rcu: Let the world know when RCU adjusts its geometry
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a
PM
61#include <trace/events/rcu.h>
62
63#include "rcu.h"
9f77da9f 64
4102adab
PM
65MODULE_ALIAS("rcutree");
66#ifdef MODULE_PARAM_PREFIX
67#undef MODULE_PARAM_PREFIX
68#endif
69#define MODULE_PARAM_PREFIX "rcutree."
70
64db4cff
PM
71/* Data structures. */
72
f885b7f2 73static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 74static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 75
f7f7bac9
SRRH
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
a41bfeb2 84#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
85static char sname##_varname[] = #sname; \
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 87struct rcu_state sname##_state = { \
6c90cc7b 88 .level = { &sname##_state.node[0] }, \
037b64ed 89 .call = cr, \
af446b70 90 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
7b2e6011 93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 98 .name = sname##_varname, \
a4889858 99 .abbr = sabbr, \
a41bfeb2
SRRH
100}; \
101DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 102
a41bfeb2
SRRH
103RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 105
27f4d280 106static struct rcu_state *rcu_state;
6ce75a23 107LIST_HEAD(rcu_struct_flavors);
27f4d280 108
f885b7f2
PM
109/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 111module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119};
120int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
b0d30417
PM
122/*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 126 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
bbad9379
PM
131int rcu_scheduler_active __read_mostly;
132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
b0d30417
PM
134/*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146static int rcu_scheduler_fully_active __read_mostly;
147
a46e0899
PM
148#ifdef CONFIG_RCU_BOOST
149
a26ac245
PM
150/*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 156DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 157DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 158
a46e0899
PM
159#endif /* #ifdef CONFIG_RCU_BOOST */
160
5d01bbd1 161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 164
4a298656
PM
165/*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174unsigned long rcutorture_testseq;
175unsigned long rcutorture_vernum;
176
fc2219d4
PM
177/*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182static int rcu_gp_in_progress(struct rcu_state *rsp)
183{
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185}
186
b1f77b05 187/*
d6714c22 188 * Note a quiescent state. Because we do not need to know
b1f77b05 189 * how many quiescent states passed, just if there was at least
d6714c22 190 * one since the start of the grace period, this just sets a flag.
e4cc1f22 191 * The caller must have disabled preemption.
b1f77b05 192 */
d6714c22 193void rcu_sched_qs(int cpu)
b1f77b05 194{
25502a6c 195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 196
e4cc1f22 197 if (rdp->passed_quiesce == 0)
f7f7bac9 198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 199 rdp->passed_quiesce = 1;
b1f77b05
IM
200}
201
d6714c22 202void rcu_bh_qs(int cpu)
b1f77b05 203{
25502a6c 204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 205
e4cc1f22 206 if (rdp->passed_quiesce == 0)
f7f7bac9 207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 208 rdp->passed_quiesce = 1;
b1f77b05 209}
64db4cff 210
25502a6c
PM
211/*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
e4cc1f22 214 * The caller must have disabled preemption.
25502a6c
PM
215 */
216void rcu_note_context_switch(int cpu)
217{
f7f7bac9 218 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 219 rcu_sched_qs(cpu);
cba6d0d6 220 rcu_preempt_note_context_switch(cpu);
f7f7bac9 221 trace_rcu_utilization(TPS("End context switch"));
25502a6c 222}
29ce8310 223EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 224
01896f7e 225static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 227 .dynticks = ATOMIC_INIT(1),
2333210b
PM
228#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 232};
64db4cff 233
878d7439
ED
234static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235static long qhimark = 10000; /* If this many pending, ignore blimit. */
236static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 237
878d7439
ED
238module_param(blimit, long, 0444);
239module_param(qhimark, long, 0444);
240module_param(qlowmark, long, 0444);
3d76c082 241
026ad283
PM
242static ulong jiffies_till_first_fqs = ULONG_MAX;
243static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
244
245module_param(jiffies_till_first_fqs, ulong, 0644);
246module_param(jiffies_till_next_fqs, ulong, 0644);
247
910ee45d
PM
248static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
217af2a2
PM
250static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
4cdfc175 254static void force_quiescent_state(struct rcu_state *rsp);
a157229c 255static int rcu_pending(int cpu);
64db4cff
PM
256
257/*
d6714c22 258 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 259 */
d6714c22 260long rcu_batches_completed_sched(void)
64db4cff 261{
d6714c22 262 return rcu_sched_state.completed;
64db4cff 263}
d6714c22 264EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
265
266/*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269long rcu_batches_completed_bh(void)
270{
271 return rcu_bh_state.completed;
272}
273EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
bf66f18e
PM
275/*
276 * Force a quiescent state for RCU BH.
277 */
278void rcu_bh_force_quiescent_state(void)
279{
4cdfc175 280 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
281}
282EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
4a298656
PM
284/*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291void rcutorture_record_test_transition(void)
292{
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295}
296EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298/*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303void rcutorture_record_progress(unsigned long vernum)
304{
305 rcutorture_vernum++;
306}
307EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
bf66f18e
PM
309/*
310 * Force a quiescent state for RCU-sched.
311 */
312void rcu_sched_force_quiescent_state(void)
313{
4cdfc175 314 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
315}
316EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
64db4cff
PM
318/*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321static int
322cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323{
3fbfbf7a
PM
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
326}
327
328/*
dc35c893
PM
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
64db4cff
PM
332 */
333static int
334cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335{
dc35c893 336 int i;
3fbfbf7a 337
dc35c893
PM
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
dae6e64d 340 if (rcu_nocb_needs_gp(rsp))
34ed6246 341 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
64db4cff
PM
352}
353
354/*
355 * Return the root node of the specified rcu_state structure.
356 */
357static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358{
359 return &rsp->node[0];
360}
361
9b2e4f18 362/*
adf5091e 363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
adf5091e
FW
369static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
9b2e4f18 371{
96d3fd0d
PM
372 struct rcu_state *rsp;
373 struct rcu_data *rdp;
374
f7f7bac9 375 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 376 if (!user && !is_idle_task(current)) {
289828e6
PM
377 struct task_struct *idle __maybe_unused =
378 idle_task(smp_processor_id());
0989cb46 379
f7f7bac9 380 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 381 ftrace_dump(DUMP_ORIG);
0989cb46
PM
382 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
383 current->pid, current->comm,
384 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 385 }
96d3fd0d
PM
386 for_each_rcu_flavor(rsp) {
387 rdp = this_cpu_ptr(rsp->rda);
388 do_nocb_deferred_wakeup(rdp);
389 }
aea1b35e 390 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
391 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
392 smp_mb__before_atomic_inc(); /* See above. */
393 atomic_inc(&rdtp->dynticks);
394 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
395 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
396
397 /*
adf5091e 398 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
399 * in an RCU read-side critical section.
400 */
401 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
402 "Illegal idle entry in RCU read-side critical section.");
403 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
404 "Illegal idle entry in RCU-bh read-side critical section.");
405 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
406 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 407}
64db4cff 408
adf5091e
FW
409/*
410 * Enter an RCU extended quiescent state, which can be either the
411 * idle loop or adaptive-tickless usermode execution.
64db4cff 412 */
adf5091e 413static void rcu_eqs_enter(bool user)
64db4cff 414{
4145fa7f 415 long long oldval;
64db4cff
PM
416 struct rcu_dynticks *rdtp;
417
c9d4b0af 418 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 419 oldval = rdtp->dynticks_nesting;
29e37d81 420 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 421 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 422 rdtp->dynticks_nesting = 0;
3a592405
PM
423 rcu_eqs_enter_common(rdtp, oldval, user);
424 } else {
29e37d81 425 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 426 }
64db4cff 427}
adf5091e
FW
428
429/**
430 * rcu_idle_enter - inform RCU that current CPU is entering idle
431 *
432 * Enter idle mode, in other words, -leave- the mode in which RCU
433 * read-side critical sections can occur. (Though RCU read-side
434 * critical sections can occur in irq handlers in idle, a possibility
435 * handled by irq_enter() and irq_exit().)
436 *
437 * We crowbar the ->dynticks_nesting field to zero to allow for
438 * the possibility of usermode upcalls having messed up our count
439 * of interrupt nesting level during the prior busy period.
440 */
441void rcu_idle_enter(void)
442{
c5d900bf
FW
443 unsigned long flags;
444
445 local_irq_save(flags);
cb349ca9 446 rcu_eqs_enter(false);
c9d4b0af 447 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 448 local_irq_restore(flags);
adf5091e 449}
8a2ecf47 450EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 451
2b1d5024 452#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
453/**
454 * rcu_user_enter - inform RCU that we are resuming userspace.
455 *
456 * Enter RCU idle mode right before resuming userspace. No use of RCU
457 * is permitted between this call and rcu_user_exit(). This way the
458 * CPU doesn't need to maintain the tick for RCU maintenance purposes
459 * when the CPU runs in userspace.
460 */
461void rcu_user_enter(void)
462{
91d1aa43 463 rcu_eqs_enter(1);
adf5091e 464}
2b1d5024 465#endif /* CONFIG_RCU_USER_QS */
19dd1591 466
9b2e4f18
PM
467/**
468 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
469 *
470 * Exit from an interrupt handler, which might possibly result in entering
471 * idle mode, in other words, leaving the mode in which read-side critical
472 * sections can occur.
64db4cff 473 *
9b2e4f18
PM
474 * This code assumes that the idle loop never does anything that might
475 * result in unbalanced calls to irq_enter() and irq_exit(). If your
476 * architecture violates this assumption, RCU will give you what you
477 * deserve, good and hard. But very infrequently and irreproducibly.
478 *
479 * Use things like work queues to work around this limitation.
480 *
481 * You have been warned.
64db4cff 482 */
9b2e4f18 483void rcu_irq_exit(void)
64db4cff
PM
484{
485 unsigned long flags;
4145fa7f 486 long long oldval;
64db4cff
PM
487 struct rcu_dynticks *rdtp;
488
489 local_irq_save(flags);
c9d4b0af 490 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 491 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
492 rdtp->dynticks_nesting--;
493 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 494 if (rdtp->dynticks_nesting)
f7f7bac9 495 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 496 else
cb349ca9 497 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 498 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
499 local_irq_restore(flags);
500}
501
502/*
adf5091e 503 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
504 *
505 * If the new value of the ->dynticks_nesting counter was previously zero,
506 * we really have exited idle, and must do the appropriate accounting.
507 * The caller must have disabled interrupts.
508 */
adf5091e
FW
509static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
510 int user)
9b2e4f18 511{
23b5c8fa
PM
512 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
513 atomic_inc(&rdtp->dynticks);
514 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
515 smp_mb__after_atomic_inc(); /* See above. */
516 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 517 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 518 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 519 if (!user && !is_idle_task(current)) {
289828e6
PM
520 struct task_struct *idle __maybe_unused =
521 idle_task(smp_processor_id());
0989cb46 522
f7f7bac9 523 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 524 oldval, rdtp->dynticks_nesting);
bf1304e9 525 ftrace_dump(DUMP_ORIG);
0989cb46
PM
526 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
527 current->pid, current->comm,
528 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
529 }
530}
531
adf5091e
FW
532/*
533 * Exit an RCU extended quiescent state, which can be either the
534 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 535 */
adf5091e 536static void rcu_eqs_exit(bool user)
9b2e4f18 537{
9b2e4f18
PM
538 struct rcu_dynticks *rdtp;
539 long long oldval;
540
c9d4b0af 541 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 542 oldval = rdtp->dynticks_nesting;
29e37d81 543 WARN_ON_ONCE(oldval < 0);
3a592405 544 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 545 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 546 } else {
29e37d81 547 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3a592405
PM
548 rcu_eqs_exit_common(rdtp, oldval, user);
549 }
9b2e4f18 550}
adf5091e
FW
551
552/**
553 * rcu_idle_exit - inform RCU that current CPU is leaving idle
554 *
555 * Exit idle mode, in other words, -enter- the mode in which RCU
556 * read-side critical sections can occur.
557 *
558 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
559 * allow for the possibility of usermode upcalls messing up our count
560 * of interrupt nesting level during the busy period that is just
561 * now starting.
562 */
563void rcu_idle_exit(void)
564{
c5d900bf
FW
565 unsigned long flags;
566
567 local_irq_save(flags);
cb349ca9 568 rcu_eqs_exit(false);
c9d4b0af 569 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 570 local_irq_restore(flags);
adf5091e 571}
8a2ecf47 572EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 573
2b1d5024 574#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
575/**
576 * rcu_user_exit - inform RCU that we are exiting userspace.
577 *
578 * Exit RCU idle mode while entering the kernel because it can
579 * run a RCU read side critical section anytime.
580 */
581void rcu_user_exit(void)
582{
91d1aa43 583 rcu_eqs_exit(1);
adf5091e 584}
2b1d5024 585#endif /* CONFIG_RCU_USER_QS */
19dd1591 586
9b2e4f18
PM
587/**
588 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
589 *
590 * Enter an interrupt handler, which might possibly result in exiting
591 * idle mode, in other words, entering the mode in which read-side critical
592 * sections can occur.
