rcu: Remove local_irq_disable() in rcu_preempt_note_context_switch()
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a41bfeb2 82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
83static char sname##_varname[] = #sname; \
84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 85struct rcu_state sname##_state = { \
6c90cc7b 86 .level = { &sname##_state.node[0] }, \
037b64ed 87 .call = cr, \
af446b70 88 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
7b2e6011 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 96 .name = sname##_varname, \
a4889858 97 .abbr = sabbr, \
a41bfeb2
SRRH
98}; \
99DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 100
a41bfeb2
SRRH
101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 103
e534165b 104static struct rcu_state *rcu_state_p;
6ce75a23 105LIST_HEAD(rcu_struct_flavors);
27f4d280 106
f885b7f2
PM
107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 109module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117};
118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
b0d30417
PM
120/*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 124 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
bbad9379
PM
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
b0d30417
PM
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
a46e0899
PM
146#ifdef CONFIG_RCU_BOOST
147
a26ac245
PM
148/*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 156
a46e0899
PM
157#endif /* #ifdef CONFIG_RCU_BOOST */
158
5d01bbd1 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
160static void invoke_rcu_core(void);
161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 162
4a298656
PM
163/*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172unsigned long rcutorture_testseq;
173unsigned long rcutorture_vernum;
174
fc2219d4
PM
175/*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180static int rcu_gp_in_progress(struct rcu_state *rsp)
181{
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183}
184
b1f77b05 185/*
d6714c22 186 * Note a quiescent state. Because we do not need to know
b1f77b05 187 * how many quiescent states passed, just if there was at least
d6714c22 188 * one since the start of the grace period, this just sets a flag.
e4cc1f22 189 * The caller must have disabled preemption.
b1f77b05 190 */
d6714c22 191void rcu_sched_qs(int cpu)
b1f77b05 192{
25502a6c 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 194
e4cc1f22 195 if (rdp->passed_quiesce == 0)
f7f7bac9 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 197 rdp->passed_quiesce = 1;
b1f77b05
IM
198}
199
d6714c22 200void rcu_bh_qs(int cpu)
b1f77b05 201{
25502a6c 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 203
e4cc1f22 204 if (rdp->passed_quiesce == 0)
f7f7bac9 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 206 rdp->passed_quiesce = 1;
b1f77b05 207}
64db4cff 208
4a81e832
PM
209static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
210
211static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
212 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
213 .dynticks = ATOMIC_INIT(1),
214#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
215 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
216 .dynticks_idle = ATOMIC_INIT(1),
217#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
218};
219
220/*
221 * Let the RCU core know that this CPU has gone through the scheduler,
222 * which is a quiescent state. This is called when the need for a
223 * quiescent state is urgent, so we burn an atomic operation and full
224 * memory barriers to let the RCU core know about it, regardless of what
225 * this CPU might (or might not) do in the near future.
226 *
227 * We inform the RCU core by emulating a zero-duration dyntick-idle
228 * period, which we in turn do by incrementing the ->dynticks counter
229 * by two.
230 */
231static void rcu_momentary_dyntick_idle(void)
232{
233 unsigned long flags;
234 struct rcu_data *rdp;
235 struct rcu_dynticks *rdtp;
236 int resched_mask;
237 struct rcu_state *rsp;
238
239 local_irq_save(flags);
240
241 /*
242 * Yes, we can lose flag-setting operations. This is OK, because
243 * the flag will be set again after some delay.
244 */
245 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
246 raw_cpu_write(rcu_sched_qs_mask, 0);
247
248 /* Find the flavor that needs a quiescent state. */
249 for_each_rcu_flavor(rsp) {
250 rdp = raw_cpu_ptr(rsp->rda);
251 if (!(resched_mask & rsp->flavor_mask))
252 continue;
253 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
254 if (ACCESS_ONCE(rdp->mynode->completed) !=
255 ACCESS_ONCE(rdp->cond_resched_completed))
256 continue;
257
258 /*
259 * Pretend to be momentarily idle for the quiescent state.
260 * This allows the grace-period kthread to record the
261 * quiescent state, with no need for this CPU to do anything
262 * further.
263 */
264 rdtp = this_cpu_ptr(&rcu_dynticks);
265 smp_mb__before_atomic(); /* Earlier stuff before QS. */
266 atomic_add(2, &rdtp->dynticks); /* QS. */
267 smp_mb__after_atomic(); /* Later stuff after QS. */
268 break;
269 }
270 local_irq_restore(flags);
271}
272
25502a6c
PM
273/*
274 * Note a context switch. This is a quiescent state for RCU-sched,
275 * and requires special handling for preemptible RCU.
e4cc1f22 276 * The caller must have disabled preemption.
25502a6c
PM
277 */
278void rcu_note_context_switch(int cpu)
279{
f7f7bac9 280 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 281 rcu_sched_qs(cpu);
cba6d0d6 282 rcu_preempt_note_context_switch(cpu);
4a81e832
PM
283 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
284 rcu_momentary_dyntick_idle();
f7f7bac9 285 trace_rcu_utilization(TPS("End context switch"));
25502a6c 286}
29ce8310 287EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 288
878d7439
ED
289static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
290static long qhimark = 10000; /* If this many pending, ignore blimit. */
291static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 292
878d7439
ED
293module_param(blimit, long, 0444);
294module_param(qhimark, long, 0444);
295module_param(qlowmark, long, 0444);
3d76c082 296
026ad283
PM
297static ulong jiffies_till_first_fqs = ULONG_MAX;
298static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
299
300module_param(jiffies_till_first_fqs, ulong, 0644);
301module_param(jiffies_till_next_fqs, ulong, 0644);
302
4a81e832
PM
303/*
304 * How long the grace period must be before we start recruiting
305 * quiescent-state help from rcu_note_context_switch().
306 */
307static ulong jiffies_till_sched_qs = HZ / 20;
308module_param(jiffies_till_sched_qs, ulong, 0644);
309
48a7639c 310static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 311 struct rcu_data *rdp);
217af2a2
PM
312static void force_qs_rnp(struct rcu_state *rsp,
313 int (*f)(struct rcu_data *rsp, bool *isidle,
314 unsigned long *maxj),
315 bool *isidle, unsigned long *maxj);
4cdfc175 316static void force_quiescent_state(struct rcu_state *rsp);
a157229c 317static int rcu_pending(int cpu);
64db4cff
PM
318
319/*
d6714c22 320 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 321 */
d6714c22 322long rcu_batches_completed_sched(void)
64db4cff 323{
d6714c22 324 return rcu_sched_state.completed;
64db4cff 325}
d6714c22 326EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
327
328/*
329 * Return the number of RCU BH batches processed thus far for debug & stats.
330 */
331long rcu_batches_completed_bh(void)
332{
333 return rcu_bh_state.completed;
334}
335EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
336
a381d757
ACB
337/*
338 * Force a quiescent state.
339 */
340void rcu_force_quiescent_state(void)
341{
e534165b 342 force_quiescent_state(rcu_state_p);
a381d757
ACB
343}
344EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
345
bf66f18e
PM
346/*
347 * Force a quiescent state for RCU BH.
348 */
349void rcu_bh_force_quiescent_state(void)
350{
4cdfc175 351 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
352}
353EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
354
afea227f
PM
355/*
356 * Show the state of the grace-period kthreads.
357 */
358void show_rcu_gp_kthreads(void)
359{
360 struct rcu_state *rsp;
361
362 for_each_rcu_flavor(rsp) {
363 pr_info("%s: wait state: %d ->state: %#lx\n",
364 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
365 /* sched_show_task(rsp->gp_kthread); */
366 }
367}
368EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
369
4a298656
PM
370/*
371 * Record the number of times rcutorture tests have been initiated and
372 * terminated. This information allows the debugfs tracing stats to be
373 * correlated to the rcutorture messages, even when the rcutorture module
374 * is being repeatedly loaded and unloaded. In other words, we cannot
375 * store this state in rcutorture itself.
376 */
377void rcutorture_record_test_transition(void)
378{
379 rcutorture_testseq++;
380 rcutorture_vernum = 0;
381}
382EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
383
ad0dc7f9
PM
384/*
385 * Send along grace-period-related data for rcutorture diagnostics.
386 */
387void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
388 unsigned long *gpnum, unsigned long *completed)
389{
390 struct rcu_state *rsp = NULL;
391
392 switch (test_type) {
393 case RCU_FLAVOR:
e534165b 394 rsp = rcu_state_p;
ad0dc7f9
PM
395 break;
396 case RCU_BH_FLAVOR:
397 rsp = &rcu_bh_state;
398 break;
399 case RCU_SCHED_FLAVOR:
400 rsp = &rcu_sched_state;
401 break;
402 default:
403 break;
404 }
405 if (rsp != NULL) {
406 *flags = ACCESS_ONCE(rsp->gp_flags);
407 *gpnum = ACCESS_ONCE(rsp->gpnum);
408 *completed = ACCESS_ONCE(rsp->completed);
409 return;
410 }
411 *flags = 0;
412 *gpnum = 0;
413 *completed = 0;
414}
415EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
416
4a298656
PM
417/*
418 * Record the number of writer passes through the current rcutorture test.
419 * This is also used to correlate debugfs tracing stats with the rcutorture
420 * messages.
421 */
422void rcutorture_record_progress(unsigned long vernum)
423{
424 rcutorture_vernum++;
425}
426EXPORT_SYMBOL_GPL(rcutorture_record_progress);
427
bf66f18e
PM
428/*
429 * Force a quiescent state for RCU-sched.
430 */
431void rcu_sched_force_quiescent_state(void)
432{
4cdfc175 433 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
434}
435EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
436
64db4cff
PM
437/*
438 * Does the CPU have callbacks ready to be invoked?
439 */
440static int
441cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
442{
3fbfbf7a
PM
443 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
444 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
445}
446
365187fb
PM
447/*
448 * Return the root node of the specified rcu_state structure.
449 */
450static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
451{
452 return &rsp->node[0];
453}
454
455/*
456 * Is there any need for future grace periods?
457 * Interrupts must be disabled. If the caller does not hold the root
458 * rnp_node structure's ->lock, the results are advisory only.
459 */
460static int rcu_future_needs_gp(struct rcu_state *rsp)
461{
462 struct rcu_node *rnp = rcu_get_root(rsp);
463 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
464 int *fp = &rnp->need_future_gp[idx];
465
466 return ACCESS_ONCE(*fp);
467}
468
64db4cff 469/*
dc35c893
PM
470 * Does the current CPU require a not-yet-started grace period?
471 * The caller must have disabled interrupts to prevent races with
472 * normal callback registry.
64db4cff
PM
473 */
474static int
475cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
476{
dc35c893 477 int i;
3fbfbf7a 478
dc35c893
PM
479 if (rcu_gp_in_progress(rsp))
480 return 0; /* No, a grace period is already in progress. */
365187fb 481 if (rcu_future_needs_gp(rsp))
34ed6246 482 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
483 if (!rdp->nxttail[RCU_NEXT_TAIL])
484 return 0; /* No, this is a no-CBs (or offline) CPU. */
485 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
486 return 1; /* Yes, this CPU has newly registered callbacks. */
487 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
488 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
489 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
490 rdp->nxtcompleted[i]))
491 return 1; /* Yes, CBs for future grace period. */
492 return 0; /* No grace period needed. */
64db4cff
PM
493}
494
9b2e4f18 495/*
adf5091e 496 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
497 *
498 * If the new value of the ->dynticks_nesting counter now is zero,
499 * we really have entered idle, and must do the appropriate accounting.
500 * The caller must have disabled interrupts.
501 */
adf5091e
FW
502static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
503 bool user)
9b2e4f18 504{
96d3fd0d
PM
505 struct rcu_state *rsp;
506 struct rcu_data *rdp;
507
f7f7bac9 508 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 509 if (!user && !is_idle_task(current)) {
289828e6
PM
510 struct task_struct *idle __maybe_unused =
511 idle_task(smp_processor_id());
0989cb46 512
f7f7bac9 513 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 514 ftrace_dump(DUMP_ORIG);
0989cb46
PM
515 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
516 current->pid, current->comm,
517 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 518 }
96d3fd0d
PM
519 for_each_rcu_flavor(rsp) {
520 rdp = this_cpu_ptr(rsp->rda);
521 do_nocb_deferred_wakeup(rdp);
522 }
aea1b35e 523 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18 524 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 525 smp_mb__before_atomic(); /* See above. */
9b2e4f18 526 atomic_inc(&rdtp->dynticks);
4e857c58 527 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 528 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 529 rcu_dynticks_task_enter();
c44e2cdd
PM
530
531 /*
adf5091e 532 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
533 * in an RCU read-side critical section.
534 */
535 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
536 "Illegal idle entry in RCU read-side critical section.");
537 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
538 "Illegal idle entry in RCU-bh read-side critical section.");
539 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
540 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 541}
64db4cff 542
adf5091e
FW
543/*
544 * Enter an RCU extended quiescent state, which can be either the
545 * idle loop or adaptive-tickless usermode execution.
64db4cff 546 */
adf5091e 547static void rcu_eqs_enter(bool user)
64db4cff 548{
4145fa7f 549 long long oldval;
64db4cff
PM
550 struct rcu_dynticks *rdtp;
551
c9d4b0af 552 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 553 oldval = rdtp->dynticks_nesting;
29e37d81 554 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 555 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 556 rdtp->dynticks_nesting = 0;
3a592405
PM
557 rcu_eqs_enter_common(rdtp, oldval, user);
558 } else {
29e37d81 559 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 560 }
64db4cff 561}
adf5091e
FW
562
563/**
564 * rcu_idle_enter - inform RCU that current CPU is entering idle
565 *
566 * Enter idle mode, in other words, -leave- the mode in which RCU
567 * read-side critical sections can occur. (Though RCU read-side
568 * critical sections can occur in irq handlers in idle, a possibility
569 * handled by irq_enter() and irq_exit().)
570 *
571 * We crowbar the ->dynticks_nesting field to zero to allow for
572 * the possibility of usermode upcalls having messed up our count
573 * of interrupt nesting level during the prior busy period.
574 */
575void rcu_idle_enter(void)
576{
c5d900bf
FW
577 unsigned long flags;
578
579 local_irq_save(flags);
cb349ca9 580 rcu_eqs_enter(false);
c9d4b0af 581 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 582 local_irq_restore(flags);
adf5091e 583}
8a2ecf47 584EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 585
2b1d5024 586#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
587/**
588 * rcu_user_enter - inform RCU that we are resuming userspace.
