rcu: Remove "cpu" argument to rcu_note_context_switch()
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
a41bfeb2 94struct rcu_state sname##_state = { \
6c90cc7b 95 .level = { &sname##_state.node[0] }, \
037b64ed 96 .call = cr, \
af446b70 97 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
a8a29b3b 105 .name = RCU_STATE_NAME(sname), \
a4889858 106 .abbr = sabbr, \
a41bfeb2 107}; \
11bbb235 108DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
e534165b 113static struct rcu_state *rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
f885b7f2
PM
116/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 118module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
119int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126};
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
b0d30417
PM
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 133 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
bbad9379
PM
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
b0d30417
PM
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
a46e0899
PM
155#ifdef CONFIG_RCU_BOOST
156
a26ac245
PM
157/*
158 * Control variables for per-CPU and per-rcu_node kthreads. These
159 * handle all flavors of RCU.
160 */
161static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 162DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 163DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 164DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 165
a46e0899
PM
166#endif /* #ifdef CONFIG_RCU_BOOST */
167
5d01bbd1 168static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
169static void invoke_rcu_core(void);
170static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 171
4a298656
PM
172/*
173 * Track the rcutorture test sequence number and the update version
174 * number within a given test. The rcutorture_testseq is incremented
175 * on every rcutorture module load and unload, so has an odd value
176 * when a test is running. The rcutorture_vernum is set to zero
177 * when rcutorture starts and is incremented on each rcutorture update.
178 * These variables enable correlating rcutorture output with the
179 * RCU tracing information.
180 */
181unsigned long rcutorture_testseq;
182unsigned long rcutorture_vernum;
183
fc2219d4
PM
184/*
185 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
186 * permit this function to be invoked without holding the root rcu_node
187 * structure's ->lock, but of course results can be subject to change.
188 */
189static int rcu_gp_in_progress(struct rcu_state *rsp)
190{
191 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
192}
193
b1f77b05 194/*
d6714c22 195 * Note a quiescent state. Because we do not need to know
b1f77b05 196 * how many quiescent states passed, just if there was at least
d6714c22 197 * one since the start of the grace period, this just sets a flag.
e4cc1f22 198 * The caller must have disabled preemption.
b1f77b05 199 */
284a8c93 200void rcu_sched_qs(void)
b1f77b05 201{
284a8c93
PM
202 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
203 trace_rcu_grace_period(TPS("rcu_sched"),
204 __this_cpu_read(rcu_sched_data.gpnum),
205 TPS("cpuqs"));
206 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
207 }
b1f77b05
IM
208}
209
284a8c93 210void rcu_bh_qs(void)
b1f77b05 211{
284a8c93
PM
212 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
213 trace_rcu_grace_period(TPS("rcu_bh"),
214 __this_cpu_read(rcu_bh_data.gpnum),
215 TPS("cpuqs"));
216 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
217 }
b1f77b05 218}
64db4cff 219
4a81e832
PM
220static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
221
222static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
223 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
224 .dynticks = ATOMIC_INIT(1),
225#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
226 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
227 .dynticks_idle = ATOMIC_INIT(1),
228#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
229};
230
231/*
232 * Let the RCU core know that this CPU has gone through the scheduler,
233 * which is a quiescent state. This is called when the need for a
234 * quiescent state is urgent, so we burn an atomic operation and full
235 * memory barriers to let the RCU core know about it, regardless of what
236 * this CPU might (or might not) do in the near future.
237 *
238 * We inform the RCU core by emulating a zero-duration dyntick-idle
239 * period, which we in turn do by incrementing the ->dynticks counter
240 * by two.
241 */
242static void rcu_momentary_dyntick_idle(void)
243{
244 unsigned long flags;
245 struct rcu_data *rdp;
246 struct rcu_dynticks *rdtp;
247 int resched_mask;
248 struct rcu_state *rsp;
249
250 local_irq_save(flags);
251
252 /*
253 * Yes, we can lose flag-setting operations. This is OK, because
254 * the flag will be set again after some delay.
255 */
256 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
257 raw_cpu_write(rcu_sched_qs_mask, 0);
258
259 /* Find the flavor that needs a quiescent state. */
260 for_each_rcu_flavor(rsp) {
261 rdp = raw_cpu_ptr(rsp->rda);
262 if (!(resched_mask & rsp->flavor_mask))
263 continue;
264 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
265 if (ACCESS_ONCE(rdp->mynode->completed) !=
266 ACCESS_ONCE(rdp->cond_resched_completed))
267 continue;
268
269 /*
270 * Pretend to be momentarily idle for the quiescent state.
271 * This allows the grace-period kthread to record the
272 * quiescent state, with no need for this CPU to do anything
273 * further.
274 */
275 rdtp = this_cpu_ptr(&rcu_dynticks);
276 smp_mb__before_atomic(); /* Earlier stuff before QS. */
277 atomic_add(2, &rdtp->dynticks); /* QS. */
278 smp_mb__after_atomic(); /* Later stuff after QS. */
279 break;
280 }
281 local_irq_restore(flags);
282}
283
25502a6c
PM
284/*
285 * Note a context switch. This is a quiescent state for RCU-sched,
286 * and requires special handling for preemptible RCU.
e4cc1f22 287 * The caller must have disabled preemption.
25502a6c 288 */
38200cf2 289void rcu_note_context_switch(void)
25502a6c 290{
f7f7bac9 291 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 292 rcu_sched_qs();
38200cf2 293 rcu_preempt_note_context_switch();
4a81e832
PM
294 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
295 rcu_momentary_dyntick_idle();
f7f7bac9 296 trace_rcu_utilization(TPS("End context switch"));
25502a6c 297}
29ce8310 298EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 299
878d7439
ED
300static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
301static long qhimark = 10000; /* If this many pending, ignore blimit. */
302static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 303
878d7439
ED
304module_param(blimit, long, 0444);
305module_param(qhimark, long, 0444);
306module_param(qlowmark, long, 0444);
3d76c082 307
026ad283
PM
308static ulong jiffies_till_first_fqs = ULONG_MAX;
309static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
310
311module_param(jiffies_till_first_fqs, ulong, 0644);
312module_param(jiffies_till_next_fqs, ulong, 0644);
313
4a81e832
PM
314/*
315 * How long the grace period must be before we start recruiting
316 * quiescent-state help from rcu_note_context_switch().
317 */
318static ulong jiffies_till_sched_qs = HZ / 20;
319module_param(jiffies_till_sched_qs, ulong, 0644);
320
48a7639c 321static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 322 struct rcu_data *rdp);
217af2a2
PM
323static void force_qs_rnp(struct rcu_state *rsp,
324 int (*f)(struct rcu_data *rsp, bool *isidle,
325 unsigned long *maxj),
326 bool *isidle, unsigned long *maxj);
4cdfc175 327static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 328static int rcu_pending(void);
64db4cff
PM
329
330/*
d6714c22 331 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 332 */
d6714c22 333long rcu_batches_completed_sched(void)
64db4cff 334{
d6714c22 335 return rcu_sched_state.completed;
64db4cff 336}
d6714c22 337EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
338
339/*
340 * Return the number of RCU BH batches processed thus far for debug & stats.
341 */
342long rcu_batches_completed_bh(void)
343{
344 return rcu_bh_state.completed;
345}
346EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
347
a381d757
ACB
348/*
349 * Force a quiescent state.
350 */
351void rcu_force_quiescent_state(void)
352{
e534165b 353 force_quiescent_state(rcu_state_p);
a381d757
ACB
354}
355EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
356
bf66f18e
PM
357/*
358 * Force a quiescent state for RCU BH.
359 */
360void rcu_bh_force_quiescent_state(void)
361{
4cdfc175 362 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
363}
364EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
365
afea227f
PM
366/*
367 * Show the state of the grace-period kthreads.
368 */
369void show_rcu_gp_kthreads(void)
370{
371 struct rcu_state *rsp;
372
373 for_each_rcu_flavor(rsp) {
374 pr_info("%s: wait state: %d ->state: %#lx\n",
375 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
376 /* sched_show_task(rsp->gp_kthread); */
377 }
378}
379EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
380
4a298656
PM
381/*
382 * Record the number of times rcutorture tests have been initiated and
383 * terminated. This information allows the debugfs tracing stats to be
384 * correlated to the rcutorture messages, even when the rcutorture module
385 * is being repeatedly loaded and unloaded. In other words, we cannot
386 * store this state in rcutorture itself.
387 */
388void rcutorture_record_test_transition(void)
389{
390 rcutorture_testseq++;
391 rcutorture_vernum = 0;
392}
393EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
394
ad0dc7f9
PM
395/*
396 * Send along grace-period-related data for rcutorture diagnostics.
397 */
398void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
399 unsigned long *gpnum, unsigned long *completed)
400{
401 struct rcu_state *rsp = NULL;
402
403 switch (test_type) {
404 case RCU_FLAVOR:
e534165b 405 rsp = rcu_state_p;
ad0dc7f9
PM
406 break;
407 case RCU_BH_FLAVOR:
408 rsp = &rcu_bh_state;
409 break;
410 case RCU_SCHED_FLAVOR:
411 rsp = &rcu_sched_state;
412 break;
413 default:
414 break;
415 }
416 if (rsp != NULL) {
417 *flags = ACCESS_ONCE(rsp->gp_flags);
418 *gpnum = ACCESS_ONCE(rsp->gpnum);
419 *completed = ACCESS_ONCE(rsp->completed);
420 return;
421 }
422 *flags = 0;
423 *gpnum = 0;
424 *completed = 0;
425}
426EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
427
4a298656
PM
428/*
429 * Record the number of writer passes through the current rcutorture test.
430 * This is also used to correlate debugfs tracing stats with the rcutorture
431 * messages.
432 */
433void rcutorture_record_progress(unsigned long vernum)
434{
435 rcutorture_vernum++;
436}
437EXPORT_SYMBOL_GPL(rcutorture_record_progress);
438
bf66f18e
PM
439/*
440 * Force a quiescent state for RCU-sched.
441 */
442void rcu_sched_force_quiescent_state(void)
443{
4cdfc175 444 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
445}
446EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
447
64db4cff
PM
448/*
449 * Does the CPU have callbacks ready to be invoked?
450 */
451static int
452cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
453{
3fbfbf7a
PM
454 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
455 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
456}
457
365187fb
PM
458/*
459 * Return the root node of the specified rcu_state structure.
460 */
461static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
462{
463 return &rsp->node[0];
464}
465
466/*
467 * Is there any need for future grace periods?
468 * Interrupts must be disabled. If the caller does not hold the root
469 * rnp_node structure's ->lock, the results are advisory only.
470 */
471static int rcu_future_needs_gp(struct rcu_state *rsp)
472{
473 struct rcu_node *rnp = rcu_get_root(rsp);
474 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
475 int *fp = &rnp->need_future_gp[idx];
476
477 return ACCESS_ONCE(*fp);
478}
479
64db4cff 480/*
dc35c893
PM
481 * Does the current CPU require a not-yet-started grace period?
482 * The caller must have disabled interrupts to prevent races with
483 * normal callback registry.
64db4cff
PM
484 */
485static int
486cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
487{
dc35c893 488 int i;
3fbfbf7a 489
dc35c893
PM
490 if (rcu_gp_in_progress(rsp))
491 return 0; /* No, a grace period is already in progress. */
365187fb 492 if (rcu_future_needs_gp(rsp))
34ed6246 493 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
494 if (!rdp->nxttail[RCU_NEXT_TAIL])
495 return 0; /* No, this is a no-CBs (or offline) CPU. */
496 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
497 return 1; /* Yes, this CPU has newly registered callbacks. */
498 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
499 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
500 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
501 rdp->nxtcompleted[i]))
502 return 1; /* Yes, CBs for future grace period. */
503 return 0; /* No grace period needed. */
64db4cff
PM
504}
505
9b2e4f18 506/*
adf5091e 507 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
508 *
509 * If the new value of the ->dynticks_nesting counter now is zero,
510 * we really have entered idle, and must do the appropriate accounting.
511 * The caller must have disabled interrupts.
512 */
28ced795 513static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 514{
96d3fd0d
PM
515 struct rcu_state *rsp;
516 struct rcu_data *rdp;
28ced795 517 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 518
f7f7bac9 519 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 520 if (!user && !is_idle_task(current)) {
289828e6
PM
521 struct task_struct *idle __maybe_unused =
522 idle_task(smp_processor_id());
0989cb46 523
f7f7bac9 524 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 525 ftrace_dump(DUMP_ORIG);
0989cb46
PM
526 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
527 current->pid, current->comm,
528 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 529 }
96d3fd0d
PM
530 for_each_rcu_flavor(rsp) {
531 rdp = this_cpu_ptr(rsp->rda);
532 do_nocb_deferred_wakeup(rdp);
533 }
aea1b35e 534 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18 535 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 536 smp_mb__before_atomic(); /* See above. */
9b2e4f18 537 atomic_inc(&rdtp->dynticks);
4e857c58 538 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 539 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 540 rcu_dynticks_task_enter();
c44e2cdd
PM
541
542 /*
adf5091e 543 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
544 * in an RCU read-side critical section.
545 */
546 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
547 "Illegal idle entry in RCU read-side critical section.");
548 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
549 "Illegal idle entry in RCU-bh read-side critical section.");
550 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
551 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 552}
64db4cff 553
adf5091e
FW
554/*
555 * Enter an RCU extended quiescent state, which can be either the
556 * idle loop or adaptive-tickless usermode execution.
64db4cff 557 */
adf5091e 558static void rcu_eqs_enter(bool user)
64db4cff 559{
4145fa7f 560 long long oldval;
64db4cff
PM
561 struct rcu_dynticks *rdtp;
562
c9d4b0af 563 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 564 oldval = rdtp->dynticks_nesting;
29e37d81 565 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 566 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 567 rdtp->dynticks_nesting = 0;
28ced795 568 rcu_eqs_enter_common(oldval, user);
3a592405 569 } else {
29e37d81 570 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 571 }
64db4cff 572}
adf5091e
FW
573
574/**
575 * rcu_idle_enter - inform RCU that current CPU is entering idle
576 *
577 * Enter idle mode, in other words, -leave- the mode in which RCU
578 * read-side critical sections can occur. (Though RCU read-side
579 * critical sections can occur in irq handlers in idle, a possibility
580 * handled by irq_enter() and irq_exit().)
581 *
582 * We crowbar the ->dynticks_nesting field to zero to allow for
583 * the possibility of usermode upcalls having messed up our count
584 * of interrupt nesting level during the prior busy period.
