PM / sleep: export suspend_resume trace event
[deliverable/linux.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
52f5684c 30#include <linux/compiler.h>
db597605 31#include <linux/ktime.h>
25761b6e
RW
32
33#include <asm/uaccess.h>
34#include <asm/mmu_context.h>
35#include <asm/pgtable.h>
36#include <asm/tlbflush.h>
37#include <asm/io.h>
38
25761b6e
RW
39#include "power.h"
40
74dfd666
RW
41static int swsusp_page_is_free(struct page *);
42static void swsusp_set_page_forbidden(struct page *);
43static void swsusp_unset_page_forbidden(struct page *);
44
ddeb6487
RW
45/*
46 * Number of bytes to reserve for memory allocations made by device drivers
47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
48 * cause image creation to fail (tunable via /sys/power/reserved_size).
49 */
50unsigned long reserved_size;
51
52void __init hibernate_reserved_size_init(void)
53{
54 reserved_size = SPARE_PAGES * PAGE_SIZE;
55}
56
fe419535
RW
57/*
58 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
59 * When it is set to N, swsusp will do its best to ensure the image
60 * size will not exceed N bytes, but if that is impossible, it will
61 * try to create the smallest image possible.
fe419535 62 */
ac5c24ec
RW
63unsigned long image_size;
64
65void __init hibernate_image_size_init(void)
66{
1c1be3a9 67 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 68}
fe419535 69
8357376d
RW
70/* List of PBEs needed for restoring the pages that were allocated before
71 * the suspend and included in the suspend image, but have also been
72 * allocated by the "resume" kernel, so their contents cannot be written
73 * directly to their "original" page frames.
74 */
75534b50
RW
75struct pbe *restore_pblist;
76
8357376d 77/* Pointer to an auxiliary buffer (1 page) */
940864dd 78static void *buffer;
7088a5c0 79
f6143aa6
RW
80/**
81 * @safe_needed - on resume, for storing the PBE list and the image,
82 * we can only use memory pages that do not conflict with the pages
8357376d
RW
83 * used before suspend. The unsafe pages have PageNosaveFree set
84 * and we count them using unsafe_pages.
f6143aa6 85 *
8357376d
RW
86 * Each allocated image page is marked as PageNosave and PageNosaveFree
87 * so that swsusp_free() can release it.
f6143aa6
RW
88 */
89
0bcd888d
RW
90#define PG_ANY 0
91#define PG_SAFE 1
92#define PG_UNSAFE_CLEAR 1
93#define PG_UNSAFE_KEEP 0
94
940864dd 95static unsigned int allocated_unsafe_pages;
f6143aa6 96
8357376d 97static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
98{
99 void *res;
100
101 res = (void *)get_zeroed_page(gfp_mask);
102 if (safe_needed)
7be98234 103 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 104 /* The page is unsafe, mark it for swsusp_free() */
7be98234 105 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 106 allocated_unsafe_pages++;
f6143aa6
RW
107 res = (void *)get_zeroed_page(gfp_mask);
108 }
109 if (res) {
7be98234
RW
110 swsusp_set_page_forbidden(virt_to_page(res));
111 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
112 }
113 return res;
114}
115
116unsigned long get_safe_page(gfp_t gfp_mask)
117{
8357376d
RW
118 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
119}
120
5b6d15de
RW
121static struct page *alloc_image_page(gfp_t gfp_mask)
122{
8357376d
RW
123 struct page *page;
124
125 page = alloc_page(gfp_mask);
126 if (page) {
7be98234
RW
127 swsusp_set_page_forbidden(page);
128 swsusp_set_page_free(page);
8357376d
RW
129 }
130 return page;
f6143aa6
RW
131}
132
133/**
134 * free_image_page - free page represented by @addr, allocated with
8357376d 135 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
136 */
137
138static inline void free_image_page(void *addr, int clear_nosave_free)
139{
8357376d
RW
140 struct page *page;
141
142 BUG_ON(!virt_addr_valid(addr));
143
144 page = virt_to_page(addr);
145
7be98234 146 swsusp_unset_page_forbidden(page);
f6143aa6 147 if (clear_nosave_free)
7be98234 148 swsusp_unset_page_free(page);
8357376d
RW
149
150 __free_page(page);
f6143aa6
RW
151}
152
b788db79
RW
153/* struct linked_page is used to build chains of pages */
154
155#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
156
157struct linked_page {
158 struct linked_page *next;
159 char data[LINKED_PAGE_DATA_SIZE];
52f5684c 160} __packed;
b788db79
RW
161
162static inline void
163free_list_of_pages(struct linked_page *list, int clear_page_nosave)
164{
165 while (list) {
166 struct linked_page *lp = list->next;
167
168 free_image_page(list, clear_page_nosave);
169 list = lp;
170 }
171}
172
173/**
174 * struct chain_allocator is used for allocating small objects out of
175 * a linked list of pages called 'the chain'.
176 *
177 * The chain grows each time when there is no room for a new object in
178 * the current page. The allocated objects cannot be freed individually.
179 * It is only possible to free them all at once, by freeing the entire
180 * chain.
181 *
182 * NOTE: The chain allocator may be inefficient if the allocated objects
183 * are not much smaller than PAGE_SIZE.
184 */
185
186struct chain_allocator {
187 struct linked_page *chain; /* the chain */
188 unsigned int used_space; /* total size of objects allocated out
189 * of the current page
190 */
191 gfp_t gfp_mask; /* mask for allocating pages */
192 int safe_needed; /* if set, only "safe" pages are allocated */
193};
194
195static void
196chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
197{
198 ca->chain = NULL;
199 ca->used_space = LINKED_PAGE_DATA_SIZE;
200 ca->gfp_mask = gfp_mask;
201 ca->safe_needed = safe_needed;
202}
203
204static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
205{
206 void *ret;
207
208 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
209 struct linked_page *lp;
210
8357376d 211 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
212 if (!lp)
213 return NULL;
214
215 lp->next = ca->chain;
216 ca->chain = lp;
217 ca->used_space = 0;
218 }
219 ret = ca->chain->data + ca->used_space;
220 ca->used_space += size;
221 return ret;
222}
223
b788db79
RW
224/**
225 * Data types related to memory bitmaps.
226 *
227 * Memory bitmap is a structure consiting of many linked lists of
228 * objects. The main list's elements are of type struct zone_bitmap
229 * and each of them corresonds to one zone. For each zone bitmap
230 * object there is a list of objects of type struct bm_block that
0d83304c 231 * represent each blocks of bitmap in which information is stored.
b788db79
RW
232 *
233 * struct memory_bitmap contains a pointer to the main list of zone
234 * bitmap objects, a struct bm_position used for browsing the bitmap,
235 * and a pointer to the list of pages used for allocating all of the
236 * zone bitmap objects and bitmap block objects.
237 *
238 * NOTE: It has to be possible to lay out the bitmap in memory
239 * using only allocations of order 0. Additionally, the bitmap is
240 * designed to work with arbitrary number of zones (this is over the
241 * top for now, but let's avoid making unnecessary assumptions ;-).
242 *
243 * struct zone_bitmap contains a pointer to a list of bitmap block
244 * objects and a pointer to the bitmap block object that has been
245 * most recently used for setting bits. Additionally, it contains the
246 * pfns that correspond to the start and end of the represented zone.
247 *
248 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
249 * information is stored (in the form of a block of bitmap)
250 * It also contains the pfns that correspond to the start and end of
251 * the represented memory area.
f469f02d
JR
252 *
253 * The memory bitmap is organized as a radix tree to guarantee fast random
254 * access to the bits. There is one radix tree for each zone (as returned
255 * from create_mem_extents).
256 *
257 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
258 * two linked lists for the nodes of the tree, one for the inner nodes and
259 * one for the leave nodes. The linked leave nodes are used for fast linear
260 * access of the memory bitmap.
261 *
262 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
263 */
264
265#define BM_END_OF_MAP (~0UL)
266
8de03073 267#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
268#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
269#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79 270
f469f02d
JR
271/*
272 * struct rtree_node is a wrapper struct to link the nodes
273 * of the rtree together for easy linear iteration over
274 * bits and easy freeing
275 */
276struct rtree_node {
277 struct list_head list;
278 unsigned long *data;
279};
280
281/*
282 * struct mem_zone_bm_rtree represents a bitmap used for one
283 * populated memory zone.
284 */
285struct mem_zone_bm_rtree {
286 struct list_head list; /* Link Zones together */
287 struct list_head nodes; /* Radix Tree inner nodes */
288 struct list_head leaves; /* Radix Tree leaves */
289 unsigned long start_pfn; /* Zone start page frame */
290 unsigned long end_pfn; /* Zone end page frame + 1 */
291 struct rtree_node *rtree; /* Radix Tree Root */
292 int levels; /* Number of Radix Tree Levels */
293 unsigned int blocks; /* Number of Bitmap Blocks */
294};
295
b788db79
RW
296/* strcut bm_position is used for browsing memory bitmaps */
297
298struct bm_position {
3a20cb17
JR
299 struct mem_zone_bm_rtree *zone;
300 struct rtree_node *node;
301 unsigned long node_pfn;
302 int node_bit;
b788db79
RW
303};
304
305struct memory_bitmap {
f469f02d 306 struct list_head zones;
b788db79
RW
307 struct linked_page *p_list; /* list of pages used to store zone
308 * bitmap objects and bitmap block
309 * objects
310 */
311 struct bm_position cur; /* most recently used bit position */
312};
313
314/* Functions that operate on memory bitmaps */
315
f469f02d
JR
316#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
317#if BITS_PER_LONG == 32
318#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
319#else
320#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
321#endif
322#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
323
324/*
325 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
326 *
327 * This function is used to allocate inner nodes as well as the
328 * leave nodes of the radix tree. It also adds the node to the
329 * corresponding linked list passed in by the *list parameter.
330 */
331static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
332 struct chain_allocator *ca,
333 struct list_head *list)
334{
335 struct rtree_node *node;
336
337 node = chain_alloc(ca, sizeof(struct rtree_node));
338 if (!node)
339 return NULL;
340
341 node->data = get_image_page(gfp_mask, safe_needed);
342 if (!node->data)
343 return NULL;
344
345 list_add_tail(&node->list, list);
346
347 return node;
348}
349
350/*
351 * add_rtree_block - Add a new leave node to the radix tree
352 *
353 * The leave nodes need to be allocated in order to keep the leaves
354 * linked list in order. This is guaranteed by the zone->blocks
355 * counter.