589 *
590 * Enter RCU idle mode right before resuming userspace. No use of RCU
591 * is permitted between this call and rcu_user_exit(). This way the
592 * CPU doesn't need to maintain the tick for RCU maintenance purposes
593 * when the CPU runs in userspace.
594 */
595void rcu_user_enter(void)
596{
91d1aa43 597 rcu_eqs_enter(1);
adf5091e 598}
2b1d5024 599#endif /* CONFIG_RCU_USER_QS */
19dd1591 600
9b2e4f18
PM
601/**
602 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
603 *
604 * Exit from an interrupt handler, which might possibly result in entering
605 * idle mode, in other words, leaving the mode in which read-side critical
606 * sections can occur.
64db4cff 607 *
9b2e4f18
PM
608 * This code assumes that the idle loop never does anything that might
609 * result in unbalanced calls to irq_enter() and irq_exit(). If your
610 * architecture violates this assumption, RCU will give you what you
611 * deserve, good and hard. But very infrequently and irreproducibly.
612 *
613 * Use things like work queues to work around this limitation.
614 *
615 * You have been warned.
64db4cff 616 */
9b2e4f18 617void rcu_irq_exit(void)
64db4cff
PM
618{
619 unsigned long flags;
4145fa7f 620 long long oldval;
64db4cff
PM
621 struct rcu_dynticks *rdtp;
622
623 local_irq_save(flags);
c9d4b0af 624 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 625 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
626 rdtp->dynticks_nesting--;
627 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 628 if (rdtp->dynticks_nesting)
f7f7bac9 629 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 630 else
cb349ca9 631 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 632 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
633 local_irq_restore(flags);
634}
635
636/*
adf5091e 637 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
638 *
639 * If the new value of the ->dynticks_nesting counter was previously zero,
640 * we really have exited idle, and must do the appropriate accounting.
641 * The caller must have disabled interrupts.
642 */
adf5091e
FW
643static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
644 int user)
9b2e4f18 645{
176f8f7a 646 rcu_dynticks_task_exit();
4e857c58 647 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
648 atomic_inc(&rdtp->dynticks);
649 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 650 smp_mb__after_atomic(); /* See above. */
23b5c8fa 651 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 652 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 653 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 654 if (!user && !is_idle_task(current)) {
289828e6
PM
655 struct task_struct *idle __maybe_unused =
656 idle_task(smp_processor_id());
0989cb46 657
f7f7bac9 658 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 659 oldval, rdtp->dynticks_nesting);
bf1304e9 660 ftrace_dump(DUMP_ORIG);
0989cb46
PM
661 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
662 current->pid, current->comm,
663 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
664 }
665}
666
adf5091e
FW
667/*
668 * Exit an RCU extended quiescent state, which can be either the
669 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 670 */
adf5091e 671static void rcu_eqs_exit(bool user)
9b2e4f18 672{
9b2e4f18
PM
673 struct rcu_dynticks *rdtp;
674 long long oldval;
675
c9d4b0af 676 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 677 oldval = rdtp->dynticks_nesting;
29e37d81 678 WARN_ON_ONCE(oldval < 0);
3a592405 679 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 680 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 681 } else {
29e37d81 682 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3a592405
PM
683 rcu_eqs_exit_common(rdtp, oldval, user);
684 }
9b2e4f18 685}
adf5091e
FW
686
687/**
688 * rcu_idle_exit - inform RCU that current CPU is leaving idle
689 *
690 * Exit idle mode, in other words, -enter- the mode in which RCU
691 * read-side critical sections can occur.
692 *
693 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
694 * allow for the possibility of usermode upcalls messing up our count
695 * of interrupt nesting level during the busy period that is just
696 * now starting.
697 */
698void rcu_idle_exit(void)
699{
c5d900bf
FW
700 unsigned long flags;
701
702 local_irq_save(flags);
cb349ca9 703 rcu_eqs_exit(false);
c9d4b0af 704 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 705 local_irq_restore(flags);
adf5091e 706}
8a2ecf47 707EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 708
2b1d5024 709#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
710/**
711 * rcu_user_exit - inform RCU that we are exiting userspace.
712 *
713 * Exit RCU idle mode while entering the kernel because it can
714 * run a RCU read side critical section anytime.
715 */
716void rcu_user_exit(void)
717{
91d1aa43 718 rcu_eqs_exit(1);
adf5091e 719}
2b1d5024 720#endif /* CONFIG_RCU_USER_QS */
19dd1591 721
9b2e4f18
PM
722/**
723 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
724 *
725 * Enter an interrupt handler, which might possibly result in exiting
726 * idle mode, in other words, entering the mode in which read-side critical
727 * sections can occur.
728 *
729 * Note that the Linux kernel is fully capable of entering an interrupt
730 * handler that it never exits, for example when doing upcalls to
731 * user mode! This code assumes that the idle loop never does upcalls to
732 * user mode. If your architecture does do upcalls from the idle loop (or
733 * does anything else that results in unbalanced calls to the irq_enter()
734 * and irq_exit() functions), RCU will give you what you deserve, good
735 * and hard. But very infrequently and irreproducibly.
736 *
737 * Use things like work queues to work around this limitation.
738 *
739 * You have been warned.
740 */
741void rcu_irq_enter(void)
742{
743 unsigned long flags;
744 struct rcu_dynticks *rdtp;
745 long long oldval;
746
747 local_irq_save(flags);
c9d4b0af 748 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
749 oldval = rdtp->dynticks_nesting;
750 rdtp->dynticks_nesting++;
751 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 752 if (oldval)
f7f7bac9 753 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 754 else
cb349ca9 755 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 756 rcu_sysidle_exit(rdtp, 1);
64db4cff 757 local_irq_restore(flags);
64db4cff
PM
758}
759
760/**
761 * rcu_nmi_enter - inform RCU of entry to NMI context
762 *
763 * If the CPU was idle with dynamic ticks active, and there is no
764 * irq handler running, this updates rdtp->dynticks_nmi to let the
765 * RCU grace-period handling know that the CPU is active.
766 */
767void rcu_nmi_enter(void)
768{
c9d4b0af 769 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 770
23b5c8fa
PM
771 if (rdtp->dynticks_nmi_nesting == 0 &&
772 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 773 return;
23b5c8fa 774 rdtp->dynticks_nmi_nesting++;
4e857c58 775 smp_mb__before_atomic(); /* Force delay from prior write. */
23b5c8fa
PM
776 atomic_inc(&rdtp->dynticks);
777 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 778 smp_mb__after_atomic(); /* See above. */
23b5c8fa 779 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
780}
781
782/**
783 * rcu_nmi_exit - inform RCU of exit from NMI context
784 *
785 * If the CPU was idle with dynamic ticks active, and there is no
786 * irq handler running, this updates rdtp->dynticks_nmi to let the
787 * RCU grace-period handling know that the CPU is no longer active.
788 */
789void rcu_nmi_exit(void)
790{
c9d4b0af 791 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 792
23b5c8fa
PM
793 if (rdtp->dynticks_nmi_nesting == 0 ||
794 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 795 return;
23b5c8fa 796 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 797 smp_mb__before_atomic(); /* See above. */
23b5c8fa 798 atomic_inc(&rdtp->dynticks);
4e857c58 799 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 800 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
801}
802
803/**
5c173eb8
PM
804 * __rcu_is_watching - are RCU read-side critical sections safe?
805 *
806 * Return true if RCU is watching the running CPU, which means that
807 * this CPU can safely enter RCU read-side critical sections. Unlike
808 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
809 * least disabled preemption.
810 */
9418fb20 811bool notrace __rcu_is_watching(void)
5c173eb8
PM
812{
813 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
814}
815
816/**
817 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 818 *
9b2e4f18 819 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 820 * or NMI handler, return true.
64db4cff 821 */
9418fb20 822bool notrace rcu_is_watching(void)
64db4cff 823{
34240697
PM
824 int ret;
825
826 preempt_disable();
5c173eb8 827 ret = __rcu_is_watching();
34240697
PM
828 preempt_enable();
829 return ret;
64db4cff 830}
5c173eb8 831EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 832
62fde6ed 833#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
834
835/*
836 * Is the current CPU online? Disable preemption to avoid false positives
837 * that could otherwise happen due to the current CPU number being sampled,
838 * this task being preempted, its old CPU being taken offline, resuming
839 * on some other CPU, then determining that its old CPU is now offline.
840 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
841 * the check for rcu_scheduler_fully_active. Note also that it is OK
842 * for a CPU coming online to use RCU for one jiffy prior to marking itself
843 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
844 * offline to continue to use RCU for one jiffy after marking itself
845 * offline in the cpu_online_mask. This leniency is necessary given the
846 * non-atomic nature of the online and offline processing, for example,
847 * the fact that a CPU enters the scheduler after completing the CPU_DYING
848 * notifiers.
849 *
850 * This is also why RCU internally marks CPUs online during the
851 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
852 *
853 * Disable checking if in an NMI handler because we cannot safely report
854 * errors from NMI handlers anyway.
855 */
856bool rcu_lockdep_current_cpu_online(void)
857{
2036d94a
PM
858 struct rcu_data *rdp;
859 struct rcu_node *rnp;
c0d6d01b
PM
860 bool ret;
861
862 if (in_nmi())
f6f7ee9a 863 return true;
c0d6d01b 864 preempt_disable();
c9d4b0af 865 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
866 rnp = rdp->mynode;
867 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
868 !rcu_scheduler_fully_active;
869 preempt_enable();
870 return ret;
871}
872EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
873
62fde6ed 874#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 875
64db4cff 876/**
9b2e4f18 877 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 878 *
9b2e4f18
PM
879 * If the current CPU is idle or running at a first-level (not nested)
880 * interrupt from idle, return true. The caller must have at least
881 * disabled preemption.
64db4cff 882 */
62e3cb14 883static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 884{
c9d4b0af 885 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
886}
887
64db4cff
PM
888/*
889 * Snapshot the specified CPU's dynticks counter so that we can later
890 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 891 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 892 */
217af2a2
PM
893static int dyntick_save_progress_counter(struct rcu_data *rdp,
894 bool *isidle, unsigned long *maxj)
64db4cff 895{
23b5c8fa 896 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 897 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
898 if ((rdp->dynticks_snap & 0x1) == 0) {
899 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
900 return 1;
901 } else {
902 return 0;
903 }
64db4cff
PM
904}
905
6193c76a
PM
906/*
907 * This function really isn't for public consumption, but RCU is special in
908 * that context switches can allow the state machine to make progress.
909 */
910extern void resched_cpu(int cpu);
911
64db4cff
PM
912/*
913 * Return true if the specified CPU has passed through a quiescent
914 * state by virtue of being in or having passed through an dynticks
915 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 916 * for this same CPU, or by virtue of having been offline.
64db4cff 917 */
217af2a2
PM
918static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
919 bool *isidle, unsigned long *maxj)
64db4cff 920{
7eb4f455 921 unsigned int curr;
4a81e832 922 int *rcrmp;
7eb4f455 923 unsigned int snap;
64db4cff 924
7eb4f455
PM
925 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
926 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
927
928 /*
929 * If the CPU passed through or entered a dynticks idle phase with
930 * no active irq/NMI handlers, then we can safely pretend that the CPU
931 * already acknowledged the request to pass through a quiescent
932 * state. Either way, that CPU cannot possibly be in an RCU
933 * read-side critical section that started before the beginning
934 * of the current RCU grace period.
935 */
7eb4f455 936 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 937 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
938 rdp->dynticks_fqs++;
939 return 1;
940 }
941
a82dcc76
PM
942 /*
943 * Check for the CPU being offline, but only if the grace period
944 * is old enough. We don't need to worry about the CPU changing
945 * state: If we see it offline even once, it has been through a
946 * quiescent state.
947 *
948 * The reason for insisting that the grace period be at least
949 * one jiffy old is that CPUs that are not quite online and that
950 * have just gone offline can still execute RCU read-side critical
951 * sections.
952 */
953 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
954 return 0; /* Grace period is not old enough. */
955 barrier();
956 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 957 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
958 rdp->offline_fqs++;
959 return 1;
960 }
65d798f0
PM
961
962 /*
4a81e832
PM
963 * A CPU running for an extended time within the kernel can
964 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
965 * even context-switching back and forth between a pair of
966 * in-kernel CPU-bound tasks cannot advance grace periods.
967 * So if the grace period is old enough, make the CPU pay attention.
968 * Note that the unsynchronized assignments to the per-CPU
969 * rcu_sched_qs_mask variable are safe. Yes, setting of
970 * bits can be lost, but they will be set again on the next
971 * force-quiescent-state pass. So lost bit sets do not result
972 * in incorrect behavior, merely in a grace period lasting
973 * a few jiffies longer than it might otherwise. Because
974 * there are at most four threads involved, and because the
975 * updates are only once every few jiffies, the probability of
976 * lossage (and thus of slight grace-period extension) is
977 * quite low.
978 *
979 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
980 * is set too high, we override with half of the RCU CPU stall
981 * warning delay.
6193c76a 982 */
4a81e832
PM
983 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
984 if (ULONG_CMP_GE(jiffies,
985 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 986 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
987 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
988 ACCESS_ONCE(rdp->cond_resched_completed) =
989 ACCESS_ONCE(rdp->mynode->completed);
990 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
991 ACCESS_ONCE(*rcrmp) =
992 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
993 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
994 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
995 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
996 /* Time to beat on that CPU again! */
997 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
998 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
999 }
6193c76a
PM
1000 }
1001
a82dcc76 1002 return 0;
64db4cff
PM
1003}
1004
64db4cff
PM
1005static void record_gp_stall_check_time(struct rcu_state *rsp)
1006{
cb1e78cf 1007 unsigned long j = jiffies;
6193c76a 1008 unsigned long j1;
26cdfedf
PM
1009
1010 rsp->gp_start = j;
1011 smp_wmb(); /* Record start time before stall time. */
6193c76a 1012 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1013 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1014 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
1015}
1016
b637a328 1017/*
bc1dce51 1018 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1019 */
1020static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1021{
1022 int cpu;
1023 unsigned long flags;
1024 struct rcu_node *rnp;
1025
1026 rcu_for_each_leaf_node(rsp, rnp) {
1027 raw_spin_lock_irqsave(&rnp->lock, flags);
1028 if (rnp->qsmask != 0) {
1029 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1030 if (rnp->qsmask & (1UL << cpu))
1031 dump_cpu_task(rnp->grplo + cpu);
1032 }
1033 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1034 }
1035}
1036
64db4cff
PM
1037static void print_other_cpu_stall(struct rcu_state *rsp)
1038{
1039 int cpu;
1040 long delta;
1041 unsigned long flags;
285fe294 1042 int ndetected = 0;
64db4cff 1043 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1044 long totqlen = 0;
64db4cff
PM
1045
1046 /* Only let one CPU complain about others per time interval. */
1047
1304afb2 1048 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1049 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1050 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1051 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1052 return;
1053 }
4fc5b755 1054 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1055 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1056
8cdd32a9
PM
1057 /*
1058 * OK, time to rat on our buddy...
