rcutorture: Print symbolic name for rcu_torture_writer_state
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
af658dca 57#include <linux/trace_events.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
385b73c0 73static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
88b91c7c 74
f7f7bac9
SRRH
75/*
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
82 */
a8a29b3b
AB
83#ifdef CONFIG_TRACING
84# define DEFINE_RCU_TPS(sname) \
f7f7bac9 85static char sname##_varname[] = #sname; \
a8a29b3b
AB
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87# define RCU_STATE_NAME(sname) sname##_varname
88#else
89# define DEFINE_RCU_TPS(sname)
90# define RCU_STATE_NAME(sname) __stringify(sname)
91#endif
92
93#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94DEFINE_RCU_TPS(sname) \
c92fb057 95static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 96struct rcu_state sname##_state = { \
6c90cc7b 97 .level = { &sname##_state.node[0] }, \
2723249a 98 .rda = &sname##_data, \
037b64ed 99 .call = cr, \
77f81fe0 100 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
101 .gpnum = 0UL - 300UL, \
102 .completed = 0UL - 300UL, \
7b2e6011 103 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
104 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
105 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 106 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 107 .name = RCU_STATE_NAME(sname), \
a4889858 108 .abbr = sabbr, \
2723249a 109}
64db4cff 110
a41bfeb2
SRRH
111RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
112RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 113
b28a7c01 114static struct rcu_state *const rcu_state_p;
2927a689 115static struct rcu_data __percpu *const rcu_data_p;
6ce75a23 116LIST_HEAD(rcu_struct_flavors);
27f4d280 117
a3dc2948
PM
118/* Dump rcu_node combining tree at boot to verify correct setup. */
119static bool dump_tree;
120module_param(dump_tree, bool, 0444);
7fa27001
PM
121/* Control rcu_node-tree auto-balancing at boot time. */
122static bool rcu_fanout_exact;
123module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
124/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
125static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 126module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 127int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
128/* Number of rcu_nodes at specified level. */
129static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
130int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
131
b0d30417
PM
132/*
133 * The rcu_scheduler_active variable transitions from zero to one just
134 * before the first task is spawned. So when this variable is zero, RCU
135 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 136 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
137 * is one, RCU must actually do all the hard work required to detect real
138 * grace periods. This variable is also used to suppress boot-time false
139 * positives from lockdep-RCU error checking.
140 */
bbad9379
PM
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
b0d30417
PM
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
0aa04b05
PM
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
a26ac245 165
a94844b2 166/* rcuc/rcub kthread realtime priority */
26730f55 167#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 168static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
169#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
170static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
171#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
172module_param(kthread_prio, int, 0644);
173
8d7dc928 174/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
175
176#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
177static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
178module_param(gp_preinit_delay, int, 0644);
179#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180static const int gp_preinit_delay;
181#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
182
8d7dc928
PM
183#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
184static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 185module_param(gp_init_delay, int, 0644);
8d7dc928
PM
186#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187static const int gp_init_delay;
188#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 189
0f41c0dd
PM
190#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
191static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
192module_param(gp_cleanup_delay, int, 0644);
193#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194static const int gp_cleanup_delay;
195#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
196
eab128e8
PM
197/*
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
205 */
206#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 207
4a298656
PM
208/*
209 * Track the rcutorture test sequence number and the update version
210 * number within a given test. The rcutorture_testseq is incremented
211 * on every rcutorture module load and unload, so has an odd value
212 * when a test is running. The rcutorture_vernum is set to zero
213 * when rcutorture starts and is incremented on each rcutorture update.
214 * These variables enable correlating rcutorture output with the
215 * RCU tracing information.
216 */
217unsigned long rcutorture_testseq;
218unsigned long rcutorture_vernum;
219
0aa04b05
PM
220/*
221 * Compute the mask of online CPUs for the specified rcu_node structure.
222 * This will not be stable unless the rcu_node structure's ->lock is
223 * held, but the bit corresponding to the current CPU will be stable
224 * in most contexts.
225 */
226unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
227{
7d0ae808 228 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
229}
230
fc2219d4 231/*
7d0ae808 232 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
233 * permit this function to be invoked without holding the root rcu_node
234 * structure's ->lock, but of course results can be subject to change.
235 */
236static int rcu_gp_in_progress(struct rcu_state *rsp)
237{
7d0ae808 238 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
239}
240
b1f77b05 241/*
d6714c22 242 * Note a quiescent state. Because we do not need to know
b1f77b05 243 * how many quiescent states passed, just if there was at least
d6714c22 244 * one since the start of the grace period, this just sets a flag.
e4cc1f22 245 * The caller must have disabled preemption.
b1f77b05 246 */
284a8c93 247void rcu_sched_qs(void)
b1f77b05 248{
338b0f76
PM
249 unsigned long flags;
250
5b74c458 251 if (__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) {
284a8c93
PM
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data.gpnum),
254 TPS("cpuqs"));
5b74c458 255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
338b0f76
PM
256 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 return;
258 local_irq_save(flags);
6587a23b
PM
259 if (__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) {
260 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
261 rcu_report_exp_rdp(&rcu_sched_state,
262 this_cpu_ptr(&rcu_sched_data),
263 true);
264 }
338b0f76 265 local_irq_restore(flags);
284a8c93 266 }
b1f77b05
IM
267}
268
284a8c93 269void rcu_bh_qs(void)
b1f77b05 270{
5b74c458 271 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
272 trace_rcu_grace_period(TPS("rcu_bh"),
273 __this_cpu_read(rcu_bh_data.gpnum),
274 TPS("cpuqs"));
5b74c458 275 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 276 }
b1f77b05 277}
64db4cff 278
4a81e832
PM
279static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
280
281static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
282 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
283 .dynticks = ATOMIC_INIT(1),
284#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
285 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
286 .dynticks_idle = ATOMIC_INIT(1),
287#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
288};
289
5cd37193
PM
290DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
291EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
292
4a81e832
PM
293/*
294 * Let the RCU core know that this CPU has gone through the scheduler,
295 * which is a quiescent state. This is called when the need for a
296 * quiescent state is urgent, so we burn an atomic operation and full
297 * memory barriers to let the RCU core know about it, regardless of what
298 * this CPU might (or might not) do in the near future.
299 *
300 * We inform the RCU core by emulating a zero-duration dyntick-idle
301 * period, which we in turn do by incrementing the ->dynticks counter
302 * by two.
303 */
304static void rcu_momentary_dyntick_idle(void)
305{
306 unsigned long flags;
307 struct rcu_data *rdp;
308 struct rcu_dynticks *rdtp;
309 int resched_mask;
310 struct rcu_state *rsp;
311
312 local_irq_save(flags);
313
314 /*
315 * Yes, we can lose flag-setting operations. This is OK, because
316 * the flag will be set again after some delay.
317 */
318 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
319 raw_cpu_write(rcu_sched_qs_mask, 0);
320
321 /* Find the flavor that needs a quiescent state. */
322 for_each_rcu_flavor(rsp) {
323 rdp = raw_cpu_ptr(rsp->rda);
324 if (!(resched_mask & rsp->flavor_mask))
325 continue;
326 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
327 if (READ_ONCE(rdp->mynode->completed) !=
328 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
329 continue;
330
331 /*
332 * Pretend to be momentarily idle for the quiescent state.
333 * This allows the grace-period kthread to record the
334 * quiescent state, with no need for this CPU to do anything
335 * further.
336 */
337 rdtp = this_cpu_ptr(&rcu_dynticks);
338 smp_mb__before_atomic(); /* Earlier stuff before QS. */
339 atomic_add(2, &rdtp->dynticks); /* QS. */
340 smp_mb__after_atomic(); /* Later stuff after QS. */
341 break;
342 }
343 local_irq_restore(flags);
344}
345
25502a6c
PM
346/*
347 * Note a context switch. This is a quiescent state for RCU-sched,
348 * and requires special handling for preemptible RCU.
e4cc1f22 349 * The caller must have disabled preemption.
25502a6c 350 */
38200cf2 351void rcu_note_context_switch(void)
25502a6c 352{
bb73c52b 353 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 354 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 355 rcu_sched_qs();
38200cf2 356 rcu_preempt_note_context_switch();
4a81e832
PM
357 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
358 rcu_momentary_dyntick_idle();
f7f7bac9 359 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 360 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 361}
29ce8310 362EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 363
5cd37193 364/*
1925d196 365 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
366 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
367 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 368 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
369 * be none of them). Either way, do a lightweight quiescent state for
370 * all RCU flavors.
bb73c52b
BF
371 *
372 * The barrier() calls are redundant in the common case when this is
373 * called externally, but just in case this is called from within this
374 * file.
375 *
5cd37193
PM
376 */
377void rcu_all_qs(void)
378{
bb73c52b 379 barrier(); /* Avoid RCU read-side critical sections leaking down. */
5cd37193
PM
380 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
381 rcu_momentary_dyntick_idle();
382 this_cpu_inc(rcu_qs_ctr);
bb73c52b 383 barrier(); /* Avoid RCU read-side critical sections leaking up. */
5cd37193
PM
384}
385EXPORT_SYMBOL_GPL(rcu_all_qs);
386
878d7439
ED
387static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
388static long qhimark = 10000; /* If this many pending, ignore blimit. */
389static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 390
878d7439
ED
391module_param(blimit, long, 0444);
392module_param(qhimark, long, 0444);
393module_param(qlowmark, long, 0444);
3d76c082 394
026ad283
PM
395static ulong jiffies_till_first_fqs = ULONG_MAX;
396static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
397
398module_param(jiffies_till_first_fqs, ulong, 0644);
399module_param(jiffies_till_next_fqs, ulong, 0644);
400
4a81e832
PM
401/*
402 * How long the grace period must be before we start recruiting
403 * quiescent-state help from rcu_note_context_switch().
404 */
405static ulong jiffies_till_sched_qs = HZ / 20;
406module_param(jiffies_till_sched_qs, ulong, 0644);
407
48a7639c 408static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 409 struct rcu_data *rdp);
217af2a2
PM
410static void force_qs_rnp(struct rcu_state *rsp,
411 int (*f)(struct rcu_data *rsp, bool *isidle,
412 unsigned long *maxj),
413 bool *isidle, unsigned long *maxj);
4cdfc175 414static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 415static int rcu_pending(void);
64db4cff
PM
416
417/*
917963d0 418 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 419 */
917963d0
PM
420unsigned long rcu_batches_started(void)
421{
422 return rcu_state_p->gpnum;
423}
424EXPORT_SYMBOL_GPL(rcu_batches_started);
425
426/*
427 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 428 */
917963d0
PM
429unsigned long rcu_batches_started_sched(void)
430{
431 return rcu_sched_state.gpnum;
432}
433EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
434
435/*
436 * Return the number of RCU BH batches started thus far for debug & stats.
437 */
438unsigned long rcu_batches_started_bh(void)
439{
440 return rcu_bh_state.gpnum;
441}
442EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
443
444/*
445 * Return the number of RCU batches completed thus far for debug & stats.
446 */
447unsigned long rcu_batches_completed(void)
448{
449 return rcu_state_p->completed;
450}
451EXPORT_SYMBOL_GPL(rcu_batches_completed);
452
453/*
454 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 455 */
9733e4f0 456unsigned long rcu_batches_completed_sched(void)
64db4cff 457{
d6714c22 458 return rcu_sched_state.completed;
64db4cff 459}
d6714c22 460EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
461
462/*
917963d0 463 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 464 */
9733e4f0 465unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
466{
467 return rcu_bh_state.completed;
468}
469EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
470
a381d757
ACB
471/*
472 * Force a quiescent state.
473 */
474void rcu_force_quiescent_state(void)
475{
e534165b 476 force_quiescent_state(rcu_state_p);
a381d757
ACB
477}
478EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
479
bf66f18e
PM
480/*
481 * Force a quiescent state for RCU BH.
482 */
483void rcu_bh_force_quiescent_state(void)
484{
4cdfc175 485 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
486}
487EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
488
e7580f33
PM
489/*
490 * Force a quiescent state for RCU-sched.
491 */
492void rcu_sched_force_quiescent_state(void)
493{
494 force_quiescent_state(&rcu_sched_state);
495}
496EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
497
afea227f
PM
498/*
499 * Show the state of the grace-period kthreads.
500 */
501void show_rcu_gp_kthreads(void)
502{
503 struct rcu_state *rsp;
504
505 for_each_rcu_flavor(rsp) {
506 pr_info("%s: wait state: %d ->state: %#lx\n",
507 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
508 /* sched_show_task(rsp->gp_kthread); */
509 }
510}
511EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
512
4a298656
PM
513/*
514 * Record the number of times rcutorture tests have been initiated and
515 * terminated. This information allows the debugfs tracing stats to be
516 * correlated to the rcutorture messages, even when the rcutorture module
517 * is being repeatedly loaded and unloaded. In other words, we cannot
518 * store this state in rcutorture itself.
519 */
520void rcutorture_record_test_transition(void)
521{
522 rcutorture_testseq++;
523 rcutorture_vernum = 0;
524}
525EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
526
ad0dc7f9
PM
527/*
528 * Send along grace-period-related data for rcutorture diagnostics.
529 */
530void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
531 unsigned long *gpnum, unsigned long *completed)
532{
533 struct rcu_state *rsp = NULL;
534
535 switch (test_type) {
536 case RCU_FLAVOR:
e534165b 537 rsp = rcu_state_p;
ad0dc7f9
PM
538 break;
539 case RCU_BH_FLAVOR:
540 rsp = &rcu_bh_state;
541 break;
542 case RCU_SCHED_FLAVOR:
543 rsp = &rcu_sched_state;
544 break;
545 default:
546 break;
547 }
548 if (rsp != NULL) {
7d0ae808
PM
549 *flags = READ_ONCE(rsp->gp_flags);
550 *gpnum = READ_ONCE(rsp->gpnum);
551 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
552 return;
553 }
554 *flags = 0;
555 *gpnum = 0;
556 *completed = 0;
557}
558EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
559
4a298656
PM
560/*
561 * Record the number of writer passes through the current rcutorture test.
562 * This is also used to correlate debugfs tracing stats with the rcutorture
563 * messages.
564 */
565void rcutorture_record_progress(unsigned long vernum)
566{
567 rcutorture_vernum++;
568}
569EXPORT_SYMBOL_GPL(rcutorture_record_progress);
570
64db4cff
PM
571/*
572 * Does the CPU have callbacks ready to be invoked?
573 */
574static int
575cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
576{
3fbfbf7a
PM
577 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
578 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
579}
580
365187fb
PM
581/*
582 * Return the root node of the specified rcu_state structure.
583 */
584static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
585{
586 return &rsp->node[0];
587}
588
589/*
590 * Is there any need for future grace periods?
591 * Interrupts must be disabled. If the caller does not hold the root
592 * rnp_node structure's ->lock, the results are advisory only.
593 */
594static int rcu_future_needs_gp(struct rcu_state *rsp)
595{
596 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 597 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
598 int *fp = &rnp->need_future_gp[idx];
599
7d0ae808 600 return READ_ONCE(*fp);
365187fb
PM
601}
602
64db4cff 603/*
dc35c893
PM
604 * Does the current CPU require a not-yet-started grace period?
605 * The caller must have disabled interrupts to prevent races with
606 * normal callback registry.
64db4cff
PM
607 */
608static int
609cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
610{
dc35c893 611 int i;
3fbfbf7a 612
dc35c893
PM
613 if (rcu_gp_in_progress(rsp))
614 return 0; /* No, a grace period is already in progress. */
365187fb 615 if (rcu_future_needs_gp(rsp))
34ed6246 616 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
617 if (!rdp->nxttail[RCU_NEXT_TAIL])
618 return 0; /* No, this is a no-CBs (or offline) CPU. */
619 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
620 return 1; /* Yes, this CPU has newly registered callbacks. */
621 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
622 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 623 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893
PM
624 rdp->nxtcompleted[i]))
625 return 1; /* Yes, CBs for future grace period. */
626 return 0; /* No grace period needed. */
64db4cff
PM
627}
628
9b2e4f18 629/*
adf5091e 630 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
631 *
632 * If the new value of the ->dynticks_nesting counter now is zero,
633 * we really have entered idle, and must do the appropriate accounting.
634 * The caller must have disabled interrupts.
635 */
28ced795 636static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 637{
96d3fd0d
PM
638 struct rcu_state *rsp;
639 struct rcu_data *rdp;
28ced795 640 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 641
f7f7bac9 642 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
643 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
644 !user && !is_idle_task(current)) {
289828e6
PM
645 struct task_struct *idle __maybe_unused =
646 idle_task(smp_processor_id());
0989cb46 647
f7f7bac9 648 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 649 ftrace_dump(DUMP_ORIG);
0989cb46
PM
650 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
651 current->pid, current->comm,
652 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 653 }
96d3fd0d
PM
654 for_each_rcu_flavor(rsp) {
655 rdp = this_cpu_ptr(rsp->rda);
656 do_nocb_deferred_wakeup(rdp);
657 }
198bbf81 658 rcu_prepare_for_idle();
9b2e4f18 659 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 660 smp_mb__before_atomic(); /* See above. */
9b2e4f18 661 atomic_inc(&rdtp->dynticks);
4e857c58 662 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
1ce46ee5
PM
663 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
664 atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 665 rcu_dynticks_task_enter();
c44e2cdd
PM
666
667 /*
adf5091e 668 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
669 * in an RCU read-side critical section.
670 */
f78f5b90
PM
671 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
672 "Illegal idle entry in RCU read-side critical section.");
673 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
674 "Illegal idle entry in RCU-bh read-side critical section.");
675 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
676 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 677}
64db4cff 678
adf5091e
FW
679/*
680 * Enter an RCU extended quiescent state, which can be either the
681 * idle loop or adaptive-tickless usermode execution.