356 */
357static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
358 int safe_needed, struct chain_allocator *ca)
359{
360 struct rtree_node *node, *block, **dst;
361 unsigned int levels_needed, block_nr;
362 int i;
363
364 block_nr = zone->blocks;
365 levels_needed = 0;
366
367 /* How many levels do we need for this block nr? */
368 while (block_nr) {
369 levels_needed += 1;
370 block_nr >>= BM_RTREE_LEVEL_SHIFT;
371 }
372
373 /* Make sure the rtree has enough levels */
374 for (i = zone->levels; i < levels_needed; i++) {
375 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
376 &zone->nodes);
377 if (!node)
378 return -ENOMEM;
379
380 node->data[0] = (unsigned long)zone->rtree;
381 zone->rtree = node;
382 zone->levels += 1;
383 }
384
385 /* Allocate new block */
386 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
387 if (!block)
388 return -ENOMEM;
389
390 /* Now walk the rtree to insert the block */
391 node = zone->rtree;
392 dst = &zone->rtree;
393 block_nr = zone->blocks;
394 for (i = zone->levels; i > 0; i--) {
395 int index;
396
397 if (!node) {
398 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
399 &zone->nodes);
400 if (!node)
401 return -ENOMEM;
402 *dst = node;
403 }
404
405 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
406 index &= BM_RTREE_LEVEL_MASK;
407 dst = (struct rtree_node **)&((*dst)->data[index]);
408 node = *dst;
409 }
410
411 zone->blocks += 1;
412 *dst = block;
413
414 return 0;
415}
416
417static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
418 int clear_nosave_free);
419
420/*
421 * create_zone_bm_rtree - create a radix tree for one zone
422 *
423 * Allocated the mem_zone_bm_rtree structure and initializes it.
424 * This function also allocated and builds the radix tree for the
425 * zone.
426 */
427static struct mem_zone_bm_rtree *
428create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
429 struct chain_allocator *ca,
430 unsigned long start, unsigned long end)
431{
432 struct mem_zone_bm_rtree *zone;
433 unsigned int i, nr_blocks;
434 unsigned long pages;
435
436 pages = end - start;
437 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
438 if (!zone)
439 return NULL;
440
441 INIT_LIST_HEAD(&zone->nodes);
442 INIT_LIST_HEAD(&zone->leaves);
443 zone->start_pfn = start;
444 zone->end_pfn = end;
445 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
446
447 for (i = 0; i < nr_blocks; i++) {
448 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
449 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
450 return NULL;
451 }
452 }
453
454 return zone;
455}
456
457/*
458 * free_zone_bm_rtree - Free the memory of the radix tree
459 *
460 * Free all node pages of the radix tree. The mem_zone_bm_rtree
461 * structure itself is not freed here nor are the rtree_node
462 * structs.
463 */
464static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
465 int clear_nosave_free)
466{
467 struct rtree_node *node;
468
469 list_for_each_entry(node, &zone->nodes, list)
470 free_image_page(node->data, clear_nosave_free);
471
472 list_for_each_entry(node, &zone->leaves, list)
473 free_image_page(node->data, clear_nosave_free);
474}
475
b788db79
RW
476static void memory_bm_position_reset(struct memory_bitmap *bm)
477{
3a20cb17
JR
478 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
479 list);
480 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
481 struct rtree_node, list);
482 bm->cur.node_pfn = 0;
483 bm->cur.node_bit = 0;
b788db79
RW
484}
485
486static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
487
846705de
RW
488struct mem_extent {
489 struct list_head hook;
490 unsigned long start;
491 unsigned long end;
492};
493
b788db79 494/**
846705de
RW
495 * free_mem_extents - free a list of memory extents
496 * @list - list of extents to empty
b788db79 497 */
846705de
RW
498static void free_mem_extents(struct list_head *list)
499{
500 struct mem_extent *ext, *aux;
b788db79 501
846705de
RW
502 list_for_each_entry_safe(ext, aux, list, hook) {
503 list_del(&ext->hook);
504 kfree(ext);
505 }
506}
507
508/**
509 * create_mem_extents - create a list of memory extents representing
510 * contiguous ranges of PFNs
511 * @list - list to put the extents into
512 * @gfp_mask - mask to use for memory allocations
513 */
514static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 515{
846705de 516 struct zone *zone;
b788db79 517
846705de 518 INIT_LIST_HEAD(list);
b788db79 519
ee99c71c 520 for_each_populated_zone(zone) {
846705de
RW
521 unsigned long zone_start, zone_end;
522 struct mem_extent *ext, *cur, *aux;
523
846705de 524 zone_start = zone->zone_start_pfn;
c33bc315 525 zone_end = zone_end_pfn(zone);
846705de
RW
526
527 list_for_each_entry(ext, list, hook)
528 if (zone_start <= ext->end)
529 break;
b788db79 530
846705de
RW
531 if (&ext->hook == list || zone_end < ext->start) {
532 /* New extent is necessary */
533 struct mem_extent *new_ext;
534
535 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
536 if (!new_ext) {
537 free_mem_extents(list);
538 return -ENOMEM;
539 }
540 new_ext->start = zone_start;
541 new_ext->end = zone_end;
542 list_add_tail(&new_ext->hook, &ext->hook);
543 continue;
544 }
545
546 /* Merge this zone's range of PFNs with the existing one */
547 if (zone_start < ext->start)
548 ext->start = zone_start;
549 if (zone_end > ext->end)
550 ext->end = zone_end;
551
552 /* More merging may be possible */
553 cur = ext;
554 list_for_each_entry_safe_continue(cur, aux, list, hook) {
555 if (zone_end < cur->start)
556 break;
557 if (zone_end < cur->end)
558 ext->end = cur->end;
559 list_del(&cur->hook);
560 kfree(cur);
561 }
b788db79 562 }
846705de
RW
563
564 return 0;
b788db79
RW
565}
566
567/**
568 * memory_bm_create - allocate memory for a memory bitmap
569 */
b788db79
RW
570static int
571memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
572{
573 struct chain_allocator ca;
846705de
RW
574 struct list_head mem_extents;
575 struct mem_extent *ext;
576 int error;
b788db79
RW
577
578 chain_init(&ca, gfp_mask, safe_needed);
f469f02d 579 INIT_LIST_HEAD(&bm->zones);
b788db79 580
846705de
RW
581 error = create_mem_extents(&mem_extents, gfp_mask);
582 if (error)
583 return error;
b788db79 584
846705de 585 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 586 struct mem_zone_bm_rtree *zone;
f469f02d
JR
587
588 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
589 ext->start, ext->end);
9047eb62
JR
590 if (!zone) {
591 error = -ENOMEM;
f469f02d 592 goto Error;
9047eb62 593 }
f469f02d 594 list_add_tail(&zone->list, &bm->zones);
b788db79 595 }
846705de 596
b788db79
RW
597 bm->p_list = ca.chain;
598 memory_bm_position_reset(bm);
846705de
RW
599 Exit:
600 free_mem_extents(&mem_extents);
601 return error;
b788db79 602
846705de 603 Error:
b788db79
RW
604 bm->p_list = ca.chain;
605 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 606 goto Exit;
b788db79
RW
607}
608
609/**
610 * memory_bm_free - free memory occupied by the memory bitmap @bm
611 */
b788db79
RW
612static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
613{
f469f02d 614 struct mem_zone_bm_rtree *zone;
b788db79 615
f469f02d
JR
616 list_for_each_entry(zone, &bm->zones, list)
617 free_zone_bm_rtree(zone, clear_nosave_free);
618
b788db79 619 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 620
f469f02d 621 INIT_LIST_HEAD(&bm->zones);
b788db79
RW
622}
623
624/**
9047eb62
JR
625 * memory_bm_find_bit - Find the bit for pfn in the memory
626 * bitmap
07a33823 627 *
9047eb62
JR
628 * Find the bit in the bitmap @bm that corresponds to given pfn.
629 * The cur.zone, cur.block and cur.node_pfn member of @bm are
630 * updated.
631 * It walks the radix tree to find the page which contains the bit for
07a33823
JR
632 * pfn and returns the bit position in **addr and *bit_nr.
633 */
9047eb62
JR
634static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
635 void **addr, unsigned int *bit_nr)
07a33823
JR
636{
637 struct mem_zone_bm_rtree *curr, *zone;
638 struct rtree_node *node;
639 int i, block_nr;
640
3a20cb17
JR
641 zone = bm->cur.zone;
642
643 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
644 goto zone_found;
645
07a33823
JR
646 zone = NULL;
647
648 /* Find the right zone */
649 list_for_each_entry(curr, &bm->zones, list) {
650 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
651 zone = curr;
652 break;
653 }
654 }
655
656 if (!zone)
657 return -EFAULT;
658
3a20cb17 659zone_found:
07a33823
JR
660 /*
661 * We have a zone. Now walk the radix tree to find the leave
662 * node for our pfn.