585 */
586void rcu_idle_enter(void)
587{
c5d900bf
FW
588 unsigned long flags;
589
590 local_irq_save(flags);
cb349ca9 591 rcu_eqs_enter(false);
28ced795 592 rcu_sysidle_enter(0);
c5d900bf 593 local_irq_restore(flags);
adf5091e 594}
8a2ecf47 595EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 596
2b1d5024 597#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
598/**
599 * rcu_user_enter - inform RCU that we are resuming userspace.
600 *
601 * Enter RCU idle mode right before resuming userspace. No use of RCU
602 * is permitted between this call and rcu_user_exit(). This way the
603 * CPU doesn't need to maintain the tick for RCU maintenance purposes
604 * when the CPU runs in userspace.
605 */
606void rcu_user_enter(void)
607{
91d1aa43 608 rcu_eqs_enter(1);
adf5091e 609}
2b1d5024 610#endif /* CONFIG_RCU_USER_QS */
19dd1591 611
9b2e4f18
PM
612/**
613 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
614 *
615 * Exit from an interrupt handler, which might possibly result in entering
616 * idle mode, in other words, leaving the mode in which read-side critical
617 * sections can occur.
64db4cff 618 *
9b2e4f18
PM
619 * This code assumes that the idle loop never does anything that might
620 * result in unbalanced calls to irq_enter() and irq_exit(). If your
621 * architecture violates this assumption, RCU will give you what you
622 * deserve, good and hard. But very infrequently and irreproducibly.
623 *
624 * Use things like work queues to work around this limitation.
625 *
626 * You have been warned.
64db4cff 627 */
9b2e4f18 628void rcu_irq_exit(void)
64db4cff
PM
629{
630 unsigned long flags;
4145fa7f 631 long long oldval;
64db4cff
PM
632 struct rcu_dynticks *rdtp;
633
634 local_irq_save(flags);
c9d4b0af 635 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 636 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
637 rdtp->dynticks_nesting--;
638 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 639 if (rdtp->dynticks_nesting)
f7f7bac9 640 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 641 else
28ced795
CL
642 rcu_eqs_enter_common(oldval, true);
643 rcu_sysidle_enter(1);
9b2e4f18
PM
644 local_irq_restore(flags);
645}
646
647/*
adf5091e 648 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
649 *
650 * If the new value of the ->dynticks_nesting counter was previously zero,
651 * we really have exited idle, and must do the appropriate accounting.
652 * The caller must have disabled interrupts.
653 */
28ced795 654static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 655{
28ced795
CL
656 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
657
176f8f7a 658 rcu_dynticks_task_exit();
4e857c58 659 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
660 atomic_inc(&rdtp->dynticks);
661 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 662 smp_mb__after_atomic(); /* See above. */
23b5c8fa 663 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 664 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 665 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 666 if (!user && !is_idle_task(current)) {
289828e6
PM
667 struct task_struct *idle __maybe_unused =
668 idle_task(smp_processor_id());
0989cb46 669
f7f7bac9 670 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 671 oldval, rdtp->dynticks_nesting);
bf1304e9 672 ftrace_dump(DUMP_ORIG);
0989cb46
PM
673 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
674 current->pid, current->comm,
675 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
676 }
677}
678
adf5091e
FW
679/*
680 * Exit an RCU extended quiescent state, which can be either the
681 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 682 */
adf5091e 683static void rcu_eqs_exit(bool user)
9b2e4f18 684{
9b2e4f18
PM
685 struct rcu_dynticks *rdtp;
686 long long oldval;
687
c9d4b0af 688 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 689 oldval = rdtp->dynticks_nesting;
29e37d81 690 WARN_ON_ONCE(oldval < 0);
3a592405 691 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 692 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 693 } else {
29e37d81 694 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 695 rcu_eqs_exit_common(oldval, user);
3a592405 696 }
9b2e4f18 697}
adf5091e
FW
698
699/**
700 * rcu_idle_exit - inform RCU that current CPU is leaving idle
701 *
702 * Exit idle mode, in other words, -enter- the mode in which RCU
703 * read-side critical sections can occur.
704 *
705 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
706 * allow for the possibility of usermode upcalls messing up our count
707 * of interrupt nesting level during the busy period that is just
708 * now starting.
709 */
710void rcu_idle_exit(void)
711{
c5d900bf
FW
712 unsigned long flags;
713
714 local_irq_save(flags);
cb349ca9 715 rcu_eqs_exit(false);
28ced795 716 rcu_sysidle_exit(0);
c5d900bf 717 local_irq_restore(flags);
adf5091e 718}
8a2ecf47 719EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 720
2b1d5024 721#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
722/**
723 * rcu_user_exit - inform RCU that we are exiting userspace.
724 *
725 * Exit RCU idle mode while entering the kernel because it can
726 * run a RCU read side critical section anytime.
727 */
728void rcu_user_exit(void)
729{
91d1aa43 730 rcu_eqs_exit(1);
adf5091e 731}
2b1d5024 732#endif /* CONFIG_RCU_USER_QS */
19dd1591 733
9b2e4f18
PM
734/**
735 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
736 *
737 * Enter an interrupt handler, which might possibly result in exiting
738 * idle mode, in other words, entering the mode in which read-side critical
739 * sections can occur.
740 *
741 * Note that the Linux kernel is fully capable of entering an interrupt
742 * handler that it never exits, for example when doing upcalls to
743 * user mode! This code assumes that the idle loop never does upcalls to
744 * user mode. If your architecture does do upcalls from the idle loop (or
745 * does anything else that results in unbalanced calls to the irq_enter()
746 * and irq_exit() functions), RCU will give you what you deserve, good
747 * and hard. But very infrequently and irreproducibly.
748 *
749 * Use things like work queues to work around this limitation.
750 *
751 * You have been warned.
752 */
753void rcu_irq_enter(void)
754{
755 unsigned long flags;
756 struct rcu_dynticks *rdtp;
757 long long oldval;
758
759 local_irq_save(flags);
c9d4b0af 760 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
761 oldval = rdtp->dynticks_nesting;
762 rdtp->dynticks_nesting++;
763 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 764 if (oldval)
f7f7bac9 765 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 766 else
28ced795
CL
767 rcu_eqs_exit_common(oldval, true);
768 rcu_sysidle_exit(1);
64db4cff 769 local_irq_restore(flags);
64db4cff
PM
770}
771
772/**
773 * rcu_nmi_enter - inform RCU of entry to NMI context
774 *
775 * If the CPU was idle with dynamic ticks active, and there is no
776 * irq handler running, this updates rdtp->dynticks_nmi to let the
777 * RCU grace-period handling know that the CPU is active.
778 */
779void rcu_nmi_enter(void)
780{
c9d4b0af 781 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 782
23b5c8fa
PM
783 if (rdtp->dynticks_nmi_nesting == 0 &&
784 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 785 return;
23b5c8fa 786 rdtp->dynticks_nmi_nesting++;
4e857c58 787 smp_mb__before_atomic(); /* Force delay from prior write. */
23b5c8fa
PM
788 atomic_inc(&rdtp->dynticks);
789 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 790 smp_mb__after_atomic(); /* See above. */
23b5c8fa 791 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
792}
793
794/**
795 * rcu_nmi_exit - inform RCU of exit from NMI context
796 *
797 * If the CPU was idle with dynamic ticks active, and there is no
798 * irq handler running, this updates rdtp->dynticks_nmi to let the
799 * RCU grace-period handling know that the CPU is no longer active.
800 */
801void rcu_nmi_exit(void)
802{
c9d4b0af 803 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 804
23b5c8fa
PM
805 if (rdtp->dynticks_nmi_nesting == 0 ||
806 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 807 return;
23b5c8fa 808 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 809 smp_mb__before_atomic(); /* See above. */
23b5c8fa 810 atomic_inc(&rdtp->dynticks);
4e857c58 811 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 812 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
813}
814
815/**
5c173eb8
PM
816 * __rcu_is_watching - are RCU read-side critical sections safe?
817 *
818 * Return true if RCU is watching the running CPU, which means that
819 * this CPU can safely enter RCU read-side critical sections. Unlike
820 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
821 * least disabled preemption.
822 */
9418fb20 823bool notrace __rcu_is_watching(void)
5c173eb8
PM
824{
825 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
826}
827
828/**
829 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 830 *
9b2e4f18 831 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 832 * or NMI handler, return true.
64db4cff 833 */
9418fb20 834bool notrace rcu_is_watching(void)
64db4cff 835{
f534ed1f 836 bool ret;
34240697
PM
837
838 preempt_disable();
5c173eb8 839 ret = __rcu_is_watching();
34240697
PM
840 preempt_enable();
841 return ret;
64db4cff 842}
5c173eb8 843EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 844
62fde6ed 845#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
846
847/*
848 * Is the current CPU online? Disable preemption to avoid false positives
849 * that could otherwise happen due to the current CPU number being sampled,
850 * this task being preempted, its old CPU being taken offline, resuming
851 * on some other CPU, then determining that its old CPU is now offline.
852 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
853 * the check for rcu_scheduler_fully_active. Note also that it is OK
854 * for a CPU coming online to use RCU for one jiffy prior to marking itself
855 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
856 * offline to continue to use RCU for one jiffy after marking itself
857 * offline in the cpu_online_mask. This leniency is necessary given the
858 * non-atomic nature of the online and offline processing, for example,
859 * the fact that a CPU enters the scheduler after completing the CPU_DYING
860 * notifiers.
861 *
862 * This is also why RCU internally marks CPUs online during the
863 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
864 *
865 * Disable checking if in an NMI handler because we cannot safely report
866 * errors from NMI handlers anyway.
867 */
868bool rcu_lockdep_current_cpu_online(void)
869{
2036d94a
PM
870 struct rcu_data *rdp;
871 struct rcu_node *rnp;
c0d6d01b
PM
872 bool ret;
873
874 if (in_nmi())
f6f7ee9a 875 return true;
c0d6d01b 876 preempt_disable();
c9d4b0af 877 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
878 rnp = rdp->mynode;
879 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
880 !rcu_scheduler_fully_active;
881 preempt_enable();
882 return ret;
883}
884EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
885
62fde6ed 886#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 887
64db4cff 888/**
9b2e4f18 889 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 890 *
9b2e4f18
PM
891 * If the current CPU is idle or running at a first-level (not nested)
892 * interrupt from idle, return true. The caller must have at least
893 * disabled preemption.
64db4cff 894 */
62e3cb14 895static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 896{
c9d4b0af 897 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
898}
899
64db4cff
PM
900/*
901 * Snapshot the specified CPU's dynticks counter so that we can later
902 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 903 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 904 */
217af2a2
PM
905static int dyntick_save_progress_counter(struct rcu_data *rdp,
906 bool *isidle, unsigned long *maxj)
64db4cff 907{
23b5c8fa 908 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 909 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
910 if ((rdp->dynticks_snap & 0x1) == 0) {
911 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
912 return 1;
913 } else {
914 return 0;
915 }
64db4cff
PM
916}
917
6193c76a
PM
918/*
919 * This function really isn't for public consumption, but RCU is special in
920 * that context switches can allow the state machine to make progress.
921 */
922extern void resched_cpu(int cpu);
923
64db4cff
PM
924/*
925 * Return true if the specified CPU has passed through a quiescent
926 * state by virtue of being in or having passed through an dynticks
927 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 928 * for this same CPU, or by virtue of having been offline.
64db4cff 929 */
217af2a2
PM
930static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
931 bool *isidle, unsigned long *maxj)
64db4cff 932{
7eb4f455 933 unsigned int curr;
4a81e832 934 int *rcrmp;
7eb4f455 935 unsigned int snap;
64db4cff 936
7eb4f455
PM
937 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
938 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
939
940 /*
941 * If the CPU passed through or entered a dynticks idle phase with
942 * no active irq/NMI handlers, then we can safely pretend that the CPU
943 * already acknowledged the request to pass through a quiescent
944 * state. Either way, that CPU cannot possibly be in an RCU
945 * read-side critical section that started before the beginning
946 * of the current RCU grace period.
947 */
7eb4f455 948 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 949 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
950 rdp->dynticks_fqs++;
951 return 1;
952 }
953
a82dcc76
PM
954 /*
955 * Check for the CPU being offline, but only if the grace period
956 * is old enough. We don't need to worry about the CPU changing
957 * state: If we see it offline even once, it has been through a
958 * quiescent state.
959 *
960 * The reason for insisting that the grace period be at least
961 * one jiffy old is that CPUs that are not quite online and that
962 * have just gone offline can still execute RCU read-side critical
963 * sections.
964 */
965 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
966 return 0; /* Grace period is not old enough. */
967 barrier();
968 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 969 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
970 rdp->offline_fqs++;
971 return 1;
972 }
65d798f0
PM
973
974 /*
4a81e832
PM
975 * A CPU running for an extended time within the kernel can
976 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
977 * even context-switching back and forth between a pair of
978 * in-kernel CPU-bound tasks cannot advance grace periods.
979 * So if the grace period is old enough, make the CPU pay attention.
980 * Note that the unsynchronized assignments to the per-CPU
981 * rcu_sched_qs_mask variable are safe. Yes, setting of
982 * bits can be lost, but they will be set again on the next
983 * force-quiescent-state pass. So lost bit sets do not result
984 * in incorrect behavior, merely in a grace period lasting
985 * a few jiffies longer than it might otherwise. Because
986 * there are at most four threads involved, and because the
987 * updates are only once every few jiffies, the probability of
988 * lossage (and thus of slight grace-period extension) is
989 * quite low.
990 *
991 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
992 * is set too high, we override with half of the RCU CPU stall
993 * warning delay.
6193c76a 994 */
4a81e832
PM
995 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
996 if (ULONG_CMP_GE(jiffies,
997 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 998 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
999 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1000 ACCESS_ONCE(rdp->cond_resched_completed) =
1001 ACCESS_ONCE(rdp->mynode->completed);
1002 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1003 ACCESS_ONCE(*rcrmp) =
1004 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1005 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1006 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1007 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1008 /* Time to beat on that CPU again! */
1009 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1010 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1011 }
6193c76a
PM
1012 }
1013
a82dcc76 1014 return 0;
64db4cff
PM
1015}
1016
64db4cff
PM
1017static void record_gp_stall_check_time(struct rcu_state *rsp)
1018{
cb1e78cf 1019 unsigned long j = jiffies;
6193c76a 1020 unsigned long j1;
26cdfedf
PM
1021
1022 rsp->gp_start = j;
1023 smp_wmb(); /* Record start time before stall time. */
6193c76a 1024 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1025 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1026 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
1027}
1028
b637a328 1029/*
bc1dce51 1030 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1031 */
1032static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1033{
1034 int cpu;
1035 unsigned long flags;
1036 struct rcu_node *rnp;
1037
1038 rcu_for_each_leaf_node(rsp, rnp) {
1039 raw_spin_lock_irqsave(&rnp->lock, flags);
1040 if (rnp->qsmask != 0) {
1041 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1042 if (rnp->qsmask & (1UL << cpu))
1043 dump_cpu_task(rnp->grplo + cpu);
1044 }
1045 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1046 }
1047}
1048
64db4cff
PM
1049static void print_other_cpu_stall(struct rcu_state *rsp)
1050{
1051 int cpu;
1052 long delta;
1053 unsigned long flags;
285fe294 1054 int ndetected = 0;
64db4cff 1055 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1056 long totqlen = 0;
64db4cff
PM
1057
1058 /* Only let one CPU complain about others per time interval. */
1059
1304afb2 1060 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1061 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1062 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1063 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1064 return;
1065 }
4fc5b755 1066 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1067 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1068
8cdd32a9
PM
1069 /*
1070 * OK, time to rat on our buddy...
