PM / Hibernate: Use bool for boolean fields of struct snapshot_data
[deliverable/linux.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
25761b6e
RW
30
31#include <asm/uaccess.h>
32#include <asm/mmu_context.h>
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <asm/io.h>
36
25761b6e
RW
37#include "power.h"
38
74dfd666
RW
39static int swsusp_page_is_free(struct page *);
40static void swsusp_set_page_forbidden(struct page *);
41static void swsusp_unset_page_forbidden(struct page *);
42
ddeb6487
RW
43/*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48unsigned long reserved_size;
49
50void __init hibernate_reserved_size_init(void)
51{
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53}
54
fe419535
RW
55/*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
fe419535 60 */
ac5c24ec
RW
61unsigned long image_size;
62
63void __init hibernate_image_size_init(void)
64{
1c1be3a9 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 66}
fe419535 67
8357376d
RW
68/* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
75534b50
RW
73struct pbe *restore_pblist;
74
8357376d 75/* Pointer to an auxiliary buffer (1 page) */
940864dd 76static void *buffer;
7088a5c0 77
f6143aa6
RW
78/**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
8357376d
RW
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
f6143aa6 83 *
8357376d
RW
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
f6143aa6
RW
86 */
87
0bcd888d
RW
88#define PG_ANY 0
89#define PG_SAFE 1
90#define PG_UNSAFE_CLEAR 1
91#define PG_UNSAFE_KEEP 0
92
940864dd 93static unsigned int allocated_unsafe_pages;
f6143aa6 94
8357376d 95static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
96{
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
7be98234 101 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 102 /* The page is unsafe, mark it for swsusp_free() */
7be98234 103 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 104 allocated_unsafe_pages++;
f6143aa6
RW
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
7be98234
RW
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
110 }
111 return res;
112}
113
114unsigned long get_safe_page(gfp_t gfp_mask)
115{
8357376d
RW
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117}
118
5b6d15de
RW
119static struct page *alloc_image_page(gfp_t gfp_mask)
120{
8357376d
RW
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
7be98234
RW
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
8357376d
RW
127 }
128 return page;
f6143aa6
RW
129}
130
131/**
132 * free_image_page - free page represented by @addr, allocated with
8357376d 133 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
134 */
135
136static inline void free_image_page(void *addr, int clear_nosave_free)
137{
8357376d
RW
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
7be98234 144 swsusp_unset_page_forbidden(page);
f6143aa6 145 if (clear_nosave_free)
7be98234 146 swsusp_unset_page_free(page);
8357376d
RW
147
148 __free_page(page);
f6143aa6
RW
149}
150
b788db79
RW
151/* struct linked_page is used to build chains of pages */
152
153#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158} __attribute__((packed));
159
160static inline void
161free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162{
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169}
170
171/**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191};
192
193static void
194chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195{
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200}
201
202static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203{
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
8357376d 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220}
221
b788db79
RW
222/**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
0d83304c 229 * represent each blocks of bitmap in which information is stored.
b788db79
RW
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
b788db79
RW
250 */
251
252#define BM_END_OF_MAP (~0UL)
253
8de03073 254#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
b788db79
RW
255
256struct bm_block {
846705de 257 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 260 unsigned long *data; /* bitmap representing pages */
b788db79
RW
261};
262
0d83304c
AM
263static inline unsigned long bm_block_bits(struct bm_block *bb)
264{
265 return bb->end_pfn - bb->start_pfn;
266}
267
b788db79
RW
268/* strcut bm_position is used for browsing memory bitmaps */
269
270struct bm_position {
b788db79 271 struct bm_block *block;
b788db79
RW
272 int bit;
273};
274
275struct memory_bitmap {
846705de 276 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282};
283
284/* Functions that operate on memory bitmaps */
285
b788db79
RW
286static void memory_bm_position_reset(struct memory_bitmap *bm)
287{
846705de 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 289 bm->cur.bit = 0;
b788db79
RW
290}
291
292static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294/**
295 * create_bm_block_list - create a list of block bitmap objects
8de03073 296 * @pages - number of pages to track
846705de
RW
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
b788db79 299 */
846705de
RW
300static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
b788db79 303{
846705de 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
846705de
RW
311 return -ENOMEM;
312 list_add(&bb->hook, list);
b788db79 313 }
846705de
RW
314
315 return 0;
b788db79
RW
316}
317
846705de
RW
318struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322};
323
b788db79 324/**
846705de
RW
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
b788db79 327 */
846705de
RW
328static void free_mem_extents(struct list_head *list)
329{
330 struct mem_extent *ext, *aux;
b788db79 331
846705de
RW
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336}
337
338/**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 345{
846705de 346 struct zone *zone;
b788db79 347
846705de 348 INIT_LIST_HEAD(list);
b788db79 349
ee99c71c 350 for_each_populated_zone(zone) {
846705de
RW
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
846705de 354 zone_start = zone->zone_start_pfn;
c33bc315 355 zone_end = zone_end_pfn(zone);
846705de
RW
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
b788db79 360
846705de
RW
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
b788db79 392 }
846705de
RW
393
394 return 0;
b788db79
RW
395}
396
397/**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
b788db79
RW
400static int
401memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402{
403 struct chain_allocator ca;
846705de
RW
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
b788db79
RW
407
408 chain_init(&ca, gfp_mask, safe_needed);
846705de 409 INIT_LIST_HEAD(&bm->blocks);
b788db79 410
846705de
RW
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
b788db79 414
846705de
RW
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
b788db79 419
846705de 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 421
846705de
RW
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
b788db79 425
846705de
RW
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
b788db79
RW
432
433 bb->start_pfn = pfn;
846705de 434 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 435 pfn += BM_BITS_PER_BLOCK;
846705de 436 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
437 } else {
438 /* This is executed only once in the loop */
846705de 439 pfn += pages;
b788db79
RW
440 }
441 bb->end_pfn = pfn;
b788db79 442 }
b788db79 443 }
846705de 444
b788db79
RW
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
846705de
RW
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
b788db79 450
846705de 451 Error:
b788db79
RW
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 454 goto Exit;
b788db79
RW
455}
456
457/**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
b788db79
RW
460static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461{
846705de 462 struct bm_block *bb;
b788db79 463
846705de
RW
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
b788db79 467
b788db79 468 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de
RW
469
470 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
471}
472
473/**
74dfd666 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
b788db79 477 */
a82f7119 478static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 479 void **addr, unsigned int *bit_nr)
b788db79 480{
b788db79
RW
481 struct bm_block *bb;
482
846705de
RW
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
b788db79 488 if (pfn < bb->start_pfn)
846705de
RW
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
b788db79 492
846705de
RW
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
74dfd666 497
846705de
RW
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
b788db79 503 pfn -= bb->start_pfn;
846705de 504 bm->cur.bit = pfn + 1;
0d83304c
AM
505 *bit_nr = pfn;
506 *addr = bb->data;
a82f7119 507 return 0;
74dfd666
RW
508}
509
510static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511{
512 void *addr;
513 unsigned int bit;
a82f7119 514 int error;
74dfd666 515
a82f7119
RW
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
74dfd666
RW
518 set_bit(bit, addr);
519}
520
a82f7119
RW
521static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522{
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531}
532
74dfd666
RW
533static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534{
535 void *addr;
536 unsigned int bit;
a82f7119 537 int error;
74dfd666 538
a82f7119
RW
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
74dfd666
RW
541 clear_bit(bit, addr);
542}
543
544static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545{
546 void *addr;
547 unsigned int bit;
a82f7119 548 int error;
74dfd666 549
a82f7119
RW
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
74dfd666 552 return test_bit(bit, addr);
b788db79
RW
553}
554
69643279
RW
555static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556{
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561}
562
b788db79
RW
563/**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573{
b788db79 574 struct bm_block *bb;
b788db79
RW
575 int bit;
576
846705de 577 bb = bm->cur.block;
b788db79 578 do {
846705de
RW
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
b788db79
RW
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
59a49335 592 Return_pfn:
0d83304c
AM
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
b788db79
RW
595}
596
74dfd666
RW
597/**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606};
607
608static LIST_HEAD(nosave_regions);
609
610/**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616void __init
940d67f6
JB
617__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
74dfd666
RW
619{
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
940d67f6
JB
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
3c1596ef 640 region = alloc_bootmem(sizeof(struct nosave_region));
74dfd666
RW
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(&region->list, &nosave_regions);
644 Report:
cd38ca85
BH
645 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
646 (unsigned long long) start_pfn << PAGE_SHIFT,
647 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
648}
649
650/*
651 * Set bits in this map correspond to the page frames the contents of which
652 * should not be saved during the suspend.
