PM / hibernate: Clean up function headers in snapshot.c
[deliverable/linux.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
52f5684c 30#include <linux/compiler.h>
db597605 31#include <linux/ktime.h>
25761b6e
RW
32
33#include <asm/uaccess.h>
34#include <asm/mmu_context.h>
35#include <asm/pgtable.h>
36#include <asm/tlbflush.h>
37#include <asm/io.h>
38
25761b6e
RW
39#include "power.h"
40
74dfd666
RW
41static int swsusp_page_is_free(struct page *);
42static void swsusp_set_page_forbidden(struct page *);
43static void swsusp_unset_page_forbidden(struct page *);
44
ddeb6487
RW
45/*
46 * Number of bytes to reserve for memory allocations made by device drivers
47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
48 * cause image creation to fail (tunable via /sys/power/reserved_size).
49 */
50unsigned long reserved_size;
51
52void __init hibernate_reserved_size_init(void)
53{
54 reserved_size = SPARE_PAGES * PAGE_SIZE;
55}
56
fe419535
RW
57/*
58 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
59 * When it is set to N, swsusp will do its best to ensure the image
60 * size will not exceed N bytes, but if that is impossible, it will
61 * try to create the smallest image possible.
fe419535 62 */
ac5c24ec
RW
63unsigned long image_size;
64
65void __init hibernate_image_size_init(void)
66{
1c1be3a9 67 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 68}
fe419535 69
8357376d
RW
70/* List of PBEs needed for restoring the pages that were allocated before
71 * the suspend and included in the suspend image, but have also been
72 * allocated by the "resume" kernel, so their contents cannot be written
73 * directly to their "original" page frames.
74 */
75534b50
RW
75struct pbe *restore_pblist;
76
9c744481
RW
77/* struct linked_page is used to build chains of pages */
78
79#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
80
81struct linked_page {
82 struct linked_page *next;
83 char data[LINKED_PAGE_DATA_SIZE];
84} __packed;
85
86/*
87 * List of "safe" pages (ie. pages that were not used by the image kernel
88 * before hibernation) that may be used as temporary storage for image kernel
89 * memory contents.
90 */
91static struct linked_page *safe_pages_list;
92
8357376d 93/* Pointer to an auxiliary buffer (1 page) */
940864dd 94static void *buffer;
7088a5c0 95
f6143aa6
RW
96/**
97 * @safe_needed - on resume, for storing the PBE list and the image,
98 * we can only use memory pages that do not conflict with the pages
8357376d
RW
99 * used before suspend. The unsafe pages have PageNosaveFree set
100 * and we count them using unsafe_pages.
f6143aa6 101 *
8357376d
RW
102 * Each allocated image page is marked as PageNosave and PageNosaveFree
103 * so that swsusp_free() can release it.
f6143aa6
RW
104 */
105
0bcd888d
RW
106#define PG_ANY 0
107#define PG_SAFE 1
108#define PG_UNSAFE_CLEAR 1
109#define PG_UNSAFE_KEEP 0
110
940864dd 111static unsigned int allocated_unsafe_pages;
f6143aa6 112
8357376d 113static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
114{
115 void *res;
116
117 res = (void *)get_zeroed_page(gfp_mask);
118 if (safe_needed)
7be98234 119 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 120 /* The page is unsafe, mark it for swsusp_free() */
7be98234 121 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 122 allocated_unsafe_pages++;
f6143aa6
RW
123 res = (void *)get_zeroed_page(gfp_mask);
124 }
125 if (res) {
7be98234
RW
126 swsusp_set_page_forbidden(virt_to_page(res));
127 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
128 }
129 return res;
130}
131
9c744481
RW
132static void *__get_safe_page(gfp_t gfp_mask)
133{
134 if (safe_pages_list) {
135 void *ret = safe_pages_list;
136
137 safe_pages_list = safe_pages_list->next;
138 memset(ret, 0, PAGE_SIZE);
139 return ret;
140 }
141 return get_image_page(gfp_mask, PG_SAFE);
142}
143
f6143aa6
RW
144unsigned long get_safe_page(gfp_t gfp_mask)
145{
9c744481 146 return (unsigned long)__get_safe_page(gfp_mask);
8357376d
RW
147}
148
5b6d15de
RW
149static struct page *alloc_image_page(gfp_t gfp_mask)
150{
8357376d
RW
151 struct page *page;
152
153 page = alloc_page(gfp_mask);
154 if (page) {
7be98234
RW
155 swsusp_set_page_forbidden(page);
156 swsusp_set_page_free(page);
8357376d
RW
157 }
158 return page;
f6143aa6
RW
159}
160
307c5971
RW
161static void recycle_safe_page(void *page_address)
162{
163 struct linked_page *lp = page_address;
164
165 lp->next = safe_pages_list;
166 safe_pages_list = lp;
167}
168
f6143aa6
RW
169/**
170 * free_image_page - free page represented by @addr, allocated with
8357376d 171 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
172 */
173
174static inline void free_image_page(void *addr, int clear_nosave_free)
175{
8357376d
RW
176 struct page *page;
177
178 BUG_ON(!virt_addr_valid(addr));
179
180 page = virt_to_page(addr);
181
7be98234 182 swsusp_unset_page_forbidden(page);
f6143aa6 183 if (clear_nosave_free)
7be98234 184 swsusp_unset_page_free(page);
8357376d
RW
185
186 __free_page(page);
f6143aa6
RW
187}
188
efd5a852
RW
189static inline void free_list_of_pages(struct linked_page *list,
190 int clear_page_nosave)
b788db79
RW
191{
192 while (list) {
193 struct linked_page *lp = list->next;
194
195 free_image_page(list, clear_page_nosave);
196 list = lp;
197 }
198}
199
200/**
201 * struct chain_allocator is used for allocating small objects out of
202 * a linked list of pages called 'the chain'.
203 *
204 * The chain grows each time when there is no room for a new object in
205 * the current page. The allocated objects cannot be freed individually.
206 * It is only possible to free them all at once, by freeing the entire
207 * chain.
208 *
209 * NOTE: The chain allocator may be inefficient if the allocated objects
210 * are not much smaller than PAGE_SIZE.
211 */
212
213struct chain_allocator {
214 struct linked_page *chain; /* the chain */
215 unsigned int used_space; /* total size of objects allocated out
216 * of the current page
217 */
218 gfp_t gfp_mask; /* mask for allocating pages */
219 int safe_needed; /* if set, only "safe" pages are allocated */
220};
221
efd5a852
RW
222static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
223 int safe_needed)
b788db79
RW
224{
225 ca->chain = NULL;
226 ca->used_space = LINKED_PAGE_DATA_SIZE;
227 ca->gfp_mask = gfp_mask;
228 ca->safe_needed = safe_needed;
229}
230
231static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
232{
233 void *ret;
234
235 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
236 struct linked_page *lp;
237
9c744481
RW
238 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
239 get_image_page(ca->gfp_mask, PG_ANY);
b788db79
RW
240 if (!lp)
241 return NULL;
242
243 lp->next = ca->chain;
244 ca->chain = lp;
245 ca->used_space = 0;
246 }
247 ret = ca->chain->data + ca->used_space;
248 ca->used_space += size;
249 return ret;
250}
251
b788db79
RW
252/**
253 * Data types related to memory bitmaps.
254 *
255 * Memory bitmap is a structure consiting of many linked lists of
256 * objects. The main list's elements are of type struct zone_bitmap
257 * and each of them corresonds to one zone. For each zone bitmap
258 * object there is a list of objects of type struct bm_block that
0d83304c 259 * represent each blocks of bitmap in which information is stored.
b788db79
RW
260 *
261 * struct memory_bitmap contains a pointer to the main list of zone
262 * bitmap objects, a struct bm_position used for browsing the bitmap,
263 * and a pointer to the list of pages used for allocating all of the
264 * zone bitmap objects and bitmap block objects.
265 *
266 * NOTE: It has to be possible to lay out the bitmap in memory
267 * using only allocations of order 0. Additionally, the bitmap is
268 * designed to work with arbitrary number of zones (this is over the
269 * top for now, but let's avoid making unnecessary assumptions ;-).
270 *
271 * struct zone_bitmap contains a pointer to a list of bitmap block
272 * objects and a pointer to the bitmap block object that has been
273 * most recently used for setting bits. Additionally, it contains the
274 * pfns that correspond to the start and end of the represented zone.
275 *
276 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
277 * information is stored (in the form of a block of bitmap)
278 * It also contains the pfns that correspond to the start and end of
279 * the represented memory area.
f469f02d
JR
280 *
281 * The memory bitmap is organized as a radix tree to guarantee fast random
282 * access to the bits. There is one radix tree for each zone (as returned
283 * from create_mem_extents).
284 *
285 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
286 * two linked lists for the nodes of the tree, one for the inner nodes and
287 * one for the leave nodes. The linked leave nodes are used for fast linear
288 * access of the memory bitmap.
289 *
290 * The struct rtree_node represents one node of the radix tree.
b788db79
RW
291 */
292
293#define BM_END_OF_MAP (~0UL)
294
8de03073 295#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
f469f02d
JR
296#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
297#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
b788db79 298
f469f02d
JR
299/*
300 * struct rtree_node is a wrapper struct to link the nodes
301 * of the rtree together for easy linear iteration over
302 * bits and easy freeing
303 */
304struct rtree_node {
305 struct list_head list;
306 unsigned long *data;
307};
308
309/*
310 * struct mem_zone_bm_rtree represents a bitmap used for one
311 * populated memory zone.
312 */
313struct mem_zone_bm_rtree {
314 struct list_head list; /* Link Zones together */
315 struct list_head nodes; /* Radix Tree inner nodes */
316 struct list_head leaves; /* Radix Tree leaves */
317 unsigned long start_pfn; /* Zone start page frame */
318 unsigned long end_pfn; /* Zone end page frame + 1 */
319 struct rtree_node *rtree; /* Radix Tree Root */
320 int levels; /* Number of Radix Tree Levels */
321 unsigned int blocks; /* Number of Bitmap Blocks */
322};
323
b788db79
RW
324/* strcut bm_position is used for browsing memory bitmaps */
325
326struct bm_position {
3a20cb17
JR
327 struct mem_zone_bm_rtree *zone;
328 struct rtree_node *node;
329 unsigned long node_pfn;
330 int node_bit;
b788db79
RW
331};
332
333struct memory_bitmap {
f469f02d 334 struct list_head zones;
b788db79
RW
335 struct linked_page *p_list; /* list of pages used to store zone
336 * bitmap objects and bitmap block
337 * objects
338 */
339 struct bm_position cur; /* most recently used bit position */
340};
341
342/* Functions that operate on memory bitmaps */
343
f469f02d
JR
344#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
345#if BITS_PER_LONG == 32
346#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
347#else
348#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
349#endif
350#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
351
352/*
353 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
354 *
355 * This function is used to allocate inner nodes as well as the
356 * leave nodes of the radix tree. It also adds the node to the
357 * corresponding linked list passed in by the *list parameter.
