rcutorture: Default to grace-period-initialization delays
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
a41bfeb2 94struct rcu_state sname##_state = { \
6c90cc7b 95 .level = { &sname##_state.node[0] }, \
037b64ed 96 .call = cr, \
af446b70 97 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 104 .name = RCU_STATE_NAME(sname), \
a4889858 105 .abbr = sabbr, \
a41bfeb2 106}; \
11bbb235 107DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
64db4cff 108
a41bfeb2
SRRH
109RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 111
e534165b 112static struct rcu_state *rcu_state_p;
6ce75a23 113LIST_HEAD(rcu_struct_flavors);
27f4d280 114
f885b7f2
PM
115/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
116static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 117module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
118int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
119static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
120 NUM_RCU_LVL_0,
121 NUM_RCU_LVL_1,
122 NUM_RCU_LVL_2,
123 NUM_RCU_LVL_3,
124 NUM_RCU_LVL_4,
125};
126int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
127
b0d30417
PM
128/*
129 * The rcu_scheduler_active variable transitions from zero to one just
130 * before the first task is spawned. So when this variable is zero, RCU
131 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 132 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
133 * is one, RCU must actually do all the hard work required to detect real
134 * grace periods. This variable is also used to suppress boot-time false
135 * positives from lockdep-RCU error checking.
136 */
bbad9379
PM
137int rcu_scheduler_active __read_mostly;
138EXPORT_SYMBOL_GPL(rcu_scheduler_active);
139
b0d30417
PM
140/*
141 * The rcu_scheduler_fully_active variable transitions from zero to one
142 * during the early_initcall() processing, which is after the scheduler
143 * is capable of creating new tasks. So RCU processing (for example,
144 * creating tasks for RCU priority boosting) must be delayed until after
145 * rcu_scheduler_fully_active transitions from zero to one. We also
146 * currently delay invocation of any RCU callbacks until after this point.
147 *
148 * It might later prove better for people registering RCU callbacks during
149 * early boot to take responsibility for these callbacks, but one step at
150 * a time.
151 */
152static int rcu_scheduler_fully_active __read_mostly;
153
0aa04b05
PM
154static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
155static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 156static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
157static void invoke_rcu_core(void);
158static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 159
a94844b2
PM
160/* rcuc/rcub kthread realtime priority */
161static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
162module_param(kthread_prio, int, 0644);
163
37745d28
PM
164/* Delay in jiffies for grace-period initialization delays. */
165static int gp_init_delay = IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT)
166 ? CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
167 : 0;
168module_param(gp_init_delay, int, 0644);
169
4a298656
PM
170/*
171 * Track the rcutorture test sequence number and the update version
172 * number within a given test. The rcutorture_testseq is incremented
173 * on every rcutorture module load and unload, so has an odd value
174 * when a test is running. The rcutorture_vernum is set to zero
175 * when rcutorture starts and is incremented on each rcutorture update.
176 * These variables enable correlating rcutorture output with the
177 * RCU tracing information.
178 */
179unsigned long rcutorture_testseq;
180unsigned long rcutorture_vernum;
181
0aa04b05
PM
182/*
183 * Compute the mask of online CPUs for the specified rcu_node structure.
184 * This will not be stable unless the rcu_node structure's ->lock is
185 * held, but the bit corresponding to the current CPU will be stable
186 * in most contexts.
187 */
188unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
189{
190 return ACCESS_ONCE(rnp->qsmaskinitnext);
191}
192
fc2219d4
PM
193/*
194 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
195 * permit this function to be invoked without holding the root rcu_node
196 * structure's ->lock, but of course results can be subject to change.
197 */
198static int rcu_gp_in_progress(struct rcu_state *rsp)
199{
200 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
201}
202
b1f77b05 203/*
d6714c22 204 * Note a quiescent state. Because we do not need to know
b1f77b05 205 * how many quiescent states passed, just if there was at least
d6714c22 206 * one since the start of the grace period, this just sets a flag.
e4cc1f22 207 * The caller must have disabled preemption.
b1f77b05 208 */
284a8c93 209void rcu_sched_qs(void)
b1f77b05 210{
284a8c93
PM
211 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
212 trace_rcu_grace_period(TPS("rcu_sched"),
213 __this_cpu_read(rcu_sched_data.gpnum),
214 TPS("cpuqs"));
215 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
216 }
b1f77b05
IM
217}
218
284a8c93 219void rcu_bh_qs(void)
b1f77b05 220{
284a8c93
PM
221 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
222 trace_rcu_grace_period(TPS("rcu_bh"),
223 __this_cpu_read(rcu_bh_data.gpnum),
224 TPS("cpuqs"));
225 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
226 }
b1f77b05 227}
64db4cff 228
4a81e832
PM
229static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
230
231static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
232 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
233 .dynticks = ATOMIC_INIT(1),
234#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
235 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
236 .dynticks_idle = ATOMIC_INIT(1),
237#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
238};
239
5cd37193
PM
240DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
241EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
242
4a81e832
PM
243/*
244 * Let the RCU core know that this CPU has gone through the scheduler,
245 * which is a quiescent state. This is called when the need for a
246 * quiescent state is urgent, so we burn an atomic operation and full
247 * memory barriers to let the RCU core know about it, regardless of what
248 * this CPU might (or might not) do in the near future.
249 *
250 * We inform the RCU core by emulating a zero-duration dyntick-idle
251 * period, which we in turn do by incrementing the ->dynticks counter
252 * by two.
253 */
254static void rcu_momentary_dyntick_idle(void)
255{
256 unsigned long flags;
257 struct rcu_data *rdp;
258 struct rcu_dynticks *rdtp;
259 int resched_mask;
260 struct rcu_state *rsp;
261
262 local_irq_save(flags);
263
264 /*
265 * Yes, we can lose flag-setting operations. This is OK, because
266 * the flag will be set again after some delay.
267 */
268 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
269 raw_cpu_write(rcu_sched_qs_mask, 0);
270
271 /* Find the flavor that needs a quiescent state. */
272 for_each_rcu_flavor(rsp) {
273 rdp = raw_cpu_ptr(rsp->rda);
274 if (!(resched_mask & rsp->flavor_mask))
275 continue;
276 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
277 if (ACCESS_ONCE(rdp->mynode->completed) !=
278 ACCESS_ONCE(rdp->cond_resched_completed))
279 continue;
280
281 /*
282 * Pretend to be momentarily idle for the quiescent state.
283 * This allows the grace-period kthread to record the
284 * quiescent state, with no need for this CPU to do anything
285 * further.
286 */
287 rdtp = this_cpu_ptr(&rcu_dynticks);
288 smp_mb__before_atomic(); /* Earlier stuff before QS. */
289 atomic_add(2, &rdtp->dynticks); /* QS. */
290 smp_mb__after_atomic(); /* Later stuff after QS. */
291 break;
292 }
293 local_irq_restore(flags);
294}
295
25502a6c
PM
296/*
297 * Note a context switch. This is a quiescent state for RCU-sched,
298 * and requires special handling for preemptible RCU.
e4cc1f22 299 * The caller must have disabled preemption.
25502a6c 300 */
38200cf2 301void rcu_note_context_switch(void)
25502a6c 302{
f7f7bac9 303 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 304 rcu_sched_qs();
38200cf2 305 rcu_preempt_note_context_switch();
4a81e832
PM
306 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
307 rcu_momentary_dyntick_idle();
f7f7bac9 308 trace_rcu_utilization(TPS("End context switch"));
25502a6c 309}
29ce8310 310EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 311
5cd37193
PM
312/*
313 * Register a quiesecent state for all RCU flavors. If there is an
314 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
315 * dyntick-idle quiescent state visible to other CPUs (but only for those
316 * RCU flavors in desparate need of a quiescent state, which will normally
317 * be none of them). Either way, do a lightweight quiescent state for
318 * all RCU flavors.
319 */
320void rcu_all_qs(void)
321{
322 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
323 rcu_momentary_dyntick_idle();
324 this_cpu_inc(rcu_qs_ctr);
325}
326EXPORT_SYMBOL_GPL(rcu_all_qs);
327
878d7439
ED
328static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
329static long qhimark = 10000; /* If this many pending, ignore blimit. */
330static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 331
878d7439
ED
332module_param(blimit, long, 0444);
333module_param(qhimark, long, 0444);
334module_param(qlowmark, long, 0444);
3d76c082 335
026ad283
PM
336static ulong jiffies_till_first_fqs = ULONG_MAX;
337static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
338
339module_param(jiffies_till_first_fqs, ulong, 0644);
340module_param(jiffies_till_next_fqs, ulong, 0644);
341
4a81e832
PM
342/*
343 * How long the grace period must be before we start recruiting
344 * quiescent-state help from rcu_note_context_switch().
345 */
346static ulong jiffies_till_sched_qs = HZ / 20;
347module_param(jiffies_till_sched_qs, ulong, 0644);
348
48a7639c 349static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 350 struct rcu_data *rdp);
217af2a2
PM
351static void force_qs_rnp(struct rcu_state *rsp,
352 int (*f)(struct rcu_data *rsp, bool *isidle,
353 unsigned long *maxj),
354 bool *isidle, unsigned long *maxj);
4cdfc175 355static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 356static int rcu_pending(void);
64db4cff
PM
357
358/*
917963d0 359 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 360 */
917963d0
PM
361unsigned long rcu_batches_started(void)
362{
363 return rcu_state_p->gpnum;
364}
365EXPORT_SYMBOL_GPL(rcu_batches_started);
366
367/*
368 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 369 */
917963d0
PM
370unsigned long rcu_batches_started_sched(void)
371{
372 return rcu_sched_state.gpnum;
373}
374EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
375
376/*
377 * Return the number of RCU BH batches started thus far for debug & stats.
378 */
379unsigned long rcu_batches_started_bh(void)
380{
381 return rcu_bh_state.gpnum;
382}
383EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
384
385/*
386 * Return the number of RCU batches completed thus far for debug & stats.
387 */
388unsigned long rcu_batches_completed(void)
389{
390 return rcu_state_p->completed;
391}
392EXPORT_SYMBOL_GPL(rcu_batches_completed);
393
394/*
395 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 396 */
9733e4f0 397unsigned long rcu_batches_completed_sched(void)
64db4cff 398{
d6714c22 399 return rcu_sched_state.completed;
64db4cff 400}
d6714c22 401EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
402
403/*
917963d0 404 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 405 */
9733e4f0 406unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
407{
408 return rcu_bh_state.completed;
409}
410EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
411
a381d757
ACB
412/*
413 * Force a quiescent state.
414 */
415void rcu_force_quiescent_state(void)
416{
e534165b 417 force_quiescent_state(rcu_state_p);
a381d757
ACB
418}
419EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
420
bf66f18e
PM
421/*
422 * Force a quiescent state for RCU BH.
423 */
424void rcu_bh_force_quiescent_state(void)
425{
4cdfc175 426 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
427}
428EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
429
afea227f
PM
430/*
431 * Show the state of the grace-period kthreads.
432 */
433void show_rcu_gp_kthreads(void)
434{
435 struct rcu_state *rsp;
436
437 for_each_rcu_flavor(rsp) {
438 pr_info("%s: wait state: %d ->state: %#lx\n",
439 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
440 /* sched_show_task(rsp->gp_kthread); */
441 }
442}
443EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
444
4a298656
PM
445/*
446 * Record the number of times rcutorture tests have been initiated and
447 * terminated. This information allows the debugfs tracing stats to be
448 * correlated to the rcutorture messages, even when the rcutorture module
449 * is being repeatedly loaded and unloaded. In other words, we cannot
450 * store this state in rcutorture itself.
451 */
452void rcutorture_record_test_transition(void)
453{
454 rcutorture_testseq++;
455 rcutorture_vernum = 0;
456}
457EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
458
ad0dc7f9
PM
459/*
460 * Send along grace-period-related data for rcutorture diagnostics.
461 */
462void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
463 unsigned long *gpnum, unsigned long *completed)
464{
465 struct rcu_state *rsp = NULL;
466
467 switch (test_type) {
468 case RCU_FLAVOR:
e534165b 469 rsp = rcu_state_p;
ad0dc7f9
PM
470 break;
471 case RCU_BH_FLAVOR:
472 rsp = &rcu_bh_state;
473 break;
474 case RCU_SCHED_FLAVOR:
475 rsp = &rcu_sched_state;
476 break;
477 default:
478 break;
479 }
480 if (rsp != NULL) {
481 *flags = ACCESS_ONCE(rsp->gp_flags);
482 *gpnum = ACCESS_ONCE(rsp->gpnum);
483 *completed = ACCESS_ONCE(rsp->completed);
484 return;
485 }
486 *flags = 0;
487 *gpnum = 0;
488 *completed = 0;
489}
490EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
491
4a298656
PM
492/*
493 * Record the number of writer passes through the current rcutorture test.
494 * This is also used to correlate debugfs tracing stats with the rcutorture
495 * messages.
496 */
497void rcutorture_record_progress(unsigned long vernum)
498{
499 rcutorture_vernum++;
500}
501EXPORT_SYMBOL_GPL(rcutorture_record_progress);
502
bf66f18e
PM
503/*
504 * Force a quiescent state for RCU-sched.
505 */
506void rcu_sched_force_quiescent_state(void)
507{
4cdfc175 508 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
509}
510EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
511
64db4cff
PM
512/*
513 * Does the CPU have callbacks ready to be invoked?
514 */
515static int
516cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
517{
3fbfbf7a
PM
518 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
519 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
520}
521
365187fb
PM
522/*
523 * Return the root node of the specified rcu_state structure.
524 */
525static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
526{
527 return &rsp->node[0];
528}
529
530/*
531 * Is there any need for future grace periods?
532 * Interrupts must be disabled. If the caller does not hold the root
533 * rnp_node structure's ->lock, the results are advisory only.
534 */
535static int rcu_future_needs_gp(struct rcu_state *rsp)
536{
537 struct rcu_node *rnp = rcu_get_root(rsp);
538 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
539 int *fp = &rnp->need_future_gp[idx];
540
541 return ACCESS_ONCE(*fp);
542}
543
64db4cff 544/*
dc35c893
PM
545 * Does the current CPU require a not-yet-started grace period?
546 * The caller must have disabled interrupts to prevent races with
547 * normal callback registry.
64db4cff
PM
548 */
549static int
550cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
551{
dc35c893 552 int i;
3fbfbf7a 553
dc35c893
PM
554 if (rcu_gp_in_progress(rsp))
555 return 0; /* No, a grace period is already in progress. */
365187fb 556 if (rcu_future_needs_gp(rsp))
34ed6246 557 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
558 if (!rdp->nxttail[RCU_NEXT_TAIL])
559 return 0; /* No, this is a no-CBs (or offline) CPU. */
560 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
561 return 1; /* Yes, this CPU has newly registered callbacks. */
562 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
563 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
564 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
565 rdp->nxtcompleted[i]))
566 return 1; /* Yes, CBs for future grace period. */
567 return 0; /* No grace period needed. */
64db4cff
PM
568}
569
9b2e4f18 570/*
adf5091e 571 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
572 *
573 * If the new value of the ->dynticks_nesting counter now is zero,
574 * we really have entered idle, and must do the appropriate accounting.
575 * The caller must have disabled interrupts.
576 */
28ced795 577static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 578{
96d3fd0d
PM
579 struct rcu_state *rsp;
580 struct rcu_data *rdp;
28ced795 581 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 582
f7f7bac9 583 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 584 if (!user && !is_idle_task(current)) {
289828e6
PM
585 struct task_struct *idle __maybe_unused =
586 idle_task(smp_processor_id());
0989cb46 587
f7f7bac9 588 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 589 ftrace_dump(DUMP_ORIG);
0989cb46
PM
590 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
591 current->pid, current->comm,
592 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 593 }
96d3fd0d
PM
594 for_each_rcu_flavor(rsp) {
595 rdp = this_cpu_ptr(rsp->rda);
596 do_nocb_deferred_wakeup(rdp);
597 }
198bbf81 598 rcu_prepare_for_idle();
9b2e4f18 599 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 600 smp_mb__before_atomic(); /* See above. */
9b2e4f18 601 atomic_inc(&rdtp->dynticks);
4e857c58 602 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 603 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 604 rcu_dynticks_task_enter();
c44e2cdd
PM
605
606 /*
adf5091e 607 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
608 * in an RCU read-side critical section.