1059 * See Documentation/RCU/stallwarn.txt for info on how to debug
1060 * RCU CPU stall warnings.
1061 */
d7f3e207 1062 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1063 rsp->name);
a858af28 1064 print_cpu_stall_info_begin();
a0b6c9a7 1065 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1066 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1067 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1068 if (rnp->qsmask != 0) {
1069 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1070 if (rnp->qsmask & (1UL << cpu)) {
1071 print_cpu_stall_info(rsp,
1072 rnp->grplo + cpu);
1073 ndetected++;
1074 }
1075 }
3acd9eb3 1076 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1077 }
a858af28
PM
1078
1079 /*
1080 * Now rat on any tasks that got kicked up to the root rcu_node
1081 * due to CPU offlining.
1082 */
1083 rnp = rcu_get_root(rsp);
1084 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 1085 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
1086 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1087
1088 print_cpu_stall_info_end();
53bb857c
PM
1089 for_each_possible_cpu(cpu)
1090 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1091 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1092 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1093 (long)rsp->gpnum, (long)rsp->completed, totqlen);
9bc8b558 1094 if (ndetected == 0)
d7f3e207 1095 pr_err("INFO: Stall ended before state dump start\n");
bc1dce51 1096 else
b637a328 1097 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1098
4cdfc175 1099 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1100
1101 rcu_print_detail_task_stall(rsp);
1102
4cdfc175 1103 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1104}
1105
1106static void print_cpu_stall(struct rcu_state *rsp)
1107{
53bb857c 1108 int cpu;
64db4cff
PM
1109 unsigned long flags;
1110 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1111 long totqlen = 0;
64db4cff 1112
8cdd32a9
PM
1113 /*
1114 * OK, time to rat on ourselves...
1115 * See Documentation/RCU/stallwarn.txt for info on how to debug
1116 * RCU CPU stall warnings.
1117 */
d7f3e207 1118 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1119 print_cpu_stall_info_begin();
1120 print_cpu_stall_info(rsp, smp_processor_id());
1121 print_cpu_stall_info_end();
53bb857c
PM
1122 for_each_possible_cpu(cpu)
1123 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1124 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1125 jiffies - rsp->gp_start,
1126 (long)rsp->gpnum, (long)rsp->completed, totqlen);
bc1dce51 1127 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1128
1304afb2 1129 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1130 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1131 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1132 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1133 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1134
b021fe3e
PZ
1135 /*
1136 * Attempt to revive the RCU machinery by forcing a context switch.
1137 *
1138 * A context switch would normally allow the RCU state machine to make
1139 * progress and it could be we're stuck in kernel space without context
1140 * switches for an entirely unreasonable amount of time.
1141 */
1142 resched_cpu(smp_processor_id());
64db4cff
PM
1143}
1144
1145static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1146{
26cdfedf
PM
1147 unsigned long completed;
1148 unsigned long gpnum;
1149 unsigned long gps;
bad6e139
PM
1150 unsigned long j;
1151 unsigned long js;
64db4cff
PM
1152 struct rcu_node *rnp;
1153
26cdfedf 1154 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1155 return;
cb1e78cf 1156 j = jiffies;
26cdfedf
PM
1157
1158 /*
1159 * Lots of memory barriers to reject false positives.
1160 *
1161 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1162 * then rsp->gp_start, and finally rsp->completed. These values
1163 * are updated in the opposite order with memory barriers (or
1164 * equivalent) during grace-period initialization and cleanup.
1165 * Now, a false positive can occur if we get an new value of
1166 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1167 * the memory barriers, the only way that this can happen is if one
1168 * grace period ends and another starts between these two fetches.
1169 * Detect this by comparing rsp->completed with the previous fetch
1170 * from rsp->gpnum.
1171 *
1172 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1173 * and rsp->gp_start suffice to forestall false positives.
1174 */
1175 gpnum = ACCESS_ONCE(rsp->gpnum);
1176 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1177 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1178 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1179 gps = ACCESS_ONCE(rsp->gp_start);
1180 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1181 completed = ACCESS_ONCE(rsp->completed);
1182 if (ULONG_CMP_GE(completed, gpnum) ||
1183 ULONG_CMP_LT(j, js) ||
1184 ULONG_CMP_GE(gps, js))
1185 return; /* No stall or GP completed since entering function. */
64db4cff 1186 rnp = rdp->mynode;
c96ea7cf 1187 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1188 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1189
1190 /* We haven't checked in, so go dump stack. */
1191 print_cpu_stall(rsp);
1192
bad6e139
PM
1193 } else if (rcu_gp_in_progress(rsp) &&
1194 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1195
bad6e139 1196 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1197 print_other_cpu_stall(rsp);
1198 }
1199}
1200
53d84e00
PM
1201/**
1202 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1203 *
1204 * Set the stall-warning timeout way off into the future, thus preventing
1205 * any RCU CPU stall-warning messages from appearing in the current set of
1206 * RCU grace periods.
1207 *
1208 * The caller must disable hard irqs.
1209 */
1210void rcu_cpu_stall_reset(void)
1211{
6ce75a23
PM
1212 struct rcu_state *rsp;
1213
1214 for_each_rcu_flavor(rsp)
4fc5b755 1215 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1216}
1217
3f5d3ea6
PM
1218/*
1219 * Initialize the specified rcu_data structure's callback list to empty.
1220 */
1221static void init_callback_list(struct rcu_data *rdp)
1222{
1223 int i;
1224
34ed6246
PM
1225 if (init_nocb_callback_list(rdp))
1226 return;
3f5d3ea6
PM
1227 rdp->nxtlist = NULL;
1228 for (i = 0; i < RCU_NEXT_SIZE; i++)
1229 rdp->nxttail[i] = &rdp->nxtlist;
1230}
1231
dc35c893
PM
1232/*
1233 * Determine the value that ->completed will have at the end of the
1234 * next subsequent grace period. This is used to tag callbacks so that
1235 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1236 * been dyntick-idle for an extended period with callbacks under the
1237 * influence of RCU_FAST_NO_HZ.
1238 *
1239 * The caller must hold rnp->lock with interrupts disabled.
1240 */
1241static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1242 struct rcu_node *rnp)
1243{
1244 /*
1245 * If RCU is idle, we just wait for the next grace period.
1246 * But we can only be sure that RCU is idle if we are looking
1247 * at the root rcu_node structure -- otherwise, a new grace
1248 * period might have started, but just not yet gotten around
1249 * to initializing the current non-root rcu_node structure.
1250 */
1251 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1252 return rnp->completed + 1;
1253
1254 /*
1255 * Otherwise, wait for a possible partial grace period and
1256 * then the subsequent full grace period.
1257 */
1258 return rnp->completed + 2;
1259}
1260
0446be48
PM
1261/*
1262 * Trace-event helper function for rcu_start_future_gp() and
1263 * rcu_nocb_wait_gp().
1264 */
1265static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1266 unsigned long c, const char *s)
0446be48
PM
1267{
1268 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1269 rnp->completed, c, rnp->level,
1270 rnp->grplo, rnp->grphi, s);
1271}
1272
1273/*
1274 * Start some future grace period, as needed to handle newly arrived
1275 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1276 * rcu_node structure's ->need_future_gp field. Returns true if there
1277 * is reason to awaken the grace-period kthread.
0446be48
PM
1278 *
1279 * The caller must hold the specified rcu_node structure's ->lock.
1280 */
48a7639c
PM
1281static bool __maybe_unused
1282rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1283 unsigned long *c_out)
0446be48
PM
1284{
1285 unsigned long c;
1286 int i;
48a7639c 1287 bool ret = false;
0446be48
PM
1288 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1289
1290 /*
1291 * Pick up grace-period number for new callbacks. If this
1292 * grace period is already marked as needed, return to the caller.
1293 */
1294 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1295 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1296 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1297 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1298 goto out;
0446be48
PM
1299 }
1300
1301 /*
1302 * If either this rcu_node structure or the root rcu_node structure
1303 * believe that a grace period is in progress, then we must wait
1304 * for the one following, which is in "c". Because our request
1305 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1306 * need to explicitly start one. We only do the lockless check
1307 * of rnp_root's fields if the current rcu_node structure thinks
1308 * there is no grace period in flight, and because we hold rnp->lock,
1309 * the only possible change is when rnp_root's two fields are
1310 * equal, in which case rnp_root->gpnum might be concurrently
1311 * incremented. But that is OK, as it will just result in our
1312 * doing some extra useless work.
0446be48
PM
1313 */
1314 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1315 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1316 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1317 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1318 goto out;
0446be48
PM
1319 }
1320
1321 /*
1322 * There might be no grace period in progress. If we don't already
1323 * hold it, acquire the root rcu_node structure's lock in order to
1324 * start one (if needed).
1325 */
6303b9c8 1326 if (rnp != rnp_root) {
0446be48 1327 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1328 smp_mb__after_unlock_lock();
1329 }
0446be48
PM
1330
1331 /*
1332 * Get a new grace-period number. If there really is no grace
1333 * period in progress, it will be smaller than the one we obtained
1334 * earlier. Adjust callbacks as needed. Note that even no-CBs
1335 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1336 */
1337 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1338 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1339 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1340 rdp->nxtcompleted[i] = c;
1341
1342 /*
1343 * If the needed for the required grace period is already
1344 * recorded, trace and leave.
1345 */
1346 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1347 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1348 goto unlock_out;
1349 }
1350
1351 /* Record the need for the future grace period. */
1352 rnp_root->need_future_gp[c & 0x1]++;
1353
1354 /* If a grace period is not already in progress, start one. */
1355 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1356 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1357 } else {
f7f7bac9 1358 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1359 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1360 }
1361unlock_out:
1362 if (rnp != rnp_root)
1363 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1364out:
1365 if (c_out != NULL)
1366 *c_out = c;
1367 return ret;
0446be48
PM
1368}
1369
1370/*
1371 * Clean up any old requests for the just-ended grace period. Also return
1372 * whether any additional grace periods have been requested. Also invoke
1373 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1374 * waiting for this grace period to complete.
1375 */
1376static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1377{
1378 int c = rnp->completed;
1379 int needmore;
1380 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1381
1382 rcu_nocb_gp_cleanup(rsp, rnp);
1383 rnp->need_future_gp[c & 0x1] = 0;
1384 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1385 trace_rcu_future_gp(rnp, rdp, c,
1386 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1387 return needmore;
1388}
1389
48a7639c
PM
1390/*
1391 * Awaken the grace-period kthread for the specified flavor of RCU.
1392 * Don't do a self-awaken, and don't bother awakening when there is
1393 * nothing for the grace-period kthread to do (as in several CPUs
1394 * raced to awaken, and we lost), and finally don't try to awaken
1395 * a kthread that has not yet been created.
1396 */
1397static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1398{
1399 if (current == rsp->gp_kthread ||
1400 !ACCESS_ONCE(rsp->gp_flags) ||
1401 !rsp->gp_kthread)
1402 return;
1403 wake_up(&rsp->gp_wq);
1404}
1405
dc35c893
PM
1406/*
1407 * If there is room, assign a ->completed number to any callbacks on
1408 * this CPU that have not already been assigned. Also accelerate any
1409 * callbacks that were previously assigned a ->completed number that has
1410 * since proven to be too conservative, which can happen if callbacks get
1411 * assigned a ->completed number while RCU is idle, but with reference to
1412 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1413 * not hurt to call it repeatedly. Returns an flag saying that we should
1414 * awaken the RCU grace-period kthread.
dc35c893
PM
1415 *
1416 * The caller must hold rnp->lock with interrupts disabled.
1417 */
48a7639c 1418static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1419 struct rcu_data *rdp)
1420{
1421 unsigned long c;
1422 int i;
48a7639c 1423 bool ret;
dc35c893
PM
1424
1425 /* If the CPU has no callbacks, nothing to do. */
1426 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1427 return false;
dc35c893
PM
1428
1429 /*
1430 * Starting from the sublist containing the callbacks most
1431 * recently assigned a ->completed number and working down, find the
1432 * first sublist that is not assignable to an upcoming grace period.
1433 * Such a sublist has something in it (first two tests) and has
1434 * a ->completed number assigned that will complete sooner than
1435 * the ->completed number for newly arrived callbacks (last test).
1436 *
1437 * The key point is that any later sublist can be assigned the
1438 * same ->completed number as the newly arrived callbacks, which
1439 * means that the callbacks in any of these later sublist can be
1440 * grouped into a single sublist, whether or not they have already
1441 * been assigned a ->completed number.
1442 */
1443 c = rcu_cbs_completed(rsp, rnp);
1444 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1445 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1446 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1447 break;
1448
1449 /*
1450 * If there are no sublist for unassigned callbacks, leave.
1451 * At the same time, advance "i" one sublist, so that "i" will
1452 * index into the sublist where all the remaining callbacks should
1453 * be grouped into.
1454 */
1455 if (++i >= RCU_NEXT_TAIL)
48a7639c 1456 return false;
dc35c893
PM
1457
1458 /*
1459 * Assign all subsequent callbacks' ->completed number to the next
1460 * full grace period and group them all in the sublist initially
1461 * indexed by "i".
1462 */
1463 for (; i <= RCU_NEXT_TAIL; i++) {
1464 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1465 rdp->nxtcompleted[i] = c;
1466 }
910ee45d 1467 /* Record any needed additional grace periods. */
48a7639c 1468 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1469
1470 /* Trace depending on how much we were able to accelerate. */
1471 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1472 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1473 else
f7f7bac9 1474 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1475 return ret;
dc35c893
PM
1476}
1477
1478/*
1479 * Move any callbacks whose grace period has completed to the
1480 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1481 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1482 * sublist. This function is idempotent, so it does not hurt to
1483 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1484 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1485 *
1486 * The caller must hold rnp->lock with interrupts disabled.
