mm/page_alloc.c: use memblock apis for early memory allocations
[deliverable/linux.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
25761b6e
RW
30
31#include <asm/uaccess.h>
32#include <asm/mmu_context.h>
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <asm/io.h>
36
25761b6e
RW
37#include "power.h"
38
74dfd666
RW
39static int swsusp_page_is_free(struct page *);
40static void swsusp_set_page_forbidden(struct page *);
41static void swsusp_unset_page_forbidden(struct page *);
42
ddeb6487
RW
43/*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48unsigned long reserved_size;
49
50void __init hibernate_reserved_size_init(void)
51{
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53}
54
fe419535
RW
55/*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
fe419535 60 */
ac5c24ec
RW
61unsigned long image_size;
62
63void __init hibernate_image_size_init(void)
64{
1c1be3a9 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 66}
fe419535 67
8357376d
RW
68/* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
75534b50
RW
73struct pbe *restore_pblist;
74
8357376d 75/* Pointer to an auxiliary buffer (1 page) */
940864dd 76static void *buffer;
7088a5c0 77
f6143aa6
RW
78/**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
8357376d
RW
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
f6143aa6 83 *
8357376d
RW
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
f6143aa6
RW
86 */
87
0bcd888d
RW
88#define PG_ANY 0
89#define PG_SAFE 1
90#define PG_UNSAFE_CLEAR 1
91#define PG_UNSAFE_KEEP 0
92
940864dd 93static unsigned int allocated_unsafe_pages;
f6143aa6 94
8357376d 95static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
96{
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
7be98234 101 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 102 /* The page is unsafe, mark it for swsusp_free() */
7be98234 103 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 104 allocated_unsafe_pages++;
f6143aa6
RW
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
7be98234
RW
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
110 }
111 return res;
112}
113
114unsigned long get_safe_page(gfp_t gfp_mask)
115{
8357376d
RW
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117}
118
5b6d15de
RW
119static struct page *alloc_image_page(gfp_t gfp_mask)
120{
8357376d
RW
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
7be98234
RW
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
8357376d
RW
127 }
128 return page;
f6143aa6
RW
129}
130
131/**
132 * free_image_page - free page represented by @addr, allocated with
8357376d 133 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
134 */
135
136static inline void free_image_page(void *addr, int clear_nosave_free)
137{
8357376d
RW
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
7be98234 144 swsusp_unset_page_forbidden(page);
f6143aa6 145 if (clear_nosave_free)
7be98234 146 swsusp_unset_page_free(page);
8357376d
RW
147
148 __free_page(page);
f6143aa6
RW
149}
150
b788db79
RW
151/* struct linked_page is used to build chains of pages */
152
153#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158} __attribute__((packed));
159
160static inline void
161free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162{
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169}
170
171/**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191};
192
193static void
194chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195{
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200}
201
202static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203{
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
8357376d 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220}
221
b788db79
RW
222/**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
0d83304c 229 * represent each blocks of bitmap in which information is stored.
b788db79
RW
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
b788db79
RW
250 */
251
252#define BM_END_OF_MAP (~0UL)
253
8de03073 254#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
b788db79
RW
255
256struct bm_block {
846705de 257 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 260 unsigned long *data; /* bitmap representing pages */
b788db79
RW
261};
262
0d83304c
AM
263static inline unsigned long bm_block_bits(struct bm_block *bb)
264{
265 return bb->end_pfn - bb->start_pfn;
266}
267
b788db79
RW
268/* strcut bm_position is used for browsing memory bitmaps */
269
270struct bm_position {
b788db79 271 struct bm_block *block;
b788db79
RW
272 int bit;
273};
274
275struct memory_bitmap {
846705de 276 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282};
283
284/* Functions that operate on memory bitmaps */
285
b788db79
RW
286static void memory_bm_position_reset(struct memory_bitmap *bm)
287{
846705de 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 289 bm->cur.bit = 0;
b788db79
RW
290}
291
292static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294/**
295 * create_bm_block_list - create a list of block bitmap objects
8de03073 296 * @pages - number of pages to track
846705de
RW
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
b788db79 299 */
846705de
RW
300static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
b788db79 303{
846705de 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
846705de
RW
311 return -ENOMEM;
312 list_add(&bb->hook, list);
b788db79 313 }
846705de
RW
314
315 return 0;
b788db79
RW
316}
317
846705de
RW
318struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322};
323
b788db79 324/**
846705de
RW
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
b788db79 327 */
846705de
RW
328static void free_mem_extents(struct list_head *list)
329{
330 struct mem_extent *ext, *aux;
b788db79 331
846705de
RW
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336}
337
338/**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 345{
846705de 346 struct zone *zone;
b788db79 347
846705de 348 INIT_LIST_HEAD(list);
b788db79 349
ee99c71c 350 for_each_populated_zone(zone) {
846705de
RW
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
846705de 354 zone_start = zone->zone_start_pfn;
c33bc315 355 zone_end = zone_end_pfn(zone);
846705de
RW
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
b788db79 360
846705de
RW
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
b788db79 392 }
846705de
RW
393
394 return 0;
b788db79
RW
395}
396
397/**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
b788db79
RW
400static int
401memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402{
403 struct chain_allocator ca;
846705de
RW
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
b788db79
RW
407
408 chain_init(&ca, gfp_mask, safe_needed);
846705de 409 INIT_LIST_HEAD(&bm->blocks);
b788db79 410
846705de
RW
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
b788db79 414
846705de
RW
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
b788db79 419
846705de 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 421
846705de
RW
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
b788db79 425
846705de
RW
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
b788db79
RW
432
433 bb->start_pfn = pfn;
846705de 434 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 435 pfn += BM_BITS_PER_BLOCK;
846705de 436 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
437 } else {
438 /* This is executed only once in the loop */
846705de 439 pfn += pages;
b788db79
RW
440 }
441 bb->end_pfn = pfn;
b788db79 442 }
b788db79 443 }
846705de 444
b788db79
RW
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
846705de
RW
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
b788db79 450
846705de 451 Error:
b788db79
RW
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 454 goto Exit;
b788db79
RW
455}
456
457/**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
b788db79
RW
460static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461{
846705de 462 struct bm_block *bb;
b788db79 463
846705de
RW
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
b788db79 467
b788db79 468 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de
RW
469
470 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
471}
472
473/**
74dfd666 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
b788db79 477 */
a82f7119 478static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 479 void **addr, unsigned int *bit_nr)
b788db79 480{
b788db79
RW
481 struct bm_block *bb;
482
846705de
RW
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
b788db79 488 if (pfn < bb->start_pfn)
846705de
RW
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
b788db79 492
846705de
RW
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
74dfd666 497
846705de
RW
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
b788db79 503 pfn -= bb->start_pfn;
846705de 504 bm->cur.bit = pfn + 1;
0d83304c
AM
505 *bit_nr = pfn;
506 *addr = bb->data;
a82f7119 507 return 0;
74dfd666
RW
508}
509
510static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511{
512 void *addr;
513 unsigned int bit;
a82f7119 514 int error;
74dfd666 515
a82f7119
RW
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
74dfd666
RW
518 set_bit(bit, addr);
519}
520
a82f7119
RW
521static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522{
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531}
532
74dfd666
RW
533static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534{
535 void *addr;
536 unsigned int bit;
a82f7119 537 int error;
74dfd666 538
a82f7119
RW
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
74dfd666
RW
541 clear_bit(bit, addr);
542}
543
544static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545{
546 void *addr;
547 unsigned int bit;
a82f7119 548 int error;
74dfd666 549
a82f7119
RW
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
74dfd666 552 return test_bit(bit, addr);
b788db79
RW
553}
554
69643279
RW
555static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556{
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561}
562
b788db79
RW
563/**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573{
b788db79 574 struct bm_block *bb;
b788db79
RW
575 int bit;
576
846705de 577 bb = bm->cur.block;
b788db79 578 do {
846705de
RW
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
b788db79
RW
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
59a49335 592 Return_pfn:
0d83304c
AM
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
b788db79
RW
595}
596
74dfd666
RW
597/**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606};
607
608static LIST_HEAD(nosave_regions);
609
610/**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616void __init
940d67f6
JB
617__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
74dfd666
RW
619{
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
940d67f6
JB
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
3c1596ef 640 region = alloc_bootmem(sizeof(struct nosave_region));
74dfd666
RW
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(&region->list, &nosave_regions);
644 Report:
cd38ca85
BH
645 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646 (unsigned long long) start_pfn << PAGE_SHIFT,
647 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
648}
649
650/*
651 * Set bits in this map correspond to the page frames the contents of which
652 * should not be saved during the suspend.