609 */
610 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
611 "Illegal idle entry in RCU read-side critical section.");
612 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
613 "Illegal idle entry in RCU-bh read-side critical section.");
614 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
615 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 616}
64db4cff 617
adf5091e
FW
618/*
619 * Enter an RCU extended quiescent state, which can be either the
620 * idle loop or adaptive-tickless usermode execution.
64db4cff 621 */
adf5091e 622static void rcu_eqs_enter(bool user)
64db4cff 623{
4145fa7f 624 long long oldval;
64db4cff
PM
625 struct rcu_dynticks *rdtp;
626
c9d4b0af 627 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 628 oldval = rdtp->dynticks_nesting;
29e37d81 629 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 630 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 631 rdtp->dynticks_nesting = 0;
28ced795 632 rcu_eqs_enter_common(oldval, user);
3a592405 633 } else {
29e37d81 634 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 635 }
64db4cff 636}
adf5091e
FW
637
638/**
639 * rcu_idle_enter - inform RCU that current CPU is entering idle
640 *
641 * Enter idle mode, in other words, -leave- the mode in which RCU
642 * read-side critical sections can occur. (Though RCU read-side
643 * critical sections can occur in irq handlers in idle, a possibility
644 * handled by irq_enter() and irq_exit().)
645 *
646 * We crowbar the ->dynticks_nesting field to zero to allow for
647 * the possibility of usermode upcalls having messed up our count
648 * of interrupt nesting level during the prior busy period.
649 */
650void rcu_idle_enter(void)
651{
c5d900bf
FW
652 unsigned long flags;
653
654 local_irq_save(flags);
cb349ca9 655 rcu_eqs_enter(false);
28ced795 656 rcu_sysidle_enter(0);
c5d900bf 657 local_irq_restore(flags);
adf5091e 658}
8a2ecf47 659EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 660
2b1d5024 661#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
662/**
663 * rcu_user_enter - inform RCU that we are resuming userspace.
664 *
665 * Enter RCU idle mode right before resuming userspace. No use of RCU
666 * is permitted between this call and rcu_user_exit(). This way the
667 * CPU doesn't need to maintain the tick for RCU maintenance purposes
668 * when the CPU runs in userspace.
669 */
670void rcu_user_enter(void)
671{
91d1aa43 672 rcu_eqs_enter(1);
adf5091e 673}
2b1d5024 674#endif /* CONFIG_RCU_USER_QS */
19dd1591 675
9b2e4f18
PM
676/**
677 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
678 *
679 * Exit from an interrupt handler, which might possibly result in entering
680 * idle mode, in other words, leaving the mode in which read-side critical
681 * sections can occur.
64db4cff 682 *
9b2e4f18
PM
683 * This code assumes that the idle loop never does anything that might
684 * result in unbalanced calls to irq_enter() and irq_exit(). If your
685 * architecture violates this assumption, RCU will give you what you
686 * deserve, good and hard. But very infrequently and irreproducibly.
687 *
688 * Use things like work queues to work around this limitation.
689 *
690 * You have been warned.
64db4cff 691 */
9b2e4f18 692void rcu_irq_exit(void)
64db4cff
PM
693{
694 unsigned long flags;
4145fa7f 695 long long oldval;
64db4cff
PM
696 struct rcu_dynticks *rdtp;
697
698 local_irq_save(flags);
c9d4b0af 699 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 700 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
701 rdtp->dynticks_nesting--;
702 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 703 if (rdtp->dynticks_nesting)
f7f7bac9 704 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 705 else
28ced795
CL
706 rcu_eqs_enter_common(oldval, true);
707 rcu_sysidle_enter(1);
9b2e4f18
PM
708 local_irq_restore(flags);
709}
710
711/*
adf5091e 712 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
713 *
714 * If the new value of the ->dynticks_nesting counter was previously zero,
715 * we really have exited idle, and must do the appropriate accounting.
716 * The caller must have disabled interrupts.
717 */
28ced795 718static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 719{
28ced795
CL
720 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
721
176f8f7a 722 rcu_dynticks_task_exit();
4e857c58 723 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
724 atomic_inc(&rdtp->dynticks);
725 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 726 smp_mb__after_atomic(); /* See above. */
23b5c8fa 727 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 728 rcu_cleanup_after_idle();
f7f7bac9 729 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 730 if (!user && !is_idle_task(current)) {
289828e6
PM
731 struct task_struct *idle __maybe_unused =
732 idle_task(smp_processor_id());
0989cb46 733
f7f7bac9 734 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 735 oldval, rdtp->dynticks_nesting);
bf1304e9 736 ftrace_dump(DUMP_ORIG);
0989cb46
PM
737 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
738 current->pid, current->comm,
739 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
740 }
741}
742
adf5091e
FW
743/*
744 * Exit an RCU extended quiescent state, which can be either the
745 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 746 */
adf5091e 747static void rcu_eqs_exit(bool user)
9b2e4f18 748{
9b2e4f18
PM
749 struct rcu_dynticks *rdtp;
750 long long oldval;
751
c9d4b0af 752 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 753 oldval = rdtp->dynticks_nesting;
29e37d81 754 WARN_ON_ONCE(oldval < 0);
3a592405 755 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 756 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 757 } else {
29e37d81 758 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 759 rcu_eqs_exit_common(oldval, user);
3a592405 760 }
9b2e4f18 761}
adf5091e
FW
762
763/**
764 * rcu_idle_exit - inform RCU that current CPU is leaving idle
765 *
766 * Exit idle mode, in other words, -enter- the mode in which RCU
767 * read-side critical sections can occur.
768 *
769 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
770 * allow for the possibility of usermode upcalls messing up our count
771 * of interrupt nesting level during the busy period that is just
772 * now starting.
773 */
774void rcu_idle_exit(void)
775{
c5d900bf
FW
776 unsigned long flags;
777
778 local_irq_save(flags);
cb349ca9 779 rcu_eqs_exit(false);
28ced795 780 rcu_sysidle_exit(0);
c5d900bf 781 local_irq_restore(flags);
adf5091e 782}
8a2ecf47 783EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 784
2b1d5024 785#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
786/**
787 * rcu_user_exit - inform RCU that we are exiting userspace.
788 *
789 * Exit RCU idle mode while entering the kernel because it can
790 * run a RCU read side critical section anytime.
791 */
792void rcu_user_exit(void)
793{
91d1aa43 794 rcu_eqs_exit(1);
adf5091e 795}
2b1d5024 796#endif /* CONFIG_RCU_USER_QS */
19dd1591 797
9b2e4f18
PM
798/**
799 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
800 *
801 * Enter an interrupt handler, which might possibly result in exiting
802 * idle mode, in other words, entering the mode in which read-side critical
803 * sections can occur.
804 *
805 * Note that the Linux kernel is fully capable of entering an interrupt
806 * handler that it never exits, for example when doing upcalls to
807 * user mode! This code assumes that the idle loop never does upcalls to
808 * user mode. If your architecture does do upcalls from the idle loop (or
809 * does anything else that results in unbalanced calls to the irq_enter()
810 * and irq_exit() functions), RCU will give you what you deserve, good
811 * and hard. But very infrequently and irreproducibly.
812 *
813 * Use things like work queues to work around this limitation.
814 *
815 * You have been warned.
816 */
817void rcu_irq_enter(void)
818{
819 unsigned long flags;
820 struct rcu_dynticks *rdtp;
821 long long oldval;
822
823 local_irq_save(flags);
c9d4b0af 824 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
825 oldval = rdtp->dynticks_nesting;
826 rdtp->dynticks_nesting++;
827 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 828 if (oldval)
f7f7bac9 829 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 830 else
28ced795
CL
831 rcu_eqs_exit_common(oldval, true);
832 rcu_sysidle_exit(1);
64db4cff 833 local_irq_restore(flags);
64db4cff
PM
834}
835
836/**
837 * rcu_nmi_enter - inform RCU of entry to NMI context
838 *
734d1680
PM
839 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
840 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
841 * that the CPU is active. This implementation permits nested NMIs, as
842 * long as the nesting level does not overflow an int. (You will probably
843 * run out of stack space first.)
64db4cff
PM
844 */
845void rcu_nmi_enter(void)
846{
c9d4b0af 847 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 848 int incby = 2;
64db4cff 849
734d1680
PM
850 /* Complain about underflow. */
851 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
852
853 /*
854 * If idle from RCU viewpoint, atomically increment ->dynticks
855 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
856 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
857 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
858 * to be in the outermost NMI handler that interrupted an RCU-idle
859 * period (observation due to Andy Lutomirski).
860 */
861 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
862 smp_mb__before_atomic(); /* Force delay from prior write. */
863 atomic_inc(&rdtp->dynticks);
864 /* atomic_inc() before later RCU read-side crit sects */
865 smp_mb__after_atomic(); /* See above. */
866 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
867 incby = 1;
868 }
869 rdtp->dynticks_nmi_nesting += incby;
870 barrier();
64db4cff
PM
871}
872
873/**
874 * rcu_nmi_exit - inform RCU of exit from NMI context
875 *
734d1680
PM
876 * If we are returning from the outermost NMI handler that interrupted an
877 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
878 * to let the RCU grace-period handling know that the CPU is back to
879 * being RCU-idle.
64db4cff
PM
880 */
881void rcu_nmi_exit(void)
882{
c9d4b0af 883 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 884
734d1680
PM
885 /*
886 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
887 * (We are exiting an NMI handler, so RCU better be paying attention
888 * to us!)
889 */
890 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
891 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
892
893 /*
894 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
895 * leave it in non-RCU-idle state.
896 */
897 if (rdtp->dynticks_nmi_nesting != 1) {
898 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 899 return;
734d1680
PM
900 }
901
902 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
903 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 904 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 905 smp_mb__before_atomic(); /* See above. */
23b5c8fa 906 atomic_inc(&rdtp->dynticks);
4e857c58 907 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 908 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
909}
910
911/**
5c173eb8
PM
912 * __rcu_is_watching - are RCU read-side critical sections safe?
913 *
914 * Return true if RCU is watching the running CPU, which means that
915 * this CPU can safely enter RCU read-side critical sections. Unlike
916 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
917 * least disabled preemption.
918 */
9418fb20 919bool notrace __rcu_is_watching(void)
5c173eb8
PM
920{
921 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
922}
923
924/**
925 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 926 *
9b2e4f18 927 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 928 * or NMI handler, return true.
64db4cff 929 */
9418fb20 930bool notrace rcu_is_watching(void)
64db4cff 931{
f534ed1f 932 bool ret;
34240697
PM
933
934 preempt_disable();
5c173eb8 935 ret = __rcu_is_watching();
34240697
PM
936 preempt_enable();
937 return ret;
64db4cff 938}
5c173eb8 939EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 940
62fde6ed 941#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
942
943/*
944 * Is the current CPU online? Disable preemption to avoid false positives
945 * that could otherwise happen due to the current CPU number being sampled,
946 * this task being preempted, its old CPU being taken offline, resuming
947 * on some other CPU, then determining that its old CPU is now offline.
948 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
949 * the check for rcu_scheduler_fully_active. Note also that it is OK
950 * for a CPU coming online to use RCU for one jiffy prior to marking itself
951 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
952 * offline to continue to use RCU for one jiffy after marking itself
953 * offline in the cpu_online_mask. This leniency is necessary given the
954 * non-atomic nature of the online and offline processing, for example,
955 * the fact that a CPU enters the scheduler after completing the CPU_DYING
956 * notifiers.
957 *
958 * This is also why RCU internally marks CPUs online during the
959 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
960 *
961 * Disable checking if in an NMI handler because we cannot safely report
962 * errors from NMI handlers anyway.
963 */
964bool rcu_lockdep_current_cpu_online(void)
965{
2036d94a
PM
966 struct rcu_data *rdp;
967 struct rcu_node *rnp;
c0d6d01b
PM
968 bool ret;
969
970 if (in_nmi())
f6f7ee9a 971 return true;
c0d6d01b 972 preempt_disable();
c9d4b0af 973 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 974 rnp = rdp->mynode;
0aa04b05 975 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
976 !rcu_scheduler_fully_active;
977 preempt_enable();
978 return ret;
979}
980EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
981
62fde6ed 982#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 983
64db4cff 984/**
9b2e4f18 985 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 986 *
9b2e4f18
PM
987 * If the current CPU is idle or running at a first-level (not nested)
988 * interrupt from idle, return true. The caller must have at least
989 * disabled preemption.
64db4cff 990 */
62e3cb14 991static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 992{
c9d4b0af 993 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
994}
995
64db4cff
PM
996/*
997 * Snapshot the specified CPU's dynticks counter so that we can later
998 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 999 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1000 */
217af2a2
PM
1001static int dyntick_save_progress_counter(struct rcu_data *rdp,
1002 bool *isidle, unsigned long *maxj)
64db4cff 1003{
23b5c8fa 1004 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1005 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1006 if ((rdp->dynticks_snap & 0x1) == 0) {
1007 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1008 return 1;
1009 } else {
e3663b10
PM
1010 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1011 rdp->mynode->gpnum))
1012 ACCESS_ONCE(rdp->gpwrap) = true;
7941dbde
ACB
1013 return 0;
1014 }
64db4cff
PM
1015}
1016
1017/*
1018 * Return true if the specified CPU has passed through a quiescent
1019 * state by virtue of being in or having passed through an dynticks
1020 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1021 * for this same CPU, or by virtue of having been offline.
64db4cff 1022 */
217af2a2
PM
1023static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1024 bool *isidle, unsigned long *maxj)
64db4cff 1025{
7eb4f455 1026 unsigned int curr;
4a81e832 1027 int *rcrmp;
7eb4f455 1028 unsigned int snap;
64db4cff 1029
7eb4f455
PM
1030 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1031 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1032
1033 /*
1034 * If the CPU passed through or entered a dynticks idle phase with
1035 * no active irq/NMI handlers, then we can safely pretend that the CPU
1036 * already acknowledged the request to pass through a quiescent
1037 * state. Either way, that CPU cannot possibly be in an RCU
1038 * read-side critical section that started before the beginning
1039 * of the current RCU grace period.
1040 */
7eb4f455 1041 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1042 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1043 rdp->dynticks_fqs++;
1044 return 1;
1045 }
1046
a82dcc76
PM
1047 /*
1048 * Check for the CPU being offline, but only if the grace period
1049 * is old enough. We don't need to worry about the CPU changing
1050 * state: If we see it offline even once, it has been through a
1051 * quiescent state.
1052 *
1053 * The reason for insisting that the grace period be at least
1054 * one jiffy old is that CPUs that are not quite online and that
1055 * have just gone offline can still execute RCU read-side critical
1056 * sections.
1057 */
1058 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1059 return 0; /* Grace period is not old enough. */
1060 barrier();
1061 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1062 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1063 rdp->offline_fqs++;
1064 return 1;
1065 }
65d798f0
PM
1066
1067 /*
4a81e832
PM
1068 * A CPU running for an extended time within the kernel can
1069 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1070 * even context-switching back and forth between a pair of
1071 * in-kernel CPU-bound tasks cannot advance grace periods.
1072 * So if the grace period is old enough, make the CPU pay attention.
1073 * Note that the unsynchronized assignments to the per-CPU
1074 * rcu_sched_qs_mask variable are safe. Yes, setting of
1075 * bits can be lost, but they will be set again on the next
1076 * force-quiescent-state pass. So lost bit sets do not result
1077 * in incorrect behavior, merely in a grace period lasting
1078 * a few jiffies longer than it might otherwise. Because
1079 * there are at most four threads involved, and because the
1080 * updates are only once every few jiffies, the probability of
1081 * lossage (and thus of slight grace-period extension) is
1082 * quite low.
1083 *
1084 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1085 * is set too high, we override with half of the RCU CPU stall
1086 * warning delay.
6193c76a 1087 */
4a81e832
PM
1088 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1089 if (ULONG_CMP_GE(jiffies,
1090 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1091 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
1092 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1093 ACCESS_ONCE(rdp->cond_resched_completed) =
1094 ACCESS_ONCE(rdp->mynode->completed);
1095 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1096 ACCESS_ONCE(*rcrmp) =
1097 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1098 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1099 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1100 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1101 /* Time to beat on that CPU again! */
1102 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1103 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1104 }
6193c76a
PM
1105 }
1106
a82dcc76 1107 return 0;
64db4cff
PM
1108}
1109
64db4cff
PM
1110static void record_gp_stall_check_time(struct rcu_state *rsp)
1111{
cb1e78cf 1112 unsigned long j = jiffies;
6193c76a 1113 unsigned long j1;
26cdfedf
PM
1114
1115 rsp->gp_start = j;
1116 smp_wmb(); /* Record start time before stall time. */
6193c76a 1117 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1118 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1119 rsp->jiffies_resched = j + j1 / 2;
fc908ed3 1120 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
64db4cff
PM
1121}
1122
fb81a44b
PM
1123/*
1124 * Complain about starvation of grace-period kthread.
1125 */
1126static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1127{
1128 unsigned long gpa;
1129 unsigned long j;
1130
1131 j = jiffies;
1132 gpa = ACCESS_ONCE(rsp->gp_activity);
1133 if (j - gpa > 2 * HZ)
1134 pr_err("%s kthread starved for %ld jiffies!\n",
1135 rsp->name, j - gpa);
64db4cff
PM
1136}
1137
b637a328 1138/*
bc1dce51 1139 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1140 */
1141static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1142{
1143 int cpu;
1144 unsigned long flags;
1145 struct rcu_node *rnp;
1146
1147 rcu_for_each_leaf_node(rsp, rnp) {
1148 raw_spin_lock_irqsave(&rnp->lock, flags);
1149 if (rnp->qsmask != 0) {
1150 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1151 if (rnp->qsmask & (1UL << cpu))
1152 dump_cpu_task(rnp->grplo + cpu);
1153 }
1154 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1155 }
1156}
1157
6ccd2ecd 1158static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1159{
1160 int cpu;
1161 long delta;
1162 unsigned long flags;
6ccd2ecd
PM
1163 unsigned long gpa;
1164 unsigned long j;
285fe294 1165 int ndetected = 0;
64db4cff 1166 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1167 long totqlen = 0;
64db4cff
PM
1168
1169 /* Only let one CPU complain about others per time interval. */
1170
1304afb2 1171 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1172 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1173 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1174 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1175 return;
1176 }
4fc5b755 1177 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1178 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1179
8cdd32a9
PM
1180 /*
1181 * OK, time to rat on our buddy...
1182 * See Documentation/RCU/stallwarn.txt for info on how to debug
1183 * RCU CPU stall warnings.
1184 */
d7f3e207 1185 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1186 rsp->name);
a858af28 1187 print_cpu_stall_info_begin();
a0b6c9a7 1188 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1189 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1190 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1191 if (rnp->qsmask != 0) {
1192 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1193 if (rnp->qsmask & (1UL << cpu)) {
1194 print_cpu_stall_info(rsp,
1195 rnp->grplo + cpu);
1196 ndetected++;
1197 }
1198 }
3acd9eb3 1199 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1200 }
a858af28 1201
a858af28 1202 print_cpu_stall_info_end();
53bb857c
PM
1203 for_each_possible_cpu(cpu)
1204 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1205 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1206 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1207 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1208 if (ndetected) {
b637a328 1209 rcu_dump_cpu_stacks(rsp);
6ccd2ecd
PM
1210 } else {
1211 if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1212 ACCESS_ONCE(rsp->completed) == gpnum) {
1213 pr_err("INFO: Stall ended before state dump start\n");
1214 } else {
1215 j = jiffies;
1216 gpa = ACCESS_ONCE(rsp->gp_activity);
237a0f21 1217 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1218 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1219 jiffies_till_next_fqs,
1220 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1221 /* In this case, the current CPU might be at fault. */
1222 sched_show_task(current);
1223 }
1224 }
c1dc0b9c 1225
4cdfc175 1226 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1227 rcu_print_detail_task_stall(rsp);
1228
fb81a44b
PM
1229 rcu_check_gp_kthread_starvation(rsp);
1230
4cdfc175 1231 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1232}
1233
1234static void print_cpu_stall(struct rcu_state *rsp)
1235{
53bb857c 1236 int cpu;
64db4cff
PM
1237 unsigned long flags;
1238 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1239 long totqlen = 0;
64db4cff 1240
8cdd32a9
PM
1241 /*
1242 * OK, time to rat on ourselves...
1243 * See Documentation/RCU/stallwarn.txt for info on how to debug
1244 * RCU CPU stall warnings.
1245 */
d7f3e207 1246 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1247 print_cpu_stall_info_begin();
1248 print_cpu_stall_info(rsp, smp_processor_id());
1249 print_cpu_stall_info_end();
53bb857c
PM
1250 for_each_possible_cpu(cpu)
1251 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1252 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1253 jiffies - rsp->gp_start,
1254 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1255
1256 rcu_check_gp_kthread_starvation(rsp);
1257
bc1dce51 1258 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1259
1304afb2 1260 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1261 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1262 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1263 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1264 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1265
b021fe3e
PZ
1266 /*
1267 * Attempt to revive the RCU machinery by forcing a context switch.
1268 *
1269 * A context switch would normally allow the RCU state machine to make
1270 * progress and it could be we're stuck in kernel space without context
1271 * switches for an entirely unreasonable amount of time.
1272 */
1273 resched_cpu(smp_processor_id());
64db4cff
PM
1274}
1275
1276static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1277{
26cdfedf
PM
1278 unsigned long completed;
1279 unsigned long gpnum;
1280 unsigned long gps;
bad6e139
PM
1281 unsigned long j;
1282 unsigned long js;
64db4cff
PM
1283 struct rcu_node *rnp;
1284
26cdfedf 1285 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1286 return;
cb1e78cf 1287 j = jiffies;
26cdfedf
PM
1288
1289 /*
1290 * Lots of memory barriers to reject false positives.
1291 *
1292 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1293 * then rsp->gp_start, and finally rsp->completed. These values
1294 * are updated in the opposite order with memory barriers (or
1295 * equivalent) during grace-period initialization and cleanup.
1296 * Now, a false positive can occur if we get an new value of
1297 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1298 * the memory barriers, the only way that this can happen is if one
1299 * grace period ends and another starts between these two fetches.
1300 * Detect this by comparing rsp->completed with the previous fetch
1301 * from rsp->gpnum.
1302 *
1303 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1304 * and rsp->gp_start suffice to forestall false positives.
1305 */
1306 gpnum = ACCESS_ONCE(rsp->gpnum);
1307 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1308 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1309 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1310 gps = ACCESS_ONCE(rsp->gp_start);
1311 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1312 completed = ACCESS_ONCE(rsp->completed);
1313 if (ULONG_CMP_GE(completed, gpnum) ||
1314 ULONG_CMP_LT(j, js) ||
1315 ULONG_CMP_GE(gps, js))
1316 return; /* No stall or GP completed since entering function. */
64db4cff 1317 rnp = rdp->mynode;
c96ea7cf 1318 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1319 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1320
1321 /* We haven't checked in, so go dump stack. */
1322 print_cpu_stall(rsp);
1323
bad6e139
PM
1324 } else if (rcu_gp_in_progress(rsp) &&
1325 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1326
bad6e139 1327 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1328 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1329 }
1330}
1331
53d84e00
PM
1332/**
1333 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1334 *
1335 * Set the stall-warning timeout way off into the future, thus preventing
1336 * any RCU CPU stall-warning messages from appearing in the current set of
1337 * RCU grace periods.
1338 *
1339 * The caller must disable hard irqs.
1340 */
1341void rcu_cpu_stall_reset(void)
1342{
6ce75a23
PM
1343 struct rcu_state *rsp;
1344
1345 for_each_rcu_flavor(rsp)
4fc5b755 1346 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1347}
1348
3f5d3ea6
PM
1349/*
1350 * Initialize the specified rcu_data structure's callback list to empty.
1351 */
1352static void init_callback_list(struct rcu_data *rdp)
1353{
1354 int i;
1355
34ed6246
PM
1356 if (init_nocb_callback_list(rdp))
1357 return;
3f5d3ea6
PM
1358 rdp->nxtlist = NULL;
1359 for (i = 0; i < RCU_NEXT_SIZE; i++)
1360 rdp->nxttail[i] = &rdp->nxtlist;
1361}
1362
dc35c893
PM
1363/*
1364 * Determine the value that ->completed will have at the end of the
1365 * next subsequent grace period. This is used to tag callbacks so that
1366 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1367 * been dyntick-idle for an extended period with callbacks under the
1368 * influence of RCU_FAST_NO_HZ.
1369 *
1370 * The caller must hold rnp->lock with interrupts disabled.
1371 */
1372static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1373 struct rcu_node *rnp)
1374{
1375 /*
1376 * If RCU is idle, we just wait for the next grace period.
1377 * But we can only be sure that RCU is idle if we are looking
1378 * at the root rcu_node structure -- otherwise, a new grace
1379 * period might have started, but just not yet gotten around
1380 * to initializing the current non-root rcu_node structure.
1381 */
1382 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1383 return rnp->completed + 1;
1384
1385 /*
1386 * Otherwise, wait for a possible partial grace period and
1387 * then the subsequent full grace period.
1388 */
1389 return rnp->completed + 2;
1390}
1391
0446be48
PM
1392/*
1393 * Trace-event helper function for rcu_start_future_gp() and
1394 * rcu_nocb_wait_gp().
1395 */
1396static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1397 unsigned long c, const char *s)
0446be48
PM
1398{
1399 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1400 rnp->completed, c, rnp->level,
1401 rnp->grplo, rnp->grphi, s);
1402}
1403
1404/*
1405 * Start some future grace period, as needed to handle newly arrived
1406 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1407 * rcu_node structure's ->need_future_gp field. Returns true if there
1408 * is reason to awaken the grace-period kthread.
0446be48
PM
1409 *
1410 * The caller must hold the specified rcu_node structure's ->lock.
1411 */
48a7639c
PM
1412static bool __maybe_unused
1413rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1414 unsigned long *c_out)
0446be48
PM
1415{
1416 unsigned long c;
1417 int i;
48a7639c 1418 bool ret = false;
0446be48
PM
1419 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1420
1421 /*
1422 * Pick up grace-period number for new callbacks. If this
1423 * grace period is already marked as needed, return to the caller.
1424 */
1425 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1426 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1427 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1428 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1429 goto out;
0446be48
PM
1430 }
1431
1432 /*
1433 * If either this rcu_node structure or the root rcu_node structure
1434 * believe that a grace period is in progress, then we must wait
1435 * for the one following, which is in "c". Because our request
1436 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1437 * need to explicitly start one. We only do the lockless check
1438 * of rnp_root's fields if the current rcu_node structure thinks
1439 * there is no grace period in flight, and because we hold rnp->lock,
1440 * the only possible change is when rnp_root's two fields are
1441 * equal, in which case rnp_root->gpnum might be concurrently
1442 * incremented. But that is OK, as it will just result in our
1443 * doing some extra useless work.
0446be48
PM
1444 */
1445 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1446 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1447 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1448 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1449 goto out;
0446be48
PM
1450 }
1451
1452 /*
1453 * There might be no grace period in progress. If we don't already
1454 * hold it, acquire the root rcu_node structure's lock in order to
1455 * start one (if needed).
1456 */
6303b9c8 1457 if (rnp != rnp_root) {
0446be48 1458 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1459 smp_mb__after_unlock_lock();
1460 }
0446be48
PM
1461
1462 /*
1463 * Get a new grace-period number. If there really is no grace
1464 * period in progress, it will be smaller than the one we obtained
1465 * earlier. Adjust callbacks as needed. Note that even no-CBs
1466 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1467 */
1468 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1469 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1470 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1471 rdp->nxtcompleted[i] = c;
1472
1473 /*
1474 * If the needed for the required grace period is already
1475 * recorded, trace and leave.
1476 */
1477 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1478 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1479 goto unlock_out;
1480 }
1481
1482 /* Record the need for the future grace period. */
1483 rnp_root->need_future_gp[c & 0x1]++;
1484
1485 /* If a grace period is not already in progress, start one. */
1486 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1487 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1488 } else {
f7f7bac9 1489 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1490 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1491 }
1492unlock_out:
1493 if (rnp != rnp_root)
1494 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1495out:
1496 if (c_out != NULL)
1497 *c_out = c;
1498 return ret;
0446be48
PM
1499}
1500
1501/*
1502 * Clean up any old requests for the just-ended grace period. Also return
1503 * whether any additional grace periods have been requested. Also invoke
1504 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1505 * waiting for this grace period to complete.
1506 */
1507static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1508{
1509 int c = rnp->completed;
1510 int needmore;
1511 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1512
1513 rcu_nocb_gp_cleanup(rsp, rnp);
1514 rnp->need_future_gp[c & 0x1] = 0;
1515 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1516 trace_rcu_future_gp(rnp, rdp, c,
1517 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1518 return needmore;
1519}
1520
48a7639c
PM
1521/*
1522 * Awaken the grace-period kthread for the specified flavor of RCU.
1523 * Don't do a self-awaken, and don't bother awakening when there is
1524 * nothing for the grace-period kthread to do (as in several CPUs
1525 * raced to awaken, and we lost), and finally don't try to awaken
1526 * a kthread that has not yet been created.
1527 */
1528static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1529{
1530 if (current == rsp->gp_kthread ||
1531 !ACCESS_ONCE(rsp->gp_flags) ||
1532 !rsp->gp_kthread)
1533 return;
1534 wake_up(&rsp->gp_wq);
1535}
1536
dc35c893
PM
1537/*
1538 * If there is room, assign a ->completed number to any callbacks on
1539 * this CPU that have not already been assigned. Also accelerate any
1540 * callbacks that were previously assigned a ->completed number that has
1541 * since proven to be too conservative, which can happen if callbacks get
1542 * assigned a ->completed number while RCU is idle, but with reference to
1543 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1544 * not hurt to call it repeatedly. Returns an flag saying that we should
1545 * awaken the RCU grace-period kthread.
dc35c893
PM
1546 *
1547 * The caller must hold rnp->lock with interrupts disabled.
1548 */
48a7639c 1549static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1550 struct rcu_data *rdp)
1551{
1552 unsigned long c;
1553 int i;
48a7639c 1554 bool ret;
dc35c893
PM
1555
1556 /* If the CPU has no callbacks, nothing to do. */
1557 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1558 return false;
dc35c893
PM
1559
1560 /*
1561 * Starting from the sublist containing the callbacks most
1562 * recently assigned a ->completed number and working down, find the
1563 * first sublist that is not assignable to an upcoming grace period.
1564 * Such a sublist has something in it (first two tests) and has
1565 * a ->completed number assigned that will complete sooner than
1566 * the ->completed number for newly arrived callbacks (last test).
1567 *
1568 * The key point is that any later sublist can be assigned the
1569 * same ->completed number as the newly arrived callbacks, which
1570 * means that the callbacks in any of these later sublist can be
1571 * grouped into a single sublist, whether or not they have already
1572 * been assigned a ->completed number.
1573 */
1574 c = rcu_cbs_completed(rsp, rnp);
1575 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1576 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1577 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1578 break;
1579
1580 /*
1581 * If there are no sublist for unassigned callbacks, leave.
1582 * At the same time, advance "i" one sublist, so that "i" will
1583 * index into the sublist where all the remaining callbacks should
1584 * be grouped into.
1585 */
1586 if (++i >= RCU_NEXT_TAIL)
48a7639c 1587 return false;
dc35c893
PM
1588
1589 /*
1590 * Assign all subsequent callbacks' ->completed number to the next
1591 * full grace period and group them all in the sublist initially
1592 * indexed by "i".
1593 */
1594 for (; i <= RCU_NEXT_TAIL; i++) {
1595 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1596 rdp->nxtcompleted[i] = c;
1597 }
910ee45d 1598 /* Record any needed additional grace periods. */
48a7639c 1599 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1600
1601 /* Trace depending on how much we were able to accelerate. */
1602 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1603 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1604 else
f7f7bac9 1605 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1606 return ret;
dc35c893
PM
1607}
1608
1609/*
1610 * Move any callbacks whose grace period has completed to the
1611 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1612 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1613 * sublist. This function is idempotent, so it does not hurt to
1614 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1615 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1616 *
1617 * The caller must hold rnp->lock with interrupts disabled.
1618 */
48a7639c 1619static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1620 struct rcu_data *rdp)
1621{
1622 int i, j;
1623
1624 /* If the CPU has no callbacks, nothing to do. */
1625 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1626 return false;
dc35c893
PM
1627
1628 /*
1629 * Find all callbacks whose ->completed numbers indicate that they
1630 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1631 */
1632 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1633 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1634 break;
1635 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1636 }
1637 /* Clean up any sublist tail pointers that were misordered above. */
1638 for (j = RCU_WAIT_TAIL; j < i; j++)
1639 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1640
1641 /* Copy down callbacks to fill in empty sublists. */
1642 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1643 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1644 break;
1645 rdp->nxttail[j] = rdp->nxttail[i];
1646 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1647 }
1648
1649 /* Classify any remaining callbacks. */
48a7639c 1650 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1651}
1652
d09b62df 1653/*
ba9fbe95
PM
1654 * Update CPU-local rcu_data state to record the beginnings and ends of
1655 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1656 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1657 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1658 */
48a7639c
PM
1659static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1660 struct rcu_data *rdp)
d09b62df 1661{
48a7639c
PM
1662 bool ret;
1663
ba9fbe95 1664 /* Handle the ends of any preceding grace periods first. */
e3663b10
PM
1665 if (rdp->completed == rnp->completed &&
1666 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
d09b62df 1667
ba9fbe95 1668 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1669 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1670
dc35c893
PM
1671 } else {
1672
1673 /* Advance callbacks. */
48a7639c 1674 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1675
1676 /* Remember that we saw this grace-period completion. */
1677 rdp->completed = rnp->completed;
f7f7bac9 1678 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1679 }
398ebe60 1680
e3663b10 1681 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
6eaef633
PM
1682 /*
1683 * If the current grace period is waiting for this CPU,
1684 * set up to detect a quiescent state, otherwise don't
1685 * go looking for one.
1686 */
1687 rdp->gpnum = rnp->gpnum;
f7f7bac9 1688 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633 1689 rdp->passed_quiesce = 0;
5cd37193 1690 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
6eaef633
PM
1691 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1692 zero_cpu_stall_ticks(rdp);
e3663b10 1693 ACCESS_ONCE(rdp->gpwrap) = false;
6eaef633 1694 }
48a7639c 1695 return ret;
6eaef633
PM
1696}
1697
d34ea322 1698static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1699{
1700 unsigned long flags;
48a7639c 1701 bool needwake;
6eaef633
PM
1702 struct rcu_node *rnp;
1703
1704 local_irq_save(flags);
1705 rnp = rdp->mynode;
d34ea322 1706 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
e3663b10
PM
1707 rdp->completed == ACCESS_ONCE(rnp->completed) &&
1708 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
6eaef633
PM
1709 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1710 local_irq_restore(flags);
1711 return;
1712 }
6303b9c8 1713 smp_mb__after_unlock_lock();
48a7639c 1714 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1715 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1716 if (needwake)
1717 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1718}
1719
b3dbec76 1720/*
f7be8209 1721 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1722 */
7fdefc10 1723static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1724{
0aa04b05 1725 unsigned long oldmask;
b3dbec76 1726 struct rcu_data *rdp;
7fdefc10 1727 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1728
6ccd2ecd 1729 ACCESS_ONCE(rsp->gp_activity) = jiffies;
eb75767b 1730 rcu_bind_gp_kthread();
7fdefc10 1731 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1732 smp_mb__after_unlock_lock();
91dc9542 1733 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1734 /* Spurious wakeup, tell caller to go back to sleep. */
1735 raw_spin_unlock_irq(&rnp->lock);
1736 return 0;
1737 }
91dc9542 1738 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1739
f7be8209
PM
1740 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1741 /*
1742 * Grace period already in progress, don't start another.
1743 * Not supposed to be able to happen.
1744 */
7fdefc10
PM
1745 raw_spin_unlock_irq(&rnp->lock);
1746 return 0;
1747 }
1748
7fdefc10 1749 /* Advance to a new grace period and initialize state. */
26cdfedf 1750 record_gp_stall_check_time(rsp);
765a3f4f
PM
1751 /* Record GP times before starting GP, hence smp_store_release(). */
1752 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1753 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1754 raw_spin_unlock_irq(&rnp->lock);
1755
0aa04b05
PM
1756 /*
1757 * Apply per-leaf buffered online and offline operations to the
1758 * rcu_node tree. Note that this new grace period need not wait
1759 * for subsequent online CPUs, and that quiescent-state forcing
1760 * will handle subsequent offline CPUs.
1761 */
1762 rcu_for_each_leaf_node(rsp, rnp) {
1763 raw_spin_lock_irq(&rnp->lock);
1764 smp_mb__after_unlock_lock();
1765 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1766 !rnp->wait_blkd_tasks) {
1767 /* Nothing to do on this leaf rcu_node structure. */
1768 raw_spin_unlock_irq(&rnp->lock);
1769 continue;
1770 }
1771
1772 /* Record old state, apply changes to ->qsmaskinit field. */
1773 oldmask = rnp->qsmaskinit;
1774 rnp->qsmaskinit = rnp->qsmaskinitnext;
1775
1776 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1777 if (!oldmask != !rnp->qsmaskinit) {
1778 if (!oldmask) /* First online CPU for this rcu_node. */
1779 rcu_init_new_rnp(rnp);
1780 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1781 rnp->wait_blkd_tasks = true;
1782 else /* Last offline CPU and can propagate. */
1783 rcu_cleanup_dead_rnp(rnp);
1784 }
1785
1786 /*
1787 * If all waited-on tasks from prior grace period are
1788 * done, and if all this rcu_node structure's CPUs are
1789 * still offline, propagate up the rcu_node tree and
1790 * clear ->wait_blkd_tasks. Otherwise, if one of this
1791 * rcu_node structure's CPUs has since come back online,
1792 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1793 * checks for this, so just call it unconditionally).
1794 */
1795 if (rnp->wait_blkd_tasks &&
1796 (!rcu_preempt_has_tasks(rnp) ||
1797 rnp->qsmaskinit)) {
1798 rnp->wait_blkd_tasks = false;
1799 rcu_cleanup_dead_rnp(rnp);
1800 }
1801
1802 raw_spin_unlock_irq(&rnp->lock);
1803 }
1804
7fdefc10
PM
1805 /*
1806 * Set the quiescent-state-needed bits in all the rcu_node
1807 * structures for all currently online CPUs in breadth-first order,
1808 * starting from the root rcu_node structure, relying on the layout
1809 * of the tree within the rsp->node[] array. Note that other CPUs
1810 * will access only the leaves of the hierarchy, thus seeing that no
1811 * grace period is in progress, at least until the corresponding
1812 * leaf node has been initialized. In addition, we have excluded
1813 * CPU-hotplug operations.
1814 *
1815 * The grace period cannot complete until the initialization
1816 * process finishes, because this kthread handles both.
1817 */
1818 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1819 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1820 smp_mb__after_unlock_lock();
b3dbec76 1821 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1822 rcu_preempt_check_blocked_tasks(rnp);
1823 rnp->qsmask = rnp->qsmaskinit;
0446be48 1824 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1825 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1826 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1827 if (rnp == rdp->mynode)
48a7639c 1828 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1829 rcu_preempt_boost_start_gp(rnp);
1830 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1831 rnp->level, rnp->grplo,
1832 rnp->grphi, rnp->qsmask);
1833 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1834 cond_resched_rcu_qs();
6ccd2ecd 1835 ACCESS_ONCE(rsp->gp_activity) = jiffies;
37745d28
PM
1836 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_SLOW_INIT) &&
1837 gp_init_delay > 0 &&
1838 !(rsp->gpnum % (rcu_num_nodes * 10)))
1839 schedule_timeout_uninterruptible(gp_init_delay);
7fdefc10 1840 }
b3dbec76 1841
7fdefc10
PM
1842 return 1;
1843}
b3dbec76 1844
4cdfc175
PM
1845/*
1846 * Do one round of quiescent-state forcing.
1847 */
01896f7e 1848static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1849{
1850 int fqs_state = fqs_state_in;
217af2a2
PM
1851 bool isidle = false;
1852 unsigned long maxj;
4cdfc175
PM
1853 struct rcu_node *rnp = rcu_get_root(rsp);
1854
6ccd2ecd 1855 ACCESS_ONCE(rsp->gp_activity) = jiffies;
4cdfc175
PM
1856 rsp->n_force_qs++;
1857 if (fqs_state == RCU_SAVE_DYNTICK) {
1858 /* Collect dyntick-idle snapshots. */
0edd1b17 1859 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1860 isidle = true;
0edd1b17
PM
1861 maxj = jiffies - ULONG_MAX / 4;
1862 }
217af2a2
PM
1863 force_qs_rnp(rsp, dyntick_save_progress_counter,
1864 &isidle, &maxj);
0edd1b17 1865 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1866 fqs_state = RCU_FORCE_QS;
1867 } else {
1868 /* Handle dyntick-idle and offline CPUs. */
e02b2edf 1869 isidle = false;
217af2a2 1870 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1871 }
1872 /* Clear flag to prevent immediate re-entry. */
1873 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1874 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1875 smp_mb__after_unlock_lock();
4de376a1
PK
1876 ACCESS_ONCE(rsp->gp_flags) =
1877 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1878 raw_spin_unlock_irq(&rnp->lock);
1879 }
1880 return fqs_state;
1881}
1882
7fdefc10
PM
1883/*
1884 * Clean up after the old grace period.
1885 */
4cdfc175 1886static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1887{
1888 unsigned long gp_duration;
48a7639c 1889 bool needgp = false;
dae6e64d 1890 int nocb = 0;
7fdefc10
PM
1891 struct rcu_data *rdp;
1892 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1893
6ccd2ecd 1894 ACCESS_ONCE(rsp->gp_activity) = jiffies;
7fdefc10 1895 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1896 smp_mb__after_unlock_lock();
7fdefc10
PM
1897 gp_duration = jiffies - rsp->gp_start;
1898 if (gp_duration > rsp->gp_max)
1899 rsp->gp_max = gp_duration;
b3dbec76 1900
7fdefc10
PM
1901 /*
1902 * We know the grace period is complete, but to everyone else
1903 * it appears to still be ongoing. But it is also the case
1904 * that to everyone else it looks like there is nothing that
1905 * they can do to advance the grace period. It is therefore
1906 * safe for us to drop the lock in order to mark the grace
1907 * period as completed in all of the rcu_node structures.
7fdefc10 1908 */
5d4b8659 1909 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1910
5d4b8659
PM
1911 /*
1912 * Propagate new ->completed value to rcu_node structures so
1913 * that other CPUs don't have to wait until the start of the next
1914 * grace period to process their callbacks. This also avoids
1915 * some nasty RCU grace-period initialization races by forcing
1916 * the end of the current grace period to be completely recorded in
1917 * all of the rcu_node structures before the beginning of the next
1918 * grace period is recorded in any of the rcu_node structures.
1919 */
1920 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1921 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1922 smp_mb__after_unlock_lock();
0446be48 1923 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1924 rdp = this_cpu_ptr(rsp->rda);
1925 if (rnp == rdp->mynode)
48a7639c 1926 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1927 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1928 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1929 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1930 cond_resched_rcu_qs();
6ccd2ecd 1931 ACCESS_ONCE(rsp->gp_activity) = jiffies;
7fdefc10 1932 }
5d4b8659
PM
1933 rnp = rcu_get_root(rsp);
1934 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1935 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1936 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1937
765a3f4f
PM
1938 /* Declare grace period done. */
1939 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1940 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1941 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1942 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1943 /* Advance CBs to reduce false positives below. */
1944 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1945 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1946 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1947 trace_rcu_grace_period(rsp->name,
1948 ACCESS_ONCE(rsp->gpnum),
1949 TPS("newreq"));
1950 }
7fdefc10 1951 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1952}
1953
1954/*
1955 * Body of kthread that handles grace periods.
1956 */
1957static int __noreturn rcu_gp_kthread(void *arg)
1958{
4cdfc175 1959 int fqs_state;
88d6df61 1960 int gf;
d40011f6 1961 unsigned long j;
4cdfc175 1962 int ret;
7fdefc10
PM
1963 struct rcu_state *rsp = arg;
1964 struct rcu_node *rnp = rcu_get_root(rsp);
1965
1966 for (;;) {
1967
1968 /* Handle grace-period start. */
1969 for (;;) {
63c4db78
PM
1970 trace_rcu_grace_period(rsp->name,
1971 ACCESS_ONCE(rsp->gpnum),
1972 TPS("reqwait"));
afea227f 1973 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1974 wait_event_interruptible(rsp->gp_wq,
591c6d17 1975 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1976 RCU_GP_FLAG_INIT);
78e4bc34 1977 /* Locking provides needed memory barrier. */
f7be8209 1978 if (rcu_gp_init(rsp))
7fdefc10 1979 break;
bde6c3aa 1980 cond_resched_rcu_qs();
6ccd2ecd 1981 ACCESS_ONCE(rsp->gp_activity) = jiffies;
73a860cd 1982 WARN_ON(signal_pending(current));
63c4db78
PM
1983 trace_rcu_grace_period(rsp->name,
1984 ACCESS_ONCE(rsp->gpnum),
1985 TPS("reqwaitsig"));
7fdefc10 1986 }
cabc49c1 1987
4cdfc175
PM
1988 /* Handle quiescent-state forcing. */
1989 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1990 j = jiffies_till_first_fqs;
1991 if (j > HZ) {
1992 j = HZ;
1993 jiffies_till_first_fqs = HZ;
1994 }
88d6df61 1995 ret = 0;
cabc49c1 1996 for (;;) {
88d6df61
PM
1997 if (!ret)
1998 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1999 trace_rcu_grace_period(rsp->name,
2000 ACCESS_ONCE(rsp->gpnum),
2001 TPS("fqswait"));
afea227f 2002 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 2003 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
2004 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
2005 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
2006 (!ACCESS_ONCE(rnp->qsmask) &&
2007 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 2008 j);
78e4bc34 2009 /* Locking provides needed memory barriers. */
4cdfc175 2010 /* If grace period done, leave loop. */
cabc49c1 2011 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 2012 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2013 break;
4cdfc175 2014 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2015 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2016 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
2017 trace_rcu_grace_period(rsp->name,
2018 ACCESS_ONCE(rsp->gpnum),
2019 TPS("fqsstart"));
4cdfc175 2020 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
2021 trace_rcu_grace_period(rsp->name,
2022 ACCESS_ONCE(rsp->gpnum),
2023 TPS("fqsend"));
bde6c3aa 2024 cond_resched_rcu_qs();
6ccd2ecd 2025 ACCESS_ONCE(rsp->gp_activity) = jiffies;
4cdfc175
PM
2026 } else {
2027 /* Deal with stray signal. */
bde6c3aa 2028 cond_resched_rcu_qs();
6ccd2ecd 2029 ACCESS_ONCE(rsp->gp_activity) = jiffies;
73a860cd 2030 WARN_ON(signal_pending(current));
63c4db78
PM
2031 trace_rcu_grace_period(rsp->name,
2032 ACCESS_ONCE(rsp->gpnum),
2033 TPS("fqswaitsig"));
4cdfc175 2034 }
d40011f6
PM
2035 j = jiffies_till_next_fqs;
2036 if (j > HZ) {
2037 j = HZ;
2038 jiffies_till_next_fqs = HZ;
2039 } else if (j < 1) {
2040 j = 1;
2041 jiffies_till_next_fqs = 1;
2042 }
cabc49c1 2043 }
4cdfc175
PM
2044
2045 /* Handle grace-period end. */
2046 rcu_gp_cleanup(rsp);
b3dbec76 2047 }
b3dbec76
PM
2048}
2049
64db4cff
PM
2050/*
2051 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2052 * in preparation for detecting the next grace period. The caller must hold
b8462084 2053 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2054 *
2055 * Note that it is legal for a dying CPU (which is marked as offline) to
2056 * invoke this function. This can happen when the dying CPU reports its
2057 * quiescent state.
48a7639c
PM
2058 *
2059 * Returns true if the grace-period kthread must be awakened.
