PM / hibernate: Add missing braces in __register_nosave_region()
[deliverable/linux.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
52f5684c 30#include <linux/compiler.h>
db597605 31#include <linux/ktime.h>
25761b6e
RW
32
33#include <asm/uaccess.h>
34#include <asm/mmu_context.h>
35#include <asm/pgtable.h>
36#include <asm/tlbflush.h>
37#include <asm/io.h>
38
25761b6e
RW
39#include "power.h"
40
74dfd666
RW
41static int swsusp_page_is_free(struct page *);
42static void swsusp_set_page_forbidden(struct page *);
43static void swsusp_unset_page_forbidden(struct page *);
44
ddeb6487
RW
45/*
46 * Number of bytes to reserve for memory allocations made by device drivers
47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
48 * cause image creation to fail (tunable via /sys/power/reserved_size).
49 */
50unsigned long reserved_size;
51
52void __init hibernate_reserved_size_init(void)
53{
54 reserved_size = SPARE_PAGES * PAGE_SIZE;
55}
56
fe419535
RW
57/*
58 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
59 * When it is set to N, swsusp will do its best to ensure the image
60 * size will not exceed N bytes, but if that is impossible, it will
61 * try to create the smallest image possible.
fe419535 62 */
ac5c24ec
RW
63unsigned long image_size;
64
65void __init hibernate_image_size_init(void)
66{
1c1be3a9 67 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 68}
fe419535 69
ef96f639
RW
70/*
71 * List of PBEs needed for restoring the pages that were allocated before
8357376d
RW
72 * the suspend and included in the suspend image, but have also been
73 * allocated by the "resume" kernel, so their contents cannot be written
74 * directly to their "original" page frames.
75 */
75534b50
RW
76struct pbe *restore_pblist;
77
9c744481
RW
78/* struct linked_page is used to build chains of pages */
79
80#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
81
82struct linked_page {
83 struct linked_page *next;
84 char data[LINKED_PAGE_DATA_SIZE];
85} __packed;
86
87/*
88 * List of "safe" pages (ie. pages that were not used by the image kernel
89 * before hibernation) that may be used as temporary storage for image kernel
90 * memory contents.
91 */
92static struct linked_page *safe_pages_list;
93
8357376d 94/* Pointer to an auxiliary buffer (1 page) */
940864dd 95static void *buffer;
7088a5c0 96
0bcd888d
RW
97#define PG_ANY 0
98#define PG_SAFE 1
99#define PG_UNSAFE_CLEAR 1
100#define PG_UNSAFE_KEEP 0
101
940864dd 102static unsigned int allocated_unsafe_pages;
f6143aa6 103
ef96f639
RW
104/**
105 * get_image_page - Allocate a page for a hibernation image.
106 * @gfp_mask: GFP mask for the allocation.
107 * @safe_needed: Get pages that were not used before hibernation (restore only)
108 *
109 * During image restoration, for storing the PBE list and the image data, we can
110 * only use memory pages that do not conflict with the pages used before
111 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
112 * using allocated_unsafe_pages.
113 *
114 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
115 * swsusp_free() can release it.
116 */
8357376d 117static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
118{
119 void *res;
120
121 res = (void *)get_zeroed_page(gfp_mask);
122 if (safe_needed)
7be98234 123 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 124 /* The page is unsafe, mark it for swsusp_free() */
7be98234 125 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 126 allocated_unsafe_pages++;
f6143aa6
RW
127 res = (void *)get_zeroed_page(gfp_mask);
128 }
129 if (res) {
7be98234
RW
130 swsusp_set_page_forbidden(virt_to_page(res));
131 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
132 }
133 return res;
134}
135
9c744481
RW
136static void *__get_safe_page(gfp_t gfp_mask)
137{
138 if (safe_pages_list) {
139 void *ret = safe_pages_list;
140
141 safe_pages_list = safe_pages_list->next;
142 memset(ret, 0, PAGE_SIZE);
143 return ret;
144 }
145 return get_image_page(gfp_mask, PG_SAFE);
146}
147
f6143aa6
RW
148unsigned long get_safe_page(gfp_t gfp_mask)
149{
9c744481 150 return (unsigned long)__get_safe_page(gfp_mask);
8357376d
RW
151}
152
5b6d15de
RW
153static struct page *alloc_image_page(gfp_t gfp_mask)
154{
8357376d
RW
155 struct page *page;
156
157 page = alloc_page(gfp_mask);
158 if (page) {
7be98234
RW
159 swsusp_set_page_forbidden(page);
160 swsusp_set_page_free(page);
8357376d
RW
161 }
162 return page;
f6143aa6
RW
163}
164
307c5971
RW
165static void recycle_safe_page(void *page_address)
166{
167 struct linked_page *lp = page_address;
168
169 lp->next = safe_pages_list;
170 safe_pages_list = lp;
171}
172
f6143aa6 173/**
ef96f639
RW
174 * free_image_page - Free a page allocated for hibernation image.
175 * @addr: Address of the page to free.
176 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
177 *
178 * The page to free should have been allocated by get_image_page() (page flags
179 * set by it are affected).
f6143aa6 180 */
f6143aa6
RW
181static inline void free_image_page(void *addr, int clear_nosave_free)
182{
8357376d
RW
183 struct page *page;
184
185 BUG_ON(!virt_addr_valid(addr));
186
187 page = virt_to_page(addr);
188
7be98234 189 swsusp_unset_page_forbidden(page);
f6143aa6 190 if (clear_nosave_free)
7be98234 191 swsusp_unset_page_free(page);
8357376d
RW
192
193 __free_page(page);
f6143aa6
RW
194}
195
efd5a852
RW
196static inline void free_list_of_pages(struct linked_page *list,
197 int clear_page_nosave)
b788db79
RW
198{
199 while (list) {
200 struct linked_page *lp = list->next;
201
202 free_image_page(list, clear_page_nosave);
203 list = lp;
204 }
205}
206
ef96f639
RW
207/*
208 * struct chain_allocator is used for allocating small objects out of
209 * a linked list of pages called 'the chain'.
210 *
211 * The chain grows each time when there is no room for a new object in
212 * the current page. The allocated objects cannot be freed individually.
213 * It is only possible to free them all at once, by freeing the entire
214 * chain.
215 *
216 * NOTE: The chain allocator may be inefficient if the allocated objects
217 * are not much smaller than PAGE_SIZE.
218 */
b788db79
RW
219struct chain_allocator {
220 struct linked_page *chain; /* the chain */
221 unsigned int used_space; /* total size of objects allocated out
ef96f639 222 of the current page */
b788db79
RW
223 gfp_t gfp_mask; /* mask for allocating pages */
224 int safe_needed; /* if set, only "safe" pages are allocated */
225};
226
efd5a852
RW
227static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
228 int safe_needed)
b788db79
RW
229{
230 ca->chain = NULL;
231 ca->used_space = LINKED_PAGE_DATA_SIZE;
232 ca->gfp_mask = gfp_mask;
233 ca->safe_needed = safe_needed;
234}
235
236static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
237{
238 void *ret;
239
240 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
241 struct linked_page *lp;
242
9c744481
RW
243 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
244 get_image_page(ca->gfp_mask, PG_ANY);
b788db79
RW
245 if (!lp)
246 return NULL;
247
248 lp->next = ca->chain;
249 ca->chain = lp;
250 ca->used_space = 0;
251 }
252 ret = ca->chain->data + ca->used_space;
253 ca->used_space += size;
254 return ret;
255}
256
b788db79 257/**
ef96f639 258 * Data types related to memory bitmaps.
b788db79 259 *
ef96f639
RW
260 * Memory bitmap is a structure consiting of many linked lists of
261 * objects. The main list's elements are of type struct zone_bitmap
262 * and each of them corresonds to one zone. For each zone bitmap
263 * object there is a list of objects of type struct bm_block that
264 * represent each blocks of bitmap in which information is stored.
b788db79 265 *
ef96f639
RW
266 * struct memory_bitmap contains a pointer to the main list of zone
267 * bitmap objects, a struct bm_position used for browsing the bitmap,
268 * and a pointer to the list of pages used for allocating all of the
269 * zone bitmap objects and bitmap block objects.
b788db79 270 *
ef96f639
RW
271 * NOTE: It has to be possible to lay out the bitmap in memory
272 * using only allocations of order 0. Additionally, the bitmap is
273 * designed to work with arbitrary number of zones (this is over the
274 * top for now, but let's avoid making unnecessary assumptions ;-).
b788db79 275 *
ef96f639
RW
276 * struct zone_bitmap contains a pointer to a list of bitmap block
277 * objects and a pointer to the bitmap block object that has been
278 * most recently used for setting bits. Additionally, it contains the
279 * PFNs that correspond to the start and end of the represented zone.
b788db79 280 *
ef96f639
RW
281 * struct bm_block contains a pointer to the memory page in which
282 * information is stored (in the form of a block of bitmap)
283 * It also contains the pfns that correspond to the start and end of
284 * the represented memory area.
f469f02d 285 *
ef96f639
RW
286 * The memory bitmap is organized as a radix tree to guarantee fast random
287 * access to the bits. There is one radix tree for each zone (as returned
288 * from create_mem_extents).
f469f02d 289 *
ef96f639
RW
290 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
291 * two linked lists for the nodes of the tree, one for the inner nodes and
292 * one for the leave nodes. The linked leave nodes are used for fast linear
293 * access of the memory bitmap.
f469f02d 294 *
ef96f639 295 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
296 */
297
298#define BM_END_OF_MAP (~0UL)
299
8de03073 300#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
301#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
302#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79 303
f469f02d
JR
304/*
305 * struct rtree_node is a wrapper struct to link the nodes
306 * of the rtree together for easy linear iteration over
307 * bits and easy freeing
308 */
309struct rtree_node {
310 struct list_head list;
311 unsigned long *data;
312};
313
314/*
315 * struct mem_zone_bm_rtree represents a bitmap used for one
316 * populated memory zone.