358 */
359static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
360 struct chain_allocator *ca,
361 struct list_head *list)
362{
363 struct rtree_node *node;
364
365 node = chain_alloc(ca, sizeof(struct rtree_node));
366 if (!node)
367 return NULL;
368
369 node->data = get_image_page(gfp_mask, safe_needed);
370 if (!node->data)
371 return NULL;
372
373 list_add_tail(&node->list, list);
374
375 return node;
376}
377
378/*
379 * add_rtree_block - Add a new leave node to the radix tree
380 *
381 * The leave nodes need to be allocated in order to keep the leaves
382 * linked list in order. This is guaranteed by the zone->blocks
383 * counter.
384 */
385static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
386 int safe_needed, struct chain_allocator *ca)
387{
388 struct rtree_node *node, *block, **dst;
389 unsigned int levels_needed, block_nr;
390 int i;
391
392 block_nr = zone->blocks;
393 levels_needed = 0;
394
395 /* How many levels do we need for this block nr? */
396 while (block_nr) {
397 levels_needed += 1;
398 block_nr >>= BM_RTREE_LEVEL_SHIFT;
399 }
400
401 /* Make sure the rtree has enough levels */
402 for (i = zone->levels; i < levels_needed; i++) {
403 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
404 &zone->nodes);
405 if (!node)
406 return -ENOMEM;
407
408 node->data[0] = (unsigned long)zone->rtree;
409 zone->rtree = node;
410 zone->levels += 1;
411 }
412
413 /* Allocate new block */
414 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
415 if (!block)
416 return -ENOMEM;
417
418 /* Now walk the rtree to insert the block */
419 node = zone->rtree;
420 dst = &zone->rtree;
421 block_nr = zone->blocks;
422 for (i = zone->levels; i > 0; i--) {
423 int index;
424
425 if (!node) {
426 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
427 &zone->nodes);
428 if (!node)
429 return -ENOMEM;
430 *dst = node;
431 }
432
433 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
434 index &= BM_RTREE_LEVEL_MASK;
435 dst = (struct rtree_node **)&((*dst)->data[index]);
436 node = *dst;
437 }
438
439 zone->blocks += 1;
440 *dst = block;
441
442 return 0;
443}
444
445static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
446 int clear_nosave_free);
447
448/*
449 * create_zone_bm_rtree - create a radix tree for one zone
450 *
451 * Allocated the mem_zone_bm_rtree structure and initializes it.
452 * This function also allocated and builds the radix tree for the
453 * zone.
454 */
efd5a852
RW
455static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
456 int safe_needed,
457 struct chain_allocator *ca,
458 unsigned long start,
459 unsigned long end)
f469f02d
JR
460{
461 struct mem_zone_bm_rtree *zone;
462 unsigned int i, nr_blocks;
463 unsigned long pages;
464
465 pages = end - start;
466 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
467 if (!zone)
468 return NULL;
469
470 INIT_LIST_HEAD(&zone->nodes);
471 INIT_LIST_HEAD(&zone->leaves);
472 zone->start_pfn = start;
473 zone->end_pfn = end;
474 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
475
476 for (i = 0; i < nr_blocks; i++) {
477 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
478 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
479 return NULL;
480 }
481 }
482
483 return zone;
484}
485
486/*
487 * free_zone_bm_rtree - Free the memory of the radix tree
488 *
489 * Free all node pages of the radix tree. The mem_zone_bm_rtree
490 * structure itself is not freed here nor are the rtree_node
491 * structs.
492 */
493static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
494 int clear_nosave_free)
495{
496 struct rtree_node *node;
497
498 list_for_each_entry(node, &zone->nodes, list)
499 free_image_page(node->data, clear_nosave_free);
500
501 list_for_each_entry(node, &zone->leaves, list)
502 free_image_page(node->data, clear_nosave_free);
503}
504
b788db79
RW
505static void memory_bm_position_reset(struct memory_bitmap *bm)
506{
3a20cb17
JR
507 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
508 list);
509 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
510 struct rtree_node, list);
511 bm->cur.node_pfn = 0;
512 bm->cur.node_bit = 0;
b788db79
RW
513}
514
515static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
516
846705de
RW
517struct mem_extent {
518 struct list_head hook;
519 unsigned long start;
520 unsigned long end;
521};
522
b788db79 523/**
846705de
RW
524 * free_mem_extents - free a list of memory extents
525 * @list - list of extents to empty
b788db79 526 */
846705de
RW
527static void free_mem_extents(struct list_head *list)
528{
529 struct mem_extent *ext, *aux;
b788db79 530
846705de
RW
531 list_for_each_entry_safe(ext, aux, list, hook) {
532 list_del(&ext->hook);
533 kfree(ext);
534 }
535}
536
537/**
538 * create_mem_extents - create a list of memory extents representing
539 * contiguous ranges of PFNs
540 * @list - list to put the extents into
541 * @gfp_mask - mask to use for memory allocations
542 */
543static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 544{
846705de 545 struct zone *zone;
b788db79 546
846705de 547 INIT_LIST_HEAD(list);
b788db79 548
ee99c71c 549 for_each_populated_zone(zone) {
846705de
RW
550 unsigned long zone_start, zone_end;
551 struct mem_extent *ext, *cur, *aux;
552
846705de 553 zone_start = zone->zone_start_pfn;
c33bc315 554 zone_end = zone_end_pfn(zone);
846705de
RW
555
556 list_for_each_entry(ext, list, hook)
557 if (zone_start <= ext->end)
558 break;
b788db79 559
846705de
RW
560 if (&ext->hook == list || zone_end < ext->start) {
561 /* New extent is necessary */
562 struct mem_extent *new_ext;
563
564 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
565 if (!new_ext) {
566 free_mem_extents(list);
567 return -ENOMEM;
568 }
569 new_ext->start = zone_start;
570 new_ext->end = zone_end;
571 list_add_tail(&new_ext->hook, &ext->hook);
572 continue;
573 }
574
575 /* Merge this zone's range of PFNs with the existing one */
576 if (zone_start < ext->start)
577 ext->start = zone_start;
578 if (zone_end > ext->end)
579 ext->end = zone_end;
580
581 /* More merging may be possible */
582 cur = ext;
583 list_for_each_entry_safe_continue(cur, aux, list, hook) {
584 if (zone_end < cur->start)
585 break;
586 if (zone_end < cur->end)
587 ext->end = cur->end;
588 list_del(&cur->hook);
589 kfree(cur);
590 }
b788db79 591 }
846705de
RW
592
593 return 0;
b788db79
RW
594}
595
596/**
597 * memory_bm_create - allocate memory for a memory bitmap
598 */
efd5a852
RW
599static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
600 int safe_needed)
b788db79
RW
601{
602 struct chain_allocator ca;
846705de
RW
603 struct list_head mem_extents;
604 struct mem_extent *ext;
605 int error;
b788db79
RW
606
607 chain_init(&ca, gfp_mask, safe_needed);
f469f02d 608 INIT_LIST_HEAD(&bm->zones);
b788db79 609
846705de
RW
610 error = create_mem_extents(&mem_extents, gfp_mask);
611 if (error)
612 return error;
b788db79 613
846705de 614 list_for_each_entry(ext, &mem_extents, hook) {
f469f02d 615 struct mem_zone_bm_rtree *zone;
f469f02d
JR
616
617 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
618 ext->start, ext->end);
9047eb62
JR
619 if (!zone) {
620 error = -ENOMEM;
f469f02d 621 goto Error;
9047eb62 622 }
f469f02d 623 list_add_tail(&zone->list, &bm->zones);
b788db79 624 }
846705de 625
b788db79
RW
626 bm->p_list = ca.chain;
627 memory_bm_position_reset(bm);
846705de
RW
628 Exit:
629 free_mem_extents(&mem_extents);
630 return error;
b788db79 631
846705de 632 Error:
b788db79
RW
633 bm->p_list = ca.chain;
634 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 635 goto Exit;
b788db79
RW
636}
637
638/**
639 * memory_bm_free - free memory occupied by the memory bitmap @bm
640 */
b788db79
RW
641static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
642{
f469f02d 643 struct mem_zone_bm_rtree *zone;
b788db79 644
f469f02d
JR
645 list_for_each_entry(zone, &bm->zones, list)
646 free_zone_bm_rtree(zone, clear_nosave_free);
647
b788db79 648 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de 649
f469f02d 650 INIT_LIST_HEAD(&bm->zones);
b788db79
RW
651}
652
653/**
9047eb62
JR
654 * memory_bm_find_bit - Find the bit for pfn in the memory
655 * bitmap
07a33823 656 *
9047eb62
JR
657 * Find the bit in the bitmap @bm that corresponds to given pfn.
658 * The cur.zone, cur.block and cur.node_pfn member of @bm are
659 * updated.
660 * It walks the radix tree to find the page which contains the bit for
07a33823
JR
661 * pfn and returns the bit position in **addr and *bit_nr.
662 */
9047eb62
JR
663static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
664 void **addr, unsigned int *bit_nr)
07a33823
JR
665{
666 struct mem_zone_bm_rtree *curr, *zone;
667 struct rtree_node *node;
668 int i, block_nr;
669
3a20cb17
JR
670 zone = bm->cur.zone;
671
672 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
673 goto zone_found;
674
07a33823
JR
675 zone = NULL;
676
677 /* Find the right zone */
678 list_for_each_entry(curr, &bm->zones, list) {
679 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
680 zone = curr;
681 break;
682 }
683 }
684
685 if (!zone)
686 return -EFAULT;
687
3a20cb17 688zone_found:
07a33823
JR
689 /*
690 * We have a zone. Now walk the radix tree to find the leave
691 * node for our pfn.