64db4cff 682 */
adf5091e 683static void rcu_eqs_enter(bool user)
64db4cff 684{
4145fa7f 685 long long oldval;
64db4cff
PM
686 struct rcu_dynticks *rdtp;
687
c9d4b0af 688 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 689 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
690 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
691 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 692 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 693 rdtp->dynticks_nesting = 0;
28ced795 694 rcu_eqs_enter_common(oldval, user);
3a592405 695 } else {
29e37d81 696 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 697 }
64db4cff 698}
adf5091e
FW
699
700/**
701 * rcu_idle_enter - inform RCU that current CPU is entering idle
702 *
703 * Enter idle mode, in other words, -leave- the mode in which RCU
704 * read-side critical sections can occur. (Though RCU read-side
705 * critical sections can occur in irq handlers in idle, a possibility
706 * handled by irq_enter() and irq_exit().)
707 *
708 * We crowbar the ->dynticks_nesting field to zero to allow for
709 * the possibility of usermode upcalls having messed up our count
710 * of interrupt nesting level during the prior busy period.
711 */
712void rcu_idle_enter(void)
713{
c5d900bf
FW
714 unsigned long flags;
715
716 local_irq_save(flags);
cb349ca9 717 rcu_eqs_enter(false);
28ced795 718 rcu_sysidle_enter(0);
c5d900bf 719 local_irq_restore(flags);
adf5091e 720}
8a2ecf47 721EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 722
d1ec4c34 723#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
724/**
725 * rcu_user_enter - inform RCU that we are resuming userspace.
726 *
727 * Enter RCU idle mode right before resuming userspace. No use of RCU
728 * is permitted between this call and rcu_user_exit(). This way the
729 * CPU doesn't need to maintain the tick for RCU maintenance purposes
730 * when the CPU runs in userspace.
731 */
732void rcu_user_enter(void)
733{
91d1aa43 734 rcu_eqs_enter(1);
adf5091e 735}
d1ec4c34 736#endif /* CONFIG_NO_HZ_FULL */
19dd1591 737
9b2e4f18
PM
738/**
739 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
740 *
741 * Exit from an interrupt handler, which might possibly result in entering
742 * idle mode, in other words, leaving the mode in which read-side critical
743 * sections can occur.
64db4cff 744 *
9b2e4f18
PM
745 * This code assumes that the idle loop never does anything that might
746 * result in unbalanced calls to irq_enter() and irq_exit(). If your
747 * architecture violates this assumption, RCU will give you what you
748 * deserve, good and hard. But very infrequently and irreproducibly.
749 *
750 * Use things like work queues to work around this limitation.
751 *
752 * You have been warned.
64db4cff 753 */
9b2e4f18 754void rcu_irq_exit(void)
64db4cff
PM
755{
756 unsigned long flags;
4145fa7f 757 long long oldval;
64db4cff
PM
758 struct rcu_dynticks *rdtp;
759
760 local_irq_save(flags);
c9d4b0af 761 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 762 oldval = rdtp->dynticks_nesting;
9b2e4f18 763 rdtp->dynticks_nesting--;
1ce46ee5
PM
764 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
765 rdtp->dynticks_nesting < 0);
b6fc6020 766 if (rdtp->dynticks_nesting)
f7f7bac9 767 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 768 else
28ced795
CL
769 rcu_eqs_enter_common(oldval, true);
770 rcu_sysidle_enter(1);
9b2e4f18
PM
771 local_irq_restore(flags);
772}
773
774/*
adf5091e 775 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
776 *
777 * If the new value of the ->dynticks_nesting counter was previously zero,
778 * we really have exited idle, and must do the appropriate accounting.
779 * The caller must have disabled interrupts.
780 */
28ced795 781static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 782{
28ced795
CL
783 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
784
176f8f7a 785 rcu_dynticks_task_exit();
4e857c58 786 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
787 atomic_inc(&rdtp->dynticks);
788 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 789 smp_mb__after_atomic(); /* See above. */
1ce46ee5
PM
790 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
791 !(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 792 rcu_cleanup_after_idle();
f7f7bac9 793 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
794 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
795 !user && !is_idle_task(current)) {
289828e6
PM
796 struct task_struct *idle __maybe_unused =
797 idle_task(smp_processor_id());
0989cb46 798
f7f7bac9 799 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 800 oldval, rdtp->dynticks_nesting);
bf1304e9 801 ftrace_dump(DUMP_ORIG);
0989cb46
PM
802 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
803 current->pid, current->comm,
804 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
805 }
806}
807
adf5091e
FW
808/*
809 * Exit an RCU extended quiescent state, which can be either the
810 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 811 */
adf5091e 812static void rcu_eqs_exit(bool user)
9b2e4f18 813{
9b2e4f18
PM
814 struct rcu_dynticks *rdtp;
815 long long oldval;
816
c9d4b0af 817 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 818 oldval = rdtp->dynticks_nesting;
1ce46ee5 819 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 820 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 821 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 822 } else {
29e37d81 823 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 824 rcu_eqs_exit_common(oldval, user);
3a592405 825 }
9b2e4f18 826}
adf5091e
FW
827
828/**
829 * rcu_idle_exit - inform RCU that current CPU is leaving idle
830 *
831 * Exit idle mode, in other words, -enter- the mode in which RCU
832 * read-side critical sections can occur.
833 *
834 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
835 * allow for the possibility of usermode upcalls messing up our count
836 * of interrupt nesting level during the busy period that is just
837 * now starting.
838 */
839void rcu_idle_exit(void)
840{
c5d900bf
FW
841 unsigned long flags;
842
843 local_irq_save(flags);
cb349ca9 844 rcu_eqs_exit(false);
28ced795 845 rcu_sysidle_exit(0);
c5d900bf 846 local_irq_restore(flags);
adf5091e 847}
8a2ecf47 848EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 849
d1ec4c34 850#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
851/**
852 * rcu_user_exit - inform RCU that we are exiting userspace.
853 *
854 * Exit RCU idle mode while entering the kernel because it can
855 * run a RCU read side critical section anytime.
856 */
857void rcu_user_exit(void)
858{
91d1aa43 859 rcu_eqs_exit(1);
adf5091e 860}
d1ec4c34 861#endif /* CONFIG_NO_HZ_FULL */
19dd1591 862
9b2e4f18
PM
863/**
864 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
865 *
866 * Enter an interrupt handler, which might possibly result in exiting
867 * idle mode, in other words, entering the mode in which read-side critical
868 * sections can occur.
869 *
870 * Note that the Linux kernel is fully capable of entering an interrupt
871 * handler that it never exits, for example when doing upcalls to
872 * user mode! This code assumes that the idle loop never does upcalls to
873 * user mode. If your architecture does do upcalls from the idle loop (or
874 * does anything else that results in unbalanced calls to the irq_enter()
875 * and irq_exit() functions), RCU will give you what you deserve, good
876 * and hard. But very infrequently and irreproducibly.
877 *
878 * Use things like work queues to work around this limitation.
879 *
880 * You have been warned.
881 */
882void rcu_irq_enter(void)
883{
884 unsigned long flags;
885 struct rcu_dynticks *rdtp;
886 long long oldval;
887
888 local_irq_save(flags);
c9d4b0af 889 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
890 oldval = rdtp->dynticks_nesting;
891 rdtp->dynticks_nesting++;
1ce46ee5
PM
892 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
893 rdtp->dynticks_nesting == 0);
b6fc6020 894 if (oldval)
f7f7bac9 895 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 896 else
28ced795
CL
897 rcu_eqs_exit_common(oldval, true);
898 rcu_sysidle_exit(1);
64db4cff 899 local_irq_restore(flags);
64db4cff
PM
900}
901
902/**
903 * rcu_nmi_enter - inform RCU of entry to NMI context
904 *
734d1680
PM
905 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
906 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
907 * that the CPU is active. This implementation permits nested NMIs, as
908 * long as the nesting level does not overflow an int. (You will probably
909 * run out of stack space first.)
64db4cff
PM
910 */
911void rcu_nmi_enter(void)
912{
c9d4b0af 913 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 914 int incby = 2;
64db4cff 915
734d1680
PM
916 /* Complain about underflow. */
917 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
918
919 /*
920 * If idle from RCU viewpoint, atomically increment ->dynticks
921 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
922 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
923 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
924 * to be in the outermost NMI handler that interrupted an RCU-idle
925 * period (observation due to Andy Lutomirski).
926 */
927 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
928 smp_mb__before_atomic(); /* Force delay from prior write. */
929 atomic_inc(&rdtp->dynticks);
930 /* atomic_inc() before later RCU read-side crit sects */
931 smp_mb__after_atomic(); /* See above. */
932 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
933 incby = 1;
934 }
935 rdtp->dynticks_nmi_nesting += incby;
936 barrier();
64db4cff
PM
937}
938
939/**
940 * rcu_nmi_exit - inform RCU of exit from NMI context
941 *
734d1680
PM
942 * If we are returning from the outermost NMI handler that interrupted an
943 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
944 * to let the RCU grace-period handling know that the CPU is back to
945 * being RCU-idle.
64db4cff
PM
946 */
947void rcu_nmi_exit(void)
948{
c9d4b0af 949 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 950
734d1680
PM
951 /*
952 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
953 * (We are exiting an NMI handler, so RCU better be paying attention
954 * to us!)
955 */
956 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
957 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
958
959 /*
960 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
961 * leave it in non-RCU-idle state.
962 */
963 if (rdtp->dynticks_nmi_nesting != 1) {
964 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 965 return;
734d1680
PM
966 }
967
968 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
969 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 970 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 971 smp_mb__before_atomic(); /* See above. */
23b5c8fa 972 atomic_inc(&rdtp->dynticks);
4e857c58 973 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 974 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
975}
976
977/**
5c173eb8
PM
978 * __rcu_is_watching - are RCU read-side critical sections safe?
979 *
980 * Return true if RCU is watching the running CPU, which means that
981 * this CPU can safely enter RCU read-side critical sections. Unlike
982 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
983 * least disabled preemption.
984 */
9418fb20 985bool notrace __rcu_is_watching(void)
5c173eb8
PM
986{
987 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
988}
989
990/**
991 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 992 *
9b2e4f18 993 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 994 * or NMI handler, return true.
64db4cff 995 */
9418fb20 996bool notrace rcu_is_watching(void)
64db4cff 997{
f534ed1f 998 bool ret;
34240697 999
46f00d18 1000 preempt_disable_notrace();
5c173eb8 1001 ret = __rcu_is_watching();
46f00d18 1002 preempt_enable_notrace();
34240697 1003 return ret;
64db4cff 1004}
5c173eb8 1005EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1006
62fde6ed 1007#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1008
1009/*
1010 * Is the current CPU online? Disable preemption to avoid false positives
1011 * that could otherwise happen due to the current CPU number being sampled,
1012 * this task being preempted, its old CPU being taken offline, resuming
1013 * on some other CPU, then determining that its old CPU is now offline.
1014 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1015 * the check for rcu_scheduler_fully_active. Note also that it is OK
1016 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1017 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1018 * offline to continue to use RCU for one jiffy after marking itself
1019 * offline in the cpu_online_mask. This leniency is necessary given the
1020 * non-atomic nature of the online and offline processing, for example,
1021 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1022 * notifiers.
1023 *
1024 * This is also why RCU internally marks CPUs online during the
1025 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
1026 *
1027 * Disable checking if in an NMI handler because we cannot safely report
1028 * errors from NMI handlers anyway.
1029 */
1030bool rcu_lockdep_current_cpu_online(void)
1031{
2036d94a
PM
1032 struct rcu_data *rdp;
1033 struct rcu_node *rnp;
c0d6d01b
PM
1034 bool ret;
1035
1036 if (in_nmi())
f6f7ee9a 1037 return true;
c0d6d01b 1038 preempt_disable();
c9d4b0af 1039 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1040 rnp = rdp->mynode;
0aa04b05 1041 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1042 !rcu_scheduler_fully_active;
1043 preempt_enable();
1044 return ret;
1045}
1046EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1047
62fde6ed 1048#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1049
64db4cff 1050/**
9b2e4f18 1051 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1052 *
9b2e4f18
PM
1053 * If the current CPU is idle or running at a first-level (not nested)
1054 * interrupt from idle, return true. The caller must have at least
1055 * disabled preemption.
64db4cff 1056 */
62e3cb14 1057static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1058{
c9d4b0af 1059 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1060}
1061
64db4cff
PM
1062/*
1063 * Snapshot the specified CPU's dynticks counter so that we can later
1064 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1065 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1066 */
217af2a2
PM
1067static int dyntick_save_progress_counter(struct rcu_data *rdp,
1068 bool *isidle, unsigned long *maxj)
64db4cff 1069{
23b5c8fa 1070 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1071 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1072 if ((rdp->dynticks_snap & 0x1) == 0) {
1073 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1074 return 1;
1075 } else {
7d0ae808 1076 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1077 rdp->mynode->gpnum))
7d0ae808 1078 WRITE_ONCE(rdp->gpwrap, true);
7941dbde
ACB
1079 return 0;
1080 }
64db4cff
PM
1081}
1082
1083/*
1084 * Return true if the specified CPU has passed through a quiescent
1085 * state by virtue of being in or having passed through an dynticks
1086 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1087 * for this same CPU, or by virtue of having been offline.
64db4cff 1088 */
217af2a2
PM
1089static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1090 bool *isidle, unsigned long *maxj)
64db4cff 1091{
7eb4f455 1092 unsigned int curr;
4a81e832 1093 int *rcrmp;
7eb4f455 1094 unsigned int snap;
64db4cff 1095
7eb4f455
PM
1096 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1097 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1098
1099 /*
1100 * If the CPU passed through or entered a dynticks idle phase with
1101 * no active irq/NMI handlers, then we can safely pretend that the CPU
1102 * already acknowledged the request to pass through a quiescent
1103 * state. Either way, that CPU cannot possibly be in an RCU
1104 * read-side critical section that started before the beginning
1105 * of the current RCU grace period.
1106 */
7eb4f455 1107 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1108 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1109 rdp->dynticks_fqs++;
1110 return 1;
1111 }
1112
a82dcc76
PM
1113 /*
1114 * Check for the CPU being offline, but only if the grace period
1115 * is old enough. We don't need to worry about the CPU changing
1116 * state: If we see it offline even once, it has been through a
1117 * quiescent state.
1118 *
1119 * The reason for insisting that the grace period be at least
1120 * one jiffy old is that CPUs that are not quite online and that
1121 * have just gone offline can still execute RCU read-side critical
1122 * sections.
1123 */
1124 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1125 return 0; /* Grace period is not old enough. */
1126 barrier();
1127 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1128 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1129 rdp->offline_fqs++;
1130 return 1;
1131 }
65d798f0
PM
1132
1133 /*
4a81e832
PM
1134 * A CPU running for an extended time within the kernel can
1135 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1136 * even context-switching back and forth between a pair of
1137 * in-kernel CPU-bound tasks cannot advance grace periods.
1138 * So if the grace period is old enough, make the CPU pay attention.
1139 * Note that the unsynchronized assignments to the per-CPU
1140 * rcu_sched_qs_mask variable are safe. Yes, setting of
1141 * bits can be lost, but they will be set again on the next
1142 * force-quiescent-state pass. So lost bit sets do not result
1143 * in incorrect behavior, merely in a grace period lasting
1144 * a few jiffies longer than it might otherwise. Because
1145 * there are at most four threads involved, and because the
1146 * updates are only once every few jiffies, the probability of
1147 * lossage (and thus of slight grace-period extension) is
1148 * quite low.
1149 *
1150 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1151 * is set too high, we override with half of the RCU CPU stall
1152 * warning delay.
6193c76a 1153 */
4a81e832
PM
1154 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1155 if (ULONG_CMP_GE(jiffies,
1156 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1157 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1158 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1159 WRITE_ONCE(rdp->cond_resched_completed,
1160 READ_ONCE(rdp->mynode->completed));
4a81e832 1161 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1162 WRITE_ONCE(*rcrmp,
1163 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832
PM
1164 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1165 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1166 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1167 /* Time to beat on that CPU again! */
1168 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1169 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1170 }
6193c76a
PM
1171 }
1172
a82dcc76 1173 return 0;
64db4cff
PM
1174}
1175
64db4cff
PM
1176static void record_gp_stall_check_time(struct rcu_state *rsp)
1177{
cb1e78cf 1178 unsigned long j = jiffies;
6193c76a 1179 unsigned long j1;
26cdfedf
PM
1180
1181 rsp->gp_start = j;
1182 smp_wmb(); /* Record start time before stall time. */
6193c76a 1183 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1184 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1185 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1186 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1187}
1188
fb81a44b
PM
1189/*
1190 * Complain about starvation of grace-period kthread.
1191 */
1192static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1193{
1194 unsigned long gpa;
1195 unsigned long j;
1196
1197 j = jiffies;
7d0ae808 1198 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1199 if (j - gpa > 2 * HZ) {
319362c9 1200 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
81e701e4 1201 rsp->name, j - gpa,
319362c9
PM
1202 rsp->gpnum, rsp->completed,
1203 rsp->gp_flags, rsp->gp_state,
a0e3a3aa 1204 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
b1adb3e2
PM
1205 if (rsp->gp_kthread)
1206 sched_show_task(rsp->gp_kthread);
1207 }
64db4cff
PM
1208}
1209
b637a328 1210/*
bc1dce51 1211 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1212 */
1213static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1214{
1215 int cpu;
1216 unsigned long flags;
1217 struct rcu_node *rnp;
1218
1219 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1220 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b637a328
PM
1221 if (rnp->qsmask != 0) {
1222 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1223 if (rnp->qsmask & (1UL << cpu))
1224 dump_cpu_task(rnp->grplo + cpu);
1225 }
1226 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1227 }
1228}
1229
6ccd2ecd 1230static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1231{
1232 int cpu;
1233 long delta;
1234 unsigned long flags;
6ccd2ecd
PM
1235 unsigned long gpa;
1236 unsigned long j;
285fe294 1237 int ndetected = 0;
64db4cff 1238 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1239 long totqlen = 0;
64db4cff
PM
1240
1241 /* Only let one CPU complain about others per time interval. */
1242
6cf10081 1243 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1244 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1245 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1246 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1247 return;
1248 }
7d0ae808
PM
1249 WRITE_ONCE(rsp->jiffies_stall,
1250 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1251 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1252
8cdd32a9
PM
1253 /*
1254 * OK, time to rat on our buddy...
1255 * See Documentation/RCU/stallwarn.txt for info on how to debug
1256 * RCU CPU stall warnings.