317 */
318struct mem_zone_bm_rtree {
319 struct list_head list; /* Link Zones together */
320 struct list_head nodes; /* Radix Tree inner nodes */
321 struct list_head leaves; /* Radix Tree leaves */
322 unsigned long start_pfn; /* Zone start page frame */
323 unsigned long end_pfn; /* Zone end page frame + 1 */
324 struct rtree_node *rtree; /* Radix Tree Root */
325 int levels; /* Number of Radix Tree Levels */
326 unsigned int blocks; /* Number of Bitmap Blocks */
327};
328
b788db79
RW
329/* strcut bm_position is used for browsing memory bitmaps */
330
331struct bm_position {
3a20cb17
JR
332 struct mem_zone_bm_rtree *zone;
333 struct rtree_node *node;
334 unsigned long node_pfn;
335 int node_bit;
b788db79
RW
336};
337
338struct memory_bitmap {
f469f02d 339 struct list_head zones;
b788db79 340 struct linked_page *p_list; /* list of pages used to store zone
ef96f639
RW
341 bitmap objects and bitmap block
342 objects */
b788db79
RW
343 struct bm_position cur; /* most recently used bit position */
344};
345
346/* Functions that operate on memory bitmaps */
347
f469f02d
JR
348#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
349#if BITS_PER_LONG == 32
350#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
351#else
352#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
353#endif
354#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
355
ef96f639
RW
356/**
357 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
f469f02d 358 *
ef96f639
RW
359 * This function is used to allocate inner nodes as well as the
360 * leave nodes of the radix tree. It also adds the node to the
361 * corresponding linked list passed in by the *list parameter.
f469f02d
JR
362 */
363static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
364 struct chain_allocator *ca,
365 struct list_head *list)
366{
367 struct rtree_node *node;
368
369 node = chain_alloc(ca, sizeof(struct rtree_node));
370 if (!node)
371 return NULL;
372
373 node->data = get_image_page(gfp_mask, safe_needed);
374 if (!node->data)
375 return NULL;
376
377 list_add_tail(&node->list, list);
378
379 return node;
380}
381
ef96f639
RW
382/**
383 * add_rtree_block - Add a new leave node to the radix tree.
f469f02d 384 *
ef96f639
RW
385 * The leave nodes need to be allocated in order to keep the leaves
386 * linked list in order. This is guaranteed by the zone->blocks
387 * counter.
f469f02d
JR
388 */
389static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
390 int safe_needed, struct chain_allocator *ca)
391{
392 struct rtree_node *node, *block, **dst;
393 unsigned int levels_needed, block_nr;
394 int i;
395
396 block_nr = zone->blocks;
397 levels_needed = 0;
398
399 /* How many levels do we need for this block nr? */
400 while (block_nr) {
401 levels_needed += 1;
402 block_nr >>= BM_RTREE_LEVEL_SHIFT;
403 }
404
405 /* Make sure the rtree has enough levels */
406 for (i = zone->levels; i < levels_needed; i++) {
407 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
408 &zone->nodes);
409 if (!node)
410 return -ENOMEM;
411
412 node->data[0] = (unsigned long)zone->rtree;
413 zone->rtree = node;
414 zone->levels += 1;
415 }
416
417 /* Allocate new block */
418 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
419 if (!block)
420 return -ENOMEM;
421
422 /* Now walk the rtree to insert the block */
423 node = zone->rtree;
424 dst = &zone->rtree;
425 block_nr = zone->blocks;
426 for (i = zone->levels; i > 0; i--) {
427 int index;
428
429 if (!node) {
430 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
431 &zone->nodes);
432 if (!node)
433 return -ENOMEM;
434 *dst = node;
435 }
436
437 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
438 index &= BM_RTREE_LEVEL_MASK;
439 dst = (struct rtree_node **)&((*dst)->data[index]);
440 node = *dst;
441 }
442
443 zone->blocks += 1;
444 *dst = block;
445
446 return 0;
447}
448
449static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
450 int clear_nosave_free);
451
ef96f639
RW
452/**
453 * create_zone_bm_rtree - Create a radix tree for one zone.
f469f02d 454 *
ef96f639
RW
455 * Allocated the mem_zone_bm_rtree structure and initializes it.
456 * This function also allocated and builds the radix tree for the
457 * zone.
f469f02d 458 */
efd5a852
RW
459static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
460 int safe_needed,
461 struct chain_allocator *ca,
462 unsigned long start,
463 unsigned long end)
f469f02d
JR
464{
465 struct mem_zone_bm_rtree *zone;
466 unsigned int i, nr_blocks;
467 unsigned long pages;
468
469 pages = end - start;
470 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
471 if (!zone)
472 return NULL;
473
474 INIT_LIST_HEAD(&zone->nodes);
475 INIT_LIST_HEAD(&zone->leaves);
476 zone->start_pfn = start;
477 zone->end_pfn = end;
478 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
479
480 for (i = 0; i < nr_blocks; i++) {
481 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
482 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
483 return NULL;
484 }
485 }
486
487 return zone;
488}
489
ef96f639
RW
490/**
491 * free_zone_bm_rtree - Free the memory of the radix tree.
f469f02d 492 *
ef96f639
RW
493 * Free all node pages of the radix tree. The mem_zone_bm_rtree
494 * structure itself is not freed here nor are the rtree_node
495 * structs.
f469f02d
JR
496 */
497static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
498 int clear_nosave_free)
499{
500 struct rtree_node *node;
501
502 list_for_each_entry(node, &zone->nodes, list)
503 free_image_page(node->data, clear_nosave_free);
504
505 list_for_each_entry(node, &zone->leaves, list)
506 free_image_page(node->data, clear_nosave_free);
507}
508
b788db79
RW
509static void memory_bm_position_reset(struct memory_bitmap *bm)
510{
3a20cb17
JR
511 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
512 list);
513 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
514 struct rtree_node, list);
515 bm->cur.node_pfn = 0;
516 bm->cur.node_bit = 0;
b788db79
RW
517}
518
519static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
520
846705de
RW
521struct mem_extent {
522 struct list_head hook;
523 unsigned long start;
524 unsigned long end;
525};
526
b788db79 527/**
ef96f639
RW
528 * free_mem_extents - Free a list of memory extents.
529 * @list: List of extents to free.
b788db79 530 */
846705de
RW
531static void free_mem_extents(struct list_head *list)
532{
533 struct mem_extent *ext, *aux;
b788db79 534
846705de
RW
535 list_for_each_entry_safe(ext, aux, list, hook) {
536 list_del(&ext->hook);
537 kfree(ext);
538 }
539}
540
541/**
ef96f639
RW
542 * create_mem_extents - Create a list of memory extents.
543 * @list: List to put the extents into.
544 * @gfp_mask: Mask to use for memory allocations.
545 *
546 * The extents represent contiguous ranges of PFNs.
846705de
RW
547 */
548static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 549{
846705de 550 struct zone *zone;
b788db79 551
846705de 552 INIT_LIST_HEAD(list);
b788db79 553
ee99c71c 554 for_each_populated_zone(zone) {
846705de
RW
555 unsigned long zone_start, zone_end;
556 struct mem_extent *ext, *cur, *aux;
557
846705de 558 zone_start = zone->zone_start_pfn;
c33bc315 559 zone_end = zone_end_pfn(zone);
846705de
RW
560
561 list_for_each_entry(ext, list, hook)
562 if (zone_start <= ext->end)
563 break;
b788db79 564
846705de
RW
565 if (&ext->hook == list || zone_end < ext->start) {
566 /* New extent is necessary */
567 struct mem_extent *new_ext;
568
569 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
570 if (!new_ext) {
571 free_mem_extents(list);
572 return -ENOMEM;
573 }
574 new_ext->start = zone_start;
575 new_ext->end = zone_end;
576 list_add_tail(&new_ext->hook, &ext->hook);
577 continue;
578 }
579
580 /* Merge this zone's range of PFNs with the existing one */
581 if (zone_start < ext->start)
582 ext->start = zone_start;
583 if (zone_end > ext->end)
584 ext->end = zone_end;
585
586 /* More merging may be possible */
587 cur = ext;
588 list_for_each_entry_safe_continue(cur, aux, list, hook) {
589 if (zone_end < cur->start)
590 break;
591 if (zone_end < cur->end)
592 ext->end = cur->end;
593 list_del(&cur->hook);
594 kfree(cur);
595 }
b788db79 596 }
846705de
RW
597
598 return 0;
b788db79
RW
599}
600
601/**
ef96f639
RW
602 * memory_bm_create - Allocate memory for a memory bitmap.
603 */
efd5a852
RW
604static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
605 int safe_needed)
b788db79
RW
606{
607 struct chain_allocator ca;
846705de
RW
608 struct list_head mem_extents;
609 struct mem_extent *ext;
610 int error;
b788db79
RW
611
612 chain_init(&ca, gfp_mask, safe_needed);
f469f02d 613 INIT_LIST_HEAD(&bm->zones);
b788db79 614
846705de
RW
615 error = create_mem_extents(&mem_extents, gfp_mask);
616 if (error)
617 return error;
b788db79 618
846705de 619 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 620 struct mem_zone_bm_rtree *zone;
f469f02d
JR
621
622 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
623 ext->start, ext->end);
9047eb62
JR
624 if (!zone) {
625 error = -ENOMEM;
f469f02d 626 goto Error;
9047eb62 627 }
f469f02d 628 list_add_tail(&zone->list, &bm->zones);
b788db79 629 }
846705de 630
b788db79
RW
631 bm->p_list = ca.chain;
632 memory_bm_position_reset(bm);
846705de
RW
633 Exit:
634 free_mem_extents(&mem_extents);
635 return error;
b788db79 636
846705de 637 Error:
b788db79
RW
638 bm->p_list = ca.chain;
639 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 640 goto Exit;
b788db79
RW
641}
642
643/**
ef96f639
RW
644 * memory_bm_free - Free memory occupied by the memory bitmap.
645 * @bm: Memory bitmap.
646 */
b788db79
RW
647static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
648{
f469f02d 649 struct mem_zone_bm_rtree *zone;
b788db79 650
f469f02d
JR
651 list_for_each_entry(zone, &bm->zones, list)
652 free_zone_bm_rtree(zone, clear_nosave_free);
653
b788db79 654 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 655
f469f02d 656 INIT_LIST_HEAD(&bm->zones);
b788db79
RW
657}
658
659/**
ef96f639 660 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
07a33823 661 *
ef96f639
RW
662 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
663 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
664 *
665 * Walk the radix tree to find the page containing the bit that represents @pfn
666 * and return the position of the bit in @addr and @bit_nr.
07a33823 667 */
9047eb62
JR
668static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
669 void **addr, unsigned int *bit_nr)
07a33823
JR
670{
671 struct mem_zone_bm_rtree *curr, *zone;
672 struct rtree_node *node;
673 int i, block_nr;
674
3a20cb17
JR
675 zone = bm->cur.zone;
676
677 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
678 goto zone_found;
679
07a33823
JR
680 zone = NULL;
681
682 /* Find the right zone */
683 list_for_each_entry(curr, &bm->zones, list) {
684 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
685 zone = curr;
686 break;
687 }
688 }
689
690 if (!zone)
691 return -EFAULT;
692
3a20cb17 693zone_found:
07a33823 694 /*
ef96f639
RW
695 * We have found the zone. Now walk the radix tree to find the leaf node
696 * for our PFN.