1071 * See Documentation/RCU/stallwarn.txt for info on how to debug
1072 * RCU CPU stall warnings.
1073 */
d7f3e207 1074 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1075 rsp->name);
a858af28 1076 print_cpu_stall_info_begin();
a0b6c9a7 1077 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1078 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1079 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1080 if (rnp->qsmask != 0) {
1081 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1082 if (rnp->qsmask & (1UL << cpu)) {
1083 print_cpu_stall_info(rsp,
1084 rnp->grplo + cpu);
1085 ndetected++;
1086 }
1087 }
3acd9eb3 1088 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1089 }
a858af28
PM
1090
1091 /*
1092 * Now rat on any tasks that got kicked up to the root rcu_node
1093 * due to CPU offlining.
1094 */
1095 rnp = rcu_get_root(rsp);
1096 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 1097 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
1098 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1099
1100 print_cpu_stall_info_end();
53bb857c
PM
1101 for_each_possible_cpu(cpu)
1102 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1103 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1104 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1105 (long)rsp->gpnum, (long)rsp->completed, totqlen);
9bc8b558 1106 if (ndetected == 0)
d7f3e207 1107 pr_err("INFO: Stall ended before state dump start\n");
bc1dce51 1108 else
b637a328 1109 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1110
4cdfc175 1111 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1112
1113 rcu_print_detail_task_stall(rsp);
1114
4cdfc175 1115 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1116}
1117
1118static void print_cpu_stall(struct rcu_state *rsp)
1119{
53bb857c 1120 int cpu;
64db4cff
PM
1121 unsigned long flags;
1122 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1123 long totqlen = 0;
64db4cff 1124
8cdd32a9
PM
1125 /*
1126 * OK, time to rat on ourselves...
1127 * See Documentation/RCU/stallwarn.txt for info on how to debug
1128 * RCU CPU stall warnings.
1129 */
d7f3e207 1130 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1131 print_cpu_stall_info_begin();
1132 print_cpu_stall_info(rsp, smp_processor_id());
1133 print_cpu_stall_info_end();
53bb857c
PM
1134 for_each_possible_cpu(cpu)
1135 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1136 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1137 jiffies - rsp->gp_start,
1138 (long)rsp->gpnum, (long)rsp->completed, totqlen);
bc1dce51 1139 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1140
1304afb2 1141 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1142 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1143 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1144 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1145 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1146
b021fe3e
PZ
1147 /*
1148 * Attempt to revive the RCU machinery by forcing a context switch.
1149 *
1150 * A context switch would normally allow the RCU state machine to make
1151 * progress and it could be we're stuck in kernel space without context
1152 * switches for an entirely unreasonable amount of time.
1153 */
1154 resched_cpu(smp_processor_id());
64db4cff
PM
1155}
1156
1157static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1158{
26cdfedf
PM
1159 unsigned long completed;
1160 unsigned long gpnum;
1161 unsigned long gps;
bad6e139
PM
1162 unsigned long j;
1163 unsigned long js;
64db4cff
PM
1164 struct rcu_node *rnp;
1165
26cdfedf 1166 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1167 return;
cb1e78cf 1168 j = jiffies;
26cdfedf
PM
1169
1170 /*
1171 * Lots of memory barriers to reject false positives.
1172 *
1173 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1174 * then rsp->gp_start, and finally rsp->completed. These values
1175 * are updated in the opposite order with memory barriers (or
1176 * equivalent) during grace-period initialization and cleanup.
1177 * Now, a false positive can occur if we get an new value of
1178 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1179 * the memory barriers, the only way that this can happen is if one
1180 * grace period ends and another starts between these two fetches.
1181 * Detect this by comparing rsp->completed with the previous fetch
1182 * from rsp->gpnum.
1183 *
1184 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1185 * and rsp->gp_start suffice to forestall false positives.
1186 */
1187 gpnum = ACCESS_ONCE(rsp->gpnum);
1188 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1189 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1190 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1191 gps = ACCESS_ONCE(rsp->gp_start);
1192 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1193 completed = ACCESS_ONCE(rsp->completed);
1194 if (ULONG_CMP_GE(completed, gpnum) ||
1195 ULONG_CMP_LT(j, js) ||
1196 ULONG_CMP_GE(gps, js))
1197 return; /* No stall or GP completed since entering function. */
64db4cff 1198 rnp = rdp->mynode;
c96ea7cf 1199 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1200 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1201
1202 /* We haven't checked in, so go dump stack. */
1203 print_cpu_stall(rsp);
1204
bad6e139
PM
1205 } else if (rcu_gp_in_progress(rsp) &&
1206 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1207
bad6e139 1208 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1209 print_other_cpu_stall(rsp);
1210 }
1211}
1212
53d84e00
PM
1213/**
1214 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1215 *
1216 * Set the stall-warning timeout way off into the future, thus preventing
1217 * any RCU CPU stall-warning messages from appearing in the current set of
1218 * RCU grace periods.
1219 *
1220 * The caller must disable hard irqs.
1221 */
1222void rcu_cpu_stall_reset(void)
1223{
6ce75a23
PM
1224 struct rcu_state *rsp;
1225
1226 for_each_rcu_flavor(rsp)
4fc5b755 1227 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1228}
1229
3f5d3ea6
PM
1230/*
1231 * Initialize the specified rcu_data structure's callback list to empty.
1232 */
1233static void init_callback_list(struct rcu_data *rdp)
1234{
1235 int i;
1236
34ed6246
PM
1237 if (init_nocb_callback_list(rdp))
1238 return;
3f5d3ea6
PM
1239 rdp->nxtlist = NULL;
1240 for (i = 0; i < RCU_NEXT_SIZE; i++)
1241 rdp->nxttail[i] = &rdp->nxtlist;
1242}
1243
dc35c893
PM
1244/*
1245 * Determine the value that ->completed will have at the end of the
1246 * next subsequent grace period. This is used to tag callbacks so that
1247 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1248 * been dyntick-idle for an extended period with callbacks under the
1249 * influence of RCU_FAST_NO_HZ.
1250 *
1251 * The caller must hold rnp->lock with interrupts disabled.
1252 */
1253static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1254 struct rcu_node *rnp)
1255{
1256 /*
1257 * If RCU is idle, we just wait for the next grace period.
1258 * But we can only be sure that RCU is idle if we are looking
1259 * at the root rcu_node structure -- otherwise, a new grace
1260 * period might have started, but just not yet gotten around
1261 * to initializing the current non-root rcu_node structure.
1262 */
1263 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1264 return rnp->completed + 1;
1265
1266 /*
1267 * Otherwise, wait for a possible partial grace period and
1268 * then the subsequent full grace period.
1269 */
1270 return rnp->completed + 2;
1271}
1272
0446be48
PM
1273/*
1274 * Trace-event helper function for rcu_start_future_gp() and
1275 * rcu_nocb_wait_gp().
1276 */
1277static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1278 unsigned long c, const char *s)
0446be48
PM
1279{
1280 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1281 rnp->completed, c, rnp->level,
1282 rnp->grplo, rnp->grphi, s);
1283}
1284
1285/*
1286 * Start some future grace period, as needed to handle newly arrived
1287 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1288 * rcu_node structure's ->need_future_gp field. Returns true if there
1289 * is reason to awaken the grace-period kthread.
0446be48
PM
1290 *
1291 * The caller must hold the specified rcu_node structure's ->lock.
1292 */
48a7639c
PM
1293static bool __maybe_unused
1294rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1295 unsigned long *c_out)
0446be48
PM
1296{
1297 unsigned long c;
1298 int i;
48a7639c 1299 bool ret = false;
0446be48
PM
1300 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1301
1302 /*
1303 * Pick up grace-period number for new callbacks. If this
1304 * grace period is already marked as needed, return to the caller.
1305 */
1306 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1307 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1308 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1309 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1310 goto out;
0446be48
PM
1311 }
1312
1313 /*
1314 * If either this rcu_node structure or the root rcu_node structure
1315 * believe that a grace period is in progress, then we must wait
1316 * for the one following, which is in "c". Because our request
1317 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1318 * need to explicitly start one. We only do the lockless check
1319 * of rnp_root's fields if the current rcu_node structure thinks
1320 * there is no grace period in flight, and because we hold rnp->lock,
1321 * the only possible change is when rnp_root's two fields are
1322 * equal, in which case rnp_root->gpnum might be concurrently
1323 * incremented. But that is OK, as it will just result in our
1324 * doing some extra useless work.
0446be48
PM
1325 */
1326 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1327 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1328 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1329 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1330 goto out;
0446be48
PM
1331 }
1332
1333 /*
1334 * There might be no grace period in progress. If we don't already
1335 * hold it, acquire the root rcu_node structure's lock in order to
1336 * start one (if needed).
1337 */
6303b9c8 1338 if (rnp != rnp_root) {
0446be48 1339 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1340 smp_mb__after_unlock_lock();
1341 }
0446be48
PM
1342
1343 /*
1344 * Get a new grace-period number. If there really is no grace
1345 * period in progress, it will be smaller than the one we obtained
1346 * earlier. Adjust callbacks as needed. Note that even no-CBs
1347 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1348 */
1349 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1350 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1351 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1352 rdp->nxtcompleted[i] = c;
1353
1354 /*
1355 * If the needed for the required grace period is already
1356 * recorded, trace and leave.
1357 */
1358 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1359 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1360 goto unlock_out;
1361 }
1362
1363 /* Record the need for the future grace period. */
1364 rnp_root->need_future_gp[c & 0x1]++;
1365
1366 /* If a grace period is not already in progress, start one. */
1367 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1368 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1369 } else {
f7f7bac9 1370 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1371 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1372 }
1373unlock_out:
1374 if (rnp != rnp_root)
1375 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1376out:
1377 if (c_out != NULL)
1378 *c_out = c;
1379 return ret;
0446be48
PM
1380}
1381
1382/*
1383 * Clean up any old requests for the just-ended grace period. Also return
1384 * whether any additional grace periods have been requested. Also invoke
1385 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1386 * waiting for this grace period to complete.
1387 */
1388static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1389{
1390 int c = rnp->completed;
1391 int needmore;
1392 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1393
1394 rcu_nocb_gp_cleanup(rsp, rnp);
1395 rnp->need_future_gp[c & 0x1] = 0;
1396 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1397 trace_rcu_future_gp(rnp, rdp, c,
1398 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1399 return needmore;
1400}
1401
48a7639c
PM
1402/*
1403 * Awaken the grace-period kthread for the specified flavor of RCU.
1404 * Don't do a self-awaken, and don't bother awakening when there is
1405 * nothing for the grace-period kthread to do (as in several CPUs
1406 * raced to awaken, and we lost), and finally don't try to awaken
1407 * a kthread that has not yet been created.
1408 */
1409static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1410{
1411 if (current == rsp->gp_kthread ||
1412 !ACCESS_ONCE(rsp->gp_flags) ||
1413 !rsp->gp_kthread)
1414 return;
1415 wake_up(&rsp->gp_wq);
1416}
1417
dc35c893
PM
1418/*
1419 * If there is room, assign a ->completed number to any callbacks on
1420 * this CPU that have not already been assigned. Also accelerate any
1421 * callbacks that were previously assigned a ->completed number that has
1422 * since proven to be too conservative, which can happen if callbacks get
1423 * assigned a ->completed number while RCU is idle, but with reference to
1424 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1425 * not hurt to call it repeatedly. Returns an flag saying that we should
1426 * awaken the RCU grace-period kthread.
dc35c893
PM
1427 *
1428 * The caller must hold rnp->lock with interrupts disabled.
1429 */
48a7639c 1430static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1431 struct rcu_data *rdp)
1432{
1433 unsigned long c;
1434 int i;
48a7639c 1435 bool ret;
dc35c893
PM
1436
1437 /* If the CPU has no callbacks, nothing to do. */
1438 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1439 return false;
dc35c893
PM
1440
1441 /*
1442 * Starting from the sublist containing the callbacks most
1443 * recently assigned a ->completed number and working down, find the
1444 * first sublist that is not assignable to an upcoming grace period.
1445 * Such a sublist has something in it (first two tests) and has
1446 * a ->completed number assigned that will complete sooner than
1447 * the ->completed number for newly arrived callbacks (last test).
1448 *
1449 * The key point is that any later sublist can be assigned the
1450 * same ->completed number as the newly arrived callbacks, which
1451 * means that the callbacks in any of these later sublist can be
1452 * grouped into a single sublist, whether or not they have already
1453 * been assigned a ->completed number.
1454 */
1455 c = rcu_cbs_completed(rsp, rnp);
1456 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1457 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1458 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1459 break;
1460
1461 /*
1462 * If there are no sublist for unassigned callbacks, leave.
1463 * At the same time, advance "i" one sublist, so that "i" will
1464 * index into the sublist where all the remaining callbacks should
1465 * be grouped into.
1466 */
1467 if (++i >= RCU_NEXT_TAIL)
48a7639c 1468 return false;
dc35c893
PM
1469
1470 /*
1471 * Assign all subsequent callbacks' ->completed number to the next
1472 * full grace period and group them all in the sublist initially
1473 * indexed by "i".
1474 */
1475 for (; i <= RCU_NEXT_TAIL; i++) {
1476 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1477 rdp->nxtcompleted[i] = c;
1478 }
910ee45d 1479 /* Record any needed additional grace periods. */
48a7639c 1480 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1481
1482 /* Trace depending on how much we were able to accelerate. */
1483 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1484 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1485 else
f7f7bac9 1486 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1487 return ret;
dc35c893
PM
1488}
1489
1490/*
1491 * Move any callbacks whose grace period has completed to the
1492 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1493 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1494 * sublist. This function is idempotent, so it does not hurt to
1495 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1496 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1497 *
1498 * The caller must hold rnp->lock with interrupts disabled.