64db4cff 2060 */
48a7639c 2061static bool
910ee45d
PM
2062rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2063 struct rcu_data *rdp)
64db4cff 2064{
b8462084 2065 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2066 /*
b3dbec76 2067 * Either we have not yet spawned the grace-period
62da1921
PM
2068 * task, this CPU does not need another grace period,
2069 * or a grace period is already in progress.
b3dbec76 2070 * Either way, don't start a new grace period.
afe24b12 2071 */
48a7639c 2072 return false;
afe24b12 2073 }
91dc9542 2074 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
2075 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
2076 TPS("newreq"));
62da1921 2077
016a8d5b
SR
2078 /*
2079 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2080 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2081 * the wakeup to our caller.
016a8d5b 2082 */
48a7639c 2083 return true;
64db4cff
PM
2084}
2085
910ee45d
PM
2086/*
2087 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2088 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2089 * is invoked indirectly from rcu_advance_cbs(), which would result in
2090 * endless recursion -- or would do so if it wasn't for the self-deadlock
2091 * that is encountered beforehand.
48a7639c
PM
2092 *
2093 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2094 */
48a7639c 2095static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2096{
2097 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2098 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2099 bool ret = false;
910ee45d
PM
2100
2101 /*
2102 * If there is no grace period in progress right now, any
2103 * callbacks we have up to this point will be satisfied by the
2104 * next grace period. Also, advancing the callbacks reduces the
2105 * probability of false positives from cpu_needs_another_gp()
2106 * resulting in pointless grace periods. So, advance callbacks
2107 * then start the grace period!
2108 */
48a7639c
PM
2109 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2110 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2111 return ret;
910ee45d
PM
2112}
2113
f41d911f 2114/*
d3f6bad3
PM
2115 * Report a full set of quiescent states to the specified rcu_state
2116 * data structure. This involves cleaning up after the prior grace
2117 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
2118 * if one is needed. Note that the caller must hold rnp->lock, which
2119 * is released before return.
f41d911f 2120 */
d3f6bad3 2121static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2122 __releases(rcu_get_root(rsp)->lock)
f41d911f 2123{
fc2219d4 2124 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1 2125 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 2126 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2127}
2128
64db4cff 2129/*
d3f6bad3
PM
2130 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2131 * Allows quiescent states for a group of CPUs to be reported at one go
2132 * to the specified rcu_node structure, though all the CPUs in the group
2133 * must be represented by the same rcu_node structure (which need not be
2134 * a leaf rcu_node structure, though it often will be). That structure's
2135 * lock must be held upon entry, and it is released before return.
64db4cff
PM
2136 */
2137static void
d3f6bad3
PM
2138rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2139 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
2140 __releases(rnp->lock)
2141{
28ecd580
PM
2142 struct rcu_node *rnp_c;
2143
64db4cff
PM
2144 /* Walk up the rcu_node hierarchy. */
2145 for (;;) {
2146 if (!(rnp->qsmask & mask)) {
2147
2148 /* Our bit has already been cleared, so done. */
1304afb2 2149 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2150 return;
2151 }
2152 rnp->qsmask &= ~mask;
d4c08f2a
PM
2153 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2154 mask, rnp->qsmask, rnp->level,
2155 rnp->grplo, rnp->grphi,
2156 !!rnp->gp_tasks);
27f4d280 2157 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2158
2159 /* Other bits still set at this level, so done. */
1304afb2 2160 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2161 return;
2162 }
2163 mask = rnp->grpmask;
2164 if (rnp->parent == NULL) {
2165
2166 /* No more levels. Exit loop holding root lock. */
2167
2168 break;
2169 }
1304afb2 2170 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2171 rnp_c = rnp;
64db4cff 2172 rnp = rnp->parent;
1304afb2 2173 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2174 smp_mb__after_unlock_lock();
28ecd580 2175 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
2176 }
2177
2178 /*
2179 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2180 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2181 * to clean up and start the next grace period if one is needed.
64db4cff 2182 */
d3f6bad3 2183 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2184}
2185
cc99a310
PM
2186/*
2187 * Record a quiescent state for all tasks that were previously queued
2188 * on the specified rcu_node structure and that were blocking the current
2189 * RCU grace period. The caller must hold the specified rnp->lock with
2190 * irqs disabled, and this lock is released upon return, but irqs remain
2191 * disabled.
2192 */
0aa04b05 2193static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2194 struct rcu_node *rnp, unsigned long flags)
2195 __releases(rnp->lock)
2196{
2197 unsigned long mask;
2198 struct rcu_node *rnp_p;
2199
2200 WARN_ON_ONCE(rsp == &rcu_bh_state || rsp == &rcu_sched_state);
2201 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2202 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2203 return; /* Still need more quiescent states! */
2204 }
2205
2206 rnp_p = rnp->parent;
2207 if (rnp_p == NULL) {
2208 /*
2209 * Either there is only one rcu_node in the tree,
2210 * or tasks were kicked up to root rcu_node due to
2211 * CPUs going offline.
2212 */
2213 rcu_report_qs_rsp(rsp, flags);
2214 return;
2215 }
2216
2217 /* Report up the rest of the hierarchy. */
2218 mask = rnp->grpmask;
2219 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2220 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2221 smp_mb__after_unlock_lock();
2222 rcu_report_qs_rnp(mask, rsp, rnp_p, flags);
2223}
2224
64db4cff 2225/*
d3f6bad3
PM
2226 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2227 * structure. This must be either called from the specified CPU, or
2228 * called when the specified CPU is known to be offline (and when it is
2229 * also known that no other CPU is concurrently trying to help the offline
2230 * CPU). The lastcomp argument is used to make sure we are still in the
2231 * grace period of interest. We don't want to end the current grace period
2232 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2233 */
2234static void
d7d6a11e 2235rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2236{
2237 unsigned long flags;
2238 unsigned long mask;
48a7639c 2239 bool needwake;
64db4cff
PM
2240 struct rcu_node *rnp;
2241
2242 rnp = rdp->mynode;
1304afb2 2243 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2244 smp_mb__after_unlock_lock();
5cd37193
PM
2245 if ((rdp->passed_quiesce == 0 &&
2246 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2247 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2248 rdp->gpwrap) {
64db4cff
PM
2249
2250 /*
e4cc1f22
PM
2251 * The grace period in which this quiescent state was
2252 * recorded has ended, so don't report it upwards.
2253 * We will instead need a new quiescent state that lies
2254 * within the current grace period.
64db4cff 2255 */
e4cc1f22 2256 rdp->passed_quiesce = 0; /* need qs for new gp. */
5cd37193 2257 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1304afb2 2258 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2259 return;
2260 }
2261 mask = rdp->grpmask;
2262 if ((rnp->qsmask & mask) == 0) {
1304afb2 2263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2264 } else {
2265 rdp->qs_pending = 0;
2266
2267 /*
2268 * This GP can't end until cpu checks in, so all of our
2269 * callbacks can be processed during the next GP.
2270 */
48a7639c 2271 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2272
d3f6bad3 2273 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2274 if (needwake)
2275 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2276 }
2277}
2278
2279/*
2280 * Check to see if there is a new grace period of which this CPU
2281 * is not yet aware, and if so, set up local rcu_data state for it.
2282 * Otherwise, see if this CPU has just passed through its first
2283 * quiescent state for this grace period, and record that fact if so.
2284 */
2285static void
2286rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2287{
05eb552b
PM
2288 /* Check for grace-period ends and beginnings. */
2289 note_gp_changes(rsp, rdp);
64db4cff
PM
2290
2291 /*
2292 * Does this CPU still need to do its part for current grace period?
2293 * If no, return and let the other CPUs do their part as well.
2294 */
2295 if (!rdp->qs_pending)
2296 return;
2297
2298 /*
2299 * Was there a quiescent state since the beginning of the grace
2300 * period? If no, then exit and wait for the next call.
2301 */
5cd37193
PM
2302 if (!rdp->passed_quiesce &&
2303 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2304 return;
2305
d3f6bad3
PM
2306 /*
2307 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2308 * judge of that).
2309 */
d7d6a11e 2310 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2311}
2312
2313#ifdef CONFIG_HOTPLUG_CPU
2314
e74f4c45 2315/*
b1420f1c
PM
2316 * Send the specified CPU's RCU callbacks to the orphanage. The
2317 * specified CPU must be offline, and the caller must hold the
7b2e6011 2318 * ->orphan_lock.
e74f4c45 2319 */
b1420f1c
PM
2320static void
2321rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2322 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2323{
3fbfbf7a 2324 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2325 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2326 return;
2327
b1420f1c
PM
2328 /*
2329 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2330 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2331 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2332 */
a50c3af9 2333 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2334 rsp->qlen_lazy += rdp->qlen_lazy;
2335 rsp->qlen += rdp->qlen;
2336 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2337 rdp->qlen_lazy = 0;
1d1fb395 2338 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2339 }
2340
2341 /*
b1420f1c
PM
2342 * Next, move those callbacks still needing a grace period to
2343 * the orphanage, where some other CPU will pick them up.
2344 * Some of the callbacks might have gone partway through a grace
2345 * period, but that is too bad. They get to start over because we
2346 * cannot assume that grace periods are synchronized across CPUs.
2347 * We don't bother updating the ->nxttail[] array yet, instead
2348 * we just reset the whole thing later on.
a50c3af9 2349 */
b1420f1c
PM
2350 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2351 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2352 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2353 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2354 }
2355
2356 /*
b1420f1c
PM
2357 * Then move the ready-to-invoke callbacks to the orphanage,
2358 * where some other CPU will pick them up. These will not be
2359 * required to pass though another grace period: They are done.
a50c3af9 2360 */
e5601400 2361 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2362 *rsp->orphan_donetail = rdp->nxtlist;
2363 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2364 }
e74f4c45 2365
b33078b6
PM
2366 /*
2367 * Finally, initialize the rcu_data structure's list to empty and
2368 * disallow further callbacks on this CPU.
2369 */
3f5d3ea6 2370 init_callback_list(rdp);
b33078b6 2371 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2372}
2373
2374/*
2375 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2376 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2377 */
96d3fd0d 2378static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2379{
2380 int i;
fa07a58f 2381 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2382
3fbfbf7a 2383 /* No-CBs CPUs are handled specially. */
96d3fd0d 2384 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2385 return;
2386
b1420f1c
PM
2387 /* Do the accounting first. */
2388 rdp->qlen_lazy += rsp->qlen_lazy;
2389 rdp->qlen += rsp->qlen;
2390 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2391 if (rsp->qlen_lazy != rsp->qlen)
2392 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2393 rsp->qlen_lazy = 0;
2394 rsp->qlen = 0;
2395
2396 /*
2397 * We do not need a memory barrier here because the only way we
2398 * can get here if there is an rcu_barrier() in flight is if
2399 * we are the task doing the rcu_barrier().
2400 */
2401
2402 /* First adopt the ready-to-invoke callbacks. */
2403 if (rsp->orphan_donelist != NULL) {
2404 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2405 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2406 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2407 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2408 rdp->nxttail[i] = rsp->orphan_donetail;
2409 rsp->orphan_donelist = NULL;
2410 rsp->orphan_donetail = &rsp->orphan_donelist;
2411 }
2412
2413 /* And then adopt the callbacks that still need a grace period. */
2414 if (rsp->orphan_nxtlist != NULL) {
2415 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2416 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2417 rsp->orphan_nxtlist = NULL;
2418 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2419 }
2420}
2421
2422/*
2423 * Trace the fact that this CPU is going offline.
2424 */
2425static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2426{
2427 RCU_TRACE(unsigned long mask);
2428 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2429 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2430
2431 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2432 trace_rcu_grace_period(rsp->name,
2433 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2434 TPS("cpuofl"));
64db4cff
PM
2435}
2436
8af3a5e7
PM
2437/*
2438 * All CPUs for the specified rcu_node structure have gone offline,
2439 * and all tasks that were preempted within an RCU read-side critical
2440 * section while running on one of those CPUs have since exited their RCU
2441 * read-side critical section. Some other CPU is reporting this fact with
2442 * the specified rcu_node structure's ->lock held and interrupts disabled.
2443 * This function therefore goes up the tree of rcu_node structures,
2444 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2445 * the leaf rcu_node structure's ->qsmaskinit field has already been
2446 * updated
2447 *
2448 * This function does check that the specified rcu_node structure has
2449 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2450 * prematurely. That said, invoking it after the fact will cost you
2451 * a needless lock acquisition. So once it has done its work, don't
2452 * invoke it again.
2453 */
2454static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2455{
2456 long mask;
2457 struct rcu_node *rnp = rnp_leaf;
2458
2459 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2460 return;
2461 for (;;) {
2462 mask = rnp->grpmask;
2463 rnp = rnp->parent;
2464 if (!rnp)
2465 break;
2466 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2467 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2468 rnp->qsmaskinit &= ~mask;
0aa04b05 2469 rnp->qsmask &= ~mask;
8af3a5e7
PM
2470 if (rnp->qsmaskinit) {
2471 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2472 return;
2473 }
2474 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2475 }
2476}
2477
88428cc5
PM
2478/*
2479 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2480 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2481 * bit masks.
2482 */
2483static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2484{
2485 unsigned long flags;
2486 unsigned long mask;
2487 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2488 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2489
2490 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2491 mask = rdp->grpmask;
2492 raw_spin_lock_irqsave(&rnp->lock, flags);
2493 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2494 rnp->qsmaskinitnext &= ~mask;
2495 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2496}
2497
64db4cff 2498/*
e5601400 2499 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2500 * this fact from process context. Do the remainder of the cleanup,
2501 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2502 * adopting them. There can only be one CPU hotplug operation at a time,
2503 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2504 */
e5601400 2505static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2506{
2036d94a 2507 unsigned long flags;
e5601400 2508 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2509 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2510
2036d94a 2511 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2512 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2513
b1420f1c 2514 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2515 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2516 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2517 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2518 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2519
cf01537e
PM
2520 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2521 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2522 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2523}
2524
2525#else /* #ifdef CONFIG_HOTPLUG_CPU */
2526
e5601400 2527static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2528{
2529}
2530
b6a932d1
PM
2531static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2532{
2533}
2534
88428cc5
PM
2535static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2536{
2537}
2538
e5601400 2539static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2540{
2541}
2542
2543#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2544
2545/*
2546 * Invoke any RCU callbacks that have made it to the end of their grace
2547 * period. Thottle as specified by rdp->blimit.
2548 */
37c72e56 2549static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2550{
2551 unsigned long flags;
2552 struct rcu_head *next, *list, **tail;
878d7439
ED
2553 long bl, count, count_lazy;
2554 int i;
64db4cff 2555
dc35c893 2556 /* If no callbacks are ready, just return. */
29c00b4a 2557 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2558 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2559 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2560 need_resched(), is_idle_task(current),
2561 rcu_is_callbacks_kthread());
64db4cff 2562 return;
29c00b4a 2563 }
64db4cff
PM
2564
2565 /*
2566 * Extract the list of ready callbacks, disabling to prevent
2567 * races with call_rcu() from interrupt handlers.
2568 */
2569 local_irq_save(flags);
8146c4e2 2570 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2571 bl = rdp->blimit;
486e2593 2572 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2573 list = rdp->nxtlist;
2574 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2575 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2576 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2577 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2578 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2579 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2580 local_irq_restore(flags);
2581
2582 /* Invoke callbacks. */
486e2593 2583 count = count_lazy = 0;
64db4cff
PM
2584 while (list) {
2585 next = list->next;
2586 prefetch(next);
551d55a9 2587 debug_rcu_head_unqueue(list);
486e2593
PM
2588 if (__rcu_reclaim(rsp->name, list))
2589 count_lazy++;
64db4cff 2590 list = next;
dff1672d
PM
2591 /* Stop only if limit reached and CPU has something to do. */
2592 if (++count >= bl &&
2593 (need_resched() ||
2594 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2595 break;
2596 }
2597
2598 local_irq_save(flags);
4968c300
PM
2599 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2600 is_idle_task(current),
2601 rcu_is_callbacks_kthread());
64db4cff
PM
2602
2603 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2604 if (list != NULL) {
2605 *tail = rdp->nxtlist;
2606 rdp->nxtlist = list;
b41772ab
PM
2607 for (i = 0; i < RCU_NEXT_SIZE; i++)
2608 if (&rdp->nxtlist == rdp->nxttail[i])
2609 rdp->nxttail[i] = tail;
64db4cff
PM
2610 else
2611 break;
2612 }
b1420f1c
PM
2613 smp_mb(); /* List handling before counting for rcu_barrier(). */
2614 rdp->qlen_lazy -= count_lazy;
a792563b 2615 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2616 rdp->n_cbs_invoked += count;
64db4cff
PM
2617
2618 /* Reinstate batch limit if we have worked down the excess. */
2619 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2620 rdp->blimit = blimit;
2621
37c72e56
PM
2622 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2623 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2624 rdp->qlen_last_fqs_check = 0;
2625 rdp->n_force_qs_snap = rsp->n_force_qs;
2626 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2627 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2628 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2629
64db4cff
PM
2630 local_irq_restore(flags);
2631
e0f23060 2632 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2633 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2634 invoke_rcu_core();
64db4cff
PM
2635}
2636
2637/*
2638 * Check to see if this CPU is in a non-context-switch quiescent state
2639 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2640 * Also schedule RCU core processing.