663 */
3a20cb17
JR
664
665 node = bm->cur.node;
666 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
667 goto node_found;
668
07a33823
JR
669 node = zone->rtree;
670 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
671
672 for (i = zone->levels; i > 0; i--) {
673 int index;
674
675 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
676 index &= BM_RTREE_LEVEL_MASK;
677 BUG_ON(node->data[index] == 0);
678 node = (struct rtree_node *)node->data[index];
679 }
680
3a20cb17
JR
681node_found:
682 /* Update last position */
683 bm->cur.zone = zone;
684 bm->cur.node = node;
685 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
686
07a33823
JR
687 /* Set return values */
688 *addr = node->data;
689 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
690
691 return 0;
692}
693
74dfd666
RW
694static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
695{
696 void *addr;
697 unsigned int bit;
a82f7119 698 int error;
74dfd666 699
a82f7119
RW
700 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
701 BUG_ON(error);
74dfd666
RW
702 set_bit(bit, addr);
703}
704
a82f7119
RW
705static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
706{
707 void *addr;
708 unsigned int bit;
709 int error;
710
711 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
07a33823
JR
712 if (!error)
713 set_bit(bit, addr);
714
a82f7119
RW
715 return error;
716}
717
74dfd666
RW
718static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
719{
720 void *addr;
721 unsigned int bit;
a82f7119 722 int error;
74dfd666 723
a82f7119
RW
724 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
725 BUG_ON(error);
74dfd666
RW
726 clear_bit(bit, addr);
727}
728
fdd64ed5
JR
729static void memory_bm_clear_current(struct memory_bitmap *bm)
730{
731 int bit;
732
733 bit = max(bm->cur.node_bit - 1, 0);
734 clear_bit(bit, bm->cur.node->data);
735}
736
74dfd666
RW
737static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
738{
739 void *addr;
740 unsigned int bit;
9047eb62 741 int error;
74dfd666 742
a82f7119
RW
743 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
744 BUG_ON(error);
9047eb62 745 return test_bit(bit, addr);
b788db79
RW
746}
747
69643279
RW
748static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
749{
750 void *addr;
751 unsigned int bit;
07a33823 752
9047eb62 753 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
b788db79
RW
754}
755
3a20cb17
JR
756/*
757 * rtree_next_node - Jumps to the next leave node
758 *
759 * Sets the position to the beginning of the next node in the
760 * memory bitmap. This is either the next node in the current
761 * zone's radix tree or the first node in the radix tree of the
762 * next zone.
763 *
764 * Returns true if there is a next node, false otherwise.
765 */
766static bool rtree_next_node(struct memory_bitmap *bm)
767{
768 bm->cur.node = list_entry(bm->cur.node->list.next,
769 struct rtree_node, list);
770 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
771 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
772 bm->cur.node_bit = 0;
0f7d83e8 773 touch_softlockup_watchdog();
3a20cb17
JR
774 return true;
775 }
776
777 /* No more nodes, goto next zone */
778 bm->cur.zone = list_entry(bm->cur.zone->list.next,
779 struct mem_zone_bm_rtree, list);
780 if (&bm->cur.zone->list != &bm->zones) {
781 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
782 struct rtree_node, list);
783 bm->cur.node_pfn = 0;
784 bm->cur.node_bit = 0;
785 return true;
786 }
787
788 /* No more zones */
789 return false;
790}
791
9047eb62
JR
792/**
793 * memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
3a20cb17
JR
794 *
795 * Starting from the last returned position this function searches
796 * for the next set bit in the memory bitmap and returns its
797 * number. If no more bit is set BM_END_OF_MAP is returned.
9047eb62
JR
798 *
799 * It is required to run memory_bm_position_reset() before the
800 * first call to this function.
3a20cb17 801 */
9047eb62 802static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
3a20cb17
JR
803{
804 unsigned long bits, pfn, pages;
805 int bit;
806
807 do {
808 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
809 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
810 bit = find_next_bit(bm->cur.node->data, bits,
811 bm->cur.node_bit);
812 if (bit < bits) {
813 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
814 bm->cur.node_bit = bit + 1;
815 return pfn;
816 }
817 } while (rtree_next_node(bm));
818
819 return BM_END_OF_MAP;
820}
821
74dfd666
RW
822/**
823 * This structure represents a range of page frames the contents of which
824 * should not be saved during the suspend.
825 */
826
827struct nosave_region {
828 struct list_head list;
829 unsigned long start_pfn;
830 unsigned long end_pfn;
831};
832
833static LIST_HEAD(nosave_regions);
834
835/**
836 * register_nosave_region - register a range of page frames the contents
837 * of which should not be saved during the suspend (to be used in the early
838 * initialization code)
839 */
840
841void __init
940d67f6
JB
842__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
843 int use_kmalloc)
74dfd666
RW
844{
845 struct nosave_region *region;
846
847 if (start_pfn >= end_pfn)
848 return;
849
850 if (!list_empty(&nosave_regions)) {
851 /* Try to extend the previous region (they should be sorted) */
852 region = list_entry(nosave_regions.prev,
853 struct nosave_region, list);
854 if (region->end_pfn == start_pfn) {
855 region->end_pfn = end_pfn;
856 goto Report;
857 }
858 }
940d67f6
JB
859 if (use_kmalloc) {
860 /* during init, this shouldn't fail */
861 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
862 BUG_ON(!region);
863 } else
864 /* This allocation cannot fail */
c2f69cda 865 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
74dfd666
RW
866 region->start_pfn = start_pfn;
867 region->end_pfn = end_pfn;
868 list_add_tail(&region->list, &nosave_regions);
869 Report:
cd38ca85
BH
870 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
871 (unsigned long long) start_pfn << PAGE_SHIFT,
872 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
873}
874
875/*
876 * Set bits in this map correspond to the page frames the contents of which
877 * should not be saved during the suspend.
878 */
879static struct memory_bitmap *forbidden_pages_map;
880
881/* Set bits in this map correspond to free page frames. */
882static struct memory_bitmap *free_pages_map;
883
884/*
885 * Each page frame allocated for creating the image is marked by setting the
886 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
887 */
888
889void swsusp_set_page_free(struct page *page)
890{
891 if (free_pages_map)
892 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
893}
894
895static int swsusp_page_is_free(struct page *page)
896{
897 return free_pages_map ?
898 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
899}
900
901void swsusp_unset_page_free(struct page *page)
902{
903 if (free_pages_map)
904 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
905}
906
907static void swsusp_set_page_forbidden(struct page *page)
908{
909 if (forbidden_pages_map)
910 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
911}
912
913int swsusp_page_is_forbidden(struct page *page)
914{
915 return forbidden_pages_map ?
916 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
917}
918
919static void swsusp_unset_page_forbidden(struct page *page)
920{
921 if (forbidden_pages_map)
922 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
923}
924
925/**
926 * mark_nosave_pages - set bits corresponding to the page frames the
927 * contents of which should not be saved in a given bitmap.
928 */
929
930static void mark_nosave_pages(struct memory_bitmap *bm)
931{
932 struct nosave_region *region;
933
934 if (list_empty(&nosave_regions))
935 return;
936
937 list_for_each_entry(region, &nosave_regions, list) {
938 unsigned long pfn;
939
69f1d475
BH
940 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
941 (unsigned long long) region->start_pfn << PAGE_SHIFT,
942 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
943 - 1);
74dfd666
RW
944
945 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
946 if (pfn_valid(pfn)) {
947 /*
948 * It is safe to ignore the result of
949 * mem_bm_set_bit_check() here, since we won't
950 * touch the PFNs for which the error is
951 * returned anyway.
952 */
953 mem_bm_set_bit_check(bm, pfn);
954 }
74dfd666
RW
955 }
956}
957
84c91b7a
LCY
958static bool is_nosave_page(unsigned long pfn)
959{
960 struct nosave_region *region;
961
962 list_for_each_entry(region, &nosave_regions, list) {
963 if (pfn >= region->start_pfn && pfn < region->end_pfn) {
964 pr_err("PM: %#010llx in e820 nosave region: "
965 "[mem %#010llx-%#010llx]\n",
966 (unsigned long long) pfn << PAGE_SHIFT,
967 (unsigned long long) region->start_pfn << PAGE_SHIFT,
968 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
969 - 1);
970 return true;
971 }
972 }
973
974 return false;
975}
976
74dfd666
RW
977/**
978 * create_basic_memory_bitmaps - create bitmaps needed for marking page
979 * frames that should not be saved and free page frames. The pointers
980 * forbidden_pages_map and free_pages_map are only modified if everything
981 * goes well, because we don't want the bits to be used before both bitmaps
982 * are set up.
983 */
984
985int create_basic_memory_bitmaps(void)
986{
987 struct memory_bitmap *bm1, *bm2;
988 int error = 0;
989
aab17289
RW
990 if (forbidden_pages_map && free_pages_map)
991 return 0;
992 else
993 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 994
0709db60 995 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
996 if (!bm1)
997 return -ENOMEM;
998
0709db60 999 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1000 if (error)
1001 goto Free_first_object;
1002
0709db60 1003 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1004 if (!bm2)
1005 goto Free_first_bitmap;
1006
0709db60 1007 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1008 if (error)
1009 goto Free_second_object;
1010
1011 forbidden_pages_map = bm1;
1012 free_pages_map = bm2;
1013 mark_nosave_pages(forbidden_pages_map);
1014
23976728 1015 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
1016
1017 return 0;
1018
1019 Free_second_object:
1020 kfree(bm2);
1021 Free_first_bitmap:
1022 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1023 Free_first_object:
1024 kfree(bm1);
1025 return -ENOMEM;
1026}
1027
1028/**
1029 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1030 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1031 * so that the bitmaps themselves are not referred to while they are being
1032 * freed.
1033 */
1034
1035void free_basic_memory_bitmaps(void)
1036{
1037 struct memory_bitmap *bm1, *bm2;
1038
6a0c7cd3
RW
1039 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1040 return;
74dfd666
RW
1041
1042 bm1 = forbidden_pages_map;
1043 bm2 = free_pages_map;
1044 forbidden_pages_map = NULL;
1045 free_pages_map = NULL;
1046 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1047 kfree(bm1);
1048 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1049 kfree(bm2);
1050
23976728 1051 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
1052}
1053
b788db79
RW
1054/**
1055 * snapshot_additional_pages - estimate the number of additional pages
1056 * be needed for setting up the suspend image data structures for given
1057 * zone (usually the returned value is greater than the exact number)
1058 */
1059
1060unsigned int snapshot_additional_pages(struct zone *zone)
1061{
f469f02d 1062 unsigned int rtree, nodes;
b788db79 1063
f469f02d
JR
1064 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1065 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1066 LINKED_PAGE_DATA_SIZE);
1067 while (nodes > 1) {
1068 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1069 rtree += nodes;
1070 }
1071
9047eb62 1072 return 2 * rtree;
b788db79
RW
1073}
1074
8357376d
RW
1075#ifdef CONFIG_HIGHMEM
1076/**
1077 * count_free_highmem_pages - compute the total number of free highmem
1078 * pages, system-wide.