692 */
3a20cb17
JR
693
694 node = bm->cur.node;
695 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
696 goto node_found;
697
07a33823
JR
698 node = zone->rtree;
699 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
700
701 for (i = zone->levels; i > 0; i--) {
702 int index;
703
704 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
705 index &= BM_RTREE_LEVEL_MASK;
706 BUG_ON(node->data[index] == 0);
707 node = (struct rtree_node *)node->data[index];
708 }
709
3a20cb17
JR
710node_found:
711 /* Update last position */
712 bm->cur.zone = zone;
713 bm->cur.node = node;
714 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
715
07a33823
JR
716 /* Set return values */
717 *addr = node->data;
718 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
719
720 return 0;
721}
722
74dfd666
RW
723static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
724{
725 void *addr;
726 unsigned int bit;
a82f7119 727 int error;
74dfd666 728
a82f7119
RW
729 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
730 BUG_ON(error);
74dfd666
RW
731 set_bit(bit, addr);
732}
733
a82f7119
RW
734static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
735{
736 void *addr;
737 unsigned int bit;
738 int error;
739
740 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
07a33823
JR
741 if (!error)
742 set_bit(bit, addr);
743
a82f7119
RW
744 return error;
745}
746
74dfd666
RW
747static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
748{
749 void *addr;
750 unsigned int bit;
a82f7119 751 int error;
74dfd666 752
a82f7119
RW
753 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
754 BUG_ON(error);
74dfd666
RW
755 clear_bit(bit, addr);
756}
757
fdd64ed5
JR
758static void memory_bm_clear_current(struct memory_bitmap *bm)
759{
760 int bit;
761
762 bit = max(bm->cur.node_bit - 1, 0);
763 clear_bit(bit, bm->cur.node->data);
764}
765
74dfd666
RW
766static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
767{
768 void *addr;
769 unsigned int bit;
9047eb62 770 int error;
74dfd666 771
a82f7119
RW
772 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
773 BUG_ON(error);
9047eb62 774 return test_bit(bit, addr);
b788db79
RW
775}
776
69643279
RW
777static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
778{
779 void *addr;
780 unsigned int bit;
07a33823 781
9047eb62 782 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
b788db79
RW
783}
784
3a20cb17
JR
785/*
786 * rtree_next_node - Jumps to the next leave node
787 *
788 * Sets the position to the beginning of the next node in the
789 * memory bitmap. This is either the next node in the current
790 * zone's radix tree or the first node in the radix tree of the
791 * next zone.
792 *
793 * Returns true if there is a next node, false otherwise.
794 */
795static bool rtree_next_node(struct memory_bitmap *bm)
796{
797 bm->cur.node = list_entry(bm->cur.node->list.next,
798 struct rtree_node, list);
799 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
800 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
801 bm->cur.node_bit = 0;
0f7d83e8 802 touch_softlockup_watchdog();
3a20cb17
JR
803 return true;
804 }
805
806 /* No more nodes, goto next zone */
807 bm->cur.zone = list_entry(bm->cur.zone->list.next,
808 struct mem_zone_bm_rtree, list);
809 if (&bm->cur.zone->list != &bm->zones) {
810 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
811 struct rtree_node, list);
812 bm->cur.node_pfn = 0;
813 bm->cur.node_bit = 0;
814 return true;
815 }
816
817 /* No more zones */
818 return false;
819}
820
9047eb62
JR
821/**
822 * memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
3a20cb17
JR
823 *
824 * Starting from the last returned position this function searches
825 * for the next set bit in the memory bitmap and returns its
826 * number. If no more bit is set BM_END_OF_MAP is returned.
9047eb62
JR
827 *
828 * It is required to run memory_bm_position_reset() before the
829 * first call to this function.
3a20cb17 830 */
9047eb62 831static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
3a20cb17
JR
832{
833 unsigned long bits, pfn, pages;
834 int bit;
835
836 do {
837 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
838 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
839 bit = find_next_bit(bm->cur.node->data, bits,
840 bm->cur.node_bit);
841 if (bit < bits) {
842 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
843 bm->cur.node_bit = bit + 1;
844 return pfn;
845 }
846 } while (rtree_next_node(bm));
847
848 return BM_END_OF_MAP;
849}
850
74dfd666
RW
851/**
852 * This structure represents a range of page frames the contents of which
853 * should not be saved during the suspend.
854 */
855
856struct nosave_region {
857 struct list_head list;
858 unsigned long start_pfn;
859 unsigned long end_pfn;
860};
861
862static LIST_HEAD(nosave_regions);
863
307c5971
RW
864static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
865{
866 struct rtree_node *node;
867
868 list_for_each_entry(node, &zone->nodes, list)
869 recycle_safe_page(node->data);
870
871 list_for_each_entry(node, &zone->leaves, list)
872 recycle_safe_page(node->data);
873}
874
875static void memory_bm_recycle(struct memory_bitmap *bm)
876{
877 struct mem_zone_bm_rtree *zone;
878 struct linked_page *p_list;
879
880 list_for_each_entry(zone, &bm->zones, list)
881 recycle_zone_bm_rtree(zone);
882
883 p_list = bm->p_list;
884 while (p_list) {
885 struct linked_page *lp = p_list;
886
887 p_list = lp->next;
888 recycle_safe_page(lp);
889 }
890}
891
74dfd666
RW
892/**
893 * register_nosave_region - register a range of page frames the contents
894 * of which should not be saved during the suspend (to be used in the early
895 * initialization code)
896 */
897
efd5a852
RW
898void __init __register_nosave_region(unsigned long start_pfn,
899 unsigned long end_pfn, int use_kmalloc)
74dfd666
RW
900{
901 struct nosave_region *region;
902
903 if (start_pfn >= end_pfn)
904 return;
905
906 if (!list_empty(&nosave_regions)) {
907 /* Try to extend the previous region (they should be sorted) */
908 region = list_entry(nosave_regions.prev,
909 struct nosave_region, list);
910 if (region->end_pfn == start_pfn) {
911 region->end_pfn = end_pfn;
912 goto Report;
913 }
914 }
940d67f6
JB
915 if (use_kmalloc) {
916 /* during init, this shouldn't fail */
917 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
918 BUG_ON(!region);
919 } else
920 /* This allocation cannot fail */
c2f69cda 921 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
74dfd666
RW
922 region->start_pfn = start_pfn;
923 region->end_pfn = end_pfn;
924 list_add_tail(&region->list, &nosave_regions);
925 Report:
cd38ca85
BH
926 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
927 (unsigned long long) start_pfn << PAGE_SHIFT,
928 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
74dfd666
RW
929}
930
931/*
932 * Set bits in this map correspond to the page frames the contents of which
933 * should not be saved during the suspend.
934 */
935static struct memory_bitmap *forbidden_pages_map;
936
937/* Set bits in this map correspond to free page frames. */
938static struct memory_bitmap *free_pages_map;
939
940/*
941 * Each page frame allocated for creating the image is marked by setting the
942 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
943 */
944
945void swsusp_set_page_free(struct page *page)
946{
947 if (free_pages_map)
948 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
949}
950
951static int swsusp_page_is_free(struct page *page)
952{
953 return free_pages_map ?
954 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
955}
956
957void swsusp_unset_page_free(struct page *page)
958{
959 if (free_pages_map)
960 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
961}
962
963static void swsusp_set_page_forbidden(struct page *page)
964{
965 if (forbidden_pages_map)
966 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
967}
968
969int swsusp_page_is_forbidden(struct page *page)
970{
971 return forbidden_pages_map ?
972 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
973}
974
975static void swsusp_unset_page_forbidden(struct page *page)
976{
977 if (forbidden_pages_map)
978 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
979}
980
981/**
982 * mark_nosave_pages - set bits corresponding to the page frames the
983 * contents of which should not be saved in a given bitmap.
984 */
985
986static void mark_nosave_pages(struct memory_bitmap *bm)
987{
988 struct nosave_region *region;
989
990 if (list_empty(&nosave_regions))
991 return;
992
993 list_for_each_entry(region, &nosave_regions, list) {
994 unsigned long pfn;
995
69f1d475
BH
996 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
997 (unsigned long long) region->start_pfn << PAGE_SHIFT,
998 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
999 - 1);
74dfd666
RW
1000
1001 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
1002 if (pfn_valid(pfn)) {
1003 /*
1004 * It is safe to ignore the result of
1005 * mem_bm_set_bit_check() here, since we won't
1006 * touch the PFNs for which the error is
1007 * returned anyway.
1008 */
1009 mem_bm_set_bit_check(bm, pfn);
1010 }
74dfd666
RW
1011 }
1012}
1013
1014/**
1015 * create_basic_memory_bitmaps - create bitmaps needed for marking page
1016 * frames that should not be saved and free page frames. The pointers
1017 * forbidden_pages_map and free_pages_map are only modified if everything
1018 * goes well, because we don't want the bits to be used before both bitmaps
1019 * are set up.
1020 */
1021
1022int create_basic_memory_bitmaps(void)
1023{
1024 struct memory_bitmap *bm1, *bm2;
1025 int error = 0;
1026
aab17289
RW
1027 if (forbidden_pages_map && free_pages_map)
1028 return 0;
1029 else
1030 BUG_ON(forbidden_pages_map || free_pages_map);
74dfd666 1031
0709db60 1032 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1033 if (!bm1)
1034 return -ENOMEM;
1035
0709db60 1036 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
1037 if (error)
1038 goto Free_first_object;
1039
0709db60 1040 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
1041 if (!bm2)
1042 goto Free_first_bitmap;
1043
0709db60 1044 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
1045 if (error)
1046 goto Free_second_object;
1047
1048 forbidden_pages_map = bm1;
1049 free_pages_map = bm2;
1050 mark_nosave_pages(forbidden_pages_map);
1051
23976728 1052 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
1053
1054 return 0;
1055
1056 Free_second_object:
1057 kfree(bm2);
1058 Free_first_bitmap:
1059 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1060 Free_first_object:
1061 kfree(bm1);
1062 return -ENOMEM;
1063}
1064
1065/**
1066 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1067 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1068 * so that the bitmaps themselves are not referred to while they are being
1069 * freed.
1070 */
1071
1072void free_basic_memory_bitmaps(void)
1073{
1074 struct memory_bitmap *bm1, *bm2;
1075
6a0c7cd3
RW
1076 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1077 return;
74dfd666
RW
1078
1079 bm1 = forbidden_pages_map;
1080 bm2 = free_pages_map;
1081 forbidden_pages_map = NULL;
1082 free_pages_map = NULL;
1083 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1084 kfree(bm1);
1085 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1086 kfree(bm2);
1087
23976728 1088 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
1089}
1090
b788db79
RW
1091/**
1092 * snapshot_additional_pages - estimate the number of additional pages
1093 * be needed for setting up the suspend image data structures for given
1094 * zone (usually the returned value is greater than the exact number)
1095 */
1096
1097unsigned int snapshot_additional_pages(struct zone *zone)
1098{
f469f02d 1099 unsigned int rtree, nodes;
b788db79 1100
f469f02d
JR
1101 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1102 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1103 LINKED_PAGE_DATA_SIZE);
1104 while (nodes > 1) {
1105 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1106 rtree += nodes;
1107 }
1108
9047eb62 1109 return 2 * rtree;
b788db79
RW
1110}
1111
8357376d
RW
1112#ifdef CONFIG_HIGHMEM
1113/**
1114 * count_free_highmem_pages - compute the total number of free highmem
1115 * pages, system-wide.