653 */
654static struct memory_bitmap *forbidden_pages_map;
655
656/* Set bits in this map correspond to free page frames. */
657static struct memory_bitmap *free_pages_map;
658
659/*
660 * Each page frame allocated for creating the image is marked by setting the
661 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
662 */
663
664void swsusp_set_page_free(struct page *page)
665{
666 if (free_pages_map)
667 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
668}
669
670static int swsusp_page_is_free(struct page *page)
671{
672 return free_pages_map ?
673 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
674}
675
676void swsusp_unset_page_free(struct page *page)
677{
678 if (free_pages_map)
679 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
680}
681
682static void swsusp_set_page_forbidden(struct page *page)
683{
684 if (forbidden_pages_map)
685 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
686}
687
688int swsusp_page_is_forbidden(struct page *page)
689{
690 return forbidden_pages_map ?
691 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
692}
693
694static void swsusp_unset_page_forbidden(struct page *page)
695{
696 if (forbidden_pages_map)
697 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
698}
699
700/**
701 * mark_nosave_pages - set bits corresponding to the page frames the
702 * contents of which should not be saved in a given bitmap.
703 */
704
705static void mark_nosave_pages(struct memory_bitmap *bm)
706{
707 struct nosave_region *region;
708
709 if (list_empty(&nosave_regions))
710 return;
711
712 list_for_each_entry(region, &nosave_regions, list) {
713 unsigned long pfn;
714
69f1d475
BH
715 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
716 (unsigned long long) region->start_pfn << PAGE_SHIFT,
717 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
718 - 1);
74dfd666
RW
719
720 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
721 if (pfn_valid(pfn)) {
722 /*
723 * It is safe to ignore the result of
724 * mem_bm_set_bit_check() here, since we won't
725 * touch the PFNs for which the error is
726 * returned anyway.
727 */
728 mem_bm_set_bit_check(bm, pfn);
729 }
74dfd666
RW
730 }
731}
732
733/**
734 * create_basic_memory_bitmaps - create bitmaps needed for marking page
735 * frames that should not be saved and free page frames. The pointers
736 * forbidden_pages_map and free_pages_map are only modified if everything
737 * goes well, because we don't want the bits to be used before both bitmaps
738 * are set up.
739 */
740
741int create_basic_memory_bitmaps(void)
742{
743 struct memory_bitmap *bm1, *bm2;
744 int error = 0;
745
aab17289
RW
746 if (forbidden_pages_map && free_pages_map)
747 return 0;
748 else
749 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 750
0709db60 751 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
752 if (!bm1)
753 return -ENOMEM;
754
0709db60 755 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
756 if (error)
757 goto Free_first_object;
758
0709db60 759 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
760 if (!bm2)
761 goto Free_first_bitmap;
762
0709db60 763 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
764 if (error)
765 goto Free_second_object;
766
767 forbidden_pages_map = bm1;
768 free_pages_map = bm2;
769 mark_nosave_pages(forbidden_pages_map);
770
23976728 771 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
772
773 return 0;
774
775 Free_second_object:
776 kfree(bm2);
777 Free_first_bitmap:
778 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
779 Free_first_object:
780 kfree(bm1);
781 return -ENOMEM;
782}
783
784/**
785 * free_basic_memory_bitmaps - free memory bitmaps allocated by
786 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
787 * so that the bitmaps themselves are not referred to while they are being
788 * freed.
789 */
790
791void free_basic_memory_bitmaps(void)
792{
793 struct memory_bitmap *bm1, *bm2;
794
795 BUG_ON(!(forbidden_pages_map && free_pages_map));
796
797 bm1 = forbidden_pages_map;
798 bm2 = free_pages_map;
799 forbidden_pages_map = NULL;
800 free_pages_map = NULL;
801 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
802 kfree(bm1);
803 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
804 kfree(bm2);
805
23976728 806 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
807}
808
b788db79
RW
809/**
810 * snapshot_additional_pages - estimate the number of additional pages
811 * be needed for setting up the suspend image data structures for given
812 * zone (usually the returned value is greater than the exact number)
813 */
814
815unsigned int snapshot_additional_pages(struct zone *zone)
816{
817 unsigned int res;
818
819 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
160cb5a9
NK
820 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
821 LINKED_PAGE_DATA_SIZE);
8357376d 822 return 2 * res;
b788db79
RW
823}
824
8357376d
RW
825#ifdef CONFIG_HIGHMEM
826/**
827 * count_free_highmem_pages - compute the total number of free highmem
828 * pages, system-wide.
829 */
830
831static unsigned int count_free_highmem_pages(void)
832{
833 struct zone *zone;
834 unsigned int cnt = 0;
835
ee99c71c
KM
836 for_each_populated_zone(zone)
837 if (is_highmem(zone))
d23ad423 838 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
839
840 return cnt;
841}
842
843/**
844 * saveable_highmem_page - Determine whether a highmem page should be
845 * included in the suspend image.
846 *
847 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
848 * and it isn't a part of a free chunk of pages.
849 */
846705de 850static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
851{
852 struct page *page;
853
854 if (!pfn_valid(pfn))
855 return NULL;
856
857 page = pfn_to_page(pfn);
846705de
RW
858 if (page_zone(page) != zone)
859 return NULL;
8357376d
RW
860
861 BUG_ON(!PageHighMem(page));
862
7be98234
RW
863 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
864 PageReserved(page))
8357376d
RW
865 return NULL;
866
c6968e73
SG
867 if (page_is_guard(page))
868 return NULL;
869
8357376d
RW
870 return page;
871}
872
873/**
874 * count_highmem_pages - compute the total number of saveable highmem
875 * pages.
876 */
877
fe419535 878static unsigned int count_highmem_pages(void)
8357376d
RW
879{
880 struct zone *zone;
881 unsigned int n = 0;
882
98e73dc5 883 for_each_populated_zone(zone) {
8357376d
RW
884 unsigned long pfn, max_zone_pfn;
885
886 if (!is_highmem(zone))
887 continue;
888
889 mark_free_pages(zone);
c33bc315 890 max_zone_pfn = zone_end_pfn(zone);
8357376d 891 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 892 if (saveable_highmem_page(zone, pfn))
8357376d
RW
893 n++;
894 }
895 return n;
896}
897#else
846705de
RW
898static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
899{
900 return NULL;
901}
8357376d
RW
902#endif /* CONFIG_HIGHMEM */
903
25761b6e 904/**
8a235efa
RW
905 * saveable_page - Determine whether a non-highmem page should be included
906 * in the suspend image.
25761b6e 907 *
8357376d
RW
908 * We should save the page if it isn't Nosave, and is not in the range
909 * of pages statically defined as 'unsaveable', and it isn't a part of
910 * a free chunk of pages.
25761b6e 911 */
846705de 912static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 913{
de491861 914 struct page *page;
25761b6e
RW
915
916 if (!pfn_valid(pfn))
ae83c5ee 917 return NULL;
25761b6e
RW
918
919 page = pfn_to_page(pfn);
846705de
RW
920 if (page_zone(page) != zone)
921 return NULL;
ae83c5ee 922
8357376d
RW
923 BUG_ON(PageHighMem(page));
924
7be98234 925 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 926 return NULL;
8357376d 927
8a235efa
RW
928 if (PageReserved(page)
929 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 930 return NULL;
25761b6e 931
c6968e73
SG
932 if (page_is_guard(page))
933 return NULL;
934
ae83c5ee 935 return page;
25761b6e
RW
936}
937
8357376d
RW
938/**
939 * count_data_pages - compute the total number of saveable non-highmem
940 * pages.