1487 */
48a7639c 1488static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1489 struct rcu_data *rdp)
1490{
1491 int i, j;
1492
1493 /* If the CPU has no callbacks, nothing to do. */
1494 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1495 return false;
dc35c893
PM
1496
1497 /*
1498 * Find all callbacks whose ->completed numbers indicate that they
1499 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1500 */
1501 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1502 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1503 break;
1504 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1505 }
1506 /* Clean up any sublist tail pointers that were misordered above. */
1507 for (j = RCU_WAIT_TAIL; j < i; j++)
1508 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1509
1510 /* Copy down callbacks to fill in empty sublists. */
1511 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1512 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1513 break;
1514 rdp->nxttail[j] = rdp->nxttail[i];
1515 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1516 }
1517
1518 /* Classify any remaining callbacks. */
48a7639c 1519 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1520}
1521
d09b62df 1522/*
ba9fbe95
PM
1523 * Update CPU-local rcu_data state to record the beginnings and ends of
1524 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1525 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1526 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1527 */
48a7639c
PM
1528static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1529 struct rcu_data *rdp)
d09b62df 1530{
48a7639c
PM
1531 bool ret;
1532
ba9fbe95 1533 /* Handle the ends of any preceding grace periods first. */
dc35c893 1534 if (rdp->completed == rnp->completed) {
d09b62df 1535
ba9fbe95 1536 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1537 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1538
dc35c893
PM
1539 } else {
1540
1541 /* Advance callbacks. */
48a7639c 1542 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1543
1544 /* Remember that we saw this grace-period completion. */
1545 rdp->completed = rnp->completed;
f7f7bac9 1546 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1547 }
398ebe60 1548
6eaef633
PM
1549 if (rdp->gpnum != rnp->gpnum) {
1550 /*
1551 * If the current grace period is waiting for this CPU,
1552 * set up to detect a quiescent state, otherwise don't
1553 * go looking for one.
1554 */
1555 rdp->gpnum = rnp->gpnum;
f7f7bac9 1556 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1557 rdp->passed_quiesce = 0;
1558 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1559 zero_cpu_stall_ticks(rdp);
1560 }
48a7639c 1561 return ret;
6eaef633
PM
1562}
1563
d34ea322 1564static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1565{
1566 unsigned long flags;
48a7639c 1567 bool needwake;
6eaef633
PM
1568 struct rcu_node *rnp;
1569
1570 local_irq_save(flags);
1571 rnp = rdp->mynode;
d34ea322
PM
1572 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1573 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1574 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1575 local_irq_restore(flags);
1576 return;
1577 }
6303b9c8 1578 smp_mb__after_unlock_lock();
48a7639c 1579 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1580 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1581 if (needwake)
1582 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1583}
1584
b3dbec76 1585/*
f7be8209 1586 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1587 */
7fdefc10 1588static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1589{
1590 struct rcu_data *rdp;
7fdefc10 1591 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1592
eb75767b 1593 rcu_bind_gp_kthread();
7fdefc10 1594 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1595 smp_mb__after_unlock_lock();
91dc9542 1596 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1597 /* Spurious wakeup, tell caller to go back to sleep. */
1598 raw_spin_unlock_irq(&rnp->lock);
1599 return 0;
1600 }
91dc9542 1601 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1602
f7be8209
PM
1603 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1604 /*
1605 * Grace period already in progress, don't start another.
1606 * Not supposed to be able to happen.
1607 */
7fdefc10
PM
1608 raw_spin_unlock_irq(&rnp->lock);
1609 return 0;
1610 }
1611
7fdefc10 1612 /* Advance to a new grace period and initialize state. */
26cdfedf 1613 record_gp_stall_check_time(rsp);
765a3f4f
PM
1614 /* Record GP times before starting GP, hence smp_store_release(). */
1615 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1616 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1617 raw_spin_unlock_irq(&rnp->lock);
1618
1619 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1620 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1621 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1622
1623 /*
1624 * Set the quiescent-state-needed bits in all the rcu_node
1625 * structures for all currently online CPUs in breadth-first order,
1626 * starting from the root rcu_node structure, relying on the layout
1627 * of the tree within the rsp->node[] array. Note that other CPUs
1628 * will access only the leaves of the hierarchy, thus seeing that no
1629 * grace period is in progress, at least until the corresponding
1630 * leaf node has been initialized. In addition, we have excluded
1631 * CPU-hotplug operations.
1632 *
1633 * The grace period cannot complete until the initialization
1634 * process finishes, because this kthread handles both.
1635 */
1636 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1637 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1638 smp_mb__after_unlock_lock();
b3dbec76 1639 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1640 rcu_preempt_check_blocked_tasks(rnp);
1641 rnp->qsmask = rnp->qsmaskinit;
0446be48 1642 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1643 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1644 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1645 if (rnp == rdp->mynode)
48a7639c 1646 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1647 rcu_preempt_boost_start_gp(rnp);
1648 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1649 rnp->level, rnp->grplo,
1650 rnp->grphi, rnp->qsmask);
1651 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1652 cond_resched_rcu_qs();
7fdefc10 1653 }
b3dbec76 1654
a4fbe35a 1655 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1656 return 1;
1657}
b3dbec76 1658
4cdfc175
PM
1659/*
1660 * Do one round of quiescent-state forcing.
1661 */
01896f7e 1662static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1663{
1664 int fqs_state = fqs_state_in;
217af2a2
PM
1665 bool isidle = false;
1666 unsigned long maxj;
4cdfc175
PM
1667 struct rcu_node *rnp = rcu_get_root(rsp);
1668
1669 rsp->n_force_qs++;
1670 if (fqs_state == RCU_SAVE_DYNTICK) {
1671 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1672 if (is_sysidle_rcu_state(rsp)) {
1673 isidle = 1;
1674 maxj = jiffies - ULONG_MAX / 4;
1675 }
217af2a2
PM
1676 force_qs_rnp(rsp, dyntick_save_progress_counter,
1677 &isidle, &maxj);
0edd1b17 1678 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1679 fqs_state = RCU_FORCE_QS;
1680 } else {
1681 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1682 isidle = 0;
217af2a2 1683 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1684 }
1685 /* Clear flag to prevent immediate re-entry. */
1686 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1687 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1688 smp_mb__after_unlock_lock();
91dc9542 1689 ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1690 raw_spin_unlock_irq(&rnp->lock);
1691 }
1692 return fqs_state;
1693}
1694
7fdefc10
PM
1695/*
1696 * Clean up after the old grace period.
1697 */
4cdfc175 1698static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1699{
1700 unsigned long gp_duration;
48a7639c 1701 bool needgp = false;
dae6e64d 1702 int nocb = 0;
7fdefc10
PM
1703 struct rcu_data *rdp;
1704 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1705
7fdefc10 1706 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1707 smp_mb__after_unlock_lock();
7fdefc10
PM
1708 gp_duration = jiffies - rsp->gp_start;
1709 if (gp_duration > rsp->gp_max)
1710 rsp->gp_max = gp_duration;
b3dbec76 1711
7fdefc10
PM
1712 /*
1713 * We know the grace period is complete, but to everyone else
1714 * it appears to still be ongoing. But it is also the case
1715 * that to everyone else it looks like there is nothing that
1716 * they can do to advance the grace period. It is therefore
1717 * safe for us to drop the lock in order to mark the grace
1718 * period as completed in all of the rcu_node structures.
7fdefc10 1719 */
5d4b8659 1720 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1721
5d4b8659
PM
1722 /*
1723 * Propagate new ->completed value to rcu_node structures so
1724 * that other CPUs don't have to wait until the start of the next
1725 * grace period to process their callbacks. This also avoids
1726 * some nasty RCU grace-period initialization races by forcing
1727 * the end of the current grace period to be completely recorded in
1728 * all of the rcu_node structures before the beginning of the next
1729 * grace period is recorded in any of the rcu_node structures.
1730 */
1731 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1732 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1733 smp_mb__after_unlock_lock();
0446be48 1734 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1735 rdp = this_cpu_ptr(rsp->rda);
1736 if (rnp == rdp->mynode)
48a7639c 1737 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1738 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1739 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1740 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1741 cond_resched_rcu_qs();
7fdefc10 1742 }
5d4b8659
PM
1743 rnp = rcu_get_root(rsp);
1744 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1745 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1746 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1747
765a3f4f
PM
1748 /* Declare grace period done. */
1749 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1750 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1751 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1752 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1753 /* Advance CBs to reduce false positives below. */
1754 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1755 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1756 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1757 trace_rcu_grace_period(rsp->name,
1758 ACCESS_ONCE(rsp->gpnum),
1759 TPS("newreq"));
1760 }
7fdefc10 1761 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1762}
1763
1764/*
1765 * Body of kthread that handles grace periods.
1766 */
1767static int __noreturn rcu_gp_kthread(void *arg)
1768{
4cdfc175 1769 int fqs_state;
88d6df61 1770 int gf;
d40011f6 1771 unsigned long j;
4cdfc175 1772 int ret;
7fdefc10
PM
1773 struct rcu_state *rsp = arg;
1774 struct rcu_node *rnp = rcu_get_root(rsp);
1775
1776 for (;;) {
1777
1778 /* Handle grace-period start. */
1779 for (;;) {
63c4db78
PM
1780 trace_rcu_grace_period(rsp->name,
1781 ACCESS_ONCE(rsp->gpnum),
1782 TPS("reqwait"));
afea227f 1783 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1784 wait_event_interruptible(rsp->gp_wq,
591c6d17 1785 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1786 RCU_GP_FLAG_INIT);
78e4bc34 1787 /* Locking provides needed memory barrier. */
f7be8209 1788 if (rcu_gp_init(rsp))
7fdefc10 1789 break;
bde6c3aa 1790 cond_resched_rcu_qs();
7fdefc10 1791 flush_signals(current);
63c4db78
PM
1792 trace_rcu_grace_period(rsp->name,
1793 ACCESS_ONCE(rsp->gpnum),
1794 TPS("reqwaitsig"));
7fdefc10 1795 }
cabc49c1 1796
4cdfc175
PM
1797 /* Handle quiescent-state forcing. */
1798 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1799 j = jiffies_till_first_fqs;
1800 if (j > HZ) {
1801 j = HZ;
1802 jiffies_till_first_fqs = HZ;
1803 }
88d6df61 1804 ret = 0;
cabc49c1 1805 for (;;) {
88d6df61
PM
1806 if (!ret)
1807 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1808 trace_rcu_grace_period(rsp->name,
1809 ACCESS_ONCE(rsp->gpnum),
1810 TPS("fqswait"));
afea227f 1811 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1812 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1813 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1814 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1815 (!ACCESS_ONCE(rnp->qsmask) &&
1816 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1817 j);
78e4bc34 1818 /* Locking provides needed memory barriers. */
4cdfc175 1819 /* If grace period done, leave loop. */
cabc49c1 1820 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1821 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1822 break;
4cdfc175 1823 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1824 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1825 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1826 trace_rcu_grace_period(rsp->name,
1827 ACCESS_ONCE(rsp->gpnum),
1828 TPS("fqsstart"));
4cdfc175 1829 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1830 trace_rcu_grace_period(rsp->name,
1831 ACCESS_ONCE(rsp->gpnum),
1832 TPS("fqsend"));
bde6c3aa 1833 cond_resched_rcu_qs();
4cdfc175
PM
1834 } else {
1835 /* Deal with stray signal. */
bde6c3aa 1836 cond_resched_rcu_qs();
4cdfc175 1837 flush_signals(current);
63c4db78
PM
1838 trace_rcu_grace_period(rsp->name,
1839 ACCESS_ONCE(rsp->gpnum),
1840 TPS("fqswaitsig"));
4cdfc175 1841 }
d40011f6
PM
1842 j = jiffies_till_next_fqs;
1843 if (j > HZ) {
1844 j = HZ;
1845 jiffies_till_next_fqs = HZ;
1846 } else if (j < 1) {
1847 j = 1;
1848 jiffies_till_next_fqs = 1;
1849 }
cabc49c1 1850 }
4cdfc175
PM
1851
1852 /* Handle grace-period end. */
1853 rcu_gp_cleanup(rsp);
b3dbec76 1854 }
b3dbec76
PM
1855}
1856
64db4cff
PM
1857/*
1858 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1859 * in preparation for detecting the next grace period. The caller must hold
b8462084 1860 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1861 *
1862 * Note that it is legal for a dying CPU (which is marked as offline) to
1863 * invoke this function. This can happen when the dying CPU reports its
1864 * quiescent state.
48a7639c
PM
1865 *
1866 * Returns true if the grace-period kthread must be awakened.
64db4cff 1867 */
48a7639c 1868static bool
910ee45d
PM
1869rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1870 struct rcu_data *rdp)
64db4cff 1871{
b8462084 1872 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1873 /*
b3dbec76 1874 * Either we have not yet spawned the grace-period
62da1921
PM
1875 * task, this CPU does not need another grace period,
1876 * or a grace period is already in progress.
b3dbec76 1877 * Either way, don't start a new grace period.
afe24b12 1878 */
48a7639c 1879 return false;
afe24b12 1880 }
91dc9542 1881 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1882 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1883 TPS("newreq"));
62da1921 1884
016a8d5b
SR
1885 /*
1886 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 1887 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 1888 * the wakeup to our caller.
016a8d5b 1889 */
48a7639c 1890 return true;
64db4cff
PM
1891}
1892
910ee45d
PM
1893/*
1894 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1895 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1896 * is invoked indirectly from rcu_advance_cbs(), which would result in
1897 * endless recursion -- or would do so if it wasn't for the self-deadlock
1898 * that is encountered beforehand.
48a7639c
PM
1899 *
1900 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 1901 */
48a7639c 1902static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
1903{
1904 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1905 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 1906 bool ret = false;
910ee45d
PM
1907
1908 /*
1909 * If there is no grace period in progress right now, any
1910 * callbacks we have up to this point will be satisfied by the
1911 * next grace period. Also, advancing the callbacks reduces the
1912 * probability of false positives from cpu_needs_another_gp()
1913 * resulting in pointless grace periods. So, advance callbacks
1914 * then start the grace period!