1079 */
1080
1081static unsigned int count_free_highmem_pages(void)
1082{
1083 struct zone *zone;
1084 unsigned int cnt = 0;
1085
ee99c71c
KM
1086 for_each_populated_zone(zone)
1087 if (is_highmem(zone))
d23ad423 1088 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1089
1090 return cnt;
1091}
1092
1093/**
1094 * saveable_highmem_page - Determine whether a highmem page should be
1095 * included in the suspend image.
1096 *
1097 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1098 * and it isn't a part of a free chunk of pages.
1099 */
846705de 1100static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1101{
1102 struct page *page;
1103
1104 if (!pfn_valid(pfn))
1105 return NULL;
1106
1107 page = pfn_to_page(pfn);
846705de
RW
1108 if (page_zone(page) != zone)
1109 return NULL;
8357376d
RW
1110
1111 BUG_ON(!PageHighMem(page));
1112
7be98234
RW
1113 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1114 PageReserved(page))
8357376d
RW
1115 return NULL;
1116
c6968e73
SG
1117 if (page_is_guard(page))
1118 return NULL;
1119
8357376d
RW
1120 return page;
1121}
1122
1123/**
1124 * count_highmem_pages - compute the total number of saveable highmem
1125 * pages.
1126 */
1127
fe419535 1128static unsigned int count_highmem_pages(void)
8357376d
RW
1129{
1130 struct zone *zone;
1131 unsigned int n = 0;
1132
98e73dc5 1133 for_each_populated_zone(zone) {
8357376d
RW
1134 unsigned long pfn, max_zone_pfn;
1135
1136 if (!is_highmem(zone))
1137 continue;
1138
1139 mark_free_pages(zone);
c33bc315 1140 max_zone_pfn = zone_end_pfn(zone);
8357376d 1141 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1142 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1143 n++;
1144 }
1145 return n;
1146}
1147#else
846705de
RW
1148static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1149{
1150 return NULL;
1151}
8357376d
RW
1152#endif /* CONFIG_HIGHMEM */
1153
25761b6e 1154/**
8a235efa
RW
1155 * saveable_page - Determine whether a non-highmem page should be included
1156 * in the suspend image.
25761b6e 1157 *
8357376d
RW
1158 * We should save the page if it isn't Nosave, and is not in the range
1159 * of pages statically defined as 'unsaveable', and it isn't a part of
1160 * a free chunk of pages.
25761b6e 1161 */
846705de 1162static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1163{
de491861 1164 struct page *page;
25761b6e
RW
1165
1166 if (!pfn_valid(pfn))
ae83c5ee 1167 return NULL;
25761b6e
RW
1168
1169 page = pfn_to_page(pfn);
846705de
RW
1170 if (page_zone(page) != zone)
1171 return NULL;
ae83c5ee 1172
8357376d
RW
1173 BUG_ON(PageHighMem(page));
1174
7be98234 1175 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1176 return NULL;
8357376d 1177
8a235efa
RW
1178 if (PageReserved(page)
1179 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1180 return NULL;
25761b6e 1181
c6968e73
SG
1182 if (page_is_guard(page))
1183 return NULL;
1184
ae83c5ee 1185 return page;
25761b6e
RW
1186}
1187
8357376d
RW
1188/**
1189 * count_data_pages - compute the total number of saveable non-highmem
1190 * pages.
1191 */
1192
fe419535 1193static unsigned int count_data_pages(void)
25761b6e
RW
1194{
1195 struct zone *zone;
ae83c5ee 1196 unsigned long pfn, max_zone_pfn;
dc19d507 1197 unsigned int n = 0;
25761b6e 1198
98e73dc5 1199 for_each_populated_zone(zone) {
25761b6e
RW
1200 if (is_highmem(zone))
1201 continue;
8357376d 1202
25761b6e 1203 mark_free_pages(zone);
c33bc315 1204 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1205 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1206 if (saveable_page(zone, pfn))
8357376d 1207 n++;
25761b6e 1208 }
a0f49651 1209 return n;
25761b6e
RW
1210}
1211
8357376d
RW
1212/* This is needed, because copy_page and memcpy are not usable for copying
1213 * task structs.
1214 */
1215static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1216{
1217 int n;
1218
f623f0db
RW
1219 for (n = PAGE_SIZE / sizeof(long); n; n--)
1220 *dst++ = *src++;
1221}
1222
8a235efa
RW
1223
1224/**
1225 * safe_copy_page - check if the page we are going to copy is marked as
1226 * present in the kernel page tables (this always is the case if
1227 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1228 * kernel_page_present() always returns 'true').
1229 */
1230static void safe_copy_page(void *dst, struct page *s_page)
1231{
1232 if (kernel_page_present(s_page)) {
1233 do_copy_page(dst, page_address(s_page));
1234 } else {
1235 kernel_map_pages(s_page, 1, 1);
1236 do_copy_page(dst, page_address(s_page));
1237 kernel_map_pages(s_page, 1, 0);
1238 }
1239}
1240
1241
8357376d
RW
1242#ifdef CONFIG_HIGHMEM
1243static inline struct page *
1244page_is_saveable(struct zone *zone, unsigned long pfn)
1245{
1246 return is_highmem(zone) ?
846705de 1247 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1248}
1249
8a235efa 1250static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1251{
1252 struct page *s_page, *d_page;
1253 void *src, *dst;
1254
1255 s_page = pfn_to_page(src_pfn);
1256 d_page = pfn_to_page(dst_pfn);
1257 if (PageHighMem(s_page)) {
0de9a1e2
CW
1258 src = kmap_atomic(s_page);
1259 dst = kmap_atomic(d_page);
8357376d 1260 do_copy_page(dst, src);
0de9a1e2
CW
1261 kunmap_atomic(dst);
1262 kunmap_atomic(src);
8357376d 1263 } else {
8357376d
RW
1264 if (PageHighMem(d_page)) {
1265 /* Page pointed to by src may contain some kernel
1266 * data modified by kmap_atomic()
1267 */
8a235efa 1268 safe_copy_page(buffer, s_page);
0de9a1e2 1269 dst = kmap_atomic(d_page);
3ecb01df 1270 copy_page(dst, buffer);
0de9a1e2 1271 kunmap_atomic(dst);
8357376d 1272 } else {
8a235efa 1273 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1274 }
1275 }
1276}
1277#else
846705de 1278#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1279
8a235efa 1280static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1281{
8a235efa
RW
1282 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1283 pfn_to_page(src_pfn));
8357376d
RW
1284}
1285#endif /* CONFIG_HIGHMEM */
1286
b788db79
RW
1287static void
1288copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1289{
1290 struct zone *zone;
b788db79 1291 unsigned long pfn;
25761b6e 1292
98e73dc5 1293 for_each_populated_zone(zone) {
b788db79
RW
1294 unsigned long max_zone_pfn;
1295
25761b6e 1296 mark_free_pages(zone);
c33bc315 1297 max_zone_pfn = zone_end_pfn(zone);
b788db79 1298 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1299 if (page_is_saveable(zone, pfn))
b788db79 1300 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1301 }
b788db79
RW
1302 memory_bm_position_reset(orig_bm);
1303 memory_bm_position_reset(copy_bm);
df7c4872 1304 for(;;) {
b788db79 1305 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1306 if (unlikely(pfn == BM_END_OF_MAP))
1307 break;
1308 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1309 }
25761b6e
RW
1310}
1311
8357376d
RW
1312/* Total number of image pages */
1313static unsigned int nr_copy_pages;
1314/* Number of pages needed for saving the original pfns of the image pages */
1315static unsigned int nr_meta_pages;
64a473cb
RW
1316/*
1317 * Numbers of normal and highmem page frames allocated for hibernation image
1318 * before suspending devices.
1319 */
1320unsigned int alloc_normal, alloc_highmem;
1321/*
1322 * Memory bitmap used for marking saveable pages (during hibernation) or
1323 * hibernation image pages (during restore)
1324 */
1325static struct memory_bitmap orig_bm;
1326/*
1327 * Memory bitmap used during hibernation for marking allocated page frames that
1328 * will contain copies of saveable pages. During restore it is initially used
1329 * for marking hibernation image pages, but then the set bits from it are
1330 * duplicated in @orig_bm and it is released. On highmem systems it is next
1331 * used for marking "safe" highmem pages, but it has to be reinitialized for
1332 * this purpose.
1333 */
1334static struct memory_bitmap copy_bm;
8357376d 1335
25761b6e 1336/**
940864dd 1337 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1338 *
940864dd
RW
1339 * Suspend pages are alocated before the atomic copy is made, so we
1340 * need to release them after the resume.
25761b6e
RW
1341 */
1342
1343void swsusp_free(void)
1344{
fdd64ed5 1345 unsigned long fb_pfn, fr_pfn;
6efde38f 1346
fdd64ed5
JR
1347 if (!forbidden_pages_map || !free_pages_map)
1348 goto out;
1349
1350 memory_bm_position_reset(forbidden_pages_map);
1351 memory_bm_position_reset(free_pages_map);
1352
1353loop:
1354 fr_pfn = memory_bm_next_pfn(free_pages_map);
1355 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1356
1357 /*
1358 * Find the next bit set in both bitmaps. This is guaranteed to
1359 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1360 */
1361 do {
1362 if (fb_pfn < fr_pfn)
1363 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1364 if (fr_pfn < fb_pfn)
1365 fr_pfn = memory_bm_next_pfn(free_pages_map);
1366 } while (fb_pfn != fr_pfn);
1367
1368 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1369 struct page *page = pfn_to_page(fr_pfn);
1370
1371 memory_bm_clear_current(forbidden_pages_map);
1372 memory_bm_clear_current(free_pages_map);
1373 __free_page(page);
1374 goto loop;
25761b6e 1375 }
fdd64ed5
JR
1376
1377out:
f577eb30
RW
1378 nr_copy_pages = 0;
1379 nr_meta_pages = 0;
75534b50 1380 restore_pblist = NULL;
6e1819d6 1381 buffer = NULL;
64a473cb
RW
1382 alloc_normal = 0;
1383 alloc_highmem = 0;
25761b6e
RW
1384}
1385
4bb33435
RW
1386/* Helper functions used for the shrinking of memory. */
1387
1388#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1389
fe419535 1390/**
4bb33435
RW
1391 * preallocate_image_pages - Allocate a number of pages for hibernation image
1392 * @nr_pages: Number of page frames to allocate.