64db4cff 2641 *
9b2e4f18 2642 * This function must be called from hardirq context. It is normally
64db4cff
PM
2643 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2644 * false, there is no point in invoking rcu_check_callbacks().
2645 */
c3377c2d 2646void rcu_check_callbacks(int user)
64db4cff 2647{
f7f7bac9 2648 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2649 increment_cpu_stall_ticks();
9b2e4f18 2650 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2651
2652 /*
2653 * Get here if this CPU took its interrupt from user
2654 * mode or from the idle loop, and if this is not a
2655 * nested interrupt. In this case, the CPU is in
d6714c22 2656 * a quiescent state, so note it.
64db4cff
PM
2657 *
2658 * No memory barrier is required here because both
d6714c22
PM
2659 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2660 * variables that other CPUs neither access nor modify,
2661 * at least not while the corresponding CPU is online.
64db4cff
PM
2662 */
2663
284a8c93
PM
2664 rcu_sched_qs();
2665 rcu_bh_qs();
64db4cff
PM
2666
2667 } else if (!in_softirq()) {
2668
2669 /*
2670 * Get here if this CPU did not take its interrupt from
2671 * softirq, in other words, if it is not interrupting
2672 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2673 * critical section, so note it.
64db4cff
PM
2674 */
2675
284a8c93 2676 rcu_bh_qs();
64db4cff 2677 }
86aea0e6 2678 rcu_preempt_check_callbacks();
e3950ecd 2679 if (rcu_pending())
a46e0899 2680 invoke_rcu_core();
8315f422
PM
2681 if (user)
2682 rcu_note_voluntary_context_switch(current);
f7f7bac9 2683 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2684}
2685
64db4cff
PM
2686/*
2687 * Scan the leaf rcu_node structures, processing dyntick state for any that
2688 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2689 * Also initiate boosting for any threads blocked on the root rcu_node.
2690 *
ee47eb9f 2691 * The caller must have suppressed start of new grace periods.
64db4cff 2692 */
217af2a2
PM
2693static void force_qs_rnp(struct rcu_state *rsp,
2694 int (*f)(struct rcu_data *rsp, bool *isidle,
2695 unsigned long *maxj),
2696 bool *isidle, unsigned long *maxj)
64db4cff
PM
2697{
2698 unsigned long bit;
2699 int cpu;
2700 unsigned long flags;
2701 unsigned long mask;
a0b6c9a7 2702 struct rcu_node *rnp;
64db4cff 2703
a0b6c9a7 2704 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2705 cond_resched_rcu_qs();
64db4cff 2706 mask = 0;
1304afb2 2707 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2708 smp_mb__after_unlock_lock();
ee47eb9f 2709 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2710 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2711 return;
64db4cff 2712 }
a0b6c9a7 2713 if (rnp->qsmask == 0) {
1217ed1b 2714 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2715 continue;
2716 }
a0b6c9a7 2717 cpu = rnp->grplo;
64db4cff 2718 bit = 1;
a0b6c9a7 2719 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2720 if ((rnp->qsmask & bit) != 0) {
2721 if ((rnp->qsmaskinit & bit) != 0)
e02b2edf 2722 *isidle = false;
0edd1b17
PM
2723 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2724 mask |= bit;
2725 }
64db4cff 2726 }
45f014c5 2727 if (mask != 0) {
0aa04b05 2728 /* Idle/offline CPUs, report. */
d3f6bad3 2729 rcu_report_qs_rnp(mask, rsp, rnp, flags);
0aa04b05
PM
2730 } else if (rnp->parent &&
2731 list_empty(&rnp->blkd_tasks) &&
2732 !rnp->qsmask &&
2733 (rnp->parent->qsmask & rnp->grpmask)) {
2734 /*
2735 * Race between grace-period initialization and task
2736 * existing RCU read-side critical section, report.
2737 */
2738 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2739 } else {
2740 /* Nothing to do here, so just drop the lock. */
2741 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2742 }
64db4cff 2743 }
64db4cff
PM
2744}
2745
2746/*
2747 * Force quiescent states on reluctant CPUs, and also detect which
2748 * CPUs are in dyntick-idle mode.
2749 */
4cdfc175 2750static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2751{
2752 unsigned long flags;
394f2769
PM
2753 bool ret;
2754 struct rcu_node *rnp;
2755 struct rcu_node *rnp_old = NULL;
2756
2757 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2758 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2759 for (; rnp != NULL; rnp = rnp->parent) {
2760 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2761 !raw_spin_trylock(&rnp->fqslock);
2762 if (rnp_old != NULL)
2763 raw_spin_unlock(&rnp_old->fqslock);
2764 if (ret) {
a792563b 2765 rsp->n_force_qs_lh++;
394f2769
PM
2766 return;
2767 }
2768 rnp_old = rnp;
2769 }
2770 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2771
394f2769
PM
2772 /* Reached the root of the rcu_node tree, acquire lock. */
2773 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2774 smp_mb__after_unlock_lock();
394f2769
PM
2775 raw_spin_unlock(&rnp_old->fqslock);
2776 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2777 rsp->n_force_qs_lh++;
394f2769 2778 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2779 return; /* Someone beat us to it. */
46a1e34e 2780 }
4de376a1
PK
2781 ACCESS_ONCE(rsp->gp_flags) =
2782 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
394f2769 2783 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2784 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2785}
2786
64db4cff 2787/*
e0f23060
PM
2788 * This does the RCU core processing work for the specified rcu_state
2789 * and rcu_data structures. This may be called only from the CPU to
2790 * whom the rdp belongs.
64db4cff
PM
2791 */
2792static void
1bca8cf1 2793__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2794{
2795 unsigned long flags;
48a7639c 2796 bool needwake;
fa07a58f 2797 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2798
2e597558
PM
2799 WARN_ON_ONCE(rdp->beenonline == 0);
2800
64db4cff
PM
2801 /* Update RCU state based on any recent quiescent states. */
2802 rcu_check_quiescent_state(rsp, rdp);
2803
2804 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2805 local_irq_save(flags);
64db4cff 2806 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2807 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2808 needwake = rcu_start_gp(rsp);
b8462084 2809 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2810 if (needwake)
2811 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2812 } else {
2813 local_irq_restore(flags);
64db4cff
PM
2814 }
2815
2816 /* If there are callbacks ready, invoke them. */
09223371 2817 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2818 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2819
2820 /* Do any needed deferred wakeups of rcuo kthreads. */
2821 do_nocb_deferred_wakeup(rdp);
09223371
SL
2822}
2823
64db4cff 2824/*
e0f23060 2825 * Do RCU core processing for the current CPU.
64db4cff 2826 */
09223371 2827static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2828{
6ce75a23
PM
2829 struct rcu_state *rsp;
2830
bfa00b4c
PM
2831 if (cpu_is_offline(smp_processor_id()))
2832 return;
f7f7bac9 2833 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2834 for_each_rcu_flavor(rsp)
2835 __rcu_process_callbacks(rsp);
f7f7bac9 2836 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2837}
2838
a26ac245 2839/*
e0f23060
PM
2840 * Schedule RCU callback invocation. If the specified type of RCU
2841 * does not support RCU priority boosting, just do a direct call,
2842 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2843 * are running on the current CPU with softirqs disabled, the
e0f23060 2844 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2845 */
a46e0899 2846static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2847{
b0d30417
PM
2848 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2849 return;
a46e0899
PM
2850 if (likely(!rsp->boost)) {
2851 rcu_do_batch(rsp, rdp);
a26ac245
PM
2852 return;
2853 }
a46e0899 2854 invoke_rcu_callbacks_kthread();
a26ac245
PM
2855}
2856
a46e0899 2857static void invoke_rcu_core(void)
09223371 2858{
b0f74036
PM
2859 if (cpu_online(smp_processor_id()))
2860 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2861}
2862
29154c57
PM
2863/*
2864 * Handle any core-RCU processing required by a call_rcu() invocation.
2865 */
2866static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2867 struct rcu_head *head, unsigned long flags)
64db4cff 2868{
48a7639c
PM
2869 bool needwake;
2870
62fde6ed
PM
2871 /*
2872 * If called from an extended quiescent state, invoke the RCU
2873 * core in order to force a re-evaluation of RCU's idleness.
2874 */
5c173eb8 2875 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2876 invoke_rcu_core();
2877
a16b7a69 2878 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2879 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2880 return;
64db4cff 2881
37c72e56
PM
2882 /*
2883 * Force the grace period if too many callbacks or too long waiting.
2884 * Enforce hysteresis, and don't invoke force_quiescent_state()
2885 * if some other CPU has recently done so. Also, don't bother
2886 * invoking force_quiescent_state() if the newly enqueued callback
2887 * is the only one waiting for a grace period to complete.
2888 */
2655d57e 2889 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2890
2891 /* Are we ignoring a completed grace period? */
470716fc 2892 note_gp_changes(rsp, rdp);
b52573d2
PM
2893
2894 /* Start a new grace period if one not already started. */
2895 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2896 struct rcu_node *rnp_root = rcu_get_root(rsp);
2897
b8462084 2898 raw_spin_lock(&rnp_root->lock);
6303b9c8 2899 smp_mb__after_unlock_lock();
48a7639c 2900 needwake = rcu_start_gp(rsp);
b8462084 2901 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2902 if (needwake)
2903 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2904 } else {
2905 /* Give the grace period a kick. */
2906 rdp->blimit = LONG_MAX;
2907 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2908 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2909 force_quiescent_state(rsp);
b52573d2
PM
2910 rdp->n_force_qs_snap = rsp->n_force_qs;
2911 rdp->qlen_last_fqs_check = rdp->qlen;
2912 }
4cdfc175 2913 }
29154c57
PM
2914}
2915
ae150184
PM
2916/*
2917 * RCU callback function to leak a callback.
2918 */
2919static void rcu_leak_callback(struct rcu_head *rhp)
2920{
2921}
2922
3fbfbf7a
PM
2923/*
2924 * Helper function for call_rcu() and friends. The cpu argument will
2925 * normally be -1, indicating "currently running CPU". It may specify
2926 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2927 * is expected to specify a CPU.
2928 */
64db4cff
PM
2929static void
2930__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2931 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2932{
2933 unsigned long flags;
2934 struct rcu_data *rdp;
2935
1146edcb 2936 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2937 if (debug_rcu_head_queue(head)) {
2938 /* Probable double call_rcu(), so leak the callback. */
2939 ACCESS_ONCE(head->func) = rcu_leak_callback;
2940 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2941 return;
2942 }
64db4cff
PM
2943 head->func = func;
2944 head->next = NULL;
2945
64db4cff
PM
2946 /*
2947 * Opportunistically note grace-period endings and beginnings.
2948 * Note that we might see a beginning right after we see an
2949 * end, but never vice versa, since this CPU has to pass through
2950 * a quiescent state betweentimes.
2951 */
2952 local_irq_save(flags);
394f99a9 2953 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2954
2955 /* Add the callback to our list. */
3fbfbf7a
PM
2956 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2957 int offline;
2958
2959 if (cpu != -1)
2960 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2961 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2962 WARN_ON_ONCE(offline);
0d8ee37e 2963 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2964 local_irq_restore(flags);
2965 return;
2966 }
a792563b 2967 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2968 if (lazy)
2969 rdp->qlen_lazy++;
c57afe80
PM
2970 else
2971 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2972 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2973 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2974 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2975
d4c08f2a
PM
2976 if (__is_kfree_rcu_offset((unsigned long)func))
2977 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2978 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2979 else
486e2593 2980 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2981
29154c57
PM
2982 /* Go handle any RCU core processing required. */
2983 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2984 local_irq_restore(flags);
2985}
2986
2987/*
d6714c22 2988 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2989 */
d6714c22 2990void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2991{
3fbfbf7a 2992 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2993}
d6714c22 2994EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2995
2996/*
486e2593 2997 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2998 */
2999void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3000{
3fbfbf7a 3001 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3002}
3003EXPORT_SYMBOL_GPL(call_rcu_bh);
3004
495aa969
ACB
3005/*
3006 * Queue an RCU callback for lazy invocation after a grace period.
3007 * This will likely be later named something like "call_rcu_lazy()",
3008 * but this change will require some way of tagging the lazy RCU
3009 * callbacks in the list of pending callbacks. Until then, this
3010 * function may only be called from __kfree_rcu().
3011 */
3012void kfree_call_rcu(struct rcu_head *head,
3013 void (*func)(struct rcu_head *rcu))
3014{
e534165b 3015 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3016}
3017EXPORT_SYMBOL_GPL(kfree_call_rcu);
3018
6d813391
PM
3019/*
3020 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3021 * any blocking grace-period wait automatically implies a grace period
3022 * if there is only one CPU online at any point time during execution
3023 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3024 * occasionally incorrectly indicate that there are multiple CPUs online
3025 * when there was in fact only one the whole time, as this just adds
3026 * some overhead: RCU still operates correctly.
6d813391
PM
3027 */
3028static inline int rcu_blocking_is_gp(void)
3029{
95f0c1de
PM
3030 int ret;
3031
6d813391 3032 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3033 preempt_disable();
3034 ret = num_online_cpus() <= 1;
3035 preempt_enable();
3036 return ret;
6d813391
PM
3037}
3038
6ebb237b
PM
3039/**
3040 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3041 *
3042 * Control will return to the caller some time after a full rcu-sched
3043 * grace period has elapsed, in other words after all currently executing
3044 * rcu-sched read-side critical sections have completed. These read-side
3045 * critical sections are delimited by rcu_read_lock_sched() and
3046 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3047 * local_irq_disable(), and so on may be used in place of
3048 * rcu_read_lock_sched().
3049 *
3050 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3051 * non-threaded hardware-interrupt handlers, in progress on entry will
3052 * have completed before this primitive returns. However, this does not
3053 * guarantee that softirq handlers will have completed, since in some
3054 * kernels, these handlers can run in process context, and can block.
3055 *
3056 * Note that this guarantee implies further memory-ordering guarantees.
3057 * On systems with more than one CPU, when synchronize_sched() returns,
3058 * each CPU is guaranteed to have executed a full memory barrier since the
3059 * end of its last RCU-sched read-side critical section whose beginning
3060 * preceded the call to synchronize_sched(). In addition, each CPU having
3061 * an RCU read-side critical section that extends beyond the return from
3062 * synchronize_sched() is guaranteed to have executed a full memory barrier
3063 * after the beginning of synchronize_sched() and before the beginning of
3064 * that RCU read-side critical section. Note that these guarantees include
3065 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3066 * that are executing in the kernel.
3067 *
3068 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3069 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3070 * to have executed a full memory barrier during the execution of
3071 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3072 * again only if the system has more than one CPU).
6ebb237b
PM
3073 *
3074 * This primitive provides the guarantees made by the (now removed)
3075 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3076 * guarantees that rcu_read_lock() sections will have completed.
3077 * In "classic RCU", these two guarantees happen to be one and
3078 * the same, but can differ in realtime RCU implementations.
3079 */
3080void synchronize_sched(void)
3081{
fe15d706
PM
3082 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3083 !lock_is_held(&rcu_lock_map) &&
3084 !lock_is_held(&rcu_sched_lock_map),
3085 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3086 if (rcu_blocking_is_gp())
3087 return;
3705b88d
AM
3088 if (rcu_expedited)
3089 synchronize_sched_expedited();
3090 else
3091 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3092}
3093EXPORT_SYMBOL_GPL(synchronize_sched);
3094
3095/**
3096 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3097 *
3098 * Control will return to the caller some time after a full rcu_bh grace
3099 * period has elapsed, in other words after all currently executing rcu_bh
3100 * read-side critical sections have completed. RCU read-side critical
3101 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3102 * and may be nested.
f0a0e6f2
PM
3103 *
3104 * See the description of synchronize_sched() for more detailed information
3105 * on memory ordering guarantees.