941 */
942
fe419535 943static unsigned int count_data_pages(void)
25761b6e
RW
944{
945 struct zone *zone;
ae83c5ee 946 unsigned long pfn, max_zone_pfn;
dc19d507 947 unsigned int n = 0;
25761b6e 948
98e73dc5 949 for_each_populated_zone(zone) {
25761b6e
RW
950 if (is_highmem(zone))
951 continue;
8357376d 952
25761b6e 953 mark_free_pages(zone);
c33bc315 954 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 955 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 956 if (saveable_page(zone, pfn))
8357376d 957 n++;
25761b6e 958 }
a0f49651 959 return n;
25761b6e
RW
960}
961
8357376d
RW
962/* This is needed, because copy_page and memcpy are not usable for copying
963 * task structs.
964 */
965static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
966{
967 int n;
968
f623f0db
RW
969 for (n = PAGE_SIZE / sizeof(long); n; n--)
970 *dst++ = *src++;
971}
972
8a235efa
RW
973
974/**
975 * safe_copy_page - check if the page we are going to copy is marked as
976 * present in the kernel page tables (this always is the case if
977 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
978 * kernel_page_present() always returns 'true').
979 */
980static void safe_copy_page(void *dst, struct page *s_page)
981{
982 if (kernel_page_present(s_page)) {
983 do_copy_page(dst, page_address(s_page));
984 } else {
985 kernel_map_pages(s_page, 1, 1);
986 do_copy_page(dst, page_address(s_page));
987 kernel_map_pages(s_page, 1, 0);
988 }
989}
990
991
8357376d
RW
992#ifdef CONFIG_HIGHMEM
993static inline struct page *
994page_is_saveable(struct zone *zone, unsigned long pfn)
995{
996 return is_highmem(zone) ?
846705de 997 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
998}
999
8a235efa 1000static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1001{
1002 struct page *s_page, *d_page;
1003 void *src, *dst;
1004
1005 s_page = pfn_to_page(src_pfn);
1006 d_page = pfn_to_page(dst_pfn);
1007 if (PageHighMem(s_page)) {
0de9a1e2
CW
1008 src = kmap_atomic(s_page);
1009 dst = kmap_atomic(d_page);
8357376d 1010 do_copy_page(dst, src);
0de9a1e2
CW
1011 kunmap_atomic(dst);
1012 kunmap_atomic(src);
8357376d 1013 } else {
8357376d
RW
1014 if (PageHighMem(d_page)) {
1015 /* Page pointed to by src may contain some kernel
1016 * data modified by kmap_atomic()
1017 */
8a235efa 1018 safe_copy_page(buffer, s_page);
0de9a1e2 1019 dst = kmap_atomic(d_page);
3ecb01df 1020 copy_page(dst, buffer);
0de9a1e2 1021 kunmap_atomic(dst);
8357376d 1022 } else {
8a235efa 1023 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1024 }
1025 }
1026}
1027#else
846705de 1028#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1029
8a235efa 1030static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1031{
8a235efa
RW
1032 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1033 pfn_to_page(src_pfn));
8357376d
RW
1034}
1035#endif /* CONFIG_HIGHMEM */
1036
b788db79
RW
1037static void
1038copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1039{
1040 struct zone *zone;
b788db79 1041 unsigned long pfn;
25761b6e 1042
98e73dc5 1043 for_each_populated_zone(zone) {
b788db79
RW
1044 unsigned long max_zone_pfn;
1045
25761b6e 1046 mark_free_pages(zone);
c33bc315 1047 max_zone_pfn = zone_end_pfn(zone);
b788db79 1048 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1049 if (page_is_saveable(zone, pfn))
b788db79 1050 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1051 }
b788db79
RW
1052 memory_bm_position_reset(orig_bm);
1053 memory_bm_position_reset(copy_bm);
df7c4872 1054 for(;;) {
b788db79 1055 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1056 if (unlikely(pfn == BM_END_OF_MAP))
1057 break;
1058 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1059 }
25761b6e
RW
1060}
1061
8357376d
RW
1062/* Total number of image pages */
1063static unsigned int nr_copy_pages;
1064/* Number of pages needed for saving the original pfns of the image pages */
1065static unsigned int nr_meta_pages;
64a473cb
RW
1066/*
1067 * Numbers of normal and highmem page frames allocated for hibernation image
1068 * before suspending devices.
1069 */
1070unsigned int alloc_normal, alloc_highmem;
1071/*
1072 * Memory bitmap used for marking saveable pages (during hibernation) or
1073 * hibernation image pages (during restore)
1074 */
1075static struct memory_bitmap orig_bm;
1076/*
1077 * Memory bitmap used during hibernation for marking allocated page frames that
1078 * will contain copies of saveable pages. During restore it is initially used
1079 * for marking hibernation image pages, but then the set bits from it are
1080 * duplicated in @orig_bm and it is released. On highmem systems it is next
1081 * used for marking "safe" highmem pages, but it has to be reinitialized for
1082 * this purpose.
1083 */
1084static struct memory_bitmap copy_bm;
8357376d 1085
25761b6e 1086/**
940864dd 1087 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1088 *
940864dd
RW
1089 * Suspend pages are alocated before the atomic copy is made, so we
1090 * need to release them after the resume.
25761b6e
RW
1091 */
1092
1093void swsusp_free(void)
1094{
1095 struct zone *zone;
ae83c5ee 1096 unsigned long pfn, max_zone_pfn;
25761b6e 1097
98e73dc5 1098 for_each_populated_zone(zone) {
c33bc315 1099 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
1100 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1101 if (pfn_valid(pfn)) {
1102 struct page *page = pfn_to_page(pfn);
1103
7be98234
RW
1104 if (swsusp_page_is_forbidden(page) &&
1105 swsusp_page_is_free(page)) {
1106 swsusp_unset_page_forbidden(page);
1107 swsusp_unset_page_free(page);
8357376d 1108 __free_page(page);
25761b6e
RW
1109 }
1110 }
1111 }
f577eb30
RW
1112 nr_copy_pages = 0;
1113 nr_meta_pages = 0;
75534b50 1114 restore_pblist = NULL;
6e1819d6 1115 buffer = NULL;
64a473cb
RW
1116 alloc_normal = 0;
1117 alloc_highmem = 0;
25761b6e
RW
1118}
1119
4bb33435
RW
1120/* Helper functions used for the shrinking of memory. */
1121
1122#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1123
fe419535 1124/**
4bb33435
RW
1125 * preallocate_image_pages - Allocate a number of pages for hibernation image
1126 * @nr_pages: Number of page frames to allocate.
