rcu: Fix missing task information during rcu-preempt stall
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
2723249a 94DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 95struct rcu_state sname##_state = { \
6c90cc7b 96 .level = { &sname##_state.node[0] }, \
2723249a 97 .rda = &sname##_data, \
037b64ed 98 .call = cr, \
af446b70 99 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
100 .gpnum = 0UL - 300UL, \
101 .completed = 0UL - 300UL, \
7b2e6011 102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 106 .name = RCU_STATE_NAME(sname), \
a4889858 107 .abbr = sabbr, \
2723249a 108}
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
b28a7c01 113static struct rcu_state *const rcu_state_p;
2927a689 114static struct rcu_data __percpu *const rcu_data_p;
6ce75a23 115LIST_HEAD(rcu_struct_flavors);
27f4d280 116
f885b7f2
PM
117/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
118static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 119module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
120int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
121static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
122 NUM_RCU_LVL_0,
123 NUM_RCU_LVL_1,
124 NUM_RCU_LVL_2,
125 NUM_RCU_LVL_3,
126 NUM_RCU_LVL_4,
127};
128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129
b0d30417
PM
130/*
131 * The rcu_scheduler_active variable transitions from zero to one just
132 * before the first task is spawned. So when this variable is zero, RCU
133 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 134 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
135 * is one, RCU must actually do all the hard work required to detect real
136 * grace periods. This variable is also used to suppress boot-time false
137 * positives from lockdep-RCU error checking.
138 */
bbad9379
PM
139int rcu_scheduler_active __read_mostly;
140EXPORT_SYMBOL_GPL(rcu_scheduler_active);
141
b0d30417
PM
142/*
143 * The rcu_scheduler_fully_active variable transitions from zero to one
144 * during the early_initcall() processing, which is after the scheduler
145 * is capable of creating new tasks. So RCU processing (for example,
146 * creating tasks for RCU priority boosting) must be delayed until after
147 * rcu_scheduler_fully_active transitions from zero to one. We also
148 * currently delay invocation of any RCU callbacks until after this point.
149 *
150 * It might later prove better for people registering RCU callbacks during
151 * early boot to take responsibility for these callbacks, but one step at
152 * a time.
153 */
154static int rcu_scheduler_fully_active __read_mostly;
155
0aa04b05
PM
156static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
157static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 158static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
159static void invoke_rcu_core(void);
160static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 161
a94844b2
PM
162/* rcuc/rcub kthread realtime priority */
163static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
164module_param(kthread_prio, int, 0644);
165
8d7dc928
PM
166/* Delay in jiffies for grace-period initialization delays, debug only. */
167#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
168static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 169module_param(gp_init_delay, int, 0644);
8d7dc928
PM
170#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
171static const int gp_init_delay;
172#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
173#define PER_RCU_NODE_PERIOD 10 /* Number of grace periods between delays. */
37745d28 174
4a298656
PM
175/*
176 * Track the rcutorture test sequence number and the update version
177 * number within a given test. The rcutorture_testseq is incremented
178 * on every rcutorture module load and unload, so has an odd value
179 * when a test is running. The rcutorture_vernum is set to zero
180 * when rcutorture starts and is incremented on each rcutorture update.
181 * These variables enable correlating rcutorture output with the
182 * RCU tracing information.
183 */
184unsigned long rcutorture_testseq;
185unsigned long rcutorture_vernum;
186
0aa04b05
PM
187/*
188 * Compute the mask of online CPUs for the specified rcu_node structure.
189 * This will not be stable unless the rcu_node structure's ->lock is
190 * held, but the bit corresponding to the current CPU will be stable
191 * in most contexts.
192 */
193unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
194{
7d0ae808 195 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
196}
197
fc2219d4 198/*
7d0ae808 199 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
200 * permit this function to be invoked without holding the root rcu_node
201 * structure's ->lock, but of course results can be subject to change.
202 */
203static int rcu_gp_in_progress(struct rcu_state *rsp)
204{
7d0ae808 205 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
206}
207
b1f77b05 208/*
d6714c22 209 * Note a quiescent state. Because we do not need to know
b1f77b05 210 * how many quiescent states passed, just if there was at least
d6714c22 211 * one since the start of the grace period, this just sets a flag.
e4cc1f22 212 * The caller must have disabled preemption.
b1f77b05 213 */
284a8c93 214void rcu_sched_qs(void)
b1f77b05 215{
284a8c93
PM
216 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
217 trace_rcu_grace_period(TPS("rcu_sched"),
218 __this_cpu_read(rcu_sched_data.gpnum),
219 TPS("cpuqs"));
220 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
221 }
b1f77b05
IM
222}
223
284a8c93 224void rcu_bh_qs(void)
b1f77b05 225{
284a8c93
PM
226 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
227 trace_rcu_grace_period(TPS("rcu_bh"),
228 __this_cpu_read(rcu_bh_data.gpnum),
229 TPS("cpuqs"));
230 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
231 }
b1f77b05 232}
64db4cff 233
4a81e832
PM
234static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
235
236static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
237 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
238 .dynticks = ATOMIC_INIT(1),
239#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
240 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
241 .dynticks_idle = ATOMIC_INIT(1),
242#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
243};
244
5cd37193
PM
245DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
246EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
247
4a81e832
PM
248/*
249 * Let the RCU core know that this CPU has gone through the scheduler,
250 * which is a quiescent state. This is called when the need for a
251 * quiescent state is urgent, so we burn an atomic operation and full
252 * memory barriers to let the RCU core know about it, regardless of what
253 * this CPU might (or might not) do in the near future.
254 *
255 * We inform the RCU core by emulating a zero-duration dyntick-idle
256 * period, which we in turn do by incrementing the ->dynticks counter
257 * by two.