6ebb237b
PM
3106 */
3107void synchronize_rcu_bh(void)
3108{
fe15d706
PM
3109 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3110 !lock_is_held(&rcu_lock_map) &&
3111 !lock_is_held(&rcu_sched_lock_map),
3112 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3113 if (rcu_blocking_is_gp())
3114 return;
3705b88d
AM
3115 if (rcu_expedited)
3116 synchronize_rcu_bh_expedited();
3117 else
3118 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3119}
3120EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3121
765a3f4f
PM
3122/**
3123 * get_state_synchronize_rcu - Snapshot current RCU state
3124 *
3125 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3126 * to determine whether or not a full grace period has elapsed in the
3127 * meantime.
3128 */
3129unsigned long get_state_synchronize_rcu(void)
3130{
3131 /*
3132 * Any prior manipulation of RCU-protected data must happen
3133 * before the load from ->gpnum.
3134 */
3135 smp_mb(); /* ^^^ */
3136
3137 /*
3138 * Make sure this load happens before the purportedly
3139 * time-consuming work between get_state_synchronize_rcu()
3140 * and cond_synchronize_rcu().
3141 */
e534165b 3142 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3143}
3144EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3145
3146/**
3147 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3148 *
3149 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3150 *
3151 * If a full RCU grace period has elapsed since the earlier call to
3152 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3153 * synchronize_rcu() to wait for a full grace period.
3154 *
3155 * Yes, this function does not take counter wrap into account. But
3156 * counter wrap is harmless. If the counter wraps, we have waited for
3157 * more than 2 billion grace periods (and way more on a 64-bit system!),
3158 * so waiting for one additional grace period should be just fine.
3159 */
3160void cond_synchronize_rcu(unsigned long oldstate)
3161{
3162 unsigned long newstate;
3163
3164 /*
3165 * Ensure that this load happens before any RCU-destructive
3166 * actions the caller might carry out after we return.
3167 */
e534165b 3168 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3169 if (ULONG_CMP_GE(oldstate, newstate))
3170 synchronize_rcu();
3171}
3172EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3173
3d3b7db0
PM
3174static int synchronize_sched_expedited_cpu_stop(void *data)
3175{
3176 /*
3177 * There must be a full memory barrier on each affected CPU
3178 * between the time that try_stop_cpus() is called and the
3179 * time that it returns.
3180 *
3181 * In the current initial implementation of cpu_stop, the
3182 * above condition is already met when the control reaches
3183 * this point and the following smp_mb() is not strictly
3184 * necessary. Do smp_mb() anyway for documentation and
3185 * robustness against future implementation changes.
3186 */
3187 smp_mb(); /* See above comment block. */
3188 return 0;
3189}
3190
236fefaf
PM
3191/**
3192 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3193 *
3194 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3195 * approach to force the grace period to end quickly. This consumes
3196 * significant time on all CPUs and is unfriendly to real-time workloads,
3197 * so is thus not recommended for any sort of common-case code. In fact,
3198 * if you are using synchronize_sched_expedited() in a loop, please
3199 * restructure your code to batch your updates, and then use a single
3200 * synchronize_sched() instead.
3d3b7db0 3201 *
3d3b7db0
PM
3202 * This implementation can be thought of as an application of ticket
3203 * locking to RCU, with sync_sched_expedited_started and
3204 * sync_sched_expedited_done taking on the roles of the halves
3205 * of the ticket-lock word. Each task atomically increments
3206 * sync_sched_expedited_started upon entry, snapshotting the old value,
3207 * then attempts to stop all the CPUs. If this succeeds, then each
3208 * CPU will have executed a context switch, resulting in an RCU-sched
3209 * grace period. We are then done, so we use atomic_cmpxchg() to
3210 * update sync_sched_expedited_done to match our snapshot -- but
3211 * only if someone else has not already advanced past our snapshot.
3212 *
3213 * On the other hand, if try_stop_cpus() fails, we check the value
3214 * of sync_sched_expedited_done. If it has advanced past our
3215 * initial snapshot, then someone else must have forced a grace period
3216 * some time after we took our snapshot. In this case, our work is
3217 * done for us, and we can simply return. Otherwise, we try again,
3218 * but keep our initial snapshot for purposes of checking for someone
3219 * doing our work for us.
3220 *
3221 * If we fail too many times in a row, we fall back to synchronize_sched().
3222 */
3223void synchronize_sched_expedited(void)
3224{
e0775cef
PM
3225 cpumask_var_t cm;
3226 bool cma = false;
3227 int cpu;
1924bcb0
PM
3228 long firstsnap, s, snap;
3229 int trycount = 0;
40694d66 3230 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3231
1924bcb0
PM
3232 /*
3233 * If we are in danger of counter wrap, just do synchronize_sched().
3234 * By allowing sync_sched_expedited_started to advance no more than
3235 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3236 * that more than 3.5 billion CPUs would be required to force a
3237 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3238 * course be required on a 64-bit system.
3239 */
40694d66
PM
3240 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3241 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
3242 ULONG_MAX / 8)) {
3243 synchronize_sched();
a30489c5 3244 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
3245 return;
3246 }
3d3b7db0 3247
1924bcb0
PM
3248 /*
3249 * Take a ticket. Note that atomic_inc_return() implies a
3250 * full memory barrier.
3251 */
40694d66 3252 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 3253 firstsnap = snap;
dd56af42
PM
3254 if (!try_get_online_cpus()) {
3255 /* CPU hotplug operation in flight, fall back to normal GP. */
3256 wait_rcu_gp(call_rcu_sched);
3257 atomic_long_inc(&rsp->expedited_normal);
3258 return;
3259 }
1cc85961 3260 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0 3261
e0775cef
PM
3262 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3263 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3264 if (cma) {
3265 cpumask_copy(cm, cpu_online_mask);
3266 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3267 for_each_cpu(cpu, cm) {
3268 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3269
3270 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3271 cpumask_clear_cpu(cpu, cm);
3272 }
3273 if (cpumask_weight(cm) == 0)
3274 goto all_cpus_idle;
3275 }
3276
3d3b7db0
PM
3277 /*
3278 * Each pass through the following loop attempts to force a
3279 * context switch on each CPU.
3280 */
e0775cef 3281 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3d3b7db0
PM
3282 synchronize_sched_expedited_cpu_stop,
3283 NULL) == -EAGAIN) {
3284 put_online_cpus();
a30489c5 3285 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3286
1924bcb0 3287 /* Check to see if someone else did our work for us. */
40694d66 3288 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3289 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3290 /* ensure test happens before caller kfree */
4e857c58 3291 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3292 atomic_long_inc(&rsp->expedited_workdone1);
e0775cef 3293 free_cpumask_var(cm);
1924bcb0
PM
3294 return;
3295 }
3d3b7db0
PM
3296
3297 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3298 if (trycount++ < 10) {
3d3b7db0 3299 udelay(trycount * num_online_cpus());
c701d5d9 3300 } else {
3705b88d 3301 wait_rcu_gp(call_rcu_sched);
a30489c5 3302 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3303 free_cpumask_var(cm);
3d3b7db0
PM
3304 return;
3305 }
3306
1924bcb0 3307 /* Recheck to see if someone else did our work for us. */
40694d66 3308 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3309 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3310 /* ensure test happens before caller kfree */
4e857c58 3311 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3312 atomic_long_inc(&rsp->expedited_workdone2);
e0775cef 3313 free_cpumask_var(cm);
3d3b7db0
PM
3314 return;
3315 }
3316
3317 /*
3318 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3319 * callers to piggyback on our grace period. We retry
3320 * after they started, so our grace period works for them,
3321 * and they started after our first try, so their grace
3322 * period works for us.
3d3b7db0 3323 */
dd56af42
PM
3324 if (!try_get_online_cpus()) {
3325 /* CPU hotplug operation in flight, use normal GP. */
3326 wait_rcu_gp(call_rcu_sched);
3327 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3328 free_cpumask_var(cm);
dd56af42
PM
3329 return;
3330 }
40694d66 3331 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3332 smp_mb(); /* ensure read is before try_stop_cpus(). */
3333 }
a30489c5 3334 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0 3335
e0775cef
PM
3336all_cpus_idle:
3337 free_cpumask_var(cm);
3338
3d3b7db0
PM
3339 /*
3340 * Everyone up to our most recent fetch is covered by our grace
3341 * period. Update the counter, but only if our work is still
3342 * relevant -- which it won't be if someone who started later
1924bcb0 3343 * than we did already did their update.
3d3b7db0
PM
3344 */
3345 do {
a30489c5 3346 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3347 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3348 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3349 /* ensure test happens before caller kfree */
4e857c58 3350 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3351 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3352 break;
3353 }
40694d66 3354 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3355 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3356
3357 put_online_cpus();
3358}
3359EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3360
64db4cff
PM
3361/*
3362 * Check to see if there is any immediate RCU-related work to be done
3363 * by the current CPU, for the specified type of RCU, returning 1 if so.
3364 * The checks are in order of increasing expense: checks that can be
3365 * carried out against CPU-local state are performed first. However,
3366 * we must check for CPU stalls first, else we might not get a chance.
3367 */
3368static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3369{
2f51f988
PM
3370 struct rcu_node *rnp = rdp->mynode;
3371
64db4cff
PM
3372 rdp->n_rcu_pending++;
3373
3374 /* Check for CPU stalls, if enabled. */
3375 check_cpu_stall(rsp, rdp);
3376
a096932f
PM
3377 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3378 if (rcu_nohz_full_cpu(rsp))
3379 return 0;
3380
64db4cff 3381 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3382 if (rcu_scheduler_fully_active &&
5cd37193
PM
3383 rdp->qs_pending && !rdp->passed_quiesce &&
3384 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
d21670ac 3385 rdp->n_rp_qs_pending++;
5cd37193
PM
3386 } else if (rdp->qs_pending &&
3387 (rdp->passed_quiesce ||
3388 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3389 rdp->n_rp_report_qs++;
64db4cff 3390 return 1;
7ba5c840 3391 }
64db4cff
PM
3392
3393 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3394 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3395 rdp->n_rp_cb_ready++;
64db4cff 3396 return 1;
7ba5c840 3397 }
64db4cff
PM
3398
3399 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3400 if (cpu_needs_another_gp(rsp, rdp)) {
3401 rdp->n_rp_cpu_needs_gp++;
64db4cff 3402 return 1;
7ba5c840 3403 }
64db4cff
PM
3404
3405 /* Has another RCU grace period completed? */
2f51f988 3406 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3407 rdp->n_rp_gp_completed++;
64db4cff 3408 return 1;
7ba5c840 3409 }
64db4cff
PM
3410
3411 /* Has a new RCU grace period started? */
e3663b10
PM
3412 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3413 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3414 rdp->n_rp_gp_started++;
64db4cff 3415 return 1;
7ba5c840 3416 }
64db4cff 3417
96d3fd0d
PM
3418 /* Does this CPU need a deferred NOCB wakeup? */
3419 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3420 rdp->n_rp_nocb_defer_wakeup++;
3421 return 1;
3422 }
3423
64db4cff 3424 /* nothing to do */
7ba5c840 3425 rdp->n_rp_need_nothing++;
64db4cff
PM
3426 return 0;
3427}
3428
3429/*
3430 * Check to see if there is any immediate RCU-related work to be done
3431 * by the current CPU, returning 1 if so. This function is part of the
3432 * RCU implementation; it is -not- an exported member of the RCU API.
3433 */
e3950ecd 3434static int rcu_pending(void)
64db4cff 3435{
6ce75a23
PM
3436 struct rcu_state *rsp;
3437
3438 for_each_rcu_flavor(rsp)
e3950ecd 3439 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3440 return 1;
3441 return 0;
64db4cff
PM
3442}
3443
3444/*
c0f4dfd4
PM
3445 * Return true if the specified CPU has any callback. If all_lazy is
3446 * non-NULL, store an indication of whether all callbacks are lazy.
3447 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3448 */
aa6da514 3449static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3450{
c0f4dfd4
PM
3451 bool al = true;
3452 bool hc = false;
3453 struct rcu_data *rdp;
6ce75a23
PM
3454 struct rcu_state *rsp;
3455
c0f4dfd4 3456 for_each_rcu_flavor(rsp) {
aa6da514 3457 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3458 if (!rdp->nxtlist)
3459 continue;
3460 hc = true;
3461 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3462 al = false;
69c8d28c
PM
3463 break;
3464 }
c0f4dfd4
PM
3465 }
3466 if (all_lazy)
3467 *all_lazy = al;
3468 return hc;
64db4cff
PM
3469}
3470
a83eff0a
PM
3471/*
3472 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3473 * the compiler is expected to optimize this away.
3474 */
e66c33d5 3475static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3476 int cpu, unsigned long done)
3477{
3478 trace_rcu_barrier(rsp->name, s, cpu,
3479 atomic_read(&rsp->barrier_cpu_count), done);
3480}
3481
b1420f1c
PM
3482/*
3483 * RCU callback function for _rcu_barrier(). If we are last, wake
3484 * up the task executing _rcu_barrier().
3485 */
24ebbca8 3486static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3487{
24ebbca8
PM
3488 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3489 struct rcu_state *rsp = rdp->rsp;
3490
a83eff0a
PM
3491 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3492 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3493 complete(&rsp->barrier_completion);
a83eff0a
PM
3494 } else {
3495 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3496 }
d0ec774c
PM
3497}
3498
3499/*
3500 * Called with preemption disabled, and from cross-cpu IRQ context.
3501 */
3502static void rcu_barrier_func(void *type)
3503{
037b64ed 3504 struct rcu_state *rsp = type;
fa07a58f 3505 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3506
a83eff0a 3507 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3508 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3509 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3510}
3511
d0ec774c
PM
3512/*
3513 * Orchestrate the specified type of RCU barrier, waiting for all
3514 * RCU callbacks of the specified type to complete.
3515 */
037b64ed 3516static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3517{
b1420f1c 3518 int cpu;
b1420f1c 3519 struct rcu_data *rdp;
cf3a9c48
PM
3520 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3521 unsigned long snap_done;
b1420f1c 3522
a83eff0a 3523 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3524
e74f4c45 3525 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3526 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3527
cf3a9c48
PM
3528 /*
3529 * Ensure that all prior references, including to ->n_barrier_done,
3530 * are ordered before the _rcu_barrier() machinery.
3531 */
3532 smp_mb(); /* See above block comment. */
3533
3534 /*
3535 * Recheck ->n_barrier_done to see if others did our work for us.
3536 * This means checking ->n_barrier_done for an even-to-odd-to-even
3537 * transition. The "if" expression below therefore rounds the old
3538 * value up to the next even number and adds two before comparing.
3539 */
458fb381 3540 snap_done = rsp->n_barrier_done;
a83eff0a 3541 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3542
3543 /*
3544 * If the value in snap is odd, we needed to wait for the current
3545 * rcu_barrier() to complete, then wait for the next one, in other
3546 * words, we need the value of snap_done to be three larger than
3547 * the value of snap. On the other hand, if the value in snap is
3548 * even, we only had to wait for the next rcu_barrier() to complete,
3549 * in other words, we need the value of snap_done to be only two
3550 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3551 * this for us (thank you, Linus!).
3552 */
3553 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3554 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3555 smp_mb(); /* caller's subsequent code after above check. */
3556 mutex_unlock(&rsp->barrier_mutex);
3557 return;
3558 }
3559
3560 /*
3561 * Increment ->n_barrier_done to avoid duplicate work. Use
3562 * ACCESS_ONCE() to prevent the compiler from speculating
3563 * the increment to precede the early-exit check.
3564 */
a792563b 3565 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3566 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3567 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3568 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3569
d0ec774c 3570 /*
b1420f1c
PM
3571 * Initialize the count to one rather than to zero in order to
3572 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3573 * (or preemption of this task). Exclude CPU-hotplug operations
3574 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3575 */
7db74df8 3576 init_completion(&rsp->barrier_completion);
24ebbca8 3577 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3578 get_online_cpus();
b1420f1c
PM
3579
3580 /*
1331e7a1
PM
3581 * Force each CPU with callbacks to register a new callback.