1127 * @mask: GFP flags to use for the allocation.
fe419535 1128 *
4bb33435
RW
1129 * Return value: Number of page frames actually allocated
1130 */
1131static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1132{
1133 unsigned long nr_alloc = 0;
1134
1135 while (nr_pages > 0) {
64a473cb
RW
1136 struct page *page;
1137
1138 page = alloc_image_page(mask);
1139 if (!page)
4bb33435 1140 break;
64a473cb
RW
1141 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1142 if (PageHighMem(page))
1143 alloc_highmem++;
1144 else
1145 alloc_normal++;
4bb33435
RW
1146 nr_pages--;
1147 nr_alloc++;
1148 }
1149
1150 return nr_alloc;
1151}
1152
6715045d
RW
1153static unsigned long preallocate_image_memory(unsigned long nr_pages,
1154 unsigned long avail_normal)
4bb33435 1155{
6715045d
RW
1156 unsigned long alloc;
1157
1158 if (avail_normal <= alloc_normal)
1159 return 0;
1160
1161 alloc = avail_normal - alloc_normal;
1162 if (nr_pages < alloc)
1163 alloc = nr_pages;
1164
1165 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1166}
1167
1168#ifdef CONFIG_HIGHMEM
1169static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1170{
1171 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1172}
1173
1174/**
1175 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1176 */
4bb33435
RW
1177static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1178{
1179 x *= multiplier;
1180 do_div(x, base);
1181 return (unsigned long)x;
1182}
fe419535 1183
4bb33435
RW
1184static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1185 unsigned long highmem,
1186 unsigned long total)
fe419535 1187{
4bb33435
RW
1188 unsigned long alloc = __fraction(nr_pages, highmem, total);
1189
1190 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1191}
4bb33435
RW
1192#else /* CONFIG_HIGHMEM */
1193static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1194{
1195 return 0;
1196}
1197
1198static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1199 unsigned long highmem,
1200 unsigned long total)
1201{
1202 return 0;
1203}
1204#endif /* CONFIG_HIGHMEM */
fe419535 1205
4bb33435 1206/**
64a473cb
RW
1207 * free_unnecessary_pages - Release preallocated pages not needed for the image
1208 */
1209static void free_unnecessary_pages(void)
1210{
6715045d 1211 unsigned long save, to_free_normal, to_free_highmem;
64a473cb 1212
6715045d
RW
1213 save = count_data_pages();
1214 if (alloc_normal >= save) {
1215 to_free_normal = alloc_normal - save;
1216 save = 0;
1217 } else {
1218 to_free_normal = 0;
1219 save -= alloc_normal;
1220 }
1221 save += count_highmem_pages();
1222 if (alloc_highmem >= save) {
1223 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1224 } else {
1225 to_free_highmem = 0;
4d4cf23c
RW
1226 save -= alloc_highmem;
1227 if (to_free_normal > save)
1228 to_free_normal -= save;
1229 else
1230 to_free_normal = 0;
64a473cb
RW
1231 }
1232
1233 memory_bm_position_reset(&copy_bm);
1234
a9c9b442 1235 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1236 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1237 struct page *page = pfn_to_page(pfn);
1238
1239 if (PageHighMem(page)) {
1240 if (!to_free_highmem)
1241 continue;
1242 to_free_highmem--;
1243 alloc_highmem--;
1244 } else {
1245 if (!to_free_normal)
1246 continue;
1247 to_free_normal--;
1248 alloc_normal--;
1249 }
1250 memory_bm_clear_bit(&copy_bm, pfn);
1251 swsusp_unset_page_forbidden(page);
1252 swsusp_unset_page_free(page);
1253 __free_page(page);
1254 }
1255}
1256
ef4aede3
RW
1257/**
1258 * minimum_image_size - Estimate the minimum acceptable size of an image
1259 * @saveable: Number of saveable pages in the system.
1260 *
1261 * We want to avoid attempting to free too much memory too hard, so estimate the
1262 * minimum acceptable size of a hibernation image to use as the lower limit for
1263 * preallocating memory.
1264 *
1265 * We assume that the minimum image size should be proportional to
1266 *
1267 * [number of saveable pages] - [number of pages that can be freed in theory]
1268 *
1269 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1270 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1271 * minus mapped file pages.
1272 */
1273static unsigned long minimum_image_size(unsigned long saveable)
1274{
1275 unsigned long size;
1276
1277 size = global_page_state(NR_SLAB_RECLAIMABLE)
1278 + global_page_state(NR_ACTIVE_ANON)
1279 + global_page_state(NR_INACTIVE_ANON)
1280 + global_page_state(NR_ACTIVE_FILE)
1281 + global_page_state(NR_INACTIVE_FILE)
1282 - global_page_state(NR_FILE_MAPPED);
1283
1284 return saveable <= size ? 0 : saveable - size;
1285}
1286
64a473cb
RW
1287/**
1288 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1289 *
1290 * To create a hibernation image it is necessary to make a copy of every page
1291 * frame in use. We also need a number of page frames to be free during
1292 * hibernation for allocations made while saving the image and for device
1293 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1294 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1295 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1296 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1297 * total number of available page frames and allocate at least
4bb33435 1298 *
ddeb6487
RW
1299 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1300 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1301 *
1302 * of them, which corresponds to the maximum size of a hibernation image.
1303 *
1304 * If image_size is set below the number following from the above formula,
1305 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1306 * pages in the system is below the requested image size or the minimum
1307 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1308 */
64a473cb 1309int hibernate_preallocate_memory(void)
fe419535 1310{
fe419535 1311 struct zone *zone;
4bb33435 1312 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1313 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
fe419535 1314 struct timeval start, stop;
64a473cb 1315 int error;
fe419535 1316
64a473cb 1317 printk(KERN_INFO "PM: Preallocating image memory... ");
fe419535 1318 do_gettimeofday(&start);
fe419535 1319
64a473cb
RW
1320 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1321 if (error)
1322 goto err_out;
1323
1324 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1325 if (error)
1326 goto err_out;
1327
1328 alloc_normal = 0;
1329 alloc_highmem = 0;
1330
4bb33435 1331 /* Count the number of saveable data pages. */
64a473cb 1332 save_highmem = count_highmem_pages();
4bb33435 1333 saveable = count_data_pages();
fe419535 1334
4bb33435
RW
1335 /*
1336 * Compute the total number of page frames we can use (count) and the
1337 * number of pages needed for image metadata (size).
1338 */
1339 count = saveable;
64a473cb
RW
1340 saveable += save_highmem;
1341 highmem = save_highmem;
4bb33435
RW
1342 size = 0;
1343 for_each_populated_zone(zone) {
1344 size += snapshot_additional_pages(zone);
1345 if (is_highmem(zone))
1346 highmem += zone_page_state(zone, NR_FREE_PAGES);
1347 else
1348 count += zone_page_state(zone, NR_FREE_PAGES);
1349 }
6715045d 1350 avail_normal = count;
4bb33435
RW
1351 count += highmem;
1352 count -= totalreserve_pages;
1353
85055dd8
MS
1354 /* Add number of pages required for page keys (s390 only). */
1355 size += page_key_additional_pages(saveable);
1356
4bb33435 1357 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1358 max_size = (count - (size + PAGES_FOR_IO)) / 2
1359 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1360 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1361 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1362 if (size > max_size)
1363 size = max_size;
1364 /*
266f1a25
RW
1365 * If the desired number of image pages is at least as large as the
1366 * current number of saveable pages in memory, allocate page frames for
1367 * the image and we're done.
4bb33435 1368 */
64a473cb
RW
1369 if (size >= saveable) {
1370 pages = preallocate_image_highmem(save_highmem);
6715045d 1371 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1372 goto out;
64a473cb 1373 }
4bb33435 1374
ef4aede3
RW
1375 /* Estimate the minimum size of the image. */
1376 pages = minimum_image_size(saveable);
6715045d
RW
1377 /*
1378 * To avoid excessive pressure on the normal zone, leave room in it to
1379 * accommodate an image of the minimum size (unless it's already too
1380 * small, in which case don't preallocate pages from it at all).
1381 */
1382 if (avail_normal > pages)
1383 avail_normal -= pages;
1384 else
1385 avail_normal = 0;
ef4aede3
RW
1386 if (size < pages)
1387 size = min_t(unsigned long, pages, max_size);
1388
4bb33435
RW
1389 /*
1390 * Let the memory management subsystem know that we're going to need a
1391 * large number of page frames to allocate and make it free some memory.
1392 * NOTE: If this is not done, performance will be hurt badly in some
1393 * test cases.
1394 */
1395 shrink_all_memory(saveable - size);
1396
1397 /*
1398 * The number of saveable pages in memory was too high, so apply some
1399 * pressure to decrease it. First, make room for the largest possible
1400 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1401 * of the image as much as indicated by 'size' using allocations from
1402 * highmem and non-highmem zones separately.