258 */
259static void rcu_momentary_dyntick_idle(void)
260{
261 unsigned long flags;
262 struct rcu_data *rdp;
263 struct rcu_dynticks *rdtp;
264 int resched_mask;
265 struct rcu_state *rsp;
266
267 local_irq_save(flags);
268
269 /*
270 * Yes, we can lose flag-setting operations. This is OK, because
271 * the flag will be set again after some delay.
272 */
273 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
274 raw_cpu_write(rcu_sched_qs_mask, 0);
275
276 /* Find the flavor that needs a quiescent state. */
277 for_each_rcu_flavor(rsp) {
278 rdp = raw_cpu_ptr(rsp->rda);
279 if (!(resched_mask & rsp->flavor_mask))
280 continue;
281 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
282 if (READ_ONCE(rdp->mynode->completed) !=
283 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
284 continue;
285
286 /*
287 * Pretend to be momentarily idle for the quiescent state.
288 * This allows the grace-period kthread to record the
289 * quiescent state, with no need for this CPU to do anything
290 * further.
291 */
292 rdtp = this_cpu_ptr(&rcu_dynticks);
293 smp_mb__before_atomic(); /* Earlier stuff before QS. */
294 atomic_add(2, &rdtp->dynticks); /* QS. */
295 smp_mb__after_atomic(); /* Later stuff after QS. */
296 break;
297 }
298 local_irq_restore(flags);
299}
300
25502a6c
PM
301/*
302 * Note a context switch. This is a quiescent state for RCU-sched,
303 * and requires special handling for preemptible RCU.
e4cc1f22 304 * The caller must have disabled preemption.
25502a6c 305 */
38200cf2 306void rcu_note_context_switch(void)
25502a6c 307{
f7f7bac9 308 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 309 rcu_sched_qs();
38200cf2 310 rcu_preempt_note_context_switch();
4a81e832
PM
311 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
312 rcu_momentary_dyntick_idle();
f7f7bac9 313 trace_rcu_utilization(TPS("End context switch"));
25502a6c 314}
29ce8310 315EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 316
5cd37193 317/*
1925d196 318 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
319 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
320 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 321 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
322 * be none of them). Either way, do a lightweight quiescent state for
323 * all RCU flavors.
324 */
325void rcu_all_qs(void)
326{
327 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
328 rcu_momentary_dyntick_idle();
329 this_cpu_inc(rcu_qs_ctr);
330}
331EXPORT_SYMBOL_GPL(rcu_all_qs);
332
878d7439
ED
333static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
334static long qhimark = 10000; /* If this many pending, ignore blimit. */
335static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 336
878d7439
ED
337module_param(blimit, long, 0444);
338module_param(qhimark, long, 0444);
339module_param(qlowmark, long, 0444);
3d76c082 340
026ad283
PM
341static ulong jiffies_till_first_fqs = ULONG_MAX;
342static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
343
344module_param(jiffies_till_first_fqs, ulong, 0644);
345module_param(jiffies_till_next_fqs, ulong, 0644);
346
4a81e832
PM
347/*
348 * How long the grace period must be before we start recruiting
349 * quiescent-state help from rcu_note_context_switch().
350 */
351static ulong jiffies_till_sched_qs = HZ / 20;
352module_param(jiffies_till_sched_qs, ulong, 0644);
353
48a7639c 354static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 355 struct rcu_data *rdp);
217af2a2
PM
356static void force_qs_rnp(struct rcu_state *rsp,
357 int (*f)(struct rcu_data *rsp, bool *isidle,
358 unsigned long *maxj),
359 bool *isidle, unsigned long *maxj);
4cdfc175 360static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 361static int rcu_pending(void);
64db4cff
PM
362
363/*
917963d0 364 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 365 */
917963d0
PM
366unsigned long rcu_batches_started(void)
367{
368 return rcu_state_p->gpnum;
369}
370EXPORT_SYMBOL_GPL(rcu_batches_started);
371
372/*
373 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 374 */
917963d0
PM
375unsigned long rcu_batches_started_sched(void)
376{
377 return rcu_sched_state.gpnum;
378}
379EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
380
381/*
382 * Return the number of RCU BH batches started thus far for debug & stats.
383 */
384unsigned long rcu_batches_started_bh(void)
385{
386 return rcu_bh_state.gpnum;
387}
388EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
389
390/*
391 * Return the number of RCU batches completed thus far for debug & stats.
392 */
393unsigned long rcu_batches_completed(void)
394{
395 return rcu_state_p->completed;
396}
397EXPORT_SYMBOL_GPL(rcu_batches_completed);
398
399/*
400 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 401 */
9733e4f0 402unsigned long rcu_batches_completed_sched(void)
64db4cff 403{
d6714c22 404 return rcu_sched_state.completed;
64db4cff 405}
d6714c22 406EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
407
408/*
917963d0 409 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 410 */
9733e4f0 411unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
412{
413 return rcu_bh_state.completed;
414}
415EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
416
a381d757
ACB
417/*
418 * Force a quiescent state.
419 */
420void rcu_force_quiescent_state(void)
421{
e534165b 422 force_quiescent_state(rcu_state_p);
a381d757
ACB
423}
424EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
425
bf66f18e
PM
426/*
427 * Force a quiescent state for RCU BH.
428 */
429void rcu_bh_force_quiescent_state(void)
430{
4cdfc175 431 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
432}
433EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
434
e7580f33
PM
435/*
436 * Force a quiescent state for RCU-sched.
437 */
438void rcu_sched_force_quiescent_state(void)
439{
440 force_quiescent_state(&rcu_sched_state);
441}
442EