);
706 node = (struct rtree_node *)node->data[index];
707 }
708
3a20cb17
JR
709node_found:
710 /* Update last position */
711 bm->cur.zone = zone;
712 bm->cur.node = node;
713 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
714
07a33823
JR
715 /* Set return values */
716 *addr = node->data;
717 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
718
719 return 0;
720}
721
74dfd666
RW
722static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
723{
724 void *addr;
725 unsigned int bit;
a82f7119 726 int error;
74dfd666 727
a82f7119
RW
728 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
729 BUG_ON(error);
74dfd666
RW
730 set_bit(bit, addr);
731}
732
a82f7119
RW
733static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
734{
735 void *addr;
736 unsigned int bit;
737 int error;
738
739 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
07a33823
JR
740 if (!error)
741 set_bit(bit, addr);
742
a82f7119
RW
743 return error;
744}
745
74dfd666
RW
746static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
747{
748 void *addr;
749 unsigned int bit;
a82f7119 750 int error;
74dfd666 751
a82f7119
RW
752 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
753 BUG_ON(error);
74dfd666
RW
754 clear_bit(bit, addr);
755}
756
fdd64ed5
JR
757static void memory_bm_clear_current(struct memory_bitmap *bm)
758{
759 int bit;
760
761 bit = max(bm->cur.node_bit - 1, 0);
762 clear_bit(bit, bm->cur.node->data);
763}
764
74dfd666
RW
765static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
766{
767 void *addr;
768 unsigned int bit;
9047eb62 769 int error;
74dfd666 770
a82f7119
RW
771 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
772 BUG_ON(error);
9047eb62 773 return test_bit(bit, addr);
b788db79
RW
774}
775
69643279
RW
776static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
777{
778 void *addr;
779 unsigned int bit;
07a33823 780
9047eb62 781 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
b788db79
RW
782}
783
3a20cb17
JR
784/*
785 * rtree_next_node - Jumps to the next leave node
786 *
787 * Sets the position to the beginning of the next node in the
788 * memory bitmap. This is either the next node in the current
789 * zone's radix tree or the first node in the radix tree of the
790 * next zone.
791 *
792 * Returns true if there is a next node, false otherwise.
793 */
794static bool rtree_next_node(struct memory_bitmap *bm)
795{
796 bm->cur.node = list_entry(bm->cur.node->list.next,
797 struct rtree_node, list);
798 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
799 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
800 bm->cur.node_bit = 0;
0f7d83e8 801 touch_softlockup_watchdog();
3a20cb17
JR
802 return true;
803 }
804
805 /* No more nodes, goto next zone */
806 bm->cur.zone = list_entry(bm->cur.zone->list.next,
807 struct mem_zone_bm_rtree, list);
808 if (&bm->cur.zone->list != &bm->zones) {
809 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
810 struct rtree_node, list);
811 bm->cur.node_pfn = 0;
812 bm->cur.node_bit = 0;
813 return true;
814 }
815
816 /* No more zones */
817 return false;
818}
819
9047eb62
JR
820/**
821 * memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
3a20cb17
JR
822 *
823 * Starting from the last returned position this function searches
824 * for the next set bit in the memory bitmap and returns its
825 * number. If no more bit is set BM_END_OF_MAP is returned.
9047eb62
JR
826 *
827 * It is required to run memory_bm_position_reset() before the
828 * first call to this function.
3a20cb17 829 */
9047eb62 830static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
3a20cb17
JR
831{
832 unsigned long bits, pfn, pages;
833 int bit;
834
835 do {
836 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
837 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
838 bit = find_next_bit(bm->cur.node->data, bits,
839 bm->cur.node_bit);
840 if (bit < bits) {
841 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
842 bm->cur.node_bit = bit + 1;
843 return pfn;
844 }
845 } while (rtree_next_node(bm));
846
847 return BM_END_OF_MAP;
848}
849
74dfd666
RW
850/**
851 * This structure represents a range of page frames the contents of which
852 * should not be saved during the suspend.
853 */
854
855struct nosave_region {
856 struct list_head list;
857 unsigned long start_pfn;
858 unsigned long end_pfn;
859};
860
861static LIST_HEAD(nosave_regions);
862
307c5971
RW
863static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
864{
865 struct rtree_node *node;
866
867 list_for_each_entry(node, &zone->nodes, list)
868 recycle_safe_page(node->data);
869
870 list_for_each_entry(node, &zone->leaves, list)
871 recycle_safe_page(node->data);
872}
873
874static void memory_bm_recycle(struct memory_bitmap *bm)
875{
876 struct mem_zone_bm_rtree *zone;
877 struct linked_page *p_list;
878
879 list_for_each_entry(zone, &bm->zones, list)
880 recycle_zone_bm_rtree(zone);
881
882 p_list = bm->p_list;
883 while (p_list) {
884 struct linked_page *lp = p_list;
885
886 p_list = lp->next;
887 recycle_safe_page(lp);
888 }
889}
890
74dfd666
RW
891/**
892 * register_nosave_region - register a range of page frames the contents
893 * of which should not be saved during the suspend (to be used in the early
894 * initialization code)
895 */
896
897void __init
940d67f6
JB
898__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
899 int use_kmalloc)
74dfd666
RW
900{
901 struct nosave_region *region;
902
903 if (start_pfn >= end_pfn)
904 return;
905
906 if (!list_empty(&nosave_regions)) {
907 /* Try to extend the previous region (they should be sorted) */
908 region = list_entry(nosave_regions.prev,
909 struct nosave_region, list);
910 if (region->end_pfn == start_pfn) {
911 region->end_pfn = end_pfn;
912 goto Report;
913 }
914 }
940d67f6
JB
915 if (use_kmalloc) {
916 /* during init, this shouldn't fail */
917 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
918 BUG_ON(!region);
919 } else
920 /* This allocation cannot fail */
c2f69cda 921 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
74dfd666
RW
922 region->start_pfn = start_pfn;
923 region->end_pfn = end_pfn;
924 list_add_tail(&region->list, &nosave_regions);
925 Report:
cd38ca85
BH
926 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
927 (unsigned long long) start_pfn << PAGE_SHIFT,
928 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
929}
930
931/*
932 * Set bits in this map correspond to the page frames the contents of which
933 * should not be saved during the suspend.
934 */
935static struct memory_bitmap *forbidden_pages_map;
936
937/* Set bits in this map correspond to free page frames. */
938static struct memory_bitmap *free_pages_map;
939
940/*
941 * Each page frame allocated for creating the image is marked by setting the
942 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
943 */
944
945void swsusp_set_page_free(struct page *page)
946{
947 if (free_pages_map)
948 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
949}
950
951static int swsusp_page_is_free(struct page *page)
952{
953 return free_pages_map ?
954 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
955}
956
957void swsusp_unset_page_free(struct page *page)
958{
959 if (free_pages_map)
960 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
961}
962
963static void swsusp_set_page_forbidden(struct page *page)
964{
965 if (forbidden_pages_map)
966 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
967}
968
969int swsusp_page_is_forbidden(struct page *page)
970{
971 return forbidden_pages_map ?
972 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
973}
974
975static void swsusp_unset_page_forbidden(struct page *page)
976{
977 if (forbidden_pages_map)
978 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
979}
980
981/**
982 * mark_nosave_pages - set bits corresponding to the page frames the
983 * contents of which should not be saved in a given bitmap.
984 */
985
986static void mark_nosave_pages(struct memory_bitmap *bm)
987{
988 struct nosave_region *region;
989
990 if (list_empty(&nosave_regions))
991 return;
992
993 list_for_each_entry(region, &nosave_regions, list) {
994 unsigned long pfn;
995
69f1d475
BH
996 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
997 (unsigned long long) region->start_pfn << PAGE_SHIFT,
998 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
999 - 1);
74dfd666
RW
1000
1001 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
1002 if (pfn_valid(pfn)) {
1003 /*
1004 * It is safe to ignore the result of
1005 * mem_bm_set_bit_check() here, since we won't
1006 * touch the PFNs for which the error is
1007 * returned anyway.