4bb33435
RW
1403 */
1404 pages_highmem = preallocate_image_highmem(highmem / 2);
1405 alloc = (count - max_size) - pages_highmem;
6715045d
RW
1406 pages = preallocate_image_memory(alloc, avail_normal);
1407 if (pages < alloc) {
1408 /* We have exhausted non-highmem pages, try highmem. */
1409 alloc -= pages;
1410 pages += pages_highmem;
1411 pages_highmem = preallocate_image_highmem(alloc);
1412 if (pages_highmem < alloc)
1413 goto err_out;
1414 pages += pages_highmem;
1415 /*
1416 * size is the desired number of saveable pages to leave in
1417 * memory, so try to preallocate (all memory - size) pages.
1418 */
1419 alloc = (count - pages) - size;
1420 pages += preallocate_image_highmem(alloc);
1421 } else {
1422 /*
1423 * There are approximately max_size saveable pages at this point
1424 * and we want to reduce this number down to size.
1425 */
1426 alloc = max_size - size;
1427 size = preallocate_highmem_fraction(alloc, highmem, count);
1428 pages_highmem += size;
1429 alloc -= size;
1430 size = preallocate_image_memory(alloc, avail_normal);
1431 pages_highmem += preallocate_image_highmem(alloc - size);
1432 pages += pages_highmem + size;
1433 }
4bb33435 1434
64a473cb
RW
1435 /*
1436 * We only need as many page frames for the image as there are saveable
1437 * pages in memory, but we have allocated more. Release the excessive
1438 * ones now.
1439 */
1440 free_unnecessary_pages();
4bb33435
RW
1441
1442 out:
fe419535 1443 do_gettimeofday(&stop);
64a473cb
RW
1444 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1445 swsusp_show_speed(&start, &stop, pages, "Allocated");
fe419535
RW
1446
1447 return 0;
64a473cb
RW
1448
1449 err_out:
1450 printk(KERN_CONT "\n");
1451 swsusp_free();
1452 return -ENOMEM;
fe419535
RW
1453}
1454
8357376d
RW
1455#ifdef CONFIG_HIGHMEM
1456/**
1457 * count_pages_for_highmem - compute the number of non-highmem pages
1458 * that will be necessary for creating copies of highmem pages.
1459 */
1460
1461static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1462{
64a473cb 1463 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1464
1465 if (free_highmem >= nr_highmem)
1466 nr_highmem = 0;
1467 else
1468 nr_highmem -= free_highmem;
1469
1470 return nr_highmem;
1471}
1472#else
1473static unsigned int
1474count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1475#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1476
1477/**
8357376d
RW
1478 * enough_free_mem - Make sure we have enough free memory for the
1479 * snapshot image.
25761b6e
RW
1480 */
1481
8357376d 1482static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1483{
e5e2fa78 1484 struct zone *zone;
64a473cb 1485 unsigned int free = alloc_normal;
e5e2fa78 1486
98e73dc5 1487 for_each_populated_zone(zone)
8357376d 1488 if (!is_highmem(zone))
d23ad423 1489 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1490
8357376d 1491 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1492 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1493 nr_pages, PAGES_FOR_IO, free);
940864dd 1494
64a473cb 1495 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1496}
1497
8357376d
RW
1498#ifdef CONFIG_HIGHMEM
1499/**
1500 * get_highmem_buffer - if there are some highmem pages in the suspend
1501 * image, we may need the buffer to copy them and/or load their data.
1502 */
1503
1504static inline int get_highmem_buffer(int safe_needed)
1505{
1506 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1507 return buffer ? 0 : -ENOMEM;
1508}
1509
1510/**
1511 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1512 * Try to allocate as many pages as needed, but if the number of free
1513 * highmem pages is lesser than that, allocate them all.
1514 */
1515
1516static inline unsigned int
64a473cb 1517alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1518{
1519 unsigned int to_alloc = count_free_highmem_pages();
1520
1521 if (to_alloc > nr_highmem)
1522 to_alloc = nr_highmem;
1523
1524 nr_highmem -= to_alloc;
1525 while (to_alloc-- > 0) {
1526 struct page *page;
1527
1528 page = alloc_image_page(__GFP_HIGHMEM);
1529 memory_bm_set_bit(bm, page_to_pfn(page));
1530 }
1531 return nr_highmem;
1532}
1533#else
1534static inline int get_highmem_buffer(int safe_needed) { return 0; }
1535
1536static inline unsigned int
64a473cb 1537alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1538#endif /* CONFIG_HIGHMEM */
1539
1540/**
1541 * swsusp_alloc - allocate memory for the suspend image
1542 *
1543 * We first try to allocate as many highmem pages as there are
1544 * saveable highmem pages in the system. If that fails, we allocate
1545 * non-highmem pages for the copies of the remaining highmem ones.
1546 *
1547 * In this approach it is likely that the copies of highmem pages will
1548 * also be located in the high memory, because of the way in which
1549 * copy_data_pages() works.
1550 */
1551
b788db79
RW
1552static int
1553swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1554 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1555{
8357376d 1556 if (nr_highmem > 0) {
2e725a06 1557 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1558 goto err_out;
1559 if (nr_highmem > alloc_highmem) {
1560 nr_highmem -= alloc_highmem;
1561 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1562 }
8357376d 1563 }
64a473cb
RW
1564 if (nr_pages > alloc_normal) {
1565 nr_pages -= alloc_normal;
1566 while (nr_pages-- > 0) {
1567 struct page *page;
1568
1569 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1570 if (!page)
1571 goto err_out;
1572 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1573 }
25761b6e 1574 }
64a473cb 1575
b788db79 1576 return 0;
25761b6e 1577
64a473cb 1578 err_out:
b788db79 1579 swsusp_free();
2e725a06 1580 return -ENOMEM;
25761b6e
RW
1581}
1582
2e32a43e 1583asmlinkage int swsusp_save(void)
25761b6e 1584{
8357376d 1585 unsigned int nr_pages, nr_highmem;
25761b6e 1586
07c3bb57 1587 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1588
9f8f2172 1589 drain_local_pages(NULL);
a0f49651 1590 nr_pages = count_data_pages();
8357376d 1591 nr_highmem = count_highmem_pages();
23976728 1592 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1593
8357376d 1594 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1595 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1596 return -ENOMEM;
1597 }
1598
8357376d 1599 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1600 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1601 return -ENOMEM;
8357376d 1602 }
25761b6e
RW
1603
1604 /* During allocating of suspend pagedir, new cold pages may appear.
1605 * Kill them.
1606 */
9f8f2172 1607 drain_local_pages(NULL);
b788db79 1608 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1609
1610 /*
1611 * End of critical section. From now on, we can write to memory,
1612 * but we should not touch disk. This specially means we must _not_
1613 * touch swap space! Except we must write out our image of course.
1614 */
1615
8357376d 1616 nr_pages += nr_highmem;
a0f49651 1617 nr_copy_pages = nr_pages;
8357376d 1618 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1619
23976728
RW
1620 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1621 nr_pages);
8357376d 1622
25761b6e
RW
1623 return 0;
1624}
f577eb30 1625
d307c4a8
RW
1626#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1627static int init_header_complete(struct swsusp_info *info)
f577eb30 1628{
d307c4a8 1629 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1630 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1631 return 0;
1632}
1633
1634static char *check_image_kernel(struct swsusp_info *info)
1635{
1636 if (info->version_code != LINUX_VERSION_CODE)
1637 return "kernel version";
1638 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1639 return "system type";
1640 if (strcmp(info->uts.release,init_utsname()->release))
1641 return "kernel release";
1642 if (strcmp(info->uts.version,init_utsname()->version))
1643 return "version";
1644 if (strcmp(info->uts.machine,init_utsname()->machine))
1645 return "machine";
1646 return NULL;
1647}
1648#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1649
af508b34
RW
1650unsigned long snapshot_get_image_size(void)
1651{
1652 return nr_copy_pages + nr_meta_pages + 1;
1653}
1654
d307c4a8
RW
1655static int init_header(struct swsusp_info *info)
1656{
1657 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 1658 info->num_physpages = get_num_physpages();
f577eb30 1659 info->image_pages = nr_copy_pages;
af508b34 1660 info->pages = snapshot_get_image_size();
6e1819d6
RW
1661 info->size = info->pages;
1662 info->size <<= PAGE_SHIFT;
d307c4a8 1663 return init_header_complete(info);
f577eb30
RW
1664}
1665
1666/**
940864dd
RW
1667 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1668 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1669 */
1670
b788db79 1671static inline void
940864dd 1672pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1673{
1674 int j;
1675
b788db79 1676 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1677 buf[j] = memory_bm_next_pfn(bm);
1678 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1679 break;
85055dd8
MS
1680 /* Save page key for data page (s390 only). */
1681 page_key_read(buf + j);
f577eb30 1682 }
f577eb30
RW
1683}
1684
1685/**
1686 * snapshot_read_next - used for reading the system memory snapshot.