1915 */
48a7639c
PM
1916 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1917 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1918 return ret;
910ee45d
PM
1919}
1920
f41d911f 1921/*
d3f6bad3
PM
1922 * Report a full set of quiescent states to the specified rcu_state
1923 * data structure. This involves cleaning up after the prior grace
1924 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1925 * if one is needed. Note that the caller must hold rnp->lock, which
1926 * is released before return.
f41d911f 1927 */
d3f6bad3 1928static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1929 __releases(rcu_get_root(rsp)->lock)
f41d911f 1930{
fc2219d4 1931 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1932 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1933 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1934}
1935
64db4cff 1936/*
d3f6bad3
PM
1937 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1938 * Allows quiescent states for a group of CPUs to be reported at one go
1939 * to the specified rcu_node structure, though all the CPUs in the group
1940 * must be represented by the same rcu_node structure (which need not be
1941 * a leaf rcu_node structure, though it often will be). That structure's
1942 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1943 */
1944static void
d3f6bad3
PM
1945rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1946 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1947 __releases(rnp->lock)
1948{
28ecd580
PM
1949 struct rcu_node *rnp_c;
1950
64db4cff
PM
1951 /* Walk up the rcu_node hierarchy. */
1952 for (;;) {
1953 if (!(rnp->qsmask & mask)) {
1954
1955 /* Our bit has already been cleared, so done. */
1304afb2 1956 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1957 return;
1958 }
1959 rnp->qsmask &= ~mask;
d4c08f2a
PM
1960 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1961 mask, rnp->qsmask, rnp->level,
1962 rnp->grplo, rnp->grphi,
1963 !!rnp->gp_tasks);
27f4d280 1964 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1965
1966 /* Other bits still set at this level, so done. */
1304afb2 1967 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1968 return;
1969 }
1970 mask = rnp->grpmask;
1971 if (rnp->parent == NULL) {
1972
1973 /* No more levels. Exit loop holding root lock. */
1974
1975 break;
1976 }
1304afb2 1977 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1978 rnp_c = rnp;
64db4cff 1979 rnp = rnp->parent;
1304afb2 1980 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1981 smp_mb__after_unlock_lock();
28ecd580 1982 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1983 }
1984
1985 /*
1986 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1987 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1988 * to clean up and start the next grace period if one is needed.
64db4cff 1989 */
d3f6bad3 1990 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1991}
1992
1993/*
d3f6bad3
PM
1994 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1995 * structure. This must be either called from the specified CPU, or
1996 * called when the specified CPU is known to be offline (and when it is
1997 * also known that no other CPU is concurrently trying to help the offline
1998 * CPU). The lastcomp argument is used to make sure we are still in the
1999 * grace period of interest. We don't want to end the current grace period
2000 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2001 */
2002static void
d7d6a11e 2003rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2004{
2005 unsigned long flags;
2006 unsigned long mask;
48a7639c 2007 bool needwake;
64db4cff
PM
2008 struct rcu_node *rnp;
2009
2010 rnp = rdp->mynode;
1304afb2 2011 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2012 smp_mb__after_unlock_lock();
d7d6a11e
PM
2013 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2014 rnp->completed == rnp->gpnum) {
64db4cff
PM
2015
2016 /*
e4cc1f22
PM
2017 * The grace period in which this quiescent state was
2018 * recorded has ended, so don't report it upwards.
2019 * We will instead need a new quiescent state that lies
2020 * within the current grace period.
64db4cff 2021 */
e4cc1f22 2022 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 2023 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2024 return;
2025 }
2026 mask = rdp->grpmask;
2027 if ((rnp->qsmask & mask) == 0) {
1304afb2 2028 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2029 } else {
2030 rdp->qs_pending = 0;
2031
2032 /*
2033 * This GP can't end until cpu checks in, so all of our
2034 * callbacks can be processed during the next GP.
2035 */
48a7639c 2036 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2037
d3f6bad3 2038 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2039 if (needwake)
2040 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2041 }
2042}
2043
2044/*
2045 * Check to see if there is a new grace period of which this CPU
2046 * is not yet aware, and if so, set up local rcu_data state for it.
2047 * Otherwise, see if this CPU has just passed through its first
2048 * quiescent state for this grace period, and record that fact if so.
2049 */
2050static void
2051rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2052{
05eb552b
PM
2053 /* Check for grace-period ends and beginnings. */
2054 note_gp_changes(rsp, rdp);
64db4cff
PM
2055
2056 /*
2057 * Does this CPU still need to do its part for current grace period?
2058 * If no, return and let the other CPUs do their part as well.
2059 */
2060 if (!rdp->qs_pending)
2061 return;
2062
2063 /*
2064 * Was there a quiescent state since the beginning of the grace
2065 * period? If no, then exit and wait for the next call.
2066 */
e4cc1f22 2067 if (!rdp->passed_quiesce)
64db4cff
PM
2068 return;
2069
d3f6bad3
PM
2070 /*
2071 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2072 * judge of that).
2073 */
d7d6a11e 2074 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2075}
2076
2077#ifdef CONFIG_HOTPLUG_CPU
2078
e74f4c45 2079/*
b1420f1c
PM
2080 * Send the specified CPU's RCU callbacks to the orphanage. The
2081 * specified CPU must be offline, and the caller must hold the
7b2e6011 2082 * ->orphan_lock.
e74f4c45 2083 */
b1420f1c
PM
2084static void
2085rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2086 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2087{
3fbfbf7a 2088 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2089 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2090 return;
2091
b1420f1c
PM
2092 /*
2093 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2094 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2095 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2096 */
a50c3af9 2097 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2098 rsp->qlen_lazy += rdp->qlen_lazy;
2099 rsp->qlen += rdp->qlen;
2100 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2101 rdp->qlen_lazy = 0;
1d1fb395 2102 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2103 }
2104
2105 /*
b1420f1c
PM
2106 * Next, move those callbacks still needing a grace period to
2107 * the orphanage, where some other CPU will pick them up.
2108 * Some of the callbacks might have gone partway through a grace
2109 * period, but that is too bad. They get to start over because we
2110 * cannot assume that grace periods are synchronized across CPUs.
2111 * We don't bother updating the ->nxttail[] array yet, instead
2112 * we just reset the whole thing later on.
a50c3af9 2113 */
b1420f1c
PM
2114 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2115 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2116 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2117 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2118 }
2119
2120 /*
b1420f1c
PM
2121 * Then move the ready-to-invoke callbacks to the orphanage,
2122 * where some other CPU will pick them up. These will not be
2123 * required to pass though another grace period: They are done.
a50c3af9 2124 */
e5601400 2125 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2126 *rsp->orphan_donetail = rdp->nxtlist;
2127 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2128 }
e74f4c45 2129
b1420f1c 2130 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2131 init_callback_list(rdp);
b1420f1c
PM
2132}
2133
2134/*
2135 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2136 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2137 */
96d3fd0d 2138static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2139{
2140 int i;
fa07a58f 2141 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2142
3fbfbf7a 2143 /* No-CBs CPUs are handled specially. */
96d3fd0d 2144 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2145 return;
2146
b1420f1c
PM
2147 /* Do the accounting first. */
2148 rdp->qlen_lazy += rsp->qlen_lazy;
2149 rdp->qlen += rsp->qlen;
2150 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2151 if (rsp->qlen_lazy != rsp->qlen)
2152 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2153 rsp->qlen_lazy = 0;
2154 rsp->qlen = 0;
2155
2156 /*
2157 * We do not need a memory barrier here because the only way we
2158 * can get here if there is an rcu_barrier() in flight is if
2159 * we are the task doing the rcu_barrier().
2160 */
2161
2162 /* First adopt the ready-to-invoke callbacks. */
2163 if (rsp->orphan_donelist != NULL) {
2164 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2165 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2166 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2167 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2168 rdp->nxttail[i] = rsp->orphan_donetail;
2169 rsp->orphan_donelist = NULL;
2170 rsp->orphan_donetail = &rsp->orphan_donelist;
2171 }
2172
2173 /* And then adopt the callbacks that still need a grace period. */
2174 if (rsp->orphan_nxtlist != NULL) {
2175 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2176 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2177 rsp->orphan_nxtlist = NULL;
2178 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2179 }
2180}
2181
2182/*
2183 * Trace the fact that this CPU is going offline.
2184 */
2185static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2186{
2187 RCU_TRACE(unsigned long mask);
2188 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2189 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2190
2191 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2192 trace_rcu_grace_period(rsp->name,
2193 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2194 TPS("cpuofl"));
64db4cff
PM
2195}
2196
2197/*
e5601400 2198 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2199 * this fact from process context. Do the remainder of the cleanup,
2200 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2201 * adopting them. There can only be one CPU hotplug operation at a time,
2202 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2203 */
e5601400 2204static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2205{
2036d94a
PM
2206 unsigned long flags;
2207 unsigned long mask;
2208 int need_report = 0;
e5601400 2209 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2210 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2211
2036d94a 2212 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2213 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2214
b1420f1c 2215 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2216
2217 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2218 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2219 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2220
b1420f1c
PM
2221 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2222 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2223 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2224
2036d94a
PM
2225 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2226 mask = rdp->grpmask; /* rnp->grplo is constant. */
2227 do {
2228 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2229 smp_mb__after_unlock_lock();
2036d94a
PM
2230 rnp->qsmaskinit &= ~mask;
2231 if (rnp->qsmaskinit != 0) {
2232 if (rnp != rdp->mynode)
2233 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2234 break;
2235 }
2236 if (rnp == rdp->mynode)
2237 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2238 else
2239 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2240 mask = rnp->grpmask;
2241 rnp = rnp->parent;
2242 } while (rnp != NULL);
2243
2244 /*
2245 * We still hold the leaf rcu_node structure lock here, and
2246 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2247 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2248 * held leads to deadlock.
2249 */
7b2e6011 2250 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2251 rnp = rdp->mynode;
2252 if (need_report & RCU_OFL_TASKS_NORM_GP)
2253 rcu_report_unblock_qs_rnp(rnp, flags);
2254 else
2255 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2256 if (need_report & RCU_OFL_TASKS_EXP_GP)
2257 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2258 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2259 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2260 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2261 init_callback_list(rdp);
2262 /* Disallow further callbacks on this CPU. */
2263 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2264 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2265}
2266
2267#else /* #ifdef CONFIG_HOTPLUG_CPU */
2268
e5601400 2269static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2270{
2271}
2272
e5601400 2273static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2274{
2275}
2276
2277#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2278
2279/*
2280 * Invoke any RCU callbacks that have made it to the end of their grace
2281 * period. Thottle as specified by rdp->blimit.
2282 */
37c72e56 2283static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2284{
2285 unsigned long flags;
2286 struct rcu_head *next, *list, **tail;
878d7439
ED
2287 long bl, count, count_lazy;
2288 int i;
64db4cff 2289
dc35c893 2290 /* If no callbacks are ready, just return. */
29c00b4a 2291 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2292 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2293 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2294 need_resched(), is_idle_task(current),
2295 rcu_is_callbacks_kthread());
64db4cff 2296 return;
29c00b4a 2297 }
64db4cff
PM
2298
2299 /*
2300 * Extract the list of ready callbacks, disabling to prevent
2301 * races with call_rcu() from interrupt handlers.
2302 */
2303 local_irq_save(flags);
8146c4e2 2304 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2305 bl = rdp->blimit;
486e2593 2306 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2307 list = rdp->nxtlist;
2308 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2309 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2310 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2311 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2312 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2313 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2314 local_irq_restore(flags);
2315
2316 /* Invoke callbacks. */
486e2593 2317 count = count_lazy = 0;
64db4cff
PM
2318 while (list) {
2319 next = list->next;
2320 prefetch(next);
551d55a9 2321 debug_rcu_head_unqueue(list);
486e2593
PM
2322 if (__rcu_reclaim(rsp->name, list))
2323 count_lazy++;
64db4cff 2324 list = next;
dff1672d
PM
2325 /* Stop only if limit reached and CPU has something to do. */
2326 if (++count >= bl &&
2327 (need_resched() ||
2328 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2329 break;
2330 }
2331
2332 local_irq_save(flags);
4968c300
PM
2333 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2334 is_idle_task(current),
2335 rcu_is_callbacks_kthread());
64db4cff
PM
2336
2337 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2338 if (list != NULL) {
2339 *tail = rdp->nxtlist;
2340 rdp->nxtlist = list;
b41772ab
PM
2341 for (i = 0; i < RCU_NEXT_SIZE; i++)
2342 if (&rdp->nxtlist == rdp->nxttail[i])
2343 rdp->nxttail[i] = tail;
64db4cff
PM
2344 else
2345 break;
2346 }
b1420f1c
PM
2347 smp_mb(); /* List handling before counting for rcu_barrier(). */
2348 rdp->qlen_lazy -= count_lazy;
a792563b 2349 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2350 rdp->n_cbs_invoked += count;
64db4cff
PM
2351
2352 /* Reinstate batch limit if we have worked down the excess. */
2353 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2354 rdp->blimit = blimit;
2355
37c72e56
PM
2356 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2357 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2358 rdp->qlen_last_fqs_check = 0;
2359 rdp->n_force_qs_snap = rsp->n_force_qs;
2360 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2361 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2362 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2363
64db4cff
PM
2364 local_irq_restore(flags);
2365
e0f23060 2366 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2367 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2368 invoke_rcu_core();
64db4cff
PM
2369}
2370
2371/*
2372 * Check to see if this CPU is in a non-context-switch quiescent state
2373 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2374 * Also schedule RCU core processing.
64db4cff 2375 *
9b2e4f18 2376 * This function must be called from hardirq context. It is normally
64db4cff
PM
2377 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2378 * false, there is no point in invoking rcu_check_callbacks().
2379 */
2380void rcu_check_callbacks(int cpu, int user)
2381{
f7f7bac9 2382 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2383 increment_cpu_stall_ticks();
9b2e4f18 2384 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2385
2386 /*
2387 * Get here if this CPU took its interrupt from user
2388 * mode or from the idle loop, and if this is not a
2389 * nested interrupt. In this case, the CPU is in
d6714c22 2390 * a quiescent state, so note it.
64db4cff
PM
2391 *
2392 * No memory barrier is required here because both
d6714c22
PM
2393 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2394 * variables that other CPUs neither access nor modify,
2395 * at least not while the corresponding CPU is online.
64db4cff
PM
2396 */
2397
d6714c22
PM
2398 rcu_sched_qs(cpu);
2399 rcu_bh_qs(cpu);
64db4cff
PM
2400
2401 } else if (!in_softirq()) {
2402
2403 /*
2404 * Get here if this CPU did not take its interrupt from
2405 * softirq, in other words, if it is not interrupting
2406 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2407 * critical section, so note it.
64db4cff
PM
2408 */
2409
d6714c22 2410 rcu_bh_qs(cpu);
64db4cff 2411 }
f41d911f 2412 rcu_preempt_check_callbacks(cpu);
d21670ac 2413 if (rcu_pending(cpu))
a46e0899 2414 invoke_rcu_core();
8315f422
PM
2415 if (user)
2416 rcu_note_voluntary_context_switch(current);
f7f7bac9 2417 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2418}
2419
64db4cff
PM
2420/*
2421 * Scan the leaf rcu_node structures, processing dyntick state for any that
2422 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2423 * Also initiate boosting for any threads blocked on the root rcu_node.