593 *
594 * Note that the Linux kernel is fully capable of entering an interrupt
595 * handler that it never exits, for example when doing upcalls to
596 * user mode! This code assumes that the idle loop never does upcalls to
597 * user mode. If your architecture does do upcalls from the idle loop (or
598 * does anything else that results in unbalanced calls to the irq_enter()
599 * and irq_exit() functions), RCU will give you what you deserve, good
600 * and hard. But very infrequently and irreproducibly.
601 *
602 * Use things like work queues to work around this limitation.
603 *
604 * You have been warned.
605 */
606void rcu_irq_enter(void)
607{
608 unsigned long flags;
609 struct rcu_dynticks *rdtp;
610 long long oldval;
611
612 local_irq_save(flags);
c9d4b0af 613 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
614 oldval = rdtp->dynticks_nesting;
615 rdtp->dynticks_nesting++;
616 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 617 if (oldval)
f7f7bac9 618 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 619 else
cb349ca9 620 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 621 rcu_sysidle_exit(rdtp, 1);
64db4cff 622 local_irq_restore(flags);
64db4cff
PM
623}
624
625/**
626 * rcu_nmi_enter - inform RCU of entry to NMI context
627 *
628 * If the CPU was idle with dynamic ticks active, and there is no
629 * irq handler running, this updates rdtp->dynticks_nmi to let the
630 * RCU grace-period handling know that the CPU is active.
631 */
632void rcu_nmi_enter(void)
633{
c9d4b0af 634 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 635
23b5c8fa
PM
636 if (rdtp->dynticks_nmi_nesting == 0 &&
637 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 638 return;
23b5c8fa
PM
639 rdtp->dynticks_nmi_nesting++;
640 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
641 atomic_inc(&rdtp->dynticks);
642 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
643 smp_mb__after_atomic_inc(); /* See above. */
644 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
645}
646
647/**
648 * rcu_nmi_exit - inform RCU of exit from NMI context
649 *
650 * If the CPU was idle with dynamic ticks active, and there is no
651 * irq handler running, this updates rdtp->dynticks_nmi to let the
652 * RCU grace-period handling know that the CPU is no longer active.
653 */
654void rcu_nmi_exit(void)
655{
c9d4b0af 656 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 657
23b5c8fa
PM
658 if (rdtp->dynticks_nmi_nesting == 0 ||
659 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 660 return;
23b5c8fa
PM
661 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
662 smp_mb__before_atomic_inc(); /* See above. */
663 atomic_inc(&rdtp->dynticks);
664 smp_mb__after_atomic_inc(); /* Force delay to next write. */
665 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
666}
667
668/**
5c173eb8
PM
669 * __rcu_is_watching - are RCU read-side critical sections safe?
670 *
671 * Return true if RCU is watching the running CPU, which means that
672 * this CPU can safely enter RCU read-side critical sections. Unlike
673 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
674 * least disabled preemption.
675 */
9418fb20 676bool notrace __rcu_is_watching(void)
5c173eb8
PM
677{
678 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
679}
680
681/**
682 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 683 *
9b2e4f18 684 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 685 * or NMI handler, return true.
64db4cff 686 */
9418fb20 687bool notrace rcu_is_watching(void)
64db4cff 688{
34240697
PM
689 int ret;
690
691 preempt_disable();
5c173eb8 692 ret = __rcu_is_watching();
34240697
PM
693 preempt_enable();
694 return ret;
64db4cff 695}
5c173eb8 696EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 697
62fde6ed 698#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
699
700/*
701 * Is the current CPU online? Disable preemption to avoid false positives
702 * that could otherwise happen due to the current CPU number being sampled,
703 * this task being preempted, its old CPU being taken offline, resuming
704 * on some other CPU, then determining that its old CPU is now offline.
705 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
706 * the check for rcu_scheduler_fully_active. Note also that it is OK
707 * for a CPU coming online to use RCU for one jiffy prior to marking itself
708 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
709 * offline to continue to use RCU for one jiffy after marking itself
710 * offline in the cpu_online_mask. This leniency is necessary given the
711 * non-atomic nature of the online and offline processing, for example,
712 * the fact that a CPU enters the scheduler after completing the CPU_DYING
713 * notifiers.
714 *
715 * This is also why RCU internally marks CPUs online during the
716 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
717 *
718 * Disable checking if in an NMI handler because we cannot safely report
719 * errors from NMI handlers anyway.
720 */
721bool rcu_lockdep_current_cpu_online(void)
722{
2036d94a
PM
723 struct rcu_data *rdp;
724 struct rcu_node *rnp;
c0d6d01b
PM
725 bool ret;
726
727 if (in_nmi())
728 return 1;
729 preempt_disable();
c9d4b0af 730 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
731 rnp = rdp->mynode;
732 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
733 !rcu_scheduler_fully_active;
734 preempt_enable();
735 return ret;
736}
737EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
738
62fde6ed 739#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 740
64db4cff 741/**
9b2e4f18 742 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 743 *
9b2e4f18
PM
744 * If the current CPU is idle or running at a first-level (not nested)
745 * interrupt from idle, return true. The caller must have at least
746 * disabled preemption.
64db4cff 747 */
62e3cb14 748static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 749{
c9d4b0af 750 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
751}
752
64db4cff
PM
753/*
754 * Snapshot the specified CPU's dynticks counter so that we can later
755 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 756 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 757 */
217af2a2
PM
758static int dyntick_save_progress_counter(struct rcu_data *rdp,
759 bool *isidle, unsigned long *maxj)
64db4cff 760{
23b5c8fa 761 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 762 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 763 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
764}
765
6193c76a
PM
766/*
767 * This function really isn't for public consumption, but RCU is special in
768 * that context switches can allow the state machine to make progress.
769 */
770extern void resched_cpu(int cpu);
771
64db4cff
PM
772/*
773 * Return true if the specified CPU has passed through a quiescent
774 * state by virtue of being in or having passed through an dynticks
775 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 776 * for this same CPU, or by virtue of having been offline.
64db4cff 777 */
217af2a2
PM
778static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
779 bool *isidle, unsigned long *maxj)
64db4cff 780{
7eb4f455
PM
781 unsigned int curr;
782 unsigned int snap;
64db4cff 783
7eb4f455
PM
784 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
785 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
786
787 /*
788 * If the CPU passed through or entered a dynticks idle phase with
789 * no active irq/NMI handlers, then we can safely pretend that the CPU
790 * already acknowledged the request to pass through a quiescent
791 * state. Either way, that CPU cannot possibly be in an RCU
792 * read-side critical section that started before the beginning
793 * of the current RCU grace period.
794 */
7eb4f455 795 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 796 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
797 rdp->dynticks_fqs++;
798 return 1;
799 }
800
a82dcc76
PM
801 /*
802 * Check for the CPU being offline, but only if the grace period
803 * is old enough. We don't need to worry about the CPU changing
804 * state: If we see it offline even once, it has been through a
805 * quiescent state.
806 *
807 * The reason for insisting that the grace period be at least
808 * one jiffy old is that CPUs that are not quite online and that
809 * have just gone offline can still execute RCU read-side critical
810 * sections.
811 */
812 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
813 return 0; /* Grace period is not old enough. */
814 barrier();
815 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 816 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
817 rdp->offline_fqs++;
818 return 1;
819 }
65d798f0
PM
820
821 /*
822 * There is a possibility that a CPU in adaptive-ticks state
823 * might run in the kernel with the scheduling-clock tick disabled
824 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
825 * force the CPU to restart the scheduling-clock tick in this
826 * CPU is in this state.
827 */
828 rcu_kick_nohz_cpu(rdp->cpu);
829
6193c76a
PM
830 /*
831 * Alternatively, the CPU might be running in the kernel
832 * for an extended period of time without a quiescent state.
833 * Attempt to force the CPU through the scheduler to gain the
834 * needed quiescent state, but only if the grace period has gone
835 * on for an uncommonly long time. If there are many stuck CPUs,
836 * we will beat on the first one until it gets unstuck, then move
837 * to the next. Only do this for the primary flavor of RCU.
838 */
839 if (rdp->rsp == rcu_state &&
840 ULONG_CMP_GE(ACCESS_ONCE(jiffies), rdp->rsp->jiffies_resched)) {
841 rdp->rsp->jiffies_resched += 5;
842 resched_cpu(rdp->cpu);
843 }
844
a82dcc76 845 return 0;
64db4cff
PM
846}
847
64db4cff
PM
848static void record_gp_stall_check_time(struct rcu_state *rsp)
849{
26cdfedf 850 unsigned long j = ACCESS_ONCE(jiffies);
6193c76a 851 unsigned long j1;
26cdfedf
PM
852
853 rsp->gp_start = j;
854 smp_wmb(); /* Record start time before stall time. */
6193c76a
PM
855 j1 = rcu_jiffies_till_stall_check();
856 rsp->jiffies_stall = j + j1;
857 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
858}
859
b637a328
PM
860/*
861 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
862 * for architectures that do not implement trigger_all_cpu_backtrace().
863 * The NMI-triggered stack traces are more accurate because they are
864 * printed by the target CPU.
865 */
866static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
867{
868 int cpu;
869 unsigned long flags;
870 struct rcu_node *rnp;
871
872 rcu_for_each_leaf_node(rsp, rnp) {
873 raw_spin_lock_irqsave(&rnp->lock, flags);
874 if (rnp->qsmask != 0) {
875 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
876 if (rnp->qsmask & (1UL << cpu))
877 dump_cpu_task(rnp->grplo + cpu);
878 }
879 raw_spin_unlock_irqrestore(&rnp->lock, flags);
880 }
881}
882
64db4cff
PM
883static void print_other_cpu_stall(struct rcu_state *rsp)
884{
885 int cpu;
886 long delta;
887 unsigned long flags;
285fe294 888 int ndetected = 0;
64db4cff 889 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 890 long totqlen = 0;
64db4cff
PM
891
892 /* Only let one CPU complain about others per time interval. */
893
1304afb2 894 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 895 delta = jiffies - rsp->jiffies_stall;
fc2219d4 896 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 897 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
898 return;
899 }
6bfc09e2 900 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 901 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 902
8cdd32a9
PM
903 /*
904 * OK, time to rat on our buddy...
905 * See Documentation/RCU/stallwarn.txt for info on how to debug
906 * RCU CPU stall warnings.
907 */
d7f3e207 908 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 909 rsp->name);
a858af28 910 print_cpu_stall_info_begin();
a0b6c9a7 911 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 912 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 913 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
914 if (rnp->qsmask != 0) {
915 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
916 if (rnp->qsmask & (1UL << cpu)) {
917 print_cpu_stall_info(rsp,
918 rnp->grplo + cpu);
919 ndetected++;
920 }
921 }
3acd9eb3 922 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 923 }
a858af28
PM
924
925 /*
926 * Now rat on any tasks that got kicked up to the root rcu_node
927 * due to CPU offlining.
928 */
929 rnp = rcu_get_root(rsp);
930 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 931 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
932 raw_spin_unlock_irqrestore(&rnp->lock, flags);
933
934 print_cpu_stall_info_end();
53bb857c
PM
935 for_each_possible_cpu(cpu)
936 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
937 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 938 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 939 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 940 if (ndetected == 0)
d7f3e207 941 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 942 else if (!trigger_all_cpu_backtrace())
b637a328 943 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 944
4cdfc175 945 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
946
947 rcu_print_detail_task_stall(rsp);
948
4cdfc175 949 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
950}
951
b021fe3e
PZ
952/*
953 * This function really isn't for public consumption, but RCU is special in
954 * that context switches can allow the state machine to make progress.
955 */
956extern void resched_cpu(int cpu);
957
64db4cff
PM
958static void print_cpu_stall(struct rcu_state *rsp)
959{
53bb857c 960 int cpu;
64db4cff
PM
961 unsigned long flags;
962 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 963 long totqlen = 0;
64db4cff 964
8cdd32a9
PM
965 /*
966 * OK, time to rat on ourselves...
967 * See Documentation/RCU/stallwarn.txt for info on how to debug
968 * RCU CPU stall warnings.
969 */
d7f3e207 970 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
971 print_cpu_stall_info_begin();
972 print_cpu_stall_info(rsp, smp_processor_id());
973 print_cpu_stall_info_end();
53bb857c
PM
974 for_each_possible_cpu(cpu)
975 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
976 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
977 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
978 if (!trigger_all_cpu_backtrace())
979 dump_stack();
c1dc0b9c 980
1304afb2 981 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 982 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 983 rsp->jiffies_stall = jiffies +
6bfc09e2 984 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 985 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 986
b021fe3e
PZ
987 /*
988 * Attempt to revive the RCU machinery by forcing a context switch.
989 *
990 * A context switch would normally allow the RCU state machine to make
991 * progress and it could be we're stuck in kernel space without context
992 * switches for an entirely unreasonable amount of time.
993 */
994 resched_cpu(smp_processor_id());
64db4cff
PM
995}
996
997static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
998{
26cdfedf
PM
999 unsigned long completed;
1000 unsigned long gpnum;
1001 unsigned long gps;
bad6e139
PM
1002 unsigned long j;
1003 unsigned long js;
64db4cff
PM
1004 struct rcu_node *rnp;
1005
26cdfedf 1006 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1007 return;
bad6e139 1008 j = ACCESS_ONCE(jiffies);
26cdfedf
PM
1009
1010 /*
1011 * Lots of memory barriers to reject false positives.