1687 *
1688 * On the first call to it @handle should point to a zeroed
1689 * snapshot_handle structure. The structure gets updated and a pointer
1690 * to it should be passed to this function every next time.
1691 *
f577eb30
RW
1692 * On success the function returns a positive number. Then, the caller
1693 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 1694 * location computed by the data_of() macro.
f577eb30
RW
1695 *
1696 * The function returns 0 to indicate the end of data stream condition,
1697 * and a negative number is returned on error. In such cases the
1698 * structure pointed to by @handle is not updated and should not be used
1699 * any more.
1700 */
1701
d3c1b24c 1702int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 1703{
fb13a28b 1704 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1705 return 0;
b788db79 1706
f577eb30
RW
1707 if (!buffer) {
1708 /* This makes the buffer be freed by swsusp_free() */
8357376d 1709 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1710 if (!buffer)
1711 return -ENOMEM;
1712 }
d3c1b24c 1713 if (!handle->cur) {
d307c4a8
RW
1714 int error;
1715
1716 error = init_header((struct swsusp_info *)buffer);
1717 if (error)
1718 return error;
f577eb30 1719 handle->buffer = buffer;
b788db79
RW
1720 memory_bm_position_reset(&orig_bm);
1721 memory_bm_position_reset(&copy_bm);
d3c1b24c 1722 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 1723 clear_page(buffer);
d3c1b24c
JS
1724 pack_pfns(buffer, &orig_bm);
1725 } else {
1726 struct page *page;
b788db79 1727
d3c1b24c
JS
1728 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1729 if (PageHighMem(page)) {
1730 /* Highmem pages are copied to the buffer,
1731 * because we can't return with a kmapped
1732 * highmem page (we may not be called again).
1733 */
1734 void *kaddr;
8357376d 1735
0de9a1e2 1736 kaddr = kmap_atomic(page);
3ecb01df 1737 copy_page(buffer, kaddr);
0de9a1e2 1738 kunmap_atomic(kaddr);
d3c1b24c
JS
1739 handle->buffer = buffer;
1740 } else {
1741 handle->buffer = page_address(page);
f577eb30 1742 }
f577eb30 1743 }
d3c1b24c
JS
1744 handle->cur++;
1745 return PAGE_SIZE;
f577eb30
RW
1746}
1747
1748/**
1749 * mark_unsafe_pages - mark the pages that cannot be used for storing
1750 * the image during resume, because they conflict with the pages that
1751 * had been used before suspend
1752 */
1753
940864dd 1754static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1755{
1756 struct zone *zone;
ae83c5ee 1757 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1758
1759 /* Clear page flags */
98e73dc5 1760 for_each_populated_zone(zone) {
c33bc315 1761 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
1762 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1763 if (pfn_valid(pfn))
7be98234 1764 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1765 }
1766
940864dd
RW
1767 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1768 memory_bm_position_reset(bm);
1769 do {
1770 pfn = memory_bm_next_pfn(bm);
1771 if (likely(pfn != BM_END_OF_MAP)) {
1772 if (likely(pfn_valid(pfn)))
7be98234 1773 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1774 else
1775 return -EFAULT;
1776 }
1777 } while (pfn != BM_END_OF_MAP);
f577eb30 1778
940864dd 1779 allocated_unsafe_pages = 0;
968808b8 1780
f577eb30
RW
1781 return 0;
1782}
1783
940864dd
RW
1784static void
1785duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1786{
940864dd
RW
1787 unsigned long pfn;
1788
1789 memory_bm_position_reset(src);
1790 pfn = memory_bm_next_pfn(src);
1791 while (pfn != BM_END_OF_MAP) {
1792 memory_bm_set_bit(dst, pfn);
1793 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1794 }
1795}
1796
d307c4a8 1797static int check_header(struct swsusp_info *info)
f577eb30 1798{
d307c4a8 1799 char *reason;
f577eb30 1800
d307c4a8 1801 reason = check_image_kernel(info);
0ed5fd13 1802 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 1803 reason = "memory size";
f577eb30 1804 if (reason) {
23976728 1805 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
1806 return -EPERM;
1807 }
1808 return 0;
1809}
1810
1811/**
1812 * load header - check the image header and copy data from it
1813 */
1814
940864dd
RW
1815static int
1816load_header(struct swsusp_info *info)
f577eb30
RW
1817{
1818 int error;
f577eb30 1819
940864dd 1820 restore_pblist = NULL;
f577eb30
RW
1821 error = check_header(info);
1822 if (!error) {
f577eb30
RW
1823 nr_copy_pages = info->image_pages;
1824 nr_meta_pages = info->pages - info->image_pages - 1;
1825 }
1826 return error;
1827}
1828
1829/**
940864dd
RW
1830 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1831 * the corresponding bit in the memory bitmap @bm
f577eb30 1832 */
69643279 1833static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1834{
1835 int j;
1836
940864dd
RW
1837 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1838 if (unlikely(buf[j] == BM_END_OF_MAP))
1839 break;
1840
85055dd8
MS
1841 /* Extract and buffer page key for data page (s390 only). */
1842 page_key_memorize(buf + j);
1843
69643279
RW
1844 if (memory_bm_pfn_present(bm, buf[j]))
1845 memory_bm_set_bit(bm, buf[j]);
1846 else
1847 return -EFAULT;
f577eb30 1848 }
69643279
RW
1849
1850 return 0;
f577eb30
RW
1851}
1852
8357376d
RW
1853/* List of "safe" pages that may be used to store data loaded from the suspend
1854 * image
1855 */
1856static struct linked_page *safe_pages_list;
1857
1858#ifdef CONFIG_HIGHMEM
1859/* struct highmem_pbe is used for creating the list of highmem pages that
1860 * should be restored atomically during the resume from disk, because the page
1861 * frames they have occupied before the suspend are in use.
1862 */
1863struct highmem_pbe {
1864 struct page *copy_page; /* data is here now */
1865 struct page *orig_page; /* data was here before the suspend */
1866 struct highmem_pbe *next;
1867};
1868
1869/* List of highmem PBEs needed for restoring the highmem pages that were
1870 * allocated before the suspend and included in the suspend image, but have
1871 * also been allocated by the "resume" kernel, so their contents cannot be
1872 * written directly to their "original" page frames.
1873 */
1874static struct highmem_pbe *highmem_pblist;
1875
1876/**
1877 * count_highmem_image_pages - compute the number of highmem pages in the
1878 * suspend image. The bits in the memory bitmap @bm that correspond to the
1879 * image pages are assumed to be set.