653 */
654static struct memory_bitmap *forbidden_pages_map;
655
656/* Set bits in this map correspond to free page frames. */
657static struct memory_bitmap *free_pages_map;
658
659/*
660 * Each page frame allocated for creating the image is marked by setting the
661 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662 */
663
664void swsusp_set_page_free(struct page *page)
665{
666 if (free_pages_map)
667 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668}
669
670static int swsusp_page_is_free(struct page *page)
671{
672 return free_pages_map ?
673 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674}
675
676void swsusp_unset_page_free(struct page *page)
677{
678 if (free_pages_map)
679 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680}
681
682static void swsusp_set_page_forbidden(struct page *page)
683{
684 if (forbidden_pages_map)
685 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686}
687
688int swsusp_page_is_forbidden(struct page *page)
689{
690 return forbidden_pages_map ?
691 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692}
693
694static void swsusp_unset_page_forbidden(struct page *page)
695{
696 if (forbidden_pages_map)
697 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698}
699
700/**
701 * mark_nosave_pages - set bits corresponding to the page frames the
702 * contents of which should not be saved in a given bitmap.
703 */
704
705static void mark_nosave_pages(struct memory_bitmap *bm)
706{
707 struct nosave_region *region;
708
709 if (list_empty(&nosave_regions))
710 return;
711
712 list_for_each_entry(region, &nosave_regions, list) {
713 unsigned long pfn;
714
69f1d475
BH
715 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716 (unsigned long long) region->start_pfn << PAGE_SHIFT,
717 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718 - 1);
74dfd666
RW
719
720 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
721 if (pfn_valid(pfn)) {
722 /*
723 * It is safe to ignore the result of
724 * mem_bm_set_bit_check() here, since we won't
725 * touch the PFNs for which the error is
726 * returned anyway.
727 */
728 mem_bm_set_bit_check(bm, pfn);
729 }
74dfd666
RW
730 }
731}
732
733/**
734 * create_basic_memory_bitmaps - create bitmaps needed for marking page
735 * frames that should not be saved and free page frames. The pointers
736 * forbidden_pages_map and free_pages_map are only modified if everything
737 * goes well, because we don't want the bits to be used before both bitmaps
738 * are set up.
739 */
740
741int create_basic_memory_bitmaps(void)
742{
743 struct memory_bitmap *bm1, *bm2;
744 int error = 0;
745
aab17289
RW
746 if (forbidden_pages_map && free_pages_map)
747 return 0;
748 else
749 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 750
0709db60 751 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
752 if (!bm1)
753 return -ENOMEM;
754
0709db60 755 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
756 if (error)
757 goto Free_first_object;
758
0709db60 759 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
760 if (!bm2)
761 goto Free_first_bitmap;
762
0709db60 763 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
764 if (error)
765 goto Free_second_object;
766
767 forbidden_pages_map = bm1;
768 free_pages_map = bm2;
769 mark_nosave_pages(forbidden_pages_map);
770
23976728 771 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
772
773 return 0;
774
775 Free_second_object:
776 kfree(bm2);
777 Free_first_bitmap:
778 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779 Free_first_object:
780 kfree(bm1);
781 return -ENOMEM;
782}
783
784/**
785 * free_basic_memory_bitmaps - free memory bitmaps allocated by
786 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
787 * so that the bitmaps themselves are not referred to while they are being
788 * freed.
789 */
790
791void free_basic_memory_bitmaps(void)
792{
793 struct memory_bitmap *bm1, *bm2;
794
6a0c7cd3
RW
795 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
796 return;
74dfd666
RW
797
798 bm1 = forbidden_pages_map;
799 bm2 = free_pages_map;
800 forbidden_pages_map = NULL;
801 free_pages_map = NULL;
802 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
803 kfree(bm1);
804 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
805 kfree(bm2);
806
23976728 807 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
808}
809
b788db79
RW
810/**
811 * snapshot_additional_pages - estimate the number of additional pages
812 * be needed for setting up the suspend image data structures for given
813 * zone (usually the returned value is greater than the exact number)
814 */
815
816unsigned int snapshot_additional_pages(struct zone *zone)
817{
818 unsigned int res;
819
820 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
160cb5a9
NK
821 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
822 LINKED_PAGE_DATA_SIZE);
8357376d 823 return 2 * res;
b788db79
RW
824}
825
8357376d
RW
826#ifdef CONFIG_HIGHMEM
827/**
828 * count_free_highmem_pages - compute the total number of free highmem
829 * pages, system-wide.
830 */
831
832static unsigned int count_free_highmem_pages(void)
833{
834 struct zone *zone;
835 unsigned int cnt = 0;
836
ee99c71c
KM
837 for_each_populated_zone(zone)
838 if (is_highmem(zone))
d23ad423 839 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
840
841 return cnt;
842}
843
844/**
845 * saveable_highmem_page - Determine whether a highmem page should be
846 * included in the suspend image.
847 *
848 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
849 * and it isn't a part of a free chunk of pages.
850 */
846705de 851static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
852{
853 struct page *page;
854
855 if (!pfn_valid(pfn))
856 return NULL;
857
858 page = pfn_to_page(pfn);
846705de
RW
859 if (page_zone(page) != zone)
860 return NULL;
8357376d
RW
861
862 BUG_ON(!PageHighMem(page));
863
7be98234
RW
864 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
865 PageReserved(page))
8357376d
RW
866 return NULL;
867
c6968e73
SG
868 if (page_is_guard(page))
869 return NULL;
870
8357376d
RW
871 return page;
872}
873
874/**
875 * count_highmem_pages - compute the total number of saveable highmem
876 * pages.
877 */
878
fe419535 879static unsigned int count_highmem_pages(void)
8357376d
RW
880{
881 struct zone *zone;
882 unsigned int n = 0;
883
98e73dc5 884 for_each_populated_zone(zone) {
8357376d
RW
885 unsigned long pfn, max_zone_pfn;
886
887 if (!is_highmem(zone))
888 continue;
889
890 mark_free_pages(zone);
c33bc315 891 max_zone_pfn = zone_end_pfn(zone);
8357376d 892 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 893 if (saveable_highmem_page(zone, pfn))
8357376d
RW
894 n++;
895 }
896 return n;
897}
898#else
846705de
RW
899static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
900{
901 return NULL;
902}
8357376d
RW
903#endif /* CONFIG_HIGHMEM */
904
25761b6e 905/**
8a235efa
RW
906 * saveable_page - Determine whether a non-highmem page should be included
907 * in the suspend image.
25761b6e 908 *
8357376d
RW
909 * We should save the page if it isn't Nosave, and is not in the range
910 * of pages statically defined as 'unsaveable', and it isn't a part of
911 * a free chunk of pages.
25761b6e 912 */
846705de 913static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 914{
de491861 915 struct page *page;
25761b6e
RW
916
917 if (!pfn_valid(pfn))
ae83c5ee 918 return NULL;
25761b6e
RW
919
920 page = pfn_to_page(pfn);
846705de
RW
921 if (page_zone(page) != zone)
922 return NULL;
ae83c5ee 923
8357376d
RW
924 BUG_ON(PageHighMem(page));
925
7be98234 926 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 927 return NULL;
8357376d 928
8a235efa
RW
929 if (PageReserved(page)
930 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 931 return NULL;
25761b6e 932
c6968e73
SG
933 if (page_is_guard(page))
934 return NULL;
935
ae83c5ee 936 return page;
25761b6e
RW
937}
938
8357376d
RW
939/**
940 * count_data_pages - compute the total number of saveable non-highmem
941 * pages.
942 */
943
fe419535 944static unsigned int count_data_pages(void)
25761b6e
RW
945{
946 struct zone *zone;
ae83c5ee 947 unsigned long pfn, max_zone_pfn;
dc19d507 948 unsigned int n = 0;
25761b6e 949
98e73dc5 950 for_each_populated_zone(zone) {
25761b6e
RW
951 if (is_highmem(zone))
952 continue;
8357376d 953
25761b6e 954 mark_free_pages(zone);
c33bc315 955 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 956 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 957 if (saveable_page(zone, pfn))
8357376d 958 n++;
25761b6e 959 }
a0f49651 960 return n;
25761b6e
RW
961}
962
8357376d
RW
963/* This is needed, because copy_page and memcpy are not usable for copying
964 * task structs.
965 */
966static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
967{
968 int n;
969
f623f0db
RW
970 for (n = PAGE_SIZE / sizeof(long); n; n--)
971 *dst++ = *src++;
972}
973
8a235efa
RW
974
975/**
976 * safe_copy_page - check if the page we are going to copy is marked as
977 * present in the kernel page tables (this always is the case if
978 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
979 * kernel_page_present() always returns 'true').
980 */
981static void safe_copy_page(void *dst, struct page *s_page)
982{
983 if (kernel_page_present(s_page)) {
984 do_copy_page(dst, page_address(s_page));
985 } else {
986 kernel_map_pages(s_page, 1, 1);
987 do_copy_page(dst, page_address(s_page));
988 kernel_map_pages(s_page, 1, 0);
989 }
990}
991
992
8357376d
RW
993#ifdef CONFIG_HIGHMEM
994static inline struct page *
995page_is_saveable(struct zone *zone, unsigned long pfn)
996{
997 return is_highmem(zone) ?
846705de 998 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
999}
1000
8a235efa 1001static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1002{
1003 struct page *s_page, *d_page;
1004 void *src, *dst;
1005
1006 s_page = pfn_to_page(src_pfn);
1007 d_page = pfn_to_page(dst_pfn);
1008 if (PageHighMem(s_page)) {
0de9a1e2
CW
1009 src = kmap_atomic(s_page);
1010 dst = kmap_atomic(d_page);
8357376d 1011 do_copy_page(dst, src);
0de9a1e2
CW
1012 kunmap_atomic(dst);
1013 kunmap_atomic(src);
8357376d 1014 } else {
8357376d
RW
1015 if (PageHighMem(d_page)) {
1016 /* Page pointed to by src may contain some kernel
1017 * data modified by kmap_atomic()
1018 */
8a235efa 1019 safe_copy_page(buffer, s_page);
0de9a1e2 1020 dst = kmap_atomic(d_page);
3ecb01df 1021 copy_page(dst, buffer);
0de9a1e2 1022 kunmap_atomic(dst);
8357376d 1023 } else {
8a235efa 1024 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1025 }
1026 }
1027}
1028#else
846705de 1029#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1030
8a235efa 1031static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1032{
8a235efa
RW
1033 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1034 pfn_to_page(src_pfn));
8357376d
RW
1035}
1036#endif /* CONFIG_HIGHMEM */
1037
b788db79
RW
1038static void
1039copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1040{
1041 struct zone *zone;
b788db79 1042 unsigned long pfn;
25761b6e 1043
98e73dc5 1044 for_each_populated_zone(zone) {
b788db79
RW
1045 unsigned long max_zone_pfn;
1046
25761b6e 1047 mark_free_pages(zone);
c33bc315 1048 max_zone_pfn = zone_end_pfn(zone);
b788db79 1049 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1050 if (page_is_saveable(zone, pfn))
b788db79 1051 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1052 }
b788db79
RW
1053 memory_bm_position_reset(orig_bm);
1054 memory_bm_position_reset(copy_bm);
df7c4872 1055 for(;;) {
b788db79 1056 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1057 if (unlikely(pfn == BM_END_OF_MAP))
1058 break;
1059 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1060 }
25761b6e
RW
1061}
1062
8357376d
RW
1063/* Total number of image pages */
1064static unsigned int nr_copy_pages;
1065/* Number of pages needed for saving the original pfns of the image pages */
1066static unsigned int nr_meta_pages;
64a473cb
RW
1067/*
1068 * Numbers of normal and highmem page frames allocated for hibernation image
1069 * before suspending devices.
1070 */
1071unsigned int alloc_normal, alloc_highmem;
1072/*
1073 * Memory bitmap used for marking saveable pages (during hibernation) or
1074 * hibernation image pages (during restore)
1075 */
1076static struct memory_bitmap orig_bm;
1077/*
1078 * Memory bitmap used during hibernation for marking allocated page frames that
1079 * will contain copies of saveable pages. During restore it is initially used
1080 * for marking hibernation image pages, but then the set bits from it are
1081 * duplicated in @orig_bm and it is released. On highmem systems it is next
1082 * used for marking "safe" highmem pages, but it has to be reinitialized for
1083 * this purpose.
1084 */
1085static struct memory_bitmap copy_bm;
8357376d 1086
25761b6e 1087/**
940864dd 1088 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1089 *
940864dd
RW
1090 * Suspend pages are alocated before the atomic copy is made, so we
1091 * need to release them after the resume.
25761b6e
RW
1092 */
1093
1094void swsusp_free(void)
1095{
1096 struct zone *zone;
ae83c5ee 1097 unsigned long pfn, max_zone_pfn;
25761b6e 1098
98e73dc5 1099 for_each_populated_zone(zone) {
c33bc315 1100 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
1101 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1102 if (pfn_valid(pfn)) {
1103 struct page *page = pfn_to_page(pfn);
1104
7be98234
RW
1105 if (swsusp_page_is_forbidden(page) &&
1106 swsusp_page_is_free(page)) {
1107 swsusp_unset_page_forbidden(page);
1108 swsusp_unset_page_free(page);
8357376d 1109 __free_page(page);
25761b6e
RW
1110 }
1111 }
1112 }
f577eb30
RW
1113 nr_copy_pages = 0;
1114 nr_meta_pages = 0;
75534b50 1115 restore_pblist = NULL;
6e1819d6 1116 buffer = NULL;
64a473cb
RW
1117 alloc_normal = 0;
1118 alloc_highmem = 0;
25761b6e
RW
1119}
1120
4bb33435
RW
1121/* Helper functions used for the shrinking of memory. */
1122
1123#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1124
fe419535 1125/**
4bb33435
RW
1126 * preallocate_image_pages - Allocate a number of pages for hibernation image
1127 * @nr_pages: Number of page frames to allocate.
1128 * @mask: GFP flags to use for the allocation.
fe419535 1129 *
4bb33435
RW
1130 * Return value: Number of page frames actually allocated
1131 */
1132static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1133{
1134 unsigned long nr_alloc = 0;
1135
1136 while (nr_pages > 0) {
64a473cb
RW
1137 struct page *page;
1138
1139 page = alloc_image_page(mask);
1140 if (!page)
4bb33435 1141 break;
64a473cb
RW
1142 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1143 if (PageHighMem(page))
1144 alloc_highmem++;
1145 else
1146 alloc_normal++;
4bb33435
RW
1147 nr_pages--;
1148 nr_alloc++;
1149 }
1150
1151 return nr_alloc;
1152}
1153
6715045d
RW
1154static unsigned long preallocate_image_memory(unsigned long nr_pages,
1155 unsigned long avail_normal)
4bb33435 1156{
6715045d
RW
1157 unsigned long alloc;
1158
1159 if (avail_normal <= alloc_normal)
1160 return 0;
1161
1162 alloc = avail_normal - alloc_normal;
1163 if (nr_pages < alloc)
1164 alloc = nr_pages;
1165
1166 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1167}
1168
1169#ifdef CONFIG_HIGHMEM
1170static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1171{
1172 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1173}
1174
1175/**
1176 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1177 */
4bb33435
RW
1178static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1179{
1180 x *= multiplier;
1181 do_div(x, base);
1182 return (unsigned long)x;
1183}
fe419535 1184
4bb33435
RW
1185static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1186 unsigned long highmem,
1187 unsigned long total)
fe419535 1188{
4bb33435
RW
1189 unsigned long alloc = __fraction(nr_pages, highmem, total);
1190
1191 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1192}
4bb33435
RW
1193#else /* CONFIG_HIGHMEM */
1194static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1195{
1196 return 0;
1197}
1198
1199static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1200 unsigned long highmem,
1201 unsigned long total)
1202{
1203 return 0;
1204}
1205#endif /* CONFIG_HIGHMEM */
fe419535 1206
4bb33435 1207/**
64a473cb
RW
1208 * free_unnecessary_pages - Release preallocated pages not needed for the image
1209 */
1210static void free_unnecessary_pages(void)
1211{
6715045d 1212 unsigned long save, to_free_normal, to_free_highmem;
64a473cb 1213
6715045d
RW
1214 save = count_data_pages();
1215 if (alloc_normal >= save) {
1216 to_free_normal = alloc_normal - save;
1217 save = 0;
1218 } else {
1219 to_free_normal = 0;
1220 save -= alloc_normal;
1221 }
1222 save += count_highmem_pages();
1223 if (alloc_highmem >= save) {
1224 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1225 } else {
1226 to_free_highmem = 0;
4d4cf23c
RW
1227 save -= alloc_highmem;
1228 if (to_free_normal > save)
1229 to_free_normal -= save;
1230 else
1231 to_free_normal = 0;
64a473cb
RW
1232 }
1233
1234 memory_bm_position_reset(&copy_bm);
1235
a9c9b442 1236 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1237 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1238 struct page *page = pfn_to_page(pfn);
1239
1240 if (PageHighMem(page)) {
1241 if (!to_free_highmem)
1242 continue;
1243 to_free_highmem--;
1244 alloc_highmem--;
1245 } else {
1246 if (!to_free_normal)
1247 continue;
1248 to_free_normal--;
1249 alloc_normal--;
1250 }
1251 memory_bm_clear_bit(&copy_bm, pfn);
1252 swsusp_unset_page_forbidden(page);
1253 swsusp_unset_page_free(page);
1254 __free_page(page);
1255 }
1256}
1257
ef4aede3
RW
1258/**
1259 * minimum_image_size - Estimate the minimum acceptable size of an image
1260 * @saveable: Number of saveable pages in the system.
1261 *
1262 * We want to avoid attempting to free too much memory too hard, so estimate the
1263 * minimum acceptable size of a hibernation image to use as the lower limit for
1264 * preallocating memory.
1265 *
1266 * We assume that the minimum image size should be proportional to
1267 *
1268 * [number of saveable pages] - [number of pages that can be freed in theory]
1269 *
1270 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1271 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1272 * minus mapped file pages.
1273 */
1274static unsigned long minimum_image_size(unsigned long saveable)
1275{
1276 unsigned long size;
1277
1278 size = global_page_state(NR_SLAB_RECLAIMABLE)
1279 + global_page_state(NR_ACTIVE_ANON)
1280 + global_page_state(NR_INACTIVE_ANON)
1281 + global_page_state(NR_ACTIVE_FILE)
1282 + global_page_state(NR_INACTIVE_FILE)
1283 - global_page_state(NR_FILE_MAPPED);
1284
1285 return saveable <= size ? 0 : saveable - size;
1286}
1287
64a473cb
RW
1288/**
1289 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1290 *
1291 * To create a hibernation image it is necessary to make a copy of every page
1292 * frame in use. We also need a number of page frames to be free during
1293 * hibernation for allocations made while saving the image and for device
1294 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1295 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1296 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1297 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1298 * total number of available page frames and allocate at least
4bb33435 1299 *
ddeb6487
RW
1300 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1301 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1302 *
1303 * of them, which corresponds to the maximum size of a hibernation image.
1304 *
1305 * If image_size is set below the number following from the above formula,
1306 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1307 * pages in the system is below the requested image size or the minimum
1308 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1309 */
64a473cb 1310int hibernate_preallocate_memory(void)
fe419535 1311{
fe419535 1312 struct zone *zone;
4bb33435 1313 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1314 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
fe419535 1315 struct timeval start, stop;
64a473cb 1316 int error;
fe419535 1317
64a473cb 1318 printk(KERN_INFO "PM: Preallocating image memory... ");
fe419535 1319 do_gettimeofday(&start);
fe419535 1320
64a473cb
RW
1321 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1322 if (error)
1323 goto err_out;
1324
1325 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1326 if (error)
1327 goto err_out;
1328
1329 alloc_normal = 0;
1330 alloc_highmem = 0;
1331
4bb33435 1332 /* Count the number of saveable data pages. */
64a473cb 1333 save_highmem = count_highmem_pages();
4bb33435 1334 saveable = count_data_pages();
fe419535 1335
4bb33435
RW
1336 /*
1337 * Compute the total number of page frames we can use (count) and the
1338 * number of pages needed for image metadata (size).
1339 */
1340 count = saveable;
64a473cb
RW
1341 saveable += save_highmem;
1342 highmem = save_highmem;
4bb33435
RW
1343 size = 0;
1344 for_each_populated_zone(zone) {
1345 size += snapshot_additional_pages(zone);
1346 if (is_highmem(zone))
1347 highmem += zone_page_state(zone, NR_FREE_PAGES);
1348 else
1349 count += zone_page_state(zone, NR_FREE_PAGES);
1350 }
6715045d 1351 avail_normal = count;
4bb33435
RW
1352 count += highmem;
1353 count -= totalreserve_pages;
1354
85055dd8
MS
1355 /* Add number of pages required for page keys (s390 only). */
1356 size += page_key_additional_pages(saveable);
1357
4bb33435 1358 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1359 max_size = (count - (size + PAGES_FOR_IO)) / 2
1360 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1361 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1362 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1363 if (size > max_size)
1364 size = max_size;
1365 /*
266f1a25
RW
1366 * If the desired number of image pages is at least as large as the
1367 * current number of saveable pages in memory, allocate page frames for
1368 * the image and we're done.
4bb33435 1369 */
64a473cb
RW
1370 if (size >= saveable) {
1371 pages = preallocate_image_highmem(save_highmem);
6715045d 1372 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1373 goto out;
64a473cb 1374 }
4bb33435 1375
ef4aede3
RW
1376 /* Estimate the minimum size of the image. */
1377 pages = minimum_image_size(saveable);
6715045d
RW
1378 /*
1379 * To avoid excessive pressure on the normal zone, leave room in it to
1380 * accommodate an image of the minimum size (unless it's already too
1381 * small, in which case don't preallocate pages from it at all).
1382 */
1383 if (avail_normal > pages)
1384 avail_normal -= pages;
1385 else
1386 avail_normal = 0;
ef4aede3
RW
1387 if (size < pages)
1388 size = min_t(unsigned long, pages, max_size);
1389
4bb33435
RW
1390 /*
1391 * Let the memory management subsystem know that we're going to need a
1392 * large number of page frames to allocate and make it free some memory.
1393 * NOTE: If this is not done, performance will be hurt badly in some
1394 * test cases.
1395 */
1396 shrink_all_memory(saveable - size);
1397
1398 /*
1399 * The number of saveable pages in memory was too high, so apply some
1400 * pressure to decrease it. First, make room for the largest possible
1401 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1402 * of the image as much as indicated by 'size' using allocations from
1403 * highmem and non-highmem zones separately.
4bb33435
RW
1404 */
1405 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1406 alloc = count - max_size;
1407 if (alloc > pages_highmem)
1408 alloc -= pages_highmem;
1409 else
1410 alloc = 0;
6715045d
RW
1411 pages = preallocate_image_memory(alloc, avail_normal);
1412 if (pages < alloc) {
1413 /* We have exhausted non-highmem pages, try highmem. */
1414 alloc -= pages;
1415 pages += pages_highmem;
1416 pages_highmem = preallocate_image_highmem(alloc);
1417 if (pages_highmem < alloc)
1418 goto err_out;
1419 pages += pages_highmem;
1420 /*
1421 * size is the desired number of saveable pages to leave in
1422 * memory, so try to preallocate (all memory - size) pages.
1423 */
1424 alloc = (count - pages) - size;
1425 pages += preallocate_image_highmem(alloc);
1426 } else {
1427 /*
1428 * There are approximately max_size saveable pages at this point
1429 * and we want to reduce this number down to size.
1430 */
1431 alloc = max_size - size;
1432 size = preallocate_highmem_fraction(alloc, highmem, count);
1433 pages_highmem += size;
1434 alloc -= size;
1435 size = preallocate_image_memory(alloc, avail_normal);
1436 pages_highmem += preallocate_image_highmem(alloc - size);
1437 pages += pages_highmem + size;
1438 }
4bb33435 1439
64a473cb
RW
1440 /*
1441 * We only need as many page frames for the image as there are saveable
1442 * pages in memory, but we have allocated more. Release the excessive
1443 * ones now.
1444 */
1445 free_unnecessary_pages();
4bb33435
RW
1446
1447 out:
fe419535 1448 do_gettimeofday(&stop);
64a473cb
RW
1449 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1450 swsusp_show_speed(&start, &stop, pages, "Allocated");
fe419535
RW
1451
1452 return 0;
64a473cb
RW
1453
1454 err_out:
1455 printk(KERN_CONT "\n");
1456 swsusp_free();
1457 return -ENOMEM;
fe419535
RW
1458}
1459
8357376d
RW
1460#ifdef CONFIG_HIGHMEM
1461/**
1462 * count_pages_for_highmem - compute the number of non-highmem pages
1463 * that will be necessary for creating copies of highmem pages.
1464 */
1465
1466static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1467{
64a473cb 1468 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1469
1470 if (free_highmem >= nr_highmem)
1471 nr_highmem = 0;
1472 else
1473 nr_highmem -= free_highmem;
1474
1475 return nr_highmem;
1476}
1477#else
1478static unsigned int
1479count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1480#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1481
1482/**
8357376d
RW
1483 * enough_free_mem - Make sure we have enough free memory for the
1484 * snapshot image.
25761b6e
RW
1485 */
1486
8357376d 1487static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1488{
e5e2fa78 1489 struct zone *zone;
64a473cb 1490 unsigned int free = alloc_normal;
e5e2fa78 1491
98e73dc5 1492 for_each_populated_zone(zone)
8357376d 1493 if (!is_highmem(zone))
d23ad423 1494 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1495
8357376d 1496 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1497 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1498 nr_pages, PAGES_FOR_IO, free);
940864dd 1499
64a473cb 1500 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1501}
1502
8357376d
RW
1503#ifdef CONFIG_HIGHMEM
1504/**
1505 * get_highmem_buffer - if there are some highmem pages in the suspend
1506 * image, we may need the buffer to copy them and/or load their data.
1507 */
1508
1509static inline int get_highmem_buffer(int safe_needed)
1510{
1511 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1512 return buffer ? 0 : -ENOMEM;
1513}
1514
1515/**
1516 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1517 * Try to allocate as many pages as needed, but if the number of free
1518 * highmem pages is lesser than that, allocate them all.
1519 */
1520
1521static inline unsigned int
64a473cb 1522alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1523{
1524 unsigned int to_alloc = count_free_highmem_pages();
1525
1526 if (to_alloc > nr_highmem)
1527 to_alloc = nr_highmem;
1528
1529 nr_highmem -= to_alloc;
1530 while (to_alloc-- > 0) {
1531 struct page *page;
1532
1533 page = alloc_image_page(__GFP_HIGHMEM);
1534 memory_bm_set_bit(bm, page_to_pfn(page));
1535 }
1536 return nr_highmem;
1537}
1538#else
1539static inline int get_highmem_buffer(int safe_needed) { return 0; }
1540
1541static inline unsigned int
64a473cb 1542alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1543#endif /* CONFIG_HIGHMEM */
1544
1545/**
1546 * swsusp_alloc - allocate memory for the suspend image
1547 *
1548 * We first try to allocate as many highmem pages as there are
1549 * saveable highmem pages in the system. If that fails, we allocate
1550 * non-highmem pages for the copies of the remaining highmem ones.
1551 *
1552 * In this approach it is likely that the copies of highmem pages will
1553 * also be located in the high memory, because of the way in which
1554 * copy_data_pages() works.
1555 */
1556
b788db79
RW
1557static int
1558swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1559 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1560{
8357376d 1561 if (nr_highmem > 0) {
2e725a06 1562 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1563 goto err_out;
1564 if (nr_highmem > alloc_highmem) {
1565 nr_highmem -= alloc_highmem;
1566 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1567 }
8357376d 1568 }
64a473cb
RW
1569 if (nr_pages > alloc_normal) {
1570 nr_pages -= alloc_normal;
1571 while (nr_pages-- > 0) {
1572 struct page *page;
1573
1574 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1575 if (!page)
1576 goto err_out;
1577 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1578 }
25761b6e 1579 }
64a473cb 1580
b788db79 1581 return 0;
25761b6e 1582
64a473cb 1583 err_out:
b788db79 1584 swsusp_free();
2e725a06 1585 return -ENOMEM;
25761b6e
RW
1586}
1587
2e32a43e 1588asmlinkage int swsusp_save(void)
25761b6e 1589{
8357376d 1590 unsigned int nr_pages, nr_highmem;
25761b6e 1591
07c3bb57 1592 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1593
9f8f2172 1594 drain_local_pages(NULL);
a0f49651 1595 nr_pages = count_data_pages();
8357376d 1596 nr_highmem = count_highmem_pages();
23976728 1597 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1598
8357376d 1599 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1600 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1601 return -ENOMEM;
1602 }
1603
8357376d 1604 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1605 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1606 return -ENOMEM;
8357376d 1607 }
25761b6e
RW
1608
1609 /* During allocating of suspend pagedir, new cold pages may appear.
1610 * Kill them.
1611 */
9f8f2172 1612 drain_local_pages(NULL);
b788db79 1613 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1614
1615 /*
1616 * End of critical section. From now on, we can write to memory,
1617 * but we should not touch disk. This specially means we must _not_
1618 * touch swap space! Except we must write out our image of course.
1619 */
1620
8357376d 1621 nr_pages += nr_highmem;
a0f49651 1622 nr_copy_pages = nr_pages;
8357376d 1623 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1624
23976728
RW
1625 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1626 nr_pages);
8357376d 1627
25761b6e
RW
1628 return 0;
1629}
f577eb30 1630
d307c4a8
RW
1631#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1632static int init_header_complete(struct swsusp_info *info)
f577eb30 1633{
d307c4a8 1634 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1635 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1636 return 0;
1637}
1638
1639static char *check_image_kernel(struct swsusp_info *info)
1640{
1641 if (info->version_code != LINUX_VERSION_CODE)
1642 return "kernel version";
1643 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1644 return "system type";
1645 if (strcmp(info->uts.release,init_utsname()->release))
1646 return "kernel release";
1647 if (strcmp(info->uts.version,init_utsname()->version))
1648 return "version";
1649 if (strcmp(info->uts.machine,init_utsname()->machine))
1650 return "machine";
1651 return NULL;
1652}
1653#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1654
af508b34
RW
1655unsigned long snapshot_get_image_size(void)
1656{
1657 return nr_copy_pages + nr_meta_pages + 1;
1658}
1659
d307c4a8
RW
1660static int init_header(struct swsusp_info *info)
1661{
1662 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 1663 info->num_physpages = get_num_physpages();
f577eb30 1664 info->image_pages = nr_copy_pages;
af508b34 1665 info->pages = snapshot_get_image_size();
6e1819d6
RW
1666 info->size = info->pages;
1667 info->size <<= PAGE_SHIFT;
d307c4a8 1668 return init_header_complete(info);
f577eb30
RW
1669}
1670
1671/**
940864dd
RW
1672 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1673 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1674 */
1675
b788db79 1676static inline void
940864dd 1677pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1678{
1679 int j;
1680
b788db79 1681 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1682 buf[j] = memory_bm_next_pfn(bm);
1683 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1684 break;
85055dd8
MS
1685 /* Save page key for data page (s390 only). */
1686 page_key_read(buf + j);
f577eb30 1687 }
f577eb30
RW
1688}
1689
1690/**
1691 * snapshot_read_next - used for reading the system memory snapshot.
1692 *
1693 * On the first call to it @handle should point to a zeroed
1694 * snapshot_handle structure. The structure gets updated and a pointer
1695 * to it should be passed to this function every next time.
1696 *
f577eb30
RW
1697 * On success the function returns a positive number. Then, the caller
1698 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 1699 * location computed by the data_of() macro.
f577eb30
RW
1700 *
1701 * The function returns 0 to indicate the end of data stream condition,
1702 * and a negative number is returned on error. In such cases the
1703 * structure pointed to by @handle is not updated and should not be used
1704 * any more.
1705 */
1706
d3c1b24c 1707int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 1708{
fb13a28b 1709 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1710 return 0;
b788db79 1711
f577eb30
RW
1712 if (!buffer) {
1713 /* This makes the buffer be freed by swsusp_free() */
8357376d 1714 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1715 if (!buffer)
1716 return -ENOMEM;
1717 }
d3c1b24c 1718 if (!handle->cur) {
d307c4a8
RW
1719 int error;
1720
1721 error = init_header((struct swsusp_info *)buffer);
1722 if (error)
1723 return error;
f577eb30 1724 handle->buffer = buffer;
b788db79
RW
1725 memory_bm_position_reset(&orig_bm);
1726 memory_bm_position_reset(&copy_bm);
d3c1b24c 1727 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 1728 clear_page(buffer);
d3c1b24c
JS
1729 pack_pfns(buffer, &orig_bm);
1730 } else {
1731 struct page *page;
b788db79 1732
d3c1b24c
JS
1733 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1734 if (PageHighMem(page)) {
1735 /* Highmem pages are copied to the buffer,
1736 * because we can't return with a kmapped
1737 * highmem page (we may not be called again).
1738 */
1739 void *kaddr;
8357376d 1740
0de9a1e2 1741 kaddr = kmap_atomic(page);
3ecb01df 1742 copy_page(buffer, kaddr);
0de9a1e2 1743 kunmap_atomic(kaddr);
d3c1b24c
JS
1744 handle->buffer = buffer;
1745 } else {
1746 handle->buffer = page_address(page);
f577eb30 1747 }
f577eb30 1748 }
d3c1b24c
JS
1749 handle->cur++;
1750 return PAGE_SIZE;
f577eb30
RW
1751}
1752
1753/**
1754 * mark_unsafe_pages - mark the pages that cannot be used for storing
1755 * the image during resume, because they conflict with the pages that
1756 * had been used before suspend
1757 */
1758
940864dd 1759static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1760{
1761 struct zone *zone;
ae83c5ee 1762 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1763
1764 /* Clear page flags */
98e73dc5 1765 for_each_populated_zone(zone) {
c33bc315 1766 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
1767 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1768 if (pfn_valid(pfn))
7be98234 1769 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1770 }
1771
940864dd
RW
1772 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1773 memory_bm_position_reset(bm);
1774 do {
1775 pfn = memory_bm_next_pfn(bm);
1776 if (likely(pfn != BM_END_OF_MAP)) {
1777 if (likely(pfn_valid(pfn)))
7be98234 1778 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1779 else
1780 return -EFAULT;
1781 }
1782 } while (pfn != BM_END_OF_MAP);
f577eb30 1783
940864dd 1784 allocated_unsafe_pages = 0;
968808b8 1785
f577eb30
RW
1786 return 0;
1787}
1788
940864dd
RW
1789static void
1790duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1791{
940864dd
RW
1792 unsigned long pfn;
1793
1794 memory_bm_position_reset(src);
1795 pfn = memory_bm_next_pfn(src);
1796 while (pfn != BM_END_OF_MAP) {
1797 memory_bm_set_bit(dst, pfn);
1798 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1799 }
1800}
1801
d307c4a8 1802static int check_header(struct swsusp_info *info)
f577eb30 1803{
d307c4a8 1804 char *reason;
f577eb30 1805
d307c4a8 1806 reason = check_image_kernel(info);
0ed5fd13 1807 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 1808 reason = "memory size";
f577eb30 1809 if (reason) {
23976728 1810 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
1811 return -EPERM;
1812 }
1813 return 0;
1814}
1815
1816/**
1817 * load header - check the image header and copy data from it
1818 */
1819
940864dd
RW
1820static int
1821load_header(struct swsusp_info *info)
f577eb30
RW
1822{
1823 int error;
f577eb30 1824
940864dd 1825 restore_pblist = NULL;
f577eb30
RW
1826 error = check_header(info);
1827 if (!error) {
f577eb30
RW
1828 nr_copy_pages = info->image_pages;
1829 nr_meta_pages = info->pages - info->image_pages - 1;
1830 }
1831 return error;
1832}
1833
1834/**
940864dd
RW
1835 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1836 * the corresponding bit in the memory bitmap @bm
f577eb30 1837 */
69643279 1838static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1839{
1840 int j;
1841
940864dd
RW
1842 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1843 if (unlikely(buf[j] == BM_END_OF_MAP))
1844 break;
1845
85055dd8
MS
1846 /* Extract and buffer page key for data page (s390 only). */
1847 page_key_memorize(buf + j);
1848
69643279
RW
1849 if (memory_bm_pfn_present(bm, buf[j]))
1850 memory_bm_set_bit(bm, buf[j]);
1851 else
1852 return -EFAULT;
f577eb30 1853 }
69643279
RW
1854
1855 return 0;
f577eb30
RW
1856}
1857
8357376d
RW
1858/* List of "safe" pages that may be used to store data loaded from the suspend
1859 * image
1860 */
1861static struct linked_page *safe_pages_list;
1862
1863#ifdef CONFIG_HIGHMEM
1864/* struct highmem_pbe is used for creating the list of highmem pages that
1865 * should be restored atomically during the resume from disk, because the page
1866 * frames they have occupied before the suspend are in use.
1867 */
1868struct highmem_pbe {
1869 struct page *copy_page; /* data is here now */
1870 struct page *orig_page; /* data was here before the suspend */
1871 struct highmem_pbe *next;
1872};
1873
1874/* List of highmem PBEs needed for restoring the highmem pages that were
1875 * allocated before the suspend and included in the suspend image, but have
1876 * also been allocated by the "resume" kernel, so their contents cannot be
1877 * written directly to their "original" page frames.
1878 */
1879static struct highmem_pbe *highmem_pblist;
1880
1881/**
1882 * count_highmem_image_pages - compute the number of highmem pages in the
1883 * suspend image. The bits in the memory bitmap @bm that correspond to the
1884 * image pages are assumed to be set.
1885 */
1886
1887static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1888{
1889 unsigned long pfn;
1890 unsigned int cnt = 0;
1891
1892 memory_bm_position_reset(bm);
1893 pfn = memory_bm_next_pfn(bm);
1894 while (pfn != BM_END_OF_MAP) {
1895 if (PageHighMem(pfn_to_page(pfn)))
1896 cnt++;
1897
1898 pfn = memory_bm_next_pfn(bm);
1899 }
1900 return cnt;
1901}
1902
1903/**
1904 * prepare_highmem_image - try to allocate as many highmem pages as
1905 * there are highmem image pages (@nr_highmem_p points to the variable
1906 * containing the number of highmem image pages). The pages that are
1907 * "safe" (ie. will not be overwritten when the suspend image is
1908 * restored) have the corresponding bits set in @bm (it must be
1909 * unitialized).
1910 *
1911 * NOTE: This function should not be called if there are no highmem
1912 * image pages.
1913 */
1914
1915static unsigned int safe_highmem_pages;
1916
1917static struct memory_bitmap *safe_highmem_bm;
1918
1919static int
1920prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1921{
1922 unsigned int to_alloc;
1923
1924 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1925 return -ENOMEM;
1926
1927 if (get_highmem_buffer(PG_SAFE))
1928 return -ENOMEM;
1929
1930 to_alloc = count_free_highmem_pages();
1931 if (to_alloc > *nr_highmem_p)
1932 to_alloc = *nr_highmem_p;
1933 else
1934 *nr_highmem_p = to_alloc;
1935
1936 safe_highmem_pages = 0;
1937 while (to_alloc-- > 0) {
1938 struct page *page;
1939
1940 page = alloc_page(__GFP_HIGHMEM);
7be98234 1941 if (!swsusp_page_is_free(page)) {
8357376d
RW
1942 /* The page is "safe", set its bit the bitmap */
1943 memory_bm_set_bit(bm, page_to_pfn(page));
1944 safe_highmem_pages++;
1945 }
1946 /* Mark the page as allocated */
7be98234
RW
1947 swsusp_set_page_forbidden(page);
1948 swsusp_set_page_free(page);
8357376d
RW
1949 }
1950 memory_bm_position_reset(bm);
1951 safe_highmem_bm = bm;
1952 return 0;
1953}
1954
1955/**
1956 * get_highmem_page_buffer - for given highmem image page find the buffer
1957 * that suspend_write_next() should set for its caller to write to.
1958 *
1959 * If the page is to be saved to its "original" page frame or a copy of
1960 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1961 * the copy of the page is to be made in normal memory, so the address of
1962 * the copy is returned.
1963 *
1964 * If @buffer is returned, the caller of suspend_write_next() will write
1965 * the page's contents to @buffer, so they will have to be copied to the
1966 * right location on the next call to suspend_write_next() and it is done
1967 * with the help of copy_last_highmem_page(). For this purpose, if
1968 * @buffer is returned, @last_highmem page is set to the page to which
1969 * the data will have to be copied from @buffer.
1970 */
1971
1972static struct page *last_highmem_page;
1973
1974static void *
1975get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1976{
1977 struct highmem_pbe *pbe;
1978 void *kaddr;
1979
7be98234 1980 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1981 /* We have allocated the "original" page frame and we can
1982 * use it directly to store the loaded page.
1983 */
1984 last_highmem_page = page;
1985 return buffer;
1986 }
1987 /* The "original" page frame has not been allocated and we have to
1988 * use a "safe" page frame to store the loaded page.
1989 */
1990 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1991 if (!pbe) {
1992 swsusp_free();
69643279 1993 return ERR_PTR(-ENOMEM);
8357376d
RW
1994 }
1995 pbe->orig_page = page;
1996 if (safe_highmem_pages > 0) {
1997 struct page *tmp;
1998
1999 /* Copy of the page will be stored in high memory */
2000 kaddr = buffer;
2001 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2002 safe_highmem_pages--;
2003 last_highmem_page = tmp;
2004 pbe->copy_page = tmp;
2005 } else {
2006 /* Copy of the page will be stored in normal memory */
2007 kaddr = safe_pages_list;
2008 safe_pages_list = safe_pages_list->next;
2009 pbe->copy_page = virt_to_page(kaddr);
2010 }
2011 pbe->next = highmem_pblist;
2012 highmem_pblist = pbe;
2013 return kaddr;
2014}
2015
2016/**
2017 * copy_last_highmem_page - copy the contents of a highmem image from
2018 * @buffer, where the caller of snapshot_write_next() has place them,
2019 * to the right location represented by @last_highmem_page .
2020 */
2021
2022static void copy_last_highmem_page(void)
2023{
2024 if (last_highmem_page) {
2025 void *dst;
2026
0de9a1e2 2027 dst = kmap_atomic(last_highmem_page);
3ecb01df 2028 copy_page(dst, buffer);
0de9a1e2 2029 kunmap_atomic(dst);
8357376d
RW
2030 last_highmem_page = NULL;
2031 }
2032}
2033
2034static inline int last_highmem_page_copied(void)
2035{
2036 return !last_highmem_page;
2037}
2038
2039static inline void free_highmem_data(void)
2040{
2041 if (safe_highmem_bm)
2042 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2043
2044 if (buffer)
2045 free_image_page(buffer, PG_UNSAFE_CLEAR);
2046}
2047#else
2048static inline int get_safe_write_buffer(void) { return 0; }
2049
2050static unsigned int
2051count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2052
2053static inline int
2054prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2055{
2056 return 0;
2057}
2058
2059static inline void *
2060get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2061{
69643279 2062 return ERR_PTR(-EINVAL);
8357376d
RW
2063}
2064
2065static inline void copy_last_highmem_page(void) {}
2066static inline int last_highmem_page_copied(void) { return 1; }
2067static inline void free_highmem_data(void) {}
2068#endif /* CONFIG_HIGHMEM */
2069
f577eb30 2070/**
940864dd
RW
2071 * prepare_image - use the memory bitmap @bm to mark the pages that will
2072 * be overwritten in the process of restoring the system memory state
2073 * from the suspend image ("unsafe" pages) and allocate memory for the
2074 * image.
968808b8 2075 *
940864dd
RW
2076 * The idea is to allocate a new memory bitmap first and then allocate
2077 * as many pages as needed for the image data, but not to assign these
2078 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2079 * allocated and create a lists of "safe" pages that will be used
2080 * later. On systems with high memory a list of "safe" highmem pages is
2081 * also created.
f577eb30
RW
2082 */
2083
940864dd
RW
2084#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2085
940864dd
RW
2086static int
2087prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2088{
8357376d 2089 unsigned int nr_pages, nr_highmem;
940864dd
RW
2090 struct linked_page *sp_list, *lp;
2091 int error;
f577eb30 2092
8357376d
RW
2093 /* If there is no highmem, the buffer will not be necessary */
2094 free_image_page(buffer, PG_UNSAFE_CLEAR);
2095 buffer = NULL;
2096
2097 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2098 error = mark_unsafe_pages(bm);
2099 if (error)
2100 goto Free;
2101
2102 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2103 if (error)
2104 goto Free;
2105
2106 duplicate_memory_bitmap(new_bm, bm);
2107 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2108 if (nr_highmem > 0) {
2109 error = prepare_highmem_image(bm, &nr_highmem);
2110 if (error)
2111 goto Free;
2112 }
940864dd
RW
2113 /* Reserve some safe pages for potential later use.