1012 *
1013 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1014 * then rsp->gp_start, and finally rsp->completed. These values
1015 * are updated in the opposite order with memory barriers (or
1016 * equivalent) during grace-period initialization and cleanup.
1017 * Now, a false positive can occur if we get an new value of
1018 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1019 * the memory barriers, the only way that this can happen is if one
1020 * grace period ends and another starts between these two fetches.
1021 * Detect this by comparing rsp->completed with the previous fetch
1022 * from rsp->gpnum.
1023 *
1024 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1025 * and rsp->gp_start suffice to forestall false positives.
1026 */
1027 gpnum = ACCESS_ONCE(rsp->gpnum);
1028 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1029 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1030 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1031 gps = ACCESS_ONCE(rsp->gp_start);
1032 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1033 completed = ACCESS_ONCE(rsp->completed);
1034 if (ULONG_CMP_GE(completed, gpnum) ||
1035 ULONG_CMP_LT(j, js) ||
1036 ULONG_CMP_GE(gps, js))
1037 return; /* No stall or GP completed since entering function. */
64db4cff 1038 rnp = rdp->mynode;
c96ea7cf 1039 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1040 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1041
1042 /* We haven't checked in, so go dump stack. */
1043 print_cpu_stall(rsp);
1044
bad6e139
PM
1045 } else if (rcu_gp_in_progress(rsp) &&
1046 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1047
bad6e139 1048 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1049 print_other_cpu_stall(rsp);
1050 }
1051}
1052
53d84e00
PM
1053/**
1054 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1055 *
1056 * Set the stall-warning timeout way off into the future, thus preventing
1057 * any RCU CPU stall-warning messages from appearing in the current set of
1058 * RCU grace periods.
1059 *
1060 * The caller must disable hard irqs.
1061 */
1062void rcu_cpu_stall_reset(void)
1063{
6ce75a23
PM
1064 struct rcu_state *rsp;
1065
1066 for_each_rcu_flavor(rsp)
1067 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1068}
1069
3f5d3ea6
PM
1070/*
1071 * Initialize the specified rcu_data structure's callback list to empty.
1072 */
1073static void init_callback_list(struct rcu_data *rdp)
1074{
1075 int i;
1076
34ed6246
PM
1077 if (init_nocb_callback_list(rdp))
1078 return;
3f5d3ea6
PM
1079 rdp->nxtlist = NULL;
1080 for (i = 0; i < RCU_NEXT_SIZE; i++)
1081 rdp->nxttail[i] = &rdp->nxtlist;
1082}
1083
dc35c893
PM
1084/*
1085 * Determine the value that ->completed will have at the end of the
1086 * next subsequent grace period. This is used to tag callbacks so that
1087 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1088 * been dyntick-idle for an extended period with callbacks under the
1089 * influence of RCU_FAST_NO_HZ.
1090 *
1091 * The caller must hold rnp->lock with interrupts disabled.
1092 */
1093static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1094 struct rcu_node *rnp)
1095{
1096 /*
1097 * If RCU is idle, we just wait for the next grace period.
1098 * But we can only be sure that RCU is idle if we are looking
1099 * at the root rcu_node structure -- otherwise, a new grace
1100 * period might have started, but just not yet gotten around
1101 * to initializing the current non-root rcu_node structure.
1102 */
1103 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1104 return rnp->completed + 1;
1105
1106 /*
1107 * Otherwise, wait for a possible partial grace period and
1108 * then the subsequent full grace period.
1109 */
1110 return rnp->completed + 2;
1111}
1112
0446be48
PM
1113/*
1114 * Trace-event helper function for rcu_start_future_gp() and
1115 * rcu_nocb_wait_gp().
1116 */
1117static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1118 unsigned long c, const char *s)
0446be48
PM
1119{
1120 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1121 rnp->completed, c, rnp->level,
1122 rnp->grplo, rnp->grphi, s);
1123}
1124
1125/*
1126 * Start some future grace period, as needed to handle newly arrived
1127 * callbacks. The required future grace periods are recorded in each
1128 * rcu_node structure's ->need_future_gp field.
1129 *
1130 * The caller must hold the specified rcu_node structure's ->lock.
1131 */
1132static unsigned long __maybe_unused
1133rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1134{
1135 unsigned long c;
1136 int i;
1137 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1138
1139 /*
1140 * Pick up grace-period number for new callbacks. If this
1141 * grace period is already marked as needed, return to the caller.
1142 */
1143 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1144 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1145 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1146 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1147 return c;
1148 }
1149
1150 /*
1151 * If either this rcu_node structure or the root rcu_node structure
1152 * believe that a grace period is in progress, then we must wait
1153 * for the one following, which is in "c". Because our request
1154 * will be noticed at the end of the current grace period, we don't
1155 * need to explicitly start one.
1156 */
1157 if (rnp->gpnum != rnp->completed ||
1158 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1159 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1160 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1161 return c;
1162 }
1163
1164 /*
1165 * There might be no grace period in progress. If we don't already
1166 * hold it, acquire the root rcu_node structure's lock in order to
1167 * start one (if needed).
1168 */
1169 if (rnp != rnp_root)
1170 raw_spin_lock(&rnp_root->lock);
1171
1172 /*
1173 * Get a new grace-period number. If there really is no grace
1174 * period in progress, it will be smaller than the one we obtained
1175 * earlier. Adjust callbacks as needed. Note that even no-CBs
1176 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1177 */
1178 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1179 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1180 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1181 rdp->nxtcompleted[i] = c;
1182
1183 /*
1184 * If the needed for the required grace period is already
1185 * recorded, trace and leave.
1186 */
1187 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1188 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1189 goto unlock_out;
1190 }
1191
1192 /* Record the need for the future grace period. */
1193 rnp_root->need_future_gp[c & 0x1]++;
1194
1195 /* If a grace period is not already in progress, start one. */
1196 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1197 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1198 } else {
f7f7bac9 1199 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1200 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1201 }
1202unlock_out:
1203 if (rnp != rnp_root)
1204 raw_spin_unlock(&rnp_root->lock);
1205 return c;
1206}
1207
1208/*
1209 * Clean up any old requests for the just-ended grace period. Also return
1210 * whether any additional grace periods have been requested. Also invoke
1211 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1212 * waiting for this grace period to complete.
1213 */
1214static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1215{
1216 int c = rnp->completed;
1217 int needmore;
1218 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1219
1220 rcu_nocb_gp_cleanup(rsp, rnp);
1221 rnp->need_future_gp[c & 0x1] = 0;
1222 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1223 trace_rcu_future_gp(rnp, rdp, c,
1224 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1225 return needmore;
1226}
1227
dc35c893
PM
1228/*
1229 * If there is room, assign a ->completed number to any callbacks on
1230 * this CPU that have not already been assigned. Also accelerate any
1231 * callbacks that were previously assigned a ->completed number that has
1232 * since proven to be too conservative, which can happen if callbacks get
1233 * assigned a ->completed number while RCU is idle, but with reference to
1234 * a non-root rcu_node structure. This function is idempotent, so it does
1235 * not hurt to call it repeatedly.
1236 *
1237 * The caller must hold rnp->lock with interrupts disabled.
1238 */
1239static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1240 struct rcu_data *rdp)
1241{
1242 unsigned long c;
1243 int i;
1244
1245 /* If the CPU has no callbacks, nothing to do. */
1246 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1247 return;
1248
1249 /*
1250 * Starting from the sublist containing the callbacks most
1251 * recently assigned a ->completed number and working down, find the
1252 * first sublist that is not assignable to an upcoming grace period.
1253 * Such a sublist has something in it (first two tests) and has
1254 * a ->completed number assigned that will complete sooner than
1255 * the ->completed number for newly arrived callbacks (last test).
1256 *
1257 * The key point is that any later sublist can be assigned the
1258 * same ->completed number as the newly arrived callbacks, which
1259 * means that the callbacks in any of these later sublist can be
1260 * grouped into a single sublist, whether or not they have already
1261 * been assigned a ->completed number.
1262 */
1263 c = rcu_cbs_completed(rsp, rnp);
1264 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1265 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1266 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1267 break;
1268
1269 /*
1270 * If there are no sublist for unassigned callbacks, leave.
1271 * At the same time, advance "i" one sublist, so that "i" will
1272 * index into the sublist where all the remaining callbacks should
1273 * be grouped into.
1274 */
1275 if (++i >= RCU_NEXT_TAIL)
1276 return;
1277
1278 /*
1279 * Assign all subsequent callbacks' ->completed number to the next
1280 * full grace period and group them all in the sublist initially
1281 * indexed by "i".
1282 */
1283 for (; i <= RCU_NEXT_TAIL; i++) {
1284 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1285 rdp->nxtcompleted[i] = c;
1286 }
910ee45d
PM
1287 /* Record any needed additional grace periods. */
1288 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1289
1290 /* Trace depending on how much we were able to accelerate. */
1291 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1292 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1293 else
f7f7bac9 1294 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1295}
1296
1297/*
1298 * Move any callbacks whose grace period has completed to the
1299 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1300 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1301 * sublist. This function is idempotent, so it does not hurt to
1302 * invoke it repeatedly. As long as it is not invoked -too- often...
1303 *
1304 * The caller must hold rnp->lock with interrupts disabled.
1305 */
1306static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1307 struct rcu_data *rdp)
1308{
1309 int i, j;
1310
1311 /* If the CPU has no callbacks, nothing to do. */
1312 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1313 return;
1314
1315 /*
1316 * Find all callbacks whose ->completed numbers indicate that they
1317 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1318 */
1319 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1320 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1321 break;
1322 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1323 }
1324 /* Clean up any sublist tail pointers that were misordered above. */
1325 for (j = RCU_WAIT_TAIL; j < i; j++)
1326 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1327
1328 /* Copy down callbacks to fill in empty sublists. */
1329 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1330 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1331 break;
1332 rdp->nxttail[j] = rdp->nxttail[i];
1333 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1334 }
1335
1336 /* Classify any remaining callbacks. */
1337 rcu_accelerate_cbs(rsp, rnp, rdp);
1338}
1339
d09b62df 1340/*
ba9fbe95
PM
1341 * Update CPU-local rcu_data state to record the beginnings and ends of
1342 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1343 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1344 */
ba9fbe95 1345static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1346{
ba9fbe95 1347 /* Handle the ends of any preceding grace periods first. */
dc35c893 1348 if (rdp->completed == rnp->completed) {
d09b62df 1349
ba9fbe95 1350 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1351 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1352
dc35c893
PM
1353 } else {
1354
1355 /* Advance callbacks. */
1356 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1357
1358 /* Remember that we saw this grace-period completion. */
1359 rdp->completed = rnp->completed;
f7f7bac9 1360 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1361 }
398ebe60 1362
6eaef633
PM
1363 if (rdp->gpnum != rnp->gpnum) {
1364 /*
1365 * If the current grace period is waiting for this CPU,
1366 * set up to detect a quiescent state, otherwise don't
1367 * go looking for one.
1368 */
1369 rdp->gpnum = rnp->gpnum;
f7f7bac9 1370 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1371 rdp->passed_quiesce = 0;
1372 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1373 zero_cpu_stall_ticks(rdp);
1374 }
1375}
1376
d34ea322 1377static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1378{
1379 unsigned long flags;
1380 struct rcu_node *rnp;
1381
1382 local_irq_save(flags);
1383 rnp = rdp->mynode;
d34ea322
PM
1384 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1385 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1386 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1387 local_irq_restore(flags);
1388 return;
1389 }
d34ea322 1390 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1391 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1392}
1393
b3dbec76 1394/*
f7be8209 1395 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1396 */
7fdefc10 1397static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1398{
1399 struct rcu_data *rdp;
7fdefc10 1400 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1401
eb75767b 1402 rcu_bind_gp_kthread();
7fdefc10 1403 raw_spin_lock_irq(&rnp->lock);
f7be8209
PM
1404 if (rsp->gp_flags == 0) {
1405 /* Spurious wakeup, tell caller to go back to sleep. */
1406 raw_spin_unlock_irq(&rnp->lock);
1407 return 0;
1408 }
4cdfc175 1409 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1410
f7be8209
PM
1411 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1412 /*
1413 * Grace period already in progress, don't start another.
1414 * Not supposed to be able to happen.
1415 */
7fdefc10
PM
1416 raw_spin_unlock_irq(&rnp->lock);
1417 return 0;
1418 }
1419
7fdefc10 1420 /* Advance to a new grace period and initialize state. */
26cdfedf
PM
1421 record_gp_stall_check_time(rsp);
1422 smp_wmb(); /* Record GP times before starting GP. */
7fdefc10 1423 rsp->gpnum++;
f7f7bac9 1424 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1425 raw_spin_unlock_irq(&rnp->lock);
1426
1427 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1428 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1429
1430 /*
1431 * Set the quiescent-state-needed bits in all the rcu_node
1432 * structures for all currently online CPUs in breadth-first order,
1433 * starting from the root rcu_node structure, relying on the layout
1434 * of the tree within the rsp->node[] array. Note that other CPUs
1435 * will access only the leaves of the hierarchy, thus seeing that no
1436 * grace period is in progress, at least until the corresponding
1437 * leaf node has been initialized. In addition, we have excluded
1438 * CPU-hotplug operations.
1439 *
1440 * The grace period cannot complete until the initialization
1441 * process finishes, because this kthread handles both.
1442 */
1443 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1444 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1445 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1446 rcu_preempt_check_blocked_tasks(rnp);
1447 rnp->qsmask = rnp->qsmaskinit;
0446be48 1448 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1449 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1450 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1451 if (rnp == rdp->mynode)
ce3d9c03 1452 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1453 rcu_preempt_boost_start_gp(rnp);
1454 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1455 rnp->level, rnp->grplo,
1456 rnp->grphi, rnp->qsmask);
1457 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1458#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1459 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1460 system_state == SYSTEM_RUNNING)
971394f3 1461 udelay(200);
661a85dc 1462#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1463 cond_resched();
1464 }
b3dbec76 1465
a4fbe35a 1466 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1467 return 1;
1468}
b3dbec76 1469
4cdfc175
PM
1470/*
1471 * Do one round of quiescent-state forcing.
1472 */
01896f7e 1473static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1474{
1475 int fqs_state = fqs_state_in;
217af2a2
PM
1476 bool isidle = false;
1477 unsigned long maxj;
4cdfc175
PM
1478 struct rcu_node *rnp = rcu_get_root(rsp);
1479
1480 rsp->n_force_qs++;
1481 if (fqs_state == RCU_SAVE_DYNTICK) {
1482 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1483 if (is_sysidle_rcu_state(rsp)) {
1484 isidle = 1;
1485 maxj = jiffies - ULONG_MAX / 4;
1486 }
217af2a2
PM
1487 force_qs_rnp(rsp, dyntick_save_progress_counter,
1488 &isidle, &maxj);
0edd1b17 1489 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1490 fqs_state = RCU_FORCE_QS;
1491 } else {
1492 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1493 isidle = 0;
217af2a2 1494 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1495 }
1496 /* Clear flag to prevent immediate re-entry. */
1497 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1498 raw_spin_lock_irq(&rnp->lock);
1499 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1500 raw_spin_unlock_irq(&rnp->lock);
1501 }
1502 return fqs_state;
1503}
1504
7fdefc10
PM
1505/*
1506 * Clean up after the old grace period.
1507 */
4cdfc175 1508static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1509{
1510 unsigned long gp_duration;
dae6e64d 1511 int nocb = 0;
7fdefc10
PM
1512 struct rcu_data *rdp;
1513 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1514
7fdefc10
PM
1515 raw_spin_lock_irq(&rnp->lock);
1516 gp_duration = jiffies - rsp->gp_start;
1517 if (gp_duration > rsp->gp_max)
1518 rsp->gp_max = gp_duration;
b3dbec76 1519
7fdefc10
PM
1520 /*
1521 * We know the grace period is complete, but to everyone else
1522 * it appears to still be ongoing. But it is also the case
1523 * that to everyone else it looks like there is nothing that
1524 * they can do to advance the grace period. It is therefore
1525 * safe for us to drop the lock in order to mark the grace
1526 * period as completed in all of the rcu_node structures.
7fdefc10 1527 */
5d4b8659 1528 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1529
5d4b8659
PM
1530 /*
1531 * Propagate new ->completed value to rcu_node structures so
1532 * that other CPUs don't have to wait until the start of the next
1533 * grace period to process their callbacks. This also avoids
1534 * some nasty RCU grace-period initialization races by forcing
1535 * the end of the current grace period to be completely recorded in
1536 * all of the rcu_node structures before the beginning of the next
1537 * grace period is recorded in any of the rcu_node structures.
1538 */
1539 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1540 raw_spin_lock_irq(&rnp->lock);
0446be48 1541 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1542 rdp = this_cpu_ptr(rsp->rda);
1543 if (rnp == rdp->mynode)
470716fc 1544 __note_gp_changes(rsp, rnp, rdp);
78e4bc34 1545 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1546 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1547 raw_spin_unlock_irq(&rnp->lock);
1548 cond_resched();
7fdefc10 1549 }
5d4b8659
PM
1550 rnp = rcu_get_root(rsp);
1551 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1552 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1553
1554 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1555 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1556 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1557 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1558 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
bb311ecc 1559 if (cpu_needs_another_gp(rsp, rdp)) {
b3f2d025 1560 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1561 trace_rcu_grace_period(rsp->name,
1562 ACCESS_ONCE(rsp->gpnum),
1563 TPS("newreq"));
1564 }
7fdefc10 1565 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1566}
1567
1568/*
1569 * Body of kthread that handles grace periods.
1570 */
1571static int __noreturn rcu_gp_kthread(void *arg)
1572{
4cdfc175 1573 int fqs_state;
88d6df61 1574 int gf;
d40011f6 1575 unsigned long j;
4cdfc175 1576 int ret;
7fdefc10
PM
1577 struct rcu_state *rsp = arg;
1578 struct rcu_node *rnp = rcu_get_root(rsp);
1579
1580 for (;;) {
1581
1582 /* Handle grace-period start. */
1583 for (;;) {
63c4db78
PM
1584 trace_rcu_grace_period(rsp->name,
1585 ACCESS_ONCE(rsp->gpnum),
1586 TPS("reqwait"));
4cdfc175 1587 wait_event_interruptible(rsp->gp_wq,
591c6d17 1588 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1589 RCU_GP_FLAG_INIT);
78e4bc34 1590 /* Locking provides needed memory barrier. */
f7be8209 1591 if (rcu_gp_init(rsp))
7fdefc10
PM
1592 break;
1593 cond_resched();
1594 flush_signals(current);
63c4db78
PM
1595 trace_rcu_grace_period(rsp->name,
1596 ACCESS_ONCE(rsp->gpnum),
1597 TPS("reqwaitsig"));
7fdefc10 1598 }
cabc49c1 1599
4cdfc175
PM
1600 /* Handle quiescent-state forcing. */
1601 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1602 j = jiffies_till_first_fqs;
1603 if (j > HZ) {
1604 j = HZ;
1605 jiffies_till_first_fqs = HZ;
1606 }
88d6df61 1607 ret = 0;
cabc49c1 1608 for (;;) {
88d6df61
PM
1609 if (!ret)
1610 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1611 trace_rcu_grace_period(rsp->name,
1612 ACCESS_ONCE(rsp->gpnum),
1613 TPS("fqswait"));
4cdfc175 1614 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1615 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1616 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1617 (!ACCESS_ONCE(rnp->qsmask) &&
1618 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1619 j);
78e4bc34 1620 /* Locking provides needed memory barriers. */
4cdfc175 1621 /* If grace period done, leave loop. */
cabc49c1 1622 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1623 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1624 break;
4cdfc175 1625 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1626 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1627 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1628 trace_rcu_grace_period(rsp->name,
1629 ACCESS_ONCE(rsp->gpnum),
1630 TPS("fqsstart"));
4cdfc175 1631 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1632 trace_rcu_grace_period(rsp->name,
1633 ACCESS_ONCE(rsp->gpnum),
1634 TPS("fqsend"));
4cdfc175
PM
1635 cond_resched();
1636 } else {
1637 /* Deal with stray signal. */
1638 cond_resched();
1639 flush_signals(current);
63c4db78
PM
1640 trace_rcu_grace_period(rsp->name,
1641 ACCESS_ONCE(rsp->gpnum),
1642 TPS("fqswaitsig"));
4cdfc175 1643 }
d40011f6
PM
1644 j = jiffies_till_next_fqs;
1645 if (j > HZ) {
1646 j = HZ;
1647 jiffies_till_next_fqs = HZ;
1648 } else if (j < 1) {
1649 j = 1;
1650 jiffies_till_next_fqs = 1;
1651 }
cabc49c1 1652 }
4cdfc175
PM
1653
1654 /* Handle grace-period end. */
1655 rcu_gp_cleanup(rsp);
b3dbec76 1656 }
b3dbec76
PM
1657}
1658
016a8d5b
SR
1659static void rsp_wakeup(struct irq_work *work)
1660{
1661 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1662
1663 /* Wake up rcu_gp_kthread() to start the grace period. */
1664 wake_up(&rsp->gp_wq);
1665}
1666
64db4cff
PM
1667/*
1668 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1669 * in preparation for detecting the next grace period. The caller must hold
b8462084 1670 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1671 *
1672 * Note that it is legal for a dying CPU (which is marked as offline) to
1673 * invoke this function. This can happen when the dying CPU reports its
1674 * quiescent state.
64db4cff
PM
1675 */
1676static void
910ee45d
PM
1677rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1678 struct rcu_data *rdp)
64db4cff 1679{
b8462084 1680 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1681 /*
b3dbec76 1682 * Either we have not yet spawned the grace-period
62da1921
PM
1683 * task, this CPU does not need another grace period,
1684 * or a grace period is already in progress.
b3dbec76 1685 * Either way, don't start a new grace period.
afe24b12 1686 */
afe24b12
PM
1687 return;
1688 }
4cdfc175 1689 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1690 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1691 TPS("newreq"));
62da1921 1692
016a8d5b
SR
1693 /*
1694 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1695 * could cause possible deadlocks with the rq->lock. Defer
1696 * the wakeup to interrupt context. And don't bother waking
1697 * up the running kthread.
016a8d5b 1698 */
1eafd31c
PM
1699 if (current != rsp->gp_kthread)
1700 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1701}
1702
910ee45d
PM
1703/*
1704 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1705 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1706 * is invoked indirectly from rcu_advance_cbs(), which would result in
1707 * endless recursion -- or would do so if it wasn't for the self-deadlock
1708 * that is encountered beforehand.
1709 */
1710static void
1711rcu_start_gp(struct rcu_state *rsp)
1712{
1713 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1714 struct rcu_node *rnp = rcu_get_root(rsp);
1715
1716 /*
1717 * If there is no grace period in progress right now, any
1718 * callbacks we have up to this point will be satisfied by the
1719 * next grace period. Also, advancing the callbacks reduces the
1720 * probability of false positives from cpu_needs_another_gp()
1721 * resulting in pointless grace periods. So, advance callbacks
1722 * then start the grace period!
1723 */
1724 rcu_advance_cbs(rsp, rnp, rdp);
1725 rcu_start_gp_advanced(rsp, rnp, rdp);
1726}
1727
f41d911f 1728/*
d3f6bad3
PM
1729 * Report a full set of quiescent states to the specified rcu_state
1730 * data structure. This involves cleaning up after the prior grace
1731 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1732 * if one is needed. Note that the caller must hold rnp->lock, which
1733 * is released before return.
f41d911f 1734 */
d3f6bad3 1735static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1736 __releases(rcu_get_root(rsp)->lock)
f41d911f 1737{
fc2219d4 1738 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1739 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1740 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1741}
1742
64db4cff 1743/*
d3f6bad3
PM
1744 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1745 * Allows quiescent states for a group of CPUs to be reported at one go
1746 * to the specified rcu_node structure, though all the CPUs in the group
1747 * must be represented by the same rcu_node structure (which need not be
1748 * a leaf rcu_node structure, though it often will be). That structure's
1749 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1750 */
1751static void
d3f6bad3
PM
1752rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1753 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1754 __releases(rnp->lock)
1755{
28ecd580
PM
1756 struct rcu_node *rnp_c;
1757
64db4cff
PM
1758 /* Walk up the rcu_node hierarchy. */
1759 for (;;) {
1760 if (!(rnp->qsmask & mask)) {
1761
1762 /* Our bit has already been cleared, so done. */
1304afb2 1763 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1764 return;
1765 }
1766 rnp->qsmask &= ~mask;
d4c08f2a
PM
1767 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1768 mask, rnp->qsmask, rnp->level,
1769 rnp->grplo, rnp->grphi,
1770 !!rnp->gp_tasks);
27f4d280 1771 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1772
1773 /* Other bits still set at this level, so done. */
1304afb2 1774 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1775 return;
1776 }
1777 mask = rnp->grpmask;
1778 if (rnp->parent == NULL) {
1779
1780 /* No more levels. Exit loop holding root lock. */
1781
1782 break;
1783 }
1304afb2 1784 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1785 rnp_c = rnp;
64db4cff 1786 rnp = rnp->parent;
1304afb2 1787 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1788 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1789 }
1790
1791 /*
1792 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1793 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1794 * to clean up and start the next grace period if one is needed.
64db4cff 1795 */
d3f6bad3 1796 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1797}
1798
1799/*
d3f6bad3
PM
1800 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1801 * structure. This must be either called from the specified CPU, or
1802 * called when the specified CPU is known to be offline (and when it is
1803 * also known that no other CPU is concurrently trying to help the offline
1804 * CPU). The lastcomp argument is used to make sure we are still in the
1805 * grace period of interest. We don't want to end the current grace period
1806 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1807 */
1808static void
d7d6a11e 1809rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1810{
1811 unsigned long flags;
1812 unsigned long mask;
1813 struct rcu_node *rnp;
1814
1815 rnp = rdp->mynode;
1304afb2 1816 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1817 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1818 rnp->completed == rnp->gpnum) {
64db4cff
PM
1819
1820 /*
e4cc1f22
PM
1821 * The grace period in which this quiescent state was
1822 * recorded has ended, so don't report it upwards.
1823 * We will instead need a new quiescent state that lies
1824 * within the current grace period.