1008 */
1009 mem_bm_set_bit_check(bm, pfn);
1010 }
74dfd666
RW
1011 }
1012}
1013
1014/**
1015 * create_basic_memory_bitmaps - create bitmaps needed for marking page
1016 * frames that should not be saved and free page frames. The pointers
1017 * forbidden_pages_map and free_pages_map are only modified if everything
1018 * goes well, because we don't want the bits to be used before both bitmaps
1019 * are set up.
1020 */
1021
1022int create_basic_memory_bitmaps(void)
1023{
1024 struct memory_bitmap *bm1, *bm2;
1025 int error = 0;
1026
aab17289
RW
1027 if (forbidden_pages_map && free_pages_map)
1028 return 0;
1029 else
1030 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 1031
0709db60 1032 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1033 if (!bm1)
1034 return -ENOMEM;
1035
0709db60 1036 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1037 if (error)
1038 goto Free_first_object;
1039
0709db60 1040 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1041 if (!bm2)
1042 goto Free_first_bitmap;
1043
0709db60 1044 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1045 if (error)
1046 goto Free_second_object;
1047
1048 forbidden_pages_map = bm1;
1049 free_pages_map = bm2;
1050 mark_nosave_pages(forbidden_pages_map);
1051
23976728 1052 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
1053
1054 return 0;
1055
1056 Free_second_object:
1057 kfree(bm2);
1058 Free_first_bitmap:
1059 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1060 Free_first_object:
1061 kfree(bm1);
1062 return -ENOMEM;
1063}
1064
1065/**
1066 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1067 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1068 * so that the bitmaps themselves are not referred to while they are being
1069 * freed.
1070 */
1071
1072void free_basic_memory_bitmaps(void)
1073{
1074 struct memory_bitmap *bm1, *bm2;
1075
6a0c7cd3
RW
1076 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1077 return;
74dfd666
RW
1078
1079 bm1 = forbidden_pages_map;
1080 bm2 = free_pages_map;
1081 forbidden_pages_map = NULL;
1082 free_pages_map = NULL;
1083 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1084 kfree(bm1);
1085 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1086 kfree(bm2);
1087
23976728 1088 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
1089}
1090
b788db79
RW
1091/**
1092 * snapshot_additional_pages - estimate the number of additional pages
1093 * be needed for setting up the suspend image data structures for given
1094 * zone (usually the returned value is greater than the exact number)
1095 */
1096
1097unsigned int snapshot_additional_pages(struct zone *zone)
1098{
f469f02d 1099 unsigned int rtree, nodes;
b788db79 1100
f469f02d
JR
1101 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1102 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1103 LINKED_PAGE_DATA_SIZE);
1104 while (nodes > 1) {
1105 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1106 rtree += nodes;
1107 }
1108
9047eb62 1109 return 2 * rtree;
b788db79
RW
1110}
1111
8357376d
RW
1112#ifdef CONFIG_HIGHMEM
1113/**
1114 * count_free_highmem_pages - compute the total number of free highmem
1115 * pages, system-wide.
1116 */
1117
1118static unsigned int count_free_highmem_pages(void)
1119{
1120 struct zone *zone;
1121 unsigned int cnt = 0;
1122
ee99c71c
KM
1123 for_each_populated_zone(zone)
1124 if (is_highmem(zone))
d23ad423 1125 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1126
1127 return cnt;
1128}
1129
1130/**
1131 * saveable_highmem_page - Determine whether a highmem page should be
1132 * included in the suspend image.
1133 *
1134 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1135 * and it isn't a part of a free chunk of pages.
1136 */
846705de 1137static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1138{
1139 struct page *page;
1140
1141 if (!pfn_valid(pfn))
1142 return NULL;
1143
1144 page = pfn_to_page(pfn);
846705de
RW
1145 if (page_zone(page) != zone)
1146 return NULL;
8357376d
RW
1147
1148 BUG_ON(!PageHighMem(page));
1149
7be98234
RW
1150 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1151 PageReserved(page))
8357376d
RW
1152 return NULL;
1153
c6968e73
SG
1154 if (page_is_guard(page))
1155 return NULL;
1156
8357376d
RW
1157 return page;
1158}
1159
1160/**
1161 * count_highmem_pages - compute the total number of saveable highmem
1162 * pages.
1163 */
1164
fe419535 1165static unsigned int count_highmem_pages(void)
8357376d
RW
1166{
1167 struct zone *zone;
1168 unsigned int n = 0;
1169
98e73dc5 1170 for_each_populated_zone(zone) {
8357376d
RW
1171 unsigned long pfn, max_zone_pfn;
1172
1173 if (!is_highmem(zone))
1174 continue;
1175
1176 mark_free_pages(zone);
c33bc315 1177 max_zone_pfn = zone_end_pfn(zone);
8357376d 1178 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1179 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1180 n++;
1181 }
1182 return n;
1183}
1184#else
846705de
RW
1185static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1186{
1187 return NULL;
1188}
8357376d
RW
1189#endif /* CONFIG_HIGHMEM */
1190
25761b6e 1191/**
8a235efa
RW
1192 * saveable_page - Determine whether a non-highmem page should be included
1193 * in the suspend image.
25761b6e 1194 *
8357376d
RW
1195 * We should save the page if it isn't Nosave, and is not in the range
1196 * of pages statically defined as 'unsaveable', and it isn't a part of
1197 * a free chunk of pages.
25761b6e 1198 */
846705de 1199static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1200{
de491861 1201 struct page *page;
25761b6e
RW
1202
1203 if (!pfn_valid(pfn))
ae83c5ee 1204 return NULL;
25761b6e
RW
1205
1206 page = pfn_to_page(pfn);
846705de
RW
1207 if (page_zone(page) != zone)
1208 return NULL;
ae83c5ee 1209
8357376d
RW
1210 BUG_ON(PageHighMem(page));
1211
7be98234 1212 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1213 return NULL;
8357376d 1214
8a235efa
RW
1215 if (PageReserved(page)
1216 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1217 return NULL;
25761b6e 1218
c6968e73
SG
1219 if (page_is_guard(page))
1220 return NULL;
1221
ae83c5ee 1222 return page;
25761b6e
RW
1223}
1224
8357376d
RW
1225/**
1226 * count_data_pages - compute the total number of saveable non-highmem
1227 * pages.
1228 */
1229
fe419535 1230static unsigned int count_data_pages(void)
25761b6e
RW
1231{
1232 struct zone *zone;
ae83c5ee 1233 unsigned long pfn, max_zone_pfn;
dc19d507 1234 unsigned int n = 0;
25761b6e 1235
98e73dc5 1236 for_each_populated_zone(zone) {
25761b6e
RW
1237 if (is_highmem(zone))
1238 continue;
8357376d 1239
25761b6e 1240 mark_free_pages(zone);
c33bc315 1241 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1242 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1243 if (saveable_page(zone, pfn))
8357376d 1244 n++;
25761b6e 1245 }
a0f49651 1246 return n;
25761b6e
RW
1247}
1248
8357376d
RW
1249/* This is needed, because copy_page and memcpy are not usable for copying
1250 * task structs.
1251 */
1252static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1253{
1254 int n;
1255
f623f0db
RW
1256 for (n = PAGE_SIZE / sizeof(long); n; n--)
1257 *dst++ = *src++;
1258}
1259
8a235efa
RW
1260
1261/**
1262 * safe_copy_page - check if the page we are going to copy is marked as
1263 * present in the kernel page tables (this always is the case if
1264 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1265 * kernel_page_present() always returns 'true').