1257 */
d7f3e207 1258 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1259 rsp->name);
a858af28 1260 print_cpu_stall_info_begin();
a0b6c9a7 1261 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1262 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1263 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1264 if (rnp->qsmask != 0) {
1265 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1266 if (rnp->qsmask & (1UL << cpu)) {
1267 print_cpu_stall_info(rsp,
1268 rnp->grplo + cpu);
1269 ndetected++;
1270 }
1271 }
3acd9eb3 1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1273 }
a858af28 1274
a858af28 1275 print_cpu_stall_info_end();
53bb857c
PM
1276 for_each_possible_cpu(cpu)
1277 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1278 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1279 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1280 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1281 if (ndetected) {
b637a328 1282 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1283 } else {
7d0ae808
PM
1284 if (READ_ONCE(rsp->gpnum) != gpnum ||
1285 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1286 pr_err("INFO: Stall ended before state dump start\n");
1287 } else {
1288 j = jiffies;
7d0ae808 1289 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1290 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1291 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1292 jiffies_till_next_fqs,
1293 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1294 /* In this case, the current CPU might be at fault. */
1295 sched_show_task(current);
1296 }
1297 }
c1dc0b9c 1298
4cdfc175 1299 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1300 rcu_print_detail_task_stall(rsp);
1301
fb81a44b
PM
1302 rcu_check_gp_kthread_starvation(rsp);
1303
4cdfc175 1304 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1305}
1306
1307static void print_cpu_stall(struct rcu_state *rsp)
1308{
53bb857c 1309 int cpu;
64db4cff
PM
1310 unsigned long flags;
1311 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1312 long totqlen = 0;
64db4cff 1313
8cdd32a9
PM
1314 /*
1315 * OK, time to rat on ourselves...
1316 * See Documentation/RCU/stallwarn.txt for info on how to debug
1317 * RCU CPU stall warnings.
1318 */
d7f3e207 1319 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1320 print_cpu_stall_info_begin();
1321 print_cpu_stall_info(rsp, smp_processor_id());
1322 print_cpu_stall_info_end();
53bb857c
PM
1323 for_each_possible_cpu(cpu)
1324 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1325 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1326 jiffies - rsp->gp_start,
1327 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1328
1329 rcu_check_gp_kthread_starvation(rsp);
1330
bc1dce51 1331 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1332
6cf10081 1333 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1334 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1335 WRITE_ONCE(rsp->jiffies_stall,
1336 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1337 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1338
b021fe3e
PZ
1339 /*
1340 * Attempt to revive the RCU machinery by forcing a context switch.
1341 *
1342 * A context switch would normally allow the RCU state machine to make
1343 * progress and it could be we're stuck in kernel space without context
1344 * switches for an entirely unreasonable amount of time.
1345 */
1346 resched_cpu(smp_processor_id());
64db4cff
PM
1347}
1348
1349static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1350{
26cdfedf
PM
1351 unsigned long completed;
1352 unsigned long gpnum;
1353 unsigned long gps;
bad6e139
PM
1354 unsigned long j;
1355 unsigned long js;
64db4cff
PM
1356 struct rcu_node *rnp;
1357
26cdfedf 1358 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1359 return;
cb1e78cf 1360 j = jiffies;
26cdfedf
PM
1361
1362 /*
1363 * Lots of memory barriers to reject false positives.
1364 *
1365 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1366 * then rsp->gp_start, and finally rsp->completed. These values
1367 * are updated in the opposite order with memory barriers (or
1368 * equivalent) during grace-period initialization and cleanup.
1369 * Now, a false positive can occur if we get an new value of
1370 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1371 * the memory barriers, the only way that this can happen is if one
1372 * grace period ends and another starts between these two fetches.
1373 * Detect this by comparing rsp->completed with the previous fetch
1374 * from rsp->gpnum.
1375 *
1376 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1377 * and rsp->gp_start suffice to forestall false positives.
1378 */
7d0ae808 1379 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1380 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1381 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1382 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1383 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1384 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1385 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1386 if (ULONG_CMP_GE(completed, gpnum) ||
1387 ULONG_CMP_LT(j, js) ||
1388 ULONG_CMP_GE(gps, js))
1389 return; /* No stall or GP completed since entering function. */
64db4cff 1390 rnp = rdp->mynode;
c96ea7cf 1391 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1392 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1393
1394 /* We haven't checked in, so go dump stack. */
1395 print_cpu_stall(rsp);
1396
bad6e139
PM
1397 } else if (rcu_gp_in_progress(rsp) &&
1398 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1399
bad6e139 1400 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1401 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1402 }
1403}
1404
53d84e00
PM
1405/**
1406 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1407 *
1408 * Set the stall-warning timeout way off into the future, thus preventing
1409 * any RCU CPU stall-warning messages from appearing in the current set of
1410 * RCU grace periods.
1411 *
1412 * The caller must disable hard irqs.
1413 */
1414void rcu_cpu_stall_reset(void)
1415{
6ce75a23
PM
1416 struct rcu_state *rsp;
1417
1418 for_each_rcu_flavor(rsp)
7d0ae808 1419 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1420}
1421
3f5d3ea6 1422/*
d3f3f3f2
PM
1423 * Initialize the specified rcu_data structure's default callback list
1424 * to empty. The default callback list is the one that is not used by
1425 * no-callbacks CPUs.
3f5d3ea6 1426 */
d3f3f3f2 1427static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1428{
1429 int i;
1430
1431 rdp->nxtlist = NULL;
1432 for (i = 0; i < RCU_NEXT_SIZE; i++)
1433 rdp->nxttail[i] = &rdp->nxtlist;
1434}
1435
d3f3f3f2
PM
1436/*
1437 * Initialize the specified rcu_data structure's callback list to empty.
1438 */
1439static void init_callback_list(struct rcu_data *rdp)
1440{
1441 if (init_nocb_callback_list(rdp))
1442 return;
1443 init_default_callback_list(rdp);
1444}
1445
dc35c893
PM
1446/*
1447 * Determine the value that ->completed will have at the end of the
1448 * next subsequent grace period. This is used to tag callbacks so that
1449 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1450 * been dyntick-idle for an extended period with callbacks under the
1451 * influence of RCU_FAST_NO_HZ.
1452 *
1453 * The caller must hold rnp->lock with interrupts disabled.
1454 */
1455static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1456 struct rcu_node *rnp)
1457{
1458 /*
1459 * If RCU is idle, we just wait for the next grace period.
1460 * But we can only be sure that RCU is idle if we are looking
1461 * at the root rcu_node structure -- otherwise, a new grace
1462 * period might have started, but just not yet gotten around
1463 * to initializing the current non-root rcu_node structure.
1464 */
1465 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1466 return rnp->completed + 1;
1467
1468 /*
1469 * Otherwise, wait for a possible partial grace period and
1470 * then the subsequent full grace period.
1471 */
1472 return rnp->completed + 2;
1473}
1474
0446be48
PM
1475/*
1476 * Trace-event helper function for rcu_start_future_gp() and
1477 * rcu_nocb_wait_gp().
1478 */
1479static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1480 unsigned long c, const char *s)
0446be48
PM
1481{
1482 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1483 rnp->completed, c, rnp->level,
1484 rnp->grplo, rnp->grphi, s);
1485}
1486
1487/*
1488 * Start some future grace period, as needed to handle newly arrived
1489 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1490 * rcu_node structure's ->need_future_gp field. Returns true if there
1491 * is reason to awaken the grace-period kthread.
0446be48
PM
1492 *
1493 * The caller must hold the specified rcu_node structure's ->lock.
1494 */
48a7639c
PM
1495static bool __maybe_unused
1496rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1497 unsigned long *c_out)
0446be48
PM
1498{
1499 unsigned long c;
1500 int i;
48a7639c 1501 bool ret = false;
0446be48
PM
1502 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1503
1504 /*
1505 * Pick up grace-period number for new callbacks. If this
1506 * grace period is already marked as needed, return to the caller.
1507 */
1508 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1509 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1510 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1511 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1512 goto out;
0446be48
PM
1513 }
1514
1515 /*
1516 * If either this rcu_node structure or the root rcu_node structure
1517 * believe that a grace period is in progress, then we must wait
1518 * for the one following, which is in "c". Because our request
1519 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1520 * need to explicitly start one. We only do the lockless check
1521 * of rnp_root's fields if the current rcu_node structure thinks
1522 * there is no grace period in flight, and because we hold rnp->lock,
1523 * the only possible change is when rnp_root's two fields are
1524 * equal, in which case rnp_root->gpnum might be concurrently
1525 * incremented. But that is OK, as it will just result in our
1526 * doing some extra useless work.
0446be48
PM
1527 */
1528 if (rnp->gpnum != rnp->completed ||
7d0ae808 1529 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1530 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1531 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1532 goto out;
0446be48
PM
1533 }
1534
1535 /*
1536 * There might be no grace period in progress. If we don't already
1537 * hold it, acquire the root rcu_node structure's lock in order to
1538 * start one (if needed).
1539 */
2a67e741
PZ
1540 if (rnp != rnp_root)
1541 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1542
1543 /*
1544 * Get a new grace-period number. If there really is no grace
1545 * period in progress, it will be smaller than the one we obtained
1546 * earlier. Adjust callbacks as needed. Note that even no-CBs
1547 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1548 */
1549 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1550 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1551 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1552 rdp->nxtcompleted[i] = c;
1553
1554 /*
1555 * If the needed for the required grace period is already
1556 * recorded, trace and leave.
1557 */
1558 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1559 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1560 goto unlock_out;
1561 }
1562
1563 /* Record the need for the future grace period. */
1564 rnp_root->need_future_gp[c & 0x1]++;
1565
1566 /* If a grace period is not already in progress, start one. */
1567 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1568 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1569 } else {
f7f7bac9 1570 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1571 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1572 }
1573unlock_out:
1574 if (rnp != rnp_root)
1575 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1576out:
1577 if (c_out != NULL)
1578 *c_out = c;
1579 return ret;
0446be48
PM
1580}
1581
1582/*
1583 * Clean up any old requests for the just-ended grace period. Also return
1584 * whether any additional grace periods have been requested. Also invoke
1585 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1586 * waiting for this grace period to complete.
1587 */
1588static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1589{
1590 int c = rnp->completed;
1591 int needmore;
1592 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1593
1594 rcu_nocb_gp_cleanup(rsp, rnp);
1595 rnp->need_future_gp[c & 0x1] = 0;
1596 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1597 trace_rcu_future_gp(rnp, rdp, c,
1598 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1599 return needmore;
1600}
1601
48a7639c
PM
1602/*
1603 * Awaken the grace-period kthread for the specified flavor of RCU.
1604 * Don't do a self-awaken, and don't bother awakening when there is
1605 * nothing for the grace-period kthread to do (as in several CPUs
1606 * raced to awaken, and we lost), and finally don't try to awaken
1607 * a kthread that has not yet been created.
1608 */
1609static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1610{
1611 if (current == rsp->gp_kthread ||
7d0ae808 1612 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1613 !rsp->gp_kthread)
1614 return;
1615 wake_up(&rsp->gp_wq);
1616}
1617
dc35c893
PM
1618/*
1619 * If there is room, assign a ->completed number to any callbacks on
1620 * this CPU that have not already been assigned. Also accelerate any
1621 * callbacks that were previously assigned a ->completed number that has
1622 * since proven to be too conservative, which can happen if callbacks get
1623 * assigned a ->completed number while RCU is idle, but with reference to
1624 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1625 * not hurt to call it repeatedly. Returns an flag saying that we should
1626 * awaken the RCU grace-period kthread.
dc35c893
PM
1627 *
1628 * The caller must hold rnp->lock with interrupts disabled.
1629 */
48a7639c 1630static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1631 struct rcu_data *rdp)
1632{
1633 unsigned long c;
1634 int i;
48a7639c 1635 bool ret;
dc35c893
PM
1636
1637 /* If the CPU has no callbacks, nothing to do. */
1638 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1639 return false;
dc35c893
PM
1640
1641 /*
1642 * Starting from the sublist containing the callbacks most
1643 * recently assigned a ->completed number and working down, find the
1644 * first sublist that is not assignable to an upcoming grace period.
1645 * Such a sublist has something in it (first two tests) and has
1646 * a ->completed number assigned that will complete sooner than
1647 * the ->completed number for newly arrived callbacks (last test).
1648 *
1649 * The key point is that any later sublist can be assigned the
1650 * same ->completed number as the newly arrived callbacks, which
1651 * means that the callbacks in any of these later sublist can be
1652 * grouped into a single sublist, whether or not they have already
1653 * been assigned a ->completed number.
1654 */
1655 c = rcu_cbs_completed(rsp, rnp);
1656 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1657 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1658 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1659 break;
1660
1661 /*
1662 * If there are no sublist for unassigned callbacks, leave.
1663 * At the same time, advance "i" one sublist, so that "i" will
1664 * index into the sublist where all the remaining callbacks should
1665 * be grouped into.
1666 */
1667 if (++i >= RCU_NEXT_TAIL)
48a7639c 1668 return false;
dc35c893
PM
1669
1670 /*
1671 * Assign all subsequent callbacks' ->completed number to the next
1672 * full grace period and group them all in the sublist initially
1673 * indexed by "i".
1674 */
1675 for (; i <= RCU_NEXT_TAIL; i++) {
1676 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1677 rdp->nxtcompleted[i] = c;
1678 }
910ee45d 1679 /* Record any needed additional grace periods. */
48a7639c 1680 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1681
1682 /* Trace depending on how much we were able to accelerate. */
1683 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1684 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1685 else
f7f7bac9 1686 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1687 return ret;
dc35c893
PM
1688}
1689
1690/*
1691 * Move any callbacks whose grace period has completed to the
1692 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1693 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1694 * sublist. This function is idempotent, so it does not hurt to
1695 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1696 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1697 *
1698 * The caller must hold rnp->lock with interrupts disabled.
1699 */
48a7639c 1700static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1701 struct rcu_data *rdp)
1702{
1703 int i, j;
1704
1705 /* If the CPU has no callbacks, nothing to do. */
1706 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1707 return false;
dc35c893
PM
1708
1709 /*
1710 * Find all callbacks whose ->completed numbers indicate that they
1711 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1712 */
1713 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1714 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1715 break;
1716 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1717 }
1718 /* Clean up any sublist tail pointers that were misordered above. */
1719 for (j = RCU_WAIT_TAIL; j < i; j++)
1720 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1721
1722 /* Copy down callbacks to fill in empty sublists. */
1723 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1724 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1725 break;
1726 rdp->nxttail[j] = rdp->nxttail[i];
1727 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1728 }
1729
1730 /* Classify any remaining callbacks. */
48a7639c 1731 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1732}
1733
d09b62df 1734/*
ba9fbe95
PM
1735 * Update CPU-local rcu_data state to record the beginnings and ends of
1736 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1737 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1738 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1739 */
48a7639c
PM
1740static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1741 struct rcu_data *rdp)
d09b62df 1742{
48a7639c
PM
1743 bool ret;
1744
ba9fbe95 1745 /* Handle the ends of any preceding grace periods first. */
e3663b10 1746 if (rdp->completed == rnp->completed &&
7d0ae808 1747 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1748
ba9fbe95 1749 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1750 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1751
dc35c893
PM
1752 } else {
1753
1754 /* Advance callbacks. */
48a7639c 1755 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1756
1757 /* Remember that we saw this grace-period completion. */
1758 rdp->completed = rnp->completed;
f7f7bac9 1759 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1760 }
398ebe60 1761
7d0ae808 1762 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1763 /*
1764 * If the current grace period is waiting for this CPU,
1765 * set up to detect a quiescent state, otherwise don't
1766 * go looking for one.
1767 */
1768 rdp->gpnum = rnp->gpnum;
f7f7bac9 1769 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
5b74c458 1770 rdp->cpu_no_qs.b.norm = true;
5cd37193 1771 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
97c668b8 1772 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
6eaef633 1773 zero_cpu_stall_ticks(rdp);
7d0ae808 1774 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1775 }
48a7639c 1776 return ret;
6eaef633
PM
1777}
1778
d34ea322 1779static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1780{
1781 unsigned long flags;
48a7639c 1782 bool needwake;
6eaef633
PM
1783 struct rcu_node *rnp;
1784
1785 local_irq_save(flags);
1786 rnp = rdp->mynode;
7d0ae808
PM
1787 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1788 rdp->completed == READ_ONCE(rnp->completed) &&
1789 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1790 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1791 local_irq_restore(flags);
1792 return;
1793 }
48a7639c 1794 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1795 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1796 if (needwake)
1797 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1798}
1799
0f41c0dd
PM
1800static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1801{
1802 if (delay > 0 &&
1803 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1804 schedule_timeout_uninterruptible(delay);
1805}
1806
b3dbec76 1807/*
f7be8209 1808 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1809 */
7fdefc10 1810static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1811{
0aa04b05 1812 unsigned long oldmask;
b3dbec76 1813 struct rcu_data *rdp;
7fdefc10 1814 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1815
7d0ae808 1816 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1817 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1818 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209
PM
1819 /* Spurious wakeup, tell caller to go back to sleep. */
1820 raw_spin_unlock_irq(&rnp->lock);
1821 return 0;
1822 }
7d0ae808 1823 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1824
f7be8209
PM
1825 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1826 /*
1827 * Grace period already in progress, don't start another.
1828 * Not supposed to be able to happen.
1829 */
7fdefc10
PM
1830 raw_spin_unlock_irq(&rnp->lock);
1831 return 0;
1832 }
1833
7fdefc10 1834 /* Advance to a new grace period and initialize state. */
26cdfedf 1835 record_gp_stall_check_time(rsp);
765a3f4f
PM
1836 /* Record GP times before starting GP, hence smp_store_release(). */
1837 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1838 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1839 raw_spin_unlock_irq(&rnp->lock);
1840
0aa04b05
PM
1841 /*
1842 * Apply per-leaf buffered online and offline operations to the
1843 * rcu_node tree. Note that this new grace period need not wait
1844 * for subsequent online CPUs, and that quiescent-state forcing
1845 * will handle subsequent offline CPUs.