64db4cff 1825 */
e4cc1f22 1826 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1827 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1828 return;
1829 }
1830 mask = rdp->grpmask;
1831 if ((rnp->qsmask & mask) == 0) {
1304afb2 1832 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1833 } else {
1834 rdp->qs_pending = 0;
1835
1836 /*
1837 * This GP can't end until cpu checks in, so all of our
1838 * callbacks can be processed during the next GP.
1839 */
dc35c893 1840 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1841
d3f6bad3 1842 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1843 }
1844}
1845
1846/*
1847 * Check to see if there is a new grace period of which this CPU
1848 * is not yet aware, and if so, set up local rcu_data state for it.
1849 * Otherwise, see if this CPU has just passed through its first
1850 * quiescent state for this grace period, and record that fact if so.
1851 */
1852static void
1853rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1854{
05eb552b
PM
1855 /* Check for grace-period ends and beginnings. */
1856 note_gp_changes(rsp, rdp);
64db4cff
PM
1857
1858 /*
1859 * Does this CPU still need to do its part for current grace period?
1860 * If no, return and let the other CPUs do their part as well.
1861 */
1862 if (!rdp->qs_pending)
1863 return;
1864
1865 /*
1866 * Was there a quiescent state since the beginning of the grace
1867 * period? If no, then exit and wait for the next call.
1868 */
e4cc1f22 1869 if (!rdp->passed_quiesce)
64db4cff
PM
1870 return;
1871
d3f6bad3
PM
1872 /*
1873 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1874 * judge of that).
1875 */
d7d6a11e 1876 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1877}
1878
1879#ifdef CONFIG_HOTPLUG_CPU
1880
e74f4c45 1881/*
b1420f1c
PM
1882 * Send the specified CPU's RCU callbacks to the orphanage. The
1883 * specified CPU must be offline, and the caller must hold the
7b2e6011 1884 * ->orphan_lock.
e74f4c45 1885 */
b1420f1c
PM
1886static void
1887rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1888 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1889{
3fbfbf7a 1890 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1891 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1892 return;
1893
b1420f1c
PM
1894 /*
1895 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1896 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1897 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1898 */
a50c3af9 1899 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1900 rsp->qlen_lazy += rdp->qlen_lazy;
1901 rsp->qlen += rdp->qlen;
1902 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1903 rdp->qlen_lazy = 0;
1d1fb395 1904 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1905 }
1906
1907 /*
b1420f1c
PM
1908 * Next, move those callbacks still needing a grace period to
1909 * the orphanage, where some other CPU will pick them up.
1910 * Some of the callbacks might have gone partway through a grace
1911 * period, but that is too bad. They get to start over because we
1912 * cannot assume that grace periods are synchronized across CPUs.
1913 * We don't bother updating the ->nxttail[] array yet, instead
1914 * we just reset the whole thing later on.
a50c3af9 1915 */
b1420f1c
PM
1916 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1917 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1918 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1919 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1920 }
1921
1922 /*
b1420f1c
PM
1923 * Then move the ready-to-invoke callbacks to the orphanage,
1924 * where some other CPU will pick them up. These will not be
1925 * required to pass though another grace period: They are done.
a50c3af9 1926 */
e5601400 1927 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1928 *rsp->orphan_donetail = rdp->nxtlist;
1929 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1930 }
e74f4c45 1931
b1420f1c 1932 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1933 init_callback_list(rdp);
b1420f1c
PM
1934}
1935
1936/*
1937 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1938 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 1939 */
96d3fd0d 1940static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
1941{
1942 int i;
1943 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1944
3fbfbf7a 1945 /* No-CBs CPUs are handled specially. */
96d3fd0d 1946 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
1947 return;
1948
b1420f1c
PM
1949 /* Do the accounting first. */
1950 rdp->qlen_lazy += rsp->qlen_lazy;
1951 rdp->qlen += rsp->qlen;
1952 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1953 if (rsp->qlen_lazy != rsp->qlen)
1954 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1955 rsp->qlen_lazy = 0;
1956 rsp->qlen = 0;
1957
1958 /*
1959 * We do not need a memory barrier here because the only way we
1960 * can get here if there is an rcu_barrier() in flight is if
1961 * we are the task doing the rcu_barrier().
1962 */
1963
1964 /* First adopt the ready-to-invoke callbacks. */
1965 if (rsp->orphan_donelist != NULL) {
1966 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1967 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1968 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1969 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1970 rdp->nxttail[i] = rsp->orphan_donetail;
1971 rsp->orphan_donelist = NULL;
1972 rsp->orphan_donetail = &rsp->orphan_donelist;
1973 }
1974
1975 /* And then adopt the callbacks that still need a grace period. */
1976 if (rsp->orphan_nxtlist != NULL) {
1977 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1978 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1979 rsp->orphan_nxtlist = NULL;
1980 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1981 }
1982}
1983
1984/*
1985 * Trace the fact that this CPU is going offline.
1986 */
1987static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1988{
1989 RCU_TRACE(unsigned long mask);
1990 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1991 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1992
1993 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1994 trace_rcu_grace_period(rsp->name,
1995 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1996 TPS("cpuofl"));
64db4cff
PM
1997}
1998
1999/*
e5601400 2000 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2001 * this fact from process context. Do the remainder of the cleanup,
2002 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2003 * adopting them. There can only be one CPU hotplug operation at a time,
2004 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2005 */
e5601400 2006static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2007{
2036d94a
PM
2008 unsigned long flags;
2009 unsigned long mask;
2010 int need_report = 0;
e5601400 2011 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2012 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2013
2036d94a 2014 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2015 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2016
b1420f1c 2017 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2018
2019 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2020 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2021 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2022
b1420f1c
PM
2023 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2024 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2025 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2026
2036d94a
PM
2027 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2028 mask = rdp->grpmask; /* rnp->grplo is constant. */
2029 do {
2030 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2031 rnp->qsmaskinit &= ~mask;
2032 if (rnp->qsmaskinit != 0) {
2033 if (rnp != rdp->mynode)
2034 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2035 break;
2036 }
2037 if (rnp == rdp->mynode)
2038 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2039 else
2040 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2041 mask = rnp->grpmask;
2042 rnp = rnp->parent;
2043 } while (rnp != NULL);
2044
2045 /*
2046 * We still hold the leaf rcu_node structure lock here, and
2047 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2048 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2049 * held leads to deadlock.
2050 */
7b2e6011 2051 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2052 rnp = rdp->mynode;
2053 if (need_report & RCU_OFL_TASKS_NORM_GP)
2054 rcu_report_unblock_qs_rnp(rnp, flags);
2055 else
2056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2057 if (need_report & RCU_OFL_TASKS_EXP_GP)
2058 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2059 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2060 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2061 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2062 init_callback_list(rdp);
2063 /* Disallow further callbacks on this CPU. */
2064 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2065 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2066}
2067
2068#else /* #ifdef CONFIG_HOTPLUG_CPU */
2069
e5601400 2070static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2071{
2072}
2073
e5601400 2074static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2075{
2076}
2077
2078#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2079
2080/*
2081 * Invoke any RCU callbacks that have made it to the end of their grace
2082 * period. Thottle as specified by rdp->blimit.
2083 */
37c72e56 2084static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2085{
2086 unsigned long flags;
2087 struct rcu_head *next, *list, **tail;
878d7439
ED
2088 long bl, count, count_lazy;
2089 int i;
64db4cff 2090
dc35c893 2091 /* If no callbacks are ready, just return. */
29c00b4a 2092 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2093 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2094 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2095 need_resched(), is_idle_task(current),
2096 rcu_is_callbacks_kthread());
64db4cff 2097 return;
29c00b4a 2098 }
64db4cff
PM
2099
2100 /*
2101 * Extract the list of ready callbacks, disabling to prevent
2102 * races with call_rcu() from interrupt handlers.
2103 */
2104 local_irq_save(flags);
8146c4e2 2105 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2106 bl = rdp->blimit;
486e2593 2107 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2108 list = rdp->nxtlist;
2109 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2110 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2111 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2112 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2113 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2114 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2115 local_irq_restore(flags);
2116
2117 /* Invoke callbacks. */
486e2593 2118 count = count_lazy = 0;
64db4cff
PM
2119 while (list) {
2120 next = list->next;
2121 prefetch(next);
551d55a9 2122 debug_rcu_head_unqueue(list);
486e2593
PM
2123 if (__rcu_reclaim(rsp->name, list))
2124 count_lazy++;
64db4cff 2125 list = next;
dff1672d
PM
2126 /* Stop only if limit reached and CPU has something to do. */
2127 if (++count >= bl &&
2128 (need_resched() ||
2129 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2130 break;
2131 }
2132
2133 local_irq_save(flags);
4968c300
PM
2134 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2135 is_idle_task(current),
2136 rcu_is_callbacks_kthread());
64db4cff
PM
2137
2138 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2139 if (list != NULL) {
2140 *tail = rdp->nxtlist;
2141 rdp->nxtlist = list;
b41772ab
PM
2142 for (i = 0; i < RCU_NEXT_SIZE; i++)
2143 if (&rdp->nxtlist == rdp->nxttail[i])
2144 rdp->nxttail[i] = tail;
64db4cff
PM
2145 else
2146 break;
2147 }
b1420f1c
PM
2148 smp_mb(); /* List handling before counting for rcu_barrier(). */
2149 rdp->qlen_lazy -= count_lazy;
1d1fb395 2150 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2151 rdp->n_cbs_invoked += count;
64db4cff
PM
2152
2153 /* Reinstate batch limit if we have worked down the excess. */
2154 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2155 rdp->blimit = blimit;
2156
37c72e56
PM
2157 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2158 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2159 rdp->qlen_last_fqs_check = 0;
2160 rdp->n_force_qs_snap = rsp->n_force_qs;
2161 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2162 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2163 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2164
64db4cff
PM
2165 local_irq_restore(flags);
2166
e0f23060 2167 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2168 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2169 invoke_rcu_core();
64db4cff
PM
2170}
2171
2172/*
2173 * Check to see if this CPU is in a non-context-switch quiescent state
2174 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2175 * Also schedule RCU core processing.
64db4cff 2176 *
9b2e4f18 2177 * This function must be called from hardirq context. It is normally
64db4cff
PM
2178 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2179 * false, there is no point in invoking rcu_check_callbacks().
2180 */
2181void rcu_check_callbacks(int cpu, int user)
2182{
f7f7bac9 2183 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2184 increment_cpu_stall_ticks();
9b2e4f18 2185 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2186
2187 /*
2188 * Get here if this CPU took its interrupt from user
2189 * mode or from the idle loop, and if this is not a
2190 * nested interrupt. In this case, the CPU is in
d6714c22 2191 * a quiescent state, so note it.
64db4cff
PM
2192 *
2193 * No memory barrier is required here because both
d6714c22
PM
2194 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2195 * variables that other CPUs neither access nor modify,
2196 * at least not while the corresponding CPU is online.
64db4cff
PM
2197 */
2198
d6714c22
PM
2199 rcu_sched_qs(cpu);
2200 rcu_bh_qs(cpu);
64db4cff
PM
2201
2202 } else if (!in_softirq()) {
2203
2204 /*
2205 * Get here if this CPU did not take its interrupt from
2206 * softirq, in other words, if it is not interrupting
2207 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2208 * critical section, so note it.
64db4cff
PM
2209 */
2210
d6714c22 2211 rcu_bh_qs(cpu);
64db4cff 2212 }
f41d911f 2213 rcu_preempt_check_callbacks(cpu);
d21670ac 2214 if (rcu_pending(cpu))
a46e0899 2215 invoke_rcu_core();
f7f7bac9 2216 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2217}
2218
64db4cff
PM
2219/*
2220 * Scan the leaf rcu_node structures, processing dyntick state for any that
2221 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2222 * Also initiate boosting for any threads blocked on the root rcu_node.
2223 *
ee47eb9f 2224 * The caller must have suppressed start of new grace periods.
64db4cff 2225 */
217af2a2
PM
2226static void force_qs_rnp(struct rcu_state *rsp,
2227 int (*f)(struct rcu_data *rsp, bool *isidle,
2228 unsigned long *maxj),
2229 bool *isidle, unsigned long *maxj)
64db4cff
PM
2230{
2231 unsigned long bit;
2232 int cpu;
2233 unsigned long flags;
2234 unsigned long mask;
a0b6c9a7 2235 struct rcu_node *rnp;
64db4cff 2236
a0b6c9a7 2237 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2238 cond_resched();
64db4cff 2239 mask = 0;
1304afb2 2240 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2241 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2242 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2243 return;
64db4cff 2244 }
a0b6c9a7 2245 if (rnp->qsmask == 0) {
1217ed1b 2246 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2247 continue;
2248 }
a0b6c9a7 2249 cpu = rnp->grplo;
64db4cff 2250 bit = 1;
a0b6c9a7 2251 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2252 if ((rnp->qsmask & bit) != 0) {
2253 if ((rnp->qsmaskinit & bit) != 0)
2254 *isidle = 0;
2255 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2256 mask |= bit;
2257 }
64db4cff 2258 }
45f014c5 2259 if (mask != 0) {
64db4cff 2260
d3f6bad3
PM
2261 /* rcu_report_qs_rnp() releases rnp->lock. */
2262 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2263 continue;
2264 }
1304afb2 2265 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2266 }
27f4d280 2267 rnp = rcu_get_root(rsp);
1217ed1b
PM
2268 if (rnp->qsmask == 0) {
2269 raw_spin_lock_irqsave(&rnp->lock, flags);
2270 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2271 }
64db4cff
PM
2272}
2273
2274/*
2275 * Force quiescent states on reluctant CPUs, and also detect which
2276 * CPUs are in dyntick-idle mode.