1266 */
1267static void safe_copy_page(void *dst, struct page *s_page)
1268{
1269 if (kernel_page_present(s_page)) {
1270 do_copy_page(dst, page_address(s_page));
1271 } else {
1272 kernel_map_pages(s_page, 1, 1);
1273 do_copy_page(dst, page_address(s_page));
1274 kernel_map_pages(s_page, 1, 0);
1275 }
1276}
1277
1278
8357376d
RW
1279#ifdef CONFIG_HIGHMEM
1280static inline struct page *
1281page_is_saveable(struct zone *zone, unsigned long pfn)
1282{
1283 return is_highmem(zone) ?
846705de 1284 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1285}
1286
8a235efa 1287static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1288{
1289 struct page *s_page, *d_page;
1290 void *src, *dst;
1291
1292 s_page = pfn_to_page(src_pfn);
1293 d_page = pfn_to_page(dst_pfn);
1294 if (PageHighMem(s_page)) {
0de9a1e2
CW
1295 src = kmap_atomic(s_page);
1296 dst = kmap_atomic(d_page);
8357376d 1297 do_copy_page(dst, src);
0de9a1e2
CW
1298 kunmap_atomic(dst);
1299 kunmap_atomic(src);
8357376d 1300 } else {
8357376d
RW
1301 if (PageHighMem(d_page)) {
1302 /* Page pointed to by src may contain some kernel
1303 * data modified by kmap_atomic()
1304 */
8a235efa 1305 safe_copy_page(buffer, s_page);
0de9a1e2 1306 dst = kmap_atomic(d_page);
3ecb01df 1307 copy_page(dst, buffer);
0de9a1e2 1308 kunmap_atomic(dst);
8357376d 1309 } else {
8a235efa 1310 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1311 }
1312 }
1313}
1314#else
846705de 1315#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1316
8a235efa 1317static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1318{
8a235efa
RW
1319 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1320 pfn_to_page(src_pfn));
8357376d
RW
1321}
1322#endif /* CONFIG_HIGHMEM */
1323
b788db79
RW
1324static void
1325copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1326{
1327 struct zone *zone;
b788db79 1328 unsigned long pfn;
25761b6e 1329
98e73dc5 1330 for_each_populated_zone(zone) {
b788db79
RW
1331 unsigned long max_zone_pfn;
1332
25761b6e 1333 mark_free_pages(zone);
c33bc315 1334 max_zone_pfn = zone_end_pfn(zone);
b788db79 1335 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1336 if (page_is_saveable(zone, pfn))
b788db79 1337 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1338 }
b788db79
RW
1339 memory_bm_position_reset(orig_bm);
1340 memory_bm_position_reset(copy_bm);
df7c4872 1341 for(;;) {
b788db79 1342 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1343 if (unlikely(pfn == BM_END_OF_MAP))
1344 break;
1345 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1346 }
25761b6e
RW
1347}
1348
8357376d
RW
1349/* Total number of image pages */
1350static unsigned int nr_copy_pages;
1351/* Number of pages needed for saving the original pfns of the image pages */
1352static unsigned int nr_meta_pages;
64a473cb
RW
1353/*
1354 * Numbers of normal and highmem page frames allocated for hibernation image
1355 * before suspending devices.
1356 */
1357unsigned int alloc_normal, alloc_highmem;
1358/*
1359 * Memory bitmap used for marking saveable pages (during hibernation) or
1360 * hibernation image pages (during restore)
1361 */
1362static struct memory_bitmap orig_bm;
1363/*
1364 * Memory bitmap used during hibernation for marking allocated page frames that
1365 * will contain copies of saveable pages. During restore it is initially used
1366 * for marking hibernation image pages, but then the set bits from it are
1367 * duplicated in @orig_bm and it is released. On highmem systems it is next
1368 * used for marking "safe" highmem pages, but it has to be reinitialized for
1369 * this purpose.
1370 */
1371static struct memory_bitmap copy_bm;
8357376d 1372
25761b6e 1373/**
940864dd 1374 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1375 *
940864dd
RW
1376 * Suspend pages are alocated before the atomic copy is made, so we
1377 * need to release them after the resume.
25761b6e
RW
1378 */
1379
1380void swsusp_free(void)
1381{
fdd64ed5 1382 unsigned long fb_pfn, fr_pfn;
6efde38f 1383
fdd64ed5
JR
1384 if (!forbidden_pages_map || !free_pages_map)
1385 goto out;
1386
1387 memory_bm_position_reset(forbidden_pages_map);
1388 memory_bm_position_reset(free_pages_map);
1389
1390loop:
1391 fr_pfn = memory_bm_next_pfn(free_pages_map);
1392 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1393
1394 /*
1395 * Find the next bit set in both bitmaps. This is guaranteed to
1396 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1397 */
1398 do {
1399 if (fb_pfn < fr_pfn)
1400 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1401 if (fr_pfn < fb_pfn)
1402 fr_pfn = memory_bm_next_pfn(free_pages_map);
1403 } while (fb_pfn != fr_pfn);
1404
1405 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1406 struct page *page = pfn_to_page(fr_pfn);
1407
1408 memory_bm_clear_current(forbidden_pages_map);
1409 memory_bm_clear_current(free_pages_map);
1410 __free_page(page);
1411 goto loop;
25761b6e 1412 }
fdd64ed5
JR
1413
1414out:
f577eb30
RW
1415 nr_copy_pages = 0;
1416 nr_meta_pages = 0;
75534b50 1417 restore_pblist = NULL;
6e1819d6 1418 buffer = NULL;
64a473cb
RW
1419 alloc_normal = 0;
1420 alloc_highmem = 0;
25761b6e
RW
1421}
1422
4bb33435
RW
1423/* Helper functions used for the shrinking of memory. */
1424
1425#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1426
fe419535 1427/**
4bb33435
RW
1428 * preallocate_image_pages - Allocate a number of pages for hibernation image
1429 * @nr_pages: Number of page frames to allocate.
1430 * @mask: GFP flags to use for the allocation.
fe419535 1431 *
4bb33435
RW
1432 * Return value: Number of page frames actually allocated
1433 */
1434static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1435{
1436 unsigned long nr_alloc = 0;
1437
1438 while (nr_pages > 0) {
64a473cb
RW
1439 struct page *page;
1440
1441 page = alloc_image_page(mask);
1442 if (!page)
4bb33435 1443 break;
64a473cb
RW
1444 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1445 if (PageHighMem(page))
1446 alloc_highmem++;
1447 else
1448 alloc_normal++;
4bb33435
RW
1449 nr_pages--;
1450 nr_alloc++;
1451 }
1452
1453 return nr_alloc;
1454}
1455
6715045d
RW
1456static unsigned long preallocate_image_memory(unsigned long nr_pages,
1457 unsigned long avail_normal)
4bb33435 1458{
6715045d
RW
1459 unsigned long alloc;
1460
1461 if (avail_normal <= alloc_normal)
1462 return 0;
1463
1464 alloc = avail_normal - alloc_normal;
1465 if (nr_pages < alloc)
1466 alloc = nr_pages;
1467
1468 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1469}
1470
1471#ifdef CONFIG_HIGHMEM
1472static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1473{
1474 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1475}
1476
1477/**
1478 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1479 */
4bb33435
RW
1480static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1481{
1482 x *= multiplier;
1483 do_div(x, base);
1484 return (unsigned long)x;
1485}
fe419535 1486
4bb33435
RW
1487static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1488 unsigned long highmem,
1489 unsigned long total)
fe419535 1490{
4bb33435
RW
1491 unsigned long alloc = __fraction(nr_pages, highmem, total);
1492
1493 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1494}
4bb33435
RW
1495#else /* CONFIG_HIGHMEM */
1496static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1497{
1498 return 0;
1499}
1500
1501static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1502 unsigned long highmem,
1503 unsigned long total)
1504{
1505 return 0;
1506}
1507#endif /* CONFIG_HIGHMEM */
fe419535 1508
4bb33435 1509/**
64a473cb
RW
1510 * free_unnecessary_pages - Release preallocated pages not needed for the image
1511 */
a64fc82c 1512static unsigned long free_unnecessary_pages(void)
64a473cb 1513{
a64fc82c 1514 unsigned long save, to_free_normal, to_free_highmem, free;
64a473cb 1515
6715045d
RW
1516 save = count_data_pages();
1517 if (alloc_normal >= save) {
1518 to_free_normal = alloc_normal - save;
1519 save = 0;
1520 } else {
1521 to_free_normal = 0;
1522 save -= alloc_normal;
1523 }
1524 save += count_highmem_pages();
1525 if (alloc_highmem >= save) {
1526 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1527 } else {
1528 to_free_highmem = 0;
4d4cf23c
RW
1529 save -= alloc_highmem;
1530 if (to_free_normal > save)
1531 to_free_normal -= save;
1532 else
1533 to_free_normal = 0;
64a473cb 1534 }
a64fc82c 1535 free = to_free_normal + to_free_highmem;
64a473cb
RW
1536
1537 memory_bm_position_reset(&copy_bm);
1538
a9c9b442 1539 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1540 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1541 struct page *page = pfn_to_page(pfn);
1542
1543 if (PageHighMem(page)) {
1544 if (!to_free_highmem)
1545 continue;
1546 to_free_highmem--;
1547 alloc_highmem--;
1548 } else {
1549 if (!to_free_normal)
1550 continue;
1551 to_free_normal--;
1552 alloc_normal--;
1553 }
1554 memory_bm_clear_bit(&copy_bm, pfn);
1555 swsusp_unset_page_forbidden(page);
1556 swsusp_unset_page_free(page);
1557 __free_page(page);
1558 }
a64fc82c
WK
1559
1560 return free;
64a473cb
RW
1561}
1562
ef4aede3
RW
1563/**
1564 * minimum_image_size - Estimate the minimum acceptable size of an image
1565 * @saveable: Number of saveable pages in the system.
1566 *
1567 * We want to avoid attempting to free too much memory too hard, so estimate the
1568 * minimum acceptable size of a hibernation image to use as the lower limit for
1569 * preallocating memory.
1570 *
1571 * We assume that the minimum image size should be proportional to
1572 *
1573 * [number of saveable pages] - [number of pages that can be freed in theory]
1574 *
1575 * where the second term is the sum of (1) reclaimable slab pages, (2) active
4d434820 1576 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
ef4aede3
RW
1577 * minus mapped file pages.
1578 */
1579static unsigned long minimum_image_size(unsigned long saveable)
1580{
1581 unsigned long size;
1582
1583 size = global_page_state(NR_SLAB_RECLAIMABLE)
1584 + global_page_state(NR_ACTIVE_ANON)
1585 + global_page_state(NR_INACTIVE_ANON)
1586 + global_page_state(NR_ACTIVE_FILE)
1587 + global_page_state(NR_INACTIVE_FILE)
1588 - global_page_state(NR_FILE_MAPPED);
1589
1590 return saveable <= size ? 0 : saveable - size;
1591}
1592
64a473cb
RW
1593/**
1594 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1595 *
1596 * To create a hibernation image it is necessary to make a copy of every page
1597 * frame in use. We also need a number of page frames to be free during
1598 * hibernation for allocations made while saving the image and for device
1599 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1600 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1601 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1602 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1603 * total number of available page frames and allocate at least
4bb33435 1604 *
ddeb6487
RW
1605 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1606 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1607 *
1608 * of them, which corresponds to the maximum size of a hibernation image.
1609 *
1610 * If image_size is set below the number following from the above formula,
1611 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1612 * pages in the system is below the requested image size or the minimum
1613 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1614 */
64a473cb 1615int hibernate_preallocate_memory(void)
fe419535 1616{
fe419535 1617 struct zone *zone;
4bb33435 1618 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1619 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
db597605 1620 ktime_t start, stop;
64a473cb 1621 int error;
fe419535 1622
64a473cb 1623 printk(KERN_INFO "PM: Preallocating image memory... ");
db597605 1624 start = ktime_get();
fe419535 1625
64a473cb
RW
1626 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1627 if (error)
1628 goto err_out;
1629
1630 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1631 if (error)
1632 goto err_out;
1633
1634 alloc_normal = 0;
1635 alloc_highmem = 0;
1636
4bb33435 1637 /* Count the number of saveable data pages. */
64a473cb 1638 save_highmem = count_highmem_pages();
4bb33435 1639 saveable = count_data_pages();
fe419535 1640
4bb33435
RW
1641 /*
1642 * Compute the total number of page frames we can use (count) and the
1643 * number of pages needed for image metadata (size).
1644 */
1645 count = saveable;
64a473cb
RW
1646 saveable += save_highmem;
1647 highmem = save_highmem;
4bb33435
RW
1648 size = 0;
1649 for_each_populated_zone(zone) {
1650 size += snapshot_additional_pages(zone);
1651 if (is_highmem(zone))
1652 highmem += zone_page_state(zone, NR_FREE_PAGES);
1653 else
1654 count += zone_page_state(zone, NR_FREE_PAGES);
1655 }
6715045d 1656 avail_normal = count;
4bb33435
RW
1657 count += highmem;
1658 count -= totalreserve_pages;
1659
85055dd8
MS
1660 /* Add number of pages required for page keys (s390 only). */
1661 size += page_key_additional_pages(saveable);
1662
4bb33435 1663 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1664 max_size = (count - (size + PAGES_FOR_IO)) / 2
1665 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1666 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1667 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1668 if (size > max_size)
1669 size = max_size;
1670 /*
266f1a25
RW
1671 * If the desired number of image pages is at least as large as the
1672 * current number of saveable pages in memory, allocate page frames for
1673 * the image and we're done.
4bb33435 1674 */
64a473cb
RW
1675 if (size >= saveable) {
1676 pages = preallocate_image_highmem(save_highmem);
6715045d 1677 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1678 goto out;
64a473cb 1679 }
4bb33435 1680
ef4aede3
RW
1681 /* Estimate the minimum size of the image. */
1682 pages = minimum_image_size(saveable);
6715045d
RW
1683 /*
1684 * To avoid excessive pressure on the normal zone, leave room in it to
1685 * accommodate an image of the minimum size (unless it's already too
1686 * small, in which case don't preallocate pages from it at all).
1687 */
1688 if (avail_normal > pages)
1689 avail_normal -= pages;
1690 else
1691 avail_normal = 0;
ef4aede3
RW
1692 if (size < pages)
1693 size = min_t(unsigned long, pages, max_size);
1694
4bb33435
RW
1695 /*
1696 * Let the memory management subsystem know that we're going to need a
1697 * large number of page frames to allocate and make it free some memory.
1698 * NOTE: If this is not done, performance will be hurt badly in some
1699 * test cases.
1700 */
1701 shrink_all_memory(saveable - size);
1702
1703 /*
1704 * The number of saveable pages in memory was too high, so apply some
1705 * pressure to decrease it. First, make room for the largest possible
1706 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1707 * of the image as much as indicated by 'size' using allocations from
1708 * highmem and non-highmem zones separately.
4bb33435
RW
1709 */
1710 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1711 alloc = count - max_size;
1712 if (alloc > pages_highmem)
1713 alloc -= pages_highmem;
1714 else
1715 alloc = 0;
6715045d
RW
1716 pages = preallocate_image_memory(alloc, avail_normal);
1717 if (pages < alloc) {
1718 /* We have exhausted non-highmem pages, try highmem. */
1719 alloc -= pages;
1720 pages += pages_highmem;
1721 pages_highmem = preallocate_image_highmem(alloc);
1722 if (pages_highmem < alloc)
1723 goto err_out;
1724 pages += pages_highmem;
1725 /*
1726 * size is the desired number of saveable pages to leave in
1727 * memory, so try to preallocate (all memory - size) pages.
