rcu: Return bool type in rcu_lockdep_current_cpu_online()
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a41bfeb2 82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
83static char sname##_varname[] = #sname; \
84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 85struct rcu_state sname##_state = { \
6c90cc7b 86 .level = { &sname##_state.node[0] }, \
037b64ed 87 .call = cr, \
af446b70 88 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
7b2e6011 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 96 .name = sname##_varname, \
a4889858 97 .abbr = sabbr, \
a41bfeb2
SRRH
98}; \
99DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 100
a41bfeb2
SRRH
101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 103
e534165b 104static struct rcu_state *rcu_state_p;
6ce75a23 105LIST_HEAD(rcu_struct_flavors);
27f4d280 106
f885b7f2
PM
107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 109module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117};
118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
b0d30417
PM
120/*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 124 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
bbad9379
PM
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
b0d30417
PM
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
a46e0899
PM
146#ifdef CONFIG_RCU_BOOST
147
a26ac245
PM
148/*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 156
a46e0899
PM
157#endif /* #ifdef CONFIG_RCU_BOOST */
158
5d01bbd1 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
160static void invoke_rcu_core(void);
161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 162
4a298656
PM
163/*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172unsigned long rcutorture_testseq;
173unsigned long rcutorture_vernum;
174
fc2219d4
PM
175/*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180static int rcu_gp_in_progress(struct rcu_state *rsp)
181{
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183}
184
b1f77b05 185/*
d6714c22 186 * Note a quiescent state. Because we do not need to know
b1f77b05 187 * how many quiescent states passed, just if there was at least
d6714c22 188 * one since the start of the grace period, this just sets a flag.
e4cc1f22 189 * The caller must have disabled preemption.
b1f77b05 190 */
d6714c22 191void rcu_sched_qs(int cpu)
b1f77b05 192{
25502a6c 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 194
e4cc1f22 195 if (rdp->passed_quiesce == 0)
f7f7bac9 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 197 rdp->passed_quiesce = 1;
b1f77b05
IM
198}
199
d6714c22 200void rcu_bh_qs(int cpu)
b1f77b05 201{
25502a6c 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 203
e4cc1f22 204 if (rdp->passed_quiesce == 0)
f7f7bac9 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 206 rdp->passed_quiesce = 1;
b1f77b05 207}
64db4cff 208
4a81e832
PM
209static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
210
211static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
212 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
213 .dynticks = ATOMIC_INIT(1),
214#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
215 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
216 .dynticks_idle = ATOMIC_INIT(1),
217#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
218};
219
220/*
221 * Let the RCU core know that this CPU has gone through the scheduler,
222 * which is a quiescent state. This is called when the need for a
223 * quiescent state is urgent, so we burn an atomic operation and full
224 * memory barriers to let the RCU core know about it, regardless of what
225 * this CPU might (or might not) do in the near future.
226 *
227 * We inform the RCU core by emulating a zero-duration dyntick-idle
228 * period, which we in turn do by incrementing the ->dynticks counter
229 * by two.
230 */
231static void rcu_momentary_dyntick_idle(void)
232{
233 unsigned long flags;
234 struct rcu_data *rdp;
235 struct rcu_dynticks *rdtp;
236 int resched_mask;
237 struct rcu_state *rsp;
238
239 local_irq_save(flags);
240
241 /*
242 * Yes, we can lose flag-setting operations. This is OK, because
243 * the flag will be set again after some delay.
244 */
245 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
246 raw_cpu_write(rcu_sched_qs_mask, 0);
247
248 /* Find the flavor that needs a quiescent state. */
249 for_each_rcu_flavor(rsp) {
250 rdp = raw_cpu_ptr(rsp->rda);
251 if (!(resched_mask & rsp->flavor_mask))
252 continue;
253 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
254 if (ACCESS_ONCE(rdp->mynode->completed) !=
255 ACCESS_ONCE(rdp->cond_resched_completed))
256 continue;
257
258 /*
259 * Pretend to be momentarily idle for the quiescent state.
260 * This allows the grace-period kthread to record the
261 * quiescent state, with no need for this CPU to do anything
262 * further.
263 */
264 rdtp = this_cpu_ptr(&rcu_dynticks);
265 smp_mb__before_atomic(); /* Earlier stuff before QS. */
266 atomic_add(2, &rdtp->dynticks); /* QS. */
267 smp_mb__after_atomic(); /* Later stuff after QS. */
268 break;
269 }
270 local_irq_restore(flags);
271}
272
25502a6c
PM
273/*
274 * Note a context switch. This is a quiescent state for RCU-sched,
275 * and requires special handling for preemptible RCU.
e4cc1f22 276 * The caller must have disabled preemption.
25502a6c
PM
277 */
278void rcu_note_context_switch(int cpu)
279{
f7f7bac9 280 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 281 rcu_sched_qs(cpu);
cba6d0d6 282 rcu_preempt_note_context_switch(cpu);
4a81e832
PM
283 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
284 rcu_momentary_dyntick_idle();
f7f7bac9 285 trace_rcu_utilization(TPS("End context switch"));
25502a6c 286}
29ce8310 287EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 288
878d7439
ED
289static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
290static long qhimark = 10000; /* If this many pending, ignore blimit. */
291static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 292
878d7439
ED
293module_param(blimit, long, 0444);
294module_param(qhimark, long, 0444);
295module_param(qlowmark, long, 0444);
3d76c082 296
026ad283
PM
297static ulong jiffies_till_first_fqs = ULONG_MAX;
298static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
299
300module_param(jiffies_till_first_fqs, ulong, 0644);
301module_param(jiffies_till_next_fqs, ulong, 0644);
302
4a81e832
PM
303/*
304 * How long the grace period must be before we start recruiting
305 * quiescent-state help from rcu_note_context_switch().
306 */
307static ulong jiffies_till_sched_qs = HZ / 20;
308module_param(jiffies_till_sched_qs, ulong, 0644);
309
48a7639c 310static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 311 struct rcu_data *rdp);
217af2a2
PM
312static void force_qs_rnp(struct rcu_state *rsp,
313 int (*f)(struct rcu_data *rsp, bool *isidle,
314 unsigned long *maxj),
315 bool *isidle, unsigned long *maxj);
4cdfc175 316static void force_quiescent_state(struct rcu_state *rsp);
a157229c 317static int rcu_pending(int cpu);
64db4cff
PM
318
319/*
d6714c22 320 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 321 */
d6714c22 322long rcu_batches_completed_sched(void)
64db4cff 323{
d6714c22 324 return rcu_sched_state.completed;
64db4cff 325}
d6714c22 326EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
327
328/*
329 * Return the number of RCU BH batches processed thus far for debug & stats.
330 */
331long rcu_batches_completed_bh(void)
332{
333 return rcu_bh_state.completed;
334}
335EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
336
a381d757
ACB
337/*
338 * Force a quiescent state.
339 */
340void rcu_force_quiescent_state(void)
341{
e534165b 342 force_quiescent_state(rcu_state_p);
a381d757
ACB
343}
344EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
345
bf66f18e
PM
346/*
347 * Force a quiescent state for RCU BH.
348 */
349void rcu_bh_force_quiescent_state(void)
350{
4cdfc175 351 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
352}
353EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
354
afea227f
PM
355/*
356 * Show the state of the grace-period kthreads.
357 */
358void show_rcu_gp_kthreads(void)
359{
360 struct rcu_state *rsp;
361
362 for_each_rcu_flavor(rsp) {
363 pr_info("%s: wait state: %d ->state: %#lx\n",
364 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
365 /* sched_show_task(rsp->gp_kthread); */
366 }
367}
368EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
369
4a298656
PM
370/*
371 * Record the number of times rcutorture tests have been initiated and
372 * terminated. This information allows the debugfs tracing stats to be
373 * correlated to the rcutorture messages, even when the rcutorture module
374 * is being repeatedly loaded and unloaded. In other words, we cannot
375 * store this state in rcutorture itself.
376 */
377void rcutorture_record_test_transition(void)
378{
379 rcutorture_testseq++;
380 rcutorture_vernum = 0;
381}
382EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
383
ad0dc7f9
PM
384/*
385 * Send along grace-period-related data for rcutorture diagnostics.
386 */
387void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
388 unsigned long *gpnum, unsigned long *completed)
389{
390 struct rcu_state *rsp = NULL;
391
392 switch (test_type) {
393 case RCU_FLAVOR:
e534165b 394 rsp = rcu_state_p;
ad0dc7f9
PM
395 break;
396 case RCU_BH_FLAVOR:
397 rsp = &rcu_bh_state;
398 break;
399 case RCU_SCHED_FLAVOR:
400 rsp = &rcu_sched_state;
401 break;
402 default:
403 break;
404 }
405 if (rsp != NULL) {
406 *flags = ACCESS_ONCE(rsp->gp_flags);
407 *gpnum = ACCESS_ONCE(rsp->gpnum);
408 *completed = ACCESS_ONCE(rsp->completed);
409 return;
410 }
411 *flags = 0;
412 *gpnum = 0;
413 *completed = 0;
414}
415EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
416
4a298656
PM
417/*
418 * Record the number of writer passes through the current rcutorture test.
419 * This is also used to correlate debugfs tracing stats with the rcutorture
420 * messages.
421 */
422void rcutorture_record_progress(unsigned long vernum)
423{
424 rcutorture_vernum++;
425}
426EXPORT_SYMBOL_GPL(rcutorture_record_progress);
427
bf66f18e
PM
428/*
429 * Force a quiescent state for RCU-sched.
430 */
431void rcu_sched_force_quiescent_state(void)
432{
4cdfc175 433 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
434}
435EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
436
64db4cff
PM
437/*
438 * Does the CPU have callbacks ready to be invoked?
439 */
440static int
441cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
442{
3fbfbf7a
PM
443 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
444 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
445}
446
365187fb
PM
447/*
448 * Return the root node of the specified rcu_state structure.
449 */
450static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
451{
452 return &rsp->node[0];
453}
454
455/*
456 * Is there any need for future grace periods?
457 * Interrupts must be disabled. If the caller does not hold the root
458 * rnp_node structure's ->lock, the results are advisory only.
459 */
460static int rcu_future_needs_gp(struct rcu_state *rsp)
461{
462 struct rcu_node *rnp = rcu_get_root(rsp);
463 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
464 int *fp = &rnp->need_future_gp[idx];
465
466 return ACCESS_ONCE(*fp);
467}
468
64db4cff 469/*
dc35c893
PM
470 * Does the current CPU require a not-yet-started grace period?
471 * The caller must have disabled interrupts to prevent races with
472 * normal callback registry.
64db4cff
PM
473 */
474static int
475cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
476{
dc35c893 477 int i;
3fbfbf7a 478
dc35c893
PM
479 if (rcu_gp_in_progress(rsp))
480 return 0; /* No, a grace period is already in progress. */
365187fb 481 if (rcu_future_needs_gp(rsp))
34ed6246 482 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
483 if (!rdp->nxttail[RCU_NEXT_TAIL])
484 return 0; /* No, this is a no-CBs (or offline) CPU. */
485 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
486 return 1; /* Yes, this CPU has newly registered callbacks. */
487 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
488 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
489 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
490 rdp->nxtcompleted[i]))
491 return 1; /* Yes, CBs for future grace period. */
492 return 0; /* No grace period needed. */
64db4cff
PM
493}
494
9b2e4f18 495/*
adf5091e 496 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
497 *
498 * If the new value of the ->dynticks_nesting counter now is zero,
499 * we really have entered idle, and must do the appropriate accounting.
500 * The caller must have disabled interrupts.
501 */
adf5091e
FW
502static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
503 bool user)
9b2e4f18 504{
96d3fd0d
PM
505 struct rcu_state *rsp;
506 struct rcu_data *rdp;
507
f7f7bac9 508 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 509 if (!user && !is_idle_task(current)) {
289828e6
PM
510 struct task_struct *idle __maybe_unused =
511 idle_task(smp_processor_id());
0989cb46 512
f7f7bac9 513 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 514 ftrace_dump(DUMP_ORIG);
0989cb46
PM
515 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
516 current->pid, current->comm,
517 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 518 }
96d3fd0d
PM
519 for_each_rcu_flavor(rsp) {
520 rdp = this_cpu_ptr(rsp->rda);
521 do_nocb_deferred_wakeup(rdp);
522 }
aea1b35e 523 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18 524 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 525 smp_mb__before_atomic(); /* See above. */
9b2e4f18 526 atomic_inc(&rdtp->dynticks);
4e857c58 527 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 528 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
529
530 /*
adf5091e 531 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
532 * in an RCU read-side critical section.
533 */
534 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
535 "Illegal idle entry in RCU read-side critical section.");
536 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
537 "Illegal idle entry in RCU-bh read-side critical section.");
538 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
539 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 540}
64db4cff 541
adf5091e
FW
542/*
543 * Enter an RCU extended quiescent state, which can be either the
544 * idle loop or adaptive-tickless usermode execution.
64db4cff 545 */
adf5091e 546static void rcu_eqs_enter(bool user)
64db4cff 547{
4145fa7f 548 long long oldval;
64db4cff
PM
549 struct rcu_dynticks *rdtp;
550
c9d4b0af 551 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 552 oldval = rdtp->dynticks_nesting;
29e37d81 553 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 554 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 555 rdtp->dynticks_nesting = 0;
3a592405
PM
556 rcu_eqs_enter_common(rdtp, oldval, user);
557 } else {
29e37d81 558 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 559 }
64db4cff 560}
adf5091e
FW
561
562/**
563 * rcu_idle_enter - inform RCU that current CPU is entering idle
564 *
565 * Enter idle mode, in other words, -leave- the mode in which RCU
566 * read-side critical sections can occur. (Though RCU read-side
567 * critical sections can occur in irq handlers in idle, a possibility
568 * handled by irq_enter() and irq_exit().)
569 *
570 * We crowbar the ->dynticks_nesting field to zero to allow for
571 * the possibility of usermode upcalls having messed up our count
572 * of interrupt nesting level during the prior busy period.
573 */
574void rcu_idle_enter(void)
575{
c5d900bf
FW
576 unsigned long flags;
577
578 local_irq_save(flags);
cb349ca9 579 rcu_eqs_enter(false);
c9d4b0af 580 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 581 local_irq_restore(flags);
adf5091e 582}
8a2ecf47 583EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 584
2b1d5024 585#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
586/**
587 * rcu_user_enter - inform RCU that we are resuming userspace.