2277 */
4cdfc175 2278static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2279{
2280 unsigned long flags;
394f2769
PM
2281 bool ret;
2282 struct rcu_node *rnp;
2283 struct rcu_node *rnp_old = NULL;
2284
2285 /* Funnel through hierarchy to reduce memory contention. */
2286 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2287 for (; rnp != NULL; rnp = rnp->parent) {
2288 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2289 !raw_spin_trylock(&rnp->fqslock);
2290 if (rnp_old != NULL)
2291 raw_spin_unlock(&rnp_old->fqslock);
2292 if (ret) {
2293 rsp->n_force_qs_lh++;
2294 return;
2295 }
2296 rnp_old = rnp;
2297 }
2298 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2299
394f2769
PM
2300 /* Reached the root of the rcu_node tree, acquire lock. */
2301 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2302 raw_spin_unlock(&rnp_old->fqslock);
2303 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2304 rsp->n_force_qs_lh++;
2305 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2306 return; /* Someone beat us to it. */
46a1e34e 2307 }
4cdfc175 2308 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2309 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2310 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2311}
2312
64db4cff 2313/*
e0f23060
PM
2314 * This does the RCU core processing work for the specified rcu_state
2315 * and rcu_data structures. This may be called only from the CPU to
2316 * whom the rdp belongs.
64db4cff
PM
2317 */
2318static void
1bca8cf1 2319__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2320{
2321 unsigned long flags;
1bca8cf1 2322 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2323
2e597558
PM
2324 WARN_ON_ONCE(rdp->beenonline == 0);
2325
64db4cff
PM
2326 /* Update RCU state based on any recent quiescent states. */
2327 rcu_check_quiescent_state(rsp, rdp);
2328
2329 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2330 local_irq_save(flags);
64db4cff 2331 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2332 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2333 rcu_start_gp(rsp);
2334 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2335 } else {
2336 local_irq_restore(flags);
64db4cff
PM
2337 }
2338
2339 /* If there are callbacks ready, invoke them. */
09223371 2340 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2341 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2342
2343 /* Do any needed deferred wakeups of rcuo kthreads. */
2344 do_nocb_deferred_wakeup(rdp);
09223371
SL
2345}
2346
64db4cff 2347/*
e0f23060 2348 * Do RCU core processing for the current CPU.
64db4cff 2349 */
09223371 2350static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2351{
6ce75a23
PM
2352 struct rcu_state *rsp;
2353
bfa00b4c
PM
2354 if (cpu_is_offline(smp_processor_id()))
2355 return;
f7f7bac9 2356 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2357 for_each_rcu_flavor(rsp)
2358 __rcu_process_callbacks(rsp);
f7f7bac9 2359 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2360}
2361
a26ac245 2362/*
e0f23060
PM
2363 * Schedule RCU callback invocation. If the specified type of RCU
2364 * does not support RCU priority boosting, just do a direct call,
2365 * otherwise wake up the per-CPU kernel kthread. Note that because we
2366 * are running on the current CPU with interrupts disabled, the
2367 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2368 */
a46e0899 2369static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2370{
b0d30417
PM
2371 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2372 return;
a46e0899
PM
2373 if (likely(!rsp->boost)) {
2374 rcu_do_batch(rsp, rdp);
a26ac245
PM
2375 return;
2376 }
a46e0899 2377 invoke_rcu_callbacks_kthread();
a26ac245
PM
2378}
2379
a46e0899 2380static void invoke_rcu_core(void)
09223371 2381{
b0f74036
PM
2382 if (cpu_online(smp_processor_id()))
2383 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2384}
2385
29154c57
PM
2386/*
2387 * Handle any core-RCU processing required by a call_rcu() invocation.
2388 */
2389static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2390 struct rcu_head *head, unsigned long flags)
64db4cff 2391{
62fde6ed
PM
2392 /*
2393 * If called from an extended quiescent state, invoke the RCU
2394 * core in order to force a re-evaluation of RCU's idleness.
2395 */
5c173eb8 2396 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2397 invoke_rcu_core();
2398
a16b7a69 2399 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2400 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2401 return;
64db4cff 2402
37c72e56
PM
2403 /*
2404 * Force the grace period if too many callbacks or too long waiting.
2405 * Enforce hysteresis, and don't invoke force_quiescent_state()
2406 * if some other CPU has recently done so. Also, don't bother
2407 * invoking force_quiescent_state() if the newly enqueued callback
2408 * is the only one waiting for a grace period to complete.
2409 */
2655d57e 2410 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2411
2412 /* Are we ignoring a completed grace period? */
470716fc 2413 note_gp_changes(rsp, rdp);
b52573d2
PM
2414
2415 /* Start a new grace period if one not already started. */
2416 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2417 struct rcu_node *rnp_root = rcu_get_root(rsp);
2418
b8462084
PM
2419 raw_spin_lock(&rnp_root->lock);
2420 rcu_start_gp(rsp);
2421 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2422 } else {
2423 /* Give the grace period a kick. */
2424 rdp->blimit = LONG_MAX;
2425 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2426 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2427 force_quiescent_state(rsp);
b52573d2
PM
2428 rdp->n_force_qs_snap = rsp->n_force_qs;
2429 rdp->qlen_last_fqs_check = rdp->qlen;
2430 }
4cdfc175 2431 }
29154c57
PM
2432}
2433
ae150184
PM
2434/*
2435 * RCU callback function to leak a callback.
2436 */
2437static void rcu_leak_callback(struct rcu_head *rhp)
2438{
2439}
2440
3fbfbf7a
PM
2441/*
2442 * Helper function for call_rcu() and friends. The cpu argument will
2443 * normally be -1, indicating "currently running CPU". It may specify
2444 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2445 * is expected to specify a CPU.
2446 */
64db4cff
PM
2447static void
2448__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2449 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2450{
2451 unsigned long flags;
2452 struct rcu_data *rdp;
2453
0bb7b59d 2454 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2455 if (debug_rcu_head_queue(head)) {
2456 /* Probable double call_rcu(), so leak the callback. */
2457 ACCESS_ONCE(head->func) = rcu_leak_callback;
2458 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2459 return;
2460 }
64db4cff
PM
2461 head->func = func;
2462 head->next = NULL;
2463
64db4cff
PM
2464 /*
2465 * Opportunistically note grace-period endings and beginnings.
2466 * Note that we might see a beginning right after we see an
2467 * end, but never vice versa, since this CPU has to pass through
2468 * a quiescent state betweentimes.
2469 */
2470 local_irq_save(flags);
394f99a9 2471 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2472
2473 /* Add the callback to our list. */
3fbfbf7a
PM
2474 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2475 int offline;
2476
2477 if (cpu != -1)
2478 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2479 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2480 WARN_ON_ONCE(offline);
0d8ee37e 2481 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2482 local_irq_restore(flags);
2483 return;
2484 }
29154c57 2485 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2486 if (lazy)
2487 rdp->qlen_lazy++;
c57afe80
PM
2488 else
2489 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2490 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2491 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2492 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2493
d4c08f2a
PM
2494 if (__is_kfree_rcu_offset((unsigned long)func))
2495 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2496 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2497 else
486e2593 2498 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2499
29154c57
PM
2500 /* Go handle any RCU core processing required. */
2501 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2502 local_irq_restore(flags);
2503}
2504
2505/*
d6714c22 2506 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2507 */
d6714c22 2508void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2509{
3fbfbf7a 2510 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2511}
d6714c22 2512EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2513
2514/*
486e2593 2515 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2516 */
2517void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2518{
3fbfbf7a 2519 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2520}
2521EXPORT_SYMBOL_GPL(call_rcu_bh);
2522
6d813391
PM
2523/*
2524 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2525 * any blocking grace-period wait automatically implies a grace period
2526 * if there is only one CPU online at any point time during execution
2527 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2528 * occasionally incorrectly indicate that there are multiple CPUs online
2529 * when there was in fact only one the whole time, as this just adds
2530 * some overhead: RCU still operates correctly.
6d813391
PM
2531 */
2532static inline int rcu_blocking_is_gp(void)
2533{
95f0c1de
PM
2534 int ret;
2535
6d813391 2536 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2537 preempt_disable();
2538 ret = num_online_cpus() <= 1;
2539 preempt_enable();
2540 return ret;
6d813391
PM
2541}
2542
6ebb237b
PM
2543/**
2544 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2545 *
2546 * Control will return to the caller some time after a full rcu-sched
2547 * grace period has elapsed, in other words after all currently executing
2548 * rcu-sched read-side critical sections have completed. These read-side
2549 * critical sections are delimited by rcu_read_lock_sched() and
2550 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2551 * local_irq_disable(), and so on may be used in place of
2552 * rcu_read_lock_sched().
2553 *
2554 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2555 * non-threaded hardware-interrupt handlers, in progress on entry will
2556 * have completed before this primitive returns. However, this does not
2557 * guarantee that softirq handlers will have completed, since in some
2558 * kernels, these handlers can run in process context, and can block.
2559 *
2560 * Note that this guarantee implies further memory-ordering guarantees.
2561 * On systems with more than one CPU, when synchronize_sched() returns,
2562 * each CPU is guaranteed to have executed a full memory barrier since the
2563 * end of its last RCU-sched read-side critical section whose beginning
2564 * preceded the call to synchronize_sched(). In addition, each CPU having
2565 * an RCU read-side critical section that extends beyond the return from
2566 * synchronize_sched() is guaranteed to have executed a full memory barrier
2567 * after the beginning of synchronize_sched() and before the beginning of
2568 * that RCU read-side critical section. Note that these guarantees include
2569 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2570 * that are executing in the kernel.
2571 *
2572 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2573 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2574 * to have executed a full memory barrier during the execution of
2575 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2576 * again only if the system has more than one CPU).
6ebb237b
PM
2577 *
2578 * This primitive provides the guarantees made by the (now removed)
2579 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2580 * guarantees that rcu_read_lock() sections will have completed.
2581 * In "classic RCU", these two guarantees happen to be one and
2582 * the same, but can differ in realtime RCU implementations.
2583 */
2584void synchronize_sched(void)
2585{
fe15d706
PM
2586 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2587 !lock_is_held(&rcu_lock_map) &&
2588 !lock_is_held(&rcu_sched_lock_map),
2589 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2590 if (rcu_blocking_is_gp())
2591 return;
3705b88d
AM
2592 if (rcu_expedited)
2593 synchronize_sched_expedited();
2594 else
2595 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2596}
2597EXPORT_SYMBOL_GPL(synchronize_sched);
2598
2599/**
2600 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2601 *
2602 * Control will return to the caller some time after a full rcu_bh grace
2603 * period has elapsed, in other words after all currently executing rcu_bh
2604 * read-side critical sections have completed. RCU read-side critical
2605 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2606 * and may be nested.
f0a0e6f2
PM
2607 *
2608 * See the description of synchronize_sched() for more detailed information
2609 * on memory ordering guarantees.
6ebb237b
PM
2610 */
2611void synchronize_rcu_bh(void)
2612{
fe15d706
PM
2613 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2614 !lock_is_held(&rcu_lock_map) &&
2615 !lock_is_held(&rcu_sched_lock_map),
2616 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2617 if (rcu_blocking_is_gp())
2618 return;
3705b88d
AM
2619 if (rcu_expedited)
2620 synchronize_rcu_bh_expedited();
2621 else
2622 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2623}
2624EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2625
3d3b7db0
PM
2626static int synchronize_sched_expedited_cpu_stop(void *data)
2627{
2628 /*
2629 * There must be a full memory barrier on each affected CPU
2630 * between the time that try_stop_cpus() is called and the
2631 * time that it returns.
2632 *
2633 * In the current initial implementation of cpu_stop, the
2634 * above condition is already met when the control reaches
2635 * this point and the following smp_mb() is not strictly
2636 * necessary. Do smp_mb() anyway for documentation and
2637 * robustness against future implementation changes.
2638 */
2639 smp_mb(); /* See above comment block. */
2640 return 0;
2641}
2642
236fefaf
PM
2643/**
2644 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2645 *
2646 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2647 * approach to force the grace period to end quickly. This consumes
2648 * significant time on all CPUs and is unfriendly to real-time workloads,
2649 * so is thus not recommended for any sort of common-case code. In fact,
2650 * if you are using synchronize_sched_expedited() in a loop, please
2651 * restructure your code to batch your updates, and then use a single
2652 * synchronize_sched() instead.
3d3b7db0 2653 *
236fefaf
PM
2654 * Note that it is illegal to call this function while holding any lock
2655 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2656 * to call this function from a CPU-hotplug notifier. Failing to observe
2657 * these restriction will result in deadlock.