1728 */
1729 alloc = (count - pages) - size;
1730 pages += preallocate_image_highmem(alloc);
1731 } else {
1732 /*
1733 * There are approximately max_size saveable pages at this point
1734 * and we want to reduce this number down to size.
1735 */
1736 alloc = max_size - size;
1737 size = preallocate_highmem_fraction(alloc, highmem, count);
1738 pages_highmem += size;
1739 alloc -= size;
1740 size = preallocate_image_memory(alloc, avail_normal);
1741 pages_highmem += preallocate_image_highmem(alloc - size);
1742 pages += pages_highmem + size;
1743 }
4bb33435 1744
64a473cb
RW
1745 /*
1746 * We only need as many page frames for the image as there are saveable
1747 * pages in memory, but we have allocated more. Release the excessive
1748 * ones now.
1749 */
a64fc82c 1750 pages -= free_unnecessary_pages();
4bb33435
RW
1751
1752 out:
db597605 1753 stop = ktime_get();
64a473cb 1754 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
db597605 1755 swsusp_show_speed(start, stop, pages, "Allocated");
fe419535
RW
1756
1757 return 0;
64a473cb
RW
1758
1759 err_out:
1760 printk(KERN_CONT "\n");
1761 swsusp_free();
1762 return -ENOMEM;
fe419535
RW
1763}
1764
8357376d
RW
1765#ifdef CONFIG_HIGHMEM
1766/**
1767 * count_pages_for_highmem - compute the number of non-highmem pages
1768 * that will be necessary for creating copies of highmem pages.
1769 */
1770
1771static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1772{
64a473cb 1773 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1774
1775 if (free_highmem >= nr_highmem)
1776 nr_highmem = 0;
1777 else
1778 nr_highmem -= free_highmem;
1779
1780 return nr_highmem;
1781}
1782#else
1783static unsigned int
1784count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1785#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1786
1787/**
8357376d
RW
1788 * enough_free_mem - Make sure we have enough free memory for the
1789 * snapshot image.
25761b6e
RW
1790 */
1791
8357376d 1792static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1793{
e5e2fa78 1794 struct zone *zone;
64a473cb 1795 unsigned int free = alloc_normal;
e5e2fa78 1796
98e73dc5 1797 for_each_populated_zone(zone)
8357376d 1798 if (!is_highmem(zone))
d23ad423 1799 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1800
8357376d 1801 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1802 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1803 nr_pages, PAGES_FOR_IO, free);
940864dd 1804
64a473cb 1805 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1806}
1807
8357376d
RW
1808#ifdef CONFIG_HIGHMEM
1809/**
1810 * get_highmem_buffer - if there are some highmem pages in the suspend
1811 * image, we may need the buffer to copy them and/or load their data.
1812 */
1813
1814static inline int get_highmem_buffer(int safe_needed)
1815{
1816 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1817 return buffer ? 0 : -ENOMEM;
1818}
1819
1820/**
1821 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1822 * Try to allocate as many pages as needed, but if the number of free
1823 * highmem pages is lesser than that, allocate them all.
1824 */
1825
1826static inline unsigned int
64a473cb 1827alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1828{
1829 unsigned int to_alloc = count_free_highmem_pages();
1830
1831 if (to_alloc > nr_highmem)
1832 to_alloc = nr_highmem;
1833
1834 nr_highmem -= to_alloc;
1835 while (to_alloc-- > 0) {
1836 struct page *page;
1837
d0164adc 1838 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
8357376d
RW
1839 memory_bm_set_bit(bm, page_to_pfn(page));
1840 }
1841 return nr_highmem;
1842}
1843#else
1844static inline int get_highmem_buffer(int safe_needed) { return 0; }
1845
1846static inline unsigned int
64a473cb 1847alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1848#endif /* CONFIG_HIGHMEM */
1849
1850/**
1851 * swsusp_alloc - allocate memory for the suspend image
1852 *
1853 * We first try to allocate as many highmem pages as there are
1854 * saveable highmem pages in the system. If that fails, we allocate
1855 * non-highmem pages for the copies of the remaining highmem ones.
1856 *
1857 * In this approach it is likely that the copies of highmem pages will
1858 * also be located in the high memory, because of the way in which
1859 * copy_data_pages() works.
1860 */
1861
b788db79
RW
1862static int
1863swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1864 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1865{
8357376d 1866 if (nr_highmem > 0) {
2e725a06 1867 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1868 goto err_out;
1869 if (nr_highmem > alloc_highmem) {
1870 nr_highmem -= alloc_highmem;
1871 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1872 }
8357376d 1873 }
64a473cb
RW
1874 if (nr_pages > alloc_normal) {
1875 nr_pages -= alloc_normal;
1876 while (nr_pages-- > 0) {
1877 struct page *page;
1878
1879 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1880 if (!page)
1881 goto err_out;
1882 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1883 }
25761b6e 1884 }
64a473cb 1885
b788db79 1886 return 0;
25761b6e 1887
64a473cb 1888 err_out:
b788db79 1889 swsusp_free();
2e725a06 1890 return -ENOMEM;
25761b6e
RW
1891}
1892
722a9f92 1893asmlinkage __visible int swsusp_save(void)
25761b6e 1894{
8357376d 1895 unsigned int nr_pages, nr_highmem;
25761b6e 1896
07c3bb57 1897 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1898
9f8f2172 1899 drain_local_pages(NULL);
a0f49651 1900 nr_pages = count_data_pages();
8357376d 1901 nr_highmem = count_highmem_pages();
23976728 1902 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1903
8357376d 1904 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1905 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1906 return -ENOMEM;
1907 }
1908
8357376d 1909 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1910 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1911 return -ENOMEM;
8357376d 1912 }
25761b6e
RW
1913
1914 /* During allocating of suspend pagedir, new cold pages may appear.
1915 * Kill them.
1916 */
9f8f2172 1917 drain_local_pages(NULL);
b788db79 1918 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1919
1920 /*
1921 * End of critical section. From now on, we can write to memory,
1922 * but we should not touch disk. This specially means we must _not_
1923 * touch swap space! Except we must write out our image of course.
1924 */
1925
8357376d 1926 nr_pages += nr_highmem;
a0f49651 1927 nr_copy_pages = nr_pages;
8357376d 1928 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1929
23976728
RW
1930 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1931 nr_pages);
8357376d 1932
25761b6e
RW
1933 return 0;
1934}
f577eb30 1935
d307c4a8
RW
1936#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1937static int init_header_complete(struct swsusp_info *info)
f577eb30 1938{
d307c4a8 1939 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1940 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1941 return 0;
1942}
1943
1944static char *check_image_kernel(struct swsusp_info *info)
1945{
1946 if (info->version_code != LINUX_VERSION_CODE)
1947 return "kernel version";
1948 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1949 return "system type";
1950 if (strcmp(info->uts.release,init_utsname()->release))
1951 return "kernel release";
1952 if (strcmp(info->uts.version,init_utsname()->version))
1953 return "version";
1954 if (strcmp(info->uts.machine,init_utsname()->machine))
1955 return "machine";
1956 return NULL;
1957}
1958#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1959
af508b34
RW
1960unsigned long snapshot_get_image_size(void)
1961{
1962 return nr_copy_pages + nr_meta_pages + 1;
1963}
1964
d307c4a8
RW
1965static int init_header(struct swsusp_info *info)
1966{
1967 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 1968 info->num_physpages = get_num_physpages();
f577eb30 1969 info->image_pages = nr_copy_pages;
af508b34 1970 info->pages = snapshot_get_image_size();
6e1819d6
RW
1971 info->size = info->pages;
1972 info->size <<= PAGE_SHIFT;
d307c4a8 1973 return init_header_complete(info);
f577eb30
RW
1974}
1975
1976/**
940864dd
RW
1977 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1978 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1979 */
1980
b788db79 1981static inline void
940864dd 1982pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1983{
1984 int j;
1985
b788db79 1986 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1987 buf[j] = memory_bm_next_pfn(bm);
1988 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1989 break;
85055dd8
MS
1990 /* Save page key for data page (s390 only). */
1991 page_key_read(buf + j);
f577eb30 1992 }
f577eb30
RW
1993}
1994
1995/**
1996 * snapshot_read_next - used for reading the system memory snapshot.