3582 * When that callback is invoked, we will know that all of the
3583 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3584 */
3fbfbf7a 3585 for_each_possible_cpu(cpu) {
d1e43fa5 3586 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3587 continue;
b1420f1c 3588 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3589 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3590 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3591 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3592 rsp->n_barrier_done);
3593 } else {
3594 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3595 rsp->n_barrier_done);
41050a00 3596 smp_mb__before_atomic();
d7e29933
PM
3597 atomic_inc(&rsp->barrier_cpu_count);
3598 __call_rcu(&rdp->barrier_head,
3599 rcu_barrier_callback, rsp, cpu, 0);
3600 }
3fbfbf7a 3601 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3602 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3603 rsp->n_barrier_done);
037b64ed 3604 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3605 } else {
a83eff0a
PM
3606 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3607 rsp->n_barrier_done);
b1420f1c
PM
3608 }
3609 }
1331e7a1 3610 put_online_cpus();
b1420f1c
PM
3611
3612 /*
3613 * Now that we have an rcu_barrier_callback() callback on each
3614 * CPU, and thus each counted, remove the initial count.
3615 */
24ebbca8 3616 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3617 complete(&rsp->barrier_completion);
b1420f1c 3618
cf3a9c48
PM
3619 /* Increment ->n_barrier_done to prevent duplicate work. */
3620 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3621 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3622 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3623 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3624 smp_mb(); /* Keep increment before caller's subsequent code. */
3625
b1420f1c 3626 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3627 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3628
3629 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3630 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3631}
d0ec774c
PM
3632
3633/**
3634 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3635 */
3636void rcu_barrier_bh(void)
3637{
037b64ed 3638 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3639}
3640EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3641
3642/**
3643 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3644 */
3645void rcu_barrier_sched(void)
3646{
037b64ed 3647 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3648}
3649EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3650
0aa04b05
PM
3651/*
3652 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3653 * first CPU in a given leaf rcu_node structure coming online. The caller
3654 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3655 * disabled.
3656 */
3657static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3658{
3659 long mask;
3660 struct rcu_node *rnp = rnp_leaf;
3661
3662 for (;;) {
3663 mask = rnp->grpmask;
3664 rnp = rnp->parent;
3665 if (rnp == NULL)
3666 return;
3667 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3668 rnp->qsmaskinit |= mask;
3669 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3670 }
3671}
3672
64db4cff 3673/*
27569620 3674 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3675 */
27569620
PM
3676static void __init
3677rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3678{
3679 unsigned long flags;
394f99a9 3680 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3681 struct rcu_node *rnp = rcu_get_root(rsp);
3682
3683 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3684 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3685 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 3686 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3687 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3688 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3689 rdp->cpu = cpu;
d4c08f2a 3690 rdp->rsp = rsp;
3fbfbf7a 3691 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3692 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3693}
3694
3695/*
3696 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3697 * offline event can be happening at a given time. Note also that we
3698 * can accept some slop in the rsp->completed access due to the fact
3699 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3700 */
49fb4c62 3701static void
9b67122a 3702rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3703{
3704 unsigned long flags;
64db4cff 3705 unsigned long mask;
394f99a9 3706 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3707 struct rcu_node *rnp = rcu_get_root(rsp);
3708
3709 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3710 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3711 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3712 rdp->qlen_last_fqs_check = 0;
3713 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3714 rdp->blimit = blimit;
0d8ee37e 3715 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3716 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3717 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3718 atomic_set(&rdp->dynticks->dynticks,
3719 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3720 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3721
0aa04b05
PM
3722 /*
3723 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3724 * propagation up the rcu_node tree will happen at the beginning
3725 * of the next grace period.
3726 */
64db4cff
PM
3727 rnp = rdp->mynode;
3728 mask = rdp->grpmask;
0aa04b05
PM
3729 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3730 smp_mb__after_unlock_lock();
3731 rnp->qsmaskinitnext |= mask;
3732 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3733 rdp->completed = rnp->completed;
3734 rdp->passed_quiesce = false;
3735 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3736 rdp->qs_pending = false;
3737 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
3739}
3740
49fb4c62 3741static void rcu_prepare_cpu(int cpu)
64db4cff 3742{
6ce75a23
PM
3743 struct rcu_state *rsp;
3744
3745 for_each_rcu_flavor(rsp)
9b67122a 3746 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3747}
3748
3749/*
f41d911f 3750 * Handle CPU online/offline notification events.
64db4cff 3751 */
88428cc5
PM
3752int rcu_cpu_notify(struct notifier_block *self,
3753 unsigned long action, void *hcpu)
64db4cff
PM
3754{
3755 long cpu = (long)hcpu;
e534165b 3756 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3757 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3758 struct rcu_state *rsp;
64db4cff
PM
3759
3760 switch (action) {
3761 case CPU_UP_PREPARE:
3762 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3763 rcu_prepare_cpu(cpu);
3764 rcu_prepare_kthreads(cpu);
35ce7f29 3765 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3766 break;
3767 case CPU_ONLINE:
0f962a5e 3768 case CPU_DOWN_FAILED:
5d01bbd1 3769 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3770 break;
3771 case CPU_DOWN_PREPARE:
34ed6246 3772 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3773 break;
d0ec774c
PM
3774 case CPU_DYING:
3775 case CPU_DYING_FROZEN:
6ce75a23
PM
3776 for_each_rcu_flavor(rsp)
3777 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3778 break;
88428cc5
PM
3779 case CPU_DYING_IDLE:
3780 for_each_rcu_flavor(rsp) {
3781 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3782 }
3783 break;
64db4cff
PM
3784 case CPU_DEAD:
3785 case CPU_DEAD_FROZEN:
3786 case CPU_UP_CANCELED:
3787 case CPU_UP_CANCELED_FROZEN:
776d6807 3788 for_each_rcu_flavor(rsp) {
6ce75a23 3789 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3790 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3791 }
64db4cff
PM
3792 break;
3793 default:
3794 break;
3795 }
34ed6246 3796 return NOTIFY_OK;
64db4cff
PM
3797}
3798
d1d74d14
BP
3799static int rcu_pm_notify(struct notifier_block *self,
3800 unsigned long action, void *hcpu)
3801{
3802 switch (action) {
3803 case PM_HIBERNATION_PREPARE:
3804 case PM_SUSPEND_PREPARE:
3805 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3806 rcu_expedited = 1;
3807 break;
3808 case PM_POST_HIBERNATION:
3809 case PM_POST_SUSPEND:
3810 rcu_expedited = 0;
3811 break;
3812 default:
3813 break;
3814 }
3815 return NOTIFY_OK;
3816}
3817
b3dbec76 3818/*
9386c0b7 3819 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3820 */
3821static int __init rcu_spawn_gp_kthread(void)
3822{
3823 unsigned long flags;
a94844b2 3824 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3825 struct rcu_node *rnp;
3826 struct rcu_state *rsp;
a94844b2 3827 struct sched_param sp;
b3dbec76
PM
3828 struct task_struct *t;
3829
a94844b2
PM
3830 /* Force priority into range. */
3831 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3832 kthread_prio = 1;
3833 else if (kthread_prio < 0)
3834 kthread_prio = 0;
3835 else if (kthread_prio > 99)
3836 kthread_prio = 99;
3837 if (kthread_prio != kthread_prio_in)
3838 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3839 kthread_prio, kthread_prio_in);
3840
9386c0b7 3841 rcu_scheduler_fully_active = 1;
b3dbec76 3842 for_each_rcu_flavor(rsp) {
a94844b2 3843 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3844 BUG_ON(IS_ERR(t));
3845 rnp = rcu_get_root(rsp);
3846 raw_spin_lock_irqsave(&rnp->lock, flags);
3847 rsp->gp_kthread = t;
a94844b2
PM
3848 if (kthread_prio) {
3849 sp.sched_priority = kthread_prio;
3850 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3851 }
3852 wake_up_process(t);
b3dbec76
PM
3853 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3854 }
35ce7f29 3855 rcu_spawn_nocb_kthreads();
9386c0b7 3856 rcu_spawn_boost_kthreads();
b3dbec76
PM
3857 return 0;
3858}
3859early_initcall(rcu_spawn_gp_kthread);
3860
bbad9379
PM
3861/*
3862 * This function is invoked towards the end of the scheduler's initialization
3863 * process. Before this is called, the idle task might contain
3864 * RCU read-side critical sections (during which time, this idle
3865 * task is booting the system). After this function is called, the
3866 * idle tasks are prohibited from containing RCU read-side critical
3867 * sections. This function also enables RCU lockdep checking.
3868 */
3869void rcu_scheduler_starting(void)
3870{
3871 WARN_ON(num_online_cpus() != 1);
3872 WARN_ON(nr_context_switches() > 0);
3873 rcu_scheduler_active = 1;
3874}
3875
64db4cff
PM
3876/*
3877 * Compute the per-level fanout, either using the exact fanout specified
3878 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3879 */
3880#ifdef CONFIG_RCU_FANOUT_EXACT
3881static void __init rcu_init_levelspread(struct rcu_state *rsp)
3882{
3883 int i;
3884
04f34650
PM
3885 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3886 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3887 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3888}
3889#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3890static void __init rcu_init_levelspread(struct rcu_state *rsp)
3891{
3892 int ccur;
3893 int cprv;
3894 int i;
3895
4dbd6bb3 3896 cprv = nr_cpu_ids;
f885b7f2 3897 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3898 ccur = rsp->levelcnt[i];
3899 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3900 cprv = ccur;
3901 }
3902}
3903#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3904
3905/*
3906 * Helper function for rcu_init() that initializes one rcu_state structure.
3907 */
394f99a9
LJ
3908static void __init rcu_init_one(struct rcu_state *rsp,
3909 struct rcu_data __percpu *rda)
64db4cff 3910{
b4426b49
FF
3911 static const char * const buf[] = {
3912 "rcu_node_0",
3913 "rcu_node_1",
3914 "rcu_node_2",
3915 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3916 static const char * const fqs[] = {
3917 "rcu_node_fqs_0",
3918 "rcu_node_fqs_1",
3919 "rcu_node_fqs_2",
3920 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3921 static u8 fl_mask = 0x1;
64db4cff
PM
3922 int cpustride = 1;
3923 int i;
3924 int j;
3925 struct rcu_node *rnp;
3926
b6407e86
PM
3927 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3928
4930521a
PM
3929 /* Silence gcc 4.8 warning about array index out of range. */
3930 if (rcu_num_lvls > RCU_NUM_LVLS)
3931 panic("rcu_init_one: rcu_num_lvls overflow");
3932
64db4cff
PM
3933 /* Initialize the level-tracking arrays. */
3934
f885b7f2
PM
3935 for (i = 0; i < rcu_num_lvls; i++)
3936 rsp->levelcnt[i] = num_rcu_lvl[i];
3937 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3938 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3939 rcu_init_levelspread(rsp);
4a81e832
PM
3940 rsp->flavor_mask = fl_mask;
3941 fl_mask <<= 1;
64db4cff
PM
3942
3943 /* Initialize the elements themselves, starting from the leaves. */
3944
f885b7f2 3945 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3946 cpustride *= rsp->levelspread[i];
3947 rnp = rsp->level[i];
3948 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3949 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3950 lockdep_set_class_and_name(&rnp->lock,
3951 &rcu_node_class[i], buf[i]);
394f2769
PM
3952 raw_spin_lock_init(&rnp->fqslock);
3953 lockdep_set_class_and_name(&rnp->fqslock,
3954 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3955 rnp->gpnum = rsp->gpnum;
3956 rnp->completed = rsp->completed;
64db4cff
PM
3957 rnp->qsmask = 0;
3958 rnp->qsmaskinit = 0;
3959 rnp->grplo = j * cpustride;
3960 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3961 if (rnp->grphi >= nr_cpu_ids)
3962 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3963 if (i == 0) {
3964 rnp->grpnum = 0;
3965 rnp->grpmask = 0;
3966 rnp->parent = NULL;
3967 } else {
3968 rnp->grpnum = j % rsp->levelspread[i - 1];
3969 rnp->grpmask = 1UL << rnp->grpnum;
3970 rnp->parent = rsp->level[i - 1] +
3971 j / rsp->levelspread[i - 1];
3972 }
3973 rnp->level = i;
12f5f524 3974 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3975 rcu_init_one_nocb(rnp);
64db4cff
PM
3976 }
3977 }
0c34029a 3978
394f99a9 3979 rsp->rda = rda;
b3dbec76 3980 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3981 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3982 for_each_possible_cpu(i) {
4a90a068 3983 while (i > rnp->grphi)
0c34029a 3984 rnp++;
394f99a9 3985 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3986 rcu_boot_init_percpu_data(i, rsp);
3987 }
6ce75a23 3988 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3989}
3990
f885b7f2
PM
3991/*
3992 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3993 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3994 * the ->node array in the rcu_state structure.
3995 */
3996static void __init rcu_init_geometry(void)
3997{
026ad283 3998 ulong d;
f885b7f2
PM
3999 int i;
4000 int j;
cca6f393 4001 int n = nr_cpu_ids;
f885b7f2
PM
4002 int rcu_capacity[MAX_RCU_LVLS + 1];
4003
026ad283
PM
4004 /*
4005 * Initialize any unspecified boot parameters.
4006 * The default values of jiffies_till_first_fqs and
4007 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4008 * value, which is a function of HZ, then adding one for each
4009 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4010 */
4011 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4012 if (jiffies_till_first_fqs == ULONG_MAX)
4013 jiffies_till_first_fqs = d;
4014 if (jiffies_till_next_fqs == ULONG_MAX)
4015 jiffies_till_next_fqs = d;
4016
f885b7f2 4017 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
4018 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
4019 nr_cpu_ids == NR_CPUS)
f885b7f2 4020 return;
39479098
PM
4021 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4022 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
4023
4024 /*
4025 * Compute number of nodes that can be handled an rcu_node tree
4026 * with the given number of levels. Setting rcu_capacity[0] makes
4027 * some of the arithmetic easier.
4028 */
4029 rcu_capacity[0] = 1;
4030 rcu_capacity[1] = rcu_fanout_leaf;
4031 for (i = 2; i <= MAX_RCU_LVLS; i++)
4032 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
4033
4034 /*
4035 * The boot-time rcu_fanout_leaf parameter is only permitted
4036 * to increase the leaf-level fanout, not decrease it. Of course,
4037 * the leaf-level fanout cannot exceed the number of bits in
4038 * the rcu_node masks. Finally, the tree must be able to accommodate
4039 * the configured number of CPUs. Complain and fall back to the
4040 * compile-time values if these limits are exceeded.
4041 */
4042 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
4043 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4044 n > rcu_capacity[MAX_RCU_LVLS]) {
4045 WARN_ON(1);
4046 return;
4047 }
4048
4049 /* Calculate the number of rcu_nodes at each level of the tree. */
4050 for (i = 1; i <= MAX_RCU_LVLS; i++)
4051 if (n <= rcu_capacity[i]) {
4052 for (j = 0; j <= i; j++)
4053 num_rcu_lvl[j] =
4054 DIV_ROUND_UP(n, rcu_capacity[i - j]);
4055 rcu_num_lvls = i;
4056 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4057 num_rcu_lvl[j] = 0;
4058 break;
4059 }
4060
4061 /* Calculate the total number of rcu_node structures. */
4062 rcu_num_nodes = 0;
4063 for (i = 0; i <= MAX_RCU_LVLS; i++)
4064 rcu_num_nodes += num_rcu_lvl[i];
4065 rcu_num_nodes -= n;
4066}
4067
9f680ab4 4068void __init rcu_init(void)
64db4cff 4069{
017c4261 4070 int cpu;
9f680ab4 4071
f41d911f 4072 rcu_bootup_announce();
f885b7f2 4073 rcu_init_geometry();
394f99a9 4074 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 4075 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 4076 __rcu_init_preempt();
b5b39360 4077 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4078
4079 /*
4080 * We don't need protection against CPU-hotplug here because
4081 * this is called early in boot, before either interrupts
4082 * or the scheduler are operational.
4083 */
4084 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4085 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4086 for_each_online_cpu(cpu)
4087 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
aa23c6fb
PK
4088
4089 rcu_early_boot_tests();
64db4cff
PM
4090}
4091
4102adab 4092#include "tree_plugin.h"
This page took 0.698823 seconds and 5 git commands to generate.