rcu: Fix and comment ordering around wait_event()
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a
PM
61#include <trace/events/rcu.h>
62
63#include "rcu.h"
9f77da9f 64
4102adab
PM
65MODULE_ALIAS("rcutree");
66#ifdef MODULE_PARAM_PREFIX
67#undef MODULE_PARAM_PREFIX
68#endif
69#define MODULE_PARAM_PREFIX "rcutree."
70
64db4cff
PM
71/* Data structures. */
72
f885b7f2 73static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 74static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 75
f7f7bac9
SRRH
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
a41bfeb2 84#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
85static char sname##_varname[] = #sname; \
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 87struct rcu_state sname##_state = { \
6c90cc7b 88 .level = { &sname##_state.node[0] }, \
037b64ed 89 .call = cr, \
af446b70 90 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
7b2e6011 93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 98 .name = sname##_varname, \
a4889858 99 .abbr = sabbr, \
a41bfeb2
SRRH
100}; \
101DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 102
a41bfeb2
SRRH
103RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 105
27f4d280 106static struct rcu_state *rcu_state;
6ce75a23 107LIST_HEAD(rcu_struct_flavors);
27f4d280 108
f885b7f2
PM
109/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 111module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119};
120int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
b0d30417
PM
122/*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 126 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
bbad9379
PM
131int rcu_scheduler_active __read_mostly;
132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
b0d30417
PM
134/*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146static int rcu_scheduler_fully_active __read_mostly;
147
a46e0899
PM
148#ifdef CONFIG_RCU_BOOST
149
a26ac245
PM
150/*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 156DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 157DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 158
a46e0899
PM
159#endif /* #ifdef CONFIG_RCU_BOOST */
160
5d01bbd1 161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 164
4a298656
PM
165/*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174unsigned long rcutorture_testseq;
175unsigned long rcutorture_vernum;
176
fc2219d4
PM
177/*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182static int rcu_gp_in_progress(struct rcu_state *rsp)
183{
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185}
186
b1f77b05 187/*
d6714c22 188 * Note a quiescent state. Because we do not need to know
b1f77b05 189 * how many quiescent states passed, just if there was at least
d6714c22 190 * one since the start of the grace period, this just sets a flag.
e4cc1f22 191 * The caller must have disabled preemption.
b1f77b05 192 */
d6714c22 193void rcu_sched_qs(int cpu)
b1f77b05 194{
25502a6c 195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 196
e4cc1f22 197 if (rdp->passed_quiesce == 0)
f7f7bac9 198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 199 rdp->passed_quiesce = 1;
b1f77b05
IM
200}
201
d6714c22 202void rcu_bh_qs(int cpu)
b1f77b05 203{
25502a6c 204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 205
e4cc1f22 206 if (rdp->passed_quiesce == 0)
f7f7bac9 207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 208 rdp->passed_quiesce = 1;
b1f77b05 209}
64db4cff 210
25502a6c
PM
211/*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
e4cc1f22 214 * The caller must have disabled preemption.
25502a6c
PM
215 */
216void rcu_note_context_switch(int cpu)
217{
f7f7bac9 218 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 219 rcu_sched_qs(cpu);
cba6d0d6 220 rcu_preempt_note_context_switch(cpu);
f7f7bac9 221 trace_rcu_utilization(TPS("End context switch"));
25502a6c 222}
29ce8310 223EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 224
01896f7e 225static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 227 .dynticks = ATOMIC_INIT(1),
2333210b
PM
228#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 232};
64db4cff 233
878d7439
ED
234static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235static long qhimark = 10000; /* If this many pending, ignore blimit. */
236static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 237
878d7439
ED
238module_param(blimit, long, 0444);
239module_param(qhimark, long, 0444);
240module_param(qlowmark, long, 0444);
3d76c082 241
026ad283
PM
242static ulong jiffies_till_first_fqs = ULONG_MAX;
243static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
244
245module_param(jiffies_till_first_fqs, ulong, 0644);
246module_param(jiffies_till_next_fqs, ulong, 0644);
247
910ee45d
PM
248static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
217af2a2
PM
250static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
4cdfc175 254static void force_quiescent_state(struct rcu_state *rsp);
a157229c 255static int rcu_pending(int cpu);
64db4cff
PM
256
257/*
d6714c22 258 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 259 */
d6714c22 260long rcu_batches_completed_sched(void)
64db4cff 261{
d6714c22 262 return rcu_sched_state.completed;
64db4cff 263}
d6714c22 264EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
265
266/*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269long rcu_batches_completed_bh(void)
270{
271 return rcu_bh_state.completed;
272}
273EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
bf66f18e
PM
275/*
276 * Force a quiescent state for RCU BH.
277 */
278void rcu_bh_force_quiescent_state(void)
279{
4cdfc175 280 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
281}
282EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
4a298656
PM
284/*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291void rcutorture_record_test_transition(void)
292{
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295}
296EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298/*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303void rcutorture_record_progress(unsigned long vernum)
304{
305 rcutorture_vernum++;
306}
307EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
bf66f18e
PM
309/*
310 * Force a quiescent state for RCU-sched.
311 */
312void rcu_sched_force_quiescent_state(void)
313{
4cdfc175 314 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
315}
316EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
64db4cff
PM
318/*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321static int
322cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323{
3fbfbf7a
PM
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
326}
327
328/*
dc35c893
PM
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
64db4cff
PM
332 */
333static int
334cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335{
dc35c893 336 int i;
3fbfbf7a 337
dc35c893
PM
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
dae6e64d 340 if (rcu_nocb_needs_gp(rsp))
34ed6246 341 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
64db4cff
PM
352}
353
354/*
355 * Return the root node of the specified rcu_state structure.
356 */
357static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358{
359 return &rsp->node[0];
360}
361
9b2e4f18 362/*
adf5091e 363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
adf5091e
FW
369static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
9b2e4f18 371{
f7f7bac9 372 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 373 if (!user && !is_idle_task(current)) {
289828e6
PM
374 struct task_struct *idle __maybe_unused =
375 idle_task(smp_processor_id());
0989cb46 376
f7f7bac9 377 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 378 ftrace_dump(DUMP_ORIG);
0989cb46
PM
379 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
380 current->pid, current->comm,
381 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 382 }
aea1b35e 383 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
384 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
385 smp_mb__before_atomic_inc(); /* See above. */
386 atomic_inc(&rdtp->dynticks);
387 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
388 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
389
390 /*
adf5091e 391 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
392 * in an RCU read-side critical section.
393 */
394 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
395 "Illegal idle entry in RCU read-side critical section.");
396 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
397 "Illegal idle entry in RCU-bh read-side critical section.");
398 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
399 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 400}
64db4cff 401
adf5091e
FW
402/*
403 * Enter an RCU extended quiescent state, which can be either the
404 * idle loop or adaptive-tickless usermode execution.
64db4cff 405 */
adf5091e 406static void rcu_eqs_enter(bool user)
64db4cff 407{
4145fa7f 408 long long oldval;
64db4cff
PM
409 struct rcu_dynticks *rdtp;
410
c9d4b0af 411 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 412 oldval = rdtp->dynticks_nesting;
29e37d81
PM
413 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
414 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
415 rdtp->dynticks_nesting = 0;
416 else
417 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 418 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 419}
adf5091e
FW
420
421/**
422 * rcu_idle_enter - inform RCU that current CPU is entering idle
423 *
424 * Enter idle mode, in other words, -leave- the mode in which RCU
425 * read-side critical sections can occur. (Though RCU read-side
426 * critical sections can occur in irq handlers in idle, a possibility
427 * handled by irq_enter() and irq_exit().)
428 *
429 * We crowbar the ->dynticks_nesting field to zero to allow for
430 * the possibility of usermode upcalls having messed up our count
431 * of interrupt nesting level during the prior busy period.
432 */
433void rcu_idle_enter(void)
434{
c5d900bf
FW
435 unsigned long flags;
436
437 local_irq_save(flags);
cb349ca9 438 rcu_eqs_enter(false);
c9d4b0af 439 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 440 local_irq_restore(flags);
adf5091e 441}
8a2ecf47 442EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 443
2b1d5024 444#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
445/**
446 * rcu_user_enter - inform RCU that we are resuming userspace.
447 *
448 * Enter RCU idle mode right before resuming userspace. No use of RCU
449 * is permitted between this call and rcu_user_exit(). This way the
450 * CPU doesn't need to maintain the tick for RCU maintenance purposes
451 * when the CPU runs in userspace.
452 */
453void rcu_user_enter(void)
454{
91d1aa43 455 rcu_eqs_enter(1);
adf5091e 456}
2b1d5024 457#endif /* CONFIG_RCU_USER_QS */
19dd1591 458
9b2e4f18
PM
459/**
460 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
461 *
462 * Exit from an interrupt handler, which might possibly result in entering
463 * idle mode, in other words, leaving the mode in which read-side critical
464 * sections can occur.
64db4cff 465 *
9b2e4f18
PM
466 * This code assumes that the idle loop never does anything that might
467 * result in unbalanced calls to irq_enter() and irq_exit(). If your
468 * architecture violates this assumption, RCU will give you what you
469 * deserve, good and hard. But very infrequently and irreproducibly.
470 *
471 * Use things like work queues to work around this limitation.
472 *
473 * You have been warned.
64db4cff 474 */
9b2e4f18 475void rcu_irq_exit(void)
64db4cff
PM
476{
477 unsigned long flags;
4145fa7f 478 long long oldval;
64db4cff
PM
479 struct rcu_dynticks *rdtp;
480
481 local_irq_save(flags);
c9d4b0af 482 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 483 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
484 rdtp->dynticks_nesting--;
485 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 486 if (rdtp->dynticks_nesting)
f7f7bac9 487 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 488 else
cb349ca9 489 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 490 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
491 local_irq_restore(flags);
492}
493
494/*
adf5091e 495 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
496 *
497 * If the new value of the ->dynticks_nesting counter was previously zero,
498 * we really have exited idle, and must do the appropriate accounting.
499 * The caller must have disabled interrupts.
500 */
adf5091e
FW
501static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
502 int user)
9b2e4f18 503{
23b5c8fa
PM
504 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
505 atomic_inc(&rdtp->dynticks);
506 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
507 smp_mb__after_atomic_inc(); /* See above. */
508 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 509 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 510 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 511 if (!user && !is_idle_task(current)) {
289828e6
PM
512 struct task_struct *idle __maybe_unused =
513 idle_task(smp_processor_id());
0989cb46 514
f7f7bac9 515 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 516 oldval, rdtp->dynticks_nesting);
bf1304e9 517 ftrace_dump(DUMP_ORIG);
0989cb46
PM
518 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
519 current->pid, current->comm,
520 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
521 }
522}
523
adf5091e
FW
524/*
525 * Exit an RCU extended quiescent state, which can be either the
526 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 527 */
adf5091e 528static void rcu_eqs_exit(bool user)
9b2e4f18 529{
9b2e4f18
PM
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
c9d4b0af 533 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 534 oldval = rdtp->dynticks_nesting;
29e37d81
PM
535 WARN_ON_ONCE(oldval < 0);
536 if (oldval & DYNTICK_TASK_NEST_MASK)
537 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
538 else
539 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 540 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 541}
adf5091e
FW
542
543/**
544 * rcu_idle_exit - inform RCU that current CPU is leaving idle
545 *
546 * Exit idle mode, in other words, -enter- the mode in which RCU
547 * read-side critical sections can occur.
548 *
549 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
550 * allow for the possibility of usermode upcalls messing up our count
551 * of interrupt nesting level during the busy period that is just
552 * now starting.
553 */
554void rcu_idle_exit(void)
555{
c5d900bf
FW
556 unsigned long flags;
557
558 local_irq_save(flags);
cb349ca9 559 rcu_eqs_exit(false);
c9d4b0af 560 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 561 local_irq_restore(flags);
adf5091e 562}
8a2ecf47 563EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 564
2b1d5024 565#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
566/**
567 * rcu_user_exit - inform RCU that we are exiting userspace.
568 *
569 * Exit RCU idle mode while entering the kernel because it can
570 * run a RCU read side critical section anytime.
571 */
572void rcu_user_exit(void)
573{
91d1aa43 574 rcu_eqs_exit(1);
adf5091e 575}
2b1d5024 576#endif /* CONFIG_RCU_USER_QS */
19dd1591 577
9b2e4f18
PM
578/**
579 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
580 *
581 * Enter an interrupt handler, which might possibly result in exiting
582 * idle mode, in other words, entering the mode in which read-side critical
583 * sections can occur.
584 *
585 * Note that the Linux kernel is fully capable of entering an interrupt
586 * handler that it never exits, for example when doing upcalls to
587 * user mode! This code assumes that the idle loop never does upcalls to
588 * user mode. If your architecture does do upcalls from the idle loop (or
589 * does anything else that results in unbalanced calls to the irq_enter()
590 * and irq_exit() functions), RCU will give you what you deserve, good
591 * and hard. But very infrequently and irreproducibly.
592 *
593 * Use things like work queues to work around this limitation.
594 *
595 * You have been warned.