1393 * @mask: GFP flags to use for the allocation.
fe419535 1394 *
4bb33435
RW
1395 * Return value: Number of page frames actually allocated
1396 */
1397static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1398{
1399 unsigned long nr_alloc = 0;
1400
1401 while (nr_pages > 0) {
64a473cb
RW
1402 struct page *page;
1403
1404 page = alloc_image_page(mask);
1405 if (!page)
4bb33435 1406 break;
64a473cb
RW
1407 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1408 if (PageHighMem(page))
1409 alloc_highmem++;
1410 else
1411 alloc_normal++;
4bb33435
RW
1412 nr_pages--;
1413 nr_alloc++;
1414 }
1415
1416 return nr_alloc;
1417}
1418
6715045d
RW
1419static unsigned long preallocate_image_memory(unsigned long nr_pages,
1420 unsigned long avail_normal)
4bb33435 1421{
6715045d
RW
1422 unsigned long alloc;
1423
1424 if (avail_normal <= alloc_normal)
1425 return 0;
1426
1427 alloc = avail_normal - alloc_normal;
1428 if (nr_pages < alloc)
1429 alloc = nr_pages;
1430
1431 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1432}
1433
1434#ifdef CONFIG_HIGHMEM
1435static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1436{
1437 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1438}
1439
1440/**
1441 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1442 */
4bb33435
RW
1443static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1444{
1445 x *= multiplier;
1446 do_div(x, base);
1447 return (unsigned long)x;
1448}
fe419535 1449
4bb33435
RW
1450static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1451 unsigned long highmem,
1452 unsigned long total)
fe419535 1453{
4bb33435
RW
1454 unsigned long alloc = __fraction(nr_pages, highmem, total);
1455
1456 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1457}
4bb33435
RW
1458#else /* CONFIG_HIGHMEM */
1459static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1460{
1461 return 0;
1462}
1463
1464static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1465 unsigned long highmem,
1466 unsigned long total)
1467{
1468 return 0;
1469}
1470#endif /* CONFIG_HIGHMEM */
fe419535 1471
4bb33435 1472/**
64a473cb
RW
1473 * free_unnecessary_pages - Release preallocated pages not needed for the image
1474 */
1475static void free_unnecessary_pages(void)
1476{
6715045d 1477 unsigned long save, to_free_normal, to_free_highmem;
64a473cb 1478
6715045d
RW
1479 save = count_data_pages();
1480 if (alloc_normal >= save) {
1481 to_free_normal = alloc_normal - save;
1482 save = 0;
1483 } else {
1484 to_free_normal = 0;
1485 save -= alloc_normal;
1486 }
1487 save += count_highmem_pages();
1488 if (alloc_highmem >= save) {
1489 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1490 } else {
1491 to_free_highmem = 0;
4d4cf23c
RW
1492 save -= alloc_highmem;
1493 if (to_free_normal > save)
1494 to_free_normal -= save;
1495 else
1496 to_free_normal = 0;
64a473cb
RW
1497 }
1498
1499 memory_bm_position_reset(&copy_bm);
1500
a9c9b442 1501 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1502 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1503 struct page *page = pfn_to_page(pfn);
1504
1505 if (PageHighMem(page)) {
1506 if (!to_free_highmem)
1507 continue;
1508 to_free_highmem--;
1509 alloc_highmem--;
1510 } else {
1511 if (!to_free_normal)
1512 continue;
1513 to_free_normal--;
1514 alloc_normal--;
1515 }
1516 memory_bm_clear_bit(&copy_bm, pfn);
1517 swsusp_unset_page_forbidden(page);
1518 swsusp_unset_page_free(page);
1519 __free_page(page);
1520 }
1521}
1522
ef4aede3
RW
1523/**
1524 * minimum_image_size - Estimate the minimum acceptable size of an image
1525 * @saveable: Number of saveable pages in the system.
1526 *
1527 * We want to avoid attempting to free too much memory too hard, so estimate the
1528 * minimum acceptable size of a hibernation image to use as the lower limit for
1529 * preallocating memory.
1530 *
1531 * We assume that the minimum image size should be proportional to
1532 *
1533 * [number of saveable pages] - [number of pages that can be freed in theory]
1534 *
1535 * where the second term is the sum of (1) reclaimable slab pages, (2) active
4d434820 1536 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
ef4aede3
RW
1537 * minus mapped file pages.
1538 */
1539static unsigned long minimum_image_size(unsigned long saveable)
1540{
1541 unsigned long size;
1542
1543 size = global_page_state(NR_SLAB_RECLAIMABLE)
1544 + global_page_state(NR_ACTIVE_ANON)
1545 + global_page_state(NR_INACTIVE_ANON)
1546 + global_page_state(NR_ACTIVE_FILE)
1547 + global_page_state(NR_INACTIVE_FILE)
1548 - global_page_state(NR_FILE_MAPPED);
1549
1550 return saveable <= size ? 0 : saveable - size;
1551}
1552
64a473cb
RW
1553/**
1554 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1555 *
1556 * To create a hibernation image it is necessary to make a copy of every page
1557 * frame in use. We also need a number of page frames to be free during
1558 * hibernation for allocations made while saving the image and for device
1559 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1560 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1561 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1562 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1563 * total number of available page frames and allocate at least
4bb33435 1564 *
ddeb6487
RW
1565 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1566 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1567 *
1568 * of them, which corresponds to the maximum size of a hibernation image.
1569 *
1570 * If image_size is set below the number following from the above formula,
1571 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1572 * pages in the system is below the requested image size or the minimum
1573 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1574 */
64a473cb 1575int hibernate_preallocate_memory(void)
fe419535 1576{
fe419535 1577 struct zone *zone;
4bb33435 1578 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1579 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
db597605 1580 ktime_t start, stop;
64a473cb 1581 int error;
fe419535 1582
64a473cb 1583 printk(KERN_INFO "PM: Preallocating image memory... ");
db597605 1584 start = ktime_get();
fe419535 1585
64a473cb
RW
1586 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1587 if (error)
1588 goto err_out;
1589
1590 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1591 if (error)
1592 goto err_out;
1593
1594 alloc_normal = 0;
1595 alloc_highmem = 0;
1596
4bb33435 1597 /* Count the number of saveable data pages. */
64a473cb 1598 save_highmem = count_highmem_pages();
4bb33435 1599 saveable = count_data_pages();
fe419535 1600
4bb33435
RW
1601 /*
1602 * Compute the total number of page frames we can use (count) and the
1603 * number of pages needed for image metadata (size).
1604 */
1605 count = saveable;
64a473cb
RW
1606 saveable += save_highmem;
1607 highmem = save_highmem;
4bb33435
RW
1608 size = 0;
1609 for_each_populated_zone(zone) {
1610 size += snapshot_additional_pages(zone);
1611 if (is_highmem(zone))
1612 highmem += zone_page_state(zone, NR_FREE_PAGES);
1613 else
1614 count += zone_page_state(zone, NR_FREE_PAGES);
1615 }
6715045d 1616 avail_normal = count;
4bb33435
RW
1617 count += highmem;
1618 count -= totalreserve_pages;
1619
85055dd8
MS
1620 /* Add number of pages required for page keys (s390 only). */
1621 size += page_key_additional_pages(saveable);
1622
4bb33435 1623 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1624 max_size = (count - (size + PAGES_FOR_IO)) / 2
1625 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1626 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1627 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1628 if (size > max_size)
1629 size = max_size;
1630 /*
266f1a25
RW
1631 * If the desired number of image pages is at least as large as the
1632 * current number of saveable pages in memory, allocate page frames for
1633 * the image and we're done.
4bb33435 1634 */
64a473cb
RW
1635 if (size >= saveable) {
1636 pages = preallocate_image_highmem(save_highmem);
6715045d 1637 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1638 goto out;
64a473cb 1639 }
4bb33435 1640
ef4aede3
RW
1641 /* Estimate the minimum size of the image. */
1642 pages = minimum_image_size(saveable);
6715045d
RW
1643 /*
1644 * To avoid excessive pressure on the normal zone, leave room in it to
1645 * accommodate an image of the minimum size (unless it's already too
1646 * small, in which case don't preallocate pages from it at all).
1647 */
1648 if (avail_normal > pages)
1649 avail_normal -= pages;
1650 else
1651 avail_normal = 0;
ef4aede3
RW
1652 if (size < pages)
1653 size = min_t(unsigned long, pages, max_size);
1654
4bb33435
RW
1655 /*
1656 * Let the memory management subsystem know that we're going to need a
1657 * large number of page frames to allocate and make it free some memory.
1658 * NOTE: If this is not done, performance will be hurt badly in some
1659 * test cases.
1660 */
1661 shrink_all_memory(saveable - size);
1662
1663 /*
1664 * The number of saveable pages in memory was too high, so apply some
1665 * pressure to decrease it. First, make room for the largest possible
1666 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1667 * of the image as much as indicated by 'size' using allocations from
1668 * highmem and non-highmem zones separately.
4bb33435
RW
1669 */
1670 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1671 alloc = count - max_size;
1672 if (alloc > pages_highmem)
1673 alloc -= pages_highmem;
1674 else
1675 alloc = 0;
6715045d
RW
1676 pages = preallocate_image_memory(alloc, avail_normal);
1677 if (pages < alloc) {
1678 /* We have exhausted non-highmem pages, try highmem. */
1679 alloc -= pages;
1680 pages += pages_highmem;
1681 pages_highmem = preallocate_image_highmem(alloc);
1682 if (pages_highmem < alloc)
1683 goto err_out;
1684 pages += pages_highmem;
1685 /*
1686 * size is the desired number of saveable pages to leave in
1687 * memory, so try to preallocate (all memory - size) pages.
1688 */
1689 alloc = (count - pages) - size;
1690 pages += preallocate_image_highmem(alloc);
1691 } else {
1692 /*
1693 * There are approximately max_size saveable pages at this point
1694 * and we want to reduce this number down to size.