1499 */
48a7639c 1500static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1501 struct rcu_data *rdp)
1502{
1503 int i, j;
1504
1505 /* If the CPU has no callbacks, nothing to do. */
1506 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1507 return false;
dc35c893
PM
1508
1509 /*
1510 * Find all callbacks whose ->completed numbers indicate that they
1511 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1512 */
1513 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1514 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1515 break;
1516 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1517 }
1518 /* Clean up any sublist tail pointers that were misordered above. */
1519 for (j = RCU_WAIT_TAIL; j < i; j++)
1520 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1521
1522 /* Copy down callbacks to fill in empty sublists. */
1523 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1524 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1525 break;
1526 rdp->nxttail[j] = rdp->nxttail[i];
1527 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1528 }
1529
1530 /* Classify any remaining callbacks. */
48a7639c 1531 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1532}
1533
d09b62df 1534/*
ba9fbe95
PM
1535 * Update CPU-local rcu_data state to record the beginnings and ends of
1536 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1537 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1538 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1539 */
48a7639c
PM
1540static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1541 struct rcu_data *rdp)
d09b62df 1542{
48a7639c
PM
1543 bool ret;
1544
ba9fbe95 1545 /* Handle the ends of any preceding grace periods first. */
dc35c893 1546 if (rdp->completed == rnp->completed) {
d09b62df 1547
ba9fbe95 1548 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1549 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1550
dc35c893
PM
1551 } else {
1552
1553 /* Advance callbacks. */
48a7639c 1554 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1555
1556 /* Remember that we saw this grace-period completion. */
1557 rdp->completed = rnp->completed;
f7f7bac9 1558 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1559 }
398ebe60 1560
6eaef633
PM
1561 if (rdp->gpnum != rnp->gpnum) {
1562 /*
1563 * If the current grace period is waiting for this CPU,
1564 * set up to detect a quiescent state, otherwise don't
1565 * go looking for one.
1566 */
1567 rdp->gpnum = rnp->gpnum;
f7f7bac9 1568 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1569 rdp->passed_quiesce = 0;
1570 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1571 zero_cpu_stall_ticks(rdp);
1572 }
48a7639c 1573 return ret;
6eaef633
PM
1574}
1575
d34ea322 1576static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1577{
1578 unsigned long flags;
48a7639c 1579 bool needwake;
6eaef633
PM
1580 struct rcu_node *rnp;
1581
1582 local_irq_save(flags);
1583 rnp = rdp->mynode;
d34ea322
PM
1584 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1585 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1586 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1587 local_irq_restore(flags);
1588 return;
1589 }
6303b9c8 1590 smp_mb__after_unlock_lock();
48a7639c 1591 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1592 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1593 if (needwake)
1594 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1595}
1596
b3dbec76 1597/*
f7be8209 1598 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1599 */
7fdefc10 1600static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1601{
1602 struct rcu_data *rdp;
7fdefc10 1603 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1604
eb75767b 1605 rcu_bind_gp_kthread();
7fdefc10 1606 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1607 smp_mb__after_unlock_lock();
91dc9542 1608 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1609 /* Spurious wakeup, tell caller to go back to sleep. */
1610 raw_spin_unlock_irq(&rnp->lock);
1611 return 0;
1612 }
91dc9542 1613 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1614
f7be8209
PM
1615 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1616 /*
1617 * Grace period already in progress, don't start another.
1618 * Not supposed to be able to happen.
1619 */
7fdefc10
PM
1620 raw_spin_unlock_irq(&rnp->lock);
1621 return 0;
1622 }
1623
7fdefc10 1624 /* Advance to a new grace period and initialize state. */
26cdfedf 1625 record_gp_stall_check_time(rsp);
765a3f4f
PM
1626 /* Record GP times before starting GP, hence smp_store_release(). */
1627 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1628 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1629 raw_spin_unlock_irq(&rnp->lock);
1630
1631 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1632 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1633 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1634
1635 /*
1636 * Set the quiescent-state-needed bits in all the rcu_node
1637 * structures for all currently online CPUs in breadth-first order,
1638 * starting from the root rcu_node structure, relying on the layout
1639 * of the tree within the rsp->node[] array. Note that other CPUs
1640 * will access only the leaves of the hierarchy, thus seeing that no
1641 * grace period is in progress, at least until the corresponding
1642 * leaf node has been initialized. In addition, we have excluded
1643 * CPU-hotplug operations.
1644 *
1645 * The grace period cannot complete until the initialization
1646 * process finishes, because this kthread handles both.
1647 */
1648 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1649 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1650 smp_mb__after_unlock_lock();
b3dbec76 1651 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1652 rcu_preempt_check_blocked_tasks(rnp);
1653 rnp->qsmask = rnp->qsmaskinit;
0446be48 1654 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1655 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1656 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1657 if (rnp == rdp->mynode)
48a7639c 1658 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1659 rcu_preempt_boost_start_gp(rnp);
1660 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1661 rnp->level, rnp->grplo,
1662 rnp->grphi, rnp->qsmask);
1663 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1664 cond_resched_rcu_qs();
7fdefc10 1665 }
b3dbec76 1666
a4fbe35a 1667 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1668 return 1;
1669}
b3dbec76 1670
4cdfc175
PM
1671/*
1672 * Do one round of quiescent-state forcing.
1673 */
01896f7e 1674static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1675{
1676 int fqs_state = fqs_state_in;
217af2a2
PM
1677 bool isidle = false;
1678 unsigned long maxj;
4cdfc175
PM
1679 struct rcu_node *rnp = rcu_get_root(rsp);
1680
1681 rsp->n_force_qs++;
1682 if (fqs_state == RCU_SAVE_DYNTICK) {
1683 /* Collect dyntick-idle snapshots. */
0edd1b17 1684 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1685 isidle = true;
0edd1b17
PM
1686 maxj = jiffies - ULONG_MAX / 4;
1687 }
217af2a2
PM
1688 force_qs_rnp(rsp, dyntick_save_progress_counter,
1689 &isidle, &maxj);
0edd1b17 1690 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1691 fqs_state = RCU_FORCE_QS;
1692 } else {
1693 /* Handle dyntick-idle and offline CPUs. */
e02b2edf 1694 isidle = false;
217af2a2 1695 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1696 }
1697 /* Clear flag to prevent immediate re-entry. */
1698 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1699 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1700 smp_mb__after_unlock_lock();
4de376a1
PK
1701 ACCESS_ONCE(rsp->gp_flags) =
1702 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1703 raw_spin_unlock_irq(&rnp->lock);
1704 }
1705 return fqs_state;
1706}
1707
7fdefc10
PM
1708/*
1709 * Clean up after the old grace period.
1710 */
4cdfc175 1711static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1712{
1713 unsigned long gp_duration;
48a7639c 1714 bool needgp = false;
dae6e64d 1715 int nocb = 0;
7fdefc10
PM
1716 struct rcu_data *rdp;
1717 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1718
7fdefc10 1719 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1720 smp_mb__after_unlock_lock();
7fdefc10
PM
1721 gp_duration = jiffies - rsp->gp_start;
1722 if (gp_duration > rsp->gp_max)
1723 rsp->gp_max = gp_duration;
b3dbec76 1724
7fdefc10
PM
1725 /*
1726 * We know the grace period is complete, but to everyone else
1727 * it appears to still be ongoing. But it is also the case
1728 * that to everyone else it looks like there is nothing that
1729 * they can do to advance the grace period. It is therefore
1730 * safe for us to drop the lock in order to mark the grace
1731 * period as completed in all of the rcu_node structures.
7fdefc10 1732 */
5d4b8659 1733 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1734
5d4b8659
PM
1735 /*
1736 * Propagate new ->completed value to rcu_node structures so
1737 * that other CPUs don't have to wait until the start of the next
1738 * grace period to process their callbacks. This also avoids
1739 * some nasty RCU grace-period initialization races by forcing
1740 * the end of the current grace period to be completely recorded in
1741 * all of the rcu_node structures before the beginning of the next
1742 * grace period is recorded in any of the rcu_node structures.
1743 */
1744 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1745 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1746 smp_mb__after_unlock_lock();
0446be48 1747 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1748 rdp = this_cpu_ptr(rsp->rda);
1749 if (rnp == rdp->mynode)
48a7639c 1750 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1751 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1752 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1753 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1754 cond_resched_rcu_qs();
7fdefc10 1755 }
5d4b8659
PM
1756 rnp = rcu_get_root(rsp);
1757 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1758 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1759 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1760
765a3f4f
PM
1761 /* Declare grace period done. */
1762 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1763 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1764 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1765 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1766 /* Advance CBs to reduce false positives below. */
1767 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1768 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1769 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1770 trace_rcu_grace_period(rsp->name,
1771 ACCESS_ONCE(rsp->gpnum),
1772 TPS("newreq"));
1773 }
7fdefc10 1774 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1775}
1776
1777/*
1778 * Body of kthread that handles grace periods.
1779 */
1780static int __noreturn rcu_gp_kthread(void *arg)
1781{
4cdfc175 1782 int fqs_state;
88d6df61 1783 int gf;
d40011f6 1784 unsigned long j;
4cdfc175 1785 int ret;
7fdefc10
PM
1786 struct rcu_state *rsp = arg;
1787 struct rcu_node *rnp = rcu_get_root(rsp);
1788
1789 for (;;) {
1790
1791 /* Handle grace-period start. */
1792 for (;;) {
63c4db78
PM
1793 trace_rcu_grace_period(rsp->name,
1794 ACCESS_ONCE(rsp->gpnum),
1795 TPS("reqwait"));
afea227f 1796 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1797 wait_event_interruptible(rsp->gp_wq,
591c6d17 1798 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1799 RCU_GP_FLAG_INIT);
78e4bc34 1800 /* Locking provides needed memory barrier. */
f7be8209 1801 if (rcu_gp_init(rsp))
7fdefc10 1802 break;
bde6c3aa 1803 cond_resched_rcu_qs();
73a860cd 1804 WARN_ON(signal_pending(current));
63c4db78
PM
1805 trace_rcu_grace_period(rsp->name,
1806 ACCESS_ONCE(rsp->gpnum),
1807 TPS("reqwaitsig"));
7fdefc10 1808 }
cabc49c1 1809
4cdfc175
PM
1810 /* Handle quiescent-state forcing. */
1811 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1812 j = jiffies_till_first_fqs;
1813 if (j > HZ) {
1814 j = HZ;
1815 jiffies_till_first_fqs = HZ;
1816 }
88d6df61 1817 ret = 0;
cabc49c1 1818 for (;;) {
88d6df61
PM
1819 if (!ret)
1820 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1821 trace_rcu_grace_period(rsp->name,
1822 ACCESS_ONCE(rsp->gpnum),
1823 TPS("fqswait"));
afea227f 1824 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1825 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1826 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1827 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1828 (!ACCESS_ONCE(rnp->qsmask) &&
1829 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1830 j);
78e4bc34 1831 /* Locking provides needed memory barriers. */
4cdfc175 1832 /* If grace period done, leave loop. */
cabc49c1 1833 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1834 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1835 break;
4cdfc175 1836 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1837 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1838 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1839 trace_rcu_grace_period(rsp->name,
1840 ACCESS_ONCE(rsp->gpnum),
1841 TPS("fqsstart"));
4cdfc175 1842 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1843 trace_rcu_grace_period(rsp->name,
1844 ACCESS_ONCE(rsp->gpnum),
1845 TPS("fqsend"));
bde6c3aa 1846 cond_resched_rcu_qs();
4cdfc175
PM
1847 } else {
1848 /* Deal with stray signal. */
bde6c3aa 1849 cond_resched_rcu_qs();
73a860cd 1850 WARN_ON(signal_pending(current));
63c4db78
PM
1851 trace_rcu_grace_period(rsp->name,
1852 ACCESS_ONCE(rsp->gpnum),
1853 TPS("fqswaitsig"));
4cdfc175 1854 }
d40011f6
PM
1855 j = jiffies_till_next_fqs;
1856 if (j > HZ) {
1857 j = HZ;
1858 jiffies_till_next_fqs = HZ;
1859 } else if (j < 1) {
1860 j = 1;
1861 jiffies_till_next_fqs = 1;
1862 }
cabc49c1 1863 }
4cdfc175
PM
1864
1865 /* Handle grace-period end. */
1866 rcu_gp_cleanup(rsp);
b3dbec76 1867 }
b3dbec76
PM
1868}
1869
64db4cff
PM
1870/*
1871 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1872 * in preparation for detecting the next grace period. The caller must hold
b8462084 1873 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1874 *
1875 * Note that it is legal for a dying CPU (which is marked as offline) to
1876 * invoke this function. This can happen when the dying CPU reports its
1877 * quiescent state.
48a7639c
PM
1878 *
1879 * Returns true if the grace-period kthread must be awakened.
64db4cff 1880 */
48a7639c 1881static bool
910ee45d
PM
1882rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1883 struct rcu_data *rdp)
64db4cff 1884{
b8462084 1885 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1886 /*
b3dbec76 1887 * Either we have not yet spawned the grace-period
62da1921
PM
1888 * task, this CPU does not need another grace period,
1889 * or a grace period is already in progress.
b3dbec76 1890 * Either way, don't start a new grace period.
afe24b12 1891 */
48a7639c 1892 return false;
afe24b12 1893 }
91dc9542 1894 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1895 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1896 TPS("newreq"));
62da1921 1897
016a8d5b
SR
1898 /*
1899 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 1900 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 1901 * the wakeup to our caller.
016a8d5b 1902 */
48a7639c 1903 return true;
64db4cff
PM
1904}
1905
910ee45d
PM
1906/*
1907 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1908 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1909 * is invoked indirectly from rcu_advance_cbs(), which would result in
1910 * endless recursion -- or would do so if it wasn't for the self-deadlock
1911 * that is encountered beforehand.
48a7639c
PM
1912 *
1913 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 1914 */
48a7639c 1915static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
1916{
1917 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1918 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 1919 bool ret = false;
910ee45d
PM
1920
1921 /*
1922 * If there is no grace period in progress right now, any
1923 * callbacks we have up to this point will be satisfied by the
1924 * next grace period. Also, advancing the callbacks reduces the
1925 * probability of false positives from cpu_needs_another_gp()
1926 * resulting in pointless grace periods. So, advance callbacks
1927 * then start the grace period!