1116 */
1117
1118static unsigned int count_free_highmem_pages(void)
1119{
1120 struct zone *zone;
1121 unsigned int cnt = 0;
1122
ee99c71c
KM
1123 for_each_populated_zone(zone)
1124 if (is_highmem(zone))
d23ad423 1125 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
1126
1127 return cnt;
1128}
1129
1130/**
1131 * saveable_highmem_page - Determine whether a highmem page should be
1132 * included in the suspend image.
1133 *
1134 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1135 * and it isn't a part of a free chunk of pages.
1136 */
846705de 1137static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
1138{
1139 struct page *page;
1140
1141 if (!pfn_valid(pfn))
1142 return NULL;
1143
1144 page = pfn_to_page(pfn);
846705de
RW
1145 if (page_zone(page) != zone)
1146 return NULL;
8357376d
RW
1147
1148 BUG_ON(!PageHighMem(page));
1149
7be98234
RW
1150 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1151 PageReserved(page))
8357376d
RW
1152 return NULL;
1153
c6968e73
SG
1154 if (page_is_guard(page))
1155 return NULL;
1156
8357376d
RW
1157 return page;
1158}
1159
1160/**
1161 * count_highmem_pages - compute the total number of saveable highmem
1162 * pages.
1163 */
1164
fe419535 1165static unsigned int count_highmem_pages(void)
8357376d
RW
1166{
1167 struct zone *zone;
1168 unsigned int n = 0;
1169
98e73dc5 1170 for_each_populated_zone(zone) {
8357376d
RW
1171 unsigned long pfn, max_zone_pfn;
1172
1173 if (!is_highmem(zone))
1174 continue;
1175
1176 mark_free_pages(zone);
c33bc315 1177 max_zone_pfn = zone_end_pfn(zone);
8357376d 1178 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1179 if (saveable_highmem_page(zone, pfn))
8357376d
RW
1180 n++;
1181 }
1182 return n;
1183}
1184#else
846705de
RW
1185static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1186{
1187 return NULL;
1188}
8357376d
RW
1189#endif /* CONFIG_HIGHMEM */
1190
25761b6e 1191/**
8a235efa
RW
1192 * saveable_page - Determine whether a non-highmem page should be included
1193 * in the suspend image.
25761b6e 1194 *
8357376d
RW
1195 * We should save the page if it isn't Nosave, and is not in the range
1196 * of pages statically defined as 'unsaveable', and it isn't a part of
1197 * a free chunk of pages.
25761b6e 1198 */
846705de 1199static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 1200{
de491861 1201 struct page *page;
25761b6e
RW
1202
1203 if (!pfn_valid(pfn))
ae83c5ee 1204 return NULL;
25761b6e
RW
1205
1206 page = pfn_to_page(pfn);
846705de
RW
1207 if (page_zone(page) != zone)
1208 return NULL;
ae83c5ee 1209
8357376d
RW
1210 BUG_ON(PageHighMem(page));
1211
7be98234 1212 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 1213 return NULL;
8357376d 1214
8a235efa
RW
1215 if (PageReserved(page)
1216 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 1217 return NULL;
25761b6e 1218
c6968e73
SG
1219 if (page_is_guard(page))
1220 return NULL;
1221
ae83c5ee 1222 return page;
25761b6e
RW
1223}
1224
8357376d
RW
1225/**
1226 * count_data_pages - compute the total number of saveable non-highmem
1227 * pages.
1228 */
1229
fe419535 1230static unsigned int count_data_pages(void)
25761b6e
RW
1231{
1232 struct zone *zone;
ae83c5ee 1233 unsigned long pfn, max_zone_pfn;
dc19d507 1234 unsigned int n = 0;
25761b6e 1235
98e73dc5 1236 for_each_populated_zone(zone) {
25761b6e
RW
1237 if (is_highmem(zone))
1238 continue;
8357376d 1239
25761b6e 1240 mark_free_pages(zone);
c33bc315 1241 max_zone_pfn = zone_end_pfn(zone);
ae83c5ee 1242 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 1243 if (saveable_page(zone, pfn))
8357376d 1244 n++;
25761b6e 1245 }
a0f49651 1246 return n;
25761b6e
RW
1247}
1248
8357376d
RW
1249/* This is needed, because copy_page and memcpy are not usable for copying
1250 * task structs.
1251 */
1252static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
1253{
1254 int n;
1255
f623f0db
RW
1256 for (n = PAGE_SIZE / sizeof(long); n; n--)
1257 *dst++ = *src++;
1258}
1259
8a235efa
RW
1260
1261/**
1262 * safe_copy_page - check if the page we are going to copy is marked as
1263 * present in the kernel page tables (this always is the case if
1264 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1265 * kernel_page_present() always returns 'true').
1266 */
1267static void safe_copy_page(void *dst, struct page *s_page)
1268{
1269 if (kernel_page_present(s_page)) {
1270 do_copy_page(dst, page_address(s_page));
1271 } else {
1272 kernel_map_pages(s_page, 1, 1);
1273 do_copy_page(dst, page_address(s_page));
1274 kernel_map_pages(s_page, 1, 0);
1275 }
1276}
1277
1278
8357376d 1279#ifdef CONFIG_HIGHMEM
efd5a852 1280static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
8357376d
RW
1281{
1282 return is_highmem(zone) ?
846705de 1283 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
1284}
1285
8a235efa 1286static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
1287{
1288 struct page *s_page, *d_page;
1289 void *src, *dst;
1290
1291 s_page = pfn_to_page(src_pfn);
1292 d_page = pfn_to_page(dst_pfn);
1293 if (PageHighMem(s_page)) {
0de9a1e2
CW
1294 src = kmap_atomic(s_page);
1295 dst = kmap_atomic(d_page);
8357376d 1296 do_copy_page(dst, src);
0de9a1e2
CW
1297 kunmap_atomic(dst);
1298 kunmap_atomic(src);
8357376d 1299 } else {
8357376d
RW
1300 if (PageHighMem(d_page)) {
1301 /* Page pointed to by src may contain some kernel
1302 * data modified by kmap_atomic()
1303 */
8a235efa 1304 safe_copy_page(buffer, s_page);
0de9a1e2 1305 dst = kmap_atomic(d_page);
3ecb01df 1306 copy_page(dst, buffer);
0de9a1e2 1307 kunmap_atomic(dst);
8357376d 1308 } else {
8a235efa 1309 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1310 }
1311 }
1312}
1313#else
846705de 1314#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1315
8a235efa 1316static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1317{
8a235efa
RW
1318 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1319 pfn_to_page(src_pfn));
8357376d
RW
1320}
1321#endif /* CONFIG_HIGHMEM */
1322
efd5a852
RW
1323static void copy_data_pages(struct memory_bitmap *copy_bm,
1324 struct memory_bitmap *orig_bm)
25761b6e
RW
1325{
1326 struct zone *zone;
b788db79 1327 unsigned long pfn;
25761b6e 1328
98e73dc5 1329 for_each_populated_zone(zone) {
b788db79
RW
1330 unsigned long max_zone_pfn;
1331
25761b6e 1332 mark_free_pages(zone);
c33bc315 1333 max_zone_pfn = zone_end_pfn(zone);
b788db79 1334 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1335 if (page_is_saveable(zone, pfn))
b788db79 1336 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1337 }
b788db79
RW
1338 memory_bm_position_reset(orig_bm);
1339 memory_bm_position_reset(copy_bm);
df7c4872 1340 for(;;) {
b788db79 1341 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1342 if (unlikely(pfn == BM_END_OF_MAP))
1343 break;
1344 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1345 }
25761b6e
RW
1346}
1347
8357376d
RW
1348/* Total number of image pages */
1349static unsigned int nr_copy_pages;
1350/* Number of pages needed for saving the original pfns of the image pages */
1351static unsigned int nr_meta_pages;
64a473cb
RW
1352/*
1353 * Numbers of normal and highmem page frames allocated for hibernation image
1354 * before suspending devices.
1355 */
1356unsigned int alloc_normal, alloc_highmem;
1357/*
1358 * Memory bitmap used for marking saveable pages (during hibernation) or
1359 * hibernation image pages (during restore)
1360 */
1361static struct memory_bitmap orig_bm;
1362/*
1363 * Memory bitmap used during hibernation for marking allocated page frames that
1364 * will contain copies of saveable pages. During restore it is initially used
1365 * for marking hibernation image pages, but then the set bits from it are
1366 * duplicated in @orig_bm and it is released. On highmem systems it is next
1367 * used for marking "safe" highmem pages, but it has to be reinitialized for
1368 * this purpose.
1369 */
1370static struct memory_bitmap copy_bm;
8357376d 1371
25761b6e 1372/**
940864dd 1373 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1374 *
940864dd
RW
1375 * Suspend pages are alocated before the atomic copy is made, so we
1376 * need to release them after the resume.
25761b6e
RW
1377 */
1378
1379void swsusp_free(void)
1380{
fdd64ed5 1381 unsigned long fb_pfn, fr_pfn;
6efde38f 1382
fdd64ed5
JR
1383 if (!forbidden_pages_map || !free_pages_map)
1384 goto out;
1385
1386 memory_bm_position_reset(forbidden_pages_map);
1387 memory_bm_position_reset(free_pages_map);
1388
1389loop:
1390 fr_pfn = memory_bm_next_pfn(free_pages_map);
1391 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1392
1393 /*
1394 * Find the next bit set in both bitmaps. This is guaranteed to
1395 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1396 */
1397 do {
1398 if (fb_pfn < fr_pfn)
1399 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1400 if (fr_pfn < fb_pfn)
1401 fr_pfn = memory_bm_next_pfn(free_pages_map);
1402 } while (fb_pfn != fr_pfn);
1403
1404 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1405 struct page *page = pfn_to_page(fr_pfn);
1406
1407 memory_bm_clear_current(forbidden_pages_map);
1408 memory_bm_clear_current(free_pages_map);
1409 __free_page(page);
1410 goto loop;
25761b6e 1411 }
fdd64ed5
JR
1412
1413out:
f577eb30
RW
1414 nr_copy_pages = 0;
1415 nr_meta_pages = 0;
75534b50 1416 restore_pblist = NULL;
6e1819d6 1417 buffer = NULL;
64a473cb
RW
1418 alloc_normal = 0;
1419 alloc_highmem = 0;
25761b6e
RW
1420}
1421
4bb33435
RW
1422/* Helper functions used for the shrinking of memory. */
1423
1424#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1425
fe419535 1426/**
4bb33435
RW
1427 * preallocate_image_pages - Allocate a number of pages for hibernation image
1428 * @nr_pages: Number of page frames to allocate.