1695 */
1696 alloc = max_size - size;
1697 size = preallocate_highmem_fraction(alloc, highmem, count);
1698 pages_highmem += size;
1699 alloc -= size;
1700 size = preallocate_image_memory(alloc, avail_normal);
1701 pages_highmem += preallocate_image_highmem(alloc - size);
1702 pages += pages_highmem + size;
1703 }
4bb33435 1704
64a473cb
RW
1705 /*
1706 * We only need as many page frames for the image as there are saveable
1707 * pages in memory, but we have allocated more. Release the excessive
1708 * ones now.
1709 */
1710 free_unnecessary_pages();
4bb33435
RW
1711
1712 out:
db597605 1713 stop = ktime_get();
64a473cb 1714 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
db597605 1715 swsusp_show_speed(start, stop, pages, "Allocated");
fe419535
RW
1716
1717 return 0;
64a473cb
RW
1718
1719 err_out:
1720 printk(KERN_CONT "\n");
1721 swsusp_free();
1722 return -ENOMEM;
fe419535
RW
1723}
1724
8357376d
RW
1725#ifdef CONFIG_HIGHMEM
1726/**
1727 * count_pages_for_highmem - compute the number of non-highmem pages
1728 * that will be necessary for creating copies of highmem pages.
1729 */
1730
1731static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1732{
64a473cb 1733 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1734
1735 if (free_highmem >= nr_highmem)
1736 nr_highmem = 0;
1737 else
1738 nr_highmem -= free_highmem;
1739
1740 return nr_highmem;
1741}
1742#else
1743static unsigned int
1744count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1745#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1746
1747/**
8357376d
RW
1748 * enough_free_mem - Make sure we have enough free memory for the
1749 * snapshot image.
25761b6e
RW
1750 */
1751
8357376d 1752static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1753{
e5e2fa78 1754 struct zone *zone;
64a473cb 1755 unsigned int free = alloc_normal;
e5e2fa78 1756
98e73dc5 1757 for_each_populated_zone(zone)
8357376d 1758 if (!is_highmem(zone))
d23ad423 1759 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1760
8357376d 1761 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1762 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1763 nr_pages, PAGES_FOR_IO, free);
940864dd 1764
64a473cb 1765 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1766}
1767
8357376d
RW
1768#ifdef CONFIG_HIGHMEM
1769/**
1770 * get_highmem_buffer - if there are some highmem pages in the suspend
1771 * image, we may need the buffer to copy them and/or load their data.
1772 */
1773
1774static inline int get_highmem_buffer(int safe_needed)
1775{
1776 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1777 return buffer ? 0 : -ENOMEM;
1778}
1779
1780/**
1781 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1782 * Try to allocate as many pages as needed, but if the number of free
1783 * highmem pages is lesser than that, allocate them all.
1784 */
1785
1786static inline unsigned int
64a473cb 1787alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1788{
1789 unsigned int to_alloc = count_free_highmem_pages();
1790
1791 if (to_alloc > nr_highmem)
1792 to_alloc = nr_highmem;
1793
1794 nr_highmem -= to_alloc;
1795 while (to_alloc-- > 0) {
1796 struct page *page;
1797
1798 page = alloc_image_page(__GFP_HIGHMEM);
1799 memory_bm_set_bit(bm, page_to_pfn(page));
1800 }
1801 return nr_highmem;
1802}
1803#else
1804static inline int get_highmem_buffer(int safe_needed) { return 0; }
1805
1806static inline unsigned int
64a473cb 1807alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1808#endif /* CONFIG_HIGHMEM */
1809
1810/**
1811 * swsusp_alloc - allocate memory for the suspend image
1812 *
1813 * We first try to allocate as many highmem pages as there are
1814 * saveable highmem pages in the system. If that fails, we allocate
1815 * non-highmem pages for the copies of the remaining highmem ones.
1816 *
1817 * In this approach it is likely that the copies of highmem pages will
1818 * also be located in the high memory, because of the way in which
1819 * copy_data_pages() works.
1820 */
1821
b788db79
RW
1822static int
1823swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1824 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1825{
8357376d 1826 if (nr_highmem > 0) {
2e725a06 1827 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1828 goto err_out;
1829 if (nr_highmem > alloc_highmem) {
1830 nr_highmem -= alloc_highmem;
1831 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1832 }
8357376d 1833 }
64a473cb
RW
1834 if (nr_pages > alloc_normal) {
1835 nr_pages -= alloc_normal;
1836 while (nr_pages-- > 0) {
1837 struct page *page;
1838
1839 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1840 if (!page)
1841 goto err_out;
1842 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1843 }
25761b6e 1844 }
64a473cb 1845
b788db79 1846 return 0;
25761b6e 1847
64a473cb 1848 err_out:
b788db79 1849 swsusp_free();
2e725a06 1850 return -ENOMEM;
25761b6e
RW
1851}
1852
722a9f92 1853asmlinkage __visible int swsusp_save(void)
25761b6e 1854{
8357376d 1855 unsigned int nr_pages, nr_highmem;
25761b6e 1856
07c3bb57 1857 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1858
9f8f2172 1859 drain_local_pages(NULL);
a0f49651 1860 nr_pages = count_data_pages();
8357376d 1861 nr_highmem = count_highmem_pages();
23976728 1862 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1863
8357376d 1864 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1865 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1866 return -ENOMEM;
1867 }
1868
8357376d 1869 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1870 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1871 return -ENOMEM;
8357376d 1872 }
25761b6e
RW
1873
1874 /* During allocating of suspend pagedir, new cold pages may appear.
1875 * Kill them.
1876 */
9f8f2172 1877 drain_local_pages(NULL);
b788db79 1878 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1879
1880 /*
1881 * End of critical section. From now on, we can write to memory,
1882 * but we should not touch disk. This specially means we must _not_
1883 * touch swap space! Except we must write out our image of course.
1884 */
1885
8357376d 1886 nr_pages += nr_highmem;
a0f49651 1887 nr_copy_pages = nr_pages;
8357376d 1888 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1889
23976728
RW
1890 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1891 nr_pages);
8357376d 1892
25761b6e
RW
1893 return 0;
1894}
f577eb30 1895
d307c4a8
RW
1896#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1897static int init_header_complete(struct swsusp_info *info)
f577eb30 1898{
d307c4a8 1899 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1900 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1901 return 0;
1902}
1903
1904static char *check_image_kernel(struct swsusp_info *info)
1905{
1906 if (info->version_code != LINUX_VERSION_CODE)
1907 return "kernel version";
1908 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1909 return "system type";
1910 if (strcmp(info->uts.release,init_utsname()->release))
1911 return "kernel release";
1912 if (strcmp(info->uts.version,init_utsname()->version))
1913 return "version";
1914 if (strcmp(info->uts.machine,init_utsname()->machine))
1915 return "machine";
1916 return NULL;
1917}
1918#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1919
af508b34
RW
1920unsigned long snapshot_get_image_size(void)
1921{
1922 return nr_copy_pages + nr_meta_pages + 1;
1923}
1924
d307c4a8
RW
1925static int init_header(struct swsusp_info *info)
1926{
1927 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 1928 info->num_physpages = get_num_physpages();
f577eb30 1929 info->image_pages = nr_copy_pages;
af508b34 1930 info->pages = snapshot_get_image_size();
6e1819d6
RW
1931 info->size = info->pages;
1932 info->size <<= PAGE_SHIFT;
d307c4a8 1933 return init_header_complete(info);
f577eb30
RW
1934}
1935
1936/**
940864dd
RW
1937 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1938 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1939 */
1940
b788db79 1941static inline void
940864dd 1942pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1943{
1944 int j;
1945
b788db79 1946 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1947 buf[j] = memory_bm_next_pfn(bm);
1948 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1949 break;
85055dd8
MS
1950 /* Save page key for data page (s390 only). */
1951 page_key_read(buf + j);
f577eb30 1952 }
f577eb30
RW
1953}
1954
1955/**
1956 * snapshot_read_next - used for reading the system memory snapshot.
1957 *
1958 * On the first call to it @handle should point to a zeroed
1959 * snapshot_handle structure. The structure gets updated and a pointer
1960 * to it should be passed to this function every next time.
1961 *
f577eb30
RW
1962 * On success the function returns a positive number. Then, the caller
1963 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 1964 * location computed by the data_of() macro.
f577eb30
RW
1965 *
1966 * The function returns 0 to indicate the end of data stream condition,
1967 * and a negative number is returned on error. In such cases the
1968 * structure pointed to by @handle is not updated and should not be used
1969 * any more.
1970 */
1971
d3c1b24c 1972int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 1973{
fb13a28b 1974 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1975 return 0;
b788db79 1976
f577eb30
RW
1977 if (!buffer) {
1978 /* This makes the buffer be freed by swsusp_free() */
8357376d 1979 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1980 if (!buffer)
1981 return -ENOMEM;
1982 }
d3c1b24c 1983 if (!handle->cur) {
d307c4a8
RW
1984 int error;
1985
1986 error = init_header((struct swsusp_info *)buffer);
1987 if (error)
1988 return error;
f577eb30 1989 handle->buffer = buffer;
b788db79
RW
1990 memory_bm_position_reset(&orig_bm);
1991 memory_bm_position_reset(&copy_bm);
d3c1b24c 1992 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 1993 clear_page(buffer);
d3c1b24c
JS
1994 pack_pfns(buffer, &orig_bm);
1995 } else {
1996 struct page *page;
b788db79 1997
d3c1b24c
JS
1998 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1999 if (PageHighMem(page)) {
2000 /* Highmem pages are copied to the buffer,
2001 * because we can't return with a kmapped
2002 * highmem page (we may not be called again).