1928 */
48a7639c
PM
1929 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1930 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1931 return ret;
910ee45d
PM
1932}
1933
f41d911f 1934/*
d3f6bad3
PM
1935 * Report a full set of quiescent states to the specified rcu_state
1936 * data structure. This involves cleaning up after the prior grace
1937 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1938 * if one is needed. Note that the caller must hold rnp->lock, which
1939 * is released before return.
f41d911f 1940 */
d3f6bad3 1941static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1942 __releases(rcu_get_root(rsp)->lock)
f41d911f 1943{
fc2219d4 1944 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1 1945 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 1946 rcu_gp_kthread_wake(rsp);
f41d911f
PM
1947}
1948
64db4cff 1949/*
d3f6bad3
PM
1950 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1951 * Allows quiescent states for a group of CPUs to be reported at one go
1952 * to the specified rcu_node structure, though all the CPUs in the group
1953 * must be represented by the same rcu_node structure (which need not be
1954 * a leaf rcu_node structure, though it often will be). That structure's
1955 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1956 */
1957static void
d3f6bad3
PM
1958rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1959 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1960 __releases(rnp->lock)
1961{
28ecd580
PM
1962 struct rcu_node *rnp_c;
1963
64db4cff
PM
1964 /* Walk up the rcu_node hierarchy. */
1965 for (;;) {
1966 if (!(rnp->qsmask & mask)) {
1967
1968 /* Our bit has already been cleared, so done. */
1304afb2 1969 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1970 return;
1971 }
1972 rnp->qsmask &= ~mask;
d4c08f2a
PM
1973 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1974 mask, rnp->qsmask, rnp->level,
1975 rnp->grplo, rnp->grphi,
1976 !!rnp->gp_tasks);
27f4d280 1977 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1978
1979 /* Other bits still set at this level, so done. */
1304afb2 1980 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1981 return;
1982 }
1983 mask = rnp->grpmask;
1984 if (rnp->parent == NULL) {
1985
1986 /* No more levels. Exit loop holding root lock. */
1987
1988 break;
1989 }
1304afb2 1990 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1991 rnp_c = rnp;
64db4cff 1992 rnp = rnp->parent;
1304afb2 1993 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1994 smp_mb__after_unlock_lock();
28ecd580 1995 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1996 }
1997
1998 /*
1999 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2000 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2001 * to clean up and start the next grace period if one is needed.
64db4cff 2002 */
d3f6bad3 2003 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2004}
2005
2006/*
d3f6bad3
PM
2007 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2008 * structure. This must be either called from the specified CPU, or
2009 * called when the specified CPU is known to be offline (and when it is
2010 * also known that no other CPU is concurrently trying to help the offline
2011 * CPU). The lastcomp argument is used to make sure we are still in the
2012 * grace period of interest. We don't want to end the current grace period
2013 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2014 */
2015static void
d7d6a11e 2016rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2017{
2018 unsigned long flags;
2019 unsigned long mask;
48a7639c 2020 bool needwake;
64db4cff
PM
2021 struct rcu_node *rnp;
2022
2023 rnp = rdp->mynode;
1304afb2 2024 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2025 smp_mb__after_unlock_lock();
d7d6a11e
PM
2026 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2027 rnp->completed == rnp->gpnum) {
64db4cff
PM
2028
2029 /*
e4cc1f22
PM
2030 * The grace period in which this quiescent state was
2031 * recorded has ended, so don't report it upwards.
2032 * We will instead need a new quiescent state that lies
2033 * within the current grace period.
64db4cff 2034 */
e4cc1f22 2035 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 2036 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2037 return;
2038 }
2039 mask = rdp->grpmask;
2040 if ((rnp->qsmask & mask) == 0) {
1304afb2 2041 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2042 } else {
2043 rdp->qs_pending = 0;
2044
2045 /*
2046 * This GP can't end until cpu checks in, so all of our
2047 * callbacks can be processed during the next GP.
2048 */
48a7639c 2049 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2050
d3f6bad3 2051 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2052 if (needwake)
2053 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2054 }
2055}
2056
2057/*
2058 * Check to see if there is a new grace period of which this CPU
2059 * is not yet aware, and if so, set up local rcu_data state for it.
2060 * Otherwise, see if this CPU has just passed through its first
2061 * quiescent state for this grace period, and record that fact if so.
2062 */
2063static void
2064rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2065{
05eb552b
PM
2066 /* Check for grace-period ends and beginnings. */
2067 note_gp_changes(rsp, rdp);
64db4cff
PM
2068
2069 /*
2070 * Does this CPU still need to do its part for current grace period?
2071 * If no, return and let the other CPUs do their part as well.
2072 */
2073 if (!rdp->qs_pending)
2074 return;
2075
2076 /*
2077 * Was there a quiescent state since the beginning of the grace
2078 * period? If no, then exit and wait for the next call.
2079 */
e4cc1f22 2080 if (!rdp->passed_quiesce)
64db4cff
PM
2081 return;
2082
d3f6bad3
PM
2083 /*
2084 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2085 * judge of that).
2086 */
d7d6a11e 2087 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2088}
2089
2090#ifdef CONFIG_HOTPLUG_CPU
2091
e74f4c45 2092/*
b1420f1c
PM
2093 * Send the specified CPU's RCU callbacks to the orphanage. The
2094 * specified CPU must be offline, and the caller must hold the
7b2e6011 2095 * ->orphan_lock.
e74f4c45 2096 */
b1420f1c
PM
2097static void
2098rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2099 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2100{
3fbfbf7a 2101 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2102 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2103 return;
2104
b1420f1c
PM
2105 /*
2106 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2107 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2108 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2109 */
a50c3af9 2110 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2111 rsp->qlen_lazy += rdp->qlen_lazy;
2112 rsp->qlen += rdp->qlen;
2113 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2114 rdp->qlen_lazy = 0;
1d1fb395 2115 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2116 }
2117
2118 /*
b1420f1c
PM
2119 * Next, move those callbacks still needing a grace period to
2120 * the orphanage, where some other CPU will pick them up.
2121 * Some of the callbacks might have gone partway through a grace
2122 * period, but that is too bad. They get to start over because we
2123 * cannot assume that grace periods are synchronized across CPUs.
2124 * We don't bother updating the ->nxttail[] array yet, instead
2125 * we just reset the whole thing later on.
a50c3af9 2126 */
b1420f1c
PM
2127 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2128 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2129 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2130 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2131 }
2132
2133 /*
b1420f1c
PM
2134 * Then move the ready-to-invoke callbacks to the orphanage,
2135 * where some other CPU will pick them up. These will not be
2136 * required to pass though another grace period: They are done.
a50c3af9 2137 */
e5601400 2138 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2139 *rsp->orphan_donetail = rdp->nxtlist;
2140 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2141 }
e74f4c45 2142
b1420f1c 2143 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2144 init_callback_list(rdp);
b1420f1c
PM
2145}
2146
2147/*
2148 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2149 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2150 */
96d3fd0d 2151static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2152{
2153 int i;
fa07a58f 2154 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2155
3fbfbf7a 2156 /* No-CBs CPUs are handled specially. */
96d3fd0d 2157 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2158 return;
2159
b1420f1c
PM
2160 /* Do the accounting first. */
2161 rdp->qlen_lazy += rsp->qlen_lazy;
2162 rdp->qlen += rsp->qlen;
2163 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2164 if (rsp->qlen_lazy != rsp->qlen)
2165 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2166 rsp->qlen_lazy = 0;
2167 rsp->qlen = 0;
2168
2169 /*
2170 * We do not need a memory barrier here because the only way we
2171 * can get here if there is an rcu_barrier() in flight is if
2172 * we are the task doing the rcu_barrier().
2173 */
2174
2175 /* First adopt the ready-to-invoke callbacks. */
2176 if (rsp->orphan_donelist != NULL) {
2177 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2178 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2179 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2180 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2181 rdp->nxttail[i] = rsp->orphan_donetail;
2182 rsp->orphan_donelist = NULL;
2183 rsp->orphan_donetail = &rsp->orphan_donelist;
2184 }
2185
2186 /* And then adopt the callbacks that still need a grace period. */
2187 if (rsp->orphan_nxtlist != NULL) {
2188 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2189 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2190 rsp->orphan_nxtlist = NULL;
2191 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2192 }
2193}
2194
2195/*
2196 * Trace the fact that this CPU is going offline.
2197 */
2198static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2199{
2200 RCU_TRACE(unsigned long mask);
2201 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2202 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2203
2204 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2205 trace_rcu_grace_period(rsp->name,
2206 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2207 TPS("cpuofl"));
64db4cff
PM
2208}
2209
2210/*
e5601400 2211 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2212 * this fact from process context. Do the remainder of the cleanup,
2213 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2214 * adopting them. There can only be one CPU hotplug operation at a time,
2215 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2216 */
e5601400 2217static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2218{
2036d94a
PM
2219 unsigned long flags;
2220 unsigned long mask;
2221 int need_report = 0;
e5601400 2222 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2223 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2224
2036d94a 2225 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2226 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2227
2036d94a 2228 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2229 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2230 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2231
b1420f1c
PM
2232 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2233 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2234 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2235
2036d94a
PM
2236 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2237 mask = rdp->grpmask; /* rnp->grplo is constant. */
2238 do {
2239 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2240 smp_mb__after_unlock_lock();
2036d94a
PM
2241 rnp->qsmaskinit &= ~mask;
2242 if (rnp->qsmaskinit != 0) {
2243 if (rnp != rdp->mynode)
2244 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2245 break;
2246 }
2247 if (rnp == rdp->mynode)
2248 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2249 else
2250 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2251 mask = rnp->grpmask;
2252 rnp = rnp->parent;
2253 } while (rnp != NULL);
2254
2255 /*
2256 * We still hold the leaf rcu_node structure lock here, and
2257 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2258 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2259 * held leads to deadlock.
2260 */
7b2e6011 2261 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2262 rnp = rdp->mynode;
2263 if (need_report & RCU_OFL_TASKS_NORM_GP)
2264 rcu_report_unblock_qs_rnp(rnp, flags);
2265 else
2266 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2267 if (need_report & RCU_OFL_TASKS_EXP_GP)
2268 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2269 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2270 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2271 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2272 init_callback_list(rdp);
2273 /* Disallow further callbacks on this CPU. */
2274 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2275 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2276}
2277
2278#else /* #ifdef CONFIG_HOTPLUG_CPU */
2279
e5601400 2280static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2281{
2282}
2283
e5601400 2284static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2285{
2286}
2287
2288#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2289
2290/*
2291 * Invoke any RCU callbacks that have made it to the end of their grace
2292 * period. Thottle as specified by rdp->blimit.
2293 */
37c72e56 2294static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2295{
2296 unsigned long flags;
2297 struct rcu_head *next, *list, **tail;
878d7439
ED
2298 long bl, count, count_lazy;
2299 int i;
64db4cff 2300
dc35c893 2301 /* If no callbacks are ready, just return. */
29c00b4a 2302 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2303 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2304 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2305 need_resched(), is_idle_task(current),
2306 rcu_is_callbacks_kthread());
64db4cff 2307 return;
29c00b4a 2308 }
64db4cff
PM
2309
2310 /*
2311 * Extract the list of ready callbacks, disabling to prevent
2312 * races with call_rcu() from interrupt handlers.
2313 */
2314 local_irq_save(flags);
8146c4e2 2315 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2316 bl = rdp->blimit;
486e2593 2317 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2318 list = rdp->nxtlist;
2319 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2320 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2321 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2322 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2323 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2324 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2325 local_irq_restore(flags);
2326
2327 /* Invoke callbacks. */
486e2593 2328 count = count_lazy = 0;
64db4cff
PM
2329 while (list) {
2330 next = list->next;
2331 prefetch(next);
551d55a9 2332 debug_rcu_head_unqueue(list);
486e2593
PM
2333 if (__rcu_reclaim(rsp->name, list))
2334 count_lazy++;
64db4cff 2335 list = next;
dff1672d
PM
2336 /* Stop only if limit reached and CPU has something to do. */
2337 if (++count >= bl &&
2338 (need_resched() ||
2339 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2340 break;
2341 }
2342
2343 local_irq_save(flags);
4968c300
PM
2344 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2345 is_idle_task(current),
2346 rcu_is_callbacks_kthread());
64db4cff
PM
2347
2348 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2349 if (list != NULL) {
2350 *tail = rdp->nxtlist;
2351 rdp->nxtlist = list;
b41772ab
PM
2352 for (i = 0; i < RCU_NEXT_SIZE; i++)
2353 if (&rdp->nxtlist == rdp->nxttail[i])
2354 rdp->nxttail[i] = tail;
64db4cff
PM
2355 else
2356 break;
2357 }
b1420f1c
PM
2358 smp_mb(); /* List handling before counting for rcu_barrier(). */
2359 rdp->qlen_lazy -= count_lazy;
a792563b 2360 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2361 rdp->n_cbs_invoked += count;
64db4cff
PM
2362
2363 /* Reinstate batch limit if we have worked down the excess. */
2364 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2365 rdp->blimit = blimit;
2366
37c72e56
PM
2367 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2368 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2369 rdp->qlen_last_fqs_check = 0;
2370 rdp->n_force_qs_snap = rsp->n_force_qs;
2371 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2372 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2373 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2374
64db4cff
PM
2375 local_irq_restore(flags);
2376
e0f23060 2377 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2378 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2379 invoke_rcu_core();
64db4cff
PM
2380}
2381
2382/*
2383 * Check to see if this CPU is in a non-context-switch quiescent state
2384 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2385 * Also schedule RCU core processing.
64db4cff 2386 *
9b2e4f18 2387 * This function must be called from hardirq context. It is normally
64db4cff
PM
2388 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2389 * false, there is no point in invoking rcu_check_callbacks().
2390 */
c3377c2d 2391void rcu_check_callbacks(int user)
64db4cff 2392{
f7f7bac9 2393 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2394 increment_cpu_stall_ticks();
9b2e4f18 2395 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2396
2397 /*
2398 * Get here if this CPU took its interrupt from user
2399 * mode or from the idle loop, and if this is not a
2400 * nested interrupt. In this case, the CPU is in
d6714c22 2401 * a quiescent state, so note it.
64db4cff
PM
2402 *
2403 * No memory barrier is required here because both
d6714c22
PM
2404 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2405 * variables that other CPUs neither access nor modify,
2406 * at least not while the corresponding CPU is online.
64db4cff
PM
2407 */
2408
284a8c93
PM
2409 rcu_sched_qs();
2410 rcu_bh_qs();
64db4cff
PM
2411
2412 } else if (!in_softirq()) {
2413
2414 /*
2415 * Get here if this CPU did not take its interrupt from
2416 * softirq, in other words, if it is not interrupting
2417 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2418 * critical section, so note it.
64db4cff
PM
2419 */
2420
284a8c93 2421 rcu_bh_qs();
64db4cff 2422 }
86aea0e6 2423 rcu_preempt_check_callbacks();
e3950ecd 2424 if (rcu_pending())
a46e0899 2425 invoke_rcu_core();
8315f422
PM
2426 if (user)
2427 rcu_note_voluntary_context_switch(current);
f7f7bac9 2428 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2429}
2430
64db4cff
PM
2431/*
2432 * Scan the leaf rcu_node structures, processing dyntick state for any that
2433 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2434 * Also initiate boosting for any threads blocked on the root rcu_node.