1997 *
1998 * On the first call to it @handle should point to a zeroed
1999 * snapshot_handle structure. The structure gets updated and a pointer
2000 * to it should be passed to this function every next time.
2001 *
f577eb30
RW
2002 * On success the function returns a positive number. Then, the caller
2003 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 2004 * location computed by the data_of() macro.
f577eb30
RW
2005 *
2006 * The function returns 0 to indicate the end of data stream condition,
2007 * and a negative number is returned on error. In such cases the
2008 * structure pointed to by @handle is not updated and should not be used
2009 * any more.
2010 */
2011
d3c1b24c 2012int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 2013{
fb13a28b 2014 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2015 return 0;
b788db79 2016
f577eb30
RW
2017 if (!buffer) {
2018 /* This makes the buffer be freed by swsusp_free() */
8357376d 2019 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
2020 if (!buffer)
2021 return -ENOMEM;
2022 }
d3c1b24c 2023 if (!handle->cur) {
d307c4a8
RW
2024 int error;
2025
2026 error = init_header((struct swsusp_info *)buffer);
2027 if (error)
2028 return error;
f577eb30 2029 handle->buffer = buffer;
b788db79
RW
2030 memory_bm_position_reset(&orig_bm);
2031 memory_bm_position_reset(&copy_bm);
d3c1b24c 2032 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 2033 clear_page(buffer);
d3c1b24c
JS
2034 pack_pfns(buffer, &orig_bm);
2035 } else {
2036 struct page *page;
b788db79 2037
d3c1b24c
JS
2038 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2039 if (PageHighMem(page)) {
2040 /* Highmem pages are copied to the buffer,
2041 * because we can't return with a kmapped
2042 * highmem page (we may not be called again).
2043 */
2044 void *kaddr;
8357376d 2045
0de9a1e2 2046 kaddr = kmap_atomic(page);
3ecb01df 2047 copy_page(buffer, kaddr);
0de9a1e2 2048 kunmap_atomic(kaddr);
d3c1b24c
JS
2049 handle->buffer = buffer;
2050 } else {
2051 handle->buffer = page_address(page);
f577eb30 2052 }
f577eb30 2053 }
d3c1b24c
JS
2054 handle->cur++;
2055 return PAGE_SIZE;
f577eb30
RW
2056}
2057
6dbecfd3
RW
2058static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2059 struct memory_bitmap *src)
2060{
2061 unsigned long pfn;
2062
2063 memory_bm_position_reset(src);
2064 pfn = memory_bm_next_pfn(src);
2065 while (pfn != BM_END_OF_MAP) {
2066 memory_bm_set_bit(dst, pfn);
2067 pfn = memory_bm_next_pfn(src);
2068 }
2069}
2070
f577eb30
RW
2071/**
2072 * mark_unsafe_pages - mark the pages that cannot be used for storing
2073 * the image during resume, because they conflict with the pages that
2074 * had been used before suspend
2075 */
2076
6dbecfd3 2077static void mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30 2078{
6dbecfd3 2079 unsigned long pfn;
f577eb30 2080
6dbecfd3
RW
2081 /* Clear the "free"/"unsafe" bit for all PFNs */
2082 memory_bm_position_reset(free_pages_map);
2083 pfn = memory_bm_next_pfn(free_pages_map);
2084 while (pfn != BM_END_OF_MAP) {
2085 memory_bm_clear_current(free_pages_map);
2086 pfn = memory_bm_next_pfn(free_pages_map);
f577eb30
RW
2087 }
2088
6dbecfd3
RW
2089 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2090 duplicate_memory_bitmap(free_pages_map, bm);
f577eb30 2091
940864dd 2092 allocated_unsafe_pages = 0;
f577eb30
RW
2093}
2094
d307c4a8 2095static int check_header(struct swsusp_info *info)
f577eb30 2096{
d307c4a8 2097 char *reason;
f577eb30 2098
d307c4a8 2099 reason = check_image_kernel(info);
0ed5fd13 2100 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2101 reason = "memory size";
f577eb30 2102 if (reason) {
23976728 2103 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
2104 return -EPERM;
2105 }
2106 return 0;
2107}
2108
2109/**
2110 * load header - check the image header and copy data from it
2111 */
2112
940864dd
RW
2113static int
2114load_header(struct swsusp_info *info)
f577eb30
RW
2115{
2116 int error;
f577eb30 2117
940864dd 2118 restore_pblist = NULL;
f577eb30
RW
2119 error = check_header(info);
2120 if (!error) {
f577eb30
RW
2121 nr_copy_pages = info->image_pages;
2122 nr_meta_pages = info->pages - info->image_pages - 1;
2123 }
2124 return error;
2125}
2126
2127/**
940864dd
RW
2128 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2129 * the corresponding bit in the memory bitmap @bm
f577eb30 2130 */
69643279 2131static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2132{
2133 int j;
2134
940864dd
RW
2135 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2136 if (unlikely(buf[j] == BM_END_OF_MAP))
2137 break;
2138
85055dd8
MS
2139 /* Extract and buffer page key for data page (s390 only). */
2140 page_key_memorize(buf + j);
2141
6dbecfd3 2142 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
69643279
RW
2143 memory_bm_set_bit(bm, buf[j]);
2144 else
2145 return -EFAULT;
f577eb30 2146 }
69643279
RW
2147
2148 return 0;
f577eb30
RW
2149}
2150
8357376d
RW
2151#ifdef CONFIG_HIGHMEM
2152/* struct highmem_pbe is used for creating the list of highmem pages that
2153 * should be restored atomically during the resume from disk, because the page
2154 * frames they have occupied before the suspend are in use.
2155 */
2156struct highmem_pbe {
2157 struct page *copy_page; /* data is here now */
2158 struct page *orig_page; /* data was here before the suspend */
2159 struct highmem_pbe *next;
2160};
2161
2162/* List of highmem PBEs needed for restoring the highmem pages that were
2163 * allocated before the suspend and included in the suspend image, but have
2164 * also been allocated by the "resume" kernel, so their contents cannot be
2165 * written directly to their "original" page frames.
2166 */
2167static struct highmem_pbe *highmem_pblist;
2168
2169/**
2170 * count_highmem_image_pages - compute the number of highmem pages in the
2171 * suspend image. The bits in the memory bitmap @bm that correspond to the
2172 * image pages are assumed to be set.
2173 */
2174
2175static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2176{
2177 unsigned long pfn;
2178 unsigned int cnt = 0;
2179
2180 memory_bm_position_reset(bm);
2181 pfn = memory_bm_next_pfn(bm);
2182 while (pfn != BM_END_OF_MAP) {
2183 if (PageHighMem(pfn_to_page(pfn)))
2184 cnt++;
2185
2186 pfn = memory_bm_next_pfn(bm);
2187 }
2188 return cnt;
2189}
2190
2191/**
2192 * prepare_highmem_image - try to allocate as many highmem pages as
2193 * there are highmem image pages (@nr_highmem_p points to the variable
2194 * containing the number of highmem image pages). The pages that are
2195 * "safe" (ie. will not be overwritten when the suspend image is
2196 * restored) have the corresponding bits set in @bm (it must be
2197 * unitialized).