588 *
589 * Enter RCU idle mode right before resuming userspace. No use of RCU
590 * is permitted between this call and rcu_user_exit(). This way the
591 * CPU doesn't need to maintain the tick for RCU maintenance purposes
592 * when the CPU runs in userspace.
593 */
594void rcu_user_enter(void)
595{
91d1aa43 596 rcu_eqs_enter(1);
adf5091e 597}
2b1d5024 598#endif /* CONFIG_RCU_USER_QS */
19dd1591 599
9b2e4f18
PM
600/**
601 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
602 *
603 * Exit from an interrupt handler, which might possibly result in entering
604 * idle mode, in other words, leaving the mode in which read-side critical
605 * sections can occur.
64db4cff 606 *
9b2e4f18
PM
607 * This code assumes that the idle loop never does anything that might
608 * result in unbalanced calls to irq_enter() and irq_exit(). If your
609 * architecture violates this assumption, RCU will give you what you
610 * deserve, good and hard. But very infrequently and irreproducibly.
611 *
612 * Use things like work queues to work around this limitation.
613 *
614 * You have been warned.
64db4cff 615 */
9b2e4f18 616void rcu_irq_exit(void)
64db4cff
PM
617{
618 unsigned long flags;
4145fa7f 619 long long oldval;
64db4cff
PM
620 struct rcu_dynticks *rdtp;
621
622 local_irq_save(flags);
c9d4b0af 623 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 624 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
625 rdtp->dynticks_nesting--;
626 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 627 if (rdtp->dynticks_nesting)
f7f7bac9 628 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 629 else
cb349ca9 630 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 631 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
632 local_irq_restore(flags);
633}
634
635/*
adf5091e 636 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
637 *
638 * If the new value of the ->dynticks_nesting counter was previously zero,
639 * we really have exited idle, and must do the appropriate accounting.
640 * The caller must have disabled interrupts.
641 */
adf5091e
FW
642static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
643 int user)
9b2e4f18 644{
4e857c58 645 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
646 atomic_inc(&rdtp->dynticks);
647 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 648 smp_mb__after_atomic(); /* See above. */
23b5c8fa 649 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 650 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 651 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 652 if (!user && !is_idle_task(current)) {
289828e6
PM
653 struct task_struct *idle __maybe_unused =
654 idle_task(smp_processor_id());
0989cb46 655
f7f7bac9 656 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 657 oldval, rdtp->dynticks_nesting);
bf1304e9 658 ftrace_dump(DUMP_ORIG);
0989cb46
PM
659 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
660 current->pid, current->comm,
661 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
662 }
663}
664
adf5091e
FW
665/*
666 * Exit an RCU extended quiescent state, which can be either the
667 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 668 */
adf5091e 669static void rcu_eqs_exit(bool user)
9b2e4f18 670{
9b2e4f18
PM
671 struct rcu_dynticks *rdtp;
672 long long oldval;
673
c9d4b0af 674 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 675 oldval = rdtp->dynticks_nesting;
29e37d81 676 WARN_ON_ONCE(oldval < 0);
3a592405 677 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 678 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 679 } else {
29e37d81 680 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3a592405
PM
681 rcu_eqs_exit_common(rdtp, oldval, user);
682 }
9b2e4f18 683}
adf5091e
FW
684
685/**
686 * rcu_idle_exit - inform RCU that current CPU is leaving idle
687 *
688 * Exit idle mode, in other words, -enter- the mode in which RCU
689 * read-side critical sections can occur.
690 *
691 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
692 * allow for the possibility of usermode upcalls messing up our count
693 * of interrupt nesting level during the busy period that is just
694 * now starting.
695 */
696void rcu_idle_exit(void)
697{
c5d900bf
FW
698 unsigned long flags;
699
700 local_irq_save(flags);
cb349ca9 701 rcu_eqs_exit(false);
c9d4b0af 702 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 703 local_irq_restore(flags);
adf5091e 704}
8a2ecf47 705EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 706
2b1d5024 707#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
708/**
709 * rcu_user_exit - inform RCU that we are exiting userspace.
710 *
711 * Exit RCU idle mode while entering the kernel because it can
712 * run a RCU read side critical section anytime.
713 */
714void rcu_user_exit(void)
715{
91d1aa43 716 rcu_eqs_exit(1);
adf5091e 717}
2b1d5024 718#endif /* CONFIG_RCU_USER_QS */
19dd1591 719
9b2e4f18
PM
720/**
721 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
722 *
723 * Enter an interrupt handler, which might possibly result in exiting
724 * idle mode, in other words, entering the mode in which read-side critical
725 * sections can occur.
726 *
727 * Note that the Linux kernel is fully capable of entering an interrupt
728 * handler that it never exits, for example when doing upcalls to
729 * user mode! This code assumes that the idle loop never does upcalls to
730 * user mode. If your architecture does do upcalls from the idle loop (or
731 * does anything else that results in unbalanced calls to the irq_enter()
732 * and irq_exit() functions), RCU will give you what you deserve, good
733 * and hard. But very infrequently and irreproducibly.
734 *
735 * Use things like work queues to work around this limitation.
736 *
737 * You have been warned.
738 */
739void rcu_irq_enter(void)
740{
741 unsigned long flags;
742 struct rcu_dynticks *rdtp;
743 long long oldval;
744
745 local_irq_save(flags);
c9d4b0af 746 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
747 oldval = rdtp->dynticks_nesting;
748 rdtp->dynticks_nesting++;
749 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 750 if (oldval)
f7f7bac9 751 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 752 else
cb349ca9 753 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 754 rcu_sysidle_exit(rdtp, 1);
64db4cff 755 local_irq_restore(flags);
64db4cff
PM
756}
757
758/**
759 * rcu_nmi_enter - inform RCU of entry to NMI context
760 *
761 * If the CPU was idle with dynamic ticks active, and there is no
762 * irq handler running, this updates rdtp->dynticks_nmi to let the
763 * RCU grace-period handling know that the CPU is active.
764 */
765void rcu_nmi_enter(void)
766{
c9d4b0af 767 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 768
23b5c8fa
PM
769 if (rdtp->dynticks_nmi_nesting == 0 &&
770 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 771 return;
23b5c8fa 772 rdtp->dynticks_nmi_nesting++;
4e857c58 773 smp_mb__before_atomic(); /* Force delay from prior write. */
23b5c8fa
PM
774 atomic_inc(&rdtp->dynticks);
775 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 776 smp_mb__after_atomic(); /* See above. */
23b5c8fa 777 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
778}
779
780/**
781 * rcu_nmi_exit - inform RCU of exit from NMI context
782 *
783 * If the CPU was idle with dynamic ticks active, and there is no
784 * irq handler running, this updates rdtp->dynticks_nmi to let the
785 * RCU grace-period handling know that the CPU is no longer active.
786 */
787void rcu_nmi_exit(void)
788{
c9d4b0af 789 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 790
23b5c8fa
PM
791 if (rdtp->dynticks_nmi_nesting == 0 ||
792 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 793 return;
23b5c8fa 794 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 795 smp_mb__before_atomic(); /* See above. */
23b5c8fa 796 atomic_inc(&rdtp->dynticks);
4e857c58 797 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 798 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
799}
800
801/**
5c173eb8
PM
802 * __rcu_is_watching - are RCU read-side critical sections safe?
803 *
804 * Return true if RCU is watching the running CPU, which means that
805 * this CPU can safely enter RCU read-side critical sections. Unlike
806 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
807 * least disabled preemption.
808 */
9418fb20 809bool notrace __rcu_is_watching(void)
5c173eb8
PM
810{
811 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
812}
813
814/**
815 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 816 *
9b2e4f18 817 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 818 * or NMI handler, return true.
64db4cff 819 */
9418fb20 820bool notrace rcu_is_watching(void)
64db4cff 821{
f534ed1f 822 bool ret;
34240697
PM
823
824 preempt_disable();
5c173eb8 825 ret = __rcu_is_watching();
34240697
PM
826 preempt_enable();
827 return ret;
64db4cff 828}
5c173eb8 829EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 830
62fde6ed 831#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
832
833/*
834 * Is the current CPU online? Disable preemption to avoid false positives
835 * that could otherwise happen due to the current CPU number being sampled,
836 * this task being preempted, its old CPU being taken offline, resuming
837 * on some other CPU, then determining that its old CPU is now offline.
838 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
839 * the check for rcu_scheduler_fully_active. Note also that it is OK
840 * for a CPU coming online to use RCU for one jiffy prior to marking itself
841 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
842 * offline to continue to use RCU for one jiffy after marking itself
843 * offline in the cpu_online_mask. This leniency is necessary given the
844 * non-atomic nature of the online and offline processing, for example,
845 * the fact that a CPU enters the scheduler after completing the CPU_DYING
846 * notifiers.
847 *
848 * This is also why RCU internally marks CPUs online during the
849 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
850 *
851 * Disable checking if in an NMI handler because we cannot safely report
852 * errors from NMI handlers anyway.
853 */
854bool rcu_lockdep_current_cpu_online(void)
855{
2036d94a
PM
856 struct rcu_data *rdp;
857 struct rcu_node *rnp;
c0d6d01b
PM
858 bool ret;
859
860 if (in_nmi())
f6f7ee9a 861 return true;
c0d6d01b 862 preempt_disable();
c9d4b0af 863 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
864 rnp = rdp->mynode;
865 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
866 !rcu_scheduler_fully_active;
867 preempt_enable();
868 return ret;
869}
870EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
871
62fde6ed 872#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 873
64db4cff 874/**
9b2e4f18 875 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 876 *
9b2e4f18
PM
877 * If the current CPU is idle or running at a first-level (not nested)
878 * interrupt from idle, return true. The caller must have at least
879 * disabled preemption.
64db4cff 880 */
62e3cb14 881static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 882{
c9d4b0af 883 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
884}
885
64db4cff
PM
886/*
887 * Snapshot the specified CPU's dynticks counter so that we can later
888 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 889 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 890 */
217af2a2
PM
891static int dyntick_save_progress_counter(struct rcu_data *rdp,
892 bool *isidle, unsigned long *maxj)
64db4cff 893{
23b5c8fa 894 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 895 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
896 if ((rdp->dynticks_snap & 0x1) == 0) {
897 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
898 return 1;
899 } else {
900 return 0;
901 }
64db4cff
PM
902}
903
6193c76a
PM
904/*
905 * This function really isn't for public consumption, but RCU is special in
906 * that context switches can allow the state machine to make progress.
907 */
908extern void resched_cpu(int cpu);
909
64db4cff
PM
910/*
911 * Return true if the specified CPU has passed through a quiescent
912 * state by virtue of being in or having passed through an dynticks
913 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 914 * for this same CPU, or by virtue of having been offline.
64db4cff 915 */
217af2a2
PM
916static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
917 bool *isidle, unsigned long *maxj)
64db4cff 918{
7eb4f455 919 unsigned int curr;
4a81e832 920 int *rcrmp;
7eb4f455 921 unsigned int snap;
64db4cff 922
7eb4f455
PM
923 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
924 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
925
926 /*
927 * If the CPU passed through or entered a dynticks idle phase with
928 * no active irq/NMI handlers, then we can safely pretend that the CPU
929 * already acknowledged the request to pass through a quiescent
930 * state. Either way, that CPU cannot possibly be in an RCU
931 * read-side critical section that started before the beginning
932 * of the current RCU grace period.
933 */
7eb4f455 934 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 935 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
936 rdp->dynticks_fqs++;
937 return 1;
938 }
939
a82dcc76
PM
940 /*
941 * Check for the CPU being offline, but only if the grace period
942 * is old enough. We don't need to worry about the CPU changing
943 * state: If we see it offline even once, it has been through a
944 * quiescent state.
945 *
946 * The reason for insisting that the grace period be at least
947 * one jiffy old is that CPUs that are not quite online and that
948 * have just gone offline can still execute RCU read-side critical
949 * sections.
950 */
951 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
952 return 0; /* Grace period is not old enough. */
953 barrier();
954 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 955 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
956 rdp->offline_fqs++;
957 return 1;
958 }
65d798f0
PM
959
960 /*
4a81e832
PM
961 * A CPU running for an extended time within the kernel can
962 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
963 * even context-switching back and forth between a pair of
964 * in-kernel CPU-bound tasks cannot advance grace periods.
965 * So if the grace period is old enough, make the CPU pay attention.
966 * Note that the unsynchronized assignments to the per-CPU
967 * rcu_sched_qs_mask variable are safe. Yes, setting of
968 * bits can be lost, but they will be set again on the next
969 * force-quiescent-state pass. So lost bit sets do not result
970 * in incorrect behavior, merely in a grace period lasting
971 * a few jiffies longer than it might otherwise. Because
972 * there are at most four threads involved, and because the
973 * updates are only once every few jiffies, the probability of
974 * lossage (and thus of slight grace-period extension) is
975 * quite low.
976 *
977 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
978 * is set too high, we override with half of the RCU CPU stall
979 * warning delay.
6193c76a 980 */
4a81e832
PM
981 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
982 if (ULONG_CMP_GE(jiffies,
983 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 984 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
985 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
986 ACCESS_ONCE(rdp->cond_resched_completed) =
987 ACCESS_ONCE(rdp->mynode->completed);
988 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
989 ACCESS_ONCE(*rcrmp) =
990 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
991 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
992 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
993 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
994 /* Time to beat on that CPU again! */
995 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
996 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
997 }
6193c76a
PM
998 }
999
a82dcc76 1000 return 0;
64db4cff
PM
1001}
1002
64db4cff
PM
1003static void record_gp_stall_check_time(struct rcu_state *rsp)
1004{
cb1e78cf 1005 unsigned long j = jiffies;
6193c76a 1006 unsigned long j1;
26cdfedf
PM
1007
1008 rsp->gp_start = j;
1009 smp_wmb(); /* Record start time before stall time. */
6193c76a 1010 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1011 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1012 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
1013}
1014
b637a328 1015/*
bc1dce51 1016 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1017 */
1018static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1019{
1020 int cpu;
1021 unsigned long flags;
1022 struct rcu_node *rnp;
1023
1024 rcu_for_each_leaf_node(rsp, rnp) {
1025 raw_spin_lock_irqsave(&rnp->lock, flags);
1026 if (rnp->qsmask != 0) {
1027 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1028 if (rnp->qsmask & (1UL << cpu))
1029 dump_cpu_task(rnp->grplo + cpu);
1030 }
1031 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1032 }
1033}
1034
64db4cff
PM
1035static void print_other_cpu_stall(struct rcu_state *rsp)
1036{
1037 int cpu;
1038 long delta;
1039 unsigned long flags;
285fe294 1040 int ndetected = 0;
64db4cff 1041 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1042 long totqlen = 0;
64db4cff
PM
1043
1044 /* Only let one CPU complain about others per time interval. */
1045
1304afb2 1046 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1047 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1048 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1049 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1050 return;
1051 }
4fc5b755 1052 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1053 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1054
8cdd32a9
PM
1055 /*
1056 * OK, time to rat on our buddy...