1846 */
1847 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1848 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1849 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1850 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1851 !rnp->wait_blkd_tasks) {
1852 /* Nothing to do on this leaf rcu_node structure. */
1853 raw_spin_unlock_irq(&rnp->lock);
1854 continue;
1855 }
1856
1857 /* Record old state, apply changes to ->qsmaskinit field. */
1858 oldmask = rnp->qsmaskinit;
1859 rnp->qsmaskinit = rnp->qsmaskinitnext;
1860
1861 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1862 if (!oldmask != !rnp->qsmaskinit) {
1863 if (!oldmask) /* First online CPU for this rcu_node. */
1864 rcu_init_new_rnp(rnp);
1865 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1866 rnp->wait_blkd_tasks = true;
1867 else /* Last offline CPU and can propagate. */
1868 rcu_cleanup_dead_rnp(rnp);
1869 }
1870
1871 /*
1872 * If all waited-on tasks from prior grace period are
1873 * done, and if all this rcu_node structure's CPUs are
1874 * still offline, propagate up the rcu_node tree and
1875 * clear ->wait_blkd_tasks. Otherwise, if one of this
1876 * rcu_node structure's CPUs has since come back online,
1877 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1878 * checks for this, so just call it unconditionally).
1879 */
1880 if (rnp->wait_blkd_tasks &&
1881 (!rcu_preempt_has_tasks(rnp) ||
1882 rnp->qsmaskinit)) {
1883 rnp->wait_blkd_tasks = false;
1884 rcu_cleanup_dead_rnp(rnp);
1885 }
1886
1887 raw_spin_unlock_irq(&rnp->lock);
1888 }
7fdefc10
PM
1889
1890 /*
1891 * Set the quiescent-state-needed bits in all the rcu_node
1892 * structures for all currently online CPUs in breadth-first order,
1893 * starting from the root rcu_node structure, relying on the layout
1894 * of the tree within the rsp->node[] array. Note that other CPUs
1895 * will access only the leaves of the hierarchy, thus seeing that no
1896 * grace period is in progress, at least until the corresponding
1897 * leaf node has been initialized. In addition, we have excluded
1898 * CPU-hotplug operations.
1899 *
1900 * The grace period cannot complete until the initialization
1901 * process finishes, because this kthread handles both.
1902 */
1903 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 1904 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 1905 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 1906 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1907 rcu_preempt_check_blocked_tasks(rnp);
1908 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 1909 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 1910 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 1911 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 1912 if (rnp == rdp->mynode)
48a7639c 1913 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1914 rcu_preempt_boost_start_gp(rnp);
1915 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1916 rnp->level, rnp->grplo,
1917 rnp->grphi, rnp->qsmask);
1918 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1919 cond_resched_rcu_qs();
7d0ae808 1920 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1921 }
b3dbec76 1922
7fdefc10
PM
1923 return 1;
1924}
b3dbec76 1925
b9a425cf
PM
1926/*
1927 * Helper function for wait_event_interruptible_timeout() wakeup
1928 * at force-quiescent-state time.
1929 */
1930static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1931{
1932 struct rcu_node *rnp = rcu_get_root(rsp);
1933
1934 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1935 *gfp = READ_ONCE(rsp->gp_flags);
1936 if (*gfp & RCU_GP_FLAG_FQS)
1937 return true;
1938
1939 /* The current grace period has completed. */
1940 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1941 return true;
1942
1943 return false;
1944}
1945
4cdfc175
PM
1946/*
1947 * Do one round of quiescent-state forcing.
1948 */
77f81fe0 1949static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 1950{
217af2a2
PM
1951 bool isidle = false;
1952 unsigned long maxj;
4cdfc175
PM
1953 struct rcu_node *rnp = rcu_get_root(rsp);
1954
7d0ae808 1955 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 1956 rsp->n_force_qs++;
77f81fe0 1957 if (first_time) {
4cdfc175 1958 /* Collect dyntick-idle snapshots. */
0edd1b17 1959 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1960 isidle = true;
0edd1b17
PM
1961 maxj = jiffies - ULONG_MAX / 4;
1962 }
217af2a2
PM
1963 force_qs_rnp(rsp, dyntick_save_progress_counter,
1964 &isidle, &maxj);
0edd1b17 1965 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1966 } else {
1967 /* Handle dyntick-idle and offline CPUs. */
675da67f 1968 isidle = true;
217af2a2 1969 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1970 }
1971 /* Clear flag to prevent immediate re-entry. */
7d0ae808 1972 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1973 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
1974 WRITE_ONCE(rsp->gp_flags,
1975 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
4cdfc175
PM
1976 raw_spin_unlock_irq(&rnp->lock);
1977 }
4cdfc175
PM
1978}
1979
7fdefc10
PM
1980/*
1981 * Clean up after the old grace period.
1982 */
4cdfc175 1983static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1984{
1985 unsigned long gp_duration;
48a7639c 1986 bool needgp = false;
dae6e64d 1987 int nocb = 0;
7fdefc10
PM
1988 struct rcu_data *rdp;
1989 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1990
7d0ae808 1991 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1992 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
1993 gp_duration = jiffies - rsp->gp_start;
1994 if (gp_duration > rsp->gp_max)
1995 rsp->gp_max = gp_duration;
b3dbec76 1996
7fdefc10
PM
1997 /*
1998 * We know the grace period is complete, but to everyone else
1999 * it appears to still be ongoing. But it is also the case
2000 * that to everyone else it looks like there is nothing that
2001 * they can do to advance the grace period. It is therefore
2002 * safe for us to drop the lock in order to mark the grace
2003 * period as completed in all of the rcu_node structures.
7fdefc10 2004 */
5d4b8659 2005 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 2006
5d4b8659
PM
2007 /*
2008 * Propagate new ->completed value to rcu_node structures so
2009 * that other CPUs don't have to wait until the start of the next
2010 * grace period to process their callbacks. This also avoids
2011 * some nasty RCU grace-period initialization races by forcing
2012 * the end of the current grace period to be completely recorded in
2013 * all of the rcu_node structures before the beginning of the next
2014 * grace period is recorded in any of the rcu_node structures.
2015 */
2016 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2017 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2018 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2019 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2020 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2021 rdp = this_cpu_ptr(rsp->rda);
2022 if (rnp == rdp->mynode)
48a7639c 2023 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2024 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2025 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 2026 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 2027 cond_resched_rcu_qs();
7d0ae808 2028 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2029 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2030 }
5d4b8659 2031 rnp = rcu_get_root(rsp);
2a67e741 2032 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2033 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2034
765a3f4f 2035 /* Declare grace period done. */
7d0ae808 2036 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2037 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2038 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2039 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2040 /* Advance CBs to reduce false positives below. */
2041 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2042 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2043 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2044 trace_rcu_grace_period(rsp->name,
7d0ae808 2045 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2046 TPS("newreq"));
2047 }
7fdefc10 2048 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
2049}
2050
2051/*
2052 * Body of kthread that handles grace periods.
2053 */
2054static int __noreturn rcu_gp_kthread(void *arg)
2055{
77f81fe0 2056 bool first_gp_fqs;
88d6df61 2057 int gf;
d40011f6 2058 unsigned long j;
4cdfc175 2059 int ret;
7fdefc10
PM
2060 struct rcu_state *rsp = arg;
2061 struct rcu_node *rnp = rcu_get_root(rsp);
2062
5871968d 2063 rcu_bind_gp_kthread();
7fdefc10
PM
2064 for (;;) {
2065
2066 /* Handle grace-period start. */
2067 for (;;) {
63c4db78 2068 trace_rcu_grace_period(rsp->name,
7d0ae808 2069 READ_ONCE(rsp->gpnum),
63c4db78 2070 TPS("reqwait"));
afea227f 2071 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 2072 wait_event_interruptible(rsp->gp_wq,
7d0ae808 2073 READ_ONCE(rsp->gp_flags) &
4cdfc175 2074 RCU_GP_FLAG_INIT);
319362c9 2075 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2076 /* Locking provides needed memory barrier. */
f7be8209 2077 if (rcu_gp_init(rsp))
7fdefc10 2078 break;
bde6c3aa 2079 cond_resched_rcu_qs();
7d0ae808 2080 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2081 WARN_ON(signal_pending(current));
63c4db78 2082 trace_rcu_grace_period(rsp->name,
7d0ae808 2083 READ_ONCE(rsp->gpnum),
63c4db78 2084 TPS("reqwaitsig"));
7fdefc10 2085 }
cabc49c1 2086
4cdfc175 2087 /* Handle quiescent-state forcing. */
77f81fe0 2088 first_gp_fqs = true;
d40011f6
PM
2089 j = jiffies_till_first_fqs;
2090 if (j > HZ) {
2091 j = HZ;
2092 jiffies_till_first_fqs = HZ;
2093 }
88d6df61 2094 ret = 0;
cabc49c1 2095 for (;;) {
88d6df61
PM
2096 if (!ret)
2097 rsp->jiffies_force_qs = jiffies + j;
63c4db78 2098 trace_rcu_grace_period(rsp->name,
7d0ae808 2099 READ_ONCE(rsp->gpnum),
63c4db78 2100 TPS("fqswait"));
afea227f 2101 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 2102 ret = wait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2103 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2104 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2105 /* Locking provides needed memory barriers. */
4cdfc175 2106 /* If grace period done, leave loop. */
7d0ae808 2107 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2108 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2109 break;
4cdfc175 2110 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2111 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2112 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2113 trace_rcu_grace_period(rsp->name,
7d0ae808 2114 READ_ONCE(rsp->gpnum),
63c4db78 2115 TPS("fqsstart"));
77f81fe0
PM
2116 rcu_gp_fqs(rsp, first_gp_fqs);
2117 first_gp_fqs = false;
63c4db78 2118 trace_rcu_grace_period(rsp->name,
7d0ae808 2119 READ_ONCE(rsp->gpnum),
63c4db78 2120 TPS("fqsend"));
bde6c3aa 2121 cond_resched_rcu_qs();
7d0ae808 2122 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
2123 } else {
2124 /* Deal with stray signal. */
bde6c3aa 2125 cond_resched_rcu_qs();
7d0ae808 2126 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2127 WARN_ON(signal_pending(current));
63c4db78 2128 trace_rcu_grace_period(rsp->name,
7d0ae808 2129 READ_ONCE(rsp->gpnum),
63c4db78 2130 TPS("fqswaitsig"));
4cdfc175 2131 }
d40011f6
PM
2132 j = jiffies_till_next_fqs;
2133 if (j > HZ) {
2134 j = HZ;
2135 jiffies_till_next_fqs = HZ;
2136 } else if (j < 1) {
2137 j = 1;
2138 jiffies_till_next_fqs = 1;
2139 }
cabc49c1 2140 }
4cdfc175
PM
2141
2142 /* Handle grace-period end. */
319362c9 2143 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2144 rcu_gp_cleanup(rsp);
319362c9 2145 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2146 }
b3dbec76
PM
2147}
2148
64db4cff
PM
2149/*
2150 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2151 * in preparation for detecting the next grace period. The caller must hold
b8462084 2152 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2153 *
2154 * Note that it is legal for a dying CPU (which is marked as offline) to
2155 * invoke this function. This can happen when the dying CPU reports its
2156 * quiescent state.
48a7639c
PM
2157 *
2158 * Returns true if the grace-period kthread must be awakened.
64db4cff 2159 */
48a7639c 2160static bool
910ee45d
PM
2161rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2162 struct rcu_data *rdp)
64db4cff 2163{
b8462084 2164 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2165 /*
b3dbec76 2166 * Either we have not yet spawned the grace-period
62da1921
PM
2167 * task, this CPU does not need another grace period,
2168 * or a grace period is already in progress.
b3dbec76 2169 * Either way, don't start a new grace period.
afe24b12 2170 */
48a7639c 2171 return false;
afe24b12 2172 }
7d0ae808
PM
2173 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2174 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2175 TPS("newreq"));
62da1921 2176
016a8d5b
SR
2177 /*
2178 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2179 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2180 * the wakeup to our caller.
016a8d5b 2181 */
48a7639c 2182 return true;
64db4cff
PM
2183}
2184
910ee45d
PM
2185/*
2186 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2187 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2188 * is invoked indirectly from rcu_advance_cbs(), which would result in
2189 * endless recursion -- or would do so if it wasn't for the self-deadlock
2190 * that is encountered beforehand.
48a7639c
PM
2191 *
2192 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2193 */
48a7639c 2194static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2195{
2196 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2197 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2198 bool ret = false;
910ee45d
PM
2199
2200 /*
2201 * If there is no grace period in progress right now, any
2202 * callbacks we have up to this point will be satisfied by the
2203 * next grace period. Also, advancing the callbacks reduces the
2204 * probability of false positives from cpu_needs_another_gp()
2205 * resulting in pointless grace periods. So, advance callbacks
2206 * then start the grace period!
2207 */
48a7639c
PM
2208 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2209 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2210 return ret;
910ee45d
PM
2211}
2212
f41d911f 2213/*
d3f6bad3
PM
2214 * Report a full set of quiescent states to the specified rcu_state
2215 * data structure. This involves cleaning up after the prior grace
2216 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
2217 * if one is needed. Note that the caller must hold rnp->lock, which
2218 * is released before return.
f41d911f 2219 */
d3f6bad3 2220static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2221 __releases(rcu_get_root(rsp)->lock)
f41d911f 2222{
fc2219d4 2223 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2224 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
cabc49c1 2225 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 2226 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2227}
2228
64db4cff 2229/*
d3f6bad3
PM
2230 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2231 * Allows quiescent states for a group of CPUs to be reported at one go
2232 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2233 * must be represented by the same rcu_node structure (which need not be a
2234 * leaf rcu_node structure, though it often will be). The gps parameter
2235 * is the grace-period snapshot, which means that the quiescent states
2236 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2237 * must be held upon entry, and it is released before return.
64db4cff
PM
2238 */
2239static void
d3f6bad3 2240rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2241 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2242 __releases(rnp->lock)
2243{
654e9533 2244 unsigned long oldmask = 0;
28ecd580
PM
2245 struct rcu_node *rnp_c;
2246
64db4cff
PM
2247 /* Walk up the rcu_node hierarchy. */
2248 for (;;) {
654e9533 2249 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2250
654e9533
PM
2251 /*
2252 * Our bit has already been cleared, or the
2253 * relevant grace period is already over, so done.
2254 */
1304afb2 2255 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2256 return;
2257 }
654e9533 2258 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2259 rnp->qsmask &= ~mask;
d4c08f2a
PM
2260 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2261 mask, rnp->qsmask, rnp->level,
2262 rnp->grplo, rnp->grphi,
2263 !!rnp->gp_tasks);
27f4d280 2264 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2265
2266 /* Other bits still set at this level, so done. */
1304afb2 2267 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2268 return;
2269 }
2270 mask = rnp->grpmask;
2271 if (rnp->parent == NULL) {
2272
2273 /* No more levels. Exit loop holding root lock. */
2274
2275 break;
2276 }
1304afb2 2277 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2278 rnp_c = rnp;
64db4cff 2279 rnp = rnp->parent;
2a67e741 2280 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2281 oldmask = rnp_c->qsmask;
64db4cff
PM
2282 }
2283
2284 /*
2285 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2286 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2287 * to clean up and start the next grace period if one is needed.
64db4cff 2288 */
d3f6bad3 2289 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2290}
2291
cc99a310
PM
2292/*
2293 * Record a quiescent state for all tasks that were previously queued
2294 * on the specified rcu_node structure and that were blocking the current
2295 * RCU grace period. The caller must hold the specified rnp->lock with
2296 * irqs disabled, and this lock is released upon return, but irqs remain
2297 * disabled.
2298 */
0aa04b05 2299static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2300 struct rcu_node *rnp, unsigned long flags)
2301 __releases(rnp->lock)
2302{
654e9533 2303 unsigned long gps;
cc99a310
PM
2304 unsigned long mask;
2305 struct rcu_node *rnp_p;
2306
a77da14c
PM
2307 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2308 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
cc99a310
PM
2309 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2310 return; /* Still need more quiescent states! */
2311 }
2312
2313 rnp_p = rnp->parent;
2314 if (rnp_p == NULL) {
2315 /*
a77da14c
PM
2316 * Only one rcu_node structure in the tree, so don't
2317 * try to report up to its nonexistent parent!
cc99a310
PM
2318 */
2319 rcu_report_qs_rsp(rsp, flags);
2320 return;
2321 }
2322
654e9533
PM
2323 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2324 gps = rnp->gpnum;
cc99a310
PM
2325 mask = rnp->grpmask;
2326 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2a67e741 2327 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2328 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2329}
2330
64db4cff 2331/*
d3f6bad3
PM
2332 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2333 * structure. This must be either called from the specified CPU, or
2334 * called when the specified CPU is known to be offline (and when it is
2335 * also known that no other CPU is concurrently trying to help the offline
2336 * CPU). The lastcomp argument is used to make sure we are still in the
2337 * grace period of interest. We don't want to end the current grace period
2338 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2339 */
2340static void
d7d6a11e 2341rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2342{
2343 unsigned long flags;
2344 unsigned long mask;
48a7639c 2345 bool needwake;
64db4cff
PM
2346 struct rcu_node *rnp;
2347
2348 rnp = rdp->mynode;
2a67e741 2349 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5b74c458 2350 if ((rdp->cpu_no_qs.b.norm &&
5cd37193
PM
2351 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2352 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2353 rdp->gpwrap) {
64db4cff
PM
2354
2355 /*
e4cc1f22
PM
2356 * The grace period in which this quiescent state was
2357 * recorded has ended, so don't report it upwards.
2358 * We will instead need a new quiescent state that lies
2359 * within the current grace period.
64db4cff 2360 */
5b74c458 2361 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
5cd37193 2362 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1304afb2 2363 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2364 return;
2365 }
2366 mask = rdp->grpmask;
2367 if ((rnp->qsmask & mask) == 0) {
1304afb2 2368 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2369 } else {
97c668b8 2370 rdp->core_needs_qs = 0;
64db4cff
PM
2371
2372 /*
2373 * This GP can't end until cpu checks in, so all of our
2374 * callbacks can be processed during the next GP.