596 */
597void rcu_irq_enter(void)
598{
599 unsigned long flags;
600 struct rcu_dynticks *rdtp;
601 long long oldval;
602
603 local_irq_save(flags);
c9d4b0af 604 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
605 oldval = rdtp->dynticks_nesting;
606 rdtp->dynticks_nesting++;
607 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 608 if (oldval)
f7f7bac9 609 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 610 else
cb349ca9 611 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 612 rcu_sysidle_exit(rdtp, 1);
64db4cff 613 local_irq_restore(flags);
64db4cff
PM
614}
615
616/**
617 * rcu_nmi_enter - inform RCU of entry to NMI context
618 *
619 * If the CPU was idle with dynamic ticks active, and there is no
620 * irq handler running, this updates rdtp->dynticks_nmi to let the
621 * RCU grace-period handling know that the CPU is active.
622 */
623void rcu_nmi_enter(void)
624{
c9d4b0af 625 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 626
23b5c8fa
PM
627 if (rdtp->dynticks_nmi_nesting == 0 &&
628 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 629 return;
23b5c8fa
PM
630 rdtp->dynticks_nmi_nesting++;
631 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
632 atomic_inc(&rdtp->dynticks);
633 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
634 smp_mb__after_atomic_inc(); /* See above. */
635 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
636}
637
638/**
639 * rcu_nmi_exit - inform RCU of exit from NMI context
640 *
641 * If the CPU was idle with dynamic ticks active, and there is no
642 * irq handler running, this updates rdtp->dynticks_nmi to let the
643 * RCU grace-period handling know that the CPU is no longer active.
644 */
645void rcu_nmi_exit(void)
646{
c9d4b0af 647 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 648
23b5c8fa
PM
649 if (rdtp->dynticks_nmi_nesting == 0 ||
650 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 651 return;
23b5c8fa
PM
652 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
653 smp_mb__before_atomic_inc(); /* See above. */
654 atomic_inc(&rdtp->dynticks);
655 smp_mb__after_atomic_inc(); /* Force delay to next write. */
656 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
657}
658
659/**
5c173eb8
PM
660 * __rcu_is_watching - are RCU read-side critical sections safe?
661 *
662 * Return true if RCU is watching the running CPU, which means that
663 * this CPU can safely enter RCU read-side critical sections. Unlike
664 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
665 * least disabled preemption.
666 */
9418fb20 667bool notrace __rcu_is_watching(void)
5c173eb8
PM
668{
669 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
670}
671
672/**
673 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 674 *
9b2e4f18 675 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 676 * or NMI handler, return true.
64db4cff 677 */
9418fb20 678bool notrace rcu_is_watching(void)
64db4cff 679{
34240697
PM
680 int ret;
681
682 preempt_disable();
5c173eb8 683 ret = __rcu_is_watching();
34240697
PM
684 preempt_enable();
685 return ret;
64db4cff 686}
5c173eb8 687EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 688
62fde6ed 689#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
690
691/*
692 * Is the current CPU online? Disable preemption to avoid false positives
693 * that could otherwise happen due to the current CPU number being sampled,
694 * this task being preempted, its old CPU being taken offline, resuming
695 * on some other CPU, then determining that its old CPU is now offline.
696 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
697 * the check for rcu_scheduler_fully_active. Note also that it is OK
698 * for a CPU coming online to use RCU for one jiffy prior to marking itself
699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
700 * offline to continue to use RCU for one jiffy after marking itself
701 * offline in the cpu_online_mask. This leniency is necessary given the
702 * non-atomic nature of the online and offline processing, for example,
703 * the fact that a CPU enters the scheduler after completing the CPU_DYING
704 * notifiers.
705 *
706 * This is also why RCU internally marks CPUs online during the
707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
708 *
709 * Disable checking if in an NMI handler because we cannot safely report
710 * errors from NMI handlers anyway.
711 */
712bool rcu_lockdep_current_cpu_online(void)
713{
2036d94a
PM
714 struct rcu_data *rdp;
715 struct rcu_node *rnp;
c0d6d01b
PM
716 bool ret;
717
718 if (in_nmi())
719 return 1;
720 preempt_disable();
c9d4b0af 721 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
722 rnp = rdp->mynode;
723 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
724 !rcu_scheduler_fully_active;
725 preempt_enable();
726 return ret;
727}
728EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
729
62fde6ed 730#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 731
64db4cff 732/**
9b2e4f18 733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 734 *
9b2e4f18
PM
735 * If the current CPU is idle or running at a first-level (not nested)
736 * interrupt from idle, return true. The caller must have at least
737 * disabled preemption.
64db4cff 738 */
62e3cb14 739static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 740{
c9d4b0af 741 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
742}
743
64db4cff
PM
744/*
745 * Snapshot the specified CPU's dynticks counter so that we can later
746 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 747 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 748 */
217af2a2
PM
749static int dyntick_save_progress_counter(struct rcu_data *rdp,
750 bool *isidle, unsigned long *maxj)
64db4cff 751{
23b5c8fa 752 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 753 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 754 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
755}
756
6193c76a
PM
757/*
758 * This function really isn't for public consumption, but RCU is special in
759 * that context switches can allow the state machine to make progress.
760 */
761extern void resched_cpu(int cpu);
762
64db4cff
PM
763/*
764 * Return true if the specified CPU has passed through a quiescent
765 * state by virtue of being in or having passed through an dynticks
766 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 767 * for this same CPU, or by virtue of having been offline.
64db4cff 768 */
217af2a2
PM
769static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
770 bool *isidle, unsigned long *maxj)
64db4cff 771{
7eb4f455
PM
772 unsigned int curr;
773 unsigned int snap;
64db4cff 774
7eb4f455
PM
775 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
776 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
777
778 /*
779 * If the CPU passed through or entered a dynticks idle phase with
780 * no active irq/NMI handlers, then we can safely pretend that the CPU
781 * already acknowledged the request to pass through a quiescent
782 * state. Either way, that CPU cannot possibly be in an RCU
783 * read-side critical section that started before the beginning
784 * of the current RCU grace period.
785 */
7eb4f455 786 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 787 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
788 rdp->dynticks_fqs++;
789 return 1;
790 }
791
a82dcc76
PM
792 /*
793 * Check for the CPU being offline, but only if the grace period
794 * is old enough. We don't need to worry about the CPU changing
795 * state: If we see it offline even once, it has been through a
796 * quiescent state.
797 *
798 * The reason for insisting that the grace period be at least
799 * one jiffy old is that CPUs that are not quite online and that
800 * have just gone offline can still execute RCU read-side critical
801 * sections.
802 */
803 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
804 return 0; /* Grace period is not old enough. */
805 barrier();
806 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 807 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
808 rdp->offline_fqs++;
809 return 1;
810 }
65d798f0
PM
811
812 /*
813 * There is a possibility that a CPU in adaptive-ticks state
814 * might run in the kernel with the scheduling-clock tick disabled
815 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
816 * force the CPU to restart the scheduling-clock tick in this
817 * CPU is in this state.
818 */
819 rcu_kick_nohz_cpu(rdp->cpu);
820
6193c76a
PM
821 /*
822 * Alternatively, the CPU might be running in the kernel
823 * for an extended period of time without a quiescent state.
824 * Attempt to force the CPU through the scheduler to gain the
825 * needed quiescent state, but only if the grace period has gone
826 * on for an uncommonly long time. If there are many stuck CPUs,
827 * we will beat on the first one until it gets unstuck, then move
828 * to the next. Only do this for the primary flavor of RCU.
829 */
830 if (rdp->rsp == rcu_state &&
831 ULONG_CMP_GE(ACCESS_ONCE(jiffies), rdp->rsp->jiffies_resched)) {
832 rdp->rsp->jiffies_resched += 5;
833 resched_cpu(rdp->cpu);
834 }
835
a82dcc76 836 return 0;
64db4cff
PM
837}
838
64db4cff
PM
839static void record_gp_stall_check_time(struct rcu_state *rsp)
840{
26cdfedf 841 unsigned long j = ACCESS_ONCE(jiffies);
6193c76a 842 unsigned long j1;
26cdfedf
PM
843
844 rsp->gp_start = j;
845 smp_wmb(); /* Record start time before stall time. */
6193c76a
PM
846 j1 = rcu_jiffies_till_stall_check();
847 rsp->jiffies_stall = j + j1;
848 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
849}
850
b637a328
PM
851/*
852 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
853 * for architectures that do not implement trigger_all_cpu_backtrace().
854 * The NMI-triggered stack traces are more accurate because they are
855 * printed by the target CPU.
856 */
857static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
858{
859 int cpu;
860 unsigned long flags;
861 struct rcu_node *rnp;
862
863 rcu_for_each_leaf_node(rsp, rnp) {
864 raw_spin_lock_irqsave(&rnp->lock, flags);
865 if (rnp->qsmask != 0) {
866 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
867 if (rnp->qsmask & (1UL << cpu))
868 dump_cpu_task(rnp->grplo + cpu);
869 }
870 raw_spin_unlock_irqrestore(&rnp->lock, flags);
871 }
872}
873
64db4cff
PM
874static void print_other_cpu_stall(struct rcu_state *rsp)
875{
876 int cpu;
877 long delta;
878 unsigned long flags;
285fe294 879 int ndetected = 0;
64db4cff 880 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 881 long totqlen = 0;
64db4cff
PM
882
883 /* Only let one CPU complain about others per time interval. */
884
1304afb2 885 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 886 delta = jiffies - rsp->jiffies_stall;
fc2219d4 887 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 888 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
889 return;
890 }
6bfc09e2 891 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 892 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 893
8cdd32a9
PM
894 /*
895 * OK, time to rat on our buddy...
896 * See Documentation/RCU/stallwarn.txt for info on how to debug
897 * RCU CPU stall warnings.
898 */
d7f3e207 899 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 900 rsp->name);
a858af28 901 print_cpu_stall_info_begin();
a0b6c9a7 902 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 903 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 904 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
905 if (rnp->qsmask != 0) {
906 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
907 if (rnp->qsmask & (1UL << cpu)) {
908 print_cpu_stall_info(rsp,
909 rnp->grplo + cpu);
910 ndetected++;
911 }
912 }
3acd9eb3 913 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 914 }
a858af28
PM
915
916 /*
917 * Now rat on any tasks that got kicked up to the root rcu_node
918 * due to CPU offlining.
919 */
920 rnp = rcu_get_root(rsp);
921 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 922 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
923 raw_spin_unlock_irqrestore(&rnp->lock, flags);
924
925 print_cpu_stall_info_end();
53bb857c
PM
926 for_each_possible_cpu(cpu)
927 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
928 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 929 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 930 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 931 if (ndetected == 0)
d7f3e207 932 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 933 else if (!trigger_all_cpu_backtrace())
b637a328 934 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 935
4cdfc175 936 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
937
938 rcu_print_detail_task_stall(rsp);
939
4cdfc175 940 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
941}
942
b021fe3e
PZ
943/*
944 * This function really isn't for public consumption, but RCU is special in
945 * that context switches can allow the state machine to make progress.
946 */
947extern void resched_cpu(int cpu);
948
64db4cff
PM
949static void print_cpu_stall(struct rcu_state *rsp)
950{
53bb857c 951 int cpu;
64db4cff
PM
952 unsigned long flags;
953 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 954 long totqlen = 0;
64db4cff 955
8cdd32a9
PM
956 /*
957 * OK, time to rat on ourselves...
958 * See Documentation/RCU/stallwarn.txt for info on how to debug
959 * RCU CPU stall warnings.
960 */
d7f3e207 961 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
962 print_cpu_stall_info_begin();
963 print_cpu_stall_info(rsp, smp_processor_id());
964 print_cpu_stall_info_end();
53bb857c
PM
965 for_each_possible_cpu(cpu)
966 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
967 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
968 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
969 if (!trigger_all_cpu_backtrace())
970 dump_stack();
c1dc0b9c 971
1304afb2 972 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 973 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 974 rsp->jiffies_stall = jiffies +
6bfc09e2 975 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 977
b021fe3e
PZ
978 /*
979 * Attempt to revive the RCU machinery by forcing a context switch.
980 *
981 * A context switch would normally allow the RCU state machine to make
982 * progress and it could be we're stuck in kernel space without context
983 * switches for an entirely unreasonable amount of time.
984 */
985 resched_cpu(smp_processor_id());
64db4cff
PM
986}
987
988static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
989{
26cdfedf
PM
990 unsigned long completed;
991 unsigned long gpnum;
992 unsigned long gps;
bad6e139
PM
993 unsigned long j;
994 unsigned long js;
64db4cff
PM
995 struct rcu_node *rnp;
996
26cdfedf 997 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 998 return;
bad6e139 999 j = ACCESS_ONCE(jiffies);
26cdfedf
PM
1000
1001 /*
1002 * Lots of memory barriers to reject false positives.
1003 *
1004 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1005 * then rsp->gp_start, and finally rsp->completed. These values
1006 * are updated in the opposite order with memory barriers (or
1007 * equivalent) during grace-period initialization and cleanup.
1008 * Now, a false positive can occur if we get an new value of
1009 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1010 * the memory barriers, the only way that this can happen is if one
1011 * grace period ends and another starts between these two fetches.