1057 * See Documentation/RCU/stallwarn.txt for info on how to debug
1058 * RCU CPU stall warnings.
1059 */
d7f3e207 1060 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1061 rsp->name);
a858af28 1062 print_cpu_stall_info_begin();
a0b6c9a7 1063 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1064 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1065 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1066 if (rnp->qsmask != 0) {
1067 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1068 if (rnp->qsmask & (1UL << cpu)) {
1069 print_cpu_stall_info(rsp,
1070 rnp->grplo + cpu);
1071 ndetected++;
1072 }
1073 }
3acd9eb3 1074 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1075 }
a858af28
PM
1076
1077 /*
1078 * Now rat on any tasks that got kicked up to the root rcu_node
1079 * due to CPU offlining.
1080 */
1081 rnp = rcu_get_root(rsp);
1082 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 1083 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
1084 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1085
1086 print_cpu_stall_info_end();
53bb857c
PM
1087 for_each_possible_cpu(cpu)
1088 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1089 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1090 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1091 (long)rsp->gpnum, (long)rsp->completed, totqlen);
9bc8b558 1092 if (ndetected == 0)
d7f3e207 1093 pr_err("INFO: Stall ended before state dump start\n");
bc1dce51 1094 else
b637a328 1095 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1096
4cdfc175 1097 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1098
1099 rcu_print_detail_task_stall(rsp);
1100
4cdfc175 1101 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1102}
1103
1104static void print_cpu_stall(struct rcu_state *rsp)
1105{
53bb857c 1106 int cpu;
64db4cff
PM
1107 unsigned long flags;
1108 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1109 long totqlen = 0;
64db4cff 1110
8cdd32a9
PM
1111 /*
1112 * OK, time to rat on ourselves...
1113 * See Documentation/RCU/stallwarn.txt for info on how to debug
1114 * RCU CPU stall warnings.
1115 */
d7f3e207 1116 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1117 print_cpu_stall_info_begin();
1118 print_cpu_stall_info(rsp, smp_processor_id());
1119 print_cpu_stall_info_end();
53bb857c
PM
1120 for_each_possible_cpu(cpu)
1121 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1122 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1123 jiffies - rsp->gp_start,
1124 (long)rsp->gpnum, (long)rsp->completed, totqlen);
bc1dce51 1125 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1126
1304afb2 1127 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1128 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1129 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1130 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1131 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1132
b021fe3e
PZ
1133 /*
1134 * Attempt to revive the RCU machinery by forcing a context switch.
1135 *
1136 * A context switch would normally allow the RCU state machine to make
1137 * progress and it could be we're stuck in kernel space without context
1138 * switches for an entirely unreasonable amount of time.
1139 */
1140 resched_cpu(smp_processor_id());
64db4cff
PM
1141}
1142
1143static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1144{
26cdfedf
PM
1145 unsigned long completed;
1146 unsigned long gpnum;
1147 unsigned long gps;
bad6e139
PM
1148 unsigned long j;
1149 unsigned long js;
64db4cff
PM
1150 struct rcu_node *rnp;
1151
26cdfedf 1152 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1153 return;
cb1e78cf 1154 j = jiffies;
26cdfedf
PM
1155
1156 /*
1157 * Lots of memory barriers to reject false positives.
1158 *
1159 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1160 * then rsp->gp_start, and finally rsp->completed. These values
1161 * are updated in the opposite order with memory barriers (or
1162 * equivalent) during grace-period initialization and cleanup.
1163 * Now, a false positive can occur if we get an new value of
1164 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1165 * the memory barriers, the only way that this can happen is if one
1166 * grace period ends and another starts between these two fetches.
1167 * Detect this by comparing rsp->completed with the previous fetch
1168 * from rsp->gpnum.
1169 *
1170 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1171 * and rsp->gp_start suffice to forestall false positives.
1172 */
1173 gpnum = ACCESS_ONCE(rsp->gpnum);
1174 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1175 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1176 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1177 gps = ACCESS_ONCE(rsp->gp_start);
1178 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1179 completed = ACCESS_ONCE(rsp->completed);
1180 if (ULONG_CMP_GE(completed, gpnum) ||
1181 ULONG_CMP_LT(j, js) ||
1182 ULONG_CMP_GE(gps, js))
1183 return; /* No stall or GP completed since entering function. */
64db4cff 1184 rnp = rdp->mynode;
c96ea7cf 1185 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1186 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1187
1188 /* We haven't checked in, so go dump stack. */
1189 print_cpu_stall(rsp);
1190
bad6e139
PM
1191 } else if (rcu_gp_in_progress(rsp) &&
1192 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1193
bad6e139 1194 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1195 print_other_cpu_stall(rsp);
1196 }
1197}
1198
53d84e00
PM
1199/**
1200 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1201 *
1202 * Set the stall-warning timeout way off into the future, thus preventing
1203 * any RCU CPU stall-warning messages from appearing in the current set of
1204 * RCU grace periods.
1205 *
1206 * The caller must disable hard irqs.
1207 */
1208void rcu_cpu_stall_reset(void)
1209{
6ce75a23
PM
1210 struct rcu_state *rsp;
1211
1212 for_each_rcu_flavor(rsp)
4fc5b755 1213 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1214}
1215
3f5d3ea6
PM
1216/*
1217 * Initialize the specified rcu_data structure's callback list to empty.
1218 */
1219static void init_callback_list(struct rcu_data *rdp)
1220{
1221 int i;
1222
34ed6246
PM
1223 if (init_nocb_callback_list(rdp))
1224 return;
3f5d3ea6
PM
1225 rdp->nxtlist = NULL;
1226 for (i = 0; i < RCU_NEXT_SIZE; i++)
1227 rdp->nxttail[i] = &rdp->nxtlist;
1228}
1229
dc35c893
PM
1230/*
1231 * Determine the value that ->completed will have at the end of the
1232 * next subsequent grace period. This is used to tag callbacks so that
1233 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1234 * been dyntick-idle for an extended period with callbacks under the
1235 * influence of RCU_FAST_NO_HZ.
1236 *
1237 * The caller must hold rnp->lock with interrupts disabled.
1238 */
1239static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1240 struct rcu_node *rnp)
1241{
1242 /*
1243 * If RCU is idle, we just wait for the next grace period.
1244 * But we can only be sure that RCU is idle if we are looking
1245 * at the root rcu_node structure -- otherwise, a new grace
1246 * period might have started, but just not yet gotten around
1247 * to initializing the current non-root rcu_node structure.
1248 */
1249 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1250 return rnp->completed + 1;
1251
1252 /*
1253 * Otherwise, wait for a possible partial grace period and
1254 * then the subsequent full grace period.
1255 */
1256 return rnp->completed + 2;
1257}
1258
0446be48
PM
1259/*
1260 * Trace-event helper function for rcu_start_future_gp() and
1261 * rcu_nocb_wait_gp().
1262 */
1263static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1264 unsigned long c, const char *s)
0446be48
PM
1265{
1266 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1267 rnp->completed, c, rnp->level,
1268 rnp->grplo, rnp->grphi, s);
1269}
1270
1271/*
1272 * Start some future grace period, as needed to handle newly arrived
1273 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1274 * rcu_node structure's ->need_future_gp field. Returns true if there
1275 * is reason to awaken the grace-period kthread.
0446be48
PM
1276 *
1277 * The caller must hold the specified rcu_node structure's ->lock.
1278 */
48a7639c
PM
1279static bool __maybe_unused
1280rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1281 unsigned long *c_out)
0446be48
PM
1282{
1283 unsigned long c;
1284 int i;
48a7639c 1285 bool ret = false;
0446be48
PM
1286 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1287
1288 /*
1289 * Pick up grace-period number for new callbacks. If this
1290 * grace period is already marked as needed, return to the caller.
1291 */
1292 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1293 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1294 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1295 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1296 goto out;
0446be48
PM
1297 }
1298
1299 /*
1300 * If either this rcu_node structure or the root rcu_node structure
1301 * believe that a grace period is in progress, then we must wait
1302 * for the one following, which is in "c". Because our request
1303 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1304 * need to explicitly start one. We only do the lockless check
1305 * of rnp_root's fields if the current rcu_node structure thinks
1306 * there is no grace period in flight, and because we hold rnp->lock,
1307 * the only possible change is when rnp_root's two fields are
1308 * equal, in which case rnp_root->gpnum might be concurrently
1309 * incremented. But that is OK, as it will just result in our
1310 * doing some extra useless work.
0446be48
PM
1311 */
1312 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1313 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1314 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1315 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1316 goto out;
0446be48
PM
1317 }
1318
1319 /*
1320 * There might be no grace period in progress. If we don't already
1321 * hold it, acquire the root rcu_node structure's lock in order to
1322 * start one (if needed).
1323 */
6303b9c8 1324 if (rnp != rnp_root) {
0446be48 1325 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1326 smp_mb__after_unlock_lock();
1327 }
0446be48
PM
1328
1329 /*
1330 * Get a new grace-period number. If there really is no grace
1331 * period in progress, it will be smaller than the one we obtained
1332 * earlier. Adjust callbacks as needed. Note that even no-CBs
1333 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1334 */
1335 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1336 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1337 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1338 rdp->nxtcompleted[i] = c;
1339
1340 /*
1341 * If the needed for the required grace period is already
1342 * recorded, trace and leave.
1343 */
1344 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1345 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1346 goto unlock_out;
1347 }
1348
1349 /* Record the need for the future grace period. */
1350 rnp_root->need_future_gp[c & 0x1]++;
1351
1352 /* If a grace period is not already in progress, start one. */
1353 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1354 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1355 } else {
f7f7bac9 1356 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1357 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1358 }
1359unlock_out:
1360 if (rnp != rnp_root)
1361 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1362out:
1363 if (c_out != NULL)
1364 *c_out = c;
1365 return ret;
0446be48
PM
1366}
1367
1368/*
1369 * Clean up any old requests for the just-ended grace period. Also return
1370 * whether any additional grace periods have been requested. Also invoke
1371 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1372 * waiting for this grace period to complete.
1373 */
1374static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1375{
1376 int c = rnp->completed;
1377 int needmore;
1378 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1379
1380 rcu_nocb_gp_cleanup(rsp, rnp);
1381 rnp->need_future_gp[c & 0x1] = 0;
1382 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1383 trace_rcu_future_gp(rnp, rdp, c,
1384 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1385 return needmore;
1386}
1387
48a7639c
PM
1388/*
1389 * Awaken the grace-period kthread for the specified flavor of RCU.
1390 * Don't do a self-awaken, and don't bother awakening when there is
1391 * nothing for the grace-period kthread to do (as in several CPUs
1392 * raced to awaken, and we lost), and finally don't try to awaken
1393 * a kthread that has not yet been created.
1394 */
1395static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1396{
1397 if (current == rsp->gp_kthread ||
1398 !ACCESS_ONCE(rsp->gp_flags) ||
1399 !rsp->gp_kthread)
1400 return;
1401 wake_up(&rsp->gp_wq);
1402}
1403
dc35c893
PM
1404/*
1405 * If there is room, assign a ->completed number to any callbacks on
1406 * this CPU that have not already been assigned. Also accelerate any
1407 * callbacks that were previously assigned a ->completed number that has
1408 * since proven to be too conservative, which can happen if callbacks get
1409 * assigned a ->completed number while RCU is idle, but with reference to
1410 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1411 * not hurt to call it repeatedly. Returns an flag saying that we should
1412 * awaken the RCU grace-period kthread.
dc35c893
PM
1413 *
1414 * The caller must hold rnp->lock with interrupts disabled.
1415 */
48a7639c 1416static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1417 struct rcu_data *rdp)
1418{
1419 unsigned long c;
1420 int i;
48a7639c 1421 bool ret;
dc35c893
PM
1422
1423 /* If the CPU has no callbacks, nothing to do. */
1424 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1425 return false;
dc35c893
PM
1426
1427 /*
1428 * Starting from the sublist containing the callbacks most
1429 * recently assigned a ->completed number and working down, find the
1430 * first sublist that is not assignable to an upcoming grace period.
1431 * Such a sublist has something in it (first two tests) and has
1432 * a ->completed number assigned that will complete sooner than
1433 * the ->completed number for newly arrived callbacks (last test).
1434 *
1435 * The key point is that any later sublist can be assigned the
1436 * same ->completed number as the newly arrived callbacks, which
1437 * means that the callbacks in any of these later sublist can be
1438 * grouped into a single sublist, whether or not they have already
1439 * been assigned a ->completed number.
1440 */
1441 c = rcu_cbs_completed(rsp, rnp);
1442 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1443 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1444 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1445 break;
1446
1447 /*
1448 * If there are no sublist for unassigned callbacks, leave.
1449 * At the same time, advance "i" one sublist, so that "i" will
1450 * index into the sublist where all the remaining callbacks should
1451 * be grouped into.
1452 */
1453 if (++i >= RCU_NEXT_TAIL)
48a7639c 1454 return false;
dc35c893
PM
1455
1456 /*
1457 * Assign all subsequent callbacks' ->completed number to the next
1458 * full grace period and group them all in the sublist initially
1459 * indexed by "i".
1460 */
1461 for (; i <= RCU_NEXT_TAIL; i++) {
1462 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1463 rdp->nxtcompleted[i] = c;
1464 }
910ee45d 1465 /* Record any needed additional grace periods. */
48a7639c 1466 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1467
1468 /* Trace depending on how much we were able to accelerate. */
1469 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1470 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1471 else
f7f7bac9 1472 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1473 return ret;
dc35c893
PM
1474}
1475
1476/*
1477 * Move any callbacks whose grace period has completed to the
1478 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1479 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1480 * sublist. This function is idempotent, so it does not hurt to
1481 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1482 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1483 *
1484 * The caller must hold rnp->lock with interrupts disabled.