2375 */
48a7639c 2376 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2377
654e9533
PM
2378 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2379 /* ^^^ Released rnp->lock */
48a7639c
PM
2380 if (needwake)
2381 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2382 }
2383}
2384
2385/*
2386 * Check to see if there is a new grace period of which this CPU
2387 * is not yet aware, and if so, set up local rcu_data state for it.
2388 * Otherwise, see if this CPU has just passed through its first
2389 * quiescent state for this grace period, and record that fact if so.
2390 */
2391static void
2392rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2393{
05eb552b
PM
2394 /* Check for grace-period ends and beginnings. */
2395 note_gp_changes(rsp, rdp);
64db4cff
PM
2396
2397 /*
2398 * Does this CPU still need to do its part for current grace period?
2399 * If no, return and let the other CPUs do their part as well.
2400 */
97c668b8 2401 if (!rdp->core_needs_qs)
64db4cff
PM
2402 return;
2403
2404 /*
2405 * Was there a quiescent state since the beginning of the grace
2406 * period? If no, then exit and wait for the next call.
2407 */
5b74c458 2408 if (rdp->cpu_no_qs.b.norm &&
5cd37193 2409 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2410 return;
2411
d3f6bad3
PM
2412 /*
2413 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2414 * judge of that).
2415 */
d7d6a11e 2416 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2417}
2418
e74f4c45 2419/*
b1420f1c
PM
2420 * Send the specified CPU's RCU callbacks to the orphanage. The
2421 * specified CPU must be offline, and the caller must hold the
7b2e6011 2422 * ->orphan_lock.
e74f4c45 2423 */
b1420f1c
PM
2424static void
2425rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2426 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2427{
3fbfbf7a 2428 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2429 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2430 return;
2431
b1420f1c
PM
2432 /*
2433 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2434 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2435 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2436 */
a50c3af9 2437 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2438 rsp->qlen_lazy += rdp->qlen_lazy;
2439 rsp->qlen += rdp->qlen;
2440 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2441 rdp->qlen_lazy = 0;
7d0ae808 2442 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2443 }
2444
2445 /*
b1420f1c
PM
2446 * Next, move those callbacks still needing a grace period to
2447 * the orphanage, where some other CPU will pick them up.
2448 * Some of the callbacks might have gone partway through a grace
2449 * period, but that is too bad. They get to start over because we
2450 * cannot assume that grace periods are synchronized across CPUs.
2451 * We don't bother updating the ->nxttail[] array yet, instead
2452 * we just reset the whole thing later on.
a50c3af9 2453 */
b1420f1c
PM
2454 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2455 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2456 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2457 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2458 }
2459
2460 /*
b1420f1c
PM
2461 * Then move the ready-to-invoke callbacks to the orphanage,
2462 * where some other CPU will pick them up. These will not be
2463 * required to pass though another grace period: They are done.
a50c3af9 2464 */
e5601400 2465 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2466 *rsp->orphan_donetail = rdp->nxtlist;
2467 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2468 }
e74f4c45 2469
b33078b6
PM
2470 /*
2471 * Finally, initialize the rcu_data structure's list to empty and
2472 * disallow further callbacks on this CPU.
2473 */
3f5d3ea6 2474 init_callback_list(rdp);
b33078b6 2475 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2476}
2477
2478/*
2479 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2480 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2481 */
96d3fd0d 2482static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2483{
2484 int i;
fa07a58f 2485 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2486
3fbfbf7a 2487 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2488 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2489 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2490 return;
2491
b1420f1c
PM
2492 /* Do the accounting first. */
2493 rdp->qlen_lazy += rsp->qlen_lazy;
2494 rdp->qlen += rsp->qlen;
2495 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2496 if (rsp->qlen_lazy != rsp->qlen)
2497 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2498 rsp->qlen_lazy = 0;
2499 rsp->qlen = 0;
2500
2501 /*
2502 * We do not need a memory barrier here because the only way we
2503 * can get here if there is an rcu_barrier() in flight is if
2504 * we are the task doing the rcu_barrier().
2505 */
2506
2507 /* First adopt the ready-to-invoke callbacks. */
2508 if (rsp->orphan_donelist != NULL) {
2509 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2510 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2511 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2512 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2513 rdp->nxttail[i] = rsp->orphan_donetail;
2514 rsp->orphan_donelist = NULL;
2515 rsp->orphan_donetail = &rsp->orphan_donelist;
2516 }
2517
2518 /* And then adopt the callbacks that still need a grace period. */
2519 if (rsp->orphan_nxtlist != NULL) {
2520 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2521 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2522 rsp->orphan_nxtlist = NULL;
2523 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2524 }
2525}
2526
2527/*
2528 * Trace the fact that this CPU is going offline.
2529 */
2530static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2531{
2532 RCU_TRACE(unsigned long mask);
2533 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2534 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2535
ea46351c
PM
2536 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2537 return;
2538
b1420f1c 2539 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2540 trace_rcu_grace_period(rsp->name,
2541 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2542 TPS("cpuofl"));
64db4cff
PM
2543}
2544
8af3a5e7
PM
2545/*
2546 * All CPUs for the specified rcu_node structure have gone offline,
2547 * and all tasks that were preempted within an RCU read-side critical
2548 * section while running on one of those CPUs have since exited their RCU
2549 * read-side critical section. Some other CPU is reporting this fact with
2550 * the specified rcu_node structure's ->lock held and interrupts disabled.
2551 * This function therefore goes up the tree of rcu_node structures,
2552 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2553 * the leaf rcu_node structure's ->qsmaskinit field has already been
2554 * updated
2555 *
2556 * This function does check that the specified rcu_node structure has
2557 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2558 * prematurely. That said, invoking it after the fact will cost you
2559 * a needless lock acquisition. So once it has done its work, don't
2560 * invoke it again.
2561 */
2562static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2563{
2564 long mask;
2565 struct rcu_node *rnp = rnp_leaf;
2566
ea46351c
PM
2567 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2568 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2569 return;
2570 for (;;) {
2571 mask = rnp->grpmask;
2572 rnp = rnp->parent;
2573 if (!rnp)
2574 break;
2a67e741 2575 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2576 rnp->qsmaskinit &= ~mask;
0aa04b05 2577 rnp->qsmask &= ~mask;
8af3a5e7
PM
2578 if (rnp->qsmaskinit) {
2579 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2580 return;
2581 }
2582 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2583 }
2584}
2585
88428cc5
PM
2586/*
2587 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2588 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2589 * bit masks.
2590 */
2591static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2592{
2593 unsigned long flags;
2594 unsigned long mask;
2595 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2596 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2597
ea46351c
PM
2598 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2599 return;
2600
88428cc5
PM
2601 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2602 mask = rdp->grpmask;
2a67e741 2603 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
88428cc5
PM
2604 rnp->qsmaskinitnext &= ~mask;
2605 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2606}
2607
64db4cff 2608/*
e5601400 2609 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2610 * this fact from process context. Do the remainder of the cleanup,
2611 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2612 * adopting them. There can only be one CPU hotplug operation at a time,
2613 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2614 */
e5601400 2615static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2616{
2036d94a 2617 unsigned long flags;
e5601400 2618 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2619 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2620
ea46351c
PM
2621 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2622 return;
2623
2036d94a 2624 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2625 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2626
b1420f1c 2627 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2628 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2629 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2630 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2631 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2632
cf01537e
PM
2633 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2634 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2635 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2636}
2637
64db4cff
PM
2638/*
2639 * Invoke any RCU callbacks that have made it to the end of their grace
2640 * period. Thottle as specified by rdp->blimit.
2641 */
37c72e56 2642static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2643{
2644 unsigned long flags;
2645 struct rcu_head *next, *list, **tail;
878d7439
ED
2646 long bl, count, count_lazy;
2647 int i;
64db4cff 2648
dc35c893 2649 /* If no callbacks are ready, just return. */
29c00b4a 2650 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2651 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2652 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2653 need_resched(), is_idle_task(current),
2654 rcu_is_callbacks_kthread());
64db4cff 2655 return;
29c00b4a 2656 }
64db4cff
PM
2657
2658 /*
2659 * Extract the list of ready callbacks, disabling to prevent
2660 * races with call_rcu() from interrupt handlers.
2661 */
2662 local_irq_save(flags);
8146c4e2 2663 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2664 bl = rdp->blimit;
486e2593 2665 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2666 list = rdp->nxtlist;
2667 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2668 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2669 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2670 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2671 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2672 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2673 local_irq_restore(flags);
2674
2675 /* Invoke callbacks. */
486e2593 2676 count = count_lazy = 0;
64db4cff
PM
2677 while (list) {
2678 next = list->next;
2679 prefetch(next);
551d55a9 2680 debug_rcu_head_unqueue(list);
486e2593
PM
2681 if (__rcu_reclaim(rsp->name, list))
2682 count_lazy++;
64db4cff 2683 list = next;
dff1672d
PM
2684 /* Stop only if limit reached and CPU has something to do. */
2685 if (++count >= bl &&
2686 (need_resched() ||
2687 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2688 break;
2689 }
2690
2691 local_irq_save(flags);
4968c300
PM
2692 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2693 is_idle_task(current),
2694 rcu_is_callbacks_kthread());
64db4cff
PM
2695
2696 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2697 if (list != NULL) {
2698 *tail = rdp->nxtlist;
2699 rdp->nxtlist = list;
b41772ab
PM
2700 for (i = 0; i < RCU_NEXT_SIZE; i++)
2701 if (&rdp->nxtlist == rdp->nxttail[i])
2702 rdp->nxttail[i] = tail;
64db4cff
PM
2703 else
2704 break;
2705 }
b1420f1c
PM
2706 smp_mb(); /* List handling before counting for rcu_barrier(). */
2707 rdp->qlen_lazy -= count_lazy;
7d0ae808 2708 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2709 rdp->n_cbs_invoked += count;
64db4cff
PM
2710
2711 /* Reinstate batch limit if we have worked down the excess. */
2712 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2713 rdp->blimit = blimit;
2714
37c72e56
PM
2715 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2716 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2717 rdp->qlen_last_fqs_check = 0;
2718 rdp->n_force_qs_snap = rsp->n_force_qs;
2719 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2720 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2721 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2722
64db4cff
PM
2723 local_irq_restore(flags);
2724
e0f23060 2725 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2726 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2727 invoke_rcu_core();
64db4cff
PM
2728}
2729
2730/*
2731 * Check to see if this CPU is in a non-context-switch quiescent state
2732 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2733 * Also schedule RCU core processing.
64db4cff 2734 *
9b2e4f18 2735 * This function must be called from hardirq context. It is normally
64db4cff
PM
2736 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2737 * false, there is no point in invoking rcu_check_callbacks().
2738 */
c3377c2d 2739void rcu_check_callbacks(int user)
64db4cff 2740{
f7f7bac9 2741 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2742 increment_cpu_stall_ticks();
9b2e4f18 2743 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2744
2745 /*
2746 * Get here if this CPU took its interrupt from user
2747 * mode or from the idle loop, and if this is not a
2748 * nested interrupt. In this case, the CPU is in
d6714c22 2749 * a quiescent state, so note it.
64db4cff
PM
2750 *
2751 * No memory barrier is required here because both
d6714c22
PM
2752 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2753 * variables that other CPUs neither access nor modify,
2754 * at least not while the corresponding CPU is online.
64db4cff
PM
2755 */
2756
284a8c93
PM
2757 rcu_sched_qs();
2758 rcu_bh_qs();
64db4cff
PM
2759
2760 } else if (!in_softirq()) {
2761
2762 /*
2763 * Get here if this CPU did not take its interrupt from
2764 * softirq, in other words, if it is not interrupting
2765 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2766 * critical section, so note it.
64db4cff
PM
2767 */
2768
284a8c93 2769 rcu_bh_qs();
64db4cff 2770 }
86aea0e6 2771 rcu_preempt_check_callbacks();
e3950ecd 2772 if (rcu_pending())
a46e0899 2773 invoke_rcu_core();
8315f422
PM
2774 if (user)
2775 rcu_note_voluntary_context_switch(current);
f7f7bac9 2776 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2777}
2778
64db4cff
PM
2779/*
2780 * Scan the leaf rcu_node structures, processing dyntick state for any that
2781 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2782 * Also initiate boosting for any threads blocked on the root rcu_node.
2783 *
ee47eb9f 2784 * The caller must have suppressed start of new grace periods.
64db4cff 2785 */
217af2a2
PM
2786static void force_qs_rnp(struct rcu_state *rsp,
2787 int (*f)(struct rcu_data *rsp, bool *isidle,
2788 unsigned long *maxj),
2789 bool *isidle, unsigned long *maxj)
64db4cff
PM
2790{
2791 unsigned long bit;
2792 int cpu;
2793 unsigned long flags;
2794 unsigned long mask;
a0b6c9a7 2795 struct rcu_node *rnp;
64db4cff 2796
a0b6c9a7 2797 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2798 cond_resched_rcu_qs();
64db4cff 2799 mask = 0;
2a67e741 2800 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2801 if (rnp->qsmask == 0) {
a77da14c
PM
2802 if (rcu_state_p == &rcu_sched_state ||
2803 rsp != rcu_state_p ||
2804 rcu_preempt_blocked_readers_cgp(rnp)) {
2805 /*
2806 * No point in scanning bits because they
2807 * are all zero. But we might need to
2808 * priority-boost blocked readers.
2809 */
2810 rcu_initiate_boost(rnp, flags);
2811 /* rcu_initiate_boost() releases rnp->lock */
2812 continue;
2813 }
2814 if (rnp->parent &&
2815 (rnp->parent->qsmask & rnp->grpmask)) {
2816 /*
2817 * Race between grace-period
2818 * initialization and task exiting RCU
2819 * read-side critical section: Report.
2820 */
2821 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2822 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2823 continue;
2824 }
64db4cff 2825 }
a0b6c9a7 2826 cpu = rnp->grplo;
64db4cff 2827 bit = 1;
a0b6c9a7 2828 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17 2829 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2830 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2831 mask |= bit;
2832 }
64db4cff 2833 }
45f014c5 2834 if (mask != 0) {
654e9533
PM
2835 /* Idle/offline CPUs, report (releases rnp->lock. */
2836 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2837 } else {
2838 /* Nothing to do here, so just drop the lock. */
2839 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2840 }
64db4cff 2841 }
64db4cff
PM
2842}
2843
2844/*
2845 * Force quiescent states on reluctant CPUs, and also detect which
2846 * CPUs are in dyntick-idle mode.
2847 */
4cdfc175 2848static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2849{
2850 unsigned long flags;
394f2769
PM
2851 bool ret;
2852 struct rcu_node *rnp;
2853 struct rcu_node *rnp_old = NULL;
2854
2855 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2856 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2857 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2858 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2859 !raw_spin_trylock(&rnp->fqslock);
2860 if (rnp_old != NULL)
2861 raw_spin_unlock(&rnp_old->fqslock);
2862 if (ret) {
a792563b 2863 rsp->n_force_qs_lh++;
394f2769
PM
2864 return;
2865 }
2866 rnp_old = rnp;
2867 }
2868 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2869
394f2769 2870 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2871 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2872 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2873 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2874 rsp->n_force_qs_lh++;
394f2769 2875 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2876 return; /* Someone beat us to it. */
46a1e34e 2877 }
7d0ae808 2878 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
394f2769 2879 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2880 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2881}
2882
64db4cff 2883/*
e0f23060
PM
2884 * This does the RCU core processing work for the specified rcu_state
2885 * and rcu_data structures. This may be called only from the CPU to
2886 * whom the rdp belongs.
64db4cff
PM
2887 */
2888static void
1bca8cf1 2889__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2890{
2891 unsigned long flags;
48a7639c 2892 bool needwake;
fa07a58f 2893 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2894
2e597558
PM
2895 WARN_ON_ONCE(rdp->beenonline == 0);
2896
64db4cff
PM
2897 /* Update RCU state based on any recent quiescent states. */
2898 rcu_check_quiescent_state(rsp, rdp);
2899
2900 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2901 local_irq_save(flags);
64db4cff 2902 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2903 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2904 needwake = rcu_start_gp(rsp);
b8462084 2905 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2906 if (needwake)
2907 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2908 } else {
2909 local_irq_restore(flags);
64db4cff
PM
2910 }
2911
2912 /* If there are callbacks ready, invoke them. */
09223371 2913 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2914 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2915
2916 /* Do any needed deferred wakeups of rcuo kthreads. */
2917 do_nocb_deferred_wakeup(rdp);
09223371
SL
2918}
2919
64db4cff 2920/*
e0f23060 2921 * Do RCU core processing for the current CPU.
64db4cff 2922 */
09223371 2923static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2924{
6ce75a23
PM
2925 struct rcu_state *rsp;
2926
bfa00b4c
PM
2927 if (cpu_is_offline(smp_processor_id()))
2928 return;
f7f7bac9 2929 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2930 for_each_rcu_flavor(rsp)
2931 __rcu_process_callbacks(rsp);
f7f7bac9 2932 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2933}
2934
a26ac245 2935/*
e0f23060
PM
2936 * Schedule RCU callback invocation. If the specified type of RCU
2937 * does not support RCU priority boosting, just do a direct call,
2938 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2939 * are running on the current CPU with softirqs disabled, the
e0f23060 2940 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2941 */
a46e0899 2942static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2943{
7d0ae808 2944 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2945 return;
a46e0899
PM
2946 if (likely(!rsp->boost)) {
2947 rcu_do_batch(rsp, rdp);
a26ac245
PM
2948 return;
2949 }
a46e0899 2950 invoke_rcu_callbacks_kthread();
a26ac245
PM
2951}
2952
a46e0899 2953static void invoke_rcu_core(void)
09223371 2954{
b0f74036
PM
2955 if (cpu_online(smp_processor_id()))
2956 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2957}
2958
29154c57
PM
2959/*
2960 * Handle any core-RCU processing required by a call_rcu() invocation.
2961 */
2962static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2963 struct rcu_head *head, unsigned long flags)
64db4cff 2964{
48a7639c
PM
2965 bool needwake;
2966
62fde6ed
PM
2967 /*
2968 * If called from an extended quiescent state, invoke the RCU
2969 * core in order to force a re-evaluation of RCU's idleness.