07a33823 697 */
3a20cb17
JR
698 node = bm->cur.node;
699 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
700 goto node_found;
701
07a33823
JR
702 node = zone->rtree;
703 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
704
705 for (i = zone->levels; i > 0; i--) {
706 int index;
707
708 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
709 index &= BM_RTREE_LEVEL_MASK;
710 BUG_ON(node->data[index] == 0);
711 node = (struct rtree_node *)node->data[index];
712 }
713
3a20cb17
JR
714node_found:
715 /* Update last position */
716 bm->cur.zone = zone;
717 bm->cur.node = node;
718 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
719
07a33823
JR
720 /* Set return values */
721 *addr = node->data;
722 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
723
724 return 0;
725}
726
74dfd666
RW
727static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
728{
729 void *addr;
730 unsigned int bit;
a82f7119 731 int error;
74dfd666 732
a82f7119
RW
733 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
734 BUG_ON(error);
74dfd666
RW
735 set_bit(bit, addr);
736}
737
a82f7119
RW
738static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
739{
740 void *addr;
741 unsigned int bit;
742 int error;
743
744 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
07a33823
JR
745 if (!error)
746 set_bit(bit, addr);
747
a82f7119
RW
748 return error;
749}
750
74dfd666
RW
751static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
752{
753 void *addr;
754 unsigned int bit;
a82f7119 755 int error;
74dfd666 756
a82f7119
RW
757 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
758 BUG_ON(error);
74dfd666
RW
759 clear_bit(bit, addr);
760}
761
fdd64ed5
JR
762static void memory_bm_clear_current(struct memory_bitmap *bm)
763{
764 int bit;
765
766 bit = max(bm->cur.node_bit - 1, 0);
767 clear_bit(bit, bm->cur.node->data);
768}
769
74dfd666
RW
770static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
771{
772 void *addr;
773 unsigned int bit;
9047eb62 774 int error;
74dfd666 775
a82f7119
RW
776 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
777 BUG_ON(error);
9047eb62 778 return test_bit(bit, addr);
b788db79
RW
779}
780
69643279
RW
781static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
782{
783 void *addr;
784 unsigned int bit;
07a33823 785
9047eb62 786 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
b788db79
RW
787}
788
3a20cb17 789/*
ef96f639 790 * rtree_next_node - Jump to the next leaf node.
3a20cb17 791 *
ef96f639
RW
792 * Set the position to the beginning of the next node in the
793 * memory bitmap. This is either the next node in the current
794 * zone's radix tree or the first node in the radix tree of the
795 * next zone.
3a20cb17 796 *
ef96f639 797 * Return true if there is a next node, false otherwise.
3a20cb17
JR
798 */
799static bool rtree_next_node(struct memory_bitmap *bm)
800{
801 bm->cur.node = list_entry(bm->cur.node->list.next,
802 struct rtree_node, list);
803 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
804 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
805 bm->cur.node_bit = 0;
0f7d83e8 806 touch_softlockup_watchdog();
3a20cb17
JR
807 return true;
808 }
809
810 /* No more nodes, goto next zone */
811 bm->cur.zone = list_entry(bm->cur.zone->list.next,
812 struct mem_zone_bm_rtree, list);
813 if (&bm->cur.zone->list != &bm->zones) {
814 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
815 struct rtree_node, list);
816 bm->cur.node_pfn = 0;
817 bm->cur.node_bit = 0;
818 return true;
819 }
820
821 /* No more zones */
822 return false;
823}
824
9047eb62 825/**
ef96f639
RW
826 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
827 * @bm: Memory bitmap.
3a20cb17 828 *
ef96f639
RW
829 * Starting from the last returned position this function searches for the next
830 * set bit in @bm and returns the PFN represented by it. If no more bits are
831 * set, BM_END_OF_MAP is returned.
9047eb62 832 *
ef96f639
RW
833 * It is required to run memory_bm_position_reset() before the first call to
834 * this function for the given memory bitmap.
3a20cb17 835 */
9047eb62 836static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
3a20cb17
JR
837{
838 unsigned long bits, pfn, pages;
839 int bit;
840
841 do {
842 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
843 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
844 bit = find_next_bit(bm->cur.node->data, bits,
845 bm->cur.node_bit);
846 if (bit < bits) {
847 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
848 bm->cur.node_bit = bit + 1;
849 return pfn;
850 }
851 } while (rtree_next_node(bm));
852
853 return BM_END_OF_MAP;
854}
855
ef96f639
RW
856/*
857 * This structure represents a range of page frames the contents of which
858 * should not be saved during hibernation.
74dfd666 859 */
74dfd666
RW
860struct nosave_region {
861 struct list_head list;
862 unsigned long start_pfn;
863 unsigned long end_pfn;
864};
865
866static LIST_HEAD(nosave_regions);
867
307c5971
RW
868static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
869{
870 struct rtree_node *node;
871
872 list_for_each_entry(node, &zone->nodes, list)
873 recycle_safe_page(node->data);
874
875 list_for_each_entry(node, &zone->leaves, list)
876 recycle_safe_page(node->data);
877}
878
879static void memory_bm_recycle(struct memory_bitmap *bm)
880{
881 struct mem_zone_bm_rtree *zone;
882 struct linked_page *p_list;
883
884 list_for_each_entry(zone, &bm->zones, list)
885 recycle_zone_bm_rtree(zone);
886
887 p_list = bm->p_list;
888 while (p_list) {
889 struct linked_page *lp = p_list;
890
891 p_list = lp->next;
892 recycle_safe_page(lp);
893 }
894}
895
74dfd666 896/**
ef96f639
RW
897 * register_nosave_region - Register a region of unsaveable memory.
898 *
899 * Register a range of page frames the contents of which should not be saved
900 * during hibernation (to be used in the early initialization code).
74dfd666 901 */
efd5a852
RW
902void __init __register_nosave_region(unsigned long start_pfn,
903 unsigned long end_pfn, int use_kmalloc)
74dfd666
RW
904{
905 struct nosave_region *region;
906
907 if (start_pfn >= end_pfn)
908 return;
909
910 if (!list_empty(&nosave_regions)) {
911 /* Try to extend the previous region (they should be sorted) */
912 region = list_entry(nosave_regions.prev,
913 struct nosave_region, list);
914 if (region->end_pfn == start_pfn) {
915 region->end_pfn = end_pfn;
916 goto Report;
917 }
918 }
940d67f6 919 if (use_kmalloc) {
ef96f639 920 /* During init, this shouldn't fail */
940d67f6
JB
921 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
922 BUG_ON(!region);
d5f32af3 923 } else {
940d67f6 924 /* This allocation cannot fail */
c2f69cda 925 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
d5f32af3 926 }
74dfd666
RW
927 region->start_pfn = start_pfn;
928 region->end_pfn = end_pfn;
929 list_add_tail(&region->list, &nosave_regions);
930 Report:
cd38ca85
BH
931 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
932 (unsigned long long) start_pfn << PAGE_SHIFT,
933 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
934}
935
936/*
937 * Set bits in this map correspond to the page frames the contents of which
938 * should not be saved during the suspend.
939 */
940static struct memory_bitmap *forbidden_pages_map;
941
942/* Set bits in this map correspond to free page frames. */
943static struct memory_bitmap *free_pages_map;
944
945/*
946 * Each page frame allocated for creating the image is marked by setting the
947 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
948 */
949
950void swsusp_set_page_free(struct page *page)
951{
952 if (free_pages_map)
953 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
954}
955
956static int swsusp_page_is_free(struct page *page)
957{
958 return free_pages_map ?
959 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
960}
961
962void swsusp_unset_page_free(struct page *page)
963{
964 if (free_pages_map)
965 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
966}
967
968static void swsusp_set_page_forbidden(struct page *page)
969{
970 if (forbidden_pages_map)
971 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
972}
973
974int swsusp_page_is_forbidden(struct page *page)
975{
976 return forbidden_pages_map ?
977 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
978}
979
980static void swsusp_unset_page_forbidden(struct page *page)
981{
982 if (forbidden_pages_map)
983 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
984}
985
986/**
ef96f639
RW
987 * mark_nosave_pages - Mark pages that should not be saved.
988 * @bm: Memory bitmap.
989 *
990 * Set the bits in @bm that correspond to the page frames the contents of which
991 * should not be saved.
74dfd666 992 */
74dfd666
RW
993static void mark_nosave_pages(struct memory_bitmap *bm)
994{
995 struct nosave_region *region;
996
997 if (list_empty(&nosave_regions))
998 return;
999
1000 list_for_each_entry(region, &nosave_regions, list) {
1001 unsigned long pfn;
1002
69f1d475
BH
1003 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
1004 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1005 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1006 - 1);
74dfd666
RW
1007
1008 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
1009 if (pfn_valid(pfn)) {
1010 /*
1011 * It is safe to ignore the result of
1012 * mem_bm_set_bit_check() here, since we won't
1013 * touch the PFNs for which the error is
1014 * returned anyway.
1015 */
1016 mem_bm_set_bit_check(bm, pfn);
1017 }
74dfd666
RW
1018 }
1019}
1020
1021/**
ef96f639
RW
1022 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1023 *
1024 * Create bitmaps needed for marking page frames that should not be saved and
1025 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1026 * only modified if everything goes well, because we don't want the bits to be
1027 * touched before both bitmaps are set up.
74dfd666 1028 */
74dfd666
RW
1029int create_basic_memory_bitmaps(void)
1030{
1031 struct memory_bitmap *bm1, *bm2;
1032 int error = 0;
1033
aab17289
RW
1034 if (forbidden_pages_map && free_pages_map)
1035 return 0;
1036 else
1037 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 1038
0709db60 1039 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1040 if (!bm1)
1041 return -ENOMEM;
1042
0709db60 1043 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1044 if (error)
1045 goto Free_first_object;
1046
0709db60 1047 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1048 if (!bm2)
1049 goto Free_first_bitmap;
1050
0709db60 1051 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1052 if (error)
1053 goto Free_second_object;
1054
1055 forbidden_pages_map = bm1;
1056 free_pages_map = bm2;
1057 mark_nosave_pages(forbidden_pages_map);
1058
23976728 1059 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
1060
1061 return 0;
1062
1063 Free_second_object:
1064 kfree(bm2);
1065 Free_first_bitmap:
1066 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1067 Free_first_object:
1068 kfree(bm1);
1069 return -ENOMEM;
1070}
1071
1072/**
ef96f639
RW
1073 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1074 *
1075 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1076 * auxiliary pointers are necessary so that the bitmaps themselves are not
1077 * referred to while they are being freed.
74dfd666 1078 */
74dfd666
RW
1079void free_basic_memory_bitmaps(void)
1080{
1081 struct memory_bitmap *bm1, *bm2;
1082
6a0c7cd3
RW
1083 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1084 return;
74dfd666
RW
1085
1086 bm1 = forbidden_pages_map;
1087 bm2 = free_pages_map;
1088 forbidden_pages_map = NULL;
1089 free_pages_map = NULL;
1090 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1091 kfree(bm1);
1092 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1093 kfree(bm2);
1094
23976728 1095 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
1096}
1097
b788db79 1098/**
ef96f639
RW
1099 * snapshot_additional_pages - Estimate the number of extra pages needed.
1100 * @zone: Memory zone to carry out the computation for.
1101 *
1102 * Estimate the number of additional pages needed for setting up a hibernation
1103 * image data structures for @zone (usually, the returned value is greater than
1104 * the exact number).
b788db79 1105 */
b788db79
RW
1106unsigned int snapshot_additional_pages(struct zone *zone)
1107{
f469f02d 1108 unsigned int rtree, nodes;
b788db79 1109
f469f02d
JR
1110 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1111 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1112 LINKED_PAGE_DATA_SIZE);
1113 while (nodes > 1) {
1114 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1115 rtree += nodes;
1116 }
1117
9047eb62 1118 return 2 * rtree;
b788db79
RW
1119}
1120
8357376d
RW
1121#ifdef CONFIG_HIGHMEM
1122/**
ef96f639
RW
1123 * count_free_highmem_pages - Compute the total number of free highmem pages.