2435 *
ee47eb9f 2436 * The caller must have suppressed start of new grace periods.
64db4cff 2437 */
217af2a2
PM
2438static void force_qs_rnp(struct rcu_state *rsp,
2439 int (*f)(struct rcu_data *rsp, bool *isidle,
2440 unsigned long *maxj),
2441 bool *isidle, unsigned long *maxj)
64db4cff
PM
2442{
2443 unsigned long bit;
2444 int cpu;
2445 unsigned long flags;
2446 unsigned long mask;
a0b6c9a7 2447 struct rcu_node *rnp;
64db4cff 2448
a0b6c9a7 2449 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2450 cond_resched_rcu_qs();
64db4cff 2451 mask = 0;
1304afb2 2452 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2453 smp_mb__after_unlock_lock();
ee47eb9f 2454 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2455 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2456 return;
64db4cff 2457 }
a0b6c9a7 2458 if (rnp->qsmask == 0) {
1217ed1b 2459 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2460 continue;
2461 }
a0b6c9a7 2462 cpu = rnp->grplo;
64db4cff 2463 bit = 1;
a0b6c9a7 2464 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2465 if ((rnp->qsmask & bit) != 0) {
2466 if ((rnp->qsmaskinit & bit) != 0)
e02b2edf 2467 *isidle = false;
0edd1b17
PM
2468 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2469 mask |= bit;
2470 }
64db4cff 2471 }
45f014c5 2472 if (mask != 0) {
64db4cff 2473
d3f6bad3
PM
2474 /* rcu_report_qs_rnp() releases rnp->lock. */
2475 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2476 continue;
2477 }
1304afb2 2478 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2479 }
27f4d280 2480 rnp = rcu_get_root(rsp);
1217ed1b
PM
2481 if (rnp->qsmask == 0) {
2482 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2483 smp_mb__after_unlock_lock();
1217ed1b
PM
2484 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2485 }
64db4cff
PM
2486}
2487
2488/*
2489 * Force quiescent states on reluctant CPUs, and also detect which
2490 * CPUs are in dyntick-idle mode.
2491 */
4cdfc175 2492static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2493{
2494 unsigned long flags;
394f2769
PM
2495 bool ret;
2496 struct rcu_node *rnp;
2497 struct rcu_node *rnp_old = NULL;
2498
2499 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2500 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2501 for (; rnp != NULL; rnp = rnp->parent) {
2502 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2503 !raw_spin_trylock(&rnp->fqslock);
2504 if (rnp_old != NULL)
2505 raw_spin_unlock(&rnp_old->fqslock);
2506 if (ret) {
a792563b 2507 rsp->n_force_qs_lh++;
394f2769
PM
2508 return;
2509 }
2510 rnp_old = rnp;
2511 }
2512 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2513
394f2769
PM
2514 /* Reached the root of the rcu_node tree, acquire lock. */
2515 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2516 smp_mb__after_unlock_lock();
394f2769
PM
2517 raw_spin_unlock(&rnp_old->fqslock);
2518 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2519 rsp->n_force_qs_lh++;
394f2769 2520 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2521 return; /* Someone beat us to it. */
46a1e34e 2522 }
4de376a1
PK
2523 ACCESS_ONCE(rsp->gp_flags) =
2524 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
394f2769 2525 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2526 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2527}
2528
64db4cff 2529/*
e0f23060
PM
2530 * This does the RCU core processing work for the specified rcu_state
2531 * and rcu_data structures. This may be called only from the CPU to
2532 * whom the rdp belongs.
64db4cff
PM
2533 */
2534static void
1bca8cf1 2535__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2536{
2537 unsigned long flags;
48a7639c 2538 bool needwake;
fa07a58f 2539 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2540
2e597558
PM
2541 WARN_ON_ONCE(rdp->beenonline == 0);
2542
64db4cff
PM
2543 /* Update RCU state based on any recent quiescent states. */
2544 rcu_check_quiescent_state(rsp, rdp);
2545
2546 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2547 local_irq_save(flags);
64db4cff 2548 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2549 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2550 needwake = rcu_start_gp(rsp);
b8462084 2551 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2552 if (needwake)
2553 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2554 } else {
2555 local_irq_restore(flags);
64db4cff
PM
2556 }
2557
2558 /* If there are callbacks ready, invoke them. */
09223371 2559 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2560 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2561
2562 /* Do any needed deferred wakeups of rcuo kthreads. */
2563 do_nocb_deferred_wakeup(rdp);
09223371
SL
2564}
2565
64db4cff 2566/*
e0f23060 2567 * Do RCU core processing for the current CPU.
64db4cff 2568 */
09223371 2569static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2570{
6ce75a23
PM
2571 struct rcu_state *rsp;
2572
bfa00b4c
PM
2573 if (cpu_is_offline(smp_processor_id()))
2574 return;
f7f7bac9 2575 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2576 for_each_rcu_flavor(rsp)
2577 __rcu_process_callbacks(rsp);
f7f7bac9 2578 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2579}
2580
a26ac245 2581/*
e0f23060
PM
2582 * Schedule RCU callback invocation. If the specified type of RCU
2583 * does not support RCU priority boosting, just do a direct call,
2584 * otherwise wake up the per-CPU kernel kthread. Note that because we
2585 * are running on the current CPU with interrupts disabled, the
2586 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2587 */
a46e0899 2588static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2589{
b0d30417
PM
2590 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2591 return;
a46e0899
PM
2592 if (likely(!rsp->boost)) {
2593 rcu_do_batch(rsp, rdp);
a26ac245
PM
2594 return;
2595 }
a46e0899 2596 invoke_rcu_callbacks_kthread();
a26ac245
PM
2597}
2598
a46e0899 2599static void invoke_rcu_core(void)
09223371 2600{
b0f74036
PM
2601 if (cpu_online(smp_processor_id()))
2602 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2603}
2604
29154c57
PM
2605/*
2606 * Handle any core-RCU processing required by a call_rcu() invocation.
2607 */
2608static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2609 struct rcu_head *head, unsigned long flags)
64db4cff 2610{
48a7639c
PM
2611 bool needwake;
2612
62fde6ed
PM
2613 /*
2614 * If called from an extended quiescent state, invoke the RCU
2615 * core in order to force a re-evaluation of RCU's idleness.
2616 */
5c173eb8 2617 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2618 invoke_rcu_core();
2619
a16b7a69 2620 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2621 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2622 return;
64db4cff 2623
37c72e56
PM
2624 /*
2625 * Force the grace period if too many callbacks or too long waiting.
2626 * Enforce hysteresis, and don't invoke force_quiescent_state()
2627 * if some other CPU has recently done so. Also, don't bother
2628 * invoking force_quiescent_state() if the newly enqueued callback
2629 * is the only one waiting for a grace period to complete.
2630 */
2655d57e 2631 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2632
2633 /* Are we ignoring a completed grace period? */
470716fc 2634 note_gp_changes(rsp, rdp);
b52573d2
PM
2635
2636 /* Start a new grace period if one not already started. */
2637 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2638 struct rcu_node *rnp_root = rcu_get_root(rsp);
2639
b8462084 2640 raw_spin_lock(&rnp_root->lock);
6303b9c8 2641 smp_mb__after_unlock_lock();
48a7639c 2642 needwake = rcu_start_gp(rsp);
b8462084 2643 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2644 if (needwake)
2645 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2646 } else {
2647 /* Give the grace period a kick. */
2648 rdp->blimit = LONG_MAX;
2649 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2650 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2651 force_quiescent_state(rsp);
b52573d2
PM
2652 rdp->n_force_qs_snap = rsp->n_force_qs;
2653 rdp->qlen_last_fqs_check = rdp->qlen;
2654 }
4cdfc175 2655 }
29154c57
PM
2656}
2657
ae150184
PM
2658/*
2659 * RCU callback function to leak a callback.
2660 */
2661static void rcu_leak_callback(struct rcu_head *rhp)
2662{
2663}
2664
3fbfbf7a
PM
2665/*
2666 * Helper function for call_rcu() and friends. The cpu argument will
2667 * normally be -1, indicating "currently running CPU". It may specify
2668 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2669 * is expected to specify a CPU.
2670 */
64db4cff
PM
2671static void
2672__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2673 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2674{
2675 unsigned long flags;
2676 struct rcu_data *rdp;
2677
1146edcb 2678 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2679 if (debug_rcu_head_queue(head)) {
2680 /* Probable double call_rcu(), so leak the callback. */
2681 ACCESS_ONCE(head->func) = rcu_leak_callback;
2682 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2683 return;
2684 }
64db4cff
PM
2685 head->func = func;
2686 head->next = NULL;
2687
64db4cff
PM
2688 /*
2689 * Opportunistically note grace-period endings and beginnings.
2690 * Note that we might see a beginning right after we see an
2691 * end, but never vice versa, since this CPU has to pass through
2692 * a quiescent state betweentimes.
2693 */
2694 local_irq_save(flags);
394f99a9 2695 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2696
2697 /* Add the callback to our list. */
3fbfbf7a
PM
2698 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2699 int offline;
2700
2701 if (cpu != -1)
2702 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2703 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2704 WARN_ON_ONCE(offline);
0d8ee37e 2705 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2706 local_irq_restore(flags);
2707 return;
2708 }
a792563b 2709 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2710 if (lazy)
2711 rdp->qlen_lazy++;
c57afe80
PM
2712 else
2713 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2714 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2715 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2716 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2717
d4c08f2a
PM
2718 if (__is_kfree_rcu_offset((unsigned long)func))
2719 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2720 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2721 else
486e2593 2722 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2723
29154c57
PM
2724 /* Go handle any RCU core processing required. */
2725 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2726 local_irq_restore(flags);
2727}
2728
2729/*
d6714c22 2730 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2731 */
d6714c22 2732void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2733{
3fbfbf7a 2734 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2735}
d6714c22 2736EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2737
2738/*
486e2593 2739 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2740 */
2741void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2742{
3fbfbf7a 2743 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2744}
2745EXPORT_SYMBOL_GPL(call_rcu_bh);
2746
495aa969
ACB
2747/*
2748 * Queue an RCU callback for lazy invocation after a grace period.
2749 * This will likely be later named something like "call_rcu_lazy()",
2750 * but this change will require some way of tagging the lazy RCU
2751 * callbacks in the list of pending callbacks. Until then, this
2752 * function may only be called from __kfree_rcu().
2753 */
2754void kfree_call_rcu(struct rcu_head *head,
2755 void (*func)(struct rcu_head *rcu))
2756{
e534165b 2757 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2758}
2759EXPORT_SYMBOL_GPL(kfree_call_rcu);
2760
6d813391
PM
2761/*
2762 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2763 * any blocking grace-period wait automatically implies a grace period
2764 * if there is only one CPU online at any point time during execution
2765 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2766 * occasionally incorrectly indicate that there are multiple CPUs online
2767 * when there was in fact only one the whole time, as this just adds
2768 * some overhead: RCU still operates correctly.
6d813391
PM
2769 */
2770static inline int rcu_blocking_is_gp(void)
2771{
95f0c1de
PM
2772 int ret;
2773
6d813391 2774 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2775 preempt_disable();
2776 ret = num_online_cpus() <= 1;
2777 preempt_enable();
2778 return ret;
6d813391
PM
2779}
2780
6ebb237b
PM
2781/**
2782 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2783 *
2784 * Control will return to the caller some time after a full rcu-sched
2785 * grace period has elapsed, in other words after all currently executing
2786 * rcu-sched read-side critical sections have completed. These read-side
2787 * critical sections are delimited by rcu_read_lock_sched() and
2788 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2789 * local_irq_disable(), and so on may be used in place of
2790 * rcu_read_lock_sched().
2791 *
2792 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2793 * non-threaded hardware-interrupt handlers, in progress on entry will
2794 * have completed before this primitive returns. However, this does not
2795 * guarantee that softirq handlers will have completed, since in some
2796 * kernels, these handlers can run in process context, and can block.
2797 *
2798 * Note that this guarantee implies further memory-ordering guarantees.
2799 * On systems with more than one CPU, when synchronize_sched() returns,
2800 * each CPU is guaranteed to have executed a full memory barrier since the
2801 * end of its last RCU-sched read-side critical section whose beginning
2802 * preceded the call to synchronize_sched(). In addition, each CPU having
2803 * an RCU read-side critical section that extends beyond the return from
2804 * synchronize_sched() is guaranteed to have executed a full memory barrier
2805 * after the beginning of synchronize_sched() and before the beginning of
2806 * that RCU read-side critical section. Note that these guarantees include
2807 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2808 * that are executing in the kernel.
2809 *
2810 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2811 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2812 * to have executed a full memory barrier during the execution of
2813 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2814 * again only if the system has more than one CPU).
6ebb237b
PM
2815 *
2816 * This primitive provides the guarantees made by the (now removed)
2817 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2818 * guarantees that rcu_read_lock() sections will have completed.
2819 * In "classic RCU", these two guarantees happen to be one and
2820 * the same, but can differ in realtime RCU implementations.
2821 */
2822void synchronize_sched(void)
2823{
fe15d706
PM
2824 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2825 !lock_is_held(&rcu_lock_map) &&
2826 !lock_is_held(&rcu_sched_lock_map),
2827 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2828 if (rcu_blocking_is_gp())
2829 return;
3705b88d
AM
2830 if (rcu_expedited)
2831 synchronize_sched_expedited();
2832 else
2833 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2834}
2835EXPORT_SYMBOL_GPL(synchronize_sched);
2836
2837/**
2838 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2839 *
2840 * Control will return to the caller some time after a full rcu_bh grace
2841 * period has elapsed, in other words after all currently executing rcu_bh
2842 * read-side critical sections have completed. RCU read-side critical
2843 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2844 * and may be nested.
f0a0e6f2
PM
2845 *
2846 * See the description of synchronize_sched() for more detailed information
2847 * on memory ordering guarantees.
6ebb237b
PM
2848 */
2849void synchronize_rcu_bh(void)
2850{
fe15d706
PM
2851 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2852 !lock_is_held(&rcu_lock_map) &&
2853 !lock_is_held(&rcu_sched_lock_map),
2854 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2855 if (rcu_blocking_is_gp())
2856 return;
3705b88d
AM
2857 if (rcu_expedited)
2858 synchronize_rcu_bh_expedited();
2859 else
2860 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2861}
2862EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2863
765a3f4f
PM
2864/**
2865 * get_state_synchronize_rcu - Snapshot current RCU state
2866 *
2867 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2868 * to determine whether or not a full grace period has elapsed in the
2869 * meantime.