2198 *
2199 * NOTE: This function should not be called if there are no highmem
2200 * image pages.
2201 */
2202
2203static unsigned int safe_highmem_pages;
2204
2205static struct memory_bitmap *safe_highmem_bm;
2206
2207static int
2208prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2209{
2210 unsigned int to_alloc;
2211
2212 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2213 return -ENOMEM;
2214
2215 if (get_highmem_buffer(PG_SAFE))
2216 return -ENOMEM;
2217
2218 to_alloc = count_free_highmem_pages();
2219 if (to_alloc > *nr_highmem_p)
2220 to_alloc = *nr_highmem_p;
2221 else
2222 *nr_highmem_p = to_alloc;
2223
2224 safe_highmem_pages = 0;
2225 while (to_alloc-- > 0) {
2226 struct page *page;
2227
2228 page = alloc_page(__GFP_HIGHMEM);
7be98234 2229 if (!swsusp_page_is_free(page)) {
8357376d
RW
2230 /* The page is "safe", set its bit the bitmap */
2231 memory_bm_set_bit(bm, page_to_pfn(page));
2232 safe_highmem_pages++;
2233 }
2234 /* Mark the page as allocated */
7be98234
RW
2235 swsusp_set_page_forbidden(page);
2236 swsusp_set_page_free(page);
8357376d
RW
2237 }
2238 memory_bm_position_reset(bm);
2239 safe_highmem_bm = bm;
2240 return 0;
2241}
2242
2243/**
2244 * get_highmem_page_buffer - for given highmem image page find the buffer
2245 * that suspend_write_next() should set for its caller to write to.
2246 *
2247 * If the page is to be saved to its "original" page frame or a copy of
2248 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2249 * the copy of the page is to be made in normal memory, so the address of
2250 * the copy is returned.
2251 *
2252 * If @buffer is returned, the caller of suspend_write_next() will write
2253 * the page's contents to @buffer, so they will have to be copied to the
2254 * right location on the next call to suspend_write_next() and it is done
2255 * with the help of copy_last_highmem_page(). For this purpose, if
2256 * @buffer is returned, @last_highmem page is set to the page to which
2257 * the data will have to be copied from @buffer.
2258 */
2259
2260static struct page *last_highmem_page;
2261
2262static void *
2263get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2264{
2265 struct highmem_pbe *pbe;
2266 void *kaddr;
2267
7be98234 2268 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
2269 /* We have allocated the "original" page frame and we can
2270 * use it directly to store the loaded page.
2271 */
2272 last_highmem_page = page;
2273 return buffer;
2274 }
2275 /* The "original" page frame has not been allocated and we have to
2276 * use a "safe" page frame to store the loaded page.
2277 */
2278 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2279 if (!pbe) {
2280 swsusp_free();
69643279 2281 return ERR_PTR(-ENOMEM);
8357376d
RW
2282 }
2283 pbe->orig_page = page;
2284 if (safe_highmem_pages > 0) {
2285 struct page *tmp;
2286
2287 /* Copy of the page will be stored in high memory */
2288 kaddr = buffer;
2289 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2290 safe_highmem_pages--;
2291 last_highmem_page = tmp;
2292 pbe->copy_page = tmp;
2293 } else {
2294 /* Copy of the page will be stored in normal memory */
2295 kaddr = safe_pages_list;
2296 safe_pages_list = safe_pages_list->next;
2297 pbe->copy_page = virt_to_page(kaddr);
2298 }
2299 pbe->next = highmem_pblist;
2300 highmem_pblist = pbe;
2301 return kaddr;
2302}
2303
2304/**
2305 * copy_last_highmem_page - copy the contents of a highmem image from
2306 * @buffer, where the caller of snapshot_write_next() has place them,
2307 * to the right location represented by @last_highmem_page .
2308 */
2309
2310static void copy_last_highmem_page(void)
2311{
2312 if (last_highmem_page) {
2313 void *dst;
2314
0de9a1e2 2315 dst = kmap_atomic(last_highmem_page);
3ecb01df 2316 copy_page(dst, buffer);
0de9a1e2 2317 kunmap_atomic(dst);
8357376d
RW
2318 last_highmem_page = NULL;
2319 }
2320}
2321
2322static inline int last_highmem_page_copied(void)
2323{
2324 return !last_highmem_page;
2325}
2326
2327static inline void free_highmem_data(void)
2328{
2329 if (safe_highmem_bm)
2330 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2331
2332 if (buffer)
2333 free_image_page(buffer, PG_UNSAFE_CLEAR);
2334}
2335#else
8357376d
RW
2336static unsigned int
2337count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2338
2339static inline int
2340prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2341{
2342 return 0;
2343}
2344
2345static inline void *
2346get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2347{
69643279 2348 return ERR_PTR(-EINVAL);
8357376d
RW
2349}
2350
2351static inline void copy_last_highmem_page(void) {}
2352static inline int last_highmem_page_copied(void) { return 1; }
2353static inline void free_highmem_data(void) {}
2354#endif /* CONFIG_HIGHMEM */
2355
f577eb30 2356/**
940864dd
RW
2357 * prepare_image - use the memory bitmap @bm to mark the pages that will
2358 * be overwritten in the process of restoring the system memory state
2359 * from the suspend image ("unsafe" pages) and allocate memory for the
2360 * image.
968808b8 2361 *
940864dd
RW
2362 * The idea is to allocate a new memory bitmap first and then allocate
2363 * as many pages as needed for the image data, but not to assign these
2364 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2365 * allocated and create a lists of "safe" pages that will be used
2366 * later. On systems with high memory a list of "safe" highmem pages is
2367 * also created.
f577eb30
RW
2368 */
2369
940864dd
RW
2370#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2371
940864dd
RW
2372static int
2373prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2374{
8357376d 2375 unsigned int nr_pages, nr_highmem;
9c744481 2376 struct linked_page *lp;
940864dd 2377 int error;
f577eb30 2378
8357376d
RW
2379 /* If there is no highmem, the buffer will not be necessary */
2380 free_image_page(buffer, PG_UNSAFE_CLEAR);
2381 buffer = NULL;
2382
2383 nr_highmem = count_highmem_image_pages(bm);
6dbecfd3 2384 mark_unsafe_pages(bm);
940864dd
RW
2385
2386 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2387 if (error)
2388 goto Free;
2389
2390 duplicate_memory_bitmap(new_bm, bm);
2391 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2392 if (nr_highmem > 0) {
2393 error = prepare_highmem_image(bm, &nr_highmem);
2394 if (error)
2395 goto Free;
2396 }
940864dd
RW
2397 /* Reserve some safe pages for potential later use.
2398 *
2399 * NOTE: This way we make sure there will be enough safe pages for the
2400 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2401 * nr_copy_pages cannot be greater than 50% of the memory anyway.
9c744481
RW
2402 *
2403 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
940864dd 2404 */
8357376d 2405 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2406 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2407 while (nr_pages > 0) {
8357376d 2408 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2409 if (!lp) {
f577eb30 2410 error = -ENOMEM;
940864dd
RW
2411 goto Free;
2412 }
9c744481
RW
2413 lp->next = safe_pages_list;
2414 safe_pages_list = lp;
940864dd 2415 nr_pages--;
f577eb30 2416 }
940864dd 2417 /* Preallocate memory for the image */
8357376d 2418 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2419 while (nr_pages > 0) {
2420 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2421 if (!lp) {
2422 error = -ENOMEM;
2423 goto Free;
2424 }
7be98234 2425 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2426 /* The page is "safe", add it to the list */
2427 lp->next = safe_pages_list;
2428 safe_pages_list = lp;
968808b8 2429 }
940864dd 2430 /* Mark the page as allocated */
7be98234
RW
2431 swsusp_set_page_forbidden(virt_to_page(lp));
2432 swsusp_set_page_free(virt_to_page(lp));
940864dd 2433 nr_pages--;
968808b8 2434 }
940864dd
RW
2435 return 0;
2436
59a49335 2437 Free:
940864dd 2438 swsusp_free();
f577eb30
RW
2439 return error;
2440}
2441
940864dd
RW
2442/**
2443 * get_buffer - compute the address that snapshot_write_next() should
2444 * set for its caller to write to.