1012 * Detect this by comparing rsp->completed with the previous fetch
1013 * from rsp->gpnum.
1014 *
1015 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1016 * and rsp->gp_start suffice to forestall false positives.
1017 */
1018 gpnum = ACCESS_ONCE(rsp->gpnum);
1019 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1020 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1021 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1022 gps = ACCESS_ONCE(rsp->gp_start);
1023 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1024 completed = ACCESS_ONCE(rsp->completed);
1025 if (ULONG_CMP_GE(completed, gpnum) ||
1026 ULONG_CMP_LT(j, js) ||
1027 ULONG_CMP_GE(gps, js))
1028 return; /* No stall or GP completed since entering function. */
64db4cff 1029 rnp = rdp->mynode;
c96ea7cf 1030 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1031 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1032
1033 /* We haven't checked in, so go dump stack. */
1034 print_cpu_stall(rsp);
1035
bad6e139
PM
1036 } else if (rcu_gp_in_progress(rsp) &&
1037 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1038
bad6e139 1039 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1040 print_other_cpu_stall(rsp);
1041 }
1042}
1043
53d84e00
PM
1044/**
1045 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1046 *
1047 * Set the stall-warning timeout way off into the future, thus preventing
1048 * any RCU CPU stall-warning messages from appearing in the current set of
1049 * RCU grace periods.
1050 *
1051 * The caller must disable hard irqs.
1052 */
1053void rcu_cpu_stall_reset(void)
1054{
6ce75a23
PM
1055 struct rcu_state *rsp;
1056
1057 for_each_rcu_flavor(rsp)
1058 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1059}
1060
3f5d3ea6
PM
1061/*
1062 * Initialize the specified rcu_data structure's callback list to empty.
1063 */
1064static void init_callback_list(struct rcu_data *rdp)
1065{
1066 int i;
1067
34ed6246
PM
1068 if (init_nocb_callback_list(rdp))
1069 return;
3f5d3ea6
PM
1070 rdp->nxtlist = NULL;
1071 for (i = 0; i < RCU_NEXT_SIZE; i++)
1072 rdp->nxttail[i] = &rdp->nxtlist;
1073}
1074
dc35c893
PM
1075/*
1076 * Determine the value that ->completed will have at the end of the
1077 * next subsequent grace period. This is used to tag callbacks so that
1078 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1079 * been dyntick-idle for an extended period with callbacks under the
1080 * influence of RCU_FAST_NO_HZ.
1081 *
1082 * The caller must hold rnp->lock with interrupts disabled.
1083 */
1084static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1085 struct rcu_node *rnp)
1086{
1087 /*
1088 * If RCU is idle, we just wait for the next grace period.
1089 * But we can only be sure that RCU is idle if we are looking
1090 * at the root rcu_node structure -- otherwise, a new grace
1091 * period might have started, but just not yet gotten around
1092 * to initializing the current non-root rcu_node structure.
1093 */
1094 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1095 return rnp->completed + 1;
1096
1097 /*
1098 * Otherwise, wait for a possible partial grace period and
1099 * then the subsequent full grace period.
1100 */
1101 return rnp->completed + 2;
1102}
1103
0446be48
PM
1104/*
1105 * Trace-event helper function for rcu_start_future_gp() and
1106 * rcu_nocb_wait_gp().
1107 */
1108static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1109 unsigned long c, const char *s)
0446be48
PM
1110{
1111 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1112 rnp->completed, c, rnp->level,
1113 rnp->grplo, rnp->grphi, s);
1114}
1115
1116/*
1117 * Start some future grace period, as needed to handle newly arrived
1118 * callbacks. The required future grace periods are recorded in each
1119 * rcu_node structure's ->need_future_gp field.
1120 *
1121 * The caller must hold the specified rcu_node structure's ->lock.
1122 */
1123static unsigned long __maybe_unused
1124rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1125{
1126 unsigned long c;
1127 int i;
1128 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1129
1130 /*
1131 * Pick up grace-period number for new callbacks. If this
1132 * grace period is already marked as needed, return to the caller.
1133 */
1134 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1135 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1136 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1137 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1138 return c;
1139 }
1140
1141 /*
1142 * If either this rcu_node structure or the root rcu_node structure
1143 * believe that a grace period is in progress, then we must wait
1144 * for the one following, which is in "c". Because our request
1145 * will be noticed at the end of the current grace period, we don't
1146 * need to explicitly start one.
1147 */
1148 if (rnp->gpnum != rnp->completed ||
1149 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1150 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1151 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1152 return c;
1153 }
1154
1155 /*
1156 * There might be no grace period in progress. If we don't already
1157 * hold it, acquire the root rcu_node structure's lock in order to
1158 * start one (if needed).
1159 */
1160 if (rnp != rnp_root)
1161 raw_spin_lock(&rnp_root->lock);
1162
1163 /*
1164 * Get a new grace-period number. If there really is no grace
1165 * period in progress, it will be smaller than the one we obtained
1166 * earlier. Adjust callbacks as needed. Note that even no-CBs
1167 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1168 */
1169 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1170 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1171 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1172 rdp->nxtcompleted[i] = c;
1173
1174 /*
1175 * If the needed for the required grace period is already
1176 * recorded, trace and leave.
1177 */
1178 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1179 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1180 goto unlock_out;
1181 }
1182
1183 /* Record the need for the future grace period. */
1184 rnp_root->need_future_gp[c & 0x1]++;
1185
1186 /* If a grace period is not already in progress, start one. */
1187 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1188 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1189 } else {
f7f7bac9 1190 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1191 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1192 }
1193unlock_out:
1194 if (rnp != rnp_root)
1195 raw_spin_unlock(&rnp_root->lock);
1196 return c;
1197}
1198
1199/*
1200 * Clean up any old requests for the just-ended grace period. Also return
1201 * whether any additional grace periods have been requested. Also invoke
1202 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1203 * waiting for this grace period to complete.
1204 */
1205static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1206{
1207 int c = rnp->completed;
1208 int needmore;
1209 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1210
1211 rcu_nocb_gp_cleanup(rsp, rnp);
1212 rnp->need_future_gp[c & 0x1] = 0;
1213 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1214 trace_rcu_future_gp(rnp, rdp, c,
1215 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1216 return needmore;
1217}
1218
dc35c893
PM
1219/*
1220 * If there is room, assign a ->completed number to any callbacks on
1221 * this CPU that have not already been assigned. Also accelerate any
1222 * callbacks that were previously assigned a ->completed number that has
1223 * since proven to be too conservative, which can happen if callbacks get
1224 * assigned a ->completed number while RCU is idle, but with reference to
1225 * a non-root rcu_node structure. This function is idempotent, so it does
1226 * not hurt to call it repeatedly.
1227 *
1228 * The caller must hold rnp->lock with interrupts disabled.
1229 */
1230static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1231 struct rcu_data *rdp)
1232{
1233 unsigned long c;
1234 int i;
1235
1236 /* If the CPU has no callbacks, nothing to do. */
1237 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1238 return;
1239
1240 /*
1241 * Starting from the sublist containing the callbacks most
1242 * recently assigned a ->completed number and working down, find the
1243 * first sublist that is not assignable to an upcoming grace period.
1244 * Such a sublist has something in it (first two tests) and has
1245 * a ->completed number assigned that will complete sooner than
1246 * the ->completed number for newly arrived callbacks (last test).
1247 *
1248 * The key point is that any later sublist can be assigned the
1249 * same ->completed number as the newly arrived callbacks, which
1250 * means that the callbacks in any of these later sublist can be
1251 * grouped into a single sublist, whether or not they have already
1252 * been assigned a ->completed number.
1253 */
1254 c = rcu_cbs_completed(rsp, rnp);
1255 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1256 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1257 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1258 break;
1259
1260 /*
1261 * If there are no sublist for unassigned callbacks, leave.
1262 * At the same time, advance "i" one sublist, so that "i" will
1263 * index into the sublist where all the remaining callbacks should
1264 * be grouped into.
1265 */
1266 if (++i >= RCU_NEXT_TAIL)
1267 return;
1268
1269 /*
1270 * Assign all subsequent callbacks' ->completed number to the next
1271 * full grace period and group them all in the sublist initially
1272 * indexed by "i".
1273 */
1274 for (; i <= RCU_NEXT_TAIL; i++) {
1275 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1276 rdp->nxtcompleted[i] = c;
1277 }
910ee45d
PM
1278 /* Record any needed additional grace periods. */
1279 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1280
1281 /* Trace depending on how much we were able to accelerate. */
1282 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1283 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1284 else
f7f7bac9 1285 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1286}
1287
1288/*
1289 * Move any callbacks whose grace period has completed to the
1290 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1291 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1292 * sublist. This function is idempotent, so it does not hurt to
1293 * invoke it repeatedly. As long as it is not invoked -too- often...
1294 *
1295 * The caller must hold rnp->lock with interrupts disabled.
1296 */
1297static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1298 struct rcu_data *rdp)
1299{
1300 int i, j;
1301
1302 /* If the CPU has no callbacks, nothing to do. */
1303 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1304 return;
1305
1306 /*
1307 * Find all callbacks whose ->completed numbers indicate that they
1308 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1309 */
1310 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1311 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1312 break;
1313 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1314 }
1315 /* Clean up any sublist tail pointers that were misordered above. */
1316 for (j = RCU_WAIT_TAIL; j < i; j++)
1317 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1318
1319 /* Copy down callbacks to fill in empty sublists. */
1320 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1321 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1322 break;
1323 rdp->nxttail[j] = rdp->nxttail[i];
1324 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1325 }
1326
1327 /* Classify any remaining callbacks. */
1328 rcu_accelerate_cbs(rsp, rnp, rdp);
1329}
1330
d09b62df 1331/*
ba9fbe95
PM
1332 * Update CPU-local rcu_data state to record the beginnings and ends of
1333 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1334 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1335 */
ba9fbe95 1336static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1337{
ba9fbe95 1338 /* Handle the ends of any preceding grace periods first. */
dc35c893 1339 if (rdp->completed == rnp->completed) {
d09b62df 1340
ba9fbe95 1341 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1342 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1343
dc35c893
PM
1344 } else {
1345
1346 /* Advance callbacks. */
1347 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1348
1349 /* Remember that we saw this grace-period completion. */
1350 rdp->completed = rnp->completed;
f7f7bac9 1351 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1352 }
398ebe60 1353
6eaef633
PM
1354 if (rdp->gpnum != rnp->gpnum) {
1355 /*
1356 * If the current grace period is waiting for this CPU,
1357 * set up to detect a quiescent state, otherwise don't
1358 * go looking for one.
1359 */
1360 rdp->gpnum = rnp->gpnum;
f7f7bac9 1361 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1362 rdp->passed_quiesce = 0;
1363 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1364 zero_cpu_stall_ticks(rdp);
1365 }
1366}
1367
d34ea322 1368static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1369{
1370 unsigned long flags;
1371 struct rcu_node *rnp;
1372
1373 local_irq_save(flags);
1374 rnp = rdp->mynode;
d34ea322
PM
1375 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1376 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1377 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1378 local_irq_restore(flags);
1379 return;
1380 }
d34ea322 1381 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1382 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1383}
1384
b3dbec76 1385/*
f7be8209 1386 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1387 */
7fdefc10 1388static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1389{
1390 struct rcu_data *rdp;
7fdefc10 1391 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1392
eb75767b 1393 rcu_bind_gp_kthread();
7fdefc10 1394 raw_spin_lock_irq(&rnp->lock);
f7be8209
PM
1395 if (rsp->gp_flags == 0) {
1396 /* Spurious wakeup, tell caller to go back to sleep. */
1397 raw_spin_unlock_irq(&rnp->lock);
1398 return 0;
1399 }
4cdfc175 1400 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1401
f7be8209
PM
1402 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1403 /*
1404 * Grace period already in progress, don't start another.
1405 * Not supposed to be able to happen.
1406 */
7fdefc10
PM
1407 raw_spin_unlock_irq(&rnp->lock);
1408 return 0;
1409 }
1410
7fdefc10 1411 /* Advance to a new grace period and initialize state. */
26cdfedf
PM
1412 record_gp_stall_check_time(rsp);
1413 smp_wmb(); /* Record GP times before starting GP. */
7fdefc10 1414 rsp->gpnum++;
f7f7bac9 1415 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1416 raw_spin_unlock_irq(&rnp->lock);
1417
1418 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1419 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1420
1421 /*
1422 * Set the quiescent-state-needed bits in all the rcu_node
1423 * structures for all currently online CPUs in breadth-first order,
1424 * starting from the root rcu_node structure, relying on the layout
1425 * of the tree within the rsp->node[] array. Note that other CPUs
1426 * will access only the leaves of the hierarchy, thus seeing that no
1427 * grace period is in progress, at least until the corresponding
1428 * leaf node has been initialized. In addition, we have excluded
1429 * CPU-hotplug operations.
1430 *
1431 * The grace period cannot complete until the initialization
1432 * process finishes, because this kthread handles both.