1124 *
1125 * The returned number is system-wide.
8357376d 1126 */
8357376d
RW
1127static unsigned int count_free_highmem_pages(void)
1128{
1129 struct zone *zone;
1130 unsigned int cnt = 0;
1131
ee99c71c
KM
1132 for_each_populated_zone(zone)
1133 if (is_highmem(zone))
d23ad423 1134 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1135
1136 return cnt;
1137}
1138
1139/**
ef96f639
RW
1140 * saveable_highmem_page - Check if a highmem page is saveable.
1141 *
1142 * Determine whether a highmem page should be included in a hibernation image.
8357376d 1143 *
ef96f639
RW
1144 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1145 * and it isn't part of a free chunk of pages.
8357376d 1146 */
846705de 1147static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1148{
1149 struct page *page;
1150
1151 if (!pfn_valid(pfn))
1152 return NULL;
1153
1154 page = pfn_to_page(pfn);
846705de
RW
1155 if (page_zone(page) != zone)
1156 return NULL;
8357376d
RW
1157
1158 BUG_ON(!PageHighMem(page));
1159
7be98234
RW
1160 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1161 PageReserved(page))
8357376d
RW
1162 return NULL;
1163
c6968e73
SG
1164 if (page_is_guard(page))
1165 return NULL;
1166
8357376d
RW
1167 return page;
1168}
1169
1170/**
ef96f639 1171 * count_highmem_pages - Compute the total number of saveable highmem pages.
8357376d 1172 */
fe419535 1173static unsigned int count_highmem_pages(void)
8357376d
RW
1174{
1175 struct zone *zone;
1176 unsigned int n = 0;
1177
98e73dc5 1178 for_each_populated_zone(zone) {
8357376d
RW
1179 unsigned long pfn, max_zone_pfn;
1180
1181 if (!is_highmem(zone))
1182 continue;
1183
1184 mark_free_pages(zone);
c33bc315 1185 max_zone_pfn = zone_end_pfn(zone);
8357376d 1186 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1187 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1188 n++;
1189 }
1190 return n;
1191}
1192#else
846705de
RW
1193static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1194{
1195 return NULL;
1196}
8357376d
RW
1197#endif /* CONFIG_HIGHMEM */
1198
25761b6e 1199/**
ef96f639
RW
1200 * saveable_page - Check if the given page is saveable.
1201 *
1202 * Determine whether a non-highmem page should be included in a hibernation
1203 * image.
25761b6e 1204 *
ef96f639
RW
1205 * We should save the page if it isn't Nosave, and is not in the range
1206 * of pages statically defined as 'unsaveable', and it isn't part of
1207 * a free chunk of pages.
25761b6e 1208 */
846705de 1209static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1210{
de491861 1211 struct page *page;
25761b6e
RW
1212
1213 if (!pfn_valid(pfn))
ae83c5ee 1214 return NULL;
25761b6e
RW
1215
1216 page = pfn_to_page(pfn);
846705de
RW
1217 if (page_zone(page) != zone)
1218 return NULL;
ae83c5ee 1219
8357376d
RW
1220 BUG_ON(PageHighMem(page));
1221
7be98234 1222 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1223 return NULL;
8357376d 1224
8a235efa
RW
1225 if (PageReserved(page)
1226 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1227 return NULL;
25761b6e 1228
c6968e73
SG
1229 if (page_is_guard(page))
1230 return NULL;
1231
ae83c5ee 1232 return page;
25761b6e
RW
1233}
1234
8357376d 1235/**
ef96f639 1236 * count_data_pages - Compute the total number of saveable non-highmem pages.
8357376d 1237 */
fe419535 1238static unsigned int count_data_pages(void)
25761b6e
RW
1239{
1240 struct zone *zone;
ae83c5ee 1241 unsigned long pfn, max_zone_pfn;
dc19d507 1242 unsigned int n = 0;
25761b6e 1243
98e73dc5 1244 for_each_populated_zone(zone) {
25761b6e
RW
1245 if (is_highmem(zone))
1246 continue;
8357376d 1247
25761b6e 1248 mark_free_pages(zone);
c33bc315 1249 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1250 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1251 if (saveable_page(zone, pfn))
8357376d 1252 n++;
25761b6e 1253 }
a0f49651 1254 return n;
25761b6e
RW
1255}
1256
ef96f639
RW
1257/*
1258 * This is needed, because copy_page and memcpy are not usable for copying
8357376d
RW
1259 * task structs.
1260 */
1261static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1262{
1263 int n;
1264
f623f0db
RW
1265 for (n = PAGE_SIZE / sizeof(long); n; n--)
1266 *dst++ = *src++;
1267}
1268
8a235efa 1269/**
ef96f639
RW
1270 * safe_copy_page - Copy a page in a safe way.
1271 *
1272 * Check if the page we are going to copy is marked as present in the kernel
1273 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1274 * and in that case kernel_page_present() always returns 'true').
8a235efa
RW
1275 */
1276static void safe_copy_page(void *dst, struct page *s_page)
1277{
1278 if (kernel_page_present(s_page)) {
1279 do_copy_page(dst, page_address(s_page));
1280 } else {
1281 kernel_map_pages(s_page, 1, 1);
1282 do_copy_page(dst, page_address(s_page));
1283 kernel_map_pages(s_page, 1, 0);
1284 }
1285}
1286
8357376d 1287#ifdef CONFIG_HIGHMEM
efd5a852 1288static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
8357376d
RW
1289{
1290 return is_highmem(zone) ?
846705de 1291 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1292}
1293
8a235efa 1294static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1295{
1296 struct page *s_page, *d_page;
1297 void *src, *dst;
1298
1299 s_page = pfn_to_page(src_pfn);
1300 d_page = pfn_to_page(dst_pfn);
1301 if (PageHighMem(s_page)) {
0de9a1e2
CW
1302 src = kmap_atomic(s_page);
1303 dst = kmap_atomic(d_page);
8357376d 1304 do_copy_page(dst, src);
0de9a1e2
CW
1305 kunmap_atomic(dst);
1306 kunmap_atomic(src);
8357376d 1307 } else {
8357376d 1308 if (PageHighMem(d_page)) {
ef96f639
RW
1309 /*
1310 * The page pointed to by src may contain some kernel
8357376d
RW
1311 * data modified by kmap_atomic()
1312 */
8a235efa 1313 safe_copy_page(buffer, s_page);
0de9a1e2 1314 dst = kmap_atomic(d_page);
3ecb01df 1315 copy_page(dst, buffer);
0de9a1e2 1316 kunmap_atomic(dst);
8357376d 1317 } else {
8a235efa 1318 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1319 }
1320 }
1321}
1322#else
846705de 1323#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1324
8a235efa 1325static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1326{
8a235efa
RW
1327 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1328 pfn_to_page(src_pfn));
8357376d
RW
1329}
1330#endif /* CONFIG_HIGHMEM */
1331
efd5a852
RW
1332static void copy_data_pages(struct memory_bitmap *copy_bm,
1333 struct memory_bitmap *orig_bm)
25761b6e
RW
1334{
1335 struct zone *zone;
b788db79 1336 unsigned long pfn;
25761b6e 1337
98e73dc5 1338 for_each_populated_zone(zone) {
b788db79
RW
1339 unsigned long max_zone_pfn;
1340
25761b6e 1341 mark_free_pages(zone);
c33bc315 1342 max_zone_pfn = zone_end_pfn(zone);
b788db79 1343 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1344 if (page_is_saveable(zone, pfn))
b788db79 1345 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1346 }
b788db79
RW
1347 memory_bm_position_reset(orig_bm);
1348 memory_bm_position_reset(copy_bm);
df7c4872 1349 for(;;) {
b788db79 1350 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1351 if (unlikely(pfn == BM_END_OF_MAP))
1352 break;
1353 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1354 }
25761b6e
RW
1355}
1356
8357376d
RW
1357/* Total number of image pages */
1358static unsigned int nr_copy_pages;
1359/* Number of pages needed for saving the original pfns of the image pages */
1360static unsigned int nr_meta_pages;
64a473cb
RW
1361/*
1362 * Numbers of normal and highmem page frames allocated for hibernation image
1363 * before suspending devices.
1364 */
1365unsigned int alloc_normal, alloc_highmem;
1366/*
1367 * Memory bitmap used for marking saveable pages (during hibernation) or
1368 * hibernation image pages (during restore)
1369 */
1370static struct memory_bitmap orig_bm;
1371/*
1372 * Memory bitmap used during hibernation for marking allocated page frames that
1373 * will contain copies of saveable pages. During restore it is initially used
1374 * for marking hibernation image pages, but then the set bits from it are
1375 * duplicated in @orig_bm and it is released. On highmem systems it is next
1376 * used for marking "safe" highmem pages, but it has to be reinitialized for
1377 * this purpose.
1378 */
1379static struct memory_bitmap copy_bm;
8357376d 1380
25761b6e 1381/**
ef96f639 1382 * swsusp_free - Free pages allocated for hibernation image.
cd560bb2 1383 *
ef96f639
RW
1384 * Image pages are alocated before snapshot creation, so they need to be
1385 * released after resume.
25761b6e 1386 */
25761b6e
RW
1387void swsusp_free(void)
1388{
fdd64ed5 1389 unsigned long fb_pfn, fr_pfn;
6efde38f 1390
fdd64ed5
JR
1391 if (!forbidden_pages_map || !free_pages_map)
1392 goto out;
1393
1394 memory_bm_position_reset(forbidden_pages_map);
1395 memory_bm_position_reset(free_pages_map);
1396
1397loop:
1398 fr_pfn = memory_bm_next_pfn(free_pages_map);
1399 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1400
1401 /*
1402 * Find the next bit set in both bitmaps. This is guaranteed to
1403 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1404 */
1405 do {
1406 if (fb_pfn < fr_pfn)
1407 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1408 if (fr_pfn < fb_pfn)
1409 fr_pfn = memory_bm_next_pfn(free_pages_map);
1410 } while (fb_pfn != fr_pfn);
1411
1412 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1413 struct page *page = pfn_to_page(fr_pfn);
1414
1415 memory_bm_clear_current(forbidden_pages_map);
1416 memory_bm_clear_current(free_pages_map);
1417 __free_page(page);
1418 goto loop;
25761b6e 1419 }
fdd64ed5
JR
1420
1421out:
f577eb30
RW
1422 nr_copy_pages = 0;
1423 nr_meta_pages = 0;
75534b50 1424 restore_pblist = NULL;
6e1819d6 1425 buffer = NULL;
64a473cb
RW
1426 alloc_normal = 0;
1427 alloc_highmem = 0;
25761b6e
RW
1428}
1429
4bb33435
RW
1430/* Helper functions used for the shrinking of memory. */
1431
1432#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1433
fe419535 1434/**
ef96f639 1435 * preallocate_image_pages - Allocate a number of pages for hibernation image.