1485 */
48a7639c 1486static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1487 struct rcu_data *rdp)
1488{
1489 int i, j;
1490
1491 /* If the CPU has no callbacks, nothing to do. */
1492 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1493 return false;
dc35c893
PM
1494
1495 /*
1496 * Find all callbacks whose ->completed numbers indicate that they
1497 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1498 */
1499 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1500 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1501 break;
1502 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1503 }
1504 /* Clean up any sublist tail pointers that were misordered above. */
1505 for (j = RCU_WAIT_TAIL; j < i; j++)
1506 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1507
1508 /* Copy down callbacks to fill in empty sublists. */
1509 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1510 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1511 break;
1512 rdp->nxttail[j] = rdp->nxttail[i];
1513 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1514 }
1515
1516 /* Classify any remaining callbacks. */
48a7639c 1517 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1518}
1519
d09b62df 1520/*
ba9fbe95
PM
1521 * Update CPU-local rcu_data state to record the beginnings and ends of
1522 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1523 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1524 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1525 */
48a7639c
PM
1526static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1527 struct rcu_data *rdp)
d09b62df 1528{
48a7639c
PM
1529 bool ret;
1530
ba9fbe95 1531 /* Handle the ends of any preceding grace periods first. */
dc35c893 1532 if (rdp->completed == rnp->completed) {
d09b62df 1533
ba9fbe95 1534 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1535 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1536
dc35c893
PM
1537 } else {
1538
1539 /* Advance callbacks. */
48a7639c 1540 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1541
1542 /* Remember that we saw this grace-period completion. */
1543 rdp->completed = rnp->completed;
f7f7bac9 1544 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1545 }
398ebe60 1546
6eaef633
PM
1547 if (rdp->gpnum != rnp->gpnum) {
1548 /*
1549 * If the current grace period is waiting for this CPU,
1550 * set up to detect a quiescent state, otherwise don't
1551 * go looking for one.
1552 */
1553 rdp->gpnum = rnp->gpnum;
f7f7bac9 1554 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1555 rdp->passed_quiesce = 0;
1556 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1557 zero_cpu_stall_ticks(rdp);
1558 }
48a7639c 1559 return ret;
6eaef633
PM
1560}
1561
d34ea322 1562static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1563{
1564 unsigned long flags;
48a7639c 1565 bool needwake;
6eaef633
PM
1566 struct rcu_node *rnp;
1567
1568 local_irq_save(flags);
1569 rnp = rdp->mynode;
d34ea322
PM
1570 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1571 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1572 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1573 local_irq_restore(flags);
1574 return;
1575 }
6303b9c8 1576 smp_mb__after_unlock_lock();
48a7639c 1577 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1578 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1579 if (needwake)
1580 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1581}
1582
b3dbec76 1583/*
f7be8209 1584 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1585 */
7fdefc10 1586static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1587{
1588 struct rcu_data *rdp;
7fdefc10 1589 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1590
eb75767b 1591 rcu_bind_gp_kthread();
7fdefc10 1592 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1593 smp_mb__after_unlock_lock();
91dc9542 1594 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1595 /* Spurious wakeup, tell caller to go back to sleep. */
1596 raw_spin_unlock_irq(&rnp->lock);
1597 return 0;
1598 }
91dc9542 1599 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1600
f7be8209
PM
1601 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1602 /*
1603 * Grace period already in progress, don't start another.
1604 * Not supposed to be able to happen.
1605 */
7fdefc10
PM
1606 raw_spin_unlock_irq(&rnp->lock);
1607 return 0;
1608 }
1609
7fdefc10 1610 /* Advance to a new grace period and initialize state. */
26cdfedf 1611 record_gp_stall_check_time(rsp);
765a3f4f
PM
1612 /* Record GP times before starting GP, hence smp_store_release(). */
1613 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1614 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1615 raw_spin_unlock_irq(&rnp->lock);
1616
1617 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1618 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1619 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1620
1621 /*
1622 * Set the quiescent-state-needed bits in all the rcu_node
1623 * structures for all currently online CPUs in breadth-first order,
1624 * starting from the root rcu_node structure, relying on the layout
1625 * of the tree within the rsp->node[] array. Note that other CPUs
1626 * will access only the leaves of the hierarchy, thus seeing that no
1627 * grace period is in progress, at least until the corresponding
1628 * leaf node has been initialized. In addition, we have excluded
1629 * CPU-hotplug operations.
1630 *
1631 * The grace period cannot complete until the initialization
1632 * process finishes, because this kthread handles both.
1633 */
1634 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1635 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1636 smp_mb__after_unlock_lock();
b3dbec76 1637 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1638 rcu_preempt_check_blocked_tasks(rnp);
1639 rnp->qsmask = rnp->qsmaskinit;
0446be48 1640 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1641 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1642 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1643 if (rnp == rdp->mynode)
48a7639c 1644 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1645 rcu_preempt_boost_start_gp(rnp);
1646 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1647 rnp->level, rnp->grplo,
1648 rnp->grphi, rnp->qsmask);
1649 raw_spin_unlock_irq(&rnp->lock);
1650 cond_resched();
1651 }
b3dbec76 1652
a4fbe35a 1653 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1654 return 1;
1655}
b3dbec76 1656
4cdfc175
PM
1657/*
1658 * Do one round of quiescent-state forcing.
1659 */
01896f7e 1660static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1661{
1662 int fqs_state = fqs_state_in;
217af2a2
PM
1663 bool isidle = false;
1664 unsigned long maxj;
4cdfc175
PM
1665 struct rcu_node *rnp = rcu_get_root(rsp);
1666
1667 rsp->n_force_qs++;
1668 if (fqs_state == RCU_SAVE_DYNTICK) {
1669 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1670 if (is_sysidle_rcu_state(rsp)) {
1671 isidle = 1;
1672 maxj = jiffies - ULONG_MAX / 4;
1673 }
217af2a2
PM
1674 force_qs_rnp(rsp, dyntick_save_progress_counter,
1675 &isidle, &maxj);
0edd1b17 1676 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1677 fqs_state = RCU_FORCE_QS;
1678 } else {
1679 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1680 isidle = 0;
217af2a2 1681 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1682 }
1683 /* Clear flag to prevent immediate re-entry. */
1684 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1685 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1686 smp_mb__after_unlock_lock();
4de376a1
PK
1687 ACCESS_ONCE(rsp->gp_flags) =
1688 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1689 raw_spin_unlock_irq(&rnp->lock);
1690 }
1691 return fqs_state;
1692}
1693
7fdefc10
PM
1694/*
1695 * Clean up after the old grace period.
1696 */
4cdfc175 1697static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1698{
1699 unsigned long gp_duration;
48a7639c 1700 bool needgp = false;
dae6e64d 1701 int nocb = 0;
7fdefc10
PM
1702 struct rcu_data *rdp;
1703 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1704
7fdefc10 1705 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1706 smp_mb__after_unlock_lock();
7fdefc10
PM
1707 gp_duration = jiffies - rsp->gp_start;
1708 if (gp_duration > rsp->gp_max)
1709 rsp->gp_max = gp_duration;
b3dbec76 1710
7fdefc10
PM
1711 /*
1712 * We know the grace period is complete, but to everyone else
1713 * it appears to still be ongoing. But it is also the case
1714 * that to everyone else it looks like there is nothing that
1715 * they can do to advance the grace period. It is therefore
1716 * safe for us to drop the lock in order to mark the grace
1717 * period as completed in all of the rcu_node structures.
7fdefc10 1718 */
5d4b8659 1719 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1720
5d4b8659
PM
1721 /*
1722 * Propagate new ->completed value to rcu_node structures so
1723 * that other CPUs don't have to wait until the start of the next
1724 * grace period to process their callbacks. This also avoids
1725 * some nasty RCU grace-period initialization races by forcing
1726 * the end of the current grace period to be completely recorded in
1727 * all of the rcu_node structures before the beginning of the next
1728 * grace period is recorded in any of the rcu_node structures.
1729 */
1730 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1731 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1732 smp_mb__after_unlock_lock();
0446be48 1733 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1734 rdp = this_cpu_ptr(rsp->rda);
1735 if (rnp == rdp->mynode)
48a7639c 1736 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1737 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1738 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1739 raw_spin_unlock_irq(&rnp->lock);
1740 cond_resched();
7fdefc10 1741 }
5d4b8659
PM
1742 rnp = rcu_get_root(rsp);
1743 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1744 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1745 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1746
765a3f4f
PM
1747 /* Declare grace period done. */
1748 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1749 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1750 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1751 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1752 /* Advance CBs to reduce false positives below. */
1753 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1754 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1755 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1756 trace_rcu_grace_period(rsp->name,
1757 ACCESS_ONCE(rsp->gpnum),
1758 TPS("newreq"));
1759 }
7fdefc10 1760 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1761}
1762
1763/*
1764 * Body of kthread that handles grace periods.
1765 */
1766static int __noreturn rcu_gp_kthread(void *arg)
1767{
4cdfc175 1768 int fqs_state;
88d6df61 1769 int gf;
d40011f6 1770 unsigned long j;
4cdfc175 1771 int ret;
7fdefc10
PM
1772 struct rcu_state *rsp = arg;
1773 struct rcu_node *rnp = rcu_get_root(rsp);
1774
1775 for (;;) {
1776
1777 /* Handle grace-period start. */
1778 for (;;) {
63c4db78
PM
1779 trace_rcu_grace_period(rsp->name,
1780 ACCESS_ONCE(rsp->gpnum),
1781 TPS("reqwait"));
afea227f 1782 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1783 wait_event_interruptible(rsp->gp_wq,
591c6d17 1784 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1785 RCU_GP_FLAG_INIT);
78e4bc34 1786 /* Locking provides needed memory barrier. */
f7be8209 1787 if (rcu_gp_init(rsp))
7fdefc10
PM
1788 break;
1789 cond_resched();
1790 flush_signals(current);
63c4db78
PM
1791 trace_rcu_grace_period(rsp->name,
1792 ACCESS_ONCE(rsp->gpnum),
1793 TPS("reqwaitsig"));
7fdefc10 1794 }
cabc49c1 1795
4cdfc175
PM
1796 /* Handle quiescent-state forcing. */
1797 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1798 j = jiffies_till_first_fqs;
1799 if (j > HZ) {
1800 j = HZ;
1801 jiffies_till_first_fqs = HZ;
1802 }
88d6df61 1803 ret = 0;
cabc49c1 1804 for (;;) {
88d6df61
PM
1805 if (!ret)
1806 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1807 trace_rcu_grace_period(rsp->name,
1808 ACCESS_ONCE(rsp->gpnum),
1809 TPS("fqswait"));
afea227f 1810 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1811 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1812 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1813 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1814 (!ACCESS_ONCE(rnp->qsmask) &&
1815 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1816 j);
78e4bc34 1817 /* Locking provides needed memory barriers. */
4cdfc175 1818 /* If grace period done, leave loop. */
cabc49c1 1819 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1820 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1821 break;
4cdfc175 1822 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1823 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1824 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1825 trace_rcu_grace_period(rsp->name,
1826 ACCESS_ONCE(rsp->gpnum),
1827 TPS("fqsstart"));
4cdfc175 1828 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1829 trace_rcu_grace_period(rsp->name,
1830 ACCESS_ONCE(rsp->gpnum),
1831 TPS("fqsend"));
4cdfc175
PM
1832 cond_resched();
1833 } else {
1834 /* Deal with stray signal. */
1835 cond_resched();
1836 flush_signals(current);
63c4db78
PM
1837 trace_rcu_grace_period(rsp->name,
1838 ACCESS_ONCE(rsp->gpnum),
1839 TPS("fqswaitsig"));
4cdfc175 1840 }
d40011f6
PM
1841 j = jiffies_till_next_fqs;
1842 if (j > HZ) {
1843 j = HZ;
1844 jiffies_till_next_fqs = HZ;
1845 } else if (j < 1) {
1846 j = 1;
1847 jiffies_till_next_fqs = 1;
1848 }
cabc49c1 1849 }
4cdfc175
PM
1850
1851 /* Handle grace-period end. */
1852 rcu_gp_cleanup(rsp);
b3dbec76 1853 }
b3dbec76
PM
1854}
1855
64db4cff
PM
1856/*
1857 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1858 * in preparation for detecting the next grace period. The caller must hold
b8462084 1859 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1860 *
1861 * Note that it is legal for a dying CPU (which is marked as offline) to
1862 * invoke this function. This can happen when the dying CPU reports its
1863 * quiescent state.
48a7639c
PM
1864 *
1865 * Returns true if the grace-period kthread must be awakened.
64db4cff 1866 */
48a7639c 1867static bool
910ee45d
PM
1868rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1869 struct rcu_data *rdp)
64db4cff 1870{
b8462084 1871 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1872 /*
b3dbec76 1873 * Either we have not yet spawned the grace-period
62da1921
PM
1874 * task, this CPU does not need another grace period,
1875 * or a grace period is already in progress.
b3dbec76 1876 * Either way, don't start a new grace period.
afe24b12 1877 */
48a7639c 1878 return false;
afe24b12 1879 }
91dc9542 1880 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1881 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1882 TPS("newreq"));
62da1921 1883
016a8d5b
SR
1884 /*
1885 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 1886 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 1887 * the wakeup to our caller.
016a8d5b 1888 */
48a7639c 1889 return true;
64db4cff
PM
1890}
1891
910ee45d
PM
1892/*
1893 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1894 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1895 * is invoked indirectly from rcu_advance_cbs(), which would result in
1896 * endless recursion -- or would do so if it wasn't for the self-deadlock
1897 * that is encountered beforehand.
48a7639c
PM
1898 *
1899 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 1900 */
48a7639c 1901static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
1902{
1903 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1904 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 1905 bool ret = false;
910ee45d
PM
1906
1907 /*
1908 * If there is no grace period in progress right now, any
1909 * callbacks we have up to this point will be satisfied by the
1910 * next grace period. Also, advancing the callbacks reduces the
1911 * probability of false positives from cpu_needs_another_gp()
1912 * resulting in pointless grace periods. So, advance callbacks
1913 * then start the grace period!