2970 */
9910affa 2971 if (!rcu_is_watching())
62fde6ed
PM
2972 invoke_rcu_core();
2973
a16b7a69 2974 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2975 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2976 return;
64db4cff 2977
37c72e56
PM
2978 /*
2979 * Force the grace period if too many callbacks or too long waiting.
2980 * Enforce hysteresis, and don't invoke force_quiescent_state()
2981 * if some other CPU has recently done so. Also, don't bother
2982 * invoking force_quiescent_state() if the newly enqueued callback
2983 * is the only one waiting for a grace period to complete.
2984 */
2655d57e 2985 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2986
2987 /* Are we ignoring a completed grace period? */
470716fc 2988 note_gp_changes(rsp, rdp);
b52573d2
PM
2989
2990 /* Start a new grace period if one not already started. */
2991 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2992 struct rcu_node *rnp_root = rcu_get_root(rsp);
2993
2a67e741 2994 raw_spin_lock_rcu_node(rnp_root);
48a7639c 2995 needwake = rcu_start_gp(rsp);
b8462084 2996 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2997 if (needwake)
2998 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2999 } else {
3000 /* Give the grace period a kick. */
3001 rdp->blimit = LONG_MAX;
3002 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3003 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3004 force_quiescent_state(rsp);
b52573d2
PM
3005 rdp->n_force_qs_snap = rsp->n_force_qs;
3006 rdp->qlen_last_fqs_check = rdp->qlen;
3007 }
4cdfc175 3008 }
29154c57
PM
3009}
3010
ae150184
PM
3011/*
3012 * RCU callback function to leak a callback.
3013 */
3014static void rcu_leak_callback(struct rcu_head *rhp)
3015{
3016}
3017
3fbfbf7a
PM
3018/*
3019 * Helper function for call_rcu() and friends. The cpu argument will
3020 * normally be -1, indicating "currently running CPU". It may specify
3021 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3022 * is expected to specify a CPU.
3023 */
64db4cff 3024static void
b6a4ae76 3025__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3026 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3027{
3028 unsigned long flags;
3029 struct rcu_data *rdp;
3030
1146edcb 3031 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
3032 if (debug_rcu_head_queue(head)) {
3033 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3034 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3035 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3036 return;
3037 }
64db4cff
PM
3038 head->func = func;
3039 head->next = NULL;
3040
64db4cff
PM
3041 /*
3042 * Opportunistically note grace-period endings and beginnings.
3043 * Note that we might see a beginning right after we see an
3044 * end, but never vice versa, since this CPU has to pass through
3045 * a quiescent state betweentimes.
3046 */
3047 local_irq_save(flags);
394f99a9 3048 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3049
3050 /* Add the callback to our list. */
3fbfbf7a
PM
3051 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3052 int offline;
3053
3054 if (cpu != -1)
3055 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3056 if (likely(rdp->mynode)) {
3057 /* Post-boot, so this should be for a no-CBs CPU. */
3058 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3059 WARN_ON_ONCE(offline);
3060 /* Offline CPU, _call_rcu() illegal, leak callback. */
3061 local_irq_restore(flags);
3062 return;
3063 }
3064 /*
3065 * Very early boot, before rcu_init(). Initialize if needed
3066 * and then drop through to queue the callback.
3067 */
3068 BUG_ON(cpu != -1);
34404ca8 3069 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3070 if (!likely(rdp->nxtlist))
3071 init_default_callback_list(rdp);
0d8ee37e 3072 }
7d0ae808 3073 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3074 if (lazy)
3075 rdp->qlen_lazy++;
c57afe80
PM
3076 else
3077 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3078 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3079 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3080 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3081
d4c08f2a
PM
3082 if (__is_kfree_rcu_offset((unsigned long)func))
3083 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3084 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3085 else
486e2593 3086 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3087
29154c57
PM
3088 /* Go handle any RCU core processing required. */
3089 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3090 local_irq_restore(flags);
3091}
3092
3093/*
d6714c22 3094 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3095 */
b6a4ae76 3096void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3097{
3fbfbf7a 3098 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3099}
d6714c22 3100EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3101
3102/*
486e2593 3103 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3104 */
b6a4ae76 3105void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3106{
3fbfbf7a 3107 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3108}
3109EXPORT_SYMBOL_GPL(call_rcu_bh);
3110
495aa969
ACB
3111/*
3112 * Queue an RCU callback for lazy invocation after a grace period.
3113 * This will likely be later named something like "call_rcu_lazy()",
3114 * but this change will require some way of tagging the lazy RCU
3115 * callbacks in the list of pending callbacks. Until then, this
3116 * function may only be called from __kfree_rcu().
3117 */
3118void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3119 rcu_callback_t func)
495aa969 3120{
e534165b 3121 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3122}
3123EXPORT_SYMBOL_GPL(kfree_call_rcu);
3124
6d813391
PM
3125/*
3126 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3127 * any blocking grace-period wait automatically implies a grace period
3128 * if there is only one CPU online at any point time during execution
3129 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3130 * occasionally incorrectly indicate that there are multiple CPUs online
3131 * when there was in fact only one the whole time, as this just adds
3132 * some overhead: RCU still operates correctly.
6d813391
PM
3133 */
3134static inline int rcu_blocking_is_gp(void)
3135{
95f0c1de
PM
3136 int ret;
3137
6d813391 3138 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3139 preempt_disable();
3140 ret = num_online_cpus() <= 1;
3141 preempt_enable();
3142 return ret;
6d813391
PM
3143}
3144
6ebb237b
PM
3145/**
3146 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3147 *
3148 * Control will return to the caller some time after a full rcu-sched
3149 * grace period has elapsed, in other words after all currently executing
3150 * rcu-sched read-side critical sections have completed. These read-side
3151 * critical sections are delimited by rcu_read_lock_sched() and
3152 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3153 * local_irq_disable(), and so on may be used in place of
3154 * rcu_read_lock_sched().
3155 *
3156 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3157 * non-threaded hardware-interrupt handlers, in progress on entry will
3158 * have completed before this primitive returns. However, this does not
3159 * guarantee that softirq handlers will have completed, since in some
3160 * kernels, these handlers can run in process context, and can block.
3161 *
3162 * Note that this guarantee implies further memory-ordering guarantees.
3163 * On systems with more than one CPU, when synchronize_sched() returns,
3164 * each CPU is guaranteed to have executed a full memory barrier since the
3165 * end of its last RCU-sched read-side critical section whose beginning
3166 * preceded the call to synchronize_sched(). In addition, each CPU having
3167 * an RCU read-side critical section that extends beyond the return from
3168 * synchronize_sched() is guaranteed to have executed a full memory barrier
3169 * after the beginning of synchronize_sched() and before the beginning of
3170 * that RCU read-side critical section. Note that these guarantees include
3171 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3172 * that are executing in the kernel.
3173 *
3174 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3175 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3176 * to have executed a full memory barrier during the execution of
3177 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3178 * again only if the system has more than one CPU).
6ebb237b
PM
3179 *
3180 * This primitive provides the guarantees made by the (now removed)
3181 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3182 * guarantees that rcu_read_lock() sections will have completed.
3183 * In "classic RCU", these two guarantees happen to be one and
3184 * the same, but can differ in realtime RCU implementations.
3185 */
3186void synchronize_sched(void)
3187{
f78f5b90
PM
3188 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3189 lock_is_held(&rcu_lock_map) ||
3190 lock_is_held(&rcu_sched_lock_map),
3191 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3192 if (rcu_blocking_is_gp())
3193 return;
5afff48b 3194 if (rcu_gp_is_expedited())
3705b88d
AM
3195 synchronize_sched_expedited();
3196 else
3197 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3198}
3199EXPORT_SYMBOL_GPL(synchronize_sched);
3200
3201/**
3202 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3203 *
3204 * Control will return to the caller some time after a full rcu_bh grace
3205 * period has elapsed, in other words after all currently executing rcu_bh
3206 * read-side critical sections have completed. RCU read-side critical
3207 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3208 * and may be nested.
f0a0e6f2
PM
3209 *
3210 * See the description of synchronize_sched() for more detailed information
3211 * on memory ordering guarantees.
6ebb237b
PM
3212 */
3213void synchronize_rcu_bh(void)
3214{
f78f5b90
PM
3215 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3216 lock_is_held(&rcu_lock_map) ||
3217 lock_is_held(&rcu_sched_lock_map),
3218 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3219 if (rcu_blocking_is_gp())
3220 return;
5afff48b 3221 if (rcu_gp_is_expedited())
3705b88d
AM
3222 synchronize_rcu_bh_expedited();
3223 else
3224 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3225}
3226EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3227
765a3f4f
PM
3228/**
3229 * get_state_synchronize_rcu - Snapshot current RCU state
3230 *
3231 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3232 * to determine whether or not a full grace period has elapsed in the
3233 * meantime.
3234 */
3235unsigned long get_state_synchronize_rcu(void)
3236{
3237 /*
3238 * Any prior manipulation of RCU-protected data must happen
3239 * before the load from ->gpnum.
3240 */
3241 smp_mb(); /* ^^^ */
3242
3243 /*
3244 * Make sure this load happens before the purportedly
3245 * time-consuming work between get_state_synchronize_rcu()
3246 * and cond_synchronize_rcu().
3247 */
e534165b 3248 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3249}
3250EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3251
3252/**
3253 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3254 *
3255 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3256 *
3257 * If a full RCU grace period has elapsed since the earlier call to
3258 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3259 * synchronize_rcu() to wait for a full grace period.
3260 *
3261 * Yes, this function does not take counter wrap into account. But
3262 * counter wrap is harmless. If the counter wraps, we have waited for
3263 * more than 2 billion grace periods (and way more on a 64-bit system!),
3264 * so waiting for one additional grace period should be just fine.
3265 */
3266void cond_synchronize_rcu(unsigned long oldstate)
3267{
3268 unsigned long newstate;
3269
3270 /*
3271 * Ensure that this load happens before any RCU-destructive
3272 * actions the caller might carry out after we return.
3273 */
e534165b 3274 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3275 if (ULONG_CMP_GE(oldstate, newstate))
3276 synchronize_rcu();
3277}
3278EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3279
24560056
PM
3280/**
3281 * get_state_synchronize_sched - Snapshot current RCU-sched state
3282 *
3283 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3284 * to determine whether or not a full grace period has elapsed in the
3285 * meantime.
3286 */
3287unsigned long get_state_synchronize_sched(void)
3288{
3289 /*
3290 * Any prior manipulation of RCU-protected data must happen
3291 * before the load from ->gpnum.
3292 */
3293 smp_mb(); /* ^^^ */
3294
3295 /*
3296 * Make sure this load happens before the purportedly
3297 * time-consuming work between get_state_synchronize_sched()
3298 * and cond_synchronize_sched().
3299 */
3300 return smp_load_acquire(&rcu_sched_state.gpnum);
3301}
3302EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3303
3304/**
3305 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3306 *
3307 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3308 *
3309 * If a full RCU-sched grace period has elapsed since the earlier call to
3310 * get_state_synchronize_sched(), just return. Otherwise, invoke
3311 * synchronize_sched() to wait for a full grace period.
3312 *
3313 * Yes, this function does not take counter wrap into account. But
3314 * counter wrap is harmless. If the counter wraps, we have waited for
3315 * more than 2 billion grace periods (and way more on a 64-bit system!),
3316 * so waiting for one additional grace period should be just fine.
3317 */
3318void cond_synchronize_sched(unsigned long oldstate)
3319{
3320 unsigned long newstate;
3321
3322 /*
3323 * Ensure that this load happens before any RCU-destructive
3324 * actions the caller might carry out after we return.
3325 */
3326 newstate = smp_load_acquire(&rcu_sched_state.completed);
3327 if (ULONG_CMP_GE(oldstate, newstate))
3328 synchronize_sched();
3329}
3330EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3331
28f00767
PM
3332/* Adjust sequence number for start of update-side operation. */
3333static void rcu_seq_start(unsigned long *sp)
3334{
3335 WRITE_ONCE(*sp, *sp + 1);
3336 smp_mb(); /* Ensure update-side operation after counter increment. */
3337 WARN_ON_ONCE(!(*sp & 0x1));
3338}
3339
3340/* Adjust sequence number for end of update-side operation. */
3341static void rcu_seq_end(unsigned long *sp)
3342{
3343 smp_mb(); /* Ensure update-side operation before counter increment. */
3344 WRITE_ONCE(*sp, *sp + 1);
3345 WARN_ON_ONCE(*sp & 0x1);
3346}
3347
3348/* Take a snapshot of the update side's sequence number. */
3349static unsigned long rcu_seq_snap(unsigned long *sp)
3350{
3351 unsigned long s;
3352
3353 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3354 s = (READ_ONCE(*sp) + 3) & ~0x1;
3355 smp_mb(); /* Above access must not bleed into critical section. */
3356 return s;
3357}
3358
3359/*
3360 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3361 * full update-side operation has occurred.
3362 */
3363static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3364{
3365 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3366}
3367
3368/* Wrapper functions for expedited grace periods. */
3369static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3370{
3371 rcu_seq_start(&rsp->expedited_sequence);
3372}
3373static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3374{
3375 rcu_seq_end(&rsp->expedited_sequence);
704dd435 3376 smp_mb(); /* Ensure that consecutive grace periods serialize. */
28f00767
PM
3377}
3378static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3379{
3380 return rcu_seq_snap(&rsp->expedited_sequence);
3381}
3382static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3383{
3384 return rcu_seq_done(&rsp->expedited_sequence, s);
3385}
3386
b9585e94
PM
3387/*
3388 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3389 * recent CPU-online activity. Note that these masks are not cleared
3390 * when CPUs go offline, so they reflect the union of all CPUs that have
3391 * ever been online. This means that this function normally takes its
3392 * no-work-to-do fastpath.
3393 */
3394static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3395{
3396 bool done;
3397 unsigned long flags;
3398 unsigned long mask;
3399 unsigned long oldmask;
3400 int ncpus = READ_ONCE(rsp->ncpus);
3401 struct rcu_node *rnp;
3402 struct rcu_node *rnp_up;
3403
3404 /* If no new CPUs onlined since last time, nothing to do. */
3405 if (likely(ncpus == rsp->ncpus_snap))
3406 return;
3407 rsp->ncpus_snap = ncpus;
3408
3409 /*
3410 * Each pass through the following loop propagates newly onlined
3411 * CPUs for the current rcu_node structure up the rcu_node tree.
3412 */
3413 rcu_for_each_leaf_node(rsp, rnp) {
2a67e741 3414 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b9585e94
PM
3415 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3416 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3417 continue; /* No new CPUs, nothing to do. */
3418 }
3419
3420 /* Update this node's mask, track old value for propagation. */
3421 oldmask = rnp->expmaskinit;
3422 rnp->expmaskinit = rnp->expmaskinitnext;
3423 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3424
3425 /* If was already nonzero, nothing to propagate. */
3426 if (oldmask)
3427 continue;
3428
3429 /* Propagate the new CPU up the tree. */
3430 mask = rnp->grpmask;
3431 rnp_up = rnp->parent;
3432 done = false;
3433 while (rnp_up) {
2a67e741 3434 raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
b9585e94
PM
3435 if (rnp_up->expmaskinit)
3436 done = true;
3437 rnp_up->expmaskinit |= mask;
3438 raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
3439 if (done)
3440 break;
3441 mask = rnp_up->grpmask;
3442 rnp_up = rnp_up->parent;
3443 }
3444 }
3445}
3446
3447/*
3448 * Reset the ->expmask values in the rcu_node tree in preparation for
3449 * a new expedited grace period.
3450 */
3451static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3452{
3453 unsigned long flags;
3454 struct rcu_node *rnp;
3455
3456 sync_exp_reset_tree_hotplug(rsp);
3457 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 3458 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b9585e94
PM
3459 WARN_ON_ONCE(rnp->expmask);
3460 rnp->expmask = rnp->expmaskinit;
3461 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3462 }
3463}
3464
7922cd0e 3465/*
8203d6d0 3466 * Return non-zero if there is no RCU expedited grace period in progress
7922cd0e
PM
3467 * for the specified rcu_node structure, in other words, if all CPUs and
3468 * tasks covered by the specified rcu_node structure have done their bit
3469 * for the current expedited grace period. Works only for preemptible
3470 * RCU -- other RCU implementation use other means.
3471 *
3472 * Caller must hold the root rcu_node's exp_funnel_mutex.
3473 */
3474static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3475{
8203d6d0 3476 return rnp->exp_tasks == NULL &&
7922cd0e
PM
3477 READ_ONCE(rnp->expmask) == 0;
3478}
3479
3480/*
3481 * Report the exit from RCU read-side critical section for the last task
3482 * that queued itself during or before the current expedited preemptible-RCU
3483 * grace period. This event is reported either to the rcu_node structure on
3484 * which the task was queued or to one of that rcu_node structure's ancestors,
3485 * recursively up the tree. (Calm down, calm down, we do the recursion
3486 * iteratively!)
3487 *
8203d6d0
PM
3488 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3489 * specified rcu_node structure's ->lock.
7922cd0e 3490 */
8203d6d0
PM
3491static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3492 bool wake, unsigned long flags)
3493 __releases(rnp->lock)
7922cd0e 3494{
7922cd0e
PM
3495 unsigned long mask;
3496
7922cd0e
PM
3497 for (;;) {
3498 if (!sync_rcu_preempt_exp_done(rnp)) {
8203d6d0
PM
3499 if (!rnp->expmask)
3500 rcu_initiate_boost(rnp, flags);
3501 else
3502 raw_spin_unlock_irqrestore(&rnp->lock, flags);
7922cd0e
PM
3503 break;
3504 }
3505 if (rnp->parent == NULL) {
3506 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3507 if (wake) {
3508 smp_mb(); /* EGP done before wake_up(). */
3509 wake_up(&rsp->expedited_wq);
3510 }
3511 break;
3512 }
3513 mask = rnp->grpmask;
3514 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
3515 rnp = rnp->parent;
2a67e741 3516 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
8203d6d0 3517 WARN_ON_ONCE(!(rnp->expmask & mask));
7922cd0e
PM
3518 rnp->expmask &= ~mask;
3519 }
3520}
3521
8203d6d0
PM
3522/*
3523 * Report expedited quiescent state for specified node. This is a
3524 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3525 *
3526 * Caller must hold the root rcu_node's exp_funnel_mutex.