4bb33435
RW
1436 * @nr_pages: Number of page frames to allocate.
1437 * @mask: GFP flags to use for the allocation.
fe419535 1438 *
4bb33435
RW
1439 * Return value: Number of page frames actually allocated
1440 */
1441static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1442{
1443 unsigned long nr_alloc = 0;
1444
1445 while (nr_pages > 0) {
64a473cb
RW
1446 struct page *page;
1447
1448 page = alloc_image_page(mask);
1449 if (!page)
4bb33435 1450 break;
64a473cb
RW
1451 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1452 if (PageHighMem(page))
1453 alloc_highmem++;
1454 else
1455 alloc_normal++;
4bb33435
RW
1456 nr_pages--;
1457 nr_alloc++;
1458 }
1459
1460 return nr_alloc;
1461}
1462
6715045d
RW
1463static unsigned long preallocate_image_memory(unsigned long nr_pages,
1464 unsigned long avail_normal)
4bb33435 1465{
6715045d
RW
1466 unsigned long alloc;
1467
1468 if (avail_normal <= alloc_normal)
1469 return 0;
1470
1471 alloc = avail_normal - alloc_normal;
1472 if (nr_pages < alloc)
1473 alloc = nr_pages;
1474
1475 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1476}
1477
1478#ifdef CONFIG_HIGHMEM
1479static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1480{
1481 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1482}
1483
1484/**
ef96f639 1485 * __fraction - Compute (an approximation of) x * (multiplier / base).
fe419535 1486 */
4bb33435
RW
1487static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1488{
1489 x *= multiplier;
1490 do_div(x, base);
1491 return (unsigned long)x;
1492}
fe419535 1493
4bb33435 1494static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1495 unsigned long highmem,
1496 unsigned long total)
fe419535 1497{
4bb33435
RW
1498 unsigned long alloc = __fraction(nr_pages, highmem, total);
1499
1500 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1501}
4bb33435
RW
1502#else /* CONFIG_HIGHMEM */
1503static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1504{
1505 return 0;
1506}
1507
1508static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1509 unsigned long highmem,
1510 unsigned long total)
4bb33435
RW
1511{
1512 return 0;
1513}
1514#endif /* CONFIG_HIGHMEM */
fe419535 1515
4bb33435 1516/**
ef96f639 1517 * free_unnecessary_pages - Release preallocated pages not needed for the image.
64a473cb 1518 */
a64fc82c 1519static unsigned long free_unnecessary_pages(void)
64a473cb 1520{
a64fc82c 1521 unsigned long save, to_free_normal, to_free_highmem, free;
64a473cb 1522
6715045d
RW
1523 save = count_data_pages();
1524 if (alloc_normal >= save) {
1525 to_free_normal = alloc_normal - save;
1526 save = 0;
1527 } else {
1528 to_free_normal = 0;
1529 save -= alloc_normal;
1530 }
1531 save += count_highmem_pages();
1532 if (alloc_highmem >= save) {
1533 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1534 } else {
1535 to_free_highmem = 0;
4d4cf23c
RW
1536 save -= alloc_highmem;
1537 if (to_free_normal > save)
1538 to_free_normal -= save;
1539 else
1540 to_free_normal = 0;
64a473cb 1541 }
a64fc82c 1542 free = to_free_normal + to_free_highmem;
64a473cb
RW
1543
1544 memory_bm_position_reset(&copy_bm);
1545
a9c9b442 1546 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1547 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1548 struct page *page = pfn_to_page(pfn);
1549
1550 if (PageHighMem(page)) {
1551 if (!to_free_highmem)
1552 continue;
1553 to_free_highmem--;
1554 alloc_highmem--;
1555 } else {
1556 if (!to_free_normal)
1557 continue;
1558 to_free_normal--;
1559 alloc_normal--;
1560 }
1561 memory_bm_clear_bit(&copy_bm, pfn);
1562 swsusp_unset_page_forbidden(page);
1563 swsusp_unset_page_free(page);
1564 __free_page(page);
1565 }
a64fc82c
WK
1566
1567 return free;
64a473cb
RW
1568}
1569
ef4aede3 1570/**
ef96f639 1571 * minimum_image_size - Estimate the minimum acceptable size of an image.
ef4aede3
RW
1572 * @saveable: Number of saveable pages in the system.
1573 *
1574 * We want to avoid attempting to free too much memory too hard, so estimate the
1575 * minimum acceptable size of a hibernation image to use as the lower limit for
1576 * preallocating memory.
1577 *
1578 * We assume that the minimum image size should be proportional to
1579 *
1580 * [number of saveable pages] - [number of pages that can be freed in theory]
1581 *
1582 * where the second term is the sum of (1) reclaimable slab pages, (2) active
4d434820 1583 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
ef4aede3
RW
1584 * minus mapped file pages.
1585 */
1586static unsigned long minimum_image_size(unsigned long saveable)
1587{
1588 unsigned long size;
1589
1590 size = global_page_state(NR_SLAB_RECLAIMABLE)
1591 + global_page_state(NR_ACTIVE_ANON)
1592 + global_page_state(NR_INACTIVE_ANON)
1593 + global_page_state(NR_ACTIVE_FILE)
1594 + global_page_state(NR_INACTIVE_FILE)
1595 - global_page_state(NR_FILE_MAPPED);
1596
1597 return saveable <= size ? 0 : saveable - size;
1598}
1599
64a473cb 1600/**
ef96f639 1601 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
4bb33435
RW
1602 *
1603 * To create a hibernation image it is necessary to make a copy of every page
1604 * frame in use. We also need a number of page frames to be free during
1605 * hibernation for allocations made while saving the image and for device
1606 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1607 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1608 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1609 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1610 * total number of available page frames and allocate at least
4bb33435 1611 *
ddeb6487
RW
1612 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1613 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1614 *
1615 * of them, which corresponds to the maximum size of a hibernation image.
1616 *
1617 * If image_size is set below the number following from the above formula,
1618 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1619 * pages in the system is below the requested image size or the minimum
1620 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1621 */
64a473cb 1622int hibernate_preallocate_memory(void)
fe419535 1623{
fe419535 1624 struct zone *zone;
4bb33435 1625 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1626 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
db597605 1627 ktime_t start, stop;
64a473cb 1628 int error;
fe419535 1629
64a473cb 1630 printk(KERN_INFO "PM: Preallocating image memory... ");
db597605 1631 start = ktime_get();
fe419535 1632
64a473cb
RW
1633 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1634 if (error)
1635 goto err_out;
1636
1637 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1638 if (error)
1639 goto err_out;
1640
1641 alloc_normal = 0;
1642 alloc_highmem = 0;
1643
4bb33435 1644 /* Count the number of saveable data pages. */
64a473cb 1645 save_highmem = count_highmem_pages();
4bb33435 1646 saveable = count_data_pages();
fe419535 1647
4bb33435
RW
1648 /*
1649 * Compute the total number of page frames we can use (count) and the
1650 * number of pages needed for image metadata (size).
1651 */
1652 count = saveable;
64a473cb
RW
1653 saveable += save_highmem;
1654 highmem = save_highmem;
4bb33435
RW
1655 size = 0;
1656 for_each_populated_zone(zone) {
1657 size += snapshot_additional_pages(zone);
1658 if (is_highmem(zone))
1659 highmem += zone_page_state(zone, NR_FREE_PAGES);
1660 else
1661 count += zone_page_state(zone, NR_FREE_PAGES);
1662 }
6715045d 1663 avail_normal = count;
4bb33435
RW
1664 count += highmem;
1665 count -= totalreserve_pages;
1666
85055dd8
MS
1667 /* Add number of pages required for page keys (s390 only). */
1668 size += page_key_additional_pages(saveable);
1669
4bb33435 1670 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1671 max_size = (count - (size + PAGES_FOR_IO)) / 2
1672 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1673 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1674 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1675 if (size > max_size)
1676 size = max_size;
1677 /*
266f1a25
RW
1678 * If the desired number of image pages is at least as large as the
1679 * current number of saveable pages in memory, allocate page frames for
1680 * the image and we're done.
4bb33435 1681 */
64a473cb
RW
1682 if (size >= saveable) {
1683 pages = preallocate_image_highmem(save_highmem);
6715045d 1684 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1685 goto out;
64a473cb 1686 }
4bb33435 1687
ef4aede3
RW
1688 /* Estimate the minimum size of the image. */
1689 pages = minimum_image_size(saveable);
6715045d
RW
1690 /*
1691 * To avoid excessive pressure on the normal zone, leave room in it to
1692 * accommodate an image of the minimum size (unless it's already too
1693 * small, in which case don't preallocate pages from it at all).
1694 */
1695 if (avail_normal > pages)
1696 avail_normal -= pages;
1697 else
1698 avail_normal = 0;
ef4aede3
RW
1699 if (size < pages)
1700 size = min_t(unsigned long, pages, max_size);
1701
4bb33435
RW
1702 /*
1703 * Let the memory management subsystem know that we're going to need a
1704 * large number of page frames to allocate and make it free some memory.
1705 * NOTE: If this is not done, performance will be hurt badly in some
1706 * test cases.
1707 */
1708 shrink_all_memory(saveable - size);
1709
1710 /*
1711 * The number of saveable pages in memory was too high, so apply some
1712 * pressure to decrease it. First, make room for the largest possible
1713 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1714 * of the image as much as indicated by 'size' using allocations from
1715 * highmem and non-highmem zones separately.
4bb33435
RW
1716 */
1717 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1718 alloc = count - max_size;
1719 if (alloc > pages_highmem)
1720 alloc -= pages_highmem;
1721 else
1722 alloc = 0;
6715045d
RW
1723 pages = preallocate_image_memory(alloc, avail_normal);
1724 if (pages < alloc) {
1725 /* We have exhausted non-highmem pages, try highmem. */
1726 alloc -= pages;
1727 pages += pages_highmem;
1728 pages_highmem = preallocate_image_highmem(alloc);
1729 if (pages_highmem < alloc)
1730 goto err_out;
1731 pages += pages_highmem;
1732 /*
1733 * size is the desired number of saveable pages to leave in
1734 * memory, so try to preallocate (all memory - size) pages.
1735 */
1736 alloc = (count - pages) - size;
1737 pages += preallocate_image_highmem(alloc);
1738 } else {
1739 /*
1740 * There are approximately max_size saveable pages at this point
1741 * and we want to reduce this number down to size.
1742 */
1743 alloc = max_size - size;
1744 size = preallocate_highmem_fraction(alloc, highmem, count);
1745 pages_highmem += size;
1746 alloc -= size;
1747 size = preallocate_image_memory(alloc, avail_normal);
1748 pages_highmem += preallocate_image_highmem(alloc - size);
1749 pages += pages_highmem + size;
1750 }
4bb33435 1751
64a473cb
RW
1752 /*
1753 * We only need as many page frames for the image as there are saveable
1754 * pages in memory, but we have allocated more. Release the excessive
1755 * ones now.