1914 */
48a7639c
PM
1915 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1916 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1917 return ret;
910ee45d
PM
1918}
1919
f41d911f 1920/*
d3f6bad3
PM
1921 * Report a full set of quiescent states to the specified rcu_state
1922 * data structure. This involves cleaning up after the prior grace
1923 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1924 * if one is needed. Note that the caller must hold rnp->lock, which
1925 * is released before return.
f41d911f 1926 */
d3f6bad3 1927static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1928 __releases(rcu_get_root(rsp)->lock)
f41d911f 1929{
fc2219d4 1930 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1931 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1932 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1933}
1934
64db4cff 1935/*
d3f6bad3
PM
1936 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1937 * Allows quiescent states for a group of CPUs to be reported at one go
1938 * to the specified rcu_node structure, though all the CPUs in the group
1939 * must be represented by the same rcu_node structure (which need not be
1940 * a leaf rcu_node structure, though it often will be). That structure's
1941 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1942 */
1943static void
d3f6bad3
PM
1944rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1945 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1946 __releases(rnp->lock)
1947{
28ecd580
PM
1948 struct rcu_node *rnp_c;
1949
64db4cff
PM
1950 /* Walk up the rcu_node hierarchy. */
1951 for (;;) {
1952 if (!(rnp->qsmask & mask)) {
1953
1954 /* Our bit has already been cleared, so done. */
1304afb2 1955 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1956 return;
1957 }
1958 rnp->qsmask &= ~mask;
d4c08f2a
PM
1959 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1960 mask, rnp->qsmask, rnp->level,
1961 rnp->grplo, rnp->grphi,
1962 !!rnp->gp_tasks);
27f4d280 1963 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1964
1965 /* Other bits still set at this level, so done. */
1304afb2 1966 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1967 return;
1968 }
1969 mask = rnp->grpmask;
1970 if (rnp->parent == NULL) {
1971
1972 /* No more levels. Exit loop holding root lock. */
1973
1974 break;
1975 }
1304afb2 1976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1977 rnp_c = rnp;
64db4cff 1978 rnp = rnp->parent;
1304afb2 1979 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1980 smp_mb__after_unlock_lock();
28ecd580 1981 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1982 }
1983
1984 /*
1985 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1986 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1987 * to clean up and start the next grace period if one is needed.
64db4cff 1988 */
d3f6bad3 1989 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1990}
1991
1992/*
d3f6bad3
PM
1993 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1994 * structure. This must be either called from the specified CPU, or
1995 * called when the specified CPU is known to be offline (and when it is
1996 * also known that no other CPU is concurrently trying to help the offline
1997 * CPU). The lastcomp argument is used to make sure we are still in the
1998 * grace period of interest. We don't want to end the current grace period
1999 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2000 */
2001static void
d7d6a11e 2002rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2003{
2004 unsigned long flags;
2005 unsigned long mask;
48a7639c 2006 bool needwake;
64db4cff
PM
2007 struct rcu_node *rnp;
2008
2009 rnp = rdp->mynode;
1304afb2 2010 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2011 smp_mb__after_unlock_lock();
d7d6a11e
PM
2012 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2013 rnp->completed == rnp->gpnum) {
64db4cff
PM
2014
2015 /*
e4cc1f22
PM
2016 * The grace period in which this quiescent state was
2017 * recorded has ended, so don't report it upwards.
2018 * We will instead need a new quiescent state that lies
2019 * within the current grace period.
64db4cff 2020 */
e4cc1f22 2021 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 2022 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2023 return;
2024 }
2025 mask = rdp->grpmask;
2026 if ((rnp->qsmask & mask) == 0) {
1304afb2 2027 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2028 } else {
2029 rdp->qs_pending = 0;
2030
2031 /*
2032 * This GP can't end until cpu checks in, so all of our
2033 * callbacks can be processed during the next GP.
2034 */
48a7639c 2035 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2036
d3f6bad3 2037 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2038 if (needwake)
2039 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2040 }
2041}
2042
2043/*
2044 * Check to see if there is a new grace period of which this CPU
2045 * is not yet aware, and if so, set up local rcu_data state for it.
2046 * Otherwise, see if this CPU has just passed through its first
2047 * quiescent state for this grace period, and record that fact if so.
2048 */
2049static void
2050rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2051{
05eb552b
PM
2052 /* Check for grace-period ends and beginnings. */
2053 note_gp_changes(rsp, rdp);
64db4cff
PM
2054
2055 /*
2056 * Does this CPU still need to do its part for current grace period?
2057 * If no, return and let the other CPUs do their part as well.
2058 */
2059 if (!rdp->qs_pending)
2060 return;
2061
2062 /*
2063 * Was there a quiescent state since the beginning of the grace
2064 * period? If no, then exit and wait for the next call.
2065 */
e4cc1f22 2066 if (!rdp->passed_quiesce)
64db4cff
PM
2067 return;
2068
d3f6bad3
PM
2069 /*
2070 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2071 * judge of that).
2072 */
d7d6a11e 2073 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2074}
2075
2076#ifdef CONFIG_HOTPLUG_CPU
2077
e74f4c45 2078/*
b1420f1c
PM
2079 * Send the specified CPU's RCU callbacks to the orphanage. The
2080 * specified CPU must be offline, and the caller must hold the
7b2e6011 2081 * ->orphan_lock.
e74f4c45 2082 */
b1420f1c
PM
2083static void
2084rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2085 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2086{
3fbfbf7a 2087 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2088 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2089 return;
2090
b1420f1c
PM
2091 /*
2092 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2093 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2094 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2095 */
a50c3af9 2096 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2097 rsp->qlen_lazy += rdp->qlen_lazy;
2098 rsp->qlen += rdp->qlen;
2099 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2100 rdp->qlen_lazy = 0;
1d1fb395 2101 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2102 }
2103
2104 /*
b1420f1c
PM
2105 * Next, move those callbacks still needing a grace period to
2106 * the orphanage, where some other CPU will pick them up.
2107 * Some of the callbacks might have gone partway through a grace
2108 * period, but that is too bad. They get to start over because we
2109 * cannot assume that grace periods are synchronized across CPUs.
2110 * We don't bother updating the ->nxttail[] array yet, instead
2111 * we just reset the whole thing later on.
a50c3af9 2112 */
b1420f1c
PM
2113 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2114 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2115 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2116 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2117 }
2118
2119 /*
b1420f1c
PM
2120 * Then move the ready-to-invoke callbacks to the orphanage,
2121 * where some other CPU will pick them up. These will not be
2122 * required to pass though another grace period: They are done.
a50c3af9 2123 */
e5601400 2124 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2125 *rsp->orphan_donetail = rdp->nxtlist;
2126 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2127 }
e74f4c45 2128
b1420f1c 2129 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2130 init_callback_list(rdp);
b1420f1c
PM
2131}
2132
2133/*
2134 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2135 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2136 */
96d3fd0d 2137static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2138{
2139 int i;
fa07a58f 2140 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2141
3fbfbf7a 2142 /* No-CBs CPUs are handled specially. */
96d3fd0d 2143 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2144 return;
2145
b1420f1c
PM
2146 /* Do the accounting first. */
2147 rdp->qlen_lazy += rsp->qlen_lazy;
2148 rdp->qlen += rsp->qlen;
2149 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2150 if (rsp->qlen_lazy != rsp->qlen)
2151 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2152 rsp->qlen_lazy = 0;
2153 rsp->qlen = 0;
2154
2155 /*
2156 * We do not need a memory barrier here because the only way we
2157 * can get here if there is an rcu_barrier() in flight is if
2158 * we are the task doing the rcu_barrier().
2159 */
2160
2161 /* First adopt the ready-to-invoke callbacks. */
2162 if (rsp->orphan_donelist != NULL) {
2163 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2164 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2165 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2166 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2167 rdp->nxttail[i] = rsp->orphan_donetail;
2168 rsp->orphan_donelist = NULL;
2169 rsp->orphan_donetail = &rsp->orphan_donelist;
2170 }
2171
2172 /* And then adopt the callbacks that still need a grace period. */
2173 if (rsp->orphan_nxtlist != NULL) {
2174 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2175 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2176 rsp->orphan_nxtlist = NULL;
2177 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2178 }
2179}
2180
2181/*
2182 * Trace the fact that this CPU is going offline.
2183 */
2184static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2185{
2186 RCU_TRACE(unsigned long mask);
2187 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2188 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2189
2190 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2191 trace_rcu_grace_period(rsp->name,
2192 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2193 TPS("cpuofl"));
64db4cff
PM
2194}
2195
2196/*
e5601400 2197 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2198 * this fact from process context. Do the remainder of the cleanup,
2199 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2200 * adopting them. There can only be one CPU hotplug operation at a time,
2201 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2202 */
e5601400 2203static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2204{
2036d94a
PM
2205 unsigned long flags;
2206 unsigned long mask;
2207 int need_report = 0;
e5601400 2208 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2209 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2210
2036d94a 2211 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2212 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2213
b1420f1c 2214 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2215
2216 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2217 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2218 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2219
b1420f1c
PM
2220 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2221 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2222 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2223
2036d94a
PM
2224 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2225 mask = rdp->grpmask; /* rnp->grplo is constant. */
2226 do {
2227 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2228 smp_mb__after_unlock_lock();
2036d94a
PM
2229 rnp->qsmaskinit &= ~mask;
2230 if (rnp->qsmaskinit != 0) {
2231 if (rnp != rdp->mynode)
2232 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2233 break;
2234 }
2235 if (rnp == rdp->mynode)
2236 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2237 else
2238 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2239 mask = rnp->grpmask;
2240 rnp = rnp->parent;
2241 } while (rnp != NULL);
2242
2243 /*
2244 * We still hold the leaf rcu_node structure lock here, and
2245 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2246 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2247 * held leads to deadlock.
2248 */
7b2e6011 2249 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2250 rnp = rdp->mynode;
2251 if (need_report & RCU_OFL_TASKS_NORM_GP)
2252 rcu_report_unblock_qs_rnp(rnp, flags);
2253 else
2254 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2255 if (need_report & RCU_OFL_TASKS_EXP_GP)
2256 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2257 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2258 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2259 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2260 init_callback_list(rdp);
2261 /* Disallow further callbacks on this CPU. */
2262 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2263 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2264}
2265
2266#else /* #ifdef CONFIG_HOTPLUG_CPU */
2267
e5601400 2268static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2269{
2270}
2271
e5601400 2272static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2273{
2274}
2275
2276#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2277
2278/*
2279 * Invoke any RCU callbacks that have made it to the end of their grace
2280 * period. Thottle as specified by rdp->blimit.
2281 */
37c72e56 2282static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2283{
2284 unsigned long flags;
2285 struct rcu_head *next, *list, **tail;
878d7439
ED
2286 long bl, count, count_lazy;
2287 int i;
64db4cff 2288
dc35c893 2289 /* If no callbacks are ready, just return. */
29c00b4a 2290 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2291 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2292 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2293 need_resched(), is_idle_task(current),
2294 rcu_is_callbacks_kthread());
64db4cff 2295 return;
29c00b4a 2296 }
64db4cff
PM
2297
2298 /*
2299 * Extract the list of ready callbacks, disabling to prevent
2300 * races with call_rcu() from interrupt handlers.
2301 */
2302 local_irq_save(flags);
8146c4e2 2303 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2304 bl = rdp->blimit;
486e2593 2305 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2306 list = rdp->nxtlist;
2307 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2308 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2309 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2310 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2311 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2312 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2313 local_irq_restore(flags);
2314
2315 /* Invoke callbacks. */
486e2593 2316 count = count_lazy = 0;
64db4cff
PM
2317 while (list) {
2318 next = list->next;
2319 prefetch(next);
551d55a9 2320 debug_rcu_head_unqueue(list);
486e2593
PM
2321 if (__rcu_reclaim(rsp->name, list))
2322 count_lazy++;
64db4cff 2323 list = next;
dff1672d
PM
2324 /* Stop only if limit reached and CPU has something to do. */
2325 if (++count >= bl &&
2326 (need_resched() ||
2327 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2328 break;
2329 }
2330
2331 local_irq_save(flags);
4968c300
PM
2332 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2333 is_idle_task(current),
2334 rcu_is_callbacks_kthread());
64db4cff
PM
2335
2336 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2337 if (list != NULL) {
2338 *tail = rdp->nxtlist;
2339 rdp->nxtlist = list;
b41772ab
PM
2340 for (i = 0; i < RCU_NEXT_SIZE; i++)
2341 if (&rdp->nxtlist == rdp->nxttail[i])
2342 rdp->nxttail[i] = tail;
64db4cff
PM
2343 else
2344 break;
2345 }
b1420f1c
PM
2346 smp_mb(); /* List handling before counting for rcu_barrier(). */
2347 rdp->qlen_lazy -= count_lazy;
a792563b 2348 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2349 rdp->n_cbs_invoked += count;
64db4cff
PM
2350
2351 /* Reinstate batch limit if we have worked down the excess. */
2352 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2353 rdp->blimit = blimit;
2354
37c72e56
PM
2355 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2356 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2357 rdp->qlen_last_fqs_check = 0;
2358 rdp->n_force_qs_snap = rsp->n_force_qs;
2359 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2360 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2361 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2362
64db4cff
PM
2363 local_irq_restore(flags);
2364
e0f23060 2365 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2366 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2367 invoke_rcu_core();
64db4cff
PM
2368}
2369
2370/*
2371 * Check to see if this CPU is in a non-context-switch quiescent state
2372 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2373 * Also schedule RCU core processing.
64db4cff 2374 *
9b2e4f18 2375 * This function must be called from hardirq context. It is normally
64db4cff
PM
2376 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2377 * false, there is no point in invoking rcu_check_callbacks().
2378 */
2379void rcu_check_callbacks(int cpu, int user)
2380{
f7f7bac9 2381 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2382 increment_cpu_stall_ticks();
9b2e4f18 2383 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2384
2385 /*
2386 * Get here if this CPU took its interrupt from user
2387 * mode or from the idle loop, and if this is not a
2388 * nested interrupt. In this case, the CPU is in
d6714c22 2389 * a quiescent state, so note it.
64db4cff
PM
2390 *
2391 * No memory barrier is required here because both
d6714c22
PM
2392 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2393 * variables that other CPUs neither access nor modify,
2394 * at least not while the corresponding CPU is online.
64db4cff
PM
2395 */
2396
d6714c22
PM
2397 rcu_sched_qs(cpu);
2398 rcu_bh_qs(cpu);
64db4cff
PM
2399
2400 } else if (!in_softirq()) {
2401
2402 /*
2403 * Get here if this CPU did not take its interrupt from
2404 * softirq, in other words, if it is not interrupting
2405 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2406 * critical section, so note it.
64db4cff
PM
2407 */
2408
d6714c22 2409 rcu_bh_qs(cpu);
64db4cff 2410 }
f41d911f 2411 rcu_preempt_check_callbacks(cpu);
d21670ac 2412 if (rcu_pending(cpu))
a46e0899 2413 invoke_rcu_core();
f7f7bac9 2414 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2415}
2416
64db4cff
PM
2417/*
2418 * Scan the leaf rcu_node structures, processing dyntick state for any that
2419 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2420 * Also initiate boosting for any threads blocked on the root rcu_node.