1429 * @mask: GFP flags to use for the allocation.
fe419535 1430 *
4bb33435
RW
1431 * Return value: Number of page frames actually allocated
1432 */
1433static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1434{
1435 unsigned long nr_alloc = 0;
1436
1437 while (nr_pages > 0) {
64a473cb
RW
1438 struct page *page;
1439
1440 page = alloc_image_page(mask);
1441 if (!page)
4bb33435 1442 break;
64a473cb
RW
1443 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1444 if (PageHighMem(page))
1445 alloc_highmem++;
1446 else
1447 alloc_normal++;
4bb33435
RW
1448 nr_pages--;
1449 nr_alloc++;
1450 }
1451
1452 return nr_alloc;
1453}
1454
6715045d
RW
1455static unsigned long preallocate_image_memory(unsigned long nr_pages,
1456 unsigned long avail_normal)
4bb33435 1457{
6715045d
RW
1458 unsigned long alloc;
1459
1460 if (avail_normal <= alloc_normal)
1461 return 0;
1462
1463 alloc = avail_normal - alloc_normal;
1464 if (nr_pages < alloc)
1465 alloc = nr_pages;
1466
1467 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1468}
1469
1470#ifdef CONFIG_HIGHMEM
1471static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1472{
1473 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1474}
1475
1476/**
1477 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1478 */
4bb33435
RW
1479static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1480{
1481 x *= multiplier;
1482 do_div(x, base);
1483 return (unsigned long)x;
1484}
fe419535 1485
4bb33435 1486static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1487 unsigned long highmem,
1488 unsigned long total)
fe419535 1489{
4bb33435
RW
1490 unsigned long alloc = __fraction(nr_pages, highmem, total);
1491
1492 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1493}
4bb33435
RW
1494#else /* CONFIG_HIGHMEM */
1495static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1496{
1497 return 0;
1498}
1499
1500static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
efd5a852
RW
1501 unsigned long highmem,
1502 unsigned long total)
4bb33435
RW
1503{
1504 return 0;
1505}
1506#endif /* CONFIG_HIGHMEM */
fe419535 1507
4bb33435 1508/**
64a473cb
RW
1509 * free_unnecessary_pages - Release preallocated pages not needed for the image
1510 */
a64fc82c 1511static unsigned long free_unnecessary_pages(void)
64a473cb 1512{
a64fc82c 1513 unsigned long save, to_free_normal, to_free_highmem, free;
64a473cb 1514
6715045d
RW
1515 save = count_data_pages();
1516 if (alloc_normal >= save) {
1517 to_free_normal = alloc_normal - save;
1518 save = 0;
1519 } else {
1520 to_free_normal = 0;
1521 save -= alloc_normal;
1522 }
1523 save += count_highmem_pages();
1524 if (alloc_highmem >= save) {
1525 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1526 } else {
1527 to_free_highmem = 0;
4d4cf23c
RW
1528 save -= alloc_highmem;
1529 if (to_free_normal > save)
1530 to_free_normal -= save;
1531 else
1532 to_free_normal = 0;
64a473cb 1533 }
a64fc82c 1534 free = to_free_normal + to_free_highmem;
64a473cb
RW
1535
1536 memory_bm_position_reset(&copy_bm);
1537
a9c9b442 1538 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1539 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1540 struct page *page = pfn_to_page(pfn);
1541
1542 if (PageHighMem(page)) {
1543 if (!to_free_highmem)
1544 continue;
1545 to_free_highmem--;
1546 alloc_highmem--;
1547 } else {
1548 if (!to_free_normal)
1549 continue;
1550 to_free_normal--;
1551 alloc_normal--;
1552 }
1553 memory_bm_clear_bit(&copy_bm, pfn);
1554 swsusp_unset_page_forbidden(page);
1555 swsusp_unset_page_free(page);
1556 __free_page(page);
1557 }
a64fc82c
WK
1558
1559 return free;
64a473cb
RW
1560}
1561
ef4aede3
RW
1562/**
1563 * minimum_image_size - Estimate the minimum acceptable size of an image
1564 * @saveable: Number of saveable pages in the system.
1565 *
1566 * We want to avoid attempting to free too much memory too hard, so estimate the
1567 * minimum acceptable size of a hibernation image to use as the lower limit for
1568 * preallocating memory.
1569 *
1570 * We assume that the minimum image size should be proportional to
1571 *
1572 * [number of saveable pages] - [number of pages that can be freed in theory]
1573 *
1574 * where the second term is the sum of (1) reclaimable slab pages, (2) active
4d434820 1575 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
ef4aede3
RW
1576 * minus mapped file pages.
1577 */
1578static unsigned long minimum_image_size(unsigned long saveable)
1579{
1580 unsigned long size;
1581
1582 size = global_page_state(NR_SLAB_RECLAIMABLE)
1583 + global_page_state(NR_ACTIVE_ANON)
1584 + global_page_state(NR_INACTIVE_ANON)
1585 + global_page_state(NR_ACTIVE_FILE)
1586 + global_page_state(NR_INACTIVE_FILE)
1587 - global_page_state(NR_FILE_MAPPED);
1588
1589 return saveable <= size ? 0 : saveable - size;
1590}
1591
64a473cb
RW
1592/**
1593 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1594 *
1595 * To create a hibernation image it is necessary to make a copy of every page
1596 * frame in use. We also need a number of page frames to be free during
1597 * hibernation for allocations made while saving the image and for device
1598 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1599 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1600 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1601 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1602 * total number of available page frames and allocate at least
4bb33435 1603 *
ddeb6487
RW
1604 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1605 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1606 *
1607 * of them, which corresponds to the maximum size of a hibernation image.
1608 *
1609 * If image_size is set below the number following from the above formula,
1610 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1611 * pages in the system is below the requested image size or the minimum
1612 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1613 */
64a473cb 1614int hibernate_preallocate_memory(void)
fe419535 1615{
fe419535 1616 struct zone *zone;
4bb33435 1617 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1618 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
db597605 1619 ktime_t start, stop;
64a473cb 1620 int error;
fe419535 1621
64a473cb 1622 printk(KERN_INFO "PM: Preallocating image memory... ");
db597605 1623 start = ktime_get();
fe419535 1624
64a473cb
RW
1625 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1626 if (error)
1627 goto err_out;
1628
1629 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1630 if (error)
1631 goto err_out;
1632
1633 alloc_normal = 0;
1634 alloc_highmem = 0;
1635
4bb33435 1636 /* Count the number of saveable data pages. */
64a473cb 1637 save_highmem = count_highmem_pages();
4bb33435 1638 saveable = count_data_pages();
fe419535 1639
4bb33435
RW
1640 /*
1641 * Compute the total number of page frames we can use (count) and the
1642 * number of pages needed for image metadata (size).
1643 */
1644 count = saveable;
64a473cb
RW
1645 saveable += save_highmem;
1646 highmem = save_highmem;
4bb33435
RW
1647 size = 0;
1648 for_each_populated_zone(zone) {
1649 size += snapshot_additional_pages(zone);
1650 if (is_highmem(zone))
1651 highmem += zone_page_state(zone, NR_FREE_PAGES);
1652 else
1653 count += zone_page_state(zone, NR_FREE_PAGES);
1654 }
6715045d 1655 avail_normal = count;
4bb33435
RW
1656 count += highmem;
1657 count -= totalreserve_pages;
1658
85055dd8
MS
1659 /* Add number of pages required for page keys (s390 only). */
1660 size += page_key_additional_pages(saveable);
1661
4bb33435 1662 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1663 max_size = (count - (size + PAGES_FOR_IO)) / 2
1664 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1665 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1666 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1667 if (size > max_size)
1668 size = max_size;
1669 /*
266f1a25
RW
1670 * If the desired number of image pages is at least as large as the
1671 * current number of saveable pages in memory, allocate page frames for
1672 * the image and we're done.
4bb33435 1673 */
64a473cb
RW
1674 if (size >= saveable) {
1675 pages = preallocate_image_highmem(save_highmem);
6715045d 1676 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1677 goto out;
64a473cb 1678 }
4bb33435 1679
ef4aede3
RW
1680 /* Estimate the minimum size of the image. */
1681 pages = minimum_image_size(saveable);
6715045d
RW
1682 /*
1683 * To avoid excessive pressure on the normal zone, leave room in it to
1684 * accommodate an image of the minimum size (unless it's already too
1685 * small, in which case don't preallocate pages from it at all).
1686 */
1687 if (avail_normal > pages)
1688 avail_normal -= pages;
1689 else
1690 avail_normal = 0;
ef4aede3
RW
1691 if (size < pages)
1692 size = min_t(unsigned long, pages, max_size);
1693
4bb33435
RW
1694 /*
1695 * Let the memory management subsystem know that we're going to need a
1696 * large number of page frames to allocate and make it free some memory.
1697 * NOTE: If this is not done, performance will be hurt badly in some
1698 * test cases.
1699 */
1700 shrink_all_memory(saveable - size);
1701
1702 /*
1703 * The number of saveable pages in memory was too high, so apply some
1704 * pressure to decrease it. First, make room for the largest possible
1705 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1706 * of the image as much as indicated by 'size' using allocations from
1707 * highmem and non-highmem zones separately.
4bb33435
RW
1708 */
1709 pages_highmem = preallocate_image_highmem(highmem / 2);
fd432b9f
AL
1710 alloc = count - max_size;
1711 if (alloc > pages_highmem)
1712 alloc -= pages_highmem;
1713 else
1714 alloc = 0;
6715045d
RW
1715 pages = preallocate_image_memory(alloc, avail_normal);
1716 if (pages < alloc) {
1717 /* We have exhausted non-highmem pages, try highmem. */
1718 alloc -= pages;
1719 pages += pages_highmem;
1720 pages_highmem = preallocate_image_highmem(alloc);
1721 if (pages_highmem < alloc)
1722 goto err_out;
1723 pages += pages_highmem;
1724 /*
1725 * size is the desired number of saveable pages to leave in
1726 * memory, so try to preallocate (all memory - size) pages.
1727 */
1728 alloc = (count - pages) - size;
1729 pages += preallocate_image_highmem(alloc);
1730 } else {
1731 /*
1732 * There are approximately max_size saveable pages at this point
1733 * and we want to reduce this number down to size.
1734 */
1735 alloc = max_size - size;
1736 size = preallocate_highmem_fraction(alloc, highmem, count);
1737 pages_highmem += size;
1738 alloc -= size;
1739 size = preallocate_image_memory(alloc, avail_normal);
1740 pages_highmem += preallocate_image_highmem(alloc - size);
1741 pages += pages_highmem + size;
1742 }
4bb33435 1743
64a473cb
RW
1744 /*
1745 * We only need as many page frames for the image as there are saveable
1746 * pages in memory, but we have allocated more. Release the excessive
1747 * ones now.
1748 */
a64fc82c 1749 pages -= free_unnecessary_pages();
4bb33435
RW
1750
1751 out:
db597605 1752 stop = ktime_get();
64a473cb 1753 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
db597605 1754 swsusp_show_speed(start, stop, pages, "Allocated");
fe419535
RW
1755
1756 return 0;
64a473cb
RW
1757
1758 err_out:
1759 printk(KERN_CONT "\n");
1760 swsusp_free();
1761 return -ENOMEM;
fe419535
RW
1762}
1763
8357376d
RW
1764#ifdef CONFIG_HIGHMEM
1765/**
1766 * count_pages_for_highmem - compute the number of non-highmem pages
1767 * that will be necessary for creating copies of highmem pages.
1768 */
1769
1770static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1771{
64a473cb 1772 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1773
1774 if (free_highmem >= nr_highmem)
1775 nr_highmem = 0;
1776 else
1777 nr_highmem -= free_highmem;
1778
1779 return nr_highmem;
1780}
1781#else
efd5a852 1782static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
8357376d 1783#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1784
1785/**
8357376d
RW
1786 * enough_free_mem - Make sure we have enough free memory for the
1787 * snapshot image.
25761b6e
RW
1788 */
1789
8357376d 1790static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1791{
e5e2fa78 1792 struct zone *zone;
64a473cb 1793 unsigned int free = alloc_normal;
e5e2fa78 1794
98e73dc5 1795 for_each_populated_zone(zone)
8357376d 1796 if (!is_highmem(zone))
d23ad423 1797 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1798
8357376d 1799 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1800 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1801 nr_pages, PAGES_FOR_IO, free);
940864dd 1802
64a473cb 1803 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1804}
1805
8357376d
RW
1806#ifdef CONFIG_HIGHMEM
1807/**
1808 * get_highmem_buffer - if there are some highmem pages in the suspend
1809 * image, we may need the buffer to copy them and/or load their data.
1810 */
1811
1812static inline int get_highmem_buffer(int safe_needed)
1813{
1814 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1815 return buffer ? 0 : -ENOMEM;
1816}
1817
1818/**
1819 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1820 * Try to allocate as many pages as needed, but if the number of free
1821 * highmem pages is lesser than that, allocate them all.
1822 */
1823
efd5a852
RW
1824static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1825 unsigned int nr_highmem)
8357376d
RW
1826{
1827 unsigned int to_alloc = count_free_highmem_pages();
1828
1829 if (to_alloc > nr_highmem)
1830 to_alloc = nr_highmem;
1831
1832 nr_highmem -= to_alloc;
1833 while (to_alloc-- > 0) {
1834 struct page *page;
1835
d0164adc 1836 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
8357376d
RW
1837 memory_bm_set_bit(bm, page_to_pfn(page));
1838 }
1839 return nr_highmem;
1840}
1841#else
1842static inline int get_highmem_buffer(int safe_needed) { return 0; }
1843
efd5a852
RW
1844static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1845 unsigned int n) { return 0; }
8357376d
RW
1846#endif /* CONFIG_HIGHMEM */
1847
1848/**
1849 * swsusp_alloc - allocate memory for the suspend image
1850 *
1851 * We first try to allocate as many highmem pages as there are
1852 * saveable highmem pages in the system. If that fails, we allocate
1853 * non-highmem pages for the copies of the remaining highmem ones.
1854 *
1855 * In this approach it is likely that the copies of highmem pages will
1856 * also be located in the high memory, because of the way in which
1857 * copy_data_pages() works.
1858 */
1859
efd5a852
RW
1860static int swsusp_alloc(struct memory_bitmap *orig_bm,
1861 struct memory_bitmap *copy_bm,
1862 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1863{
8357376d 1864 if (nr_highmem > 0) {
2e725a06 1865 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1866 goto err_out;
1867 if (nr_highmem > alloc_highmem) {
1868 nr_highmem -= alloc_highmem;
1869 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1870 }
8357376d 1871 }
64a473cb
RW
1872 if (nr_pages > alloc_normal) {
1873 nr_pages -= alloc_normal;
1874 while (nr_pages-- > 0) {
1875 struct page *page;
1876
1877 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1878 if (!page)
1879 goto err_out;
1880 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1881 }
25761b6e 1882 }
64a473cb 1883
b788db79 1884 return 0;
25761b6e 1885
64a473cb 1886 err_out:
b788db79 1887 swsusp_free();
2e725a06 1888 return -ENOMEM;
25761b6e
RW
1889}
1890
722a9f92 1891asmlinkage __visible int swsusp_save(void)
25761b6e 1892{
8357376d 1893 unsigned int nr_pages, nr_highmem;
25761b6e 1894
07c3bb57 1895 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1896
9f8f2172 1897 drain_local_pages(NULL);
a0f49651 1898 nr_pages = count_data_pages();
8357376d 1899 nr_highmem = count_highmem_pages();
23976728 1900 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1901
8357376d 1902 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1903 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1904 return -ENOMEM;
1905 }
1906
8357376d 1907 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1908 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1909 return -ENOMEM;
8357376d 1910 }
25761b6e
RW
1911
1912 /* During allocating of suspend pagedir, new cold pages may appear.
1913 * Kill them.
1914 */
9f8f2172 1915 drain_local_pages(NULL);
b788db79 1916 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1917
1918 /*
1919 * End of critical section. From now on, we can write to memory,
1920 * but we should not touch disk. This specially means we must _not_
1921 * touch swap space! Except we must write out our image of course.
1922 */
1923
8357376d 1924 nr_pages += nr_highmem;
a0f49651 1925 nr_copy_pages = nr_pages;
8357376d 1926 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1927
23976728
RW
1928 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1929 nr_pages);
8357376d 1930
25761b6e
RW
1931 return 0;
1932}
f577eb30 1933
d307c4a8
RW
1934#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1935static int init_header_complete(struct swsusp_info *info)
f577eb30 1936{
d307c4a8 1937 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1938 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1939 return 0;
1940}
1941
1942static char *check_image_kernel(struct swsusp_info *info)
1943{
1944 if (info->version_code != LINUX_VERSION_CODE)
1945 return "kernel version";
1946 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1947 return "system type";
1948 if (strcmp(info->uts.release,init_utsname()->release))
1949 return "kernel release";
1950 if (strcmp(info->uts.version,init_utsname()->version))
1951 return "version";
1952 if (strcmp(info->uts.machine,init_utsname()->machine))
1953 return "machine";
1954 return NULL;
1955}
1956#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1957
af508b34
RW
1958unsigned long snapshot_get_image_size(void)
1959{
1960 return nr_copy_pages + nr_meta_pages + 1;
1961}
1962
d307c4a8
RW
1963static int init_header(struct swsusp_info *info)
1964{
1965 memset(info, 0, sizeof(struct swsusp_info));
0ed5fd13 1966 info->num_physpages = get_num_physpages();
f577eb30 1967 info->image_pages = nr_copy_pages;
af508b34 1968 info->pages = snapshot_get_image_size();
6e1819d6
RW
1969 info->size = info->pages;
1970 info->size <<= PAGE_SHIFT;
d307c4a8 1971 return init_header_complete(info);
f577eb30
RW
1972}
1973
1974/**
940864dd
RW
1975 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1976 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1977 */
1978
efd5a852 1979static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1980{
1981 int j;
1982
b788db79 1983 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1984 buf[j] = memory_bm_next_pfn(bm);
1985 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1986 break;
85055dd8
MS
1987 /* Save page key for data page (s390 only). */
1988 page_key_read(buf + j);
f577eb30 1989 }
f577eb30
RW
1990}
1991
1992/**
1993 * snapshot_read_next - used for reading the system memory snapshot.
1994 *
1995 * On the first call to it @handle should point to a zeroed
1996 * snapshot_handle structure. The structure gets updated and a pointer
1997 * to it should be passed to this function every next time.
1998 *
f577eb30
RW
1999 * On success the function returns a positive number. Then, the caller
2000 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 2001 * location computed by the data_of() macro.
f577eb30
RW
2002 *
2003 * The function returns 0 to indicate the end of data stream condition,
2004 * and a negative number is returned on error. In such cases the
2005 * structure pointed to by @handle is not updated and should not be used
2006 * any more.
2007 */
2008
d3c1b24c 2009int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 2010{
fb13a28b 2011 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2012 return 0;
b788db79 2013
f577eb30
RW
2014 if (!buffer) {
2015 /* This makes the buffer be freed by swsusp_free() */
8357376d 2016 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
2017 if (!buffer)
2018 return -ENOMEM;
2019 }
d3c1b24c 2020 if (!handle->cur) {
d307c4a8
RW
2021 int error;
2022
2023 error = init_header((struct swsusp_info *)buffer);
2024 if (error)
2025 return error;
f577eb30 2026 handle->buffer = buffer;
b788db79
RW
2027 memory_bm_position_reset(&orig_bm);
2028 memory_bm_position_reset(&copy_bm);
d3c1b24c 2029 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 2030 clear_page(buffer);
d3c1b24c
JS
2031 pack_pfns(buffer, &orig_bm);
2032 } else {
2033 struct page *page;
b788db79 2034
d3c1b24c
JS
2035 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2036 if (PageHighMem(page)) {
2037 /* Highmem pages are copied to the buffer,
2038 * because we can't return with a kmapped
2039 * highmem page (we may not be called again).