1433 */
1434 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1435 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1436 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1437 rcu_preempt_check_blocked_tasks(rnp);
1438 rnp->qsmask = rnp->qsmaskinit;
0446be48 1439 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1440 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1441 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1442 if (rnp == rdp->mynode)
ce3d9c03 1443 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1444 rcu_preempt_boost_start_gp(rnp);
1445 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1446 rnp->level, rnp->grplo,
1447 rnp->grphi, rnp->qsmask);
1448 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1449#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1450 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1451 system_state == SYSTEM_RUNNING)
971394f3 1452 udelay(200);
661a85dc 1453#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1454 cond_resched();
1455 }
b3dbec76 1456
a4fbe35a 1457 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1458 return 1;
1459}
b3dbec76 1460
4cdfc175
PM
1461/*
1462 * Do one round of quiescent-state forcing.
1463 */
01896f7e 1464static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1465{
1466 int fqs_state = fqs_state_in;
217af2a2
PM
1467 bool isidle = false;
1468 unsigned long maxj;
4cdfc175
PM
1469 struct rcu_node *rnp = rcu_get_root(rsp);
1470
1471 rsp->n_force_qs++;
1472 if (fqs_state == RCU_SAVE_DYNTICK) {
1473 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1474 if (is_sysidle_rcu_state(rsp)) {
1475 isidle = 1;
1476 maxj = jiffies - ULONG_MAX / 4;
1477 }
217af2a2
PM
1478 force_qs_rnp(rsp, dyntick_save_progress_counter,
1479 &isidle, &maxj);
0edd1b17 1480 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1481 fqs_state = RCU_FORCE_QS;
1482 } else {
1483 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1484 isidle = 0;
217af2a2 1485 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1486 }
1487 /* Clear flag to prevent immediate re-entry. */
1488 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1489 raw_spin_lock_irq(&rnp->lock);
1490 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1491 raw_spin_unlock_irq(&rnp->lock);
1492 }
1493 return fqs_state;
1494}
1495
7fdefc10
PM
1496/*
1497 * Clean up after the old grace period.
1498 */
4cdfc175 1499static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1500{
1501 unsigned long gp_duration;
dae6e64d 1502 int nocb = 0;
7fdefc10
PM
1503 struct rcu_data *rdp;
1504 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1505
7fdefc10
PM
1506 raw_spin_lock_irq(&rnp->lock);
1507 gp_duration = jiffies - rsp->gp_start;
1508 if (gp_duration > rsp->gp_max)
1509 rsp->gp_max = gp_duration;
b3dbec76 1510
7fdefc10
PM
1511 /*
1512 * We know the grace period is complete, but to everyone else
1513 * it appears to still be ongoing. But it is also the case
1514 * that to everyone else it looks like there is nothing that
1515 * they can do to advance the grace period. It is therefore
1516 * safe for us to drop the lock in order to mark the grace
1517 * period as completed in all of the rcu_node structures.
7fdefc10 1518 */
5d4b8659 1519 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1520
5d4b8659
PM
1521 /*
1522 * Propagate new ->completed value to rcu_node structures so
1523 * that other CPUs don't have to wait until the start of the next
1524 * grace period to process their callbacks. This also avoids
1525 * some nasty RCU grace-period initialization races by forcing
1526 * the end of the current grace period to be completely recorded in
1527 * all of the rcu_node structures before the beginning of the next
1528 * grace period is recorded in any of the rcu_node structures.
1529 */
1530 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1531 raw_spin_lock_irq(&rnp->lock);
0446be48 1532 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1533 rdp = this_cpu_ptr(rsp->rda);
1534 if (rnp == rdp->mynode)
470716fc 1535 __note_gp_changes(rsp, rnp, rdp);
78e4bc34 1536 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1537 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1538 raw_spin_unlock_irq(&rnp->lock);
1539 cond_resched();
7fdefc10 1540 }
5d4b8659
PM
1541 rnp = rcu_get_root(rsp);
1542 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1543 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1544
1545 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1546 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1547 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1548 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1549 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
bb311ecc 1550 if (cpu_needs_another_gp(rsp, rdp)) {
b3f2d025 1551 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1552 trace_rcu_grace_period(rsp->name,
1553 ACCESS_ONCE(rsp->gpnum),
1554 TPS("newreq"));
1555 }
7fdefc10 1556 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1557}
1558
1559/*
1560 * Body of kthread that handles grace periods.
1561 */
1562static int __noreturn rcu_gp_kthread(void *arg)
1563{
4cdfc175 1564 int fqs_state;
88d6df61 1565 int gf;
d40011f6 1566 unsigned long j;
4cdfc175 1567 int ret;
7fdefc10
PM
1568 struct rcu_state *rsp = arg;
1569 struct rcu_node *rnp = rcu_get_root(rsp);
1570
1571 for (;;) {
1572
1573 /* Handle grace-period start. */
1574 for (;;) {
63c4db78
PM
1575 trace_rcu_grace_period(rsp->name,
1576 ACCESS_ONCE(rsp->gpnum),
1577 TPS("reqwait"));
4cdfc175 1578 wait_event_interruptible(rsp->gp_wq,
591c6d17 1579 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1580 RCU_GP_FLAG_INIT);
78e4bc34 1581 /* Locking provides needed memory barrier. */
f7be8209 1582 if (rcu_gp_init(rsp))
7fdefc10
PM
1583 break;
1584 cond_resched();
1585 flush_signals(current);
63c4db78
PM
1586 trace_rcu_grace_period(rsp->name,
1587 ACCESS_ONCE(rsp->gpnum),
1588 TPS("reqwaitsig"));
7fdefc10 1589 }
cabc49c1 1590
4cdfc175
PM
1591 /* Handle quiescent-state forcing. */
1592 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1593 j = jiffies_till_first_fqs;
1594 if (j > HZ) {
1595 j = HZ;
1596 jiffies_till_first_fqs = HZ;
1597 }
88d6df61 1598 ret = 0;
cabc49c1 1599 for (;;) {
88d6df61
PM
1600 if (!ret)
1601 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1602 trace_rcu_grace_period(rsp->name,
1603 ACCESS_ONCE(rsp->gpnum),
1604 TPS("fqswait"));
4cdfc175 1605 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1606 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1607 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1608 (!ACCESS_ONCE(rnp->qsmask) &&
1609 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1610 j);
78e4bc34 1611 /* Locking provides needed memory barriers. */
4cdfc175 1612 /* If grace period done, leave loop. */
cabc49c1 1613 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1614 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1615 break;
4cdfc175 1616 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1617 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1618 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1619 trace_rcu_grace_period(rsp->name,
1620 ACCESS_ONCE(rsp->gpnum),
1621 TPS("fqsstart"));
4cdfc175 1622 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1623 trace_rcu_grace_period(rsp->name,
1624 ACCESS_ONCE(rsp->gpnum),
1625 TPS("fqsend"));
4cdfc175
PM
1626 cond_resched();
1627 } else {
1628 /* Deal with stray signal. */
1629 cond_resched();
1630 flush_signals(current);
63c4db78
PM
1631 trace_rcu_grace_period(rsp->name,
1632 ACCESS_ONCE(rsp->gpnum),
1633 TPS("fqswaitsig"));
4cdfc175 1634 }
d40011f6
PM
1635 j = jiffies_till_next_fqs;
1636 if (j > HZ) {
1637 j = HZ;
1638 jiffies_till_next_fqs = HZ;
1639 } else if (j < 1) {
1640 j = 1;
1641 jiffies_till_next_fqs = 1;
1642 }
cabc49c1 1643 }
4cdfc175
PM
1644
1645 /* Handle grace-period end. */
1646 rcu_gp_cleanup(rsp);
b3dbec76 1647 }
b3dbec76
PM
1648}
1649
016a8d5b
SR
1650static void rsp_wakeup(struct irq_work *work)
1651{
1652 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1653
1654 /* Wake up rcu_gp_kthread() to start the grace period. */
1655 wake_up(&rsp->gp_wq);
1656}
1657
64db4cff
PM
1658/*
1659 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1660 * in preparation for detecting the next grace period. The caller must hold
b8462084 1661 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1662 *
1663 * Note that it is legal for a dying CPU (which is marked as offline) to
1664 * invoke this function. This can happen when the dying CPU reports its
1665 * quiescent state.
64db4cff
PM
1666 */
1667static void
910ee45d
PM
1668rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1669 struct rcu_data *rdp)
64db4cff 1670{
b8462084 1671 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1672 /*
b3dbec76 1673 * Either we have not yet spawned the grace-period
62da1921
PM
1674 * task, this CPU does not need another grace period,
1675 * or a grace period is already in progress.
b3dbec76 1676 * Either way, don't start a new grace period.
afe24b12 1677 */
afe24b12
PM
1678 return;
1679 }
4cdfc175 1680 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1681 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1682 TPS("newreq"));
62da1921 1683
016a8d5b
SR
1684 /*
1685 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1686 * could cause possible deadlocks with the rq->lock. Defer
1687 * the wakeup to interrupt context. And don't bother waking
1688 * up the running kthread.
016a8d5b 1689 */
1eafd31c
PM
1690 if (current != rsp->gp_kthread)
1691 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1692}
1693
910ee45d
PM
1694/*
1695 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1696 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1697 * is invoked indirectly from rcu_advance_cbs(), which would result in
1698 * endless recursion -- or would do so if it wasn't for the self-deadlock
1699 * that is encountered beforehand.
1700 */
1701static void
1702rcu_start_gp(struct rcu_state *rsp)
1703{
1704 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1705 struct rcu_node *rnp = rcu_get_root(rsp);
1706
1707 /*
1708 * If there is no grace period in progress right now, any
1709 * callbacks we have up to this point will be satisfied by the
1710 * next grace period. Also, advancing the callbacks reduces the
1711 * probability of false positives from cpu_needs_another_gp()
1712 * resulting in pointless grace periods. So, advance callbacks
1713 * then start the grace period!
1714 */
1715 rcu_advance_cbs(rsp, rnp, rdp);
1716 rcu_start_gp_advanced(rsp, rnp, rdp);
1717}
1718
f41d911f 1719/*
d3f6bad3
PM
1720 * Report a full set of quiescent states to the specified rcu_state
1721 * data structure. This involves cleaning up after the prior grace
1722 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1723 * if one is needed. Note that the caller must hold rnp->lock, which
1724 * is released before return.
f41d911f 1725 */
d3f6bad3 1726static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1727 __releases(rcu_get_root(rsp)->lock)
f41d911f 1728{
fc2219d4 1729 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1730 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1731 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1732}
1733
64db4cff 1734/*
d3f6bad3
PM
1735 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1736 * Allows quiescent states for a group of CPUs to be reported at one go
1737 * to the specified rcu_node structure, though all the CPUs in the group
1738 * must be represented by the same rcu_node structure (which need not be
1739 * a leaf rcu_node structure, though it often will be). That structure's
1740 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1741 */
1742static void
d3f6bad3
PM
1743rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1744 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1745 __releases(rnp->lock)
1746{
28ecd580
PM
1747 struct rcu_node *rnp_c;
1748
64db4cff
PM
1749 /* Walk up the rcu_node hierarchy. */
1750 for (;;) {
1751 if (!(rnp->qsmask & mask)) {
1752
1753 /* Our bit has already been cleared, so done. */
1304afb2 1754 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1755 return;
1756 }
1757 rnp->qsmask &= ~mask;
d4c08f2a
PM
1758 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1759 mask, rnp->qsmask, rnp->level,
1760 rnp->grplo, rnp->grphi,
1761 !!rnp->gp_tasks);
27f4d280 1762 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1763
1764 /* Other bits still set at this level, so done. */
1304afb2 1765 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1766 return;
1767 }
1768 mask = rnp->grpmask;
1769 if (rnp->parent == NULL) {
1770
1771 /* No more levels. Exit loop holding root lock. */
1772
1773 break;
1774 }
1304afb2 1775 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1776 rnp_c = rnp;
64db4cff 1777 rnp = rnp->parent;
1304afb2 1778 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1779 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1780 }
1781
1782 /*
1783 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1784 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1785 * to clean up and start the next grace period if one is needed.
64db4cff 1786 */
d3f6bad3 1787 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1788}
1789
1790/*
d3f6bad3
PM
1791 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1792 * structure. This must be either called from the specified CPU, or
1793 * called when the specified CPU is known to be offline (and when it is
1794 * also known that no other CPU is concurrently trying to help the offline
1795 * CPU). The lastcomp argument is used to make sure we are still in the
1796 * grace period of interest. We don't want to end the current grace period
1797 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1798 */
1799static void
d7d6a11e 1800rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1801{
1802 unsigned long flags;
1803 unsigned long mask;
1804 struct rcu_node *rnp;
1805
1806 rnp = rdp->mynode;
1304afb2 1807 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1808 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1809 rnp->completed == rnp->gpnum) {
64db4cff
PM
1810
1811 /*
e4cc1f22
PM
1812 * The grace period in which this quiescent state was
1813 * recorded has ended, so don't report it upwards.
1814 * We will instead need a new quiescent state that lies
1815 * within the current grace period.