2421 *
ee47eb9f 2422 * The caller must have suppressed start of new grace periods.
64db4cff 2423 */
217af2a2
PM
2424static void force_qs_rnp(struct rcu_state *rsp,
2425 int (*f)(struct rcu_data *rsp, bool *isidle,
2426 unsigned long *maxj),
2427 bool *isidle, unsigned long *maxj)
64db4cff
PM
2428{
2429 unsigned long bit;
2430 int cpu;
2431 unsigned long flags;
2432 unsigned long mask;
a0b6c9a7 2433 struct rcu_node *rnp;
64db4cff 2434
a0b6c9a7 2435 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2436 cond_resched();
64db4cff 2437 mask = 0;
1304afb2 2438 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2439 smp_mb__after_unlock_lock();
ee47eb9f 2440 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2441 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2442 return;
64db4cff 2443 }
a0b6c9a7 2444 if (rnp->qsmask == 0) {
1217ed1b 2445 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2446 continue;
2447 }
a0b6c9a7 2448 cpu = rnp->grplo;
64db4cff 2449 bit = 1;
a0b6c9a7 2450 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2451 if ((rnp->qsmask & bit) != 0) {
2452 if ((rnp->qsmaskinit & bit) != 0)
2453 *isidle = 0;
2454 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2455 mask |= bit;
2456 }
64db4cff 2457 }
45f014c5 2458 if (mask != 0) {
64db4cff 2459
d3f6bad3
PM
2460 /* rcu_report_qs_rnp() releases rnp->lock. */
2461 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2462 continue;
2463 }
1304afb2 2464 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2465 }
27f4d280 2466 rnp = rcu_get_root(rsp);
1217ed1b
PM
2467 if (rnp->qsmask == 0) {
2468 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2469 smp_mb__after_unlock_lock();
1217ed1b
PM
2470 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2471 }
64db4cff
PM
2472}
2473
2474/*
2475 * Force quiescent states on reluctant CPUs, and also detect which
2476 * CPUs are in dyntick-idle mode.
2477 */
4cdfc175 2478static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2479{
2480 unsigned long flags;
394f2769
PM
2481 bool ret;
2482 struct rcu_node *rnp;
2483 struct rcu_node *rnp_old = NULL;
2484
2485 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2486 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2487 for (; rnp != NULL; rnp = rnp->parent) {
2488 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2489 !raw_spin_trylock(&rnp->fqslock);
2490 if (rnp_old != NULL)
2491 raw_spin_unlock(&rnp_old->fqslock);
2492 if (ret) {
a792563b 2493 rsp->n_force_qs_lh++;
394f2769
PM
2494 return;
2495 }
2496 rnp_old = rnp;
2497 }
2498 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2499
394f2769
PM
2500 /* Reached the root of the rcu_node tree, acquire lock. */
2501 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2502 smp_mb__after_unlock_lock();
394f2769
PM
2503 raw_spin_unlock(&rnp_old->fqslock);
2504 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2505 rsp->n_force_qs_lh++;
394f2769 2506 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2507 return; /* Someone beat us to it. */
46a1e34e 2508 }
4de376a1
PK
2509 ACCESS_ONCE(rsp->gp_flags) =
2510 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
394f2769 2511 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2512 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2513}
2514
64db4cff 2515/*
e0f23060
PM
2516 * This does the RCU core processing work for the specified rcu_state
2517 * and rcu_data structures. This may be called only from the CPU to
2518 * whom the rdp belongs.
64db4cff
PM
2519 */
2520static void
1bca8cf1 2521__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2522{
2523 unsigned long flags;
48a7639c 2524 bool needwake;
fa07a58f 2525 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2526
2e597558
PM
2527 WARN_ON_ONCE(rdp->beenonline == 0);
2528
64db4cff
PM
2529 /* Update RCU state based on any recent quiescent states. */
2530 rcu_check_quiescent_state(rsp, rdp);
2531
2532 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2533 local_irq_save(flags);
64db4cff 2534 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2535 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2536 needwake = rcu_start_gp(rsp);
b8462084 2537 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2538 if (needwake)
2539 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2540 } else {
2541 local_irq_restore(flags);
64db4cff
PM
2542 }
2543
2544 /* If there are callbacks ready, invoke them. */
09223371 2545 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2546 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2547
2548 /* Do any needed deferred wakeups of rcuo kthreads. */
2549 do_nocb_deferred_wakeup(rdp);
09223371
SL
2550}
2551
64db4cff 2552/*
e0f23060 2553 * Do RCU core processing for the current CPU.
64db4cff 2554 */
09223371 2555static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2556{
6ce75a23
PM
2557 struct rcu_state *rsp;
2558
bfa00b4c
PM
2559 if (cpu_is_offline(smp_processor_id()))
2560 return;
f7f7bac9 2561 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2562 for_each_rcu_flavor(rsp)
2563 __rcu_process_callbacks(rsp);
f7f7bac9 2564 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2565}
2566
a26ac245 2567/*
e0f23060
PM
2568 * Schedule RCU callback invocation. If the specified type of RCU
2569 * does not support RCU priority boosting, just do a direct call,
2570 * otherwise wake up the per-CPU kernel kthread. Note that because we
2571 * are running on the current CPU with interrupts disabled, the
2572 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2573 */
a46e0899 2574static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2575{
b0d30417
PM
2576 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2577 return;
a46e0899
PM
2578 if (likely(!rsp->boost)) {
2579 rcu_do_batch(rsp, rdp);
a26ac245
PM
2580 return;
2581 }
a46e0899 2582 invoke_rcu_callbacks_kthread();
a26ac245
PM
2583}
2584
a46e0899 2585static void invoke_rcu_core(void)
09223371 2586{
b0f74036
PM
2587 if (cpu_online(smp_processor_id()))
2588 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2589}
2590
29154c57
PM
2591/*
2592 * Handle any core-RCU processing required by a call_rcu() invocation.
2593 */
2594static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2595 struct rcu_head *head, unsigned long flags)
64db4cff 2596{
48a7639c
PM
2597 bool needwake;
2598
62fde6ed
PM
2599 /*
2600 * If called from an extended quiescent state, invoke the RCU
2601 * core in order to force a re-evaluation of RCU's idleness.
2602 */
5c173eb8 2603 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2604 invoke_rcu_core();
2605
a16b7a69 2606 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2607 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2608 return;
64db4cff 2609
37c72e56
PM
2610 /*
2611 * Force the grace period if too many callbacks or too long waiting.
2612 * Enforce hysteresis, and don't invoke force_quiescent_state()
2613 * if some other CPU has recently done so. Also, don't bother
2614 * invoking force_quiescent_state() if the newly enqueued callback
2615 * is the only one waiting for a grace period to complete.
2616 */
2655d57e 2617 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2618
2619 /* Are we ignoring a completed grace period? */
470716fc 2620 note_gp_changes(rsp, rdp);
b52573d2
PM
2621
2622 /* Start a new grace period if one not already started. */
2623 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2624 struct rcu_node *rnp_root = rcu_get_root(rsp);
2625
b8462084 2626 raw_spin_lock(&rnp_root->lock);
6303b9c8 2627 smp_mb__after_unlock_lock();
48a7639c 2628 needwake = rcu_start_gp(rsp);
b8462084 2629 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2630 if (needwake)
2631 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2632 } else {
2633 /* Give the grace period a kick. */
2634 rdp->blimit = LONG_MAX;
2635 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2636 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2637 force_quiescent_state(rsp);
b52573d2
PM
2638 rdp->n_force_qs_snap = rsp->n_force_qs;
2639 rdp->qlen_last_fqs_check = rdp->qlen;
2640 }
4cdfc175 2641 }
29154c57
PM
2642}
2643
ae150184
PM
2644/*
2645 * RCU callback function to leak a callback.
2646 */
2647static void rcu_leak_callback(struct rcu_head *rhp)
2648{
2649}
2650
3fbfbf7a
PM
2651/*
2652 * Helper function for call_rcu() and friends. The cpu argument will
2653 * normally be -1, indicating "currently running CPU". It may specify
2654 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2655 * is expected to specify a CPU.
2656 */
64db4cff
PM
2657static void
2658__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2659 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2660{
2661 unsigned long flags;
2662 struct rcu_data *rdp;
2663
1146edcb 2664 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2665 if (debug_rcu_head_queue(head)) {
2666 /* Probable double call_rcu(), so leak the callback. */
2667 ACCESS_ONCE(head->func) = rcu_leak_callback;
2668 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2669 return;
2670 }
64db4cff
PM
2671 head->func = func;
2672 head->next = NULL;
2673
64db4cff
PM
2674 /*
2675 * Opportunistically note grace-period endings and beginnings.
2676 * Note that we might see a beginning right after we see an
2677 * end, but never vice versa, since this CPU has to pass through
2678 * a quiescent state betweentimes.
2679 */
2680 local_irq_save(flags);
394f99a9 2681 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2682
2683 /* Add the callback to our list. */
3fbfbf7a
PM
2684 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2685 int offline;
2686
2687 if (cpu != -1)
2688 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2689 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2690 WARN_ON_ONCE(offline);
0d8ee37e 2691 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2692 local_irq_restore(flags);
2693 return;
2694 }
a792563b 2695 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2696 if (lazy)
2697 rdp->qlen_lazy++;
c57afe80
PM
2698 else
2699 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2700 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2701 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2702 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2703
d4c08f2a
PM
2704 if (__is_kfree_rcu_offset((unsigned long)func))
2705 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2706 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2707 else
486e2593 2708 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2709
29154c57
PM
2710 /* Go handle any RCU core processing required. */
2711 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2712 local_irq_restore(flags);
2713}
2714
2715/*
d6714c22 2716 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2717 */
d6714c22 2718void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2719{
3fbfbf7a 2720 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2721}
d6714c22 2722EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2723
2724/*
486e2593 2725 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2726 */
2727void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2728{
3fbfbf7a 2729 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2730}
2731EXPORT_SYMBOL_GPL(call_rcu_bh);
2732
495aa969
ACB
2733/*
2734 * Queue an RCU callback for lazy invocation after a grace period.
2735 * This will likely be later named something like "call_rcu_lazy()",
2736 * but this change will require some way of tagging the lazy RCU
2737 * callbacks in the list of pending callbacks. Until then, this
2738 * function may only be called from __kfree_rcu().
2739 */
2740void kfree_call_rcu(struct rcu_head *head,
2741 void (*func)(struct rcu_head *rcu))
2742{
e534165b 2743 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2744}
2745EXPORT_SYMBOL_GPL(kfree_call_rcu);
2746
6d813391
PM
2747/*
2748 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2749 * any blocking grace-period wait automatically implies a grace period
2750 * if there is only one CPU online at any point time during execution
2751 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2752 * occasionally incorrectly indicate that there are multiple CPUs online
2753 * when there was in fact only one the whole time, as this just adds
2754 * some overhead: RCU still operates correctly.
6d813391
PM
2755 */
2756static inline int rcu_blocking_is_gp(void)
2757{
95f0c1de
PM
2758 int ret;
2759
6d813391 2760 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2761 preempt_disable();
2762 ret = num_online_cpus() <= 1;
2763 preempt_enable();
2764 return ret;
6d813391
PM
2765}
2766
6ebb237b
PM
2767/**
2768 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2769 *
2770 * Control will return to the caller some time after a full rcu-sched
2771 * grace period has elapsed, in other words after all currently executing
2772 * rcu-sched read-side critical sections have completed. These read-side
2773 * critical sections are delimited by rcu_read_lock_sched() and
2774 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2775 * local_irq_disable(), and so on may be used in place of
2776 * rcu_read_lock_sched().
2777 *
2778 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2779 * non-threaded hardware-interrupt handlers, in progress on entry will
2780 * have completed before this primitive returns. However, this does not
2781 * guarantee that softirq handlers will have completed, since in some
2782 * kernels, these handlers can run in process context, and can block.
2783 *
2784 * Note that this guarantee implies further memory-ordering guarantees.
2785 * On systems with more than one CPU, when synchronize_sched() returns,
2786 * each CPU is guaranteed to have executed a full memory barrier since the
2787 * end of its last RCU-sched read-side critical section whose beginning
2788 * preceded the call to synchronize_sched(). In addition, each CPU having
2789 * an RCU read-side critical section that extends beyond the return from
2790 * synchronize_sched() is guaranteed to have executed a full memory barrier
2791 * after the beginning of synchronize_sched() and before the beginning of
2792 * that RCU read-side critical section. Note that these guarantees include
2793 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2794 * that are executing in the kernel.
2795 *
2796 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2797 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2798 * to have executed a full memory barrier during the execution of
2799 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2800 * again only if the system has more than one CPU).
6ebb237b
PM
2801 *
2802 * This primitive provides the guarantees made by the (now removed)
2803 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2804 * guarantees that rcu_read_lock() sections will have completed.
2805 * In "classic RCU", these two guarantees happen to be one and
2806 * the same, but can differ in realtime RCU implementations.
2807 */
2808void synchronize_sched(void)
2809{
fe15d706
PM
2810 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2811 !lock_is_held(&rcu_lock_map) &&
2812 !lock_is_held(&rcu_sched_lock_map),
2813 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2814 if (rcu_blocking_is_gp())
2815 return;
3705b88d
AM
2816 if (rcu_expedited)
2817 synchronize_sched_expedited();
2818 else
2819 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2820}
2821EXPORT_SYMBOL_GPL(synchronize_sched);
2822
2823/**
2824 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2825 *
2826 * Control will return to the caller some time after a full rcu_bh grace
2827 * period has elapsed, in other words after all currently executing rcu_bh
2828 * read-side critical sections have completed. RCU read-side critical
2829 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2830 * and may be nested.
f0a0e6f2
PM
2831 *
2832 * See the description of synchronize_sched() for more detailed information
2833 * on memory ordering guarantees.
6ebb237b
PM
2834 */
2835void synchronize_rcu_bh(void)
2836{
fe15d706
PM
2837 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2838 !lock_is_held(&rcu_lock_map) &&
2839 !lock_is_held(&rcu_sched_lock_map),
2840 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2841 if (rcu_blocking_is_gp())
2842 return;
3705b88d
AM
2843 if (rcu_expedited)
2844 synchronize_rcu_bh_expedited();
2845 else
2846 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2847}
2848EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2849
765a3f4f
PM
2850/**
2851 * get_state_synchronize_rcu - Snapshot current RCU state
2852 *
2853 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2854 * to determine whether or not a full grace period has elapsed in the
2855 * meantime.