2424 *
ee47eb9f 2425 * The caller must have suppressed start of new grace periods.
64db4cff 2426 */
217af2a2
PM
2427static void force_qs_rnp(struct rcu_state *rsp,
2428 int (*f)(struct rcu_data *rsp, bool *isidle,
2429 unsigned long *maxj),
2430 bool *isidle, unsigned long *maxj)
64db4cff
PM
2431{
2432 unsigned long bit;
2433 int cpu;
2434 unsigned long flags;
2435 unsigned long mask;
a0b6c9a7 2436 struct rcu_node *rnp;
64db4cff 2437
a0b6c9a7 2438 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2439 cond_resched_rcu_qs();
64db4cff 2440 mask = 0;
1304afb2 2441 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2442 smp_mb__after_unlock_lock();
ee47eb9f 2443 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2444 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2445 return;
64db4cff 2446 }
a0b6c9a7 2447 if (rnp->qsmask == 0) {
1217ed1b 2448 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2449 continue;
2450 }
a0b6c9a7 2451 cpu = rnp->grplo;
64db4cff 2452 bit = 1;
a0b6c9a7 2453 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2454 if ((rnp->qsmask & bit) != 0) {
2455 if ((rnp->qsmaskinit & bit) != 0)
2456 *isidle = 0;
2457 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2458 mask |= bit;
2459 }
64db4cff 2460 }
45f014c5 2461 if (mask != 0) {
64db4cff 2462
d3f6bad3
PM
2463 /* rcu_report_qs_rnp() releases rnp->lock. */
2464 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2465 continue;
2466 }
1304afb2 2467 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2468 }
27f4d280 2469 rnp = rcu_get_root(rsp);
1217ed1b
PM
2470 if (rnp->qsmask == 0) {
2471 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2472 smp_mb__after_unlock_lock();
1217ed1b
PM
2473 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2474 }
64db4cff
PM
2475}
2476
2477/*
2478 * Force quiescent states on reluctant CPUs, and also detect which
2479 * CPUs are in dyntick-idle mode.
2480 */
4cdfc175 2481static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2482{
2483 unsigned long flags;
394f2769
PM
2484 bool ret;
2485 struct rcu_node *rnp;
2486 struct rcu_node *rnp_old = NULL;
2487
2488 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2489 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2490 for (; rnp != NULL; rnp = rnp->parent) {
2491 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2492 !raw_spin_trylock(&rnp->fqslock);
2493 if (rnp_old != NULL)
2494 raw_spin_unlock(&rnp_old->fqslock);
2495 if (ret) {
a792563b 2496 rsp->n_force_qs_lh++;
394f2769
PM
2497 return;
2498 }
2499 rnp_old = rnp;
2500 }
2501 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2502
394f2769
PM
2503 /* Reached the root of the rcu_node tree, acquire lock. */
2504 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2505 smp_mb__after_unlock_lock();
394f2769
PM
2506 raw_spin_unlock(&rnp_old->fqslock);
2507 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2508 rsp->n_force_qs_lh++;
394f2769 2509 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2510 return; /* Someone beat us to it. */
46a1e34e 2511 }
91dc9542 2512 ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
394f2769 2513 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2514 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2515}
2516
64db4cff 2517/*
e0f23060
PM
2518 * This does the RCU core processing work for the specified rcu_state
2519 * and rcu_data structures. This may be called only from the CPU to
2520 * whom the rdp belongs.
64db4cff
PM
2521 */
2522static void
1bca8cf1 2523__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2524{
2525 unsigned long flags;
48a7639c 2526 bool needwake;
fa07a58f 2527 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2528
2e597558
PM
2529 WARN_ON_ONCE(rdp->beenonline == 0);
2530
64db4cff
PM
2531 /* Update RCU state based on any recent quiescent states. */
2532 rcu_check_quiescent_state(rsp, rdp);
2533
2534 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2535 local_irq_save(flags);
64db4cff 2536 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2537 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2538 needwake = rcu_start_gp(rsp);
b8462084 2539 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2540 if (needwake)
2541 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2542 } else {
2543 local_irq_restore(flags);
64db4cff
PM
2544 }
2545
2546 /* If there are callbacks ready, invoke them. */
09223371 2547 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2548 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2549
2550 /* Do any needed deferred wakeups of rcuo kthreads. */
2551 do_nocb_deferred_wakeup(rdp);
09223371
SL
2552}
2553
64db4cff 2554/*
e0f23060 2555 * Do RCU core processing for the current CPU.
64db4cff 2556 */
09223371 2557static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2558{
6ce75a23
PM
2559 struct rcu_state *rsp;
2560
bfa00b4c
PM
2561 if (cpu_is_offline(smp_processor_id()))
2562 return;
f7f7bac9 2563 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2564 for_each_rcu_flavor(rsp)
2565 __rcu_process_callbacks(rsp);
f7f7bac9 2566 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2567}
2568
a26ac245 2569/*
e0f23060
PM
2570 * Schedule RCU callback invocation. If the specified type of RCU
2571 * does not support RCU priority boosting, just do a direct call,
2572 * otherwise wake up the per-CPU kernel kthread. Note that because we
2573 * are running on the current CPU with interrupts disabled, the
2574 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2575 */
a46e0899 2576static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2577{
b0d30417
PM
2578 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2579 return;
a46e0899
PM
2580 if (likely(!rsp->boost)) {
2581 rcu_do_batch(rsp, rdp);
a26ac245
PM
2582 return;
2583 }
a46e0899 2584 invoke_rcu_callbacks_kthread();
a26ac245
PM
2585}
2586
a46e0899 2587static void invoke_rcu_core(void)
09223371 2588{
b0f74036
PM
2589 if (cpu_online(smp_processor_id()))
2590 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2591}
2592
29154c57
PM
2593/*
2594 * Handle any core-RCU processing required by a call_rcu() invocation.
2595 */
2596static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2597 struct rcu_head *head, unsigned long flags)
64db4cff 2598{
48a7639c
PM
2599 bool needwake;
2600
62fde6ed
PM
2601 /*
2602 * If called from an extended quiescent state, invoke the RCU
2603 * core in order to force a re-evaluation of RCU's idleness.
2604 */
5c173eb8 2605 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2606 invoke_rcu_core();
2607
a16b7a69 2608 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2609 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2610 return;
64db4cff 2611
37c72e56
PM
2612 /*
2613 * Force the grace period if too many callbacks or too long waiting.
2614 * Enforce hysteresis, and don't invoke force_quiescent_state()
2615 * if some other CPU has recently done so. Also, don't bother
2616 * invoking force_quiescent_state() if the newly enqueued callback
2617 * is the only one waiting for a grace period to complete.
2618 */
2655d57e 2619 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2620
2621 /* Are we ignoring a completed grace period? */
470716fc 2622 note_gp_changes(rsp, rdp);
b52573d2
PM
2623
2624 /* Start a new grace period if one not already started. */
2625 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2626 struct rcu_node *rnp_root = rcu_get_root(rsp);
2627
b8462084 2628 raw_spin_lock(&rnp_root->lock);
6303b9c8 2629 smp_mb__after_unlock_lock();
48a7639c 2630 needwake = rcu_start_gp(rsp);
b8462084 2631 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2632 if (needwake)
2633 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2634 } else {
2635 /* Give the grace period a kick. */
2636 rdp->blimit = LONG_MAX;
2637 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2638 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2639 force_quiescent_state(rsp);
b52573d2
PM
2640 rdp->n_force_qs_snap = rsp->n_force_qs;
2641 rdp->qlen_last_fqs_check = rdp->qlen;
2642 }
4cdfc175 2643 }
29154c57
PM
2644}
2645
ae150184
PM
2646/*
2647 * RCU callback function to leak a callback.
2648 */
2649static void rcu_leak_callback(struct rcu_head *rhp)
2650{
2651}
2652
3fbfbf7a
PM
2653/*
2654 * Helper function for call_rcu() and friends. The cpu argument will
2655 * normally be -1, indicating "currently running CPU". It may specify
2656 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2657 * is expected to specify a CPU.
2658 */
64db4cff
PM
2659static void
2660__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2661 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2662{
2663 unsigned long flags;
2664 struct rcu_data *rdp;
2665
1146edcb 2666 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2667 if (debug_rcu_head_queue(head)) {
2668 /* Probable double call_rcu(), so leak the callback. */
2669 ACCESS_ONCE(head->func) = rcu_leak_callback;
2670 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2671 return;
2672 }
64db4cff
PM
2673 head->func = func;
2674 head->next = NULL;
2675
64db4cff
PM
2676 /*
2677 * Opportunistically note grace-period endings and beginnings.
2678 * Note that we might see a beginning right after we see an
2679 * end, but never vice versa, since this CPU has to pass through
2680 * a quiescent state betweentimes.
2681 */
2682 local_irq_save(flags);
394f99a9 2683 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2684
2685 /* Add the callback to our list. */
3fbfbf7a
PM
2686 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2687 int offline;
2688
2689 if (cpu != -1)
2690 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2691 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2692 WARN_ON_ONCE(offline);
0d8ee37e 2693 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2694 local_irq_restore(flags);
2695 return;
2696 }
a792563b 2697 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2698 if (lazy)
2699 rdp->qlen_lazy++;
c57afe80
PM
2700 else
2701 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2702 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2703 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2704 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2705
d4c08f2a
PM
2706 if (__is_kfree_rcu_offset((unsigned long)func))
2707 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2708 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2709 else
486e2593 2710 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2711
29154c57
PM
2712 /* Go handle any RCU core processing required. */
2713 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2714 local_irq_restore(flags);
2715}
2716
2717/*
d6714c22 2718 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2719 */
d6714c22 2720void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2721{
3fbfbf7a 2722 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2723}
d6714c22 2724EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2725
2726/*
486e2593 2727 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2728 */
2729void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2730{
3fbfbf7a 2731 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2732}
2733EXPORT_SYMBOL_GPL(call_rcu_bh);
2734
495aa969
ACB
2735/*
2736 * Queue an RCU callback for lazy invocation after a grace period.
2737 * This will likely be later named something like "call_rcu_lazy()",
2738 * but this change will require some way of tagging the lazy RCU
2739 * callbacks in the list of pending callbacks. Until then, this
2740 * function may only be called from __kfree_rcu().
2741 */
2742void kfree_call_rcu(struct rcu_head *head,
2743 void (*func)(struct rcu_head *rcu))
2744{
e534165b 2745 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2746}
2747EXPORT_SYMBOL_GPL(kfree_call_rcu);
2748
6d813391
PM
2749/*
2750 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2751 * any blocking grace-period wait automatically implies a grace period
2752 * if there is only one CPU online at any point time during execution
2753 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2754 * occasionally incorrectly indicate that there are multiple CPUs online
2755 * when there was in fact only one the whole time, as this just adds
2756 * some overhead: RCU still operates correctly.
6d813391
PM
2757 */
2758static inline int rcu_blocking_is_gp(void)
2759{
95f0c1de
PM
2760 int ret;
2761
6d813391 2762 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2763 preempt_disable();
2764 ret = num_online_cpus() <= 1;
2765 preempt_enable();
2766 return ret;
6d813391
PM
2767}
2768
6ebb237b
PM
2769/**
2770 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2771 *
2772 * Control will return to the caller some time after a full rcu-sched
2773 * grace period has elapsed, in other words after all currently executing
2774 * rcu-sched read-side critical sections have completed. These read-side
2775 * critical sections are delimited by rcu_read_lock_sched() and
2776 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2777 * local_irq_disable(), and so on may be used in place of
2778 * rcu_read_lock_sched().
2779 *
2780 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2781 * non-threaded hardware-interrupt handlers, in progress on entry will
2782 * have completed before this primitive returns. However, this does not
2783 * guarantee that softirq handlers will have completed, since in some
2784 * kernels, these handlers can run in process context, and can block.
2785 *
2786 * Note that this guarantee implies further memory-ordering guarantees.
2787 * On systems with more than one CPU, when synchronize_sched() returns,
2788 * each CPU is guaranteed to have executed a full memory barrier since the
2789 * end of its last RCU-sched read-side critical section whose beginning
2790 * preceded the call to synchronize_sched(). In addition, each CPU having
2791 * an RCU read-side critical section that extends beyond the return from
2792 * synchronize_sched() is guaranteed to have executed a full memory barrier
2793 * after the beginning of synchronize_sched() and before the beginning of
2794 * that RCU read-side critical section. Note that these guarantees include
2795 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2796 * that are executing in the kernel.
2797 *
2798 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2799 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2800 * to have executed a full memory barrier during the execution of
2801 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2802 * again only if the system has more than one CPU).
6ebb237b
PM
2803 *
2804 * This primitive provides the guarantees made by the (now removed)
2805 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2806 * guarantees that rcu_read_lock() sections will have completed.
2807 * In "classic RCU", these two guarantees happen to be one and
2808 * the same, but can differ in realtime RCU implementations.
2809 */
2810void synchronize_sched(void)
2811{
fe15d706
PM
2812 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2813 !lock_is_held(&rcu_lock_map) &&
2814 !lock_is_held(&rcu_sched_lock_map),
2815 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2816 if (rcu_blocking_is_gp())
2817 return;
3705b88d
AM
2818 if (rcu_expedited)
2819 synchronize_sched_expedited();
2820 else
2821 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2822}
2823EXPORT_SYMBOL_GPL(synchronize_sched);
2824
2825/**
2826 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2827 *
2828 * Control will return to the caller some time after a full rcu_bh grace
2829 * period has elapsed, in other words after all currently executing rcu_bh
2830 * read-side critical sections have completed. RCU read-side critical
2831 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2832 * and may be nested.
f0a0e6f2
PM
2833 *
2834 * See the description of synchronize_sched() for more detailed information
2835 * on memory ordering guarantees.
6ebb237b
PM
2836 */
2837void synchronize_rcu_bh(void)
2838{
fe15d706
PM
2839 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2840 !lock_is_held(&rcu_lock_map) &&
2841 !lock_is_held(&rcu_sched_lock_map),
2842 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2843 if (rcu_blocking_is_gp())
2844 return;
3705b88d
AM
2845 if (rcu_expedited)
2846 synchronize_rcu_bh_expedited();
2847 else
2848 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2849}
2850EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2851
765a3f4f
PM
2852/**
2853 * get_state_synchronize_rcu - Snapshot current RCU state
2854 *
2855 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2856 * to determine whether or not a full grace period has elapsed in the
2857 * meantime.