2870 */
2871unsigned long get_state_synchronize_rcu(void)
2872{
2873 /*
2874 * Any prior manipulation of RCU-protected data must happen
2875 * before the load from ->gpnum.
2876 */
2877 smp_mb(); /* ^^^ */
2878
2879 /*
2880 * Make sure this load happens before the purportedly
2881 * time-consuming work between get_state_synchronize_rcu()
2882 * and cond_synchronize_rcu().
2883 */
e534165b 2884 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
2885}
2886EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2887
2888/**
2889 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2890 *
2891 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2892 *
2893 * If a full RCU grace period has elapsed since the earlier call to
2894 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2895 * synchronize_rcu() to wait for a full grace period.
2896 *
2897 * Yes, this function does not take counter wrap into account. But
2898 * counter wrap is harmless. If the counter wraps, we have waited for
2899 * more than 2 billion grace periods (and way more on a 64-bit system!),
2900 * so waiting for one additional grace period should be just fine.
2901 */
2902void cond_synchronize_rcu(unsigned long oldstate)
2903{
2904 unsigned long newstate;
2905
2906 /*
2907 * Ensure that this load happens before any RCU-destructive
2908 * actions the caller might carry out after we return.
2909 */
e534165b 2910 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
2911 if (ULONG_CMP_GE(oldstate, newstate))
2912 synchronize_rcu();
2913}
2914EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2915
3d3b7db0
PM
2916static int synchronize_sched_expedited_cpu_stop(void *data)
2917{
2918 /*
2919 * There must be a full memory barrier on each affected CPU
2920 * between the time that try_stop_cpus() is called and the
2921 * time that it returns.
2922 *
2923 * In the current initial implementation of cpu_stop, the
2924 * above condition is already met when the control reaches
2925 * this point and the following smp_mb() is not strictly
2926 * necessary. Do smp_mb() anyway for documentation and
2927 * robustness against future implementation changes.
2928 */
2929 smp_mb(); /* See above comment block. */
2930 return 0;
2931}
2932
236fefaf
PM
2933/**
2934 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2935 *
2936 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2937 * approach to force the grace period to end quickly. This consumes
2938 * significant time on all CPUs and is unfriendly to real-time workloads,
2939 * so is thus not recommended for any sort of common-case code. In fact,
2940 * if you are using synchronize_sched_expedited() in a loop, please
2941 * restructure your code to batch your updates, and then use a single
2942 * synchronize_sched() instead.
3d3b7db0 2943 *
3d3b7db0
PM
2944 * This implementation can be thought of as an application of ticket
2945 * locking to RCU, with sync_sched_expedited_started and
2946 * sync_sched_expedited_done taking on the roles of the halves
2947 * of the ticket-lock word. Each task atomically increments
2948 * sync_sched_expedited_started upon entry, snapshotting the old value,
2949 * then attempts to stop all the CPUs. If this succeeds, then each
2950 * CPU will have executed a context switch, resulting in an RCU-sched
2951 * grace period. We are then done, so we use atomic_cmpxchg() to
2952 * update sync_sched_expedited_done to match our snapshot -- but
2953 * only if someone else has not already advanced past our snapshot.
2954 *
2955 * On the other hand, if try_stop_cpus() fails, we check the value
2956 * of sync_sched_expedited_done. If it has advanced past our
2957 * initial snapshot, then someone else must have forced a grace period
2958 * some time after we took our snapshot. In this case, our work is
2959 * done for us, and we can simply return. Otherwise, we try again,
2960 * but keep our initial snapshot for purposes of checking for someone
2961 * doing our work for us.
2962 *
2963 * If we fail too many times in a row, we fall back to synchronize_sched().
2964 */
2965void synchronize_sched_expedited(void)
2966{
1924bcb0
PM
2967 long firstsnap, s, snap;
2968 int trycount = 0;
40694d66 2969 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2970
1924bcb0
PM
2971 /*
2972 * If we are in danger of counter wrap, just do synchronize_sched().
2973 * By allowing sync_sched_expedited_started to advance no more than
2974 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2975 * that more than 3.5 billion CPUs would be required to force a
2976 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2977 * course be required on a 64-bit system.
2978 */
40694d66
PM
2979 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2980 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2981 ULONG_MAX / 8)) {
2982 synchronize_sched();
a30489c5 2983 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2984 return;
2985 }
3d3b7db0 2986
1924bcb0
PM
2987 /*
2988 * Take a ticket. Note that atomic_inc_return() implies a
2989 * full memory barrier.
2990 */
40694d66 2991 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2992 firstsnap = snap;
dd56af42
PM
2993 if (!try_get_online_cpus()) {
2994 /* CPU hotplug operation in flight, fall back to normal GP. */
2995 wait_rcu_gp(call_rcu_sched);
2996 atomic_long_inc(&rsp->expedited_normal);
2997 return;
2998 }
1cc85961 2999 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
3000
3001 /*
3002 * Each pass through the following loop attempts to force a
3003 * context switch on each CPU.
3004 */
3005 while (try_stop_cpus(cpu_online_mask,
3006 synchronize_sched_expedited_cpu_stop,
3007 NULL) == -EAGAIN) {
3008 put_online_cpus();
a30489c5 3009 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3010
1924bcb0 3011 /* Check to see if someone else did our work for us. */
40694d66 3012 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3013 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3014 /* ensure test happens before caller kfree */
4e857c58 3015 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3016 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
3017 return;
3018 }
3d3b7db0
PM
3019
3020 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3021 if (trycount++ < 10) {
3d3b7db0 3022 udelay(trycount * num_online_cpus());
c701d5d9 3023 } else {
3705b88d 3024 wait_rcu_gp(call_rcu_sched);
a30489c5 3025 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
3026 return;
3027 }
3028
1924bcb0 3029 /* Recheck to see if someone else did our work for us. */
40694d66 3030 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3031 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3032 /* ensure test happens before caller kfree */
4e857c58 3033 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3034 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
3035 return;
3036 }
3037
3038 /*
3039 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3040 * callers to piggyback on our grace period. We retry
3041 * after they started, so our grace period works for them,
3042 * and they started after our first try, so their grace
3043 * period works for us.
3d3b7db0 3044 */
dd56af42
PM
3045 if (!try_get_online_cpus()) {
3046 /* CPU hotplug operation in flight, use normal GP. */
3047 wait_rcu_gp(call_rcu_sched);
3048 atomic_long_inc(&rsp->expedited_normal);
3049 return;
3050 }
40694d66 3051 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3052 smp_mb(); /* ensure read is before try_stop_cpus(). */
3053 }
a30489c5 3054 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
3055
3056 /*
3057 * Everyone up to our most recent fetch is covered by our grace
3058 * period. Update the counter, but only if our work is still
3059 * relevant -- which it won't be if someone who started later
1924bcb0 3060 * than we did already did their update.
3d3b7db0
PM
3061 */
3062 do {
a30489c5 3063 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3064 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3065 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3066 /* ensure test happens before caller kfree */
4e857c58 3067 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3068 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3069 break;
3070 }
40694d66 3071 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3072 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3073
3074 put_online_cpus();
3075}
3076EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3077
64db4cff
PM
3078/*
3079 * Check to see if there is any immediate RCU-related work to be done
3080 * by the current CPU, for the specified type of RCU, returning 1 if so.
3081 * The checks are in order of increasing expense: checks that can be
3082 * carried out against CPU-local state are performed first. However,
3083 * we must check for CPU stalls first, else we might not get a chance.
3084 */
3085static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3086{
2f51f988
PM
3087 struct rcu_node *rnp = rdp->mynode;
3088
64db4cff
PM
3089 rdp->n_rcu_pending++;
3090
3091 /* Check for CPU stalls, if enabled. */
3092 check_cpu_stall(rsp, rdp);
3093
a096932f
PM
3094 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3095 if (rcu_nohz_full_cpu(rsp))
3096 return 0;
3097
64db4cff 3098 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
3099 if (rcu_scheduler_fully_active &&
3100 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 3101 rdp->n_rp_qs_pending++;
e4cc1f22 3102 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 3103 rdp->n_rp_report_qs++;
64db4cff 3104 return 1;
7ba5c840 3105 }
64db4cff
PM
3106
3107 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3108 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3109 rdp->n_rp_cb_ready++;
64db4cff 3110 return 1;
7ba5c840 3111 }
64db4cff
PM
3112
3113 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3114 if (cpu_needs_another_gp(rsp, rdp)) {
3115 rdp->n_rp_cpu_needs_gp++;
64db4cff 3116 return 1;
7ba5c840 3117 }
64db4cff
PM
3118
3119 /* Has another RCU grace period completed? */
2f51f988 3120 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3121 rdp->n_rp_gp_completed++;
64db4cff 3122 return 1;
7ba5c840 3123 }
64db4cff
PM
3124
3125 /* Has a new RCU grace period started? */
2f51f988 3126 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 3127 rdp->n_rp_gp_started++;
64db4cff 3128 return 1;
7ba5c840 3129 }
64db4cff 3130
96d3fd0d
PM
3131 /* Does this CPU need a deferred NOCB wakeup? */
3132 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3133 rdp->n_rp_nocb_defer_wakeup++;
3134 return 1;
3135 }
3136
64db4cff 3137 /* nothing to do */
7ba5c840 3138 rdp->n_rp_need_nothing++;
64db4cff
PM
3139 return 0;
3140}
3141
3142/*
3143 * Check to see if there is any immediate RCU-related work to be done
3144 * by the current CPU, returning 1 if so. This function is part of the
3145 * RCU implementation; it is -not- an exported member of the RCU API.
3146 */
e3950ecd 3147static int rcu_pending(void)
64db4cff 3148{
6ce75a23
PM
3149 struct rcu_state *rsp;
3150
3151 for_each_rcu_flavor(rsp)
e3950ecd 3152 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3153 return 1;
3154 return 0;
64db4cff
PM
3155}
3156
3157/*
c0f4dfd4
PM
3158 * Return true if the specified CPU has any callback. If all_lazy is
3159 * non-NULL, store an indication of whether all callbacks are lazy.
3160 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3161 */
ffa83fb5 3162static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 3163{
c0f4dfd4
PM
3164 bool al = true;
3165 bool hc = false;
3166 struct rcu_data *rdp;
6ce75a23
PM
3167 struct rcu_state *rsp;
3168
c0f4dfd4
PM
3169 for_each_rcu_flavor(rsp) {
3170 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
3171 if (!rdp->nxtlist)
3172 continue;
3173 hc = true;
3174 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3175 al = false;
69c8d28c
PM
3176 break;
3177 }
c0f4dfd4
PM
3178 }
3179 if (all_lazy)
3180 *all_lazy = al;
3181 return hc;
64db4cff
PM
3182}
3183
a83eff0a
PM
3184/*
3185 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3186 * the compiler is expected to optimize this away.
3187 */
e66c33d5 3188static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3189 int cpu, unsigned long done)
3190{
3191 trace_rcu_barrier(rsp->name, s, cpu,
3192 atomic_read(&rsp->barrier_cpu_count), done);
3193}
3194
b1420f1c
PM
3195/*
3196 * RCU callback function for _rcu_barrier(). If we are last, wake
3197 * up the task executing _rcu_barrier().
3198 */
24ebbca8 3199static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3200{
24ebbca8
PM
3201 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3202 struct rcu_state *rsp = rdp->rsp;
3203
a83eff0a
PM
3204 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3205 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3206 complete(&rsp->barrier_completion);
a83eff0a
PM
3207 } else {
3208 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3209 }
d0ec774c
PM
3210}
3211
3212/*
3213 * Called with preemption disabled, and from cross-cpu IRQ context.
3214 */
3215static void rcu_barrier_func(void *type)
3216{
037b64ed 3217 struct rcu_state *rsp = type;
fa07a58f 3218 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3219
a83eff0a 3220 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3221 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3222 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3223}
3224
d0ec774c
PM
3225/*
3226 * Orchestrate the specified type of RCU barrier, waiting for all
3227 * RCU callbacks of the specified type to complete.
3228 */
037b64ed 3229static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3230{
b1420f1c 3231 int cpu;
b1420f1c 3232 struct rcu_data *rdp;
cf3a9c48
PM
3233 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3234 unsigned long snap_done;
b1420f1c 3235
a83eff0a 3236 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3237
e74f4c45 3238 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3239 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3240
cf3a9c48
PM
3241 /*
3242 * Ensure that all prior references, including to ->n_barrier_done,
3243 * are ordered before the _rcu_barrier() machinery.
3244 */
3245 smp_mb(); /* See above block comment. */
3246
3247 /*
3248 * Recheck ->n_barrier_done to see if others did our work for us.
3249 * This means checking ->n_barrier_done for an even-to-odd-to-even
3250 * transition. The "if" expression below therefore rounds the old
3251 * value up to the next even number and adds two before comparing.
3252 */
458fb381 3253 snap_done = rsp->n_barrier_done;
a83eff0a 3254 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3255
3256 /*
3257 * If the value in snap is odd, we needed to wait for the current
3258 * rcu_barrier() to complete, then wait for the next one, in other
3259 * words, we need the value of snap_done to be three larger than
3260 * the value of snap. On the other hand, if the value in snap is
3261 * even, we only had to wait for the next rcu_barrier() to complete,
3262 * in other words, we need the value of snap_done to be only two
3263 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3264 * this for us (thank you, Linus!).
3265 */
3266 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3267 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3268 smp_mb(); /* caller's subsequent code after above check. */
3269 mutex_unlock(&rsp->barrier_mutex);
3270 return;
3271 }
3272
3273 /*
3274 * Increment ->n_barrier_done to avoid duplicate work. Use
3275 * ACCESS_ONCE() to prevent the compiler from speculating
3276 * the increment to precede the early-exit check.
3277 */
a792563b 3278 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3279 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3280 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3281 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3282
d0ec774c 3283 /*
b1420f1c
PM
3284 * Initialize the count to one rather than to zero in order to
3285 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3286 * (or preemption of this task). Exclude CPU-hotplug operations
3287 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3288 */
7db74df8 3289 init_completion(&rsp->barrier_completion);
24ebbca8 3290 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3291 get_online_cpus();
b1420f1c
PM
3292
3293 /*
1331e7a1
PM
3294 * Force each CPU with callbacks to register a new callback.
3295 * When that callback is invoked, we will know that all of the
3296 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3297 */
3fbfbf7a 3298 for_each_possible_cpu(cpu) {
d1e43fa5 3299 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3300 continue;
b1420f1c 3301 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3302 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3303 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3304 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3305 rsp->n_barrier_done);
3306 } else {
3307 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3308 rsp->n_barrier_done);
3309 atomic_inc(&rsp->barrier_cpu_count);
3310 __call_rcu(&rdp->barrier_head,
3311 rcu_barrier_callback, rsp, cpu, 0);
3312 }
3fbfbf7a 3313 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3314 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3315 rsp->n_barrier_done);
037b64ed 3316 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3317 } else {
a83eff0a
PM
3318 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3319 rsp->n_barrier_done);
b1420f1c
PM
3320 }
3321 }
1331e7a1 3322 put_online_cpus();
b1420f1c
PM
3323
3324 /*
3325 * Now that we have an rcu_barrier_callback() callback on each
3326 * CPU, and thus each counted, remove the initial count.