1756 */
a64fc82c 1757 pages -= free_unnecessary_pages();
4bb33435
RW
1758
1759 out:
db597605 1760 stop = ktime_get();
64a473cb 1761 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
db597605 1762 swsusp_show_speed(start, stop, pages, "Allocated");
fe419535
RW
1763
1764 return 0;
64a473cb
RW
1765
1766 err_out:
1767 printk(KERN_CONT "\n");
1768 swsusp_free();
1769 return -ENOMEM;
fe419535
RW
1770}
1771
8357376d
RW
1772#ifdef CONFIG_HIGHMEM
1773/**
ef96f639
RW
1774 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1775 *
1776 * Compute the number of non-highmem pages that will be necessary for creating
1777 * copies of highmem pages.
1778 */
8357376d
RW
1779static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1780{
64a473cb 1781 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1782
1783 if (free_highmem >= nr_highmem)
1784 nr_highmem = 0;
1785 else
1786 nr_highmem -= free_highmem;
1787
1788 return nr_highmem;
1789}
1790#else
efd5a852 1791static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
8357376d 1792#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1793
1794/**
ef96f639 1795 * enough_free_mem - Check if there is enough free memory for the image.
25761b6e 1796 */
8357376d 1797static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1798{
e5e2fa78 1799 struct zone *zone;
64a473cb 1800 unsigned int free = alloc_normal;
e5e2fa78 1801
98e73dc5 1802 for_each_populated_zone(zone)
8357376d 1803 if (!is_highmem(zone))
d23ad423 1804 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1805
8357376d 1806 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1807 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1808 nr_pages, PAGES_FOR_IO, free);
940864dd 1809
64a473cb 1810 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1811}
1812
8357376d
RW
1813#ifdef CONFIG_HIGHMEM
1814/**
ef96f639
RW
1815 * get_highmem_buffer - Allocate a buffer for highmem pages.
1816 *
1817 * If there are some highmem pages in the hibernation image, we may need a
1818 * buffer to copy them and/or load their data.
8357376d 1819 */
8357376d
RW
1820static inline int get_highmem_buffer(int safe_needed)
1821{
1822 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1823 return buffer ? 0 : -ENOMEM;
1824}
1825
1826/**
ef96f639
RW
1827 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1828 *
1829 * Try to allocate as many pages as needed, but if the number of free highmem
1830 * pages is less than that, allocate them all.
8357376d 1831 */
efd5a852
RW
1832static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1833 unsigned int nr_highmem)
8357376d
RW
1834{
1835 unsigned int to_alloc = count_free_highmem_pages();
1836
1837 if (to_alloc > nr_highmem)
1838 to_alloc = nr_highmem;
1839
1840 nr_highmem -= to_alloc;
1841 while (to_alloc-- > 0) {
1842 struct page *page;
1843
d0164adc 1844 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
8357376d
RW
1845 memory_bm_set_bit(bm, page_to_pfn(page));
1846 }
1847 return nr_highmem;
1848}
1849#else
1850static inline int get_highmem_buffer(int safe_needed) { return 0; }
1851
efd5a852
RW
1852static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1853 unsigned int n) { return 0; }
8357376d
RW
1854#endif /* CONFIG_HIGHMEM */
1855
1856/**
ef96f639 1857 * swsusp_alloc - Allocate memory for hibernation image.
8357376d 1858 *
ef96f639
RW
1859 * We first try to allocate as many highmem pages as there are
1860 * saveable highmem pages in the system. If that fails, we allocate
1861 * non-highmem pages for the copies of the remaining highmem ones.
8357376d 1862 *
ef96f639
RW
1863 * In this approach it is likely that the copies of highmem pages will
1864 * also be located in the high memory, because of the way in which
1865 * copy_data_pages() works.
8357376d 1866 */
efd5a852
RW
1867static int swsusp_alloc(struct memory_bitmap *orig_bm,
1868 struct memory_bitmap *copy_bm,
1869 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1870{
8357376d 1871 if (nr_highmem > 0) {
2e725a06 1872 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1873 goto err_out;
1874 if (nr_highmem > alloc_highmem) {
1875 nr_highmem -= alloc_highmem;
1876 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1877 }
8357376d 1878 }
64a473cb
RW
1879 if (nr_pages > alloc_normal) {
1880 nr_pages -= alloc_normal;
1881 while (nr_pages-- > 0) {
1882 struct page *page;
1883
1884 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1885 if (!page)
1886 goto err_out;
1887 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1888 }
25761b6e 1889 }
64a473cb 1890
b788db79 1891 return 0;
25761b6e 1892
64a473cb 1893 err_out:
b788db79 1894 swsusp_free();
2e725a06 1895 return -ENOMEM;
25761b6e
RW
1896}
1897
722a9f92 1898asmlinkage __visible int swsusp_save(void)
25761b6e 1899{
8357376d 1900 unsigned int nr_pages, nr_highmem;
25761b6e 1901
07c3bb57 1902 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1903
9f8f2172 1904 drain_local_pages(NULL);
a0f49651 1905 nr_pages = count_data_pages();
8357376d 1906 nr_highmem = count_highmem_pages();
23976728 1907 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1908
8357376d 1909 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1910 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1911 return -ENOMEM;
1912 }
1913
8357376d 1914 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1915 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1916 return -ENOMEM;
8357376d 1917 }
25761b6e 1918
ef96f639
RW
1919 /*
1920 * During allocating of suspend pagedir, new cold pages may appear.
25761b6e
RW
1921 * Kill them.
1922 */
9f8f2172 1923 drain_local_pages(NULL);
b788db79 1924 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1925
1926 /*
1927 * End of critical section. From now on, we can write to memory,
1928 * but we should not touch disk. This specially means we must _not_
1929 * touch swap space! Except we must write out our image of course.
1930 */
1931
8357376d 1932 nr_pages += nr_highmem;
a0f49651 1933 nr_copy_pages = nr_pages;
8357376d 1934 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1935
23976728
RW
1936 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1937 nr_pages);
8357376d 1938
25761b6e
RW
1939 return 0;
1940}
f577eb30 1941
d307c4a8
RW
1942#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1943static int init_header_complete(struct swsusp_info *info)
f577eb30 1944{
d307c4a8 1945 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1946 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1947 return 0;
1948}
1949
1950static char *check_image_kernel(struct swsusp_info *info)
1951{
1952 if (info->version_code != LINUX_VERSION_CODE)
1953 return "kernel version";
1954 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1955 return "system type";
1956 if (strcmp(info->uts.release,init_utsname()->release))
1957 return "kernel release";
1958 if (strcmp(info->uts.version,init_utsname()->version))
1959 return "version";
1960 if (strcmp(info->uts.machine,init_utsname()->machine))
1961 return "machine";
1962 return NULL;
1963}
1964#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1965
af508b34
RW
1966unsigned long snapshot_get_image_size(void)
1967{
1968 return nr_copy_pages + nr_meta_pages + 1;
1969}
1970
d307c4a8
RW
1971static int init_header(struct swsusp_info *info)
1972{
1973 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 1974 info->num_physpages = get_num_physpages();
f577eb30 1975 info->image_pages = nr_copy_pages;
af508b34 1976 info->pages = snapshot_get_image_size();
6e1819d6
RW
1977 info->size = info->pages;
1978 info->size <<= PAGE_SHIFT;
d307c4a8 1979 return init_header_complete(info);
f577eb30
RW
1980}
1981
1982/**
ef96f639
RW
1983 * pack_pfns - Prepare PFNs for saving.
1984 * @bm: Memory bitmap.
1985 * @buf: Memory buffer to store the PFNs in.
1986 *
1987 * PFNs corresponding to set bits in @bm are stored in the area of memory
1988 * pointed to by @buf (1 page at a time).
f577eb30 1989 */
efd5a852 1990static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1991{
1992 int j;
1993
b788db79 1994 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1995 buf[j] = memory_bm_next_pfn(bm);
1996 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1997 break;
85055dd8
MS
1998 /* Save page key for data page (s390 only). */
1999 page_key_read(buf + j);
f577eb30 2000 }
f577eb30
RW
2001}
2002
2003/**
ef96f639
RW
2004 * snapshot_read_next - Get the address to read the next image page from.
2005 * @handle: Snapshot handle to be used for the reading.
f577eb30 2006 *
ef96f639
RW
2007 * On the first call, @handle should point to a zeroed snapshot_handle
2008 * structure. The structure gets populated then and a pointer to it should be
2009 * passed to this function every next time.
f577eb30 2010 *
ef96f639
RW
2011 * On success, the function returns a positive number. Then, the caller
2012 * is allowed to read up to the returned number of bytes from the memory
2013 * location computed by the data_of() macro.
f577eb30 2014 *
ef96f639
RW
2015 * The function returns 0 to indicate the end of the data stream condition,
2016 * and negative numbers are returned on errors. If that happens, the structure
2017 * pointed to by @handle is not updated and should not be used any more.
f577eb30 2018 */
d3c1b24c 2019int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 2020{
fb13a28b 2021 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2022 return 0;
b788db79 2023
f577eb30
RW
2024 if (!buffer) {
2025 /* This makes the buffer be freed by swsusp_free() */
8357376d 2026 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
2027 if (!buffer)
2028 return -ENOMEM;
2029 }
d3c1b24c 2030 if (!handle->cur) {
d307c4a8
RW
2031 int error;
2032
2033 error = init_header((struct swsusp_info *)buffer);
2034 if (error)
2035 return error;
f577eb30 2036 handle->buffer = buffer;
b788db79
RW
2037 memory_bm_position_reset(&orig_bm);
2038 memory_bm_position_reset(&copy_bm);
d3c1b24c 2039 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 2040 clear_page(buffer);
d3c1b24c
JS
2041 pack_pfns(buffer, &orig_bm);
2042 } else {
2043 struct page *page;
b788db79 2044
d3c1b24c
JS
2045 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2046 if (PageHighMem(page)) {
ef96f639
RW
2047 /*
2048 * Highmem pages are copied to the buffer,
d3c1b24c
JS
2049 * because we can't return with a kmapped
2050 * highmem page (we may not be called again).
2051 */
2052 void *kaddr;
8357376d 2053
0de9a1e2 2054 kaddr = kmap_atomic(page);
3ecb01df 2055 copy_page(buffer, kaddr);
0de9a1e2 2056 kunmap_atomic(kaddr);
d3c1b24c
JS
2057 handle->buffer = buffer;
2058 } else {
2059 handle->buffer = page_address(page);
f577eb30 2060 }
f577eb30 2061 }
d3c1b24c
JS
2062 handle->cur++;
2063 return PAGE_SIZE;
f577eb30
RW
2064}
2065
6dbecfd3
RW
2066static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2067 struct memory_bitmap *src)
2068{
2069 unsigned long pfn;
2070
2071 memory_bm_position_reset(src);
2072 pfn = memory_bm_next_pfn(src);
2073 while (pfn != BM_END_OF_MAP) {
2074 memory_bm_set_bit(dst, pfn);
2075 pfn = memory_bm_next_pfn(src);
2076 }
2077}
2078
f577eb30 2079/**
ef96f639
RW
2080 * mark_unsafe_pages - Mark pages that were used before hibernation.