2040 */
2041 void *kaddr;
8357376d 2042
0de9a1e2 2043 kaddr = kmap_atomic(page);
3ecb01df 2044 copy_page(buffer, kaddr);
0de9a1e2 2045 kunmap_atomic(kaddr);
d3c1b24c
JS
2046 handle->buffer = buffer;
2047 } else {
2048 handle->buffer = page_address(page);
f577eb30 2049 }
f577eb30 2050 }
d3c1b24c
JS
2051 handle->cur++;
2052 return PAGE_SIZE;
f577eb30
RW
2053}
2054
6dbecfd3
RW
2055static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2056 struct memory_bitmap *src)
2057{
2058 unsigned long pfn;
2059
2060 memory_bm_position_reset(src);
2061 pfn = memory_bm_next_pfn(src);
2062 while (pfn != BM_END_OF_MAP) {
2063 memory_bm_set_bit(dst, pfn);
2064 pfn = memory_bm_next_pfn(src);
2065 }
2066}
2067
f577eb30
RW
2068/**
2069 * mark_unsafe_pages - mark the pages that cannot be used for storing
2070 * the image during resume, because they conflict with the pages that
2071 * had been used before suspend
2072 */
2073
6dbecfd3 2074static void mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30 2075{
6dbecfd3 2076 unsigned long pfn;
f577eb30 2077
6dbecfd3
RW
2078 /* Clear the "free"/"unsafe" bit for all PFNs */
2079 memory_bm_position_reset(free_pages_map);
2080 pfn = memory_bm_next_pfn(free_pages_map);
2081 while (pfn != BM_END_OF_MAP) {
2082 memory_bm_clear_current(free_pages_map);
2083 pfn = memory_bm_next_pfn(free_pages_map);
f577eb30
RW
2084 }
2085
6dbecfd3
RW
2086 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2087 duplicate_memory_bitmap(free_pages_map, bm);
f577eb30 2088
940864dd 2089 allocated_unsafe_pages = 0;
f577eb30
RW
2090}
2091
d307c4a8 2092static int check_header(struct swsusp_info *info)
f577eb30 2093{
d307c4a8 2094 char *reason;
f577eb30 2095
d307c4a8 2096 reason = check_image_kernel(info);
0ed5fd13 2097 if (!reason && info->num_physpages != get_num_physpages())
f577eb30 2098 reason = "memory size";
f577eb30 2099 if (reason) {
23976728 2100 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
2101 return -EPERM;
2102 }
2103 return 0;
2104}
2105
2106/**
2107 * load header - check the image header and copy data from it
2108 */
2109
efd5a852 2110static int load_header(struct swsusp_info *info)
f577eb30
RW
2111{
2112 int error;
f577eb30 2113
940864dd 2114 restore_pblist = NULL;
f577eb30
RW
2115 error = check_header(info);
2116 if (!error) {
f577eb30
RW
2117 nr_copy_pages = info->image_pages;
2118 nr_meta_pages = info->pages - info->image_pages - 1;
2119 }
2120 return error;
2121}
2122
2123/**
940864dd
RW
2124 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2125 * the corresponding bit in the memory bitmap @bm
f577eb30 2126 */
69643279 2127static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
2128{
2129 int j;
2130
940864dd
RW
2131 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2132 if (unlikely(buf[j] == BM_END_OF_MAP))
2133 break;
2134
85055dd8
MS
2135 /* Extract and buffer page key for data page (s390 only). */
2136 page_key_memorize(buf + j);
2137
6dbecfd3 2138 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
69643279
RW
2139 memory_bm_set_bit(bm, buf[j]);
2140 else
2141 return -EFAULT;
f577eb30 2142 }
69643279
RW
2143
2144 return 0;
f577eb30
RW
2145}
2146
8357376d
RW
2147#ifdef CONFIG_HIGHMEM
2148/* struct highmem_pbe is used for creating the list of highmem pages that
2149 * should be restored atomically during the resume from disk, because the page
2150 * frames they have occupied before the suspend are in use.
2151 */
2152struct highmem_pbe {
2153 struct page *copy_page; /* data is here now */
2154 struct page *orig_page; /* data was here before the suspend */
2155 struct highmem_pbe *next;
2156};
2157
2158/* List of highmem PBEs needed for restoring the highmem pages that were
2159 * allocated before the suspend and included in the suspend image, but have
2160 * also been allocated by the "resume" kernel, so their contents cannot be
2161 * written directly to their "original" page frames.
2162 */
2163static struct highmem_pbe *highmem_pblist;
2164
2165/**
2166 * count_highmem_image_pages - compute the number of highmem pages in the
2167 * suspend image. The bits in the memory bitmap @bm that correspond to the
2168 * image pages are assumed to be set.
2169 */
2170
2171static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2172{
2173 unsigned long pfn;
2174 unsigned int cnt = 0;
2175
2176 memory_bm_position_reset(bm);
2177 pfn = memory_bm_next_pfn(bm);
2178 while (pfn != BM_END_OF_MAP) {
2179 if (PageHighMem(pfn_to_page(pfn)))
2180 cnt++;
2181
2182 pfn = memory_bm_next_pfn(bm);
2183 }
2184 return cnt;
2185}
2186
2187/**
2188 * prepare_highmem_image - try to allocate as many highmem pages as
2189 * there are highmem image pages (@nr_highmem_p points to the variable
2190 * containing the number of highmem image pages). The pages that are
2191 * "safe" (ie. will not be overwritten when the suspend image is
2192 * restored) have the corresponding bits set in @bm (it must be
2193 * unitialized).
2194 *
2195 * NOTE: This function should not be called if there are no highmem
2196 * image pages.
2197 */
2198
2199static unsigned int safe_highmem_pages;
2200
2201static struct memory_bitmap *safe_highmem_bm;
2202
efd5a852
RW
2203static int prepare_highmem_image(struct memory_bitmap *bm,
2204 unsigned int *nr_highmem_p)
8357376d
RW
2205{
2206 unsigned int to_alloc;
2207
2208 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2209 return -ENOMEM;
2210
2211 if (get_highmem_buffer(PG_SAFE))
2212 return -ENOMEM;
2213
2214 to_alloc = count_free_highmem_pages();
2215 if (to_alloc > *nr_highmem_p)
2216 to_alloc = *nr_highmem_p;
2217 else
2218 *nr_highmem_p = to_alloc;
2219
2220 safe_highmem_pages = 0;
2221 while (to_alloc-- > 0) {
2222 struct page *page;
2223
2224 page = alloc_page(__GFP_HIGHMEM);
7be98234 2225 if (!swsusp_page_is_free(page)) {
8357376d
RW
2226 /* The page is "safe", set its bit the bitmap */
2227 memory_bm_set_bit(bm, page_to_pfn(page));
2228 safe_highmem_pages++;
2229 }
2230 /* Mark the page as allocated */
7be98234
RW
2231 swsusp_set_page_forbidden(page);
2232 swsusp_set_page_free(page);
8357376d
RW
2233 }
2234 memory_bm_position_reset(bm);
2235 safe_highmem_bm = bm;
2236 return 0;
2237}
2238
2239/**
2240 * get_highmem_page_buffer - for given highmem image page find the buffer
2241 * that suspend_write_next() should set for its caller to write to.
2242 *
2243 * If the page is to be saved to its "original" page frame or a copy of
2244 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2245 * the copy of the page is to be made in normal memory, so the address of
2246 * the copy is returned.
2247 *
2248 * If @buffer is returned, the caller of suspend_write_next() will write
2249 * the page's contents to @buffer, so they will have to be copied to the
2250 * right location on the next call to suspend_write_next() and it is done
2251 * with the help of copy_last_highmem_page(). For this purpose, if
2252 * @buffer is returned, @last_highmem page is set to the page to which
2253 * the data will have to be copied from @buffer.
2254 */
2255
2256static struct page *last_highmem_page;
2257
efd5a852
RW
2258static void *get_highmem_page_buffer(struct page *page,
2259 struct chain_allocator *ca)
8357376d
RW
2260{
2261 struct highmem_pbe *pbe;
2262 void *kaddr;
2263
7be98234 2264 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
2265 /* We have allocated the "original" page frame and we can
2266 * use it directly to store the loaded page.
2267 */
2268 last_highmem_page = page;
2269 return buffer;
2270 }
2271 /* The "original" page frame has not been allocated and we have to
2272 * use a "safe" page frame to store the loaded page.
2273 */
2274 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2275 if (!pbe) {
2276 swsusp_free();
69643279 2277 return ERR_PTR(-ENOMEM);
8357376d
RW
2278 }
2279 pbe->orig_page = page;
2280 if (safe_highmem_pages > 0) {
2281 struct page *tmp;
2282
2283 /* Copy of the page will be stored in high memory */
2284 kaddr = buffer;
2285 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2286 safe_highmem_pages--;
2287 last_highmem_page = tmp;
2288 pbe->copy_page = tmp;
2289 } else {
2290 /* Copy of the page will be stored in normal memory */
2291 kaddr = safe_pages_list;
2292 safe_pages_list = safe_pages_list->next;
2293 pbe->copy_page = virt_to_page(kaddr);
2294 }
2295 pbe->next = highmem_pblist;
2296 highmem_pblist = pbe;
2297 return kaddr;
2298}
2299
2300/**
2301 * copy_last_highmem_page - copy the contents of a highmem image from
2302 * @buffer, where the caller of snapshot_write_next() has place them,
2303 * to the right location represented by @last_highmem_page .
2304 */
2305
2306static void copy_last_highmem_page(void)
2307{
2308 if (last_highmem_page) {
2309 void *dst;
2310
0de9a1e2 2311 dst = kmap_atomic(last_highmem_page);
3ecb01df 2312 copy_page(dst, buffer);
0de9a1e2 2313 kunmap_atomic(dst);
8357376d
RW
2314 last_highmem_page = NULL;
2315 }
2316}
2317
2318static inline int last_highmem_page_copied(void)
2319{
2320 return !last_highmem_page;
2321}
2322
2323static inline void free_highmem_data(void)
2324{
2325 if (safe_highmem_bm)
2326 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2327
2328 if (buffer)
2329 free_image_page(buffer, PG_UNSAFE_CLEAR);
2330}
2331#else
efd5a852 2332static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
8357376d 2333
efd5a852
RW
2334static inline int prepare_highmem_image(struct memory_bitmap *bm,
2335 unsigned int *nr_highmem_p) { return 0; }
8357376d 2336
efd5a852
RW
2337static inline void *get_highmem_page_buffer(struct page *page,
2338 struct chain_allocator *ca)
8357376d 2339{
69643279 2340 return ERR_PTR(-EINVAL);
8357376d
RW
2341}
2342
2343static inline void copy_last_highmem_page(void) {}
2344static inline int last_highmem_page_copied(void) { return 1; }
2345static inline void free_highmem_data(void) {}
2346#endif /* CONFIG_HIGHMEM */
2347
f577eb30 2348/**
940864dd
RW
2349 * prepare_image - use the memory bitmap @bm to mark the pages that will
2350 * be overwritten in the process of restoring the system memory state
2351 * from the suspend image ("unsafe" pages) and allocate memory for the
2352 * image.