2856 */
2857unsigned long get_state_synchronize_rcu(void)
2858{
2859 /*
2860 * Any prior manipulation of RCU-protected data must happen
2861 * before the load from ->gpnum.
2862 */
2863 smp_mb(); /* ^^^ */
2864
2865 /*
2866 * Make sure this load happens before the purportedly
2867 * time-consuming work between get_state_synchronize_rcu()
2868 * and cond_synchronize_rcu().
2869 */
e534165b 2870 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
2871}
2872EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2873
2874/**
2875 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2876 *
2877 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2878 *
2879 * If a full RCU grace period has elapsed since the earlier call to
2880 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2881 * synchronize_rcu() to wait for a full grace period.
2882 *
2883 * Yes, this function does not take counter wrap into account. But
2884 * counter wrap is harmless. If the counter wraps, we have waited for
2885 * more than 2 billion grace periods (and way more on a 64-bit system!),
2886 * so waiting for one additional grace period should be just fine.
2887 */
2888void cond_synchronize_rcu(unsigned long oldstate)
2889{
2890 unsigned long newstate;
2891
2892 /*
2893 * Ensure that this load happens before any RCU-destructive
2894 * actions the caller might carry out after we return.
2895 */
e534165b 2896 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
2897 if (ULONG_CMP_GE(oldstate, newstate))
2898 synchronize_rcu();
2899}
2900EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2901
3d3b7db0
PM
2902static int synchronize_sched_expedited_cpu_stop(void *data)
2903{
2904 /*
2905 * There must be a full memory barrier on each affected CPU
2906 * between the time that try_stop_cpus() is called and the
2907 * time that it returns.
2908 *
2909 * In the current initial implementation of cpu_stop, the
2910 * above condition is already met when the control reaches
2911 * this point and the following smp_mb() is not strictly
2912 * necessary. Do smp_mb() anyway for documentation and
2913 * robustness against future implementation changes.
2914 */
2915 smp_mb(); /* See above comment block. */
2916 return 0;
2917}
2918
236fefaf
PM
2919/**
2920 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2921 *
2922 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2923 * approach to force the grace period to end quickly. This consumes
2924 * significant time on all CPUs and is unfriendly to real-time workloads,
2925 * so is thus not recommended for any sort of common-case code. In fact,
2926 * if you are using synchronize_sched_expedited() in a loop, please
2927 * restructure your code to batch your updates, and then use a single
2928 * synchronize_sched() instead.
3d3b7db0 2929 *
236fefaf
PM
2930 * Note that it is illegal to call this function while holding any lock
2931 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2932 * to call this function from a CPU-hotplug notifier. Failing to observe
2933 * these restriction will result in deadlock.
3d3b7db0
PM
2934 *
2935 * This implementation can be thought of as an application of ticket
2936 * locking to RCU, with sync_sched_expedited_started and
2937 * sync_sched_expedited_done taking on the roles of the halves
2938 * of the ticket-lock word. Each task atomically increments
2939 * sync_sched_expedited_started upon entry, snapshotting the old value,
2940 * then attempts to stop all the CPUs. If this succeeds, then each
2941 * CPU will have executed a context switch, resulting in an RCU-sched
2942 * grace period. We are then done, so we use atomic_cmpxchg() to
2943 * update sync_sched_expedited_done to match our snapshot -- but
2944 * only if someone else has not already advanced past our snapshot.
2945 *
2946 * On the other hand, if try_stop_cpus() fails, we check the value
2947 * of sync_sched_expedited_done. If it has advanced past our
2948 * initial snapshot, then someone else must have forced a grace period
2949 * some time after we took our snapshot. In this case, our work is
2950 * done for us, and we can simply return. Otherwise, we try again,
2951 * but keep our initial snapshot for purposes of checking for someone
2952 * doing our work for us.
2953 *
2954 * If we fail too many times in a row, we fall back to synchronize_sched().
2955 */
2956void synchronize_sched_expedited(void)
2957{
1924bcb0
PM
2958 long firstsnap, s, snap;
2959 int trycount = 0;
40694d66 2960 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2961
1924bcb0
PM
2962 /*
2963 * If we are in danger of counter wrap, just do synchronize_sched().
2964 * By allowing sync_sched_expedited_started to advance no more than
2965 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2966 * that more than 3.5 billion CPUs would be required to force a
2967 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2968 * course be required on a 64-bit system.
2969 */
40694d66
PM
2970 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2971 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2972 ULONG_MAX / 8)) {
2973 synchronize_sched();
a30489c5 2974 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2975 return;
2976 }
3d3b7db0 2977
1924bcb0
PM
2978 /*
2979 * Take a ticket. Note that atomic_inc_return() implies a
2980 * full memory barrier.
2981 */
40694d66 2982 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2983 firstsnap = snap;
3d3b7db0 2984 get_online_cpus();
1cc85961 2985 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2986
2987 /*
2988 * Each pass through the following loop attempts to force a
2989 * context switch on each CPU.
2990 */
2991 while (try_stop_cpus(cpu_online_mask,
2992 synchronize_sched_expedited_cpu_stop,
2993 NULL) == -EAGAIN) {
2994 put_online_cpus();
a30489c5 2995 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2996
1924bcb0 2997 /* Check to see if someone else did our work for us. */
40694d66 2998 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2999 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3000 /* ensure test happens before caller kfree */
4e857c58 3001 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3002 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
3003 return;
3004 }
3d3b7db0
PM
3005
3006 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3007 if (trycount++ < 10) {
3d3b7db0 3008 udelay(trycount * num_online_cpus());
c701d5d9 3009 } else {
3705b88d 3010 wait_rcu_gp(call_rcu_sched);
a30489c5 3011 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
3012 return;
3013 }
3014
1924bcb0 3015 /* Recheck to see if someone else did our work for us. */
40694d66 3016 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3017 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3018 /* ensure test happens before caller kfree */
4e857c58 3019 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3020 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
3021 return;
3022 }
3023
3024 /*
3025 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3026 * callers to piggyback on our grace period. We retry
3027 * after they started, so our grace period works for them,
3028 * and they started after our first try, so their grace
3029 * period works for us.
3d3b7db0
PM
3030 */
3031 get_online_cpus();
40694d66 3032 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3033 smp_mb(); /* ensure read is before try_stop_cpus(). */
3034 }
a30489c5 3035 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
3036
3037 /*
3038 * Everyone up to our most recent fetch is covered by our grace
3039 * period. Update the counter, but only if our work is still
3040 * relevant -- which it won't be if someone who started later
1924bcb0 3041 * than we did already did their update.
3d3b7db0
PM
3042 */
3043 do {
a30489c5 3044 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3045 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3046 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3047 /* ensure test happens before caller kfree */
4e857c58 3048 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3049 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3050 break;
3051 }
40694d66 3052 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3053 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3054
3055 put_online_cpus();
3056}
3057EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3058
64db4cff
PM
3059/*
3060 * Check to see if there is any immediate RCU-related work to be done
3061 * by the current CPU, for the specified type of RCU, returning 1 if so.
3062 * The checks are in order of increasing expense: checks that can be
3063 * carried out against CPU-local state are performed first. However,
3064 * we must check for CPU stalls first, else we might not get a chance.
3065 */
3066static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3067{
2f51f988
PM
3068 struct rcu_node *rnp = rdp->mynode;
3069
64db4cff
PM
3070 rdp->n_rcu_pending++;
3071
3072 /* Check for CPU stalls, if enabled. */
3073 check_cpu_stall(rsp, rdp);
3074
a096932f
PM
3075 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3076 if (rcu_nohz_full_cpu(rsp))
3077 return 0;
3078
64db4cff 3079 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
3080 if (rcu_scheduler_fully_active &&
3081 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 3082 rdp->n_rp_qs_pending++;
e4cc1f22 3083 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 3084 rdp->n_rp_report_qs++;
64db4cff 3085 return 1;
7ba5c840 3086 }
64db4cff
PM
3087
3088 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3089 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3090 rdp->n_rp_cb_ready++;
64db4cff 3091 return 1;
7ba5c840 3092 }
64db4cff
PM
3093
3094 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3095 if (cpu_needs_another_gp(rsp, rdp)) {
3096 rdp->n_rp_cpu_needs_gp++;
64db4cff 3097 return 1;
7ba5c840 3098 }
64db4cff
PM
3099
3100 /* Has another RCU grace period completed? */
2f51f988 3101 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3102 rdp->n_rp_gp_completed++;
64db4cff 3103 return 1;
7ba5c840 3104 }
64db4cff
PM
3105
3106 /* Has a new RCU grace period started? */
2f51f988 3107 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 3108 rdp->n_rp_gp_started++;
64db4cff 3109 return 1;
7ba5c840 3110 }
64db4cff 3111
96d3fd0d
PM
3112 /* Does this CPU need a deferred NOCB wakeup? */
3113 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3114 rdp->n_rp_nocb_defer_wakeup++;
3115 return 1;
3116 }
3117
64db4cff 3118 /* nothing to do */
7ba5c840 3119 rdp->n_rp_need_nothing++;
64db4cff
PM
3120 return 0;
3121}
3122
3123/*
3124 * Check to see if there is any immediate RCU-related work to be done
3125 * by the current CPU, returning 1 if so. This function is part of the
3126 * RCU implementation; it is -not- an exported member of the RCU API.
3127 */
a157229c 3128static int rcu_pending(int cpu)
64db4cff 3129{
6ce75a23
PM
3130 struct rcu_state *rsp;
3131
3132 for_each_rcu_flavor(rsp)
3133 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3134 return 1;
3135 return 0;
64db4cff
PM
3136}
3137
3138/*
c0f4dfd4
PM
3139 * Return true if the specified CPU has any callback. If all_lazy is
3140 * non-NULL, store an indication of whether all callbacks are lazy.
3141 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3142 */
ffa83fb5 3143static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 3144{
c0f4dfd4
PM
3145 bool al = true;
3146 bool hc = false;
3147 struct rcu_data *rdp;
6ce75a23
PM
3148 struct rcu_state *rsp;
3149
c0f4dfd4
PM
3150 for_each_rcu_flavor(rsp) {
3151 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
3152 if (!rdp->nxtlist)
3153 continue;
3154 hc = true;
3155 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3156 al = false;
69c8d28c
PM
3157 break;
3158 }
c0f4dfd4
PM
3159 }
3160 if (all_lazy)
3161 *all_lazy = al;
3162 return hc;
64db4cff
PM
3163}
3164
a83eff0a
PM
3165/*
3166 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3167 * the compiler is expected to optimize this away.
3168 */
e66c33d5 3169static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3170 int cpu, unsigned long done)
3171{
3172 trace_rcu_barrier(rsp->name, s, cpu,
3173 atomic_read(&rsp->barrier_cpu_count), done);
3174}
3175
b1420f1c
PM
3176/*
3177 * RCU callback function for _rcu_barrier(). If we are last, wake
3178 * up the task executing _rcu_barrier().
3179 */
24ebbca8 3180static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3181{
24ebbca8
PM
3182 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3183 struct rcu_state *rsp = rdp->rsp;
3184
a83eff0a
PM
3185 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3186 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3187 complete(&rsp->barrier_completion);
a83eff0a
PM
3188 } else {
3189 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3190 }
d0ec774c
PM
3191}
3192
3193/*
3194 * Called with preemption disabled, and from cross-cpu IRQ context.
3195 */
3196static void rcu_barrier_func(void *type)
3197{
037b64ed 3198 struct rcu_state *rsp = type;
fa07a58f 3199 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3200
a83eff0a 3201 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3202 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3203 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3204}
3205
d0ec774c
PM
3206/*
3207 * Orchestrate the specified type of RCU barrier, waiting for all
3208 * RCU callbacks of the specified type to complete.
3209 */
037b64ed 3210static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3211{
b1420f1c 3212 int cpu;
b1420f1c 3213 struct rcu_data *rdp;
cf3a9c48
PM
3214 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3215 unsigned long snap_done;
b1420f1c 3216
a83eff0a 3217 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3218
e74f4c45 3219 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3220 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3221
cf3a9c48
PM
3222 /*
3223 * Ensure that all prior references, including to ->n_barrier_done,
3224 * are ordered before the _rcu_barrier() machinery.
3225 */
3226 smp_mb(); /* See above block comment. */
3227
3228 /*
3229 * Recheck ->n_barrier_done to see if others did our work for us.
3230 * This means checking ->n_barrier_done for an even-to-odd-to-even
3231 * transition. The "if" expression below therefore rounds the old
3232 * value up to the next even number and adds two before comparing.
3233 */
458fb381 3234 snap_done = rsp->n_barrier_done;
a83eff0a 3235 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3236
3237 /*
3238 * If the value in snap is odd, we needed to wait for the current
3239 * rcu_barrier() to complete, then wait for the next one, in other
3240 * words, we need the value of snap_done to be three larger than
3241 * the value of snap. On the other hand, if the value in snap is
3242 * even, we only had to wait for the next rcu_barrier() to complete,
3243 * in other words, we need the value of snap_done to be only two
3244 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3245 * this for us (thank you, Linus!).
3246 */
3247 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3248 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3249 smp_mb(); /* caller's subsequent code after above check. */
3250 mutex_unlock(&rsp->barrier_mutex);
3251 return;
3252 }
3253
3254 /*
3255 * Increment ->n_barrier_done to avoid duplicate work. Use
3256 * ACCESS_ONCE() to prevent the compiler from speculating
3257 * the increment to precede the early-exit check.
3258 */
a792563b 3259 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3260 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3261 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3262 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3263
d0ec774c 3264 /*
b1420f1c
PM
3265 * Initialize the count to one rather than to zero in order to
3266 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3267 * (or preemption of this task). Exclude CPU-hotplug operations
3268 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3269 */
7db74df8 3270 init_completion(&rsp->barrier_completion);
24ebbca8 3271 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3272 get_online_cpus();
b1420f1c
PM
3273
3274 /*
1331e7a1
PM
3275 * Force each CPU with callbacks to register a new callback.
3276 * When that callback is invoked, we will know that all of the
3277 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3278 */
3fbfbf7a 3279 for_each_possible_cpu(cpu) {
d1e43fa5 3280 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3281 continue;
b1420f1c 3282 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3283 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3284 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3285 rsp->n_barrier_done);
3286 atomic_inc(&rsp->barrier_cpu_count);
3287 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3288 rsp, cpu, 0);
3289 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3290 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3291 rsp->n_barrier_done);
037b64ed 3292 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3293 } else {
a83eff0a
PM
3294 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3295 rsp->n_barrier_done);
b1420f1c
PM
3296 }
3297 }
1331e7a1 3298 put_online_cpus();
b1420f1c
PM
3299
3300 /*
3301 * Now that we have an rcu_barrier_callback() callback on each
3302 * CPU, and thus each counted, remove the initial count.