64db4cff 1816 */
e4cc1f22 1817 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1818 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1819 return;
1820 }
1821 mask = rdp->grpmask;
1822 if ((rnp->qsmask & mask) == 0) {
1304afb2 1823 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1824 } else {
1825 rdp->qs_pending = 0;
1826
1827 /*
1828 * This GP can't end until cpu checks in, so all of our
1829 * callbacks can be processed during the next GP.
1830 */
dc35c893 1831 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1832
d3f6bad3 1833 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1834 }
1835}
1836
1837/*
1838 * Check to see if there is a new grace period of which this CPU
1839 * is not yet aware, and if so, set up local rcu_data state for it.
1840 * Otherwise, see if this CPU has just passed through its first
1841 * quiescent state for this grace period, and record that fact if so.
1842 */
1843static void
1844rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1845{
05eb552b
PM
1846 /* Check for grace-period ends and beginnings. */
1847 note_gp_changes(rsp, rdp);
64db4cff
PM
1848
1849 /*
1850 * Does this CPU still need to do its part for current grace period?
1851 * If no, return and let the other CPUs do their part as well.
1852 */
1853 if (!rdp->qs_pending)
1854 return;
1855
1856 /*
1857 * Was there a quiescent state since the beginning of the grace
1858 * period? If no, then exit and wait for the next call.
1859 */
e4cc1f22 1860 if (!rdp->passed_quiesce)
64db4cff
PM
1861 return;
1862
d3f6bad3
PM
1863 /*
1864 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1865 * judge of that).
1866 */
d7d6a11e 1867 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1868}
1869
1870#ifdef CONFIG_HOTPLUG_CPU
1871
e74f4c45 1872/*
b1420f1c
PM
1873 * Send the specified CPU's RCU callbacks to the orphanage. The
1874 * specified CPU must be offline, and the caller must hold the
7b2e6011 1875 * ->orphan_lock.
e74f4c45 1876 */
b1420f1c
PM
1877static void
1878rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1879 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1880{
3fbfbf7a 1881 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1882 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1883 return;
1884
b1420f1c
PM
1885 /*
1886 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1887 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1888 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1889 */
a50c3af9 1890 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1891 rsp->qlen_lazy += rdp->qlen_lazy;
1892 rsp->qlen += rdp->qlen;
1893 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1894 rdp->qlen_lazy = 0;
1d1fb395 1895 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1896 }
1897
1898 /*
b1420f1c
PM
1899 * Next, move those callbacks still needing a grace period to
1900 * the orphanage, where some other CPU will pick them up.
1901 * Some of the callbacks might have gone partway through a grace
1902 * period, but that is too bad. They get to start over because we
1903 * cannot assume that grace periods are synchronized across CPUs.
1904 * We don't bother updating the ->nxttail[] array yet, instead
1905 * we just reset the whole thing later on.
a50c3af9 1906 */
b1420f1c
PM
1907 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1908 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1909 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1910 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1911 }
1912
1913 /*
b1420f1c
PM
1914 * Then move the ready-to-invoke callbacks to the orphanage,
1915 * where some other CPU will pick them up. These will not be
1916 * required to pass though another grace period: They are done.
a50c3af9 1917 */
e5601400 1918 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1919 *rsp->orphan_donetail = rdp->nxtlist;
1920 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1921 }
e74f4c45 1922
b1420f1c 1923 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1924 init_callback_list(rdp);
b1420f1c
PM
1925}
1926
1927/*
1928 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1929 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1930 */
1931static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1932{
1933 int i;
1934 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1935
3fbfbf7a
PM
1936 /* No-CBs CPUs are handled specially. */
1937 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1938 return;
1939
b1420f1c
PM
1940 /* Do the accounting first. */
1941 rdp->qlen_lazy += rsp->qlen_lazy;
1942 rdp->qlen += rsp->qlen;
1943 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1944 if (rsp->qlen_lazy != rsp->qlen)
1945 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1946 rsp->qlen_lazy = 0;
1947 rsp->qlen = 0;
1948
1949 /*
1950 * We do not need a memory barrier here because the only way we
1951 * can get here if there is an rcu_barrier() in flight is if
1952 * we are the task doing the rcu_barrier().
1953 */
1954
1955 /* First adopt the ready-to-invoke callbacks. */
1956 if (rsp->orphan_donelist != NULL) {
1957 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1958 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1959 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1960 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1961 rdp->nxttail[i] = rsp->orphan_donetail;
1962 rsp->orphan_donelist = NULL;
1963 rsp->orphan_donetail = &rsp->orphan_donelist;
1964 }
1965
1966 /* And then adopt the callbacks that still need a grace period. */
1967 if (rsp->orphan_nxtlist != NULL) {
1968 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1969 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1970 rsp->orphan_nxtlist = NULL;
1971 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1972 }
1973}
1974
1975/*
1976 * Trace the fact that this CPU is going offline.
1977 */
1978static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1979{
1980 RCU_TRACE(unsigned long mask);
1981 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1982 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1983
1984 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1985 trace_rcu_grace_period(rsp->name,
1986 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1987 TPS("cpuofl"));
64db4cff
PM
1988}
1989
1990/*
e5601400 1991 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1992 * this fact from process context. Do the remainder of the cleanup,
1993 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1994 * adopting them. There can only be one CPU hotplug operation at a time,
1995 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1996 */
e5601400 1997static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1998{
2036d94a
PM
1999 unsigned long flags;
2000 unsigned long mask;
2001 int need_report = 0;
e5601400 2002 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2003 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2004
2036d94a 2005 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2006 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2007
b1420f1c 2008 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2009
2010 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2011 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2012 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2013
b1420f1c
PM
2014 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2015 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2016 rcu_adopt_orphan_cbs(rsp);
2017
2036d94a
PM
2018 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2019 mask = rdp->grpmask; /* rnp->grplo is constant. */
2020 do {
2021 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2022 rnp->qsmaskinit &= ~mask;
2023 if (rnp->qsmaskinit != 0) {
2024 if (rnp != rdp->mynode)
2025 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2026 break;
2027 }
2028 if (rnp == rdp->mynode)
2029 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2030 else
2031 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2032 mask = rnp->grpmask;
2033 rnp = rnp->parent;
2034 } while (rnp != NULL);
2035
2036 /*
2037 * We still hold the leaf rcu_node structure lock here, and
2038 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2039 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2040 * held leads to deadlock.
2041 */
7b2e6011 2042 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2043 rnp = rdp->mynode;
2044 if (need_report & RCU_OFL_TASKS_NORM_GP)
2045 rcu_report_unblock_qs_rnp(rnp, flags);
2046 else
2047 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2048 if (need_report & RCU_OFL_TASKS_EXP_GP)
2049 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2050 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2051 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2052 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2053 init_callback_list(rdp);
2054 /* Disallow further callbacks on this CPU. */
2055 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2056 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2057}
2058
2059#else /* #ifdef CONFIG_HOTPLUG_CPU */
2060
e5601400 2061static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2062{
2063}
2064
e5601400 2065static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2066{
2067}
2068
2069#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2070
2071/*
2072 * Invoke any RCU callbacks that have made it to the end of their grace
2073 * period. Thottle as specified by rdp->blimit.
2074 */
37c72e56 2075static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2076{
2077 unsigned long flags;
2078 struct rcu_head *next, *list, **tail;
878d7439
ED
2079 long bl, count, count_lazy;
2080 int i;
64db4cff 2081
dc35c893 2082 /* If no callbacks are ready, just return. */
29c00b4a 2083 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2084 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2085 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2086 need_resched(), is_idle_task(current),
2087 rcu_is_callbacks_kthread());
64db4cff 2088 return;
29c00b4a 2089 }
64db4cff
PM
2090
2091 /*
2092 * Extract the list of ready callbacks, disabling to prevent
2093 * races with call_rcu() from interrupt handlers.
2094 */
2095 local_irq_save(flags);
8146c4e2 2096 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2097 bl = rdp->blimit;
486e2593 2098 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2099 list = rdp->nxtlist;
2100 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2101 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2102 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2103 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2104 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2105 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2106 local_irq_restore(flags);
2107
2108 /* Invoke callbacks. */
486e2593 2109 count = count_lazy = 0;
64db4cff
PM
2110 while (list) {
2111 next = list->next;
2112 prefetch(next);
551d55a9 2113 debug_rcu_head_unqueue(list);
486e2593
PM
2114 if (__rcu_reclaim(rsp->name, list))
2115 count_lazy++;
64db4cff 2116 list = next;
dff1672d
PM
2117 /* Stop only if limit reached and CPU has something to do. */
2118 if (++count >= bl &&
2119 (need_resched() ||
2120 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2121 break;
2122 }
2123
2124 local_irq_save(flags);
4968c300
PM
2125 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2126 is_idle_task(current),
2127 rcu_is_callbacks_kthread());
64db4cff
PM
2128
2129 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2130 if (list != NULL) {
2131 *tail = rdp->nxtlist;
2132 rdp->nxtlist = list;
b41772ab
PM
2133 for (i = 0; i < RCU_NEXT_SIZE; i++)
2134 if (&rdp->nxtlist == rdp->nxttail[i])
2135 rdp->nxttail[i] = tail;
64db4cff
PM
2136 else
2137 break;
2138 }
b1420f1c
PM
2139 smp_mb(); /* List handling before counting for rcu_barrier(). */
2140 rdp->qlen_lazy -= count_lazy;
1d1fb395 2141 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2142 rdp->n_cbs_invoked += count;
64db4cff
PM
2143
2144 /* Reinstate batch limit if we have worked down the excess. */
2145 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2146 rdp->blimit = blimit;
2147
37c72e56
PM
2148 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2149 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2150 rdp->qlen_last_fqs_check = 0;
2151 rdp->n_force_qs_snap = rsp->n_force_qs;
2152 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2153 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2154 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2155
64db4cff
PM
2156 local_irq_restore(flags);
2157
e0f23060 2158 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2159 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2160 invoke_rcu_core();
64db4cff
PM
2161}
2162
2163/*
2164 * Check to see if this CPU is in a non-context-switch quiescent state
2165 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2166 * Also schedule RCU core processing.
64db4cff 2167 *
9b2e4f18 2168 * This function must be called from hardirq context. It is normally
64db4cff
PM
2169 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2170 * false, there is no point in invoking rcu_check_callbacks().
2171 */
2172void rcu_check_callbacks(int cpu, int user)
2173{
f7f7bac9 2174 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2175 increment_cpu_stall_ticks();
9b2e4f18 2176 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2177
2178 /*
2179 * Get here if this CPU took its interrupt from user
2180 * mode or from the idle loop, and if this is not a
2181 * nested interrupt. In this case, the CPU is in
d6714c22 2182 * a quiescent state, so note it.
64db4cff
PM
2183 *
2184 * No memory barrier is required here because both
d6714c22
PM
2185 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2186 * variables that other CPUs neither access nor modify,
2187 * at least not while the corresponding CPU is online.
64db4cff
PM
2188 */
2189
d6714c22
PM
2190 rcu_sched_qs(cpu);
2191 rcu_bh_qs(cpu);
64db4cff
PM
2192
2193 } else if (!in_softirq()) {
2194
2195 /*
2196 * Get here if this CPU did not take its interrupt from
2197 * softirq, in other words, if it is not interrupting
2198 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2199 * critical section, so note it.
64db4cff
PM
2200 */
2201
d6714c22 2202 rcu_bh_qs(cpu);
64db4cff 2203 }
f41d911f 2204 rcu_preempt_check_callbacks(cpu);
d21670ac 2205 if (rcu_pending(cpu))
a46e0899 2206 invoke_rcu_core();
f7f7bac9 2207 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2208}
2209
64db4cff
PM
2210/*
2211 * Scan the leaf rcu_node structures, processing dyntick state for any that
2212 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2213 * Also initiate boosting for any threads blocked on the root rcu_node.
2214 *
ee47eb9f 2215 * The caller must have suppressed start of new grace periods.
64db4cff 2216 */
217af2a2
PM
2217static void force_qs_rnp(struct rcu_state *rsp,
2218 int (*f)(struct rcu_data *rsp, bool *isidle,
2219 unsigned long *maxj),
2220 bool *isidle, unsigned long *maxj)
64db4cff
PM
2221{
2222 unsigned long bit;
2223 int cpu;
2224 unsigned long flags;
2225 unsigned long mask;
a0b6c9a7 2226 struct rcu_node *rnp;
64db4cff 2227
a0b6c9a7 2228 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2229 cond_resched();
64db4cff 2230 mask = 0;
1304afb2 2231 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2232 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2233 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2234 return;
64db4cff 2235 }
a0b6c9a7 2236 if (rnp->qsmask == 0) {
1217ed1b 2237 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2238 continue;
2239 }
a0b6c9a7 2240 cpu = rnp->grplo;
64db4cff 2241 bit = 1;
a0b6c9a7 2242 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2243 if ((rnp->qsmask & bit) != 0) {
2244 if ((rnp->qsmaskinit & bit) != 0)
2245 *isidle = 0;
2246 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2247 mask |= bit;
2248 }
64db4cff 2249 }
45f014c5 2250 if (mask != 0) {
64db4cff 2251
d3f6bad3
PM
2252 /* rcu_report_qs_rnp() releases rnp->lock. */
2253 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2254 continue;
2255 }
1304afb2 2256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2257 }
27f4d280 2258 rnp = rcu_get_root(rsp);
1217ed1b
PM
2259 if (rnp->qsmask == 0) {
2260 raw_spin_lock_irqsave(&rnp->lock, flags);
2261 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2262 }
64db4cff
PM
2263}
2264
2265/*
2266 * Force quiescent states on reluctant CPUs, and also detect which
2267 * CPUs are in dyntick-idle mode.