2081 *
2082 * Mark the pages that cannot be used for storing the image during restoration,
2083 * because they conflict with the pages that had been used before hibernation.
f577eb30 2084 */
6dbecfd3 2085static void mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30 2086{
6dbecfd3 2087 unsigned long pfn;
f577eb30 2088
6dbecfd3
RW
2089 /* Clear the "free"/"unsafe" bit for all PFNs */
2090 memory_bm_position_reset(free_pages_map);
2091 pfn = memory_bm_next_pfn(free_pages_map);
2092 while (pfn != BM_END_OF_MAP) {
2093 memory_bm_clear_current(free_pages_map);
2094 pfn = memory_bm_next_pfn(free_pages_map);
f577eb30
RW
2095 }
2096
6dbecfd3
RW
2097 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2098 duplicate_memory_bitmap(free_pages_map, bm);
f577eb30 2099
940864dd 2100 allocated_unsafe_pages = 0;
f577eb30
RW
2101}
2102
d307c4a8 2103static int check_header(struct swsusp_info *info)
f577eb30 2104{
d307c4a8 2105 char *reason;
f577eb30 2106
d307c4a8 2107 reason = check_image_kernel(info);
0ed5fd13 2108 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2109 reason = "memory size";
f577eb30 2110 if (reason) {
23976728 2111 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
2112 return -EPERM;
2113 }
2114 return 0;
2115}
2116
2117/**
ef96f639 2118 * load header - Check the image header and copy the data from it.
f577eb30 2119 */
efd5a852 2120static int load_header(struct swsusp_info *info)
f577eb30
RW
2121{
2122 int error;
f577eb30 2123
940864dd 2124 restore_pblist = NULL;
f577eb30
RW
2125 error = check_header(info);
2126 if (!error) {
f577eb30
RW
2127 nr_copy_pages = info->image_pages;
2128 nr_meta_pages = info->pages - info->image_pages - 1;
2129 }
2130 return error;
2131}
2132
2133/**
ef96f639
RW
2134 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2135 * @bm: Memory bitmap.
2136 * @buf: Area of memory containing the PFNs.
2137 *
2138 * For each element of the array pointed to by @buf (1 page at a time), set the
2139 * corresponding bit in @bm.
f577eb30 2140 */
69643279 2141static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2142{
2143 int j;
2144
940864dd
RW
2145 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2146 if (unlikely(buf[j] == BM_END_OF_MAP))
2147 break;
2148
85055dd8
MS
2149 /* Extract and buffer page key for data page (s390 only). */
2150 page_key_memorize(buf + j);
2151
6dbecfd3 2152 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
69643279
RW
2153 memory_bm_set_bit(bm, buf[j]);
2154 else
2155 return -EFAULT;
f577eb30 2156 }
69643279
RW
2157
2158 return 0;
f577eb30
RW
2159}
2160
8357376d 2161#ifdef CONFIG_HIGHMEM
ef96f639
RW
2162/*
2163 * struct highmem_pbe is used for creating the list of highmem pages that
8357376d
RW
2164 * should be restored atomically during the resume from disk, because the page
2165 * frames they have occupied before the suspend are in use.
2166 */
2167struct highmem_pbe {
2168 struct page *copy_page; /* data is here now */
2169 struct page *orig_page; /* data was here before the suspend */
2170 struct highmem_pbe *next;
2171};
2172
ef96f639
RW
2173/*
2174 * List of highmem PBEs needed for restoring the highmem pages that were
8357376d
RW
2175 * allocated before the suspend and included in the suspend image, but have
2176 * also been allocated by the "resume" kernel, so their contents cannot be
2177 * written directly to their "original" page frames.
2178 */
2179static struct highmem_pbe *highmem_pblist;
2180
2181/**
ef96f639
RW
2182 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2183 * @bm: Memory bitmap.
2184 *
2185 * The bits in @bm that correspond to image pages are assumed to be set.
8357376d 2186 */
8357376d
RW
2187static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2188{
2189 unsigned long pfn;
2190 unsigned int cnt = 0;
2191
2192 memory_bm_position_reset(bm);
2193 pfn = memory_bm_next_pfn(bm);
2194 while (pfn != BM_END_OF_MAP) {
2195 if (PageHighMem(pfn_to_page(pfn)))
2196 cnt++;
2197
2198 pfn = memory_bm_next_pfn(bm);
2199 }
2200 return cnt;
2201}
2202
8357376d
RW
2203static unsigned int safe_highmem_pages;
2204
2205static struct memory_bitmap *safe_highmem_bm;
2206
ef96f639
RW
2207/**
2208 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2209 * @bm: Pointer to an uninitialized memory bitmap structure.
2210 * @nr_highmem_p: Pointer to the number of highmem image pages.
2211 *
2212 * Try to allocate as many highmem pages as there are highmem image pages
2213 * (@nr_highmem_p points to the variable containing the number of highmem image
2214 * pages). The pages that are "safe" (ie. will not be overwritten when the
2215 * hibernation image is restored entirely) have the corresponding bits set in
2216 * @bm (it must be unitialized).
2217 *
2218 * NOTE: This function should not be called if there are no highmem image pages.
2219 */
efd5a852
RW
2220static int prepare_highmem_image(struct memory_bitmap *bm,
2221 unsigned int *nr_highmem_p)
8357376d
RW
2222{
2223 unsigned int to_alloc;
2224
2225 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2226 return -ENOMEM;
2227
2228 if (get_highmem_buffer(PG_SAFE))
2229 return -ENOMEM;
2230
2231 to_alloc = count_free_highmem_pages();
2232 if (to_alloc > *nr_highmem_p)
2233 to_alloc = *nr_highmem_p;
2234 else
2235 *nr_highmem_p = to_alloc;
2236
2237 safe_highmem_pages = 0;
2238 while (to_alloc-- > 0) {
2239 struct page *page;
2240
2241 page = alloc_page(__GFP_HIGHMEM);
7be98234 2242 if (!swsusp_page_is_free(page)) {
8357376d
RW
2243 /* The page is "safe", set its bit the bitmap */
2244 memory_bm_set_bit(bm, page_to_pfn(page));
2245 safe_highmem_pages++;
2246 }
2247 /* Mark the page as allocated */
7be98234
RW
2248 swsusp_set_page_forbidden(page);
2249 swsusp_set_page_free(page);
8357376d
RW
2250 }
2251 memory_bm_position_reset(bm);
2252 safe_highmem_bm = bm;
2253 return 0;
2254}
2255
ef96f639
RW
2256static struct page *last_highmem_page;
2257
8357376d 2258/**
ef96f639
RW
2259 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2260 *
2261 * For a given highmem image page get a buffer that suspend_write_next() should
2262 * return to its caller to write to.
8357376d 2263 *
ef96f639
RW
2264 * If the page is to be saved to its "original" page frame or a copy of
2265 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2266 * the copy of the page is to be made in normal memory, so the address of
2267 * the copy is returned.
8357376d 2268 *
ef96f639
RW
2269 * If @buffer is returned, the caller of suspend_write_next() will write
2270 * the page's contents to @buffer, so they will have to be copied to the
2271 * right location on the next call to suspend_write_next() and it is done
2272 * with the help of copy_last_highmem_page(). For this purpose, if
2273 * @buffer is returned, @last_highmem_page is set to the page to which
2274 * the data will have to be copied from @buffer.
8357376d 2275 */
efd5a852
RW
2276static void *get_highmem_page_buffer(struct page *page,
2277 struct chain_allocator *ca)
8357376d
RW
2278{
2279 struct highmem_pbe *pbe;
2280 void *kaddr;
2281
7be98234 2282 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
ef96f639
RW
2283 /*
2284 * We have allocated the "original" page frame and we can
8357376d
RW
2285 * use it directly to store the loaded page.
2286 */
2287 last_highmem_page = page;
2288 return buffer;
2289 }
ef96f639
RW
2290 /*
2291 * The "original" page frame has not been allocated and we have to
8357376d
RW
2292 * use a "safe" page frame to store the loaded page.
2293 */
2294 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2295 if (!pbe) {
2296 swsusp_free();
69643279 2297 return ERR_PTR(-ENOMEM);
8357376d
RW
2298 }
2299 pbe->orig_page = page;
2300 if (safe_highmem_pages > 0) {
2301 struct page *tmp;
2302
2303 /* Copy of the page will be stored in high memory */
2304 kaddr = buffer;
2305 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2306 safe_highmem_pages--;
2307 last_highmem_page = tmp;
2308 pbe->copy_page = tmp;
2309 } else {
2310 /* Copy of the page will be stored in normal memory */
2311 kaddr = safe_pages_list;
2312 safe_pages_list = safe_pages_list->next;
2313 pbe->copy_page = virt_to_page(kaddr);
2314 }
2315 pbe->next = highmem_pblist;
2316 highmem_pblist = pbe;
2317 return kaddr;
2318}
2319
2320/**
ef96f639
RW
2321 * copy_last_highmem_page - Copy most the most recent highmem image page.
2322 *
2323 * Copy the contents of a highmem image from @buffer, where the caller of
2324 * snapshot_write_next() has stored them, to the right location represented by
2325 * @last_highmem_page .
8357376d 2326 */
8357376d
RW
2327static void copy_last_highmem_page(void)
2328{
2329 if (last_highmem_page) {
2330 void *dst;
2331
0de9a1e2 2332 dst = kmap_atomic(last_highmem_page);
3ecb01df 2333 copy_page(dst, buffer);
0de9a1e2 2334 kunmap_atomic(dst);
8357376d
RW
2335 last_highmem_page = NULL;
2336 }
2337}
2338
2339static inline int last_highmem_page_copied(void)
2340{
2341 return !last_highmem_page;
2342}
2343
2344static inline void free_highmem_data(void)
2345{
2346 if (safe_highmem_bm)
2347 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2348
2349 if (buffer)
2350 free_image_page(buffer, PG_UNSAFE_CLEAR);
2351}
2352#else
efd5a852 2353static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
8357376d 2354
efd5a852
RW
2355static inline int prepare_highmem_image(struct memory_bitmap *bm,
2356 unsigned int *nr_highmem_p) { return 0; }
8357376d 2357
efd5a852
RW
2358static inline void *get_highmem_page_buffer(struct page *page,
2359 struct chain_allocator *ca)
8357376d 2360{
69643279 2361 return ERR_PTR(-EINVAL);
8357376d
RW
2362}
2363
2364static inline void copy_last_highmem_page(void) {}
2365static inline int last_highmem_page_copied(void) { return 1; }
2366static inline void free_highmem_data(void) {}
2367#endif /* CONFIG_HIGHMEM */
2368
ef96f639
RW
2369#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2370
f577eb30 2371/**
ef96f639
RW
2372 * prepare_image - Make room for loading hibernation image.