2003 */
2004 void *kaddr;
8357376d 2005
0de9a1e2 2006 kaddr = kmap_atomic(page);
3ecb01df 2007 copy_page(buffer, kaddr);
0de9a1e2 2008 kunmap_atomic(kaddr);
d3c1b24c
JS
2009 handle->buffer = buffer;
2010 } else {
2011 handle->buffer = page_address(page);
f577eb30 2012 }
f577eb30 2013 }
d3c1b24c
JS
2014 handle->cur++;
2015 return PAGE_SIZE;
f577eb30
RW
2016}
2017
2018/**
2019 * mark_unsafe_pages - mark the pages that cannot be used for storing
2020 * the image during resume, because they conflict with the pages that
2021 * had been used before suspend
2022 */
2023
940864dd 2024static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
2025{
2026 struct zone *zone;
ae83c5ee 2027 unsigned long pfn, max_zone_pfn;
f577eb30
RW
2028
2029 /* Clear page flags */
98e73dc5 2030 for_each_populated_zone(zone) {
c33bc315 2031 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee
RW
2032 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2033 if (pfn_valid(pfn))
7be98234 2034 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
2035 }
2036
940864dd
RW
2037 /* Mark pages that correspond to the "original" pfns as "unsafe" */
2038 memory_bm_position_reset(bm);
2039 do {
2040 pfn = memory_bm_next_pfn(bm);
2041 if (likely(pfn != BM_END_OF_MAP)) {
84c91b7a 2042 if (likely(pfn_valid(pfn)) && !is_nosave_page(pfn))
7be98234 2043 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
2044 else
2045 return -EFAULT;
2046 }
2047 } while (pfn != BM_END_OF_MAP);
f577eb30 2048
940864dd 2049 allocated_unsafe_pages = 0;
968808b8 2050
f577eb30
RW
2051 return 0;
2052}
2053
940864dd
RW
2054static void
2055duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 2056{
940864dd
RW
2057 unsigned long pfn;
2058
2059 memory_bm_position_reset(src);
2060 pfn = memory_bm_next_pfn(src);
2061 while (pfn != BM_END_OF_MAP) {
2062 memory_bm_set_bit(dst, pfn);
2063 pfn = memory_bm_next_pfn(src);
f577eb30
RW
2064 }
2065}
2066
d307c4a8 2067static int check_header(struct swsusp_info *info)
f577eb30 2068{
d307c4a8 2069 char *reason;
f577eb30 2070
d307c4a8 2071 reason = check_image_kernel(info);
0ed5fd13 2072 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2073 reason = "memory size";
f577eb30 2074 if (reason) {
23976728 2075 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
2076 return -EPERM;
2077 }
2078 return 0;
2079}
2080
2081/**
2082 * load header - check the image header and copy data from it
2083 */
2084
940864dd
RW
2085static int
2086load_header(struct swsusp_info *info)
f577eb30
RW
2087{
2088 int error;
f577eb30 2089
940864dd 2090 restore_pblist = NULL;
f577eb30
RW
2091 error = check_header(info);
2092 if (!error) {
f577eb30
RW
2093 nr_copy_pages = info->image_pages;
2094 nr_meta_pages = info->pages - info->image_pages - 1;
2095 }
2096 return error;
2097}
2098
2099/**
940864dd
RW
2100 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2101 * the corresponding bit in the memory bitmap @bm
f577eb30 2102 */
69643279 2103static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2104{
2105 int j;
2106
940864dd
RW
2107 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2108 if (unlikely(buf[j] == BM_END_OF_MAP))
2109 break;
2110
85055dd8
MS
2111 /* Extract and buffer page key for data page (s390 only). */
2112 page_key_memorize(buf + j);
2113
69643279
RW
2114 if (memory_bm_pfn_present(bm, buf[j]))
2115 memory_bm_set_bit(bm, buf[j]);
2116 else
2117 return -EFAULT;
f577eb30 2118 }
69643279
RW
2119
2120 return 0;
f577eb30
RW
2121}
2122
8357376d
RW
2123/* List of "safe" pages that may be used to store data loaded from the suspend
2124 * image
2125 */
2126static struct linked_page *safe_pages_list;
2127
2128#ifdef CONFIG_HIGHMEM
2129/* struct highmem_pbe is used for creating the list of highmem pages that
2130 * should be restored atomically during the resume from disk, because the page
2131 * frames they have occupied before the suspend are in use.
2132 */
2133struct highmem_pbe {
2134 struct page *copy_page; /* data is here now */
2135 struct page *orig_page; /* data was here before the suspend */
2136 struct highmem_pbe *next;
2137};
2138
2139/* List of highmem PBEs needed for restoring the highmem pages that were
2140 * allocated before the suspend and included in the suspend image, but have
2141 * also been allocated by the "resume" kernel, so their contents cannot be
2142 * written directly to their "original" page frames.
2143 */
2144static struct highmem_pbe *highmem_pblist;
2145
2146/**
2147 * count_highmem_image_pages - compute the number of highmem pages in the
2148 * suspend image. The bits in the memory bitmap @bm that correspond to the
2149 * image pages are assumed to be set.
2150 */
2151
2152static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2153{
2154 unsigned long pfn;
2155 unsigned int cnt = 0;
2156
2157 memory_bm_position_reset(bm);
2158 pfn = memory_bm_next_pfn(bm);
2159 while (pfn != BM_END_OF_MAP) {
2160 if (PageHighMem(pfn_to_page(pfn)))
2161 cnt++;
2162
2163 pfn = memory_bm_next_pfn(bm);
2164 }
2165 return cnt;
2166}
2167
2168/**
2169 * prepare_highmem_image - try to allocate as many highmem pages as
2170 * there are highmem image pages (@nr_highmem_p points to the variable
2171 * containing the number of highmem image pages). The pages that are
2172 * "safe" (ie. will not be overwritten when the suspend image is
2173 * restored) have the corresponding bits set in @bm (it must be
2174 * unitialized).
2175 *
2176 * NOTE: This function should not be called if there are no highmem
2177 * image pages.
2178 */
2179
2180static unsigned int safe_highmem_pages;
2181
2182static struct memory_bitmap *safe_highmem_bm;
2183
2184static int
2185prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2186{
2187 unsigned int to_alloc;
2188
2189 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2190 return -ENOMEM;
2191
2192 if (get_highmem_buffer(PG_SAFE))
2193 return -ENOMEM;
2194
2195 to_alloc = count_free_highmem_pages();
2196 if (to_alloc > *nr_highmem_p)
2197 to_alloc = *nr_highmem_p;
2198 else
2199 *nr_highmem_p = to_alloc;
2200
2201 safe_highmem_pages = 0;
2202 while (to_alloc-- > 0) {
2203 struct page *page;
2204
2205 page = alloc_page(__GFP_HIGHMEM);
7be98234 2206 if (!swsusp_page_is_free(page)) {
8357376d
RW
2207 /* The page is "safe", set its bit the bitmap */
2208 memory_bm_set_bit(bm, page_to_pfn(page));
2209 safe_highmem_pages++;
2210 }
2211 /* Mark the page as allocated */
7be98234
RW
2212 swsusp_set_page_forbidden(page);
2213 swsusp_set_page_free(page);
8357376d
RW
2214 }
2215 memory_bm_position_reset(bm);
2216 safe_highmem_bm = bm;
2217 return 0;
2218}
2219
2220/**
2221 * get_highmem_page_buffer - for given highmem image page find the buffer
2222 * that suspend_write_next() should set for its caller to write to.
2223 *
2224 * If the page is to be saved to its "original" page frame or a copy of
2225 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2226 * the copy of the page is to be made in normal memory, so the address of
2227 * the copy is returned.
2228 *
2229 * If @buffer is returned, the caller of suspend_write_next() will write
2230 * the page's contents to @buffer, so they will have to be copied to the
2231 * right location on the next call to suspend_write_next() and it is done
2232 * with the help of copy_last_highmem_page(). For this purpose, if
2233 * @buffer is returned, @last_highmem page is set to the page to which
2234 * the data will have to be copied from @buffer.
2235 */
2236
2237static struct page *last_highmem_page;
2238
2239static void *
2240get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2241{
2242 struct highmem_pbe *pbe;
2243 void *kaddr;
2244
7be98234 2245 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
2246 /* We have allocated the "original" page frame and we can
2247 * use it directly to store the loaded page.
2248 */
2249 last_highmem_page = page;
2250 return buffer;
2251 }
2252 /* The "original" page frame has not been allocated and we have to
2253 * use a "safe" page frame to store the loaded page.
2254 */
2255 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2256 if (!pbe) {
2257 swsusp_free();
69643279 2258 return ERR_PTR(-ENOMEM);
8357376d
RW
2259 }
2260 pbe->orig_page = page;
2261 if (safe_highmem_pages > 0) {
2262 struct page *tmp;
2263
2264 /* Copy of the page will be stored in high memory */
2265 kaddr = buffer;
2266 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2267 safe_highmem_pages--;
2268 last_highmem_page = tmp;
2269 pbe->copy_page = tmp;
2270 } else {
2271 /* Copy of the page will be stored in normal memory */
2272 kaddr = safe_pages_list;
2273 safe_pages_list = safe_pages_list->next;
2274 pbe->copy_page = virt_to_page(kaddr);
2275 }
2276 pbe->next = highmem_pblist;
2277 highmem_pblist = pbe;
2278 return kaddr;
2279}
2280
2281/**
2282 * copy_last_highmem_page - copy the contents of a highmem image from
2283 * @buffer, where the caller of snapshot_write_next() has place them,
2284 * to the right location represented by @last_highmem_page .
2285 */
2286
2287static void copy_last_highmem_page(void)
2288{
2289 if (last_highmem_page) {
2290 void *dst;
2291
0de9a1e2 2292 dst = kmap_atomic(last_highmem_page);
3ecb01df 2293 copy_page(dst, buffer);
0de9a1e2 2294 kunmap_atomic(dst);
8357376d
RW
2295 last_highmem_page = NULL;
2296 }
2297}
2298
2299static inline int last_highmem_page_copied(void)
2300{
2301 return !last_highmem_page;
2302}
2303
2304static inline void free_highmem_data(void)
2305{
2306 if (safe_highmem_bm)
2307 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2308
2309 if (buffer)
2310 free_image_page(buffer, PG_UNSAFE_CLEAR);
2311}
2312#else
8357376d
RW
2313static unsigned int
2314count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2315
2316static inline int
2317prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2318{
2319 return 0;
2320}
2321
2322static inline void *
2323get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2324{
69643279 2325 return ERR_PTR(-EINVAL);
8357376d
RW
2326}
2327
2328static inline void copy_last_highmem_page(void) {}
2329static inline int last_highmem_page_copied(void) { return 1; }
2330static inline void free_highmem_data(void) {}
2331#endif /* CONFIG_HIGHMEM */
2332
f577eb30 2333/**
940864dd
RW
2334 * prepare_image - use the memory bitmap @bm to mark the pages that will
2335 * be overwritten in the process of restoring the system memory state
2336 * from the suspend image ("unsafe" pages) and allocate memory for the
2337 * image.