2268 */
4cdfc175 2269static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2270{
2271 unsigned long flags;
394f2769
PM
2272 bool ret;
2273 struct rcu_node *rnp;
2274 struct rcu_node *rnp_old = NULL;
2275
2276 /* Funnel through hierarchy to reduce memory contention. */
2277 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2278 for (; rnp != NULL; rnp = rnp->parent) {
2279 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2280 !raw_spin_trylock(&rnp->fqslock);
2281 if (rnp_old != NULL)
2282 raw_spin_unlock(&rnp_old->fqslock);
2283 if (ret) {
2284 rsp->n_force_qs_lh++;
2285 return;
2286 }
2287 rnp_old = rnp;
2288 }
2289 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2290
394f2769
PM
2291 /* Reached the root of the rcu_node tree, acquire lock. */
2292 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2293 raw_spin_unlock(&rnp_old->fqslock);
2294 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2295 rsp->n_force_qs_lh++;
2296 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2297 return; /* Someone beat us to it. */
46a1e34e 2298 }
4cdfc175 2299 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2300 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2301 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2302}
2303
64db4cff 2304/*
e0f23060
PM
2305 * This does the RCU core processing work for the specified rcu_state
2306 * and rcu_data structures. This may be called only from the CPU to
2307 * whom the rdp belongs.
64db4cff
PM
2308 */
2309static void
1bca8cf1 2310__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2311{
2312 unsigned long flags;
1bca8cf1 2313 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2314
2e597558
PM
2315 WARN_ON_ONCE(rdp->beenonline == 0);
2316
64db4cff
PM
2317 /* Update RCU state based on any recent quiescent states. */
2318 rcu_check_quiescent_state(rsp, rdp);
2319
2320 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2321 local_irq_save(flags);
64db4cff 2322 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2323 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2324 rcu_start_gp(rsp);
2325 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2326 } else {
2327 local_irq_restore(flags);
64db4cff
PM
2328 }
2329
2330 /* If there are callbacks ready, invoke them. */
09223371 2331 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2332 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2333}
2334
64db4cff 2335/*
e0f23060 2336 * Do RCU core processing for the current CPU.
64db4cff 2337 */
09223371 2338static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2339{
6ce75a23
PM
2340 struct rcu_state *rsp;
2341
bfa00b4c
PM
2342 if (cpu_is_offline(smp_processor_id()))
2343 return;
f7f7bac9 2344 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2345 for_each_rcu_flavor(rsp)
2346 __rcu_process_callbacks(rsp);
f7f7bac9 2347 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2348}
2349
a26ac245 2350/*
e0f23060
PM
2351 * Schedule RCU callback invocation. If the specified type of RCU
2352 * does not support RCU priority boosting, just do a direct call,
2353 * otherwise wake up the per-CPU kernel kthread. Note that because we
2354 * are running on the current CPU with interrupts disabled, the
2355 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2356 */
a46e0899 2357static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2358{
b0d30417
PM
2359 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2360 return;
a46e0899
PM
2361 if (likely(!rsp->boost)) {
2362 rcu_do_batch(rsp, rdp);
a26ac245
PM
2363 return;
2364 }
a46e0899 2365 invoke_rcu_callbacks_kthread();
a26ac245
PM
2366}
2367
a46e0899 2368static void invoke_rcu_core(void)
09223371 2369{
b0f74036
PM
2370 if (cpu_online(smp_processor_id()))
2371 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2372}
2373
29154c57
PM
2374/*
2375 * Handle any core-RCU processing required by a call_rcu() invocation.
2376 */
2377static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2378 struct rcu_head *head, unsigned long flags)
64db4cff 2379{
62fde6ed
PM
2380 /*
2381 * If called from an extended quiescent state, invoke the RCU
2382 * core in order to force a re-evaluation of RCU's idleness.
2383 */
5c173eb8 2384 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2385 invoke_rcu_core();
2386
a16b7a69 2387 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2388 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2389 return;
64db4cff 2390
37c72e56
PM
2391 /*
2392 * Force the grace period if too many callbacks or too long waiting.
2393 * Enforce hysteresis, and don't invoke force_quiescent_state()
2394 * if some other CPU has recently done so. Also, don't bother
2395 * invoking force_quiescent_state() if the newly enqueued callback
2396 * is the only one waiting for a grace period to complete.
2397 */
2655d57e 2398 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2399
2400 /* Are we ignoring a completed grace period? */
470716fc 2401 note_gp_changes(rsp, rdp);
b52573d2
PM
2402
2403 /* Start a new grace period if one not already started. */
2404 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2405 struct rcu_node *rnp_root = rcu_get_root(rsp);
2406
b8462084
PM
2407 raw_spin_lock(&rnp_root->lock);
2408 rcu_start_gp(rsp);
2409 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2410 } else {
2411 /* Give the grace period a kick. */
2412 rdp->blimit = LONG_MAX;
2413 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2414 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2415 force_quiescent_state(rsp);
b52573d2
PM
2416 rdp->n_force_qs_snap = rsp->n_force_qs;
2417 rdp->qlen_last_fqs_check = rdp->qlen;
2418 }
4cdfc175 2419 }
29154c57
PM
2420}
2421
ae150184
PM
2422/*
2423 * RCU callback function to leak a callback.
2424 */
2425static void rcu_leak_callback(struct rcu_head *rhp)
2426{
2427}
2428
3fbfbf7a
PM
2429/*
2430 * Helper function for call_rcu() and friends. The cpu argument will
2431 * normally be -1, indicating "currently running CPU". It may specify
2432 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2433 * is expected to specify a CPU.
2434 */
64db4cff
PM
2435static void
2436__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2437 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2438{
2439 unsigned long flags;
2440 struct rcu_data *rdp;
2441
0bb7b59d 2442 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2443 if (debug_rcu_head_queue(head)) {
2444 /* Probable double call_rcu(), so leak the callback. */
2445 ACCESS_ONCE(head->func) = rcu_leak_callback;
2446 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2447 return;
2448 }
64db4cff
PM
2449 head->func = func;
2450 head->next = NULL;
2451
64db4cff
PM
2452 /*
2453 * Opportunistically note grace-period endings and beginnings.
2454 * Note that we might see a beginning right after we see an
2455 * end, but never vice versa, since this CPU has to pass through
2456 * a quiescent state betweentimes.
2457 */
2458 local_irq_save(flags);
394f99a9 2459 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2460
2461 /* Add the callback to our list. */
3fbfbf7a
PM
2462 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2463 int offline;
2464
2465 if (cpu != -1)
2466 rdp = per_cpu_ptr(rsp->rda, cpu);
2467 offline = !__call_rcu_nocb(rdp, head, lazy);
2468 WARN_ON_ONCE(offline);
0d8ee37e 2469 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2470 local_irq_restore(flags);
2471 return;
2472 }
29154c57 2473 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2474 if (lazy)
2475 rdp->qlen_lazy++;
c57afe80
PM
2476 else
2477 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2478 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2479 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2480 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2481
d4c08f2a
PM
2482 if (__is_kfree_rcu_offset((unsigned long)func))
2483 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2484 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2485 else
486e2593 2486 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2487
29154c57
PM
2488 /* Go handle any RCU core processing required. */
2489 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2490 local_irq_restore(flags);
2491}
2492
2493/*
d6714c22 2494 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2495 */
d6714c22 2496void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2497{
3fbfbf7a 2498 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2499}
d6714c22 2500EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2501
2502/*
486e2593 2503 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2504 */
2505void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2506{
3fbfbf7a 2507 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2508}
2509EXPORT_SYMBOL_GPL(call_rcu_bh);
2510
6d813391
PM
2511/*
2512 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2513 * any blocking grace-period wait automatically implies a grace period
2514 * if there is only one CPU online at any point time during execution
2515 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2516 * occasionally incorrectly indicate that there are multiple CPUs online
2517 * when there was in fact only one the whole time, as this just adds
2518 * some overhead: RCU still operates correctly.
6d813391
PM
2519 */
2520static inline int rcu_blocking_is_gp(void)
2521{
95f0c1de
PM
2522 int ret;
2523
6d813391 2524 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2525 preempt_disable();
2526 ret = num_online_cpus() <= 1;
2527 preempt_enable();
2528 return ret;
6d813391
PM
2529}
2530
6ebb237b
PM
2531/**
2532 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2533 *
2534 * Control will return to the caller some time after a full rcu-sched
2535 * grace period has elapsed, in other words after all currently executing
2536 * rcu-sched read-side critical sections have completed. These read-side
2537 * critical sections are delimited by rcu_read_lock_sched() and
2538 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2539 * local_irq_disable(), and so on may be used in place of
2540 * rcu_read_lock_sched().
2541 *
2542 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2543 * non-threaded hardware-interrupt handlers, in progress on entry will
2544 * have completed before this primitive returns. However, this does not
2545 * guarantee that softirq handlers will have completed, since in some
2546 * kernels, these handlers can run in process context, and can block.
2547 *
2548 * Note that this guarantee implies further memory-ordering guarantees.
2549 * On systems with more than one CPU, when synchronize_sched() returns,
2550 * each CPU is guaranteed to have executed a full memory barrier since the
2551 * end of its last RCU-sched read-side critical section whose beginning
2552 * preceded the call to synchronize_sched(). In addition, each CPU having
2553 * an RCU read-side critical section that extends beyond the return from
2554 * synchronize_sched() is guaranteed to have executed a full memory barrier
2555 * after the beginning of synchronize_sched() and before the beginning of
2556 * that RCU read-side critical section. Note that these guarantees include
2557 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2558 * that are executing in the kernel.
2559 *
2560 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2561 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2562 * to have executed a full memory barrier during the execution of
2563 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2564 * again only if the system has more than one CPU).
6ebb237b
PM
2565 *
2566 * This primitive provides the guarantees made by the (now removed)
2567 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2568 * guarantees that rcu_read_lock() sections will have completed.
2569 * In "classic RCU", these two guarantees happen to be one and
2570 * the same, but can differ in realtime RCU implementations.
2571 */
2572void synchronize_sched(void)
2573{
fe15d706
PM
2574 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2575 !lock_is_held(&rcu_lock_map) &&
2576 !lock_is_held(&rcu_sched_lock_map),
2577 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2578 if (rcu_blocking_is_gp())
2579 return;
3705b88d
AM
2580 if (rcu_expedited)
2581 synchronize_sched_expedited();
2582 else
2583 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2584}
2585EXPORT_SYMBOL_GPL(synchronize_sched);
2586
2587/**
2588 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2589 *
2590 * Control will return to the caller some time after a full rcu_bh grace
2591 * period has elapsed, in other words after all currently executing rcu_bh
2592 * read-side critical sections have completed. RCU read-side critical
2593 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2594 * and may be nested.
f0a0e6f2
PM
2595 *
2596 * See the description of synchronize_sched() for more detailed information
2597 * on memory ordering guarantees.
6ebb237b
PM
2598 */
2599void synchronize_rcu_bh(void)
2600{
fe15d706
PM
2601 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2602 !lock_is_held(&rcu_lock_map) &&
2603 !lock_is_held(&rcu_sched_lock_map),
2604 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2605 if (rcu_blocking_is_gp())
2606 return;
3705b88d
AM
2607 if (rcu_expedited)
2608 synchronize_rcu_bh_expedited();
2609 else
2610 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2611}
2612EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2613
3d3b7db0
PM
2614static int synchronize_sched_expedited_cpu_stop(void *data)
2615{
2616 /*
2617 * There must be a full memory barrier on each affected CPU
2618 * between the time that try_stop_cpus() is called and the
2619 * time that it returns.
2620 *
2621 * In the current initial implementation of cpu_stop, the
2622 * above condition is already met when the control reaches
2623 * this point and the following smp_mb() is not strictly
2624 * necessary. Do smp_mb() anyway for documentation and
2625 * robustness against future implementation changes.
2626 */
2627 smp_mb(); /* See above comment block. */
2628 return 0;
2629}
2630
236fefaf
PM
2631/**
2632 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2633 *
2634 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2635 * approach to force the grace period to end quickly. This consumes
2636 * significant time on all CPUs and is unfriendly to real-time workloads,
2637 * so is thus not recommended for any sort of common-case code. In fact,
2638 * if you are using synchronize_sched_expedited() in a loop, please
2639 * restructure your code to batch your updates, and then use a single
2640 * synchronize_sched() instead.
3d3b7db0 2641 *
236fefaf
PM
2642 * Note that it is illegal to call this function while holding any lock
2643 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2644 * to call this function from a CPU-hotplug notifier. Failing to observe
2645 * these restriction will result in deadlock.