3527 */
3528static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3529 struct rcu_node *rnp, bool wake)
3530{
3531 unsigned long flags;
3532
2a67e741 3533 raw_spin_lock_irqsave_rcu_node(rnp, flags);
8203d6d0
PM
3534 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3535}
3536
3537/*
3538 * Report expedited quiescent state for multiple CPUs, all covered by the
3539 * specified leaf rcu_node structure. Caller must hold the root
3540 * rcu_node's exp_funnel_mutex.
3541 */
3542static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3543 unsigned long mask, bool wake)
3544{
3545 unsigned long flags;
3546
2a67e741 3547 raw_spin_lock_irqsave_rcu_node(rnp, flags);
338b0f76
PM
3548 if (!(rnp->expmask & mask)) {
3549 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3550 return;
3551 }
8203d6d0
PM
3552 rnp->expmask &= ~mask;
3553 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3554}
3555
3556/*
3557 * Report expedited quiescent state for specified rcu_data (CPU).
3558 * Caller must hold the root rcu_node's exp_funnel_mutex.
3559 */
6587a23b
PM
3560static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3561 bool wake)
8203d6d0
PM
3562{
3563 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3564}
3565
29fd9309
PM
3566/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3567static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
2cd6ffaf 3568 struct rcu_data *rdp,
29fd9309 3569 atomic_long_t *stat, unsigned long s)
3d3b7db0 3570{
28f00767 3571 if (rcu_exp_gp_seq_done(rsp, s)) {
385b73c0
PM
3572 if (rnp)
3573 mutex_unlock(&rnp->exp_funnel_mutex);
2cd6ffaf
PM
3574 else if (rdp)
3575 mutex_unlock(&rdp->exp_funnel_mutex);
385b73c0
PM
3576 /* Ensure test happens before caller kfree(). */
3577 smp_mb__before_atomic(); /* ^^^ */
3578 atomic_long_inc(stat);
385b73c0
PM
3579 return true;
3580 }
3581 return false;
3582}
3583
b09e5f86
PM
3584/*
3585 * Funnel-lock acquisition for expedited grace periods. Returns a
3586 * pointer to the root rcu_node structure, or NULL if some other
3587 * task did the expedited grace period for us.
3588 */
3589static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3590{
2cd6ffaf 3591 struct rcu_data *rdp;
b09e5f86
PM
3592 struct rcu_node *rnp0;
3593 struct rcu_node *rnp1 = NULL;
3594
3d3b7db0 3595 /*
cdacbe1f
PM
3596 * First try directly acquiring the root lock in order to reduce
3597 * latency in the common case where expedited grace periods are
3598 * rare. We check mutex_is_locked() to avoid pathological levels of
3599 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3d3b7db0 3600 */
cdacbe1f
PM
3601 rnp0 = rcu_get_root(rsp);
3602 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3603 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3604 if (sync_exp_work_done(rsp, rnp0, NULL,
3605 &rsp->expedited_workdone0, s))
3606 return NULL;
3607 return rnp0;
3608 }
3609 }
3610
b09e5f86
PM
3611 /*
3612 * Each pass through the following loop works its way
3613 * up the rcu_node tree, returning if others have done the
3614 * work or otherwise falls through holding the root rnp's
3615 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3616 * can be inexact, as it is just promoting locality and is not
3617 * strictly needed for correctness.
3618 */
2cd6ffaf
PM
3619 rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3620 if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
3621 return NULL;
3622 mutex_lock(&rdp->exp_funnel_mutex);
3623 rnp0 = rdp->mynode;
b09e5f86 3624 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
2cd6ffaf
PM
3625 if (sync_exp_work_done(rsp, rnp1, rdp,
3626 &rsp->expedited_workdone2, s))
b09e5f86
PM
3627 return NULL;
3628 mutex_lock(&rnp0->exp_funnel_mutex);
3629 if (rnp1)
3630 mutex_unlock(&rnp1->exp_funnel_mutex);
2cd6ffaf
PM
3631 else
3632 mutex_unlock(&rdp->exp_funnel_mutex);
b09e5f86
PM
3633 rnp1 = rnp0;
3634 }
2cd6ffaf
PM
3635 if (sync_exp_work_done(rsp, rnp1, rdp,
3636 &rsp->expedited_workdone3, s))
b09e5f86
PM
3637 return NULL;
3638 return rnp1;
3639}
3640
cf3620a6 3641/* Invoked on each online non-idle CPU for expedited quiescent state. */
338b0f76 3642static void sync_sched_exp_handler(void *data)
b09e5f86 3643{
338b0f76
PM
3644 struct rcu_data *rdp;
3645 struct rcu_node *rnp;
3646 struct rcu_state *rsp = data;
b09e5f86 3647
338b0f76
PM
3648 rdp = this_cpu_ptr(rsp->rda);
3649 rnp = rdp->mynode;
3650 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3651 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3652 return;
6587a23b
PM
3653 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3654 resched_cpu(smp_processor_id());
3d3b7db0
PM
3655}
3656
338b0f76
PM
3657/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3658static void sync_sched_exp_online_cleanup(int cpu)
3659{
3660 struct rcu_data *rdp;
3661 int ret;
3662 struct rcu_node *rnp;
3663 struct rcu_state *rsp = &rcu_sched_state;
3664
3665 rdp = per_cpu_ptr(rsp->rda, cpu);
3666 rnp = rdp->mynode;
3667 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3668 return;
3669 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3670 WARN_ON_ONCE(ret);
3671}
3672
bce5fa12
PM
3673/*
3674 * Select the nodes that the upcoming expedited grace period needs
3675 * to wait for.
3676 */
dcdb8807
PM
3677static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3678 smp_call_func_t func)
bce5fa12
PM
3679{
3680 int cpu;
3681 unsigned long flags;
3682 unsigned long mask;
3683 unsigned long mask_ofl_test;
3684 unsigned long mask_ofl_ipi;
6587a23b 3685 int ret;
bce5fa12
PM
3686 struct rcu_node *rnp;
3687
3688 sync_exp_reset_tree(rsp);
3689 rcu_for_each_leaf_node(rsp, rnp) {
2a67e741 3690 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bce5fa12
PM
3691
3692 /* Each pass checks a CPU for identity, offline, and idle. */
3693 mask_ofl_test = 0;
3694 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3695 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3696 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3697
3698 if (raw_smp_processor_id() == cpu ||
bce5fa12
PM
3699 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3700 mask_ofl_test |= rdp->grpmask;
3701 }
3702 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3703
3704 /*
3705 * Need to wait for any blocked tasks as well. Note that
3706 * additional blocking tasks will also block the expedited
3707 * GP until such time as the ->expmask bits are cleared.
3708 */
3709 if (rcu_preempt_has_tasks(rnp))
3710 rnp->exp_tasks = rnp->blkd_tasks.next;
3711 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3712
3713 /* IPI the remaining CPUs for expedited quiescent state. */
3714 mask = 1;
3715 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3716 if (!(mask_ofl_ipi & mask))
3717 continue;
338b0f76 3718retry_ipi:
dcdb8807 3719 ret = smp_call_function_single(cpu, func, rsp, 0);
338b0f76 3720 if (!ret) {
6587a23b 3721 mask_ofl_ipi &= ~mask;
338b0f76
PM
3722 } else {
3723 /* Failed, raced with offline. */
6cf10081 3724 raw_spin_lock_irqsave_rcu_node(rnp, flags);
338b0f76
PM
3725 if (cpu_online(cpu) &&
3726 (rnp->expmask & mask)) {
3727 raw_spin_unlock_irqrestore(&rnp->lock,
3728 flags);
3729 schedule_timeout_uninterruptible(1);
3730 if (cpu_online(cpu) &&
3731 (rnp->expmask & mask))
3732 goto retry_ipi;
6cf10081
PM
3733 raw_spin_lock_irqsave_rcu_node(rnp,
3734 flags);
338b0f76
PM
3735 }
3736 if (!(rnp->expmask & mask))
3737 mask_ofl_ipi &= ~mask;
3738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3739 }
bce5fa12
PM
3740 }
3741 /* Report quiescent states for those that went offline. */
3742 mask_ofl_test |= mask_ofl_ipi;
3743 if (mask_ofl_test)
3744 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3745 }
3d3b7db0
PM
3746}
3747
cf3620a6
PM
3748static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3749{
3750 int cpu;
3751 unsigned long jiffies_stall;
3752 unsigned long jiffies_start;
bce5fa12
PM
3753 unsigned long mask;
3754 struct rcu_node *rnp;
3755 struct rcu_node *rnp_root = rcu_get_root(rsp);
cf3620a6
PM
3756 int ret;
3757
3758 jiffies_stall = rcu_jiffies_till_stall_check();
3759 jiffies_start = jiffies;
3760
3761 for (;;) {
3762 ret = wait_event_interruptible_timeout(
3763 rsp->expedited_wq,
bce5fa12 3764 sync_rcu_preempt_exp_done(rnp_root),
cf3620a6
PM
3765 jiffies_stall);
3766 if (ret > 0)
3767 return;
3768 if (ret < 0) {
3769 /* Hit a signal, disable CPU stall warnings. */
3770 wait_event(rsp->expedited_wq,
bce5fa12 3771 sync_rcu_preempt_exp_done(rnp_root));
cf3620a6
PM
3772 return;
3773 }
c5865638 3774 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
cf3620a6 3775 rsp->name);
bce5fa12 3776 rcu_for_each_leaf_node(rsp, rnp) {
74611ecb 3777 (void)rcu_print_task_exp_stall(rnp);
bce5fa12
PM
3778 mask = 1;
3779 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
74611ecb
PM
3780 struct rcu_data *rdp;
3781
bce5fa12
PM
3782 if (!(rnp->expmask & mask))
3783 continue;
74611ecb
PM
3784 rdp = per_cpu_ptr(rsp->rda, cpu);
3785 pr_cont(" %d-%c%c%c", cpu,
3786 "O."[cpu_online(cpu)],
3787 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3788 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
bce5fa12
PM
3789 }
3790 mask <<= 1;
cf3620a6
PM
3791 }
3792 pr_cont(" } %lu jiffies s: %lu\n",
3793 jiffies - jiffies_start, rsp->expedited_sequence);
bce5fa12
PM
3794 rcu_for_each_leaf_node(rsp, rnp) {
3795 mask = 1;
3796 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3797 if (!(rnp->expmask & mask))
3798 continue;
3799 dump_cpu_task(cpu);
3800 }
cf3620a6
PM
3801 }
3802 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3803 }
3804}
3805
236fefaf
PM
3806/**
3807 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3808 *
3809 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3810 * approach to force the grace period to end quickly. This consumes
3811 * significant time on all CPUs and is unfriendly to real-time workloads,
3812 * so is thus not recommended for any sort of common-case code. In fact,
3813 * if you are using synchronize_sched_expedited() in a loop, please
3814 * restructure your code to batch your updates, and then use a single
3815 * synchronize_sched() instead.
3d3b7db0 3816 *
d6ada2cf
PM
3817 * This implementation can be thought of as an application of sequence
3818 * locking to expedited grace periods, but using the sequence counter to
3819 * determine when someone else has already done the work instead of for
385b73c0 3820 * retrying readers.
3d3b7db0
PM
3821 */
3822void synchronize_sched_expedited(void)
3823{
7fd0ddc5 3824 unsigned long s;
b09e5f86 3825 struct rcu_node *rnp;
40694d66 3826 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3827
d6ada2cf 3828 /* Take a snapshot of the sequence number. */
28f00767 3829 s = rcu_exp_gp_seq_snap(rsp);
3d3b7db0 3830
b09e5f86 3831 rnp = exp_funnel_lock(rsp, s);
807226e2 3832 if (rnp == NULL)
b09e5f86 3833 return; /* Someone else did our work for us. */
e0775cef 3834
28f00767 3835 rcu_exp_gp_seq_start(rsp);
338b0f76 3836 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
bce5fa12 3837 synchronize_sched_expedited_wait(rsp);
e0775cef 3838
28f00767 3839 rcu_exp_gp_seq_end(rsp);
b09e5f86 3840 mutex_unlock(&rnp->exp_funnel_mutex);
3d3b7db0
PM
3841}
3842EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3843
64db4cff
PM
3844/*
3845 * Check to see if there is any immediate RCU-related work to be done
3846 * by the current CPU, for the specified type of RCU, returning 1 if so.
3847 * The checks are in order of increasing expense: checks that can be
3848 * carried out against CPU-local state are performed first. However,
3849 * we must check for CPU stalls first, else we might not get a chance.
3850 */
3851static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3852{
2f51f988
PM
3853 struct rcu_node *rnp = rdp->mynode;
3854
64db4cff
PM
3855 rdp->n_rcu_pending++;
3856
3857 /* Check for CPU stalls, if enabled. */
3858 check_cpu_stall(rsp, rdp);
3859
a096932f
PM
3860 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3861 if (rcu_nohz_full_cpu(rsp))
3862 return 0;
3863
64db4cff 3864 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3865 if (rcu_scheduler_fully_active &&
5b74c458 3866 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
5cd37193 3867 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
97c668b8
PM
3868 rdp->n_rp_core_needs_qs++;
3869 } else if (rdp->core_needs_qs &&
5b74c458 3870 (!rdp->cpu_no_qs.b.norm ||
5cd37193 3871 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3872 rdp->n_rp_report_qs++;
64db4cff 3873 return 1;
7ba5c840 3874 }
64db4cff
PM
3875
3876 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3877 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3878 rdp->n_rp_cb_ready++;
64db4cff 3879 return 1;
7ba5c840 3880 }
64db4cff
PM
3881
3882 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3883 if (cpu_needs_another_gp(rsp, rdp)) {
3884 rdp->n_rp_cpu_needs_gp++;
64db4cff 3885 return 1;
7ba5c840 3886 }
64db4cff
PM
3887
3888 /* Has another RCU grace period completed? */
7d0ae808 3889 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3890 rdp->n_rp_gp_completed++;
64db4cff 3891 return 1;
7ba5c840 3892 }
64db4cff
PM
3893
3894 /* Has a new RCU grace period started? */
7d0ae808
PM
3895 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3896 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3897 rdp->n_rp_gp_started++;
64db4cff 3898 return 1;
7ba5c840 3899 }
64db4cff 3900
96d3fd0d
PM
3901 /* Does this CPU need a deferred NOCB wakeup? */
3902 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3903 rdp->n_rp_nocb_defer_wakeup++;
3904 return 1;
3905 }
3906
64db4cff 3907 /* nothing to do */
7ba5c840 3908 rdp->n_rp_need_nothing++;
64db4cff
PM
3909 return 0;
3910}
3911
3912/*
3913 * Check to see if there is any immediate RCU-related work to be done
3914 * by the current CPU, returning 1 if so. This function is part of the
3915 * RCU implementation; it is -not- an exported member of the RCU API.
3916 */
e3950ecd 3917static int rcu_pending(void)
64db4cff 3918{
6ce75a23
PM
3919 struct rcu_state *rsp;
3920
3921 for_each_rcu_flavor(rsp)
e3950ecd 3922 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3923 return 1;
3924 return 0;
64db4cff
PM
3925}
3926
3927/*
c0f4dfd4
PM
3928 * Return true if the specified CPU has any callback. If all_lazy is
3929 * non-NULL, store an indication of whether all callbacks are lazy.
3930 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3931 */
82072c4f 3932static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3933{
c0f4dfd4
PM
3934 bool al = true;
3935 bool hc = false;
3936 struct rcu_data *rdp;
6ce75a23
PM
3937 struct rcu_state *rsp;
3938
c0f4dfd4 3939 for_each_rcu_flavor(rsp) {
aa6da514 3940 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3941 if (!rdp->nxtlist)
3942 continue;
3943 hc = true;
3944 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3945 al = false;
69c8d28c
PM
3946 break;
3947 }
c0f4dfd4
PM
3948 }
3949 if (all_lazy)
3950 *all_lazy = al;
3951 return hc;
64db4cff
PM
3952}
3953
a83eff0a
PM
3954/*
3955 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3956 * the compiler is expected to optimize this away.
3957 */
e66c33d5 3958static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3959 int cpu, unsigned long done)
3960{
3961 trace_rcu_barrier(rsp->name, s, cpu,
3962 atomic_read(&rsp->barrier_cpu_count), done);
3963}
3964
b1420f1c
PM
3965/*
3966 * RCU callback function for _rcu_barrier(). If we are last, wake
3967 * up the task executing _rcu_barrier().
3968 */
24ebbca8 3969static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3970{
24ebbca8
PM
3971 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3972 struct rcu_state *rsp = rdp->rsp;
3973
a83eff0a 3974 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3975 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3976 complete(&rsp->barrier_completion);
a83eff0a 3977 } else {
4f525a52 3978 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3979 }
d0ec774c
PM
3980}
3981
3982/*
3983 * Called with preemption disabled, and from cross-cpu IRQ context.
3984 */
3985static void rcu_barrier_func(void *type)
3986{
037b64ed 3987 struct rcu_state *rsp = type;
fa07a58f 3988 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3989
4f525a52 3990 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 3991 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3992 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3993}
3994
d0ec774c
PM
3995/*
3996 * Orchestrate the specified type of RCU barrier, waiting for all
3997 * RCU callbacks of the specified type to complete.