1880 */
1881
1882static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1883{
1884 unsigned long pfn;
1885 unsigned int cnt = 0;
1886
1887 memory_bm_position_reset(bm);
1888 pfn = memory_bm_next_pfn(bm);
1889 while (pfn != BM_END_OF_MAP) {
1890 if (PageHighMem(pfn_to_page(pfn)))
1891 cnt++;
1892
1893 pfn = memory_bm_next_pfn(bm);
1894 }
1895 return cnt;
1896}
1897
1898/**
1899 * prepare_highmem_image - try to allocate as many highmem pages as
1900 * there are highmem image pages (@nr_highmem_p points to the variable
1901 * containing the number of highmem image pages). The pages that are
1902 * "safe" (ie. will not be overwritten when the suspend image is
1903 * restored) have the corresponding bits set in @bm (it must be
1904 * unitialized).
1905 *
1906 * NOTE: This function should not be called if there are no highmem
1907 * image pages.
1908 */
1909
1910static unsigned int safe_highmem_pages;
1911
1912static struct memory_bitmap *safe_highmem_bm;
1913
1914static int
1915prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1916{
1917 unsigned int to_alloc;
1918
1919 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1920 return -ENOMEM;
1921
1922 if (get_highmem_buffer(PG_SAFE))
1923 return -ENOMEM;
1924
1925 to_alloc = count_free_highmem_pages();
1926 if (to_alloc > *nr_highmem_p)
1927 to_alloc = *nr_highmem_p;
1928 else
1929 *nr_highmem_p = to_alloc;
1930
1931 safe_highmem_pages = 0;
1932 while (to_alloc-- > 0) {
1933 struct page *page;
1934
1935 page = alloc_page(__GFP_HIGHMEM);
7be98234 1936 if (!swsusp_page_is_free(page)) {
8357376d
RW
1937 /* The page is "safe", set its bit the bitmap */
1938 memory_bm_set_bit(bm, page_to_pfn(page));
1939 safe_highmem_pages++;
1940 }
1941 /* Mark the page as allocated */
7be98234
RW
1942 swsusp_set_page_forbidden(page);
1943 swsusp_set_page_free(page);
8357376d
RW
1944 }
1945 memory_bm_position_reset(bm);
1946 safe_highmem_bm = bm;
1947 return 0;
1948}
1949
1950/**
1951 * get_highmem_page_buffer - for given highmem image page find the buffer
1952 * that suspend_write_next() should set for its caller to write to.
1953 *
1954 * If the page is to be saved to its "original" page frame or a copy of
1955 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1956 * the copy of the page is to be made in normal memory, so the address of
1957 * the copy is returned.
1958 *
1959 * If @buffer is returned, the caller of suspend_write_next() will write
1960 * the page's contents to @buffer, so they will have to be copied to the
1961 * right location on the next call to suspend_write_next() and it is done
1962 * with the help of copy_last_highmem_page(). For this purpose, if
1963 * @buffer is returned, @last_highmem page is set to the page to which
1964 * the data will have to be copied from @buffer.
1965 */
1966
1967static struct page *last_highmem_page;
1968
1969static void *
1970get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1971{
1972 struct highmem_pbe *pbe;
1973 void *kaddr;
1974
7be98234 1975 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1976 /* We have allocated the "original" page frame and we can
1977 * use it directly to store the loaded page.
1978 */
1979 last_highmem_page = page;
1980 return buffer;
1981 }
1982 /* The "original" page frame has not been allocated and we have to
1983 * use a "safe" page frame to store the loaded page.
1984 */
1985 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1986 if (!pbe) {
1987 swsusp_free();
69643279 1988 return ERR_PTR(-ENOMEM);
8357376d
RW
1989 }
1990 pbe->orig_page = page;
1991 if (safe_highmem_pages > 0) {
1992 struct page *tmp;
1993
1994 /* Copy of the page will be stored in high memory */
1995 kaddr = buffer;
1996 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1997 safe_highmem_pages--;
1998 last_highmem_page = tmp;
1999 pbe->copy_page = tmp;
2000 } else {
2001 /* Copy of the page will be stored in normal memory */
2002 kaddr = safe_pages_list;
2003 safe_pages_list = safe_pages_list->next;
2004 pbe->copy_page = virt_to_page(kaddr);
2005 }
2006 pbe->next = highmem_pblist;
2007 highmem_pblist = pbe;
2008 return kaddr;
2009}
2010
2011/**
2012 * copy_last_highmem_page - copy the contents of a highmem image from
2013 * @buffer, where the caller of snapshot_write_next() has place them,
2014 * to the right location represented by @last_highmem_page .
2015 */
2016
2017static void copy_last_highmem_page(void)
2018{
2019 if (last_highmem_page) {
2020 void *dst;
2021
0de9a1e2 2022 dst = kmap_atomic(last_highmem_page);
3ecb01df 2023 copy_page(dst, buffer);
0de9a1e2 2024 kunmap_atomic(dst);
8357376d
RW
2025 last_highmem_page = NULL;
2026 }
2027}
2028
2029static inline int last_highmem_page_copied(void)
2030{
2031 return !last_highmem_page;
2032}
2033
2034static inline void free_highmem_data(void)
2035{
2036 if (safe_highmem_bm)
2037 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2038
2039 if (buffer)
2040 free_image_page(buffer, PG_UNSAFE_CLEAR);
2041}
2042#else
2043static inline int get_safe_write_buffer(void) { return 0; }
2044
2045static unsigned int
2046count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2047
2048static inline int
2049prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2050{
2051 return 0;
2052}
2053
2054static inline void *
2055get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2056{
69643279 2057 return ERR_PTR(-EINVAL);
8357376d
RW
2058}
2059
2060static inline void copy_last_highmem_page(void) {}
2061static inline int last_highmem_page_copied(void) { return 1; }
2062static inline void free_highmem_data(void) {}
2063#endif /* CONFIG_HIGHMEM */
2064
f577eb30 2065/**
940864dd
RW
2066 * prepare_image - use the memory bitmap @bm to mark the pages that will
2067 * be overwritten in the process of restoring the system memory state
2068 * from the suspend image ("unsafe" pages) and allocate memory for the
2069 * image.
968808b8 2070 *
940864dd
RW
2071 * The idea is to allocate a new memory bitmap first and then allocate
2072 * as many pages as needed for the image data, but not to assign these
2073 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2074 * allocated and create a lists of "safe" pages that will be used
2075 * later. On systems with high memory a list of "safe" highmem pages is
2076 * also created.
f577eb30
RW
2077 */
2078
940864dd
RW
2079#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2080
940864dd
RW
2081static int
2082prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2083{
8357376d 2084 unsigned int nr_pages, nr_highmem;
940864dd
RW
2085 struct linked_page *sp_list, *lp;
2086 int error;
f577eb30 2087
8357376d
RW
2088 /* If there is no highmem, the buffer will not be necessary */
2089 free_image_page(buffer, PG_UNSAFE_CLEAR);
2090 buffer = NULL;
2091
2092 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2093 error = mark_unsafe_pages(bm);
2094 if (error)
2095 goto Free;
2096
2097 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2098 if (error)
2099 goto Free;
2100
2101 duplicate_memory_bitmap(new_bm, bm);
2102 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2103 if (nr_highmem > 0) {
2104 error = prepare_highmem_image(bm, &nr_highmem);
2105 if (error)
2106 goto Free;
2107 }
940864dd
RW
2108 /* Reserve some safe pages for potential later use.