3d3b7db0
PM
2646 *
2647 * This implementation can be thought of as an application of ticket
2648 * locking to RCU, with sync_sched_expedited_started and
2649 * sync_sched_expedited_done taking on the roles of the halves
2650 * of the ticket-lock word. Each task atomically increments
2651 * sync_sched_expedited_started upon entry, snapshotting the old value,
2652 * then attempts to stop all the CPUs. If this succeeds, then each
2653 * CPU will have executed a context switch, resulting in an RCU-sched
2654 * grace period. We are then done, so we use atomic_cmpxchg() to
2655 * update sync_sched_expedited_done to match our snapshot -- but
2656 * only if someone else has not already advanced past our snapshot.
2657 *
2658 * On the other hand, if try_stop_cpus() fails, we check the value
2659 * of sync_sched_expedited_done. If it has advanced past our
2660 * initial snapshot, then someone else must have forced a grace period
2661 * some time after we took our snapshot. In this case, our work is
2662 * done for us, and we can simply return. Otherwise, we try again,
2663 * but keep our initial snapshot for purposes of checking for someone
2664 * doing our work for us.
2665 *
2666 * If we fail too many times in a row, we fall back to synchronize_sched().
2667 */
2668void synchronize_sched_expedited(void)
2669{
1924bcb0
PM
2670 long firstsnap, s, snap;
2671 int trycount = 0;
40694d66 2672 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2673
1924bcb0
PM
2674 /*
2675 * If we are in danger of counter wrap, just do synchronize_sched().
2676 * By allowing sync_sched_expedited_started to advance no more than
2677 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2678 * that more than 3.5 billion CPUs would be required to force a
2679 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2680 * course be required on a 64-bit system.
2681 */
40694d66
PM
2682 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2683 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2684 ULONG_MAX / 8)) {
2685 synchronize_sched();
a30489c5 2686 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2687 return;
2688 }
3d3b7db0 2689
1924bcb0
PM
2690 /*
2691 * Take a ticket. Note that atomic_inc_return() implies a
2692 * full memory barrier.
2693 */
40694d66 2694 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2695 firstsnap = snap;
3d3b7db0 2696 get_online_cpus();
1cc85961 2697 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2698
2699 /*
2700 * Each pass through the following loop attempts to force a
2701 * context switch on each CPU.
2702 */
2703 while (try_stop_cpus(cpu_online_mask,
2704 synchronize_sched_expedited_cpu_stop,
2705 NULL) == -EAGAIN) {
2706 put_online_cpus();
a30489c5 2707 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2708
1924bcb0 2709 /* Check to see if someone else did our work for us. */
40694d66 2710 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2711 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2712 /* ensure test happens before caller kfree */
2713 smp_mb__before_atomic_inc(); /* ^^^ */
2714 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2715 return;
2716 }
3d3b7db0
PM
2717
2718 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2719 if (trycount++ < 10) {
3d3b7db0 2720 udelay(trycount * num_online_cpus());
c701d5d9 2721 } else {
3705b88d 2722 wait_rcu_gp(call_rcu_sched);
a30489c5 2723 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2724 return;
2725 }
2726
1924bcb0 2727 /* Recheck to see if someone else did our work for us. */
40694d66 2728 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2729 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2730 /* ensure test happens before caller kfree */
2731 smp_mb__before_atomic_inc(); /* ^^^ */
2732 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2733 return;
2734 }
2735
2736 /*
2737 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2738 * callers to piggyback on our grace period. We retry
2739 * after they started, so our grace period works for them,
2740 * and they started after our first try, so their grace
2741 * period works for us.
3d3b7db0
PM
2742 */
2743 get_online_cpus();
40694d66 2744 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2745 smp_mb(); /* ensure read is before try_stop_cpus(). */
2746 }
a30489c5 2747 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2748
2749 /*
2750 * Everyone up to our most recent fetch is covered by our grace
2751 * period. Update the counter, but only if our work is still
2752 * relevant -- which it won't be if someone who started later
1924bcb0 2753 * than we did already did their update.
3d3b7db0
PM
2754 */
2755 do {
a30489c5 2756 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2757 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2758 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2759 /* ensure test happens before caller kfree */
2760 smp_mb__before_atomic_inc(); /* ^^^ */
2761 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2762 break;
2763 }
40694d66 2764 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2765 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2766
2767 put_online_cpus();
2768}
2769EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2770
64db4cff
PM
2771/*
2772 * Check to see if there is any immediate RCU-related work to be done
2773 * by the current CPU, for the specified type of RCU, returning 1 if so.
2774 * The checks are in order of increasing expense: checks that can be
2775 * carried out against CPU-local state are performed first. However,
2776 * we must check for CPU stalls first, else we might not get a chance.
2777 */
2778static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2779{
2f51f988
PM
2780 struct rcu_node *rnp = rdp->mynode;
2781
64db4cff
PM
2782 rdp->n_rcu_pending++;
2783
2784 /* Check for CPU stalls, if enabled. */
2785 check_cpu_stall(rsp, rdp);
2786
2787 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2788 if (rcu_scheduler_fully_active &&
2789 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2790 rdp->n_rp_qs_pending++;
e4cc1f22 2791 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2792 rdp->n_rp_report_qs++;
64db4cff 2793 return 1;
7ba5c840 2794 }
64db4cff
PM
2795
2796 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2797 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2798 rdp->n_rp_cb_ready++;
64db4cff 2799 return 1;
7ba5c840 2800 }
64db4cff
PM
2801
2802 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2803 if (cpu_needs_another_gp(rsp, rdp)) {
2804 rdp->n_rp_cpu_needs_gp++;
64db4cff 2805 return 1;
7ba5c840 2806 }
64db4cff
PM
2807
2808 /* Has another RCU grace period completed? */
2f51f988 2809 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2810 rdp->n_rp_gp_completed++;
64db4cff 2811 return 1;
7ba5c840 2812 }
64db4cff
PM
2813
2814 /* Has a new RCU grace period started? */
2f51f988 2815 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2816 rdp->n_rp_gp_started++;
64db4cff 2817 return 1;
7ba5c840 2818 }
64db4cff 2819
64db4cff 2820 /* nothing to do */
7ba5c840 2821 rdp->n_rp_need_nothing++;
64db4cff
PM
2822 return 0;
2823}
2824
2825/*
2826 * Check to see if there is any immediate RCU-related work to be done
2827 * by the current CPU, returning 1 if so. This function is part of the
2828 * RCU implementation; it is -not- an exported member of the RCU API.
2829 */
a157229c 2830static int rcu_pending(int cpu)
64db4cff 2831{
6ce75a23
PM
2832 struct rcu_state *rsp;
2833
2834 for_each_rcu_flavor(rsp)
2835 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2836 return 1;
2837 return 0;
64db4cff
PM
2838}
2839
2840/*
c0f4dfd4
PM
2841 * Return true if the specified CPU has any callback. If all_lazy is
2842 * non-NULL, store an indication of whether all callbacks are lazy.
2843 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2844 */
c0f4dfd4 2845static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2846{
c0f4dfd4
PM
2847 bool al = true;
2848 bool hc = false;
2849 struct rcu_data *rdp;
6ce75a23
PM
2850 struct rcu_state *rsp;
2851
c0f4dfd4
PM
2852 for_each_rcu_flavor(rsp) {
2853 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
2854 if (!rdp->nxtlist)
2855 continue;
2856 hc = true;
2857 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 2858 al = false;
69c8d28c
PM
2859 break;
2860 }
c0f4dfd4
PM
2861 }
2862 if (all_lazy)
2863 *all_lazy = al;
2864 return hc;
64db4cff
PM
2865}
2866
a83eff0a
PM
2867/*
2868 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2869 * the compiler is expected to optimize this away.
2870 */
e66c33d5 2871static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2872 int cpu, unsigned long done)
2873{
2874 trace_rcu_barrier(rsp->name, s, cpu,
2875 atomic_read(&rsp->barrier_cpu_count), done);
2876}
2877
b1420f1c
PM
2878/*
2879 * RCU callback function for _rcu_barrier(). If we are last, wake
2880 * up the task executing _rcu_barrier().
2881 */
24ebbca8 2882static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2883{
24ebbca8
PM
2884 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2885 struct rcu_state *rsp = rdp->rsp;
2886
a83eff0a
PM
2887 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2888 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2889 complete(&rsp->barrier_completion);
a83eff0a
PM
2890 } else {
2891 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2892 }
d0ec774c
PM
2893}
2894
2895/*
2896 * Called with preemption disabled, and from cross-cpu IRQ context.
2897 */
2898static void rcu_barrier_func(void *type)
2899{
037b64ed 2900 struct rcu_state *rsp = type;
06668efa 2901 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2902
a83eff0a 2903 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2904 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2905 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2906}
2907
d0ec774c
PM
2908/*
2909 * Orchestrate the specified type of RCU barrier, waiting for all
2910 * RCU callbacks of the specified type to complete.
2911 */
037b64ed 2912static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2913{
b1420f1c 2914 int cpu;
b1420f1c 2915 struct rcu_data *rdp;
cf3a9c48
PM
2916 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2917 unsigned long snap_done;
b1420f1c 2918
a83eff0a 2919 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2920
e74f4c45 2921 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2922 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2923
cf3a9c48
PM
2924 /*
2925 * Ensure that all prior references, including to ->n_barrier_done,
2926 * are ordered before the _rcu_barrier() machinery.
2927 */
2928 smp_mb(); /* See above block comment. */
2929
2930 /*
2931 * Recheck ->n_barrier_done to see if others did our work for us.
2932 * This means checking ->n_barrier_done for an even-to-odd-to-even
2933 * transition. The "if" expression below therefore rounds the old
2934 * value up to the next even number and adds two before comparing.
2935 */
458fb381 2936 snap_done = rsp->n_barrier_done;
a83eff0a 2937 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
2938
2939 /*
2940 * If the value in snap is odd, we needed to wait for the current
2941 * rcu_barrier() to complete, then wait for the next one, in other
2942 * words, we need the value of snap_done to be three larger than
2943 * the value of snap. On the other hand, if the value in snap is
2944 * even, we only had to wait for the next rcu_barrier() to complete,
2945 * in other words, we need the value of snap_done to be only two
2946 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2947 * this for us (thank you, Linus!).
2948 */
2949 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 2950 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2951 smp_mb(); /* caller's subsequent code after above check. */
2952 mutex_unlock(&rsp->barrier_mutex);
2953 return;
2954 }
2955
2956 /*
2957 * Increment ->n_barrier_done to avoid duplicate work. Use
2958 * ACCESS_ONCE() to prevent the compiler from speculating
2959 * the increment to precede the early-exit check.
2960 */
2961 ACCESS_ONCE(rsp->n_barrier_done)++;
2962 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2963 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2964 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2965
d0ec774c 2966 /*
b1420f1c
PM
2967 * Initialize the count to one rather than to zero in order to
2968 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2969 * (or preemption of this task). Exclude CPU-hotplug operations
2970 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2971 */
7db74df8 2972 init_completion(&rsp->barrier_completion);
24ebbca8 2973 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2974 get_online_cpus();
b1420f1c
PM
2975
2976 /*
1331e7a1
PM
2977 * Force each CPU with callbacks to register a new callback.
2978 * When that callback is invoked, we will know that all of the
2979 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2980 */
3fbfbf7a 2981 for_each_possible_cpu(cpu) {
d1e43fa5 2982 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2983 continue;
b1420f1c 2984 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2985 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2986 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2987 rsp->n_barrier_done);
2988 atomic_inc(&rsp->barrier_cpu_count);
2989 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2990 rsp, cpu, 0);
2991 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2992 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2993 rsp->n_barrier_done);
037b64ed 2994 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2995 } else {
a83eff0a
PM
2996 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2997 rsp->n_barrier_done);
b1420f1c
PM
2998 }
2999 }
1331e7a1 3000 put_online_cpus();
b1420f1c
PM
3001
3002 /*
3003 * Now that we have an rcu_barrier_callback() callback on each
3004 * CPU, and thus each counted, remove the initial count.