3998 */
037b64ed 3999static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 4000{
b1420f1c 4001 int cpu;
b1420f1c 4002 struct rcu_data *rdp;
4f525a52 4003 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 4004
4f525a52 4005 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 4006
e74f4c45 4007 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 4008 mutex_lock(&rsp->barrier_mutex);
b1420f1c 4009
4f525a52
PM
4010 /* Did someone else do our work for us? */
4011 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4012 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
4013 smp_mb(); /* caller's subsequent code after above check. */
4014 mutex_unlock(&rsp->barrier_mutex);
4015 return;
4016 }
4017
4f525a52
PM
4018 /* Mark the start of the barrier operation. */
4019 rcu_seq_start(&rsp->barrier_sequence);
4020 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 4021
d0ec774c 4022 /*
b1420f1c
PM
4023 * Initialize the count to one rather than to zero in order to
4024 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
4025 * (or preemption of this task). Exclude CPU-hotplug operations
4026 * to ensure that no offline CPU has callbacks queued.
d0ec774c 4027 */
7db74df8 4028 init_completion(&rsp->barrier_completion);
24ebbca8 4029 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 4030 get_online_cpus();
b1420f1c
PM
4031
4032 /*
1331e7a1
PM
4033 * Force each CPU with callbacks to register a new callback.
4034 * When that callback is invoked, we will know that all of the
4035 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 4036 */
3fbfbf7a 4037 for_each_possible_cpu(cpu) {
d1e43fa5 4038 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 4039 continue;
b1420f1c 4040 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 4041 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
4042 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4043 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 4044 rsp->barrier_sequence);
d7e29933
PM
4045 } else {
4046 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 4047 rsp->barrier_sequence);
41050a00 4048 smp_mb__before_atomic();
d7e29933
PM
4049 atomic_inc(&rsp->barrier_cpu_count);
4050 __call_rcu(&rdp->barrier_head,
4051 rcu_barrier_callback, rsp, cpu, 0);
4052 }
7d0ae808 4053 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 4054 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 4055 rsp->barrier_sequence);
037b64ed 4056 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 4057 } else {
a83eff0a 4058 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 4059 rsp->barrier_sequence);
b1420f1c
PM
4060 }
4061 }
1331e7a1 4062 put_online_cpus();
b1420f1c
PM
4063
4064 /*
4065 * Now that we have an rcu_barrier_callback() callback on each
4066 * CPU, and thus each counted, remove the initial count.
4067 */
24ebbca8 4068 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 4069 complete(&rsp->barrier_completion);
b1420f1c
PM
4070
4071 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 4072 wait_for_completion(&rsp->barrier_completion);
b1420f1c 4073
4f525a52
PM
4074 /* Mark the end of the barrier operation. */
4075 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4076 rcu_seq_end(&rsp->barrier_sequence);
4077
b1420f1c 4078 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 4079 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 4080}
d0ec774c
PM
4081
4082/**
4083 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4084 */
4085void rcu_barrier_bh(void)
4086{
037b64ed 4087 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
4088}
4089EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4090
4091/**
4092 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4093 */
4094void rcu_barrier_sched(void)
4095{
037b64ed 4096 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
4097}
4098EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4099
0aa04b05
PM
4100/*
4101 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4102 * first CPU in a given leaf rcu_node structure coming online. The caller
4103 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4104 * disabled.
4105 */
4106static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4107{
4108 long mask;
4109 struct rcu_node *rnp = rnp_leaf;
4110
4111 for (;;) {
4112 mask = rnp->grpmask;
4113 rnp = rnp->parent;
4114 if (rnp == NULL)
4115 return;
6cf10081 4116 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05
PM
4117 rnp->qsmaskinit |= mask;
4118 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
4119 }
4120}
4121
64db4cff 4122/*
27569620 4123 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 4124 */
27569620
PM
4125static void __init
4126rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
4127{
4128 unsigned long flags;
394f99a9 4129 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
4130 struct rcu_node *rnp = rcu_get_root(rsp);
4131
4132 /* Set up local state, ensuring consistent view of global state. */
6cf10081 4133 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27569620 4134 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 4135 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 4136 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 4137 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 4138 rdp->cpu = cpu;
d4c08f2a 4139 rdp->rsp = rsp;
2cd6ffaf 4140 mutex_init(&rdp->exp_funnel_mutex);
3fbfbf7a 4141 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 4142 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
4143}
4144
4145/*
4146 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4147 * offline event can be happening at a given time. Note also that we
4148 * can accept some slop in the rsp->completed access due to the fact
4149 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 4150 */
49fb4c62 4151static void
9b67122a 4152rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
4153{
4154 unsigned long flags;
64db4cff 4155 unsigned long mask;
394f99a9 4156 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
4157 struct rcu_node *rnp = rcu_get_root(rsp);
4158
4159 /* Set up local state, ensuring consistent view of global state. */
6cf10081 4160 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
4161 rdp->qlen_last_fqs_check = 0;
4162 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 4163 rdp->blimit = blimit;
39c8d313
PM
4164 if (!rdp->nxtlist)
4165 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 4166 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 4167 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
4168 atomic_set(&rdp->dynticks->dynticks,
4169 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 4170 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 4171
0aa04b05
PM
4172 /*
4173 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4174 * propagation up the rcu_node tree will happen at the beginning
4175 * of the next grace period.
4176 */
64db4cff
PM
4177 rnp = rdp->mynode;
4178 mask = rdp->grpmask;
2a67e741 4179 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
0aa04b05 4180 rnp->qsmaskinitnext |= mask;
b9585e94
PM
4181 rnp->expmaskinitnext |= mask;
4182 if (!rdp->beenonline)
4183 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4184 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
4185 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4186 rdp->completed = rnp->completed;
5b74c458 4187 rdp->cpu_no_qs.b.norm = true;
a738eec6 4188 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
97c668b8 4189 rdp->core_needs_qs = false;
0aa04b05
PM
4190 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
4192}
4193
49fb4c62 4194static void rcu_prepare_cpu(int cpu)
64db4cff 4195{
6ce75a23
PM
4196 struct rcu_state *rsp;
4197
4198 for_each_rcu_flavor(rsp)
9b67122a 4199 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
4200}
4201
4202/*
f41d911f 4203 * Handle CPU online/offline notification events.
64db4cff 4204 */
88428cc5
PM
4205int rcu_cpu_notify(struct notifier_block *self,
4206 unsigned long action, void *hcpu)
64db4cff
PM
4207{
4208 long cpu = (long)hcpu;
e534165b 4209 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 4210 struct rcu_node *rnp = rdp->mynode;
6ce75a23 4211 struct rcu_state *rsp;
64db4cff
PM
4212
4213 switch (action) {
4214 case CPU_UP_PREPARE:
4215 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
4216 rcu_prepare_cpu(cpu);
4217 rcu_prepare_kthreads(cpu);
35ce7f29 4218 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
4219 break;
4220 case CPU_ONLINE:
0f962a5e 4221 case CPU_DOWN_FAILED:
338b0f76 4222 sync_sched_exp_online_cleanup(cpu);
5d01bbd1 4223 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
4224 break;
4225 case CPU_DOWN_PREPARE:
34ed6246 4226 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 4227 break;
d0ec774c
PM
4228 case CPU_DYING:
4229 case CPU_DYING_FROZEN:
6ce75a23
PM
4230 for_each_rcu_flavor(rsp)
4231 rcu_cleanup_dying_cpu(rsp);
d0ec774c 4232 break;
88428cc5 4233 case CPU_DYING_IDLE:
6587a23b 4234 /* QS for any half-done expedited RCU-sched GP. */
338b0f76
PM
4235 preempt_disable();
4236 rcu_report_exp_rdp(&rcu_sched_state,
4237 this_cpu_ptr(rcu_sched_state.rda), true);
4238 preempt_enable();
6587a23b 4239
88428cc5
PM
4240 for_each_rcu_flavor(rsp) {
4241 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4242 }
4243 break;
64db4cff
PM
4244 case CPU_DEAD:
4245 case CPU_DEAD_FROZEN:
4246 case CPU_UP_CANCELED:
4247 case CPU_UP_CANCELED_FROZEN:
776d6807 4248 for_each_rcu_flavor(rsp) {
6ce75a23 4249 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
4250 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4251 }
64db4cff
PM
4252 break;
4253 default:
4254 break;
4255 }
34ed6246 4256 return NOTIFY_OK;
64db4cff
PM
4257}
4258
d1d74d14
BP
4259static int rcu_pm_notify(struct notifier_block *self,
4260 unsigned long action, void *hcpu)
4261{
4262 switch (action) {
4263 case PM_HIBERNATION_PREPARE:
4264 case PM_SUSPEND_PREPARE:
4265 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4266 rcu_expedite_gp();
d1d74d14
BP
4267 break;
4268 case PM_POST_HIBERNATION:
4269 case PM_POST_SUSPEND:
5afff48b
PM
4270 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4271 rcu_unexpedite_gp();
d1d74d14
BP
4272 break;
4273 default:
4274 break;
4275 }
4276 return NOTIFY_OK;
4277}
4278
b3dbec76 4279/*
9386c0b7 4280 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4281 */
4282static int __init rcu_spawn_gp_kthread(void)
4283{
4284 unsigned long flags;
a94844b2 4285 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4286 struct rcu_node *rnp;
4287 struct rcu_state *rsp;
a94844b2 4288 struct sched_param sp;
b3dbec76
PM
4289 struct task_struct *t;
4290
a94844b2
PM
4291 /* Force priority into range. */
4292 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4293 kthread_prio = 1;
4294 else if (kthread_prio < 0)
4295 kthread_prio = 0;
4296 else if (kthread_prio > 99)
4297 kthread_prio = 99;
4298 if (kthread_prio != kthread_prio_in)
4299 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4300 kthread_prio, kthread_prio_in);
4301
9386c0b7 4302 rcu_scheduler_fully_active = 1;
b3dbec76 4303 for_each_rcu_flavor(rsp) {
a94844b2 4304 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4305 BUG_ON(IS_ERR(t));
4306 rnp = rcu_get_root(rsp);
6cf10081 4307 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 4308 rsp->gp_kthread = t;
a94844b2
PM
4309 if (kthread_prio) {
4310 sp.sched_priority = kthread_prio;
4311 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4312 }
4313 wake_up_process(t);
b3dbec76
PM
4314 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4315 }
35ce7f29 4316 rcu_spawn_nocb_kthreads();
9386c0b7 4317 rcu_spawn_boost_kthreads();
b3dbec76
PM
4318 return 0;
4319}
4320early_initcall(rcu_spawn_gp_kthread);
4321
bbad9379
PM
4322/*
4323 * This function is invoked towards the end of the scheduler's initialization
4324 * process. Before this is called, the idle task might contain
4325 * RCU read-side critical sections (during which time, this idle
4326 * task is booting the system). After this function is called, the
4327 * idle tasks are prohibited from containing RCU read-side critical
4328 * sections. This function also enables RCU lockdep checking.
4329 */
4330void rcu_scheduler_starting(void)
4331{
4332 WARN_ON(num_online_cpus() != 1);
4333 WARN_ON(nr_context_switches() > 0);
4334 rcu_scheduler_active = 1;
4335}
4336
64db4cff
PM
4337/*
4338 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 4339 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 4340 */
199977bf 4341static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 4342{
64db4cff
PM
4343 int i;
4344
7fa27001 4345 if (rcu_fanout_exact) {
199977bf 4346 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 4347 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 4348 levelspread[i] = RCU_FANOUT;
66292405
PM
4349 } else {
4350 int ccur;
4351 int cprv;
4352
4353 cprv = nr_cpu_ids;
4354 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
4355 ccur = levelcnt[i];
4356 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
4357 cprv = ccur;
4358 }
64db4cff
PM
4359 }
4360}
64db4cff
PM
4361
4362/*
4363 * Helper function for rcu_init() that initializes one rcu_state structure.
4364 */
394f99a9
LJ
4365static void __init rcu_init_one(struct rcu_state *rsp,
4366 struct rcu_data __percpu *rda)
64db4cff 4367{
cb007102
AG
4368 static const char * const buf[] = RCU_NODE_NAME_INIT;
4369 static const char * const fqs[] = RCU_FQS_NAME_INIT;
385b73c0 4370 static const char * const exp[] = RCU_EXP_NAME_INIT;
4a81e832 4371 static u8 fl_mask = 0x1;
199977bf
AG
4372
4373 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4374 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4375 int cpustride = 1;
4376 int i;
4377 int j;
4378 struct rcu_node *rnp;
4379
05b84aec 4380 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4381
3eaaaf6c
PM
4382 /* Silence gcc 4.8 false positive about array index out of range. */
4383 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4384 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4385
64db4cff
PM
4386 /* Initialize the level-tracking arrays. */
4387
f885b7f2 4388 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4389 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4390 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4391 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4392 rcu_init_levelspread(levelspread, levelcnt);
4a81e832
PM
4393 rsp->flavor_mask = fl_mask;
4394 fl_mask <<= 1;
64db4cff
PM
4395
4396 /* Initialize the elements themselves, starting from the leaves. */
4397
f885b7f2 4398 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4399 cpustride *= levelspread[i];
64db4cff 4400 rnp = rsp->level[i];
199977bf 4401 for (j = 0; j < levelcnt[i]; j++, rnp++) {
1304afb2 4402 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
4403 lockdep_set_class_and_name(&rnp->lock,
4404 &rcu_node_class[i], buf[i]);
394f2769
PM
4405 raw_spin_lock_init(&rnp->fqslock);
4406 lockdep_set_class_and_name(&rnp->fqslock,
4407 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4408 rnp->gpnum = rsp->gpnum;
4409 rnp->completed = rsp->completed;
64db4cff
PM
4410 rnp->qsmask = 0;
4411 rnp->qsmaskinit = 0;
4412 rnp->grplo = j * cpustride;
4413 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4414 if (rnp->grphi >= nr_cpu_ids)
4415 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4416 if (i == 0) {
4417 rnp->grpnum = 0;
4418 rnp->grpmask = 0;
4419 rnp->parent = NULL;
4420 } else {
199977bf 4421 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4422 rnp->grpmask = 1UL << rnp->grpnum;
4423 rnp->parent = rsp->level[i - 1] +
199977bf 4424 j / levelspread[i - 1];
64db4cff
PM
4425 }
4426 rnp->level = i;
12f5f524 4427 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4428 rcu_init_one_nocb(rnp);
385b73c0 4429 mutex_init(&rnp->exp_funnel_mutex);
83c2c735
PM
4430 lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4431 &rcu_exp_class[i], exp[i]);
64db4cff
PM
4432 }
4433 }
0c34029a 4434
b3dbec76 4435 init_waitqueue_head(&rsp->gp_wq);
f4ecea30 4436 init_waitqueue_head(&rsp->expedited_wq);
f885b7f2 4437 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4438 for_each_possible_cpu(i) {
4a90a068 4439 while (i > rnp->grphi)
0c34029a 4440 rnp++;
394f99a9 4441 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4442 rcu_boot_init_percpu_data(i, rsp);
4443 }
6ce75a23 4444 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4445}
4446
f885b7f2
PM
4447/*
4448 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4449 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4450 * the ->node array in the rcu_state structure.
4451 */
4452static void __init rcu_init_geometry(void)
4453{
026ad283 4454 ulong d;
f885b7f2 4455 int i;
05b84aec 4456 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4457
026ad283
PM
4458 /*
4459 * Initialize any unspecified boot parameters.
4460 * The default values of jiffies_till_first_fqs and
4461 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4462 * value, which is a function of HZ, then adding one for each
4463 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4464 */
4465 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4466 if (jiffies_till_first_fqs == ULONG_MAX)
4467 jiffies_till_first_fqs = d;
4468 if (jiffies_till_next_fqs == ULONG_MAX)
4469 jiffies_till_next_fqs = d;
4470
f885b7f2 4471 /* If the compile-time values are accurate, just leave. */
47d631af 4472 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4473 nr_cpu_ids == NR_CPUS)
f885b7f2 4474 return;
39479098
PM
4475 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4476 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4477
f885b7f2 4478 /*
ee968ac6
PM
4479 * The boot-time rcu_fanout_leaf parameter must be at least two
4480 * and cannot exceed the number of bits in the rcu_node masks.
4481 * Complain and fall back to the compile-time values if this
4482 * limit is exceeded.
f885b7f2 4483 */
ee968ac6 4484 if (rcu_fanout_leaf < 2 ||
75cf15a4 4485 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4486 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4487 WARN_ON(1);
4488 return;
4489 }
4490
f885b7f2
PM
4491 /*
4492 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4493 * with the given number of levels.
f885b7f2 4494 */
9618138b 4495 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4496 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4497 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4498
4499 /*
75cf15a4 4500 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4501 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4502 */
ee968ac6
PM
4503 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4504 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4505 WARN_ON(1);
4506 return;
4507 }
f885b7f2 4508
679f9858 4509 /* Calculate the number of levels in the tree. */
9618138b 4510 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4511 }
9618138b 4512 rcu_num_lvls = i + 1;
679f9858 4513
f885b7f2 4514 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4515 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4516 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4517 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4518 }
f885b7f2
PM
4519
4520 /* Calculate the total number of rcu_node structures. */
4521 rcu_num_nodes = 0;
679f9858 4522 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4523 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4524}
4525
a3dc2948
PM
4526/*
4527 * Dump out the structure of the rcu_node combining tree associated
4528 * with the rcu_state structure referenced by rsp.
4529 */
4530static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4531{
4532 int level = 0;
4533 struct rcu_node *rnp;
4534
4535 pr_info("rcu_node tree layout dump\n");
4536 pr_info(" ");
4537 rcu_for_each_node_breadth_first(rsp, rnp) {
4538 if (rnp->level != level) {
4539 pr_cont("\n");
4540 pr_info(" ");
4541 level = rnp->level;
4542 }
4543 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4544 }
4545 pr_cont("\n");
4546}
4547
9f680ab4 4548void __init rcu_init(void)
64db4cff 4549{
017c4261 4550 int cpu;
9f680ab4 4551
47627678
PM
4552 rcu_early_boot_tests();
4553
f41d911f 4554 rcu_bootup_announce();
f885b7f2 4555 rcu_init_geometry();
394f99a9 4556 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 4557 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
a3dc2948
PM
4558 if (dump_tree)
4559 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4560 __rcu_init_preempt();
b5b39360 4561 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4562
4563 /*
4564 * We don't need protection against CPU-hotplug here because
4565 * this is called early in boot, before either interrupts
4566 * or the scheduler are operational.
4567 */
4568 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4569 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4570 for_each_online_cpu(cpu)
4571 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
4572}
4573
4102adab 4574#include "tree_plugin.h"
This page took 0.840042 seconds and 5 git commands to generate.