2373 * @new_bm: Unitialized memory bitmap structure.
2374 * @bm: Memory bitmap with unsafe pages marked.
2375 *
2376 * Use @bm to mark the pages that will be overwritten in the process of
2377 * restoring the system memory state from the suspend image ("unsafe" pages)
2378 * and allocate memory for the image.
968808b8 2379 *
ef96f639
RW
2380 * The idea is to allocate a new memory bitmap first and then allocate
2381 * as many pages as needed for image data, but without specifying what those
2382 * pages will be used for just yet. Instead, we mark them all as allocated and
2383 * create a lists of "safe" pages to be used later. On systems with high
2384 * memory a list of "safe" highmem pages is created too.
f577eb30 2385 */
efd5a852 2386static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2387{
8357376d 2388 unsigned int nr_pages, nr_highmem;
9c744481 2389 struct linked_page *lp;
940864dd 2390 int error;
f577eb30 2391
8357376d
RW
2392 /* If there is no highmem, the buffer will not be necessary */
2393 free_image_page(buffer, PG_UNSAFE_CLEAR);
2394 buffer = NULL;
2395
2396 nr_highmem = count_highmem_image_pages(bm);
6dbecfd3 2397 mark_unsafe_pages(bm);
940864dd
RW
2398
2399 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2400 if (error)
2401 goto Free;
2402
2403 duplicate_memory_bitmap(new_bm, bm);
2404 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2405 if (nr_highmem > 0) {
2406 error = prepare_highmem_image(bm, &nr_highmem);
2407 if (error)
2408 goto Free;
2409 }
ef96f639
RW
2410 /*
2411 * Reserve some safe pages for potential later use.
940864dd
RW
2412 *
2413 * NOTE: This way we make sure there will be enough safe pages for the
2414 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2415 * nr_copy_pages cannot be greater than 50% of the memory anyway.
9c744481
RW
2416 *
2417 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
940864dd 2418 */
8357376d 2419 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2420 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2421 while (nr_pages > 0) {
8357376d 2422 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2423 if (!lp) {
f577eb30 2424 error = -ENOMEM;
940864dd
RW
2425 goto Free;
2426 }
9c744481
RW
2427 lp->next = safe_pages_list;
2428 safe_pages_list = lp;
940864dd 2429 nr_pages--;
f577eb30 2430 }
940864dd 2431 /* Preallocate memory for the image */
8357376d 2432 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2433 while (nr_pages > 0) {
2434 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2435 if (!lp) {
2436 error = -ENOMEM;
2437 goto Free;
2438 }
7be98234 2439 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2440 /* The page is "safe", add it to the list */
2441 lp->next = safe_pages_list;
2442 safe_pages_list = lp;
968808b8 2443 }
940864dd 2444 /* Mark the page as allocated */
7be98234
RW
2445 swsusp_set_page_forbidden(virt_to_page(lp));
2446 swsusp_set_page_free(virt_to_page(lp));
940864dd 2447 nr_pages--;
968808b8 2448 }
940864dd
RW
2449 return 0;
2450
59a49335 2451 Free:
940864dd 2452 swsusp_free();
f577eb30
RW
2453 return error;
2454}
2455
940864dd 2456/**
ef96f639
RW
2457 * get_buffer - Get the address to store the next image data page.
2458 *
2459 * Get the address that snapshot_write_next() should return to its caller to
2460 * write to.
940864dd 2461 */
940864dd 2462static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2463{
940864dd 2464 struct pbe *pbe;
69643279
RW
2465 struct page *page;
2466 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2467
69643279
RW
2468 if (pfn == BM_END_OF_MAP)
2469 return ERR_PTR(-EFAULT);
2470
2471 page = pfn_to_page(pfn);
8357376d
RW
2472 if (PageHighMem(page))
2473 return get_highmem_page_buffer(page, ca);
2474
7be98234 2475 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
ef96f639
RW
2476 /*
2477 * We have allocated the "original" page frame and we can
940864dd 2478 * use it directly to store the loaded page.
968808b8 2479 */
940864dd
RW
2480 return page_address(page);
2481
ef96f639
RW
2482 /*
2483 * The "original" page frame has not been allocated and we have to
940864dd 2484 * use a "safe" page frame to store the loaded page.
968808b8 2485 */
940864dd
RW
2486 pbe = chain_alloc(ca, sizeof(struct pbe));
2487 if (!pbe) {
2488 swsusp_free();
69643279 2489 return ERR_PTR(-ENOMEM);
940864dd 2490 }
8357376d
RW
2491 pbe->orig_address = page_address(page);
2492 pbe->address = safe_pages_list;
940864dd
RW
2493 safe_pages_list = safe_pages_list->next;
2494 pbe->next = restore_pblist;
2495 restore_pblist = pbe;
8357376d 2496 return pbe->address;
968808b8
RW
2497}
2498
f577eb30 2499/**
ef96f639
RW
2500 * snapshot_write_next - Get the address to store the next image page.
2501 * @handle: Snapshot handle structure to guide the writing.
f577eb30 2502 *
ef96f639
RW
2503 * On the first call, @handle should point to a zeroed snapshot_handle
2504 * structure. The structure gets populated then and a pointer to it should be
2505 * passed to this function every next time.
f577eb30 2506 *
ef96f639
RW
2507 * On success, the function returns a positive number. Then, the caller
2508 * is allowed to write up to the returned number of bytes to the memory
2509 * location computed by the data_of() macro.
f577eb30 2510 *
ef96f639
RW
2511 * The function returns 0 to indicate the "end of file" condition. Negative
2512 * numbers are returned on errors, in which cases the structure pointed to by
2513 * @handle is not updated and should not be used any more.
f577eb30 2514 */
d3c1b24c 2515int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2516{
940864dd 2517 static struct chain_allocator ca;
f577eb30
RW
2518 int error = 0;
2519
940864dd 2520 /* Check if we have already loaded the entire image */
d3c1b24c 2521 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2522 return 0;
940864dd 2523
d3c1b24c
JS
2524 handle->sync_read = 1;
2525
2526 if (!handle->cur) {
8357376d
RW
2527 if (!buffer)
2528 /* This makes the buffer be freed by swsusp_free() */
2529 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2530
f577eb30
RW
2531 if (!buffer)
2532 return -ENOMEM;
8357376d 2533
f577eb30 2534 handle->buffer = buffer;
d3c1b24c
JS
2535 } else if (handle->cur == 1) {
2536 error = load_header(buffer);
2537 if (error)
2538 return error;
940864dd 2539
9c744481
RW
2540 safe_pages_list = NULL;
2541
d3c1b24c
JS
2542 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2543 if (error)
2544 return error;
2545
85055dd8
MS
2546 /* Allocate buffer for page keys. */
2547 error = page_key_alloc(nr_copy_pages);
2548 if (error)
2549 return error;
2550
d3c1b24c
JS
2551 } else if (handle->cur <= nr_meta_pages + 1) {
2552 error = unpack_orig_pfns(buffer, &copy_bm);
2553 if (error)
2554 return error;
940864dd 2555
d3c1b24c
JS
2556 if (handle->cur == nr_meta_pages + 1) {
2557 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2558 if (error)
2559 return error;
2560
d3c1b24c
JS
2561 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2562 memory_bm_position_reset(&orig_bm);
2563 restore_pblist = NULL;
940864dd 2564 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2565 handle->sync_read = 0;
69643279
RW
2566 if (IS_ERR(handle->buffer))
2567 return PTR_ERR(handle->buffer);
f577eb30 2568 }
f577eb30 2569 } else {
d3c1b24c 2570 copy_last_highmem_page();
85055dd8
MS
2571 /* Restore page key for data page (s390 only). */
2572 page_key_write(handle->buffer);
d3c1b24c
JS
2573 handle->buffer = get_buffer(&orig_bm, &ca);
2574 if (IS_ERR(handle->buffer))
2575 return PTR_ERR(handle->buffer);
2576 if (handle->buffer != buffer)
2577 handle->sync_read = 0;
f577eb30 2578 }
d3c1b24c
JS
2579 handle->cur++;
2580 return PAGE_SIZE;
f577eb30
RW
2581}
2582
8357376d 2583/**
ef96f639
RW
2584 * snapshot_write_finalize - Complete the loading of a hibernation image.
2585 *
2586 * Must be called after the last call to snapshot_write_next() in case the last
2587 * page in the image happens to be a highmem page and its contents should be
2588 * stored in highmem. Additionally, it recycles bitmap memory that's not
2589 * necessary any more.
8357376d 2590 */
8357376d
RW
2591void snapshot_write_finalize(struct snapshot_handle *handle)
2592{
2593 copy_last_highmem_page();
85055dd8
MS
2594 /* Restore page key for data page (s390 only). */
2595 page_key_write(handle->buffer);
2596 page_key_free();
307c5971 2597 /* Do that only if we have loaded the image entirely */
d3c1b24c 2598 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
307c5971 2599 memory_bm_recycle(&orig_bm);
8357376d
RW
2600 free_highmem_data();
2601 }
2602}
2603
f577eb30
RW
2604int snapshot_image_loaded(struct snapshot_handle *handle)
2605{
8357376d 2606 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2607 handle->cur <= nr_meta_pages + nr_copy_pages);
2608}
2609
8357376d
RW
2610#ifdef CONFIG_HIGHMEM
2611/* Assumes that @buf is ready and points to a "safe" page */
efd5a852
RW
2612static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2613 void *buf)
940864dd 2614{
8357376d
RW
2615 void *kaddr1, *kaddr2;
2616
0de9a1e2
CW
2617 kaddr1 = kmap_atomic(p1);
2618 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2619 copy_page(buf, kaddr1);
2620 copy_page(kaddr1, kaddr2);
2621 copy_page(kaddr2, buf);
0de9a1e2
CW
2622 kunmap_atomic(kaddr2);
2623 kunmap_atomic(kaddr1);
8357376d
RW
2624}
2625
2626/**
ef96f639
RW
2627 * restore_highmem - Put highmem image pages into their original locations.
2628 *
2629 * For each highmem page that was in use before hibernation and is included in
2630 * the image, and also has been allocated by the "restore" kernel, swap its
2631 * current contents with the previous (ie. "before hibernation") ones.
8357376d 2632 *
ef96f639
RW
2633 * If the restore eventually fails, we can call this function once again and
2634 * restore the highmem state as seen by the restore kernel.
8357376d 2635 */
8357376d
RW
2636int restore_highmem(void)
2637{
2638 struct highmem_pbe *pbe = highmem_pblist;
2639 void *buf;
2640
2641 if (!pbe)
2642 return 0;
2643
2644 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2645 if (!buf)
2646 return -ENOMEM;
2647
2648 while (pbe) {
2649 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2650 pbe = pbe->next;
2651 }
2652 free_image_page(buf, PG_UNSAFE_CLEAR);
2653 return 0;
f577eb30 2654}
8357376d 2655#endif /* CONFIG_HIGHMEM */
This page took 0.88434 seconds and 5 git commands to generate.