968808b8 2353 *
940864dd
RW
2354 * The idea is to allocate a new memory bitmap first and then allocate
2355 * as many pages as needed for the image data, but not to assign these
2356 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2357 * allocated and create a lists of "safe" pages that will be used
2358 * later. On systems with high memory a list of "safe" highmem pages is
2359 * also created.
f577eb30
RW
2360 */
2361
940864dd
RW
2362#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2363
efd5a852 2364static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2365{
8357376d 2366 unsigned int nr_pages, nr_highmem;
9c744481 2367 struct linked_page *lp;
940864dd 2368 int error;
f577eb30 2369
8357376d
RW
2370 /* If there is no highmem, the buffer will not be necessary */
2371 free_image_page(buffer, PG_UNSAFE_CLEAR);
2372 buffer = NULL;
2373
2374 nr_highmem = count_highmem_image_pages(bm);
6dbecfd3 2375 mark_unsafe_pages(bm);
940864dd
RW
2376
2377 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2378 if (error)
2379 goto Free;
2380
2381 duplicate_memory_bitmap(new_bm, bm);
2382 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2383 if (nr_highmem > 0) {
2384 error = prepare_highmem_image(bm, &nr_highmem);
2385 if (error)
2386 goto Free;
2387 }
940864dd
RW
2388 /* Reserve some safe pages for potential later use.
2389 *
2390 * NOTE: This way we make sure there will be enough safe pages for the
2391 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2392 * nr_copy_pages cannot be greater than 50% of the memory anyway.
9c744481
RW
2393 *
2394 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
940864dd 2395 */
8357376d 2396 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2397 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2398 while (nr_pages > 0) {
8357376d 2399 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2400 if (!lp) {
f577eb30 2401 error = -ENOMEM;
940864dd
RW
2402 goto Free;
2403 }
9c744481
RW
2404 lp->next = safe_pages_list;
2405 safe_pages_list = lp;
940864dd 2406 nr_pages--;
f577eb30 2407 }
940864dd 2408 /* Preallocate memory for the image */
8357376d 2409 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2410 while (nr_pages > 0) {
2411 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2412 if (!lp) {
2413 error = -ENOMEM;
2414 goto Free;
2415 }
7be98234 2416 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2417 /* The page is "safe", add it to the list */
2418 lp->next = safe_pages_list;
2419 safe_pages_list = lp;
968808b8 2420 }
940864dd 2421 /* Mark the page as allocated */
7be98234
RW
2422 swsusp_set_page_forbidden(virt_to_page(lp));
2423 swsusp_set_page_free(virt_to_page(lp));
940864dd 2424 nr_pages--;
968808b8 2425 }
940864dd
RW
2426 return 0;
2427
59a49335 2428 Free:
940864dd 2429 swsusp_free();
f577eb30
RW
2430 return error;
2431}
2432
940864dd
RW
2433/**
2434 * get_buffer - compute the address that snapshot_write_next() should
2435 * set for its caller to write to.
2436 */
2437
2438static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2439{
940864dd 2440 struct pbe *pbe;
69643279
RW
2441 struct page *page;
2442 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2443
69643279
RW
2444 if (pfn == BM_END_OF_MAP)
2445 return ERR_PTR(-EFAULT);
2446
2447 page = pfn_to_page(pfn);
8357376d
RW
2448 if (PageHighMem(page))
2449 return get_highmem_page_buffer(page, ca);
2450
7be98234 2451 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2452 /* We have allocated the "original" page frame and we can
2453 * use it directly to store the loaded page.
968808b8 2454 */
940864dd
RW
2455 return page_address(page);
2456
2457 /* The "original" page frame has not been allocated and we have to
2458 * use a "safe" page frame to store the loaded page.
968808b8 2459 */
940864dd
RW
2460 pbe = chain_alloc(ca, sizeof(struct pbe));
2461 if (!pbe) {
2462 swsusp_free();
69643279 2463 return ERR_PTR(-ENOMEM);
940864dd 2464 }
8357376d
RW
2465 pbe->orig_address = page_address(page);
2466 pbe->address = safe_pages_list;
940864dd
RW
2467 safe_pages_list = safe_pages_list->next;
2468 pbe->next = restore_pblist;
2469 restore_pblist = pbe;
8357376d 2470 return pbe->address;
968808b8
RW
2471}
2472
f577eb30
RW
2473/**
2474 * snapshot_write_next - used for writing the system memory snapshot.
2475 *
2476 * On the first call to it @handle should point to a zeroed
2477 * snapshot_handle structure. The structure gets updated and a pointer
2478 * to it should be passed to this function every next time.
2479 *
f577eb30
RW
2480 * On success the function returns a positive number. Then, the caller
2481 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2482 * location computed by the data_of() macro.
f577eb30
RW
2483 *
2484 * The function returns 0 to indicate the "end of file" condition,
2485 * and a negative number is returned on error. In such cases the
2486 * structure pointed to by @handle is not updated and should not be used
2487 * any more.
2488 */
2489
d3c1b24c 2490int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2491{
940864dd 2492 static struct chain_allocator ca;
f577eb30
RW
2493 int error = 0;
2494
940864dd 2495 /* Check if we have already loaded the entire image */
d3c1b24c 2496 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2497 return 0;
940864dd 2498
d3c1b24c
JS
2499 handle->sync_read = 1;
2500
2501 if (!handle->cur) {
8357376d
RW
2502 if (!buffer)
2503 /* This makes the buffer be freed by swsusp_free() */
2504 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2505
f577eb30
RW
2506 if (!buffer)
2507 return -ENOMEM;
8357376d 2508
f577eb30 2509 handle->buffer = buffer;
d3c1b24c
JS
2510 } else if (handle->cur == 1) {
2511 error = load_header(buffer);
2512 if (error)
2513 return error;
940864dd 2514
9c744481
RW
2515 safe_pages_list = NULL;
2516
d3c1b24c
JS
2517 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2518 if (error)
2519 return error;
2520
85055dd8
MS
2521 /* Allocate buffer for page keys. */
2522 error = page_key_alloc(nr_copy_pages);
2523 if (error)
2524 return error;
2525
d3c1b24c
JS
2526 } else if (handle->cur <= nr_meta_pages + 1) {
2527 error = unpack_orig_pfns(buffer, &copy_bm);
2528 if (error)
2529 return error;
940864dd 2530
d3c1b24c
JS
2531 if (handle->cur == nr_meta_pages + 1) {
2532 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2533 if (error)
2534 return error;
2535
d3c1b24c
JS
2536 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2537 memory_bm_position_reset(&orig_bm);
2538 restore_pblist = NULL;
940864dd 2539 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2540 handle->sync_read = 0;
69643279
RW
2541 if (IS_ERR(handle->buffer))
2542 return PTR_ERR(handle->buffer);
f577eb30 2543 }
f577eb30 2544 } else {
d3c1b24c 2545 copy_last_highmem_page();
85055dd8
MS
2546 /* Restore page key for data page (s390 only). */
2547 page_key_write(handle->buffer);
d3c1b24c
JS
2548 handle->buffer = get_buffer(&orig_bm, &ca);
2549 if (IS_ERR(handle->buffer))
2550 return PTR_ERR(handle->buffer);
2551 if (handle->buffer != buffer)
2552 handle->sync_read = 0;
f577eb30 2553 }
d3c1b24c
JS
2554 handle->cur++;
2555 return PAGE_SIZE;
f577eb30
RW
2556}
2557
8357376d
RW
2558/**
2559 * snapshot_write_finalize - must be called after the last call to
2560 * snapshot_write_next() in case the last page in the image happens
2561 * to be a highmem page and its contents should be stored in the
2562 * highmem. Additionally, it releases the memory that will not be
2563 * used any more.
2564 */
2565
2566void snapshot_write_finalize(struct snapshot_handle *handle)
2567{
2568 copy_last_highmem_page();
85055dd8
MS
2569 /* Restore page key for data page (s390 only). */
2570 page_key_write(handle->buffer);
2571 page_key_free();
307c5971 2572 /* Do that only if we have loaded the image entirely */
d3c1b24c 2573 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
307c5971 2574 memory_bm_recycle(&orig_bm);
8357376d
RW
2575 free_highmem_data();
2576 }
2577}
2578
f577eb30
RW
2579int snapshot_image_loaded(struct snapshot_handle *handle)
2580{
8357376d 2581 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2582 handle->cur <= nr_meta_pages + nr_copy_pages);
2583}
2584
8357376d
RW
2585#ifdef CONFIG_HIGHMEM
2586/* Assumes that @buf is ready and points to a "safe" page */
efd5a852
RW
2587static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2588 void *buf)
940864dd 2589{
8357376d
RW
2590 void *kaddr1, *kaddr2;
2591
0de9a1e2
CW
2592 kaddr1 = kmap_atomic(p1);
2593 kaddr2 = kmap_atomic(p2);
3ecb01df
JB
2594 copy_page(buf, kaddr1);
2595 copy_page(kaddr1, kaddr2);
2596 copy_page(kaddr2, buf);
0de9a1e2
CW
2597 kunmap_atomic(kaddr2);
2598 kunmap_atomic(kaddr1);
8357376d
RW
2599}
2600
2601/**
2602 * restore_highmem - for each highmem page that was allocated before
2603 * the suspend and included in the suspend image, and also has been
2604 * allocated by the "resume" kernel swap its current (ie. "before
2605 * resume") contents with the previous (ie. "before suspend") one.
2606 *
2607 * If the resume eventually fails, we can call this function once
2608 * again and restore the "before resume" highmem state.
2609 */
2610
2611int restore_highmem(void)
2612{
2613 struct highmem_pbe *pbe = highmem_pblist;
2614 void *buf;
2615
2616 if (!pbe)
2617 return 0;
2618
2619 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2620 if (!buf)
2621 return -ENOMEM;
2622
2623 while (pbe) {
2624 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2625 pbe = pbe->next;
2626 }
2627 free_image_page(buf, PG_UNSAFE_CLEAR);
2628 return 0;
f577eb30 2629}
8357376d 2630#endif /* CONFIG_HIGHMEM */
This page took 0.904568 seconds and 5 git commands to generate.