2445 */
2446
2447static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2448{
940864dd 2449 struct pbe *pbe;
69643279
RW
2450 struct page *page;
2451 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2452
69643279
RW
2453 if (pfn == BM_END_OF_MAP)
2454 return ERR_PTR(-EFAULT);
2455
2456 page = pfn_to_page(pfn);
8357376d
RW
2457 if (PageHighMem(page))
2458 return get_highmem_page_buffer(page, ca);
2459
7be98234 2460 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2461 /* We have allocated the "original" page frame and we can
2462 * use it directly to store the loaded page.
968808b8 2463 */
940864dd
RW
2464 return page_address(page);
2465
2466 /* The "original" page frame has not been allocated and we have to
2467 * use a "safe" page frame to store the loaded page.
968808b8 2468 */
940864dd
RW
2469 pbe = chain_alloc(ca, sizeof(struct pbe));
2470 if (!pbe) {
2471 swsusp_free();
69643279 2472 return ERR_PTR(-ENOMEM);
940864dd 2473 }
8357376d
RW
2474 pbe->orig_address = page_address(page);
2475 pbe->address = safe_pages_list;
940864dd
RW
2476 safe_pages_list = safe_pages_list->next;
2477 pbe->next = restore_pblist;
2478 restore_pblist = pbe;
8357376d 2479 return pbe->address;
968808b8
RW
2480}
2481
f577eb30
RW
2482/**
2483 * snapshot_write_next - used for writing the system memory snapshot.
2484 *
2485 * On the first call to it @handle should point to a zeroed
2486 * snapshot_handle structure. The structure gets updated and a pointer
2487 * to it should be passed to this function every next time.
2488 *
f577eb30
RW
2489 * On success the function returns a positive number. Then, the caller
2490 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2491 * location computed by the data_of() macro.
f577eb30
RW
2492 *
2493 * The function returns 0 to indicate the "end of file" condition,
2494 * and a negative number is returned on error. In such cases the
2495 * structure pointed to by @handle is not updated and should not be used
2496 * any more.
2497 */
2498
d3c1b24c 2499int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2500{
940864dd 2501 static struct chain_allocator ca;
f577eb30
RW
2502 int error = 0;
2503
940864dd 2504 /* Check if we have already loaded the entire image */
d3c1b24c 2505 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2506 return 0;
940864dd 2507
d3c1b24c
JS
2508 handle->sync_read = 1;
2509
2510 if (!handle->cur) {
8357376d
RW
2511 if (!buffer)
2512 /* This makes the buffer be freed by swsusp_free() */
2513 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2514
f577eb30
RW
2515 if (!buffer)
2516 return -ENOMEM;
8357376d 2517
f577eb30 2518 handle->buffer = buffer;
d3c1b24c
JS
2519 } else if (handle->cur == 1) {
2520 error = load_header(buffer);
2521 if (error)
2522 return error;
940864dd 2523
9c744481
RW
2524 safe_pages_list = NULL;
2525
d3c1b24c
JS
2526 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2527 if (error)
2528 return error;
2529
85055dd8
MS
2530 /* Allocate buffer for page keys. */
2531 error = page_key_alloc(nr_copy_pages);
2532 if (error)
2533 return error;
2534
d3c1b24c
JS
2535 } else if (handle->cur <= nr_meta_pages + 1) {
2536 error = unpack_orig_pfns(buffer, &copy_bm);
2537 if (error)
2538 return error;
940864dd 2539
d3c1b24c
JS
2540 if (handle->cur == nr_meta_pages + 1) {
2541 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2542 if (error)
2543 return error;
2544
d3c1b24c
JS
2545 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2546 memory_bm_position_reset(&orig_bm);
2547 restore_pblist = NULL;
940864dd 2548 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2549 handle->sync_read = 0;
69643279
RW
2550 if (IS_ERR(handle->buffer))
2551 return PTR_ERR(handle->buffer);
f577eb30 2552 }
f577eb30 2553 } else {
d3c1b24c 2554 copy_last_highmem_page();
85055dd8
MS
2555 /* Restore page key for data page (s390 only). */
2556 page_key_write(handle->buffer);
d3c1b24c
JS
2557 handle->buffer = get_buffer(&orig_bm, &ca);
2558 if (IS_ERR(handle->buffer))
2559 return PTR_ERR(handle->buffer);
2560 if (handle->buffer != buffer)
2561 handle->sync_read = 0;
f577eb30 2562 }
d3c1b24c
JS
2563 handle->cur++;
2564 return PAGE_SIZE;
f577eb30
RW
2565}
2566
8357376d
RW
2567/**
2568 * snapshot_write_finalize - must be called after the last call to
2569 * snapshot_write_next() in case the last page in the image happens
2570 * to be a highmem page and its contents should be stored in the
2571 * highmem. Additionally, it releases the memory that will not be
2572 * used any more.
2573 */
2574
2575void snapshot_write_finalize(struct snapshot_handle *handle)
2576{
2577 copy_last_highmem_page();
85055dd8
MS
2578 /* Restore page key for data page (s390 only). */
2579 page_key_write(handle->buffer);
2580 page_key_free();
307c5971 2581 /* Do that only if we have loaded the image entirely */
d3c1b24c 2582 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
307c5971 2583 memory_bm_recycle(&orig_bm);
8357376d
RW
2584 free_highmem_data();
2585 }
2586}
2587
f577eb30
RW
2588int snapshot_image_loaded(struct snapshot_handle *handle)
2589{
8357376d 2590 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2591 handle->cur <= nr_meta_pages + nr_copy_pages);
2592}
2593
8357376d
RW
2594#ifdef CONFIG_HIGHMEM
2595/* Assumes that @buf is ready and points to a "safe" page */
2596static inline void
2597swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2598{
8357376d
RW
2599 void *kaddr1, *kaddr2;
2600
0de9a1e2
CW
2601 kaddr1 = kmap_atomic(p1);
2602 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2603 copy_page(buf, kaddr1);
2604 copy_page(kaddr1, kaddr2);
2605 copy_page(kaddr2, buf);
0de9a1e2
CW
2606 kunmap_atomic(kaddr2);
2607 kunmap_atomic(kaddr1);
8357376d
RW
2608}
2609
2610/**
2611 * restore_highmem - for each highmem page that was allocated before
2612 * the suspend and included in the suspend image, and also has been
2613 * allocated by the "resume" kernel swap its current (ie. "before
2614 * resume") contents with the previous (ie. "before suspend") one.
2615 *
2616 * If the resume eventually fails, we can call this function once
2617 * again and restore the "before resume" highmem state.
2618 */
2619
2620int restore_highmem(void)
2621{
2622 struct highmem_pbe *pbe = highmem_pblist;
2623 void *buf;
2624
2625 if (!pbe)
2626 return 0;
2627
2628 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2629 if (!buf)
2630 return -ENOMEM;
2631
2632 while (pbe) {
2633 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2634 pbe = pbe->next;
2635 }
2636 free_image_page(buf, PG_UNSAFE_CLEAR);
2637 return 0;
f577eb30 2638}
8357376d 2639#endif /* CONFIG_HIGHMEM */
This page took 0.873088 seconds and 5 git commands to generate.