3005 */
24ebbca8 3006 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3007 complete(&rsp->barrier_completion);
b1420f1c 3008
cf3a9c48
PM
3009 /* Increment ->n_barrier_done to prevent duplicate work. */
3010 smp_mb(); /* Keep increment after above mechanism. */
3011 ACCESS_ONCE(rsp->n_barrier_done)++;
3012 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3013 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3014 smp_mb(); /* Keep increment before caller's subsequent code. */
3015
b1420f1c 3016 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3017 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3018
3019 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3020 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3021}
d0ec774c
PM
3022
3023/**
3024 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3025 */
3026void rcu_barrier_bh(void)
3027{
037b64ed 3028 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3029}
3030EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3031
3032/**
3033 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3034 */
3035void rcu_barrier_sched(void)
3036{
037b64ed 3037 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3038}
3039EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3040
64db4cff 3041/*
27569620 3042 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3043 */
27569620
PM
3044static void __init
3045rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3046{
3047 unsigned long flags;
394f99a9 3048 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3049 struct rcu_node *rnp = rcu_get_root(rsp);
3050
3051 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3052 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3053 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3054 init_callback_list(rdp);
486e2593 3055 rdp->qlen_lazy = 0;
1d1fb395 3056 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3057 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3058 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3059 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3060 rdp->cpu = cpu;
d4c08f2a 3061 rdp->rsp = rsp;
3fbfbf7a 3062 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3063 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3064}
3065
3066/*
3067 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3068 * offline event can be happening at a given time. Note also that we
3069 * can accept some slop in the rsp->completed access due to the fact
3070 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3071 */
49fb4c62 3072static void
6cc68793 3073rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
3074{
3075 unsigned long flags;
64db4cff 3076 unsigned long mask;
394f99a9 3077 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3078 struct rcu_node *rnp = rcu_get_root(rsp);
3079
a4fbe35a
PM
3080 /* Exclude new grace periods. */
3081 mutex_lock(&rsp->onoff_mutex);
3082
64db4cff 3083 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3084 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3085 rdp->beenonline = 1; /* We have now been online. */
6cc68793 3086 rdp->preemptible = preemptible;
37c72e56
PM
3087 rdp->qlen_last_fqs_check = 0;
3088 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3089 rdp->blimit = blimit;
0d8ee37e 3090 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3091 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3092 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3093 atomic_set(&rdp->dynticks->dynticks,
3094 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3095 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3096
64db4cff
PM
3097 /* Add CPU to rcu_node bitmasks. */
3098 rnp = rdp->mynode;
3099 mask = rdp->grpmask;
3100 do {
3101 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3102 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3103 rnp->qsmaskinit |= mask;
3104 mask = rnp->grpmask;
d09b62df 3105 if (rnp == rdp->mynode) {
06ae115a
PM
3106 /*
3107 * If there is a grace period in progress, we will
3108 * set up to wait for it next time we run the
3109 * RCU core code.
3110 */
3111 rdp->gpnum = rnp->completed;
d09b62df 3112 rdp->completed = rnp->completed;
06ae115a
PM
3113 rdp->passed_quiesce = 0;
3114 rdp->qs_pending = 0;
f7f7bac9 3115 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3116 }
1304afb2 3117 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3118 rnp = rnp->parent;
3119 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3120 local_irq_restore(flags);
64db4cff 3121
a4fbe35a 3122 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3123}
3124
49fb4c62 3125static void rcu_prepare_cpu(int cpu)
64db4cff 3126{
6ce75a23
PM
3127 struct rcu_state *rsp;
3128
3129 for_each_rcu_flavor(rsp)
3130 rcu_init_percpu_data(cpu, rsp,
3131 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3132}
3133
3134/*
f41d911f 3135 * Handle CPU online/offline notification events.
64db4cff 3136 */
49fb4c62 3137static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3138 unsigned long action, void *hcpu)
64db4cff
PM
3139{
3140 long cpu = (long)hcpu;
27f4d280 3141 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3142 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3143 struct rcu_state *rsp;
64db4cff 3144
f7f7bac9 3145 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3146 switch (action) {
3147 case CPU_UP_PREPARE:
3148 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3149 rcu_prepare_cpu(cpu);
3150 rcu_prepare_kthreads(cpu);
a26ac245
PM
3151 break;
3152 case CPU_ONLINE:
0f962a5e 3153 case CPU_DOWN_FAILED:
5d01bbd1 3154 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3155 break;
3156 case CPU_DOWN_PREPARE:
34ed6246 3157 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3158 break;
d0ec774c
PM
3159 case CPU_DYING:
3160 case CPU_DYING_FROZEN:
6ce75a23
PM
3161 for_each_rcu_flavor(rsp)
3162 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3163 break;
64db4cff
PM
3164 case CPU_DEAD:
3165 case CPU_DEAD_FROZEN:
3166 case CPU_UP_CANCELED:
3167 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3168 for_each_rcu_flavor(rsp)
3169 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3170 break;
3171 default:
3172 break;
3173 }
f7f7bac9 3174 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3175 return NOTIFY_OK;
64db4cff
PM
3176}
3177
d1d74d14
BP
3178static int rcu_pm_notify(struct notifier_block *self,
3179 unsigned long action, void *hcpu)
3180{
3181 switch (action) {
3182 case PM_HIBERNATION_PREPARE:
3183 case PM_SUSPEND_PREPARE:
3184 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3185 rcu_expedited = 1;
3186 break;
3187 case PM_POST_HIBERNATION:
3188 case PM_POST_SUSPEND:
3189 rcu_expedited = 0;
3190 break;
3191 default:
3192 break;
3193 }
3194 return NOTIFY_OK;
3195}
3196
b3dbec76
PM
3197/*
3198 * Spawn the kthread that handles this RCU flavor's grace periods.
3199 */
3200static int __init rcu_spawn_gp_kthread(void)
3201{
3202 unsigned long flags;
3203 struct rcu_node *rnp;
3204 struct rcu_state *rsp;
3205 struct task_struct *t;
3206
3207 for_each_rcu_flavor(rsp) {
f170168b 3208 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3209 BUG_ON(IS_ERR(t));
3210 rnp = rcu_get_root(rsp);
3211 raw_spin_lock_irqsave(&rnp->lock, flags);
3212 rsp->gp_kthread = t;
3213 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3214 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3215 }
3216 return 0;
3217}
3218early_initcall(rcu_spawn_gp_kthread);
3219
bbad9379
PM
3220/*
3221 * This function is invoked towards the end of the scheduler's initialization
3222 * process. Before this is called, the idle task might contain
3223 * RCU read-side critical sections (during which time, this idle
3224 * task is booting the system). After this function is called, the
3225 * idle tasks are prohibited from containing RCU read-side critical
3226 * sections. This function also enables RCU lockdep checking.
3227 */
3228void rcu_scheduler_starting(void)
3229{
3230 WARN_ON(num_online_cpus() != 1);
3231 WARN_ON(nr_context_switches() > 0);
3232 rcu_scheduler_active = 1;
3233}
3234
64db4cff
PM
3235/*
3236 * Compute the per-level fanout, either using the exact fanout specified
3237 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3238 */
3239#ifdef CONFIG_RCU_FANOUT_EXACT
3240static void __init rcu_init_levelspread(struct rcu_state *rsp)
3241{
3242 int i;
3243
f885b7f2 3244 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3245 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3246 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3247}
3248#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3249static void __init rcu_init_levelspread(struct rcu_state *rsp)
3250{
3251 int ccur;
3252 int cprv;
3253 int i;
3254
4dbd6bb3 3255 cprv = nr_cpu_ids;
f885b7f2 3256 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3257 ccur = rsp->levelcnt[i];
3258 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3259 cprv = ccur;
3260 }
3261}
3262#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3263
3264/*
3265 * Helper function for rcu_init() that initializes one rcu_state structure.
3266 */
394f99a9
LJ
3267static void __init rcu_init_one(struct rcu_state *rsp,
3268 struct rcu_data __percpu *rda)
64db4cff 3269{
394f2769
PM
3270 static char *buf[] = { "rcu_node_0",
3271 "rcu_node_1",
3272 "rcu_node_2",
3273 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3274 static char *fqs[] = { "rcu_node_fqs_0",
3275 "rcu_node_fqs_1",
3276 "rcu_node_fqs_2",
3277 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3278 int cpustride = 1;
3279 int i;
3280 int j;
3281 struct rcu_node *rnp;
3282
b6407e86
PM
3283 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3284
4930521a
PM
3285 /* Silence gcc 4.8 warning about array index out of range. */
3286 if (rcu_num_lvls > RCU_NUM_LVLS)
3287 panic("rcu_init_one: rcu_num_lvls overflow");
3288
64db4cff
PM
3289 /* Initialize the level-tracking arrays. */
3290
f885b7f2
PM
3291 for (i = 0; i < rcu_num_lvls; i++)
3292 rsp->levelcnt[i] = num_rcu_lvl[i];
3293 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3294 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3295 rcu_init_levelspread(rsp);
3296
3297 /* Initialize the elements themselves, starting from the leaves. */
3298
f885b7f2 3299 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3300 cpustride *= rsp->levelspread[i];
3301 rnp = rsp->level[i];
3302 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3303 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3304 lockdep_set_class_and_name(&rnp->lock,
3305 &rcu_node_class[i], buf[i]);
394f2769
PM
3306 raw_spin_lock_init(&rnp->fqslock);
3307 lockdep_set_class_and_name(&rnp->fqslock,
3308 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3309 rnp->gpnum = rsp->gpnum;
3310 rnp->completed = rsp->completed;
64db4cff
PM
3311 rnp->qsmask = 0;
3312 rnp->qsmaskinit = 0;
3313 rnp->grplo = j * cpustride;
3314 rnp->grphi = (j + 1) * cpustride - 1;
3315 if (rnp->grphi >= NR_CPUS)
3316 rnp->grphi = NR_CPUS - 1;
3317 if (i == 0) {
3318 rnp->grpnum = 0;
3319 rnp->grpmask = 0;
3320 rnp->parent = NULL;
3321 } else {
3322 rnp->grpnum = j % rsp->levelspread[i - 1];
3323 rnp->grpmask = 1UL << rnp->grpnum;
3324 rnp->parent = rsp->level[i - 1] +
3325 j / rsp->levelspread[i - 1];
3326 }
3327 rnp->level = i;
12f5f524 3328 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3329 rcu_init_one_nocb(rnp);
64db4cff
PM
3330 }
3331 }
0c34029a 3332
394f99a9 3333 rsp->rda = rda;
b3dbec76 3334 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3335 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3336 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3337 for_each_possible_cpu(i) {
4a90a068 3338 while (i > rnp->grphi)
0c34029a 3339 rnp++;
394f99a9 3340 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3341 rcu_boot_init_percpu_data(i, rsp);
3342 }
6ce75a23 3343 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3344}
3345
f885b7f2
PM
3346/*
3347 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3348 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3349 * the ->node array in the rcu_state structure.
3350 */
3351static void __init rcu_init_geometry(void)
3352{
026ad283 3353 ulong d;
f885b7f2
PM
3354 int i;
3355 int j;
cca6f393 3356 int n = nr_cpu_ids;
f885b7f2
PM
3357 int rcu_capacity[MAX_RCU_LVLS + 1];
3358
026ad283
PM
3359 /*
3360 * Initialize any unspecified boot parameters.
3361 * The default values of jiffies_till_first_fqs and
3362 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3363 * value, which is a function of HZ, then adding one for each
3364 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3365 */
3366 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3367 if (jiffies_till_first_fqs == ULONG_MAX)
3368 jiffies_till_first_fqs = d;
3369 if (jiffies_till_next_fqs == ULONG_MAX)
3370 jiffies_till_next_fqs = d;
3371
f885b7f2 3372 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3373 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3374 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3375 return;
3376
3377 /*
3378 * Compute number of nodes that can be handled an rcu_node tree
3379 * with the given number of levels. Setting rcu_capacity[0] makes
3380 * some of the arithmetic easier.
3381 */
3382 rcu_capacity[0] = 1;
3383 rcu_capacity[1] = rcu_fanout_leaf;
3384 for (i = 2; i <= MAX_RCU_LVLS; i++)
3385 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3386
3387 /*
3388 * The boot-time rcu_fanout_leaf parameter is only permitted
3389 * to increase the leaf-level fanout, not decrease it. Of course,
3390 * the leaf-level fanout cannot exceed the number of bits in
3391 * the rcu_node masks. Finally, the tree must be able to accommodate
3392 * the configured number of CPUs. Complain and fall back to the
3393 * compile-time values if these limits are exceeded.
3394 */
3395 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3396 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3397 n > rcu_capacity[MAX_RCU_LVLS]) {
3398 WARN_ON(1);
3399 return;
3400 }
3401
3402 /* Calculate the number of rcu_nodes at each level of the tree. */
3403 for (i = 1; i <= MAX_RCU_LVLS; i++)
3404 if (n <= rcu_capacity[i]) {
3405 for (j = 0; j <= i; j++)
3406 num_rcu_lvl[j] =
3407 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3408 rcu_num_lvls = i;
3409 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3410 num_rcu_lvl[j] = 0;
3411 break;
3412 }
3413
3414 /* Calculate the total number of rcu_node structures. */
3415 rcu_num_nodes = 0;
3416 for (i = 0; i <= MAX_RCU_LVLS; i++)
3417 rcu_num_nodes += num_rcu_lvl[i];
3418 rcu_num_nodes -= n;
3419}
3420
9f680ab4 3421void __init rcu_init(void)
64db4cff 3422{
017c4261 3423 int cpu;
9f680ab4 3424
f41d911f 3425 rcu_bootup_announce();
f885b7f2 3426 rcu_init_geometry();
394f99a9 3427 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3428 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3429 __rcu_init_preempt();
b5b39360 3430 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3431
3432 /*
3433 * We don't need protection against CPU-hotplug here because
3434 * this is called early in boot, before either interrupts
3435 * or the scheduler are operational.
3436 */
3437 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3438 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3439 for_each_online_cpu(cpu)
3440 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3441}
3442
4102adab 3443#include "tree_plugin.h"
This page took 0.535148 seconds and 5 git commands to generate.