3d3b7db0
PM
2658 *
2659 * This implementation can be thought of as an application of ticket
2660 * locking to RCU, with sync_sched_expedited_started and
2661 * sync_sched_expedited_done taking on the roles of the halves
2662 * of the ticket-lock word. Each task atomically increments
2663 * sync_sched_expedited_started upon entry, snapshotting the old value,
2664 * then attempts to stop all the CPUs. If this succeeds, then each
2665 * CPU will have executed a context switch, resulting in an RCU-sched
2666 * grace period. We are then done, so we use atomic_cmpxchg() to
2667 * update sync_sched_expedited_done to match our snapshot -- but
2668 * only if someone else has not already advanced past our snapshot.
2669 *
2670 * On the other hand, if try_stop_cpus() fails, we check the value
2671 * of sync_sched_expedited_done. If it has advanced past our
2672 * initial snapshot, then someone else must have forced a grace period
2673 * some time after we took our snapshot. In this case, our work is
2674 * done for us, and we can simply return. Otherwise, we try again,
2675 * but keep our initial snapshot for purposes of checking for someone
2676 * doing our work for us.
2677 *
2678 * If we fail too many times in a row, we fall back to synchronize_sched().
2679 */
2680void synchronize_sched_expedited(void)
2681{
1924bcb0
PM
2682 long firstsnap, s, snap;
2683 int trycount = 0;
40694d66 2684 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2685
1924bcb0
PM
2686 /*
2687 * If we are in danger of counter wrap, just do synchronize_sched().
2688 * By allowing sync_sched_expedited_started to advance no more than
2689 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2690 * that more than 3.5 billion CPUs would be required to force a
2691 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2692 * course be required on a 64-bit system.
2693 */
40694d66
PM
2694 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2695 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2696 ULONG_MAX / 8)) {
2697 synchronize_sched();
a30489c5 2698 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2699 return;
2700 }
3d3b7db0 2701
1924bcb0
PM
2702 /*
2703 * Take a ticket. Note that atomic_inc_return() implies a
2704 * full memory barrier.
2705 */
40694d66 2706 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2707 firstsnap = snap;
3d3b7db0 2708 get_online_cpus();
1cc85961 2709 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2710
2711 /*
2712 * Each pass through the following loop attempts to force a
2713 * context switch on each CPU.
2714 */
2715 while (try_stop_cpus(cpu_online_mask,
2716 synchronize_sched_expedited_cpu_stop,
2717 NULL) == -EAGAIN) {
2718 put_online_cpus();
a30489c5 2719 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2720
1924bcb0 2721 /* Check to see if someone else did our work for us. */
40694d66 2722 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2723 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2724 /* ensure test happens before caller kfree */
2725 smp_mb__before_atomic_inc(); /* ^^^ */
2726 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2727 return;
2728 }
3d3b7db0
PM
2729
2730 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2731 if (trycount++ < 10) {
3d3b7db0 2732 udelay(trycount * num_online_cpus());
c701d5d9 2733 } else {
3705b88d 2734 wait_rcu_gp(call_rcu_sched);
a30489c5 2735 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2736 return;
2737 }
2738
1924bcb0 2739 /* Recheck to see if someone else did our work for us. */
40694d66 2740 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2741 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2742 /* ensure test happens before caller kfree */
2743 smp_mb__before_atomic_inc(); /* ^^^ */
2744 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2745 return;
2746 }
2747
2748 /*
2749 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2750 * callers to piggyback on our grace period. We retry
2751 * after they started, so our grace period works for them,
2752 * and they started after our first try, so their grace
2753 * period works for us.
3d3b7db0
PM
2754 */
2755 get_online_cpus();
40694d66 2756 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2757 smp_mb(); /* ensure read is before try_stop_cpus(). */
2758 }
a30489c5 2759 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2760
2761 /*
2762 * Everyone up to our most recent fetch is covered by our grace
2763 * period. Update the counter, but only if our work is still
2764 * relevant -- which it won't be if someone who started later
1924bcb0 2765 * than we did already did their update.
3d3b7db0
PM
2766 */
2767 do {
a30489c5 2768 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2769 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2770 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2771 /* ensure test happens before caller kfree */
2772 smp_mb__before_atomic_inc(); /* ^^^ */
2773 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2774 break;
2775 }
40694d66 2776 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2777 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2778
2779 put_online_cpus();
2780}
2781EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2782
64db4cff
PM
2783/*
2784 * Check to see if there is any immediate RCU-related work to be done
2785 * by the current CPU, for the specified type of RCU, returning 1 if so.
2786 * The checks are in order of increasing expense: checks that can be
2787 * carried out against CPU-local state are performed first. However,
2788 * we must check for CPU stalls first, else we might not get a chance.
2789 */
2790static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2791{
2f51f988
PM
2792 struct rcu_node *rnp = rdp->mynode;
2793
64db4cff
PM
2794 rdp->n_rcu_pending++;
2795
2796 /* Check for CPU stalls, if enabled. */
2797 check_cpu_stall(rsp, rdp);
2798
2799 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2800 if (rcu_scheduler_fully_active &&
2801 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2802 rdp->n_rp_qs_pending++;
e4cc1f22 2803 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2804 rdp->n_rp_report_qs++;
64db4cff 2805 return 1;
7ba5c840 2806 }
64db4cff
PM
2807
2808 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2809 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2810 rdp->n_rp_cb_ready++;
64db4cff 2811 return 1;
7ba5c840 2812 }
64db4cff
PM
2813
2814 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2815 if (cpu_needs_another_gp(rsp, rdp)) {
2816 rdp->n_rp_cpu_needs_gp++;
64db4cff 2817 return 1;
7ba5c840 2818 }
64db4cff
PM
2819
2820 /* Has another RCU grace period completed? */
2f51f988 2821 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2822 rdp->n_rp_gp_completed++;
64db4cff 2823 return 1;
7ba5c840 2824 }
64db4cff
PM
2825
2826 /* Has a new RCU grace period started? */
2f51f988 2827 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2828 rdp->n_rp_gp_started++;
64db4cff 2829 return 1;
7ba5c840 2830 }
64db4cff 2831
96d3fd0d
PM
2832 /* Does this CPU need a deferred NOCB wakeup? */
2833 if (rcu_nocb_need_deferred_wakeup(rdp)) {
2834 rdp->n_rp_nocb_defer_wakeup++;
2835 return 1;
2836 }
2837
64db4cff 2838 /* nothing to do */
7ba5c840 2839 rdp->n_rp_need_nothing++;
64db4cff
PM
2840 return 0;
2841}
2842
2843/*
2844 * Check to see if there is any immediate RCU-related work to be done
2845 * by the current CPU, returning 1 if so. This function is part of the
2846 * RCU implementation; it is -not- an exported member of the RCU API.
2847 */
a157229c 2848static int rcu_pending(int cpu)
64db4cff 2849{
6ce75a23
PM
2850 struct rcu_state *rsp;
2851
2852 for_each_rcu_flavor(rsp)
2853 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2854 return 1;
2855 return 0;
64db4cff
PM
2856}
2857
2858/*
c0f4dfd4
PM
2859 * Return true if the specified CPU has any callback. If all_lazy is
2860 * non-NULL, store an indication of whether all callbacks are lazy.
2861 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2862 */
c0f4dfd4 2863static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2864{
c0f4dfd4
PM
2865 bool al = true;
2866 bool hc = false;
2867 struct rcu_data *rdp;
6ce75a23
PM
2868 struct rcu_state *rsp;
2869
c0f4dfd4
PM
2870 for_each_rcu_flavor(rsp) {
2871 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
2872 if (!rdp->nxtlist)
2873 continue;
2874 hc = true;
2875 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 2876 al = false;
69c8d28c
PM
2877 break;
2878 }
c0f4dfd4
PM
2879 }
2880 if (all_lazy)
2881 *all_lazy = al;
2882 return hc;
64db4cff
PM
2883}
2884
a83eff0a
PM
2885/*
2886 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2887 * the compiler is expected to optimize this away.
2888 */
e66c33d5 2889static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2890 int cpu, unsigned long done)
2891{
2892 trace_rcu_barrier(rsp->name, s, cpu,
2893 atomic_read(&rsp->barrier_cpu_count), done);
2894}
2895
b1420f1c
PM
2896/*
2897 * RCU callback function for _rcu_barrier(). If we are last, wake
2898 * up the task executing _rcu_barrier().
2899 */
24ebbca8 2900static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2901{
24ebbca8
PM
2902 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2903 struct rcu_state *rsp = rdp->rsp;
2904
a83eff0a
PM
2905 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2906 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2907 complete(&rsp->barrier_completion);
a83eff0a
PM
2908 } else {
2909 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2910 }
d0ec774c
PM
2911}
2912
2913/*
2914 * Called with preemption disabled, and from cross-cpu IRQ context.
2915 */
2916static void rcu_barrier_func(void *type)
2917{
037b64ed 2918 struct rcu_state *rsp = type;
06668efa 2919 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2920
a83eff0a 2921 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2922 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2923 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2924}
2925
d0ec774c
PM
2926/*
2927 * Orchestrate the specified type of RCU barrier, waiting for all
2928 * RCU callbacks of the specified type to complete.
2929 */
037b64ed 2930static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2931{
b1420f1c 2932 int cpu;
b1420f1c 2933 struct rcu_data *rdp;
cf3a9c48
PM
2934 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2935 unsigned long snap_done;
b1420f1c 2936
a83eff0a 2937 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2938
e74f4c45 2939 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2940 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2941
cf3a9c48
PM
2942 /*
2943 * Ensure that all prior references, including to ->n_barrier_done,
2944 * are ordered before the _rcu_barrier() machinery.
2945 */
2946 smp_mb(); /* See above block comment. */
2947
2948 /*
2949 * Recheck ->n_barrier_done to see if others did our work for us.
2950 * This means checking ->n_barrier_done for an even-to-odd-to-even
2951 * transition. The "if" expression below therefore rounds the old
2952 * value up to the next even number and adds two before comparing.
2953 */
458fb381 2954 snap_done = rsp->n_barrier_done;
a83eff0a 2955 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
2956
2957 /*
2958 * If the value in snap is odd, we needed to wait for the current
2959 * rcu_barrier() to complete, then wait for the next one, in other
2960 * words, we need the value of snap_done to be three larger than
2961 * the value of snap. On the other hand, if the value in snap is
2962 * even, we only had to wait for the next rcu_barrier() to complete,
2963 * in other words, we need the value of snap_done to be only two
2964 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2965 * this for us (thank you, Linus!).
2966 */
2967 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 2968 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2969 smp_mb(); /* caller's subsequent code after above check. */
2970 mutex_unlock(&rsp->barrier_mutex);
2971 return;
2972 }
2973
2974 /*
2975 * Increment ->n_barrier_done to avoid duplicate work. Use
2976 * ACCESS_ONCE() to prevent the compiler from speculating
2977 * the increment to precede the early-exit check.
2978 */
2979 ACCESS_ONCE(rsp->n_barrier_done)++;
2980 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2981 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2982 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2983
d0ec774c 2984 /*
b1420f1c
PM
2985 * Initialize the count to one rather than to zero in order to
2986 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2987 * (or preemption of this task). Exclude CPU-hotplug operations
2988 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2989 */
7db74df8 2990 init_completion(&rsp->barrier_completion);
24ebbca8 2991 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2992 get_online_cpus();
b1420f1c
PM
2993
2994 /*
1331e7a1
PM
2995 * Force each CPU with callbacks to register a new callback.
2996 * When that callback is invoked, we will know that all of the
2997 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2998 */
3fbfbf7a 2999 for_each_possible_cpu(cpu) {
d1e43fa5 3000 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3001 continue;
b1420f1c 3002 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3003 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3004 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3005 rsp->n_barrier_done);
3006 atomic_inc(&rsp->barrier_cpu_count);
3007 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3008 rsp, cpu, 0);
3009 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3010 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3011 rsp->n_barrier_done);
037b64ed 3012 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3013 } else {
a83eff0a
PM
3014 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3015 rsp->n_barrier_done);
b1420f1c
PM
3016 }
3017 }
1331e7a1 3018 put_online_cpus();
b1420f1c
PM
3019
3020 /*
3021 * Now that we have an rcu_barrier_callback() callback on each
3022 * CPU, and thus each counted, remove the initial count.