2114 *
2115 * NOTE: This way we make sure there will be enough safe pages for the
2116 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2117 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2118 */
2119 sp_list = NULL;
2120 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2121 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2122 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2123 while (nr_pages > 0) {
8357376d 2124 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2125 if (!lp) {
f577eb30 2126 error = -ENOMEM;
940864dd
RW
2127 goto Free;
2128 }
2129 lp->next = sp_list;
2130 sp_list = lp;
2131 nr_pages--;
f577eb30 2132 }
940864dd
RW
2133 /* Preallocate memory for the image */
2134 safe_pages_list = NULL;
8357376d 2135 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2136 while (nr_pages > 0) {
2137 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2138 if (!lp) {
2139 error = -ENOMEM;
2140 goto Free;
2141 }
7be98234 2142 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2143 /* The page is "safe", add it to the list */
2144 lp->next = safe_pages_list;
2145 safe_pages_list = lp;
968808b8 2146 }
940864dd 2147 /* Mark the page as allocated */
7be98234
RW
2148 swsusp_set_page_forbidden(virt_to_page(lp));
2149 swsusp_set_page_free(virt_to_page(lp));
940864dd 2150 nr_pages--;
968808b8 2151 }
940864dd
RW
2152 /* Free the reserved safe pages so that chain_alloc() can use them */
2153 while (sp_list) {
2154 lp = sp_list->next;
2155 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2156 sp_list = lp;
f577eb30 2157 }
940864dd
RW
2158 return 0;
2159
59a49335 2160 Free:
940864dd 2161 swsusp_free();
f577eb30
RW
2162 return error;
2163}
2164
940864dd
RW
2165/**
2166 * get_buffer - compute the address that snapshot_write_next() should
2167 * set for its caller to write to.
2168 */
2169
2170static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2171{
940864dd 2172 struct pbe *pbe;
69643279
RW
2173 struct page *page;
2174 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2175
69643279
RW
2176 if (pfn == BM_END_OF_MAP)
2177 return ERR_PTR(-EFAULT);
2178
2179 page = pfn_to_page(pfn);
8357376d
RW
2180 if (PageHighMem(page))
2181 return get_highmem_page_buffer(page, ca);
2182
7be98234 2183 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2184 /* We have allocated the "original" page frame and we can
2185 * use it directly to store the loaded page.
968808b8 2186 */
940864dd
RW
2187 return page_address(page);
2188
2189 /* The "original" page frame has not been allocated and we have to
2190 * use a "safe" page frame to store the loaded page.
968808b8 2191 */
940864dd
RW
2192 pbe = chain_alloc(ca, sizeof(struct pbe));
2193 if (!pbe) {
2194 swsusp_free();
69643279 2195 return ERR_PTR(-ENOMEM);
940864dd 2196 }
8357376d
RW
2197 pbe->orig_address = page_address(page);
2198 pbe->address = safe_pages_list;
940864dd
RW
2199 safe_pages_list = safe_pages_list->next;
2200 pbe->next = restore_pblist;
2201 restore_pblist = pbe;
8357376d 2202 return pbe->address;
968808b8
RW
2203}
2204
f577eb30
RW
2205/**
2206 * snapshot_write_next - used for writing the system memory snapshot.
2207 *
2208 * On the first call to it @handle should point to a zeroed
2209 * snapshot_handle structure. The structure gets updated and a pointer
2210 * to it should be passed to this function every next time.
2211 *
f577eb30
RW
2212 * On success the function returns a positive number. Then, the caller
2213 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2214 * location computed by the data_of() macro.
f577eb30
RW
2215 *
2216 * The function returns 0 to indicate the "end of file" condition,
2217 * and a negative number is returned on error. In such cases the
2218 * structure pointed to by @handle is not updated and should not be used
2219 * any more.
2220 */
2221
d3c1b24c 2222int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2223{
940864dd 2224 static struct chain_allocator ca;
f577eb30
RW
2225 int error = 0;
2226
940864dd 2227 /* Check if we have already loaded the entire image */
d3c1b24c 2228 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2229 return 0;
940864dd 2230
d3c1b24c
JS
2231 handle->sync_read = 1;
2232
2233 if (!handle->cur) {
8357376d
RW
2234 if (!buffer)
2235 /* This makes the buffer be freed by swsusp_free() */
2236 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2237
f577eb30
RW
2238 if (!buffer)
2239 return -ENOMEM;
8357376d 2240
f577eb30 2241 handle->buffer = buffer;
d3c1b24c
JS
2242 } else if (handle->cur == 1) {
2243 error = load_header(buffer);
2244 if (error)
2245 return error;
940864dd 2246
d3c1b24c
JS
2247 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2248 if (error)
2249 return error;
2250
85055dd8
MS
2251 /* Allocate buffer for page keys. */
2252 error = page_key_alloc(nr_copy_pages);
2253 if (error)
2254 return error;
2255
d3c1b24c
JS
2256 } else if (handle->cur <= nr_meta_pages + 1) {
2257 error = unpack_orig_pfns(buffer, &copy_bm);
2258 if (error)
2259 return error;
940864dd 2260
d3c1b24c
JS
2261 if (handle->cur == nr_meta_pages + 1) {
2262 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2263 if (error)
2264 return error;
2265
d3c1b24c
JS
2266 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2267 memory_bm_position_reset(&orig_bm);
2268 restore_pblist = NULL;
940864dd 2269 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2270 handle->sync_read = 0;
69643279
RW
2271 if (IS_ERR(handle->buffer))
2272 return PTR_ERR(handle->buffer);
f577eb30 2273 }
f577eb30 2274 } else {
d3c1b24c 2275 copy_last_highmem_page();
85055dd8
MS
2276 /* Restore page key for data page (s390 only). */
2277 page_key_write(handle->buffer);
d3c1b24c
JS
2278 handle->buffer = get_buffer(&orig_bm, &ca);
2279 if (IS_ERR(handle->buffer))
2280 return PTR_ERR(handle->buffer);
2281 if (handle->buffer != buffer)
2282 handle->sync_read = 0;
f577eb30 2283 }
d3c1b24c
JS
2284 handle->cur++;
2285 return PAGE_SIZE;
f577eb30
RW
2286}
2287
8357376d
RW
2288/**
2289 * snapshot_write_finalize - must be called after the last call to
2290 * snapshot_write_next() in case the last page in the image happens
2291 * to be a highmem page and its contents should be stored in the
2292 * highmem. Additionally, it releases the memory that will not be
2293 * used any more.
2294 */
2295
2296void snapshot_write_finalize(struct snapshot_handle *handle)
2297{
2298 copy_last_highmem_page();
85055dd8
MS
2299 /* Restore page key for data page (s390 only). */
2300 page_key_write(handle->buffer);
2301 page_key_free();
8357376d 2302 /* Free only if we have loaded the image entirely */
d3c1b24c 2303 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
8357376d
RW
2304 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2305 free_highmem_data();
2306 }
2307}
2308
f577eb30
RW
2309int snapshot_image_loaded(struct snapshot_handle *handle)
2310{
8357376d 2311 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2312 handle->cur <= nr_meta_pages + nr_copy_pages);
2313}
2314
8357376d
RW
2315#ifdef CONFIG_HIGHMEM
2316/* Assumes that @buf is ready and points to a "safe" page */
2317static inline void
2318swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2319{
8357376d
RW
2320 void *kaddr1, *kaddr2;
2321
0de9a1e2
CW
2322 kaddr1 = kmap_atomic(p1);
2323 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2324 copy_page(buf, kaddr1);
2325 copy_page(kaddr1, kaddr2);
2326 copy_page(kaddr2, buf);
0de9a1e2
CW
2327 kunmap_atomic(kaddr2);
2328 kunmap_atomic(kaddr1);
8357376d
RW
2329}
2330
2331/**
2332 * restore_highmem - for each highmem page that was allocated before
2333 * the suspend and included in the suspend image, and also has been
2334 * allocated by the "resume" kernel swap its current (ie. "before
2335 * resume") contents with the previous (ie. "before suspend") one.
2336 *
2337 * If the resume eventually fails, we can call this function once
2338 * again and restore the "before resume" highmem state.
2339 */
2340
2341int restore_highmem(void)
2342{
2343 struct highmem_pbe *pbe = highmem_pblist;
2344 void *buf;
2345
2346 if (!pbe)
2347 return 0;
2348
2349 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2350 if (!buf)
2351 return -ENOMEM;
2352
2353 while (pbe) {
2354 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2355 pbe = pbe->next;
2356 }
2357 free_image_page(buf, PG_UNSAFE_CLEAR);
2358 return 0;
f577eb30 2359}
8357376d 2360#endif /* CONFIG_HIGHMEM */
This page took 0.814554 seconds and 5 git commands to generate.