3303 */
24ebbca8 3304 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3305 complete(&rsp->barrier_completion);
b1420f1c 3306
cf3a9c48
PM
3307 /* Increment ->n_barrier_done to prevent duplicate work. */
3308 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3309 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3310 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3311 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3312 smp_mb(); /* Keep increment before caller's subsequent code. */
3313
b1420f1c 3314 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3315 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3316
3317 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3318 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3319}
d0ec774c
PM
3320
3321/**
3322 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3323 */
3324void rcu_barrier_bh(void)
3325{
037b64ed 3326 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3327}
3328EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3329
3330/**
3331 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3332 */
3333void rcu_barrier_sched(void)
3334{
037b64ed 3335 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3336}
3337EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3338
64db4cff 3339/*
27569620 3340 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3341 */
27569620
PM
3342static void __init
3343rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3344{
3345 unsigned long flags;
394f99a9 3346 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3347 struct rcu_node *rnp = rcu_get_root(rsp);
3348
3349 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3350 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3351 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3352 init_callback_list(rdp);
486e2593 3353 rdp->qlen_lazy = 0;
1d1fb395 3354 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3355 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3356 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3357 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3358 rdp->cpu = cpu;
d4c08f2a 3359 rdp->rsp = rsp;
3fbfbf7a 3360 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3361 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3362}
3363
3364/*
3365 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3366 * offline event can be happening at a given time. Note also that we
3367 * can accept some slop in the rsp->completed access due to the fact
3368 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3369 */
49fb4c62 3370static void
9b67122a 3371rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3372{
3373 unsigned long flags;
64db4cff 3374 unsigned long mask;
394f99a9 3375 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3376 struct rcu_node *rnp = rcu_get_root(rsp);
3377
a4fbe35a
PM
3378 /* Exclude new grace periods. */
3379 mutex_lock(&rsp->onoff_mutex);
3380
64db4cff 3381 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3382 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3383 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3384 rdp->qlen_last_fqs_check = 0;
3385 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3386 rdp->blimit = blimit;
0d8ee37e 3387 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3388 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3389 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3390 atomic_set(&rdp->dynticks->dynticks,
3391 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3392 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3393
64db4cff
PM
3394 /* Add CPU to rcu_node bitmasks. */
3395 rnp = rdp->mynode;
3396 mask = rdp->grpmask;
3397 do {
3398 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3399 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3400 rnp->qsmaskinit |= mask;
3401 mask = rnp->grpmask;
d09b62df 3402 if (rnp == rdp->mynode) {
06ae115a
PM
3403 /*
3404 * If there is a grace period in progress, we will
3405 * set up to wait for it next time we run the
3406 * RCU core code.
3407 */
3408 rdp->gpnum = rnp->completed;
d09b62df 3409 rdp->completed = rnp->completed;
06ae115a
PM
3410 rdp->passed_quiesce = 0;
3411 rdp->qs_pending = 0;
f7f7bac9 3412 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3413 }
1304afb2 3414 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3415 rnp = rnp->parent;
3416 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3417 local_irq_restore(flags);
64db4cff 3418
a4fbe35a 3419 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3420}
3421
49fb4c62 3422static void rcu_prepare_cpu(int cpu)
64db4cff 3423{
6ce75a23
PM
3424 struct rcu_state *rsp;
3425
3426 for_each_rcu_flavor(rsp)
9b67122a 3427 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3428}
3429
3430/*
f41d911f 3431 * Handle CPU online/offline notification events.
64db4cff 3432 */
49fb4c62 3433static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3434 unsigned long action, void *hcpu)
64db4cff
PM
3435{
3436 long cpu = (long)hcpu;
e534165b 3437 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3438 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3439 struct rcu_state *rsp;
64db4cff 3440
f7f7bac9 3441 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3442 switch (action) {
3443 case CPU_UP_PREPARE:
3444 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3445 rcu_prepare_cpu(cpu);
3446 rcu_prepare_kthreads(cpu);
a26ac245
PM
3447 break;
3448 case CPU_ONLINE:
0f962a5e 3449 case CPU_DOWN_FAILED:
5d01bbd1 3450 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3451 break;
3452 case CPU_DOWN_PREPARE:
34ed6246 3453 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3454 break;
d0ec774c
PM
3455 case CPU_DYING:
3456 case CPU_DYING_FROZEN:
6ce75a23
PM
3457 for_each_rcu_flavor(rsp)
3458 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3459 break;
64db4cff
PM
3460 case CPU_DEAD:
3461 case CPU_DEAD_FROZEN:
3462 case CPU_UP_CANCELED:
3463 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3464 for_each_rcu_flavor(rsp)
3465 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3466 break;
3467 default:
3468 break;
3469 }
f7f7bac9 3470 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3471 return NOTIFY_OK;
64db4cff
PM
3472}
3473
d1d74d14
BP
3474static int rcu_pm_notify(struct notifier_block *self,
3475 unsigned long action, void *hcpu)
3476{
3477 switch (action) {
3478 case PM_HIBERNATION_PREPARE:
3479 case PM_SUSPEND_PREPARE:
3480 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3481 rcu_expedited = 1;
3482 break;
3483 case PM_POST_HIBERNATION:
3484 case PM_POST_SUSPEND:
3485 rcu_expedited = 0;
3486 break;
3487 default:
3488 break;
3489 }
3490 return NOTIFY_OK;
3491}
3492
b3dbec76
PM
3493/*
3494 * Spawn the kthread that handles this RCU flavor's grace periods.
3495 */
3496static int __init rcu_spawn_gp_kthread(void)
3497{
3498 unsigned long flags;
3499 struct rcu_node *rnp;
3500 struct rcu_state *rsp;
3501 struct task_struct *t;
3502
3503 for_each_rcu_flavor(rsp) {
f170168b 3504 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3505 BUG_ON(IS_ERR(t));
3506 rnp = rcu_get_root(rsp);
3507 raw_spin_lock_irqsave(&rnp->lock, flags);
3508 rsp->gp_kthread = t;
3509 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3510 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3511 }
3512 return 0;
3513}
3514early_initcall(rcu_spawn_gp_kthread);
3515
bbad9379
PM
3516/*
3517 * This function is invoked towards the end of the scheduler's initialization
3518 * process. Before this is called, the idle task might contain
3519 * RCU read-side critical sections (during which time, this idle
3520 * task is booting the system). After this function is called, the
3521 * idle tasks are prohibited from containing RCU read-side critical
3522 * sections. This function also enables RCU lockdep checking.
3523 */
3524void rcu_scheduler_starting(void)
3525{
3526 WARN_ON(num_online_cpus() != 1);
3527 WARN_ON(nr_context_switches() > 0);
3528 rcu_scheduler_active = 1;
3529}
3530
64db4cff
PM
3531/*
3532 * Compute the per-level fanout, either using the exact fanout specified
3533 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3534 */
3535#ifdef CONFIG_RCU_FANOUT_EXACT
3536static void __init rcu_init_levelspread(struct rcu_state *rsp)
3537{
3538 int i;
3539
04f34650
PM
3540 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3541 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3542 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3543}
3544#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3545static void __init rcu_init_levelspread(struct rcu_state *rsp)
3546{
3547 int ccur;
3548 int cprv;
3549 int i;
3550
4dbd6bb3 3551 cprv = nr_cpu_ids;
f885b7f2 3552 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3553 ccur = rsp->levelcnt[i];
3554 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3555 cprv = ccur;
3556 }
3557}
3558#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3559
3560/*
3561 * Helper function for rcu_init() that initializes one rcu_state structure.
3562 */
394f99a9
LJ
3563static void __init rcu_init_one(struct rcu_state *rsp,
3564 struct rcu_data __percpu *rda)
64db4cff 3565{
b4426b49
FF
3566 static const char * const buf[] = {
3567 "rcu_node_0",
3568 "rcu_node_1",
3569 "rcu_node_2",
3570 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3571 static const char * const fqs[] = {
3572 "rcu_node_fqs_0",
3573 "rcu_node_fqs_1",
3574 "rcu_node_fqs_2",
3575 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3576 static u8 fl_mask = 0x1;
64db4cff
PM
3577 int cpustride = 1;
3578 int i;
3579 int j;
3580 struct rcu_node *rnp;
3581
b6407e86
PM
3582 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3583
4930521a
PM
3584 /* Silence gcc 4.8 warning about array index out of range. */
3585 if (rcu_num_lvls > RCU_NUM_LVLS)
3586 panic("rcu_init_one: rcu_num_lvls overflow");
3587
64db4cff
PM
3588 /* Initialize the level-tracking arrays. */
3589
f885b7f2
PM
3590 for (i = 0; i < rcu_num_lvls; i++)
3591 rsp->levelcnt[i] = num_rcu_lvl[i];
3592 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3593 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3594 rcu_init_levelspread(rsp);
4a81e832
PM
3595 rsp->flavor_mask = fl_mask;
3596 fl_mask <<= 1;
64db4cff
PM
3597
3598 /* Initialize the elements themselves, starting from the leaves. */
3599
f885b7f2 3600 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3601 cpustride *= rsp->levelspread[i];
3602 rnp = rsp->level[i];
3603 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3604 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3605 lockdep_set_class_and_name(&rnp->lock,
3606 &rcu_node_class[i], buf[i]);
394f2769
PM
3607 raw_spin_lock_init(&rnp->fqslock);
3608 lockdep_set_class_and_name(&rnp->fqslock,
3609 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3610 rnp->gpnum = rsp->gpnum;
3611 rnp->completed = rsp->completed;
64db4cff
PM
3612 rnp->qsmask = 0;
3613 rnp->qsmaskinit = 0;
3614 rnp->grplo = j * cpustride;
3615 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3616 if (rnp->grphi >= nr_cpu_ids)
3617 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3618 if (i == 0) {
3619 rnp->grpnum = 0;
3620 rnp->grpmask = 0;
3621 rnp->parent = NULL;
3622 } else {
3623 rnp->grpnum = j % rsp->levelspread[i - 1];
3624 rnp->grpmask = 1UL << rnp->grpnum;
3625 rnp->parent = rsp->level[i - 1] +
3626 j / rsp->levelspread[i - 1];
3627 }
3628 rnp->level = i;
12f5f524 3629 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3630 rcu_init_one_nocb(rnp);
64db4cff
PM
3631 }
3632 }
0c34029a 3633
394f99a9 3634 rsp->rda = rda;
b3dbec76 3635 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3636 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3637 for_each_possible_cpu(i) {
4a90a068 3638 while (i > rnp->grphi)
0c34029a 3639 rnp++;
394f99a9 3640 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3641 rcu_boot_init_percpu_data(i, rsp);
3642 }
6ce75a23 3643 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3644}
3645
f885b7f2
PM
3646/*
3647 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3648 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3649 * the ->node array in the rcu_state structure.
3650 */
3651static void __init rcu_init_geometry(void)
3652{
026ad283 3653 ulong d;
f885b7f2
PM
3654 int i;
3655 int j;
cca6f393 3656 int n = nr_cpu_ids;
f885b7f2
PM
3657 int rcu_capacity[MAX_RCU_LVLS + 1];
3658
026ad283
PM
3659 /*
3660 * Initialize any unspecified boot parameters.
3661 * The default values of jiffies_till_first_fqs and
3662 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3663 * value, which is a function of HZ, then adding one for each
3664 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3665 */
3666 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3667 if (jiffies_till_first_fqs == ULONG_MAX)
3668 jiffies_till_first_fqs = d;
3669 if (jiffies_till_next_fqs == ULONG_MAX)
3670 jiffies_till_next_fqs = d;
3671
f885b7f2 3672 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3673 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3674 nr_cpu_ids == NR_CPUS)
f885b7f2 3675 return;
39479098
PM
3676 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3677 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3678
3679 /*
3680 * Compute number of nodes that can be handled an rcu_node tree
3681 * with the given number of levels. Setting rcu_capacity[0] makes
3682 * some of the arithmetic easier.
3683 */
3684 rcu_capacity[0] = 1;
3685 rcu_capacity[1] = rcu_fanout_leaf;
3686 for (i = 2; i <= MAX_RCU_LVLS; i++)
3687 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3688
3689 /*
3690 * The boot-time rcu_fanout_leaf parameter is only permitted
3691 * to increase the leaf-level fanout, not decrease it. Of course,
3692 * the leaf-level fanout cannot exceed the number of bits in
3693 * the rcu_node masks. Finally, the tree must be able to accommodate
3694 * the configured number of CPUs. Complain and fall back to the
3695 * compile-time values if these limits are exceeded.
3696 */
3697 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3698 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3699 n > rcu_capacity[MAX_RCU_LVLS]) {
3700 WARN_ON(1);
3701 return;
3702 }
3703
3704 /* Calculate the number of rcu_nodes at each level of the tree. */
3705 for (i = 1; i <= MAX_RCU_LVLS; i++)
3706 if (n <= rcu_capacity[i]) {
3707 for (j = 0; j <= i; j++)
3708 num_rcu_lvl[j] =
3709 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3710 rcu_num_lvls = i;
3711 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3712 num_rcu_lvl[j] = 0;
3713 break;
3714 }
3715
3716 /* Calculate the total number of rcu_node structures. */
3717 rcu_num_nodes = 0;
3718 for (i = 0; i <= MAX_RCU_LVLS; i++)
3719 rcu_num_nodes += num_rcu_lvl[i];
3720 rcu_num_nodes -= n;
3721}
3722
9f680ab4 3723void __init rcu_init(void)
64db4cff 3724{
017c4261 3725 int cpu;
9f680ab4 3726
f41d911f 3727 rcu_bootup_announce();
f885b7f2 3728 rcu_init_geometry();
394f99a9 3729 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3730 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3731 __rcu_init_preempt();
b5b39360 3732 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3733
3734 /*
3735 * We don't need protection against CPU-hotplug here because
3736 * this is called early in boot, before either interrupts
3737 * or the scheduler are operational.
3738 */
3739 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3740 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3741 for_each_online_cpu(cpu)
3742 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3743}
3744
4102adab 3745#include "tree_plugin.h"
This page took 0.661833 seconds and 5 git commands to generate.