2858 */
2859unsigned long get_state_synchronize_rcu(void)
2860{
2861 /*
2862 * Any prior manipulation of RCU-protected data must happen
2863 * before the load from ->gpnum.
2864 */
2865 smp_mb(); /* ^^^ */
2866
2867 /*
2868 * Make sure this load happens before the purportedly
2869 * time-consuming work between get_state_synchronize_rcu()
2870 * and cond_synchronize_rcu().
2871 */
e534165b 2872 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
2873}
2874EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2875
2876/**
2877 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2878 *
2879 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2880 *
2881 * If a full RCU grace period has elapsed since the earlier call to
2882 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2883 * synchronize_rcu() to wait for a full grace period.
2884 *
2885 * Yes, this function does not take counter wrap into account. But
2886 * counter wrap is harmless. If the counter wraps, we have waited for
2887 * more than 2 billion grace periods (and way more on a 64-bit system!),
2888 * so waiting for one additional grace period should be just fine.
2889 */
2890void cond_synchronize_rcu(unsigned long oldstate)
2891{
2892 unsigned long newstate;
2893
2894 /*
2895 * Ensure that this load happens before any RCU-destructive
2896 * actions the caller might carry out after we return.
2897 */
e534165b 2898 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
2899 if (ULONG_CMP_GE(oldstate, newstate))
2900 synchronize_rcu();
2901}
2902EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2903
3d3b7db0
PM
2904static int synchronize_sched_expedited_cpu_stop(void *data)
2905{
2906 /*
2907 * There must be a full memory barrier on each affected CPU
2908 * between the time that try_stop_cpus() is called and the
2909 * time that it returns.
2910 *
2911 * In the current initial implementation of cpu_stop, the
2912 * above condition is already met when the control reaches
2913 * this point and the following smp_mb() is not strictly
2914 * necessary. Do smp_mb() anyway for documentation and
2915 * robustness against future implementation changes.
2916 */
2917 smp_mb(); /* See above comment block. */
2918 return 0;
2919}
2920
236fefaf
PM
2921/**
2922 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2923 *
2924 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2925 * approach to force the grace period to end quickly. This consumes
2926 * significant time on all CPUs and is unfriendly to real-time workloads,
2927 * so is thus not recommended for any sort of common-case code. In fact,
2928 * if you are using synchronize_sched_expedited() in a loop, please
2929 * restructure your code to batch your updates, and then use a single
2930 * synchronize_sched() instead.
3d3b7db0 2931 *
236fefaf
PM
2932 * Note that it is illegal to call this function while holding any lock
2933 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2934 * to call this function from a CPU-hotplug notifier. Failing to observe
2935 * these restriction will result in deadlock.
3d3b7db0
PM
2936 *
2937 * This implementation can be thought of as an application of ticket
2938 * locking to RCU, with sync_sched_expedited_started and
2939 * sync_sched_expedited_done taking on the roles of the halves
2940 * of the ticket-lock word. Each task atomically increments
2941 * sync_sched_expedited_started upon entry, snapshotting the old value,
2942 * then attempts to stop all the CPUs. If this succeeds, then each
2943 * CPU will have executed a context switch, resulting in an RCU-sched
2944 * grace period. We are then done, so we use atomic_cmpxchg() to
2945 * update sync_sched_expedited_done to match our snapshot -- but
2946 * only if someone else has not already advanced past our snapshot.
2947 *
2948 * On the other hand, if try_stop_cpus() fails, we check the value
2949 * of sync_sched_expedited_done. If it has advanced past our
2950 * initial snapshot, then someone else must have forced a grace period
2951 * some time after we took our snapshot. In this case, our work is
2952 * done for us, and we can simply return. Otherwise, we try again,
2953 * but keep our initial snapshot for purposes of checking for someone
2954 * doing our work for us.
2955 *
2956 * If we fail too many times in a row, we fall back to synchronize_sched().
2957 */
2958void synchronize_sched_expedited(void)
2959{
1924bcb0
PM
2960 long firstsnap, s, snap;
2961 int trycount = 0;
40694d66 2962 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2963
1924bcb0
PM
2964 /*
2965 * If we are in danger of counter wrap, just do synchronize_sched().
2966 * By allowing sync_sched_expedited_started to advance no more than
2967 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2968 * that more than 3.5 billion CPUs would be required to force a
2969 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2970 * course be required on a 64-bit system.
2971 */
40694d66
PM
2972 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2973 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2974 ULONG_MAX / 8)) {
2975 synchronize_sched();
a30489c5 2976 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2977 return;
2978 }
3d3b7db0 2979
1924bcb0
PM
2980 /*
2981 * Take a ticket. Note that atomic_inc_return() implies a
2982 * full memory barrier.
2983 */
40694d66 2984 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2985 firstsnap = snap;
3d3b7db0 2986 get_online_cpus();
1cc85961 2987 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2988
2989 /*
2990 * Each pass through the following loop attempts to force a
2991 * context switch on each CPU.
2992 */
2993 while (try_stop_cpus(cpu_online_mask,
2994 synchronize_sched_expedited_cpu_stop,
2995 NULL) == -EAGAIN) {
2996 put_online_cpus();
a30489c5 2997 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2998
1924bcb0 2999 /* Check to see if someone else did our work for us. */
40694d66 3000 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3001 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3002 /* ensure test happens before caller kfree */
4e857c58 3003 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3004 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
3005 return;
3006 }
3d3b7db0
PM
3007
3008 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3009 if (trycount++ < 10) {
3d3b7db0 3010 udelay(trycount * num_online_cpus());
c701d5d9 3011 } else {
3705b88d 3012 wait_rcu_gp(call_rcu_sched);
a30489c5 3013 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
3014 return;
3015 }
3016
1924bcb0 3017 /* Recheck to see if someone else did our work for us. */
40694d66 3018 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3019 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3020 /* ensure test happens before caller kfree */
4e857c58 3021 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3022 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
3023 return;
3024 }
3025
3026 /*
3027 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3028 * callers to piggyback on our grace period. We retry
3029 * after they started, so our grace period works for them,
3030 * and they started after our first try, so their grace
3031 * period works for us.
3d3b7db0
PM
3032 */
3033 get_online_cpus();
40694d66 3034 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3035 smp_mb(); /* ensure read is before try_stop_cpus(). */
3036 }
a30489c5 3037 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
3038
3039 /*
3040 * Everyone up to our most recent fetch is covered by our grace
3041 * period. Update the counter, but only if our work is still
3042 * relevant -- which it won't be if someone who started later
1924bcb0 3043 * than we did already did their update.
3d3b7db0
PM
3044 */
3045 do {
a30489c5 3046 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3047 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3048 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3049 /* ensure test happens before caller kfree */
4e857c58 3050 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3051 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3052 break;
3053 }
40694d66 3054 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3055 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3056
3057 put_online_cpus();
3058}
3059EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3060
64db4cff
PM
3061/*
3062 * Check to see if there is any immediate RCU-related work to be done
3063 * by the current CPU, for the specified type of RCU, returning 1 if so.
3064 * The checks are in order of increasing expense: checks that can be
3065 * carried out against CPU-local state are performed first. However,
3066 * we must check for CPU stalls first, else we might not get a chance.
3067 */
3068static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3069{
2f51f988
PM
3070 struct rcu_node *rnp = rdp->mynode;
3071
64db4cff
PM
3072 rdp->n_rcu_pending++;
3073
3074 /* Check for CPU stalls, if enabled. */
3075 check_cpu_stall(rsp, rdp);
3076
a096932f
PM
3077 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3078 if (rcu_nohz_full_cpu(rsp))
3079 return 0;
3080
64db4cff 3081 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
3082 if (rcu_scheduler_fully_active &&
3083 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 3084 rdp->n_rp_qs_pending++;
e4cc1f22 3085 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 3086 rdp->n_rp_report_qs++;
64db4cff 3087 return 1;
7ba5c840 3088 }
64db4cff
PM
3089
3090 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3091 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3092 rdp->n_rp_cb_ready++;
64db4cff 3093 return 1;
7ba5c840 3094 }
64db4cff
PM
3095
3096 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3097 if (cpu_needs_another_gp(rsp, rdp)) {
3098 rdp->n_rp_cpu_needs_gp++;
64db4cff 3099 return 1;
7ba5c840 3100 }
64db4cff
PM
3101
3102 /* Has another RCU grace period completed? */
2f51f988 3103 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3104 rdp->n_rp_gp_completed++;
64db4cff 3105 return 1;
7ba5c840 3106 }
64db4cff
PM
3107
3108 /* Has a new RCU grace period started? */
2f51f988 3109 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 3110 rdp->n_rp_gp_started++;
64db4cff 3111 return 1;
7ba5c840 3112 }
64db4cff 3113
96d3fd0d
PM
3114 /* Does this CPU need a deferred NOCB wakeup? */
3115 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3116 rdp->n_rp_nocb_defer_wakeup++;
3117 return 1;
3118 }
3119
64db4cff 3120 /* nothing to do */
7ba5c840 3121 rdp->n_rp_need_nothing++;
64db4cff
PM
3122 return 0;
3123}
3124
3125/*
3126 * Check to see if there is any immediate RCU-related work to be done
3127 * by the current CPU, returning 1 if so. This function is part of the
3128 * RCU implementation; it is -not- an exported member of the RCU API.
3129 */
a157229c 3130static int rcu_pending(int cpu)
64db4cff 3131{
6ce75a23
PM
3132 struct rcu_state *rsp;
3133
3134 for_each_rcu_flavor(rsp)
3135 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3136 return 1;
3137 return 0;
64db4cff
PM
3138}
3139
3140/*
c0f4dfd4
PM
3141 * Return true if the specified CPU has any callback. If all_lazy is
3142 * non-NULL, store an indication of whether all callbacks are lazy.
3143 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3144 */
ffa83fb5 3145static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 3146{
c0f4dfd4
PM
3147 bool al = true;
3148 bool hc = false;
3149 struct rcu_data *rdp;
6ce75a23
PM
3150 struct rcu_state *rsp;
3151
c0f4dfd4
PM
3152 for_each_rcu_flavor(rsp) {
3153 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
3154 if (!rdp->nxtlist)
3155 continue;
3156 hc = true;
3157 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3158 al = false;
69c8d28c
PM
3159 break;
3160 }
c0f4dfd4
PM
3161 }
3162 if (all_lazy)
3163 *all_lazy = al;
3164 return hc;
64db4cff
PM
3165}
3166
a83eff0a
PM
3167/*
3168 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3169 * the compiler is expected to optimize this away.
3170 */
e66c33d5 3171static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3172 int cpu, unsigned long done)
3173{
3174 trace_rcu_barrier(rsp->name, s, cpu,
3175 atomic_read(&rsp->barrier_cpu_count), done);
3176}
3177
b1420f1c
PM
3178/*
3179 * RCU callback function for _rcu_barrier(). If we are last, wake
3180 * up the task executing _rcu_barrier().
3181 */
24ebbca8 3182static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3183{
24ebbca8
PM
3184 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3185 struct rcu_state *rsp = rdp->rsp;
3186
a83eff0a
PM
3187 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3188 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3189 complete(&rsp->barrier_completion);
a83eff0a
PM
3190 } else {
3191 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3192 }
d0ec774c
PM
3193}
3194
3195/*
3196 * Called with preemption disabled, and from cross-cpu IRQ context.
3197 */
3198static void rcu_barrier_func(void *type)
3199{
037b64ed 3200 struct rcu_state *rsp = type;
fa07a58f 3201 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3202
a83eff0a 3203 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3204 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3205 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3206}
3207
d0ec774c
PM
3208/*
3209 * Orchestrate the specified type of RCU barrier, waiting for all
3210 * RCU callbacks of the specified type to complete.
3211 */
037b64ed 3212static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3213{
b1420f1c 3214 int cpu;
b1420f1c 3215 struct rcu_data *rdp;
cf3a9c48
PM
3216 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3217 unsigned long snap_done;
b1420f1c 3218
a83eff0a 3219 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3220
e74f4c45 3221 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3222 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3223
cf3a9c48
PM
3224 /*
3225 * Ensure that all prior references, including to ->n_barrier_done,
3226 * are ordered before the _rcu_barrier() machinery.
3227 */
3228 smp_mb(); /* See above block comment. */
3229
3230 /*
3231 * Recheck ->n_barrier_done to see if others did our work for us.
3232 * This means checking ->n_barrier_done for an even-to-odd-to-even
3233 * transition. The "if" expression below therefore rounds the old
3234 * value up to the next even number and adds two before comparing.
3235 */
458fb381 3236 snap_done = rsp->n_barrier_done;
a83eff0a 3237 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3238
3239 /*
3240 * If the value in snap is odd, we needed to wait for the current
3241 * rcu_barrier() to complete, then wait for the next one, in other
3242 * words, we need the value of snap_done to be three larger than
3243 * the value of snap. On the other hand, if the value in snap is
3244 * even, we only had to wait for the next rcu_barrier() to complete,
3245 * in other words, we need the value of snap_done to be only two
3246 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3247 * this for us (thank you, Linus!).
3248 */
3249 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3250 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3251 smp_mb(); /* caller's subsequent code after above check. */
3252 mutex_unlock(&rsp->barrier_mutex);
3253 return;
3254 }
3255
3256 /*
3257 * Increment ->n_barrier_done to avoid duplicate work. Use
3258 * ACCESS_ONCE() to prevent the compiler from speculating
3259 * the increment to precede the early-exit check.
3260 */
a792563b 3261 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3262 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3263 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3264 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3265
d0ec774c 3266 /*
b1420f1c
PM
3267 * Initialize the count to one rather than to zero in order to
3268 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3269 * (or preemption of this task). Exclude CPU-hotplug operations
3270 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3271 */
7db74df8 3272 init_completion(&rsp->barrier_completion);
24ebbca8 3273 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3274 get_online_cpus();
b1420f1c
PM
3275
3276 /*
1331e7a1
PM
3277 * Force each CPU with callbacks to register a new callback.