2109 *
2110 * NOTE: This way we make sure there will be enough safe pages for the
2111 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2112 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2113 */
2114 sp_list = NULL;
2115 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2116 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2117 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2118 while (nr_pages > 0) {
8357376d 2119 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2120 if (!lp) {
f577eb30 2121 error = -ENOMEM;
940864dd
RW
2122 goto Free;
2123 }
2124 lp->next = sp_list;
2125 sp_list = lp;
2126 nr_pages--;
f577eb30 2127 }
940864dd
RW
2128 /* Preallocate memory for the image */
2129 safe_pages_list = NULL;
8357376d 2130 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2131 while (nr_pages > 0) {
2132 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2133 if (!lp) {
2134 error = -ENOMEM;
2135 goto Free;
2136 }
7be98234 2137 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2138 /* The page is "safe", add it to the list */
2139 lp->next = safe_pages_list;
2140 safe_pages_list = lp;
968808b8 2141 }
940864dd 2142 /* Mark the page as allocated */
7be98234
RW
2143 swsusp_set_page_forbidden(virt_to_page(lp));
2144 swsusp_set_page_free(virt_to_page(lp));
940864dd 2145 nr_pages--;
968808b8 2146 }
940864dd
RW
2147 /* Free the reserved safe pages so that chain_alloc() can use them */
2148 while (sp_list) {
2149 lp = sp_list->next;
2150 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2151 sp_list = lp;
f577eb30 2152 }
940864dd
RW
2153 return 0;
2154
59a49335 2155 Free:
940864dd 2156 swsusp_free();
f577eb30
RW
2157 return error;
2158}
2159
940864dd
RW
2160/**
2161 * get_buffer - compute the address that snapshot_write_next() should
2162 * set for its caller to write to.
2163 */
2164
2165static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2166{
940864dd 2167 struct pbe *pbe;
69643279
RW
2168 struct page *page;
2169 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2170
69643279
RW
2171 if (pfn == BM_END_OF_MAP)
2172 return ERR_PTR(-EFAULT);
2173
2174 page = pfn_to_page(pfn);
8357376d
RW
2175 if (PageHighMem(page))
2176 return get_highmem_page_buffer(page, ca);
2177
7be98234 2178 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2179 /* We have allocated the "original" page frame and we can
2180 * use it directly to store the loaded page.
968808b8 2181 */
940864dd
RW
2182 return page_address(page);
2183
2184 /* The "original" page frame has not been allocated and we have to
2185 * use a "safe" page frame to store the loaded page.
968808b8 2186 */
940864dd
RW
2187 pbe = chain_alloc(ca, sizeof(struct pbe));
2188 if (!pbe) {
2189 swsusp_free();
69643279 2190 return ERR_PTR(-ENOMEM);
940864dd 2191 }
8357376d
RW
2192 pbe->orig_address = page_address(page);
2193 pbe->address = safe_pages_list;
940864dd
RW
2194 safe_pages_list = safe_pages_list->next;
2195 pbe->next = restore_pblist;
2196 restore_pblist = pbe;
8357376d 2197 return pbe->address;
968808b8
RW
2198}
2199
f577eb30
RW
2200/**
2201 * snapshot_write_next - used for writing the system memory snapshot.
2202 *
2203 * On the first call to it @handle should point to a zeroed
2204 * snapshot_handle structure. The structure gets updated and a pointer
2205 * to it should be passed to this function every next time.
2206 *
f577eb30
RW
2207 * On success the function returns a positive number. Then, the caller
2208 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2209 * location computed by the data_of() macro.
f577eb30
RW
2210 *
2211 * The function returns 0 to indicate the "end of file" condition,
2212 * and a negative number is returned on error. In such cases the
2213 * structure pointed to by @handle is not updated and should not be used
2214 * any more.
2215 */
2216
d3c1b24c 2217int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2218{
940864dd 2219 static struct chain_allocator ca;
f577eb30
RW
2220 int error = 0;
2221
940864dd 2222 /* Check if we have already loaded the entire image */
d3c1b24c 2223 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2224 return 0;
940864dd 2225
d3c1b24c
JS
2226 handle->sync_read = 1;
2227
2228 if (!handle->cur) {
8357376d
RW
2229 if (!buffer)
2230 /* This makes the buffer be freed by swsusp_free() */
2231 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2232
f577eb30
RW
2233 if (!buffer)
2234 return -ENOMEM;
8357376d 2235
f577eb30 2236 handle->buffer = buffer;
d3c1b24c
JS
2237 } else if (handle->cur == 1) {
2238 error = load_header(buffer);
2239 if (error)
2240 return error;
940864dd 2241
d3c1b24c
JS
2242 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2243 if (error)
2244 return error;
2245
85055dd8
MS
2246 /* Allocate buffer for page keys. */
2247 error = page_key_alloc(nr_copy_pages);
2248 if (error)
2249 return error;
2250
d3c1b24c
JS
2251 } else if (handle->cur <= nr_meta_pages + 1) {
2252 error = unpack_orig_pfns(buffer, &copy_bm);
2253 if (error)
2254 return error;
940864dd 2255
d3c1b24c
JS
2256 if (handle->cur == nr_meta_pages + 1) {
2257 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2258 if (error)
2259 return error;
2260
d3c1b24c
JS
2261 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2262 memory_bm_position_reset(&orig_bm);
2263 restore_pblist = NULL;
940864dd 2264 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2265 handle->sync_read = 0;
69643279
RW
2266 if (IS_ERR(handle->buffer))
2267 return PTR_ERR(handle->buffer);
f577eb30 2268 }
f577eb30 2269 } else {
d3c1b24c 2270 copy_last_highmem_page();
85055dd8
MS
2271 /* Restore page key for data page (s390 only). */
2272 page_key_write(handle->buffer);
d3c1b24c
JS
2273 handle->buffer = get_buffer(&orig_bm, &ca);
2274 if (IS_ERR(handle->buffer))
2275 return PTR_ERR(handle->buffer);
2276 if (handle->buffer != buffer)
2277 handle->sync_read = 0;
f577eb30 2278 }
d3c1b24c
JS
2279 handle->cur++;
2280 return PAGE_SIZE;
f577eb30
RW
2281}
2282
8357376d
RW
2283/**
2284 * snapshot_write_finalize - must be called after the last call to
2285 * snapshot_write_next() in case the last page in the image happens
2286 * to be a highmem page and its contents should be stored in the
2287 * highmem. Additionally, it releases the memory that will not be
2288 * used any more.
2289 */
2290
2291void snapshot_write_finalize(struct snapshot_handle *handle)
2292{
2293 copy_last_highmem_page();
85055dd8
MS
2294 /* Restore page key for data page (s390 only). */
2295 page_key_write(handle->buffer);
2296 page_key_free();
8357376d 2297 /* Free only if we have loaded the image entirely */
d3c1b24c 2298 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
8357376d
RW
2299 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2300 free_highmem_data();
2301 }
2302}
2303
f577eb30
RW
2304int snapshot_image_loaded(struct snapshot_handle *handle)
2305{
8357376d 2306 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2307 handle->cur <= nr_meta_pages + nr_copy_pages);
2308}
2309
8357376d
RW
2310#ifdef CONFIG_HIGHMEM
2311/* Assumes that @buf is ready and points to a "safe" page */
2312static inline void
2313swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2314{
8357376d
RW
2315 void *kaddr1, *kaddr2;
2316
0de9a1e2
CW
2317 kaddr1 = kmap_atomic(p1);
2318 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2319 copy_page(buf, kaddr1);
2320 copy_page(kaddr1, kaddr2);
2321 copy_page(kaddr2, buf);
0de9a1e2
CW
2322 kunmap_atomic(kaddr2);
2323 kunmap_atomic(kaddr1);
8357376d
RW
2324}
2325
2326/**
2327 * restore_highmem - for each highmem page that was allocated before
2328 * the suspend and included in the suspend image, and also has been
2329 * allocated by the "resume" kernel swap its current (ie. "before
2330 * resume") contents with the previous (ie. "before suspend") one.
2331 *
2332 * If the resume eventually fails, we can call this function once
2333 * again and restore the "before resume" highmem state.
2334 */
2335
2336int restore_highmem(void)
2337{
2338 struct highmem_pbe *pbe = highmem_pblist;
2339 void *buf;
2340
2341 if (!pbe)
2342 return 0;
2343
2344 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2345 if (!buf)
2346 return -ENOMEM;
2347
2348 while (pbe) {
2349 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2350 pbe = pbe->next;
2351 }
2352 free_image_page(buf, PG_UNSAFE_CLEAR);
2353 return 0;
f577eb30 2354}
8357376d 2355#endif /* CONFIG_HIGHMEM */
This page took 0.7546 seconds and 5 git commands to generate.