3327 */
24ebbca8 3328 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3329 complete(&rsp->barrier_completion);
b1420f1c 3330
cf3a9c48
PM
3331 /* Increment ->n_barrier_done to prevent duplicate work. */
3332 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3333 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3334 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3335 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3336 smp_mb(); /* Keep increment before caller's subsequent code. */
3337
b1420f1c 3338 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3339 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3340
3341 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3342 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3343}
d0ec774c
PM
3344
3345/**
3346 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3347 */
3348void rcu_barrier_bh(void)
3349{
037b64ed 3350 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3351}
3352EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3353
3354/**
3355 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3356 */
3357void rcu_barrier_sched(void)
3358{
037b64ed 3359 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3360}
3361EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3362
64db4cff 3363/*
27569620 3364 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3365 */
27569620
PM
3366static void __init
3367rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3368{
3369 unsigned long flags;
394f99a9 3370 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3371 struct rcu_node *rnp = rcu_get_root(rsp);
3372
3373 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3374 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3375 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3376 init_callback_list(rdp);
486e2593 3377 rdp->qlen_lazy = 0;
1d1fb395 3378 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3379 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3380 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3381 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3382 rdp->cpu = cpu;
d4c08f2a 3383 rdp->rsp = rsp;
3fbfbf7a 3384 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3385 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3386}
3387
3388/*
3389 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3390 * offline event can be happening at a given time. Note also that we
3391 * can accept some slop in the rsp->completed access due to the fact
3392 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3393 */
49fb4c62 3394static void
9b67122a 3395rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3396{
3397 unsigned long flags;
64db4cff 3398 unsigned long mask;
394f99a9 3399 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3400 struct rcu_node *rnp = rcu_get_root(rsp);
3401
a4fbe35a
PM
3402 /* Exclude new grace periods. */
3403 mutex_lock(&rsp->onoff_mutex);
3404
64db4cff 3405 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3406 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3407 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3408 rdp->qlen_last_fqs_check = 0;
3409 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3410 rdp->blimit = blimit;
0d8ee37e 3411 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3412 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3413 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3414 atomic_set(&rdp->dynticks->dynticks,
3415 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3416 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3417
64db4cff
PM
3418 /* Add CPU to rcu_node bitmasks. */
3419 rnp = rdp->mynode;
3420 mask = rdp->grpmask;
3421 do {
3422 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3423 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3424 rnp->qsmaskinit |= mask;
3425 mask = rnp->grpmask;
d09b62df 3426 if (rnp == rdp->mynode) {
06ae115a
PM
3427 /*
3428 * If there is a grace period in progress, we will
3429 * set up to wait for it next time we run the
3430 * RCU core code.
3431 */
3432 rdp->gpnum = rnp->completed;
d09b62df 3433 rdp->completed = rnp->completed;
06ae115a
PM
3434 rdp->passed_quiesce = 0;
3435 rdp->qs_pending = 0;
f7f7bac9 3436 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3437 }
1304afb2 3438 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3439 rnp = rnp->parent;
3440 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3441 local_irq_restore(flags);
64db4cff 3442
a4fbe35a 3443 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3444}
3445
49fb4c62 3446static void rcu_prepare_cpu(int cpu)
64db4cff 3447{
6ce75a23
PM
3448 struct rcu_state *rsp;
3449
3450 for_each_rcu_flavor(rsp)
9b67122a 3451 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3452}
3453
3454/*
f41d911f 3455 * Handle CPU online/offline notification events.
64db4cff 3456 */
49fb4c62 3457static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3458 unsigned long action, void *hcpu)
64db4cff
PM
3459{
3460 long cpu = (long)hcpu;
e534165b 3461 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3462 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3463 struct rcu_state *rsp;
64db4cff 3464
f7f7bac9 3465 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3466 switch (action) {
3467 case CPU_UP_PREPARE:
3468 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3469 rcu_prepare_cpu(cpu);
3470 rcu_prepare_kthreads(cpu);
35ce7f29 3471 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3472 break;
3473 case CPU_ONLINE:
0f962a5e 3474 case CPU_DOWN_FAILED:
5d01bbd1 3475 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3476 break;
3477 case CPU_DOWN_PREPARE:
34ed6246 3478 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3479 break;
d0ec774c
PM
3480 case CPU_DYING:
3481 case CPU_DYING_FROZEN:
6ce75a23
PM
3482 for_each_rcu_flavor(rsp)
3483 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3484 break;
64db4cff
PM
3485 case CPU_DEAD:
3486 case CPU_DEAD_FROZEN:
3487 case CPU_UP_CANCELED:
3488 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3489 for_each_rcu_flavor(rsp)
3490 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3491 break;
3492 default:
3493 break;
3494 }
f7f7bac9 3495 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3496 return NOTIFY_OK;
64db4cff
PM
3497}
3498
d1d74d14
BP
3499static int rcu_pm_notify(struct notifier_block *self,
3500 unsigned long action, void *hcpu)
3501{
3502 switch (action) {
3503 case PM_HIBERNATION_PREPARE:
3504 case PM_SUSPEND_PREPARE:
3505 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3506 rcu_expedited = 1;
3507 break;
3508 case PM_POST_HIBERNATION:
3509 case PM_POST_SUSPEND:
3510 rcu_expedited = 0;
3511 break;
3512 default:
3513 break;
3514 }
3515 return NOTIFY_OK;
3516}
3517
b3dbec76 3518/*
9386c0b7 3519 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3520 */
3521static int __init rcu_spawn_gp_kthread(void)
3522{
3523 unsigned long flags;
3524 struct rcu_node *rnp;
3525 struct rcu_state *rsp;
3526 struct task_struct *t;
3527
9386c0b7 3528 rcu_scheduler_fully_active = 1;
b3dbec76 3529 for_each_rcu_flavor(rsp) {
f170168b 3530 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3531 BUG_ON(IS_ERR(t));
3532 rnp = rcu_get_root(rsp);
3533 raw_spin_lock_irqsave(&rnp->lock, flags);
3534 rsp->gp_kthread = t;
3535 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3536 }
35ce7f29 3537 rcu_spawn_nocb_kthreads();
9386c0b7 3538 rcu_spawn_boost_kthreads();
b3dbec76
PM
3539 return 0;
3540}
3541early_initcall(rcu_spawn_gp_kthread);
3542
bbad9379
PM
3543/*
3544 * This function is invoked towards the end of the scheduler's initialization
3545 * process. Before this is called, the idle task might contain
3546 * RCU read-side critical sections (during which time, this idle
3547 * task is booting the system). After this function is called, the
3548 * idle tasks are prohibited from containing RCU read-side critical
3549 * sections. This function also enables RCU lockdep checking.
3550 */
3551void rcu_scheduler_starting(void)
3552{
3553 WARN_ON(num_online_cpus() != 1);
3554 WARN_ON(nr_context_switches() > 0);
3555 rcu_scheduler_active = 1;
3556}
3557
64db4cff
PM
3558/*
3559 * Compute the per-level fanout, either using the exact fanout specified
3560 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3561 */
3562#ifdef CONFIG_RCU_FANOUT_EXACT
3563static void __init rcu_init_levelspread(struct rcu_state *rsp)
3564{
3565 int i;
3566
04f34650
PM
3567 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3568 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3569 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3570}
3571#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3572static void __init rcu_init_levelspread(struct rcu_state *rsp)
3573{
3574 int ccur;
3575 int cprv;
3576 int i;
3577
4dbd6bb3 3578 cprv = nr_cpu_ids;
f885b7f2 3579 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3580 ccur = rsp->levelcnt[i];
3581 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3582 cprv = ccur;
3583 }
3584}
3585#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3586
3587/*
3588 * Helper function for rcu_init() that initializes one rcu_state structure.
3589 */
394f99a9
LJ
3590static void __init rcu_init_one(struct rcu_state *rsp,
3591 struct rcu_data __percpu *rda)
64db4cff 3592{
b4426b49
FF
3593 static const char * const buf[] = {
3594 "rcu_node_0",
3595 "rcu_node_1",
3596 "rcu_node_2",
3597 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3598 static const char * const fqs[] = {
3599 "rcu_node_fqs_0",
3600 "rcu_node_fqs_1",
3601 "rcu_node_fqs_2",
3602 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3603 static u8 fl_mask = 0x1;
64db4cff
PM
3604 int cpustride = 1;
3605 int i;
3606 int j;
3607 struct rcu_node *rnp;
3608
b6407e86
PM
3609 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3610
4930521a
PM
3611 /* Silence gcc 4.8 warning about array index out of range. */
3612 if (rcu_num_lvls > RCU_NUM_LVLS)
3613 panic("rcu_init_one: rcu_num_lvls overflow");
3614
64db4cff
PM
3615 /* Initialize the level-tracking arrays. */
3616
f885b7f2
PM
3617 for (i = 0; i < rcu_num_lvls; i++)
3618 rsp->levelcnt[i] = num_rcu_lvl[i];
3619 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3620 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3621 rcu_init_levelspread(rsp);
4a81e832
PM
3622 rsp->flavor_mask = fl_mask;
3623 fl_mask <<= 1;
64db4cff
PM
3624
3625 /* Initialize the elements themselves, starting from the leaves. */
3626
f885b7f2 3627 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3628 cpustride *= rsp->levelspread[i];
3629 rnp = rsp->level[i];
3630 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3631 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3632 lockdep_set_class_and_name(&rnp->lock,
3633 &rcu_node_class[i], buf[i]);
394f2769
PM
3634 raw_spin_lock_init(&rnp->fqslock);
3635 lockdep_set_class_and_name(&rnp->fqslock,
3636 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3637 rnp->gpnum = rsp->gpnum;
3638 rnp->completed = rsp->completed;
64db4cff
PM
3639 rnp->qsmask = 0;
3640 rnp->qsmaskinit = 0;
3641 rnp->grplo = j * cpustride;
3642 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3643 if (rnp->grphi >= nr_cpu_ids)
3644 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3645 if (i == 0) {
3646 rnp->grpnum = 0;
3647 rnp->grpmask = 0;
3648 rnp->parent = NULL;
3649 } else {
3650 rnp->grpnum = j % rsp->levelspread[i - 1];
3651 rnp->grpmask = 1UL << rnp->grpnum;
3652 rnp->parent = rsp->level[i - 1] +
3653 j / rsp->levelspread[i - 1];
3654 }
3655 rnp->level = i;
12f5f524 3656 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3657 rcu_init_one_nocb(rnp);
64db4cff
PM
3658 }
3659 }
0c34029a 3660
394f99a9 3661 rsp->rda = rda;
b3dbec76 3662 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3663 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3664 for_each_possible_cpu(i) {
4a90a068 3665 while (i > rnp->grphi)
0c34029a 3666 rnp++;
394f99a9 3667 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3668 rcu_boot_init_percpu_data(i, rsp);
3669 }
6ce75a23 3670 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3671}
3672
f885b7f2
PM
3673/*
3674 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3675 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3676 * the ->node array in the rcu_state structure.
3677 */
3678static void __init rcu_init_geometry(void)
3679{
026ad283 3680 ulong d;
f885b7f2
PM
3681 int i;
3682 int j;
cca6f393 3683 int n = nr_cpu_ids;
f885b7f2
PM
3684 int rcu_capacity[MAX_RCU_LVLS + 1];
3685
026ad283
PM
3686 /*
3687 * Initialize any unspecified boot parameters.
3688 * The default values of jiffies_till_first_fqs and
3689 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3690 * value, which is a function of HZ, then adding one for each
3691 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3692 */
3693 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3694 if (jiffies_till_first_fqs == ULONG_MAX)
3695 jiffies_till_first_fqs = d;
3696 if (jiffies_till_next_fqs == ULONG_MAX)
3697 jiffies_till_next_fqs = d;
3698
f885b7f2 3699 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3700 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3701 nr_cpu_ids == NR_CPUS)
f885b7f2 3702 return;
39479098
PM
3703 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3704 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3705
3706 /*
3707 * Compute number of nodes that can be handled an rcu_node tree
3708 * with the given number of levels. Setting rcu_capacity[0] makes
3709 * some of the arithmetic easier.
3710 */
3711 rcu_capacity[0] = 1;
3712 rcu_capacity[1] = rcu_fanout_leaf;
3713 for (i = 2; i <= MAX_RCU_LVLS; i++)
3714 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3715
3716 /*
3717 * The boot-time rcu_fanout_leaf parameter is only permitted
3718 * to increase the leaf-level fanout, not decrease it. Of course,
3719 * the leaf-level fanout cannot exceed the number of bits in
3720 * the rcu_node masks. Finally, the tree must be able to accommodate
3721 * the configured number of CPUs. Complain and fall back to the
3722 * compile-time values if these limits are exceeded.
3723 */
3724 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3725 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3726 n > rcu_capacity[MAX_RCU_LVLS]) {
3727 WARN_ON(1);
3728 return;
3729 }
3730
3731 /* Calculate the number of rcu_nodes at each level of the tree. */
3732 for (i = 1; i <= MAX_RCU_LVLS; i++)
3733 if (n <= rcu_capacity[i]) {
3734 for (j = 0; j <= i; j++)
3735 num_rcu_lvl[j] =
3736 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3737 rcu_num_lvls = i;
3738 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3739 num_rcu_lvl[j] = 0;
3740 break;
3741 }
3742
3743 /* Calculate the total number of rcu_node structures. */
3744 rcu_num_nodes = 0;
3745 for (i = 0; i <= MAX_RCU_LVLS; i++)
3746 rcu_num_nodes += num_rcu_lvl[i];
3747 rcu_num_nodes -= n;
3748}
3749
9f680ab4 3750void __init rcu_init(void)
64db4cff 3751{
017c4261 3752 int cpu;
9f680ab4 3753
f41d911f 3754 rcu_bootup_announce();
f885b7f2 3755 rcu_init_geometry();
394f99a9 3756 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3757 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3758 __rcu_init_preempt();
b5b39360 3759 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3760
3761 /*
3762 * We don't need protection against CPU-hotplug here because
3763 * this is called early in boot, before either interrupts
3764 * or the scheduler are operational.
3765 */
3766 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3767 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3768 for_each_online_cpu(cpu)
3769 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3770}
3771
4102adab 3772#include "tree_plugin.h"
This page took 0.646335 seconds and 5 git commands to generate.