3278 * When that callback is invoked, we will know that all of the
3279 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3280 */
3fbfbf7a 3281 for_each_possible_cpu(cpu) {
d1e43fa5 3282 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3283 continue;
b1420f1c 3284 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3285 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3286 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3287 rsp->n_barrier_done);
3288 atomic_inc(&rsp->barrier_cpu_count);
3289 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3290 rsp, cpu, 0);
3291 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3292 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3293 rsp->n_barrier_done);
037b64ed 3294 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3295 } else {
a83eff0a
PM
3296 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3297 rsp->n_barrier_done);
b1420f1c
PM
3298 }
3299 }
1331e7a1 3300 put_online_cpus();
b1420f1c
PM
3301
3302 /*
3303 * Now that we have an rcu_barrier_callback() callback on each
3304 * CPU, and thus each counted, remove the initial count.
3305 */
24ebbca8 3306 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3307 complete(&rsp->barrier_completion);
b1420f1c 3308
cf3a9c48
PM
3309 /* Increment ->n_barrier_done to prevent duplicate work. */
3310 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3311 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3312 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3313 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3314 smp_mb(); /* Keep increment before caller's subsequent code. */
3315
b1420f1c 3316 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3317 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3318
3319 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3320 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3321}
d0ec774c
PM
3322
3323/**
3324 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3325 */
3326void rcu_barrier_bh(void)
3327{
037b64ed 3328 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3329}
3330EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3331
3332/**
3333 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3334 */
3335void rcu_barrier_sched(void)
3336{
037b64ed 3337 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3338}
3339EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3340
64db4cff 3341/*
27569620 3342 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3343 */
27569620
PM
3344static void __init
3345rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3346{
3347 unsigned long flags;
394f99a9 3348 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3349 struct rcu_node *rnp = rcu_get_root(rsp);
3350
3351 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3352 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3353 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3354 init_callback_list(rdp);
486e2593 3355 rdp->qlen_lazy = 0;
1d1fb395 3356 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3357 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3358 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3359 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3360 rdp->cpu = cpu;
d4c08f2a 3361 rdp->rsp = rsp;
3fbfbf7a 3362 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3363 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3364}
3365
3366/*
3367 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3368 * offline event can be happening at a given time. Note also that we
3369 * can accept some slop in the rsp->completed access due to the fact
3370 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3371 */
49fb4c62 3372static void
9b67122a 3373rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3374{
3375 unsigned long flags;
64db4cff 3376 unsigned long mask;
394f99a9 3377 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3378 struct rcu_node *rnp = rcu_get_root(rsp);
3379
a4fbe35a
PM
3380 /* Exclude new grace periods. */
3381 mutex_lock(&rsp->onoff_mutex);
3382
64db4cff 3383 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3384 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3385 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3386 rdp->qlen_last_fqs_check = 0;
3387 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3388 rdp->blimit = blimit;
0d8ee37e 3389 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3390 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3391 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3392 atomic_set(&rdp->dynticks->dynticks,
3393 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3394 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3395
64db4cff
PM
3396 /* Add CPU to rcu_node bitmasks. */
3397 rnp = rdp->mynode;
3398 mask = rdp->grpmask;
3399 do {
3400 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3401 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3402 rnp->qsmaskinit |= mask;
3403 mask = rnp->grpmask;
d09b62df 3404 if (rnp == rdp->mynode) {
06ae115a
PM
3405 /*
3406 * If there is a grace period in progress, we will
3407 * set up to wait for it next time we run the
3408 * RCU core code.
3409 */
3410 rdp->gpnum = rnp->completed;
d09b62df 3411 rdp->completed = rnp->completed;
06ae115a
PM
3412 rdp->passed_quiesce = 0;
3413 rdp->qs_pending = 0;
f7f7bac9 3414 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3415 }
1304afb2 3416 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3417 rnp = rnp->parent;
3418 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3419 local_irq_restore(flags);
64db4cff 3420
a4fbe35a 3421 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3422}
3423
49fb4c62 3424static void rcu_prepare_cpu(int cpu)
64db4cff 3425{
6ce75a23
PM
3426 struct rcu_state *rsp;
3427
3428 for_each_rcu_flavor(rsp)
9b67122a 3429 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3430}
3431
3432/*
f41d911f 3433 * Handle CPU online/offline notification events.
64db4cff 3434 */
49fb4c62 3435static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3436 unsigned long action, void *hcpu)
64db4cff
PM
3437{
3438 long cpu = (long)hcpu;
e534165b 3439 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3440 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3441 struct rcu_state *rsp;
64db4cff 3442
f7f7bac9 3443 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3444 switch (action) {
3445 case CPU_UP_PREPARE:
3446 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3447 rcu_prepare_cpu(cpu);
3448 rcu_prepare_kthreads(cpu);
a26ac245
PM
3449 break;
3450 case CPU_ONLINE:
0f962a5e 3451 case CPU_DOWN_FAILED:
5d01bbd1 3452 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3453 break;
3454 case CPU_DOWN_PREPARE:
34ed6246 3455 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3456 break;
d0ec774c
PM
3457 case CPU_DYING:
3458 case CPU_DYING_FROZEN:
6ce75a23
PM
3459 for_each_rcu_flavor(rsp)
3460 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3461 break;
64db4cff
PM
3462 case CPU_DEAD:
3463 case CPU_DEAD_FROZEN:
3464 case CPU_UP_CANCELED:
3465 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3466 for_each_rcu_flavor(rsp)
3467 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3468 break;
3469 default:
3470 break;
3471 }
f7f7bac9 3472 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3473 return NOTIFY_OK;
64db4cff
PM
3474}
3475
d1d74d14
BP
3476static int rcu_pm_notify(struct notifier_block *self,
3477 unsigned long action, void *hcpu)
3478{
3479 switch (action) {
3480 case PM_HIBERNATION_PREPARE:
3481 case PM_SUSPEND_PREPARE:
3482 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3483 rcu_expedited = 1;
3484 break;
3485 case PM_POST_HIBERNATION:
3486 case PM_POST_SUSPEND:
3487 rcu_expedited = 0;
3488 break;
3489 default:
3490 break;
3491 }
3492 return NOTIFY_OK;
3493}
3494
b3dbec76
PM
3495/*
3496 * Spawn the kthread that handles this RCU flavor's grace periods.
3497 */
3498static int __init rcu_spawn_gp_kthread(void)
3499{
3500 unsigned long flags;
3501 struct rcu_node *rnp;
3502 struct rcu_state *rsp;
3503 struct task_struct *t;
3504
3505 for_each_rcu_flavor(rsp) {
f170168b 3506 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3507 BUG_ON(IS_ERR(t));
3508 rnp = rcu_get_root(rsp);
3509 raw_spin_lock_irqsave(&rnp->lock, flags);
3510 rsp->gp_kthread = t;
3511 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3512 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3513 }
3514 return 0;
3515}
3516early_initcall(rcu_spawn_gp_kthread);
3517
bbad9379
PM
3518/*
3519 * This function is invoked towards the end of the scheduler's initialization
3520 * process. Before this is called, the idle task might contain
3521 * RCU read-side critical sections (during which time, this idle
3522 * task is booting the system). After this function is called, the
3523 * idle tasks are prohibited from containing RCU read-side critical
3524 * sections. This function also enables RCU lockdep checking.
3525 */
3526void rcu_scheduler_starting(void)
3527{
3528 WARN_ON(num_online_cpus() != 1);
3529 WARN_ON(nr_context_switches() > 0);
3530 rcu_scheduler_active = 1;
3531}
3532
64db4cff
PM
3533/*
3534 * Compute the per-level fanout, either using the exact fanout specified
3535 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3536 */
3537#ifdef CONFIG_RCU_FANOUT_EXACT
3538static void __init rcu_init_levelspread(struct rcu_state *rsp)
3539{
3540 int i;
3541
04f34650
PM
3542 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3543 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3544 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3545}
3546#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3547static void __init rcu_init_levelspread(struct rcu_state *rsp)
3548{
3549 int ccur;
3550 int cprv;
3551 int i;
3552
4dbd6bb3 3553 cprv = nr_cpu_ids;
f885b7f2 3554 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3555 ccur = rsp->levelcnt[i];
3556 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3557 cprv = ccur;
3558 }
3559}
3560#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3561
3562/*
3563 * Helper function for rcu_init() that initializes one rcu_state structure.
3564 */
394f99a9
LJ
3565static void __init rcu_init_one(struct rcu_state *rsp,
3566 struct rcu_data __percpu *rda)
64db4cff 3567{
b4426b49
FF
3568 static const char * const buf[] = {
3569 "rcu_node_0",
3570 "rcu_node_1",
3571 "rcu_node_2",
3572 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3573 static const char * const fqs[] = {
3574 "rcu_node_fqs_0",
3575 "rcu_node_fqs_1",
3576 "rcu_node_fqs_2",
3577 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3578 static u8 fl_mask = 0x1;
64db4cff
PM
3579 int cpustride = 1;
3580 int i;
3581 int j;
3582 struct rcu_node *rnp;
3583
b6407e86
PM
3584 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3585
4930521a
PM
3586 /* Silence gcc 4.8 warning about array index out of range. */
3587 if (rcu_num_lvls > RCU_NUM_LVLS)
3588 panic("rcu_init_one: rcu_num_lvls overflow");
3589
64db4cff
PM
3590 /* Initialize the level-tracking arrays. */
3591
f885b7f2
PM
3592 for (i = 0; i < rcu_num_lvls; i++)
3593 rsp->levelcnt[i] = num_rcu_lvl[i];
3594 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3595 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3596 rcu_init_levelspread(rsp);
4a81e832
PM
3597 rsp->flavor_mask = fl_mask;
3598 fl_mask <<= 1;
64db4cff
PM
3599
3600 /* Initialize the elements themselves, starting from the leaves. */
3601
f885b7f2 3602 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3603 cpustride *= rsp->levelspread[i];
3604 rnp = rsp->level[i];
3605 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3606 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3607 lockdep_set_class_and_name(&rnp->lock,
3608 &rcu_node_class[i], buf[i]);
394f2769
PM
3609 raw_spin_lock_init(&rnp->fqslock);
3610 lockdep_set_class_and_name(&rnp->fqslock,
3611 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3612 rnp->gpnum = rsp->gpnum;
3613 rnp->completed = rsp->completed;
64db4cff
PM
3614 rnp->qsmask = 0;
3615 rnp->qsmaskinit = 0;
3616 rnp->grplo = j * cpustride;
3617 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3618 if (rnp->grphi >= nr_cpu_ids)
3619 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3620 if (i == 0) {
3621 rnp->grpnum = 0;
3622 rnp->grpmask = 0;
3623 rnp->parent = NULL;
3624 } else {
3625 rnp->grpnum = j % rsp->levelspread[i - 1];
3626 rnp->grpmask = 1UL << rnp->grpnum;
3627 rnp->parent = rsp->level[i - 1] +
3628 j / rsp->levelspread[i - 1];
3629 }
3630 rnp->level = i;
12f5f524 3631 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3632 rcu_init_one_nocb(rnp);
64db4cff
PM
3633 }
3634 }
0c34029a 3635
394f99a9 3636 rsp->rda = rda;
b3dbec76 3637 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3638 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3639 for_each_possible_cpu(i) {
4a90a068 3640 while (i > rnp->grphi)
0c34029a 3641 rnp++;
394f99a9 3642 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3643 rcu_boot_init_percpu_data(i, rsp);
3644 }
6ce75a23 3645 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3646}
3647
f885b7f2
PM
3648/*
3649 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3650 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3651 * the ->node array in the rcu_state structure.
3652 */
3653static void __init rcu_init_geometry(void)
3654{
026ad283 3655 ulong d;
f885b7f2
PM
3656 int i;
3657 int j;
cca6f393 3658 int n = nr_cpu_ids;
f885b7f2
PM
3659 int rcu_capacity[MAX_RCU_LVLS + 1];
3660
026ad283
PM
3661 /*
3662 * Initialize any unspecified boot parameters.
3663 * The default values of jiffies_till_first_fqs and
3664 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3665 * value, which is a function of HZ, then adding one for each
3666 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3667 */
3668 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3669 if (jiffies_till_first_fqs == ULONG_MAX)
3670 jiffies_till_first_fqs = d;
3671 if (jiffies_till_next_fqs == ULONG_MAX)
3672 jiffies_till_next_fqs = d;
3673
f885b7f2 3674 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3675 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3676 nr_cpu_ids == NR_CPUS)
f885b7f2 3677 return;
39479098
PM
3678 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3679 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3680
3681 /*
3682 * Compute number of nodes that can be handled an rcu_node tree
3683 * with the given number of levels. Setting rcu_capacity[0] makes
3684 * some of the arithmetic easier.
3685 */
3686 rcu_capacity[0] = 1;
3687 rcu_capacity[1] = rcu_fanout_leaf;
3688 for (i = 2; i <= MAX_RCU_LVLS; i++)
3689 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3690
3691 /*
3692 * The boot-time rcu_fanout_leaf parameter is only permitted
3693 * to increase the leaf-level fanout, not decrease it. Of course,
3694 * the leaf-level fanout cannot exceed the number of bits in
3695 * the rcu_node masks. Finally, the tree must be able to accommodate
3696 * the configured number of CPUs. Complain and fall back to the
3697 * compile-time values if these limits are exceeded.
3698 */
3699 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3700 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3701 n > rcu_capacity[MAX_RCU_LVLS]) {
3702 WARN_ON(1);
3703 return;
3704 }
3705
3706 /* Calculate the number of rcu_nodes at each level of the tree. */
3707 for (i = 1; i <= MAX_RCU_LVLS; i++)
3708 if (n <= rcu_capacity[i]) {
3709 for (j = 0; j <= i; j++)
3710 num_rcu_lvl[j] =
3711 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3712 rcu_num_lvls = i;
3713 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3714 num_rcu_lvl[j] = 0;
3715 break;
3716 }
3717
3718 /* Calculate the total number of rcu_node structures. */
3719 rcu_num_nodes = 0;
3720 for (i = 0; i <= MAX_RCU_LVLS; i++)
3721 rcu_num_nodes += num_rcu_lvl[i];
3722 rcu_num_nodes -= n;
3723}
3724
9f680ab4 3725void __init rcu_init(void)
64db4cff 3726{
017c4261 3727 int cpu;
9f680ab4 3728
f41d911f 3729 rcu_bootup_announce();
f885b7f2 3730 rcu_init_geometry();
394f99a9 3731 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3732 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3733 __rcu_init_preempt();
b5b39360 3734 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3735
3736 /*
3737 * We don't need protection against CPU-hotplug here because
3738 * this is called early in boot, before either interrupts
3739 * or the scheduler are operational.
3740 */
3741 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3742 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3743 for_each_online_cpu(cpu)
3744 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3745}
3746
4102adab 3747#include "tree_plugin.h"
This page took 0.646633 seconds and 5 git commands to generate.