968808b8 2338 *
940864dd
RW
2339 * The idea is to allocate a new memory bitmap first and then allocate
2340 * as many pages as needed for the image data, but not to assign these
2341 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2342 * allocated and create a lists of "safe" pages that will be used
2343 * later. On systems with high memory a list of "safe" highmem pages is
2344 * also created.
f577eb30
RW
2345 */
2346
940864dd
RW
2347#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2348
940864dd
RW
2349static int
2350prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2351{
8357376d 2352 unsigned int nr_pages, nr_highmem;
940864dd
RW
2353 struct linked_page *sp_list, *lp;
2354 int error;
f577eb30 2355
8357376d
RW
2356 /* If there is no highmem, the buffer will not be necessary */
2357 free_image_page(buffer, PG_UNSAFE_CLEAR);
2358 buffer = NULL;
2359
2360 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2361 error = mark_unsafe_pages(bm);
2362 if (error)
2363 goto Free;
2364
2365 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2366 if (error)
2367 goto Free;
2368
2369 duplicate_memory_bitmap(new_bm, bm);
2370 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2371 if (nr_highmem > 0) {
2372 error = prepare_highmem_image(bm, &nr_highmem);
2373 if (error)
2374 goto Free;
2375 }
940864dd
RW
2376 /* Reserve some safe pages for potential later use.
2377 *
2378 * NOTE: This way we make sure there will be enough safe pages for the
2379 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2380 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2381 */
2382 sp_list = NULL;
2383 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2384 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2385 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2386 while (nr_pages > 0) {
8357376d 2387 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2388 if (!lp) {
f577eb30 2389 error = -ENOMEM;
940864dd
RW
2390 goto Free;
2391 }
2392 lp->next = sp_list;
2393 sp_list = lp;
2394 nr_pages--;
f577eb30 2395 }
940864dd
RW
2396 /* Preallocate memory for the image */
2397 safe_pages_list = NULL;
8357376d 2398 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2399 while (nr_pages > 0) {
2400 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2401 if (!lp) {
2402 error = -ENOMEM;
2403 goto Free;
2404 }
7be98234 2405 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2406 /* The page is "safe", add it to the list */
2407 lp->next = safe_pages_list;
2408 safe_pages_list = lp;
968808b8 2409 }
940864dd 2410 /* Mark the page as allocated */
7be98234
RW
2411 swsusp_set_page_forbidden(virt_to_page(lp));
2412 swsusp_set_page_free(virt_to_page(lp));
940864dd 2413 nr_pages--;
968808b8 2414 }
940864dd
RW
2415 /* Free the reserved safe pages so that chain_alloc() can use them */
2416 while (sp_list) {
2417 lp = sp_list->next;
2418 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2419 sp_list = lp;
f577eb30 2420 }
940864dd
RW
2421 return 0;
2422
59a49335 2423 Free:
940864dd 2424 swsusp_free();
f577eb30
RW
2425 return error;
2426}
2427
940864dd
RW
2428/**
2429 * get_buffer - compute the address that snapshot_write_next() should
2430 * set for its caller to write to.
2431 */
2432
2433static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2434{
940864dd 2435 struct pbe *pbe;
69643279
RW
2436 struct page *page;
2437 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2438
69643279
RW
2439 if (pfn == BM_END_OF_MAP)
2440 return ERR_PTR(-EFAULT);
2441
2442 page = pfn_to_page(pfn);
8357376d
RW
2443 if (PageHighMem(page))
2444 return get_highmem_page_buffer(page, ca);
2445
7be98234 2446 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2447 /* We have allocated the "original" page frame and we can
2448 * use it directly to store the loaded page.
968808b8 2449 */
940864dd
RW
2450 return page_address(page);
2451
2452 /* The "original" page frame has not been allocated and we have to
2453 * use a "safe" page frame to store the loaded page.
968808b8 2454 */
940864dd
RW
2455 pbe = chain_alloc(ca, sizeof(struct pbe));
2456 if (!pbe) {
2457 swsusp_free();
69643279 2458 return ERR_PTR(-ENOMEM);
940864dd 2459 }
8357376d
RW
2460 pbe->orig_address = page_address(page);
2461 pbe->address = safe_pages_list;
940864dd
RW
2462 safe_pages_list = safe_pages_list->next;
2463 pbe->next = restore_pblist;
2464 restore_pblist = pbe;
8357376d 2465 return pbe->address;
968808b8
RW
2466}
2467
f577eb30
RW
2468/**
2469 * snapshot_write_next - used for writing the system memory snapshot.
2470 *
2471 * On the first call to it @handle should point to a zeroed
2472 * snapshot_handle structure. The structure gets updated and a pointer
2473 * to it should be passed to this function every next time.
2474 *
f577eb30
RW
2475 * On success the function returns a positive number. Then, the caller
2476 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2477 * location computed by the data_of() macro.
f577eb30
RW
2478 *
2479 * The function returns 0 to indicate the "end of file" condition,
2480 * and a negative number is returned on error. In such cases the
2481 * structure pointed to by @handle is not updated and should not be used
2482 * any more.
2483 */
2484
d3c1b24c 2485int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2486{
940864dd 2487 static struct chain_allocator ca;
f577eb30
RW
2488 int error = 0;
2489
940864dd 2490 /* Check if we have already loaded the entire image */
d3c1b24c 2491 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2492 return 0;
940864dd 2493
d3c1b24c
JS
2494 handle->sync_read = 1;
2495
2496 if (!handle->cur) {
8357376d
RW
2497 if (!buffer)
2498 /* This makes the buffer be freed by swsusp_free() */
2499 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2500
f577eb30
RW
2501 if (!buffer)
2502 return -ENOMEM;
8357376d 2503
f577eb30 2504 handle->buffer = buffer;
d3c1b24c
JS
2505 } else if (handle->cur == 1) {
2506 error = load_header(buffer);
2507 if (error)
2508 return error;
940864dd 2509
d3c1b24c
JS
2510 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2511 if (error)
2512 return error;
2513
85055dd8
MS
2514 /* Allocate buffer for page keys. */
2515 error = page_key_alloc(nr_copy_pages);
2516 if (error)
2517 return error;
2518
d3c1b24c
JS
2519 } else if (handle->cur <= nr_meta_pages + 1) {
2520 error = unpack_orig_pfns(buffer, &copy_bm);
2521 if (error)
2522 return error;
940864dd 2523
d3c1b24c
JS
2524 if (handle->cur == nr_meta_pages + 1) {
2525 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2526 if (error)
2527 return error;
2528
d3c1b24c
JS
2529 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2530 memory_bm_position_reset(&orig_bm);
2531 restore_pblist = NULL;
940864dd 2532 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2533 handle->sync_read = 0;
69643279
RW
2534 if (IS_ERR(handle->buffer))
2535 return PTR_ERR(handle->buffer);
f577eb30 2536 }
f577eb30 2537 } else {
d3c1b24c 2538 copy_last_highmem_page();
85055dd8
MS
2539 /* Restore page key for data page (s390 only). */
2540 page_key_write(handle->buffer);
d3c1b24c
JS
2541 handle->buffer = get_buffer(&orig_bm, &ca);
2542 if (IS_ERR(handle->buffer))
2543 return PTR_ERR(handle->buffer);
2544 if (handle->buffer != buffer)
2545 handle->sync_read = 0;
f577eb30 2546 }
d3c1b24c
JS
2547 handle->cur++;
2548 return PAGE_SIZE;
f577eb30
RW
2549}
2550
8357376d
RW
2551/**
2552 * snapshot_write_finalize - must be called after the last call to
2553 * snapshot_write_next() in case the last page in the image happens
2554 * to be a highmem page and its contents should be stored in the
2555 * highmem. Additionally, it releases the memory that will not be
2556 * used any more.
2557 */
2558
2559void snapshot_write_finalize(struct snapshot_handle *handle)
2560{
2561 copy_last_highmem_page();
85055dd8
MS
2562 /* Restore page key for data page (s390 only). */
2563 page_key_write(handle->buffer);
2564 page_key_free();
8357376d 2565 /* Free only if we have loaded the image entirely */
d3c1b24c 2566 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
8357376d
RW
2567 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2568 free_highmem_data();
2569 }
2570}
2571
f577eb30
RW
2572int snapshot_image_loaded(struct snapshot_handle *handle)
2573{
8357376d 2574 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2575 handle->cur <= nr_meta_pages + nr_copy_pages);
2576}
2577
8357376d
RW
2578#ifdef CONFIG_HIGHMEM
2579/* Assumes that @buf is ready and points to a "safe" page */
2580static inline void
2581swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2582{
8357376d
RW
2583 void *kaddr1, *kaddr2;
2584
0de9a1e2
CW
2585 kaddr1 = kmap_atomic(p1);
2586 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2587 copy_page(buf, kaddr1);
2588 copy_page(kaddr1, kaddr2);
2589 copy_page(kaddr2, buf);
0de9a1e2
CW
2590 kunmap_atomic(kaddr2);
2591 kunmap_atomic(kaddr1);
8357376d
RW
2592}
2593
2594/**
2595 * restore_highmem - for each highmem page that was allocated before
2596 * the suspend and included in the suspend image, and also has been
2597 * allocated by the "resume" kernel swap its current (ie. "before
2598 * resume") contents with the previous (ie. "before suspend") one.
2599 *
2600 * If the resume eventually fails, we can call this function once
2601 * again and restore the "before resume" highmem state.
2602 */
2603
2604int restore_highmem(void)
2605{
2606 struct highmem_pbe *pbe = highmem_pblist;
2607 void *buf;
2608
2609 if (!pbe)
2610 return 0;
2611
2612 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2613 if (!buf)
2614 return -ENOMEM;
2615
2616 while (pbe) {
2617 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2618 pbe = pbe->next;
2619 }
2620 free_image_page(buf, PG_UNSAFE_CLEAR);
2621 return 0;
f577eb30 2622}
8357376d 2623#endif /* CONFIG_HIGHMEM */
This page took 0.866912 seconds and 5 git commands to generate.