3023 */
24ebbca8 3024 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3025 complete(&rsp->barrier_completion);
b1420f1c 3026
cf3a9c48
PM
3027 /* Increment ->n_barrier_done to prevent duplicate work. */
3028 smp_mb(); /* Keep increment after above mechanism. */
3029 ACCESS_ONCE(rsp->n_barrier_done)++;
3030 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3031 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3032 smp_mb(); /* Keep increment before caller's subsequent code. */
3033
b1420f1c 3034 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3035 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3036
3037 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3038 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3039}
d0ec774c
PM
3040
3041/**
3042 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3043 */
3044void rcu_barrier_bh(void)
3045{
037b64ed 3046 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3047}
3048EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3049
3050/**
3051 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3052 */
3053void rcu_barrier_sched(void)
3054{
037b64ed 3055 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3056}
3057EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3058
64db4cff 3059/*
27569620 3060 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3061 */
27569620
PM
3062static void __init
3063rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3064{
3065 unsigned long flags;
394f99a9 3066 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3067 struct rcu_node *rnp = rcu_get_root(rsp);
3068
3069 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3070 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3071 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3072 init_callback_list(rdp);
486e2593 3073 rdp->qlen_lazy = 0;
1d1fb395 3074 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3075 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3076 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3077 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3078 rdp->cpu = cpu;
d4c08f2a 3079 rdp->rsp = rsp;
3fbfbf7a 3080 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3081 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3082}
3083
3084/*
3085 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3086 * offline event can be happening at a given time. Note also that we
3087 * can accept some slop in the rsp->completed access due to the fact
3088 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3089 */
49fb4c62 3090static void
6cc68793 3091rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
3092{
3093 unsigned long flags;
64db4cff 3094 unsigned long mask;
394f99a9 3095 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3096 struct rcu_node *rnp = rcu_get_root(rsp);
3097
a4fbe35a
PM
3098 /* Exclude new grace periods. */
3099 mutex_lock(&rsp->onoff_mutex);
3100
64db4cff 3101 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3102 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3103 rdp->beenonline = 1; /* We have now been online. */
6cc68793 3104 rdp->preemptible = preemptible;
37c72e56
PM
3105 rdp->qlen_last_fqs_check = 0;
3106 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3107 rdp->blimit = blimit;
0d8ee37e 3108 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3109 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3110 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3111 atomic_set(&rdp->dynticks->dynticks,
3112 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3113 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3114
64db4cff
PM
3115 /* Add CPU to rcu_node bitmasks. */
3116 rnp = rdp->mynode;
3117 mask = rdp->grpmask;
3118 do {
3119 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3120 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3121 rnp->qsmaskinit |= mask;
3122 mask = rnp->grpmask;
d09b62df 3123 if (rnp == rdp->mynode) {
06ae115a
PM
3124 /*
3125 * If there is a grace period in progress, we will
3126 * set up to wait for it next time we run the
3127 * RCU core code.
3128 */
3129 rdp->gpnum = rnp->completed;
d09b62df 3130 rdp->completed = rnp->completed;
06ae115a
PM
3131 rdp->passed_quiesce = 0;
3132 rdp->qs_pending = 0;
f7f7bac9 3133 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3134 }
1304afb2 3135 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3136 rnp = rnp->parent;
3137 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3138 local_irq_restore(flags);
64db4cff 3139
a4fbe35a 3140 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3141}
3142
49fb4c62 3143static void rcu_prepare_cpu(int cpu)
64db4cff 3144{
6ce75a23
PM
3145 struct rcu_state *rsp;
3146
3147 for_each_rcu_flavor(rsp)
3148 rcu_init_percpu_data(cpu, rsp,
3149 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3150}
3151
3152/*
f41d911f 3153 * Handle CPU online/offline notification events.
64db4cff 3154 */
49fb4c62 3155static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3156 unsigned long action, void *hcpu)
64db4cff
PM
3157{
3158 long cpu = (long)hcpu;
27f4d280 3159 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3160 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3161 struct rcu_state *rsp;
64db4cff 3162
f7f7bac9 3163 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3164 switch (action) {
3165 case CPU_UP_PREPARE:
3166 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3167 rcu_prepare_cpu(cpu);
3168 rcu_prepare_kthreads(cpu);
a26ac245
PM
3169 break;
3170 case CPU_ONLINE:
0f962a5e 3171 case CPU_DOWN_FAILED:
5d01bbd1 3172 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3173 break;
3174 case CPU_DOWN_PREPARE:
34ed6246 3175 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3176 break;
d0ec774c
PM
3177 case CPU_DYING:
3178 case CPU_DYING_FROZEN:
6ce75a23
PM
3179 for_each_rcu_flavor(rsp)
3180 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3181 break;
64db4cff
PM
3182 case CPU_DEAD:
3183 case CPU_DEAD_FROZEN:
3184 case CPU_UP_CANCELED:
3185 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3186 for_each_rcu_flavor(rsp)
3187 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3188 break;
3189 default:
3190 break;
3191 }
f7f7bac9 3192 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3193 return NOTIFY_OK;
64db4cff
PM
3194}
3195
d1d74d14
BP
3196static int rcu_pm_notify(struct notifier_block *self,
3197 unsigned long action, void *hcpu)
3198{
3199 switch (action) {
3200 case PM_HIBERNATION_PREPARE:
3201 case PM_SUSPEND_PREPARE:
3202 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3203 rcu_expedited = 1;
3204 break;
3205 case PM_POST_HIBERNATION:
3206 case PM_POST_SUSPEND:
3207 rcu_expedited = 0;
3208 break;
3209 default:
3210 break;
3211 }
3212 return NOTIFY_OK;
3213}
3214
b3dbec76
PM
3215/*
3216 * Spawn the kthread that handles this RCU flavor's grace periods.
3217 */
3218static int __init rcu_spawn_gp_kthread(void)
3219{
3220 unsigned long flags;
3221 struct rcu_node *rnp;
3222 struct rcu_state *rsp;
3223 struct task_struct *t;
3224
3225 for_each_rcu_flavor(rsp) {
f170168b 3226 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3227 BUG_ON(IS_ERR(t));
3228 rnp = rcu_get_root(rsp);
3229 raw_spin_lock_irqsave(&rnp->lock, flags);
3230 rsp->gp_kthread = t;
3231 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3232 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3233 }
3234 return 0;
3235}
3236early_initcall(rcu_spawn_gp_kthread);
3237
bbad9379
PM
3238/*
3239 * This function is invoked towards the end of the scheduler's initialization
3240 * process. Before this is called, the idle task might contain
3241 * RCU read-side critical sections (during which time, this idle
3242 * task is booting the system). After this function is called, the
3243 * idle tasks are prohibited from containing RCU read-side critical
3244 * sections. This function also enables RCU lockdep checking.
3245 */
3246void rcu_scheduler_starting(void)
3247{
3248 WARN_ON(num_online_cpus() != 1);
3249 WARN_ON(nr_context_switches() > 0);
3250 rcu_scheduler_active = 1;
3251}
3252
64db4cff
PM
3253/*
3254 * Compute the per-level fanout, either using the exact fanout specified
3255 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3256 */
3257#ifdef CONFIG_RCU_FANOUT_EXACT
3258static void __init rcu_init_levelspread(struct rcu_state *rsp)
3259{
3260 int i;
3261
f885b7f2 3262 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3263 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3264 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3265}
3266#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3267static void __init rcu_init_levelspread(struct rcu_state *rsp)
3268{
3269 int ccur;
3270 int cprv;
3271 int i;
3272
4dbd6bb3 3273 cprv = nr_cpu_ids;
f885b7f2 3274 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3275 ccur = rsp->levelcnt[i];
3276 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3277 cprv = ccur;
3278 }
3279}
3280#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3281
3282/*
3283 * Helper function for rcu_init() that initializes one rcu_state structure.
3284 */
394f99a9
LJ
3285static void __init rcu_init_one(struct rcu_state *rsp,
3286 struct rcu_data __percpu *rda)
64db4cff 3287{
394f2769
PM
3288 static char *buf[] = { "rcu_node_0",
3289 "rcu_node_1",
3290 "rcu_node_2",
3291 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3292 static char *fqs[] = { "rcu_node_fqs_0",
3293 "rcu_node_fqs_1",
3294 "rcu_node_fqs_2",
3295 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3296 int cpustride = 1;
3297 int i;
3298 int j;
3299 struct rcu_node *rnp;
3300
b6407e86
PM
3301 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3302
4930521a
PM
3303 /* Silence gcc 4.8 warning about array index out of range. */
3304 if (rcu_num_lvls > RCU_NUM_LVLS)
3305 panic("rcu_init_one: rcu_num_lvls overflow");
3306
64db4cff
PM
3307 /* Initialize the level-tracking arrays. */
3308
f885b7f2
PM
3309 for (i = 0; i < rcu_num_lvls; i++)
3310 rsp->levelcnt[i] = num_rcu_lvl[i];
3311 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3312 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3313 rcu_init_levelspread(rsp);
3314
3315 /* Initialize the elements themselves, starting from the leaves. */
3316
f885b7f2 3317 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3318 cpustride *= rsp->levelspread[i];
3319 rnp = rsp->level[i];
3320 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3321 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3322 lockdep_set_class_and_name(&rnp->lock,
3323 &rcu_node_class[i], buf[i]);
394f2769
PM
3324 raw_spin_lock_init(&rnp->fqslock);
3325 lockdep_set_class_and_name(&rnp->fqslock,
3326 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3327 rnp->gpnum = rsp->gpnum;
3328 rnp->completed = rsp->completed;
64db4cff
PM
3329 rnp->qsmask = 0;
3330 rnp->qsmaskinit = 0;
3331 rnp->grplo = j * cpustride;
3332 rnp->grphi = (j + 1) * cpustride - 1;
3333 if (rnp->grphi >= NR_CPUS)
3334 rnp->grphi = NR_CPUS - 1;
3335 if (i == 0) {
3336 rnp->grpnum = 0;
3337 rnp->grpmask = 0;
3338 rnp->parent = NULL;
3339 } else {
3340 rnp->grpnum = j % rsp->levelspread[i - 1];
3341 rnp->grpmask = 1UL << rnp->grpnum;
3342 rnp->parent = rsp->level[i - 1] +
3343 j / rsp->levelspread[i - 1];
3344 }
3345 rnp->level = i;
12f5f524 3346 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3347 rcu_init_one_nocb(rnp);
64db4cff
PM
3348 }
3349 }
0c34029a 3350
394f99a9 3351 rsp->rda = rda;
b3dbec76 3352 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3353 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3354 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3355 for_each_possible_cpu(i) {
4a90a068 3356 while (i > rnp->grphi)
0c34029a 3357 rnp++;
394f99a9 3358 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3359 rcu_boot_init_percpu_data(i, rsp);
3360 }
6ce75a23 3361 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3362}
3363
f885b7f2
PM
3364/*
3365 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3366 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3367 * the ->node array in the rcu_state structure.
3368 */
3369static void __init rcu_init_geometry(void)
3370{
026ad283 3371 ulong d;
f885b7f2
PM
3372 int i;
3373 int j;
cca6f393 3374 int n = nr_cpu_ids;
f885b7f2
PM
3375 int rcu_capacity[MAX_RCU_LVLS + 1];
3376
026ad283
PM
3377 /*
3378 * Initialize any unspecified boot parameters.
3379 * The default values of jiffies_till_first_fqs and
3380 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3381 * value, which is a function of HZ, then adding one for each
3382 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3383 */
3384 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3385 if (jiffies_till_first_fqs == ULONG_MAX)
3386 jiffies_till_first_fqs = d;
3387 if (jiffies_till_next_fqs == ULONG_MAX)
3388 jiffies_till_next_fqs = d;
3389
f885b7f2 3390 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3391 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3392 nr_cpu_ids == NR_CPUS)
f885b7f2 3393 return;
39479098
PM
3394 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3395 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3396
3397 /*
3398 * Compute number of nodes that can be handled an rcu_node tree
3399 * with the given number of levels. Setting rcu_capacity[0] makes
3400 * some of the arithmetic easier.
3401 */
3402 rcu_capacity[0] = 1;
3403 rcu_capacity[1] = rcu_fanout_leaf;
3404 for (i = 2; i <= MAX_RCU_LVLS; i++)
3405 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3406
3407 /*
3408 * The boot-time rcu_fanout_leaf parameter is only permitted
3409 * to increase the leaf-level fanout, not decrease it. Of course,
3410 * the leaf-level fanout cannot exceed the number of bits in
3411 * the rcu_node masks. Finally, the tree must be able to accommodate
3412 * the configured number of CPUs. Complain and fall back to the
3413 * compile-time values if these limits are exceeded.
3414 */
3415 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3416 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3417 n > rcu_capacity[MAX_RCU_LVLS]) {
3418 WARN_ON(1);
3419 return;
3420 }
3421
3422 /* Calculate the number of rcu_nodes at each level of the tree. */
3423 for (i = 1; i <= MAX_RCU_LVLS; i++)
3424 if (n <= rcu_capacity[i]) {
3425 for (j = 0; j <= i; j++)
3426 num_rcu_lvl[j] =
3427 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3428 rcu_num_lvls = i;
3429 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3430 num_rcu_lvl[j] = 0;
3431 break;
3432 }
3433
3434 /* Calculate the total number of rcu_node structures. */
3435 rcu_num_nodes = 0;
3436 for (i = 0; i <= MAX_RCU_LVLS; i++)
3437 rcu_num_nodes += num_rcu_lvl[i];
3438 rcu_num_nodes -= n;
3439}
3440
9f680ab4 3441void __init rcu_init(void)
64db4cff 3442{
017c4261 3443 int cpu;
9f680ab4 3444
f41d911f 3445 rcu_bootup_announce();
f885b7f2 3446 rcu_init_geometry();
394f99a9 3447 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3448 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3449 __rcu_init_preempt();
b5b39360 3450 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3451
3452 /*
3453 * We don't need protection against CPU-hotplug here because
3454 * this is called early in boot, before either interrupts
3455 * or the scheduler are operational.
3456 */
3457 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3458 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3459 for_each_online_cpu(cpu)
3460 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3461}
3462
4102adab 3463#include "tree_plugin.h"
This page took 0.535635 seconds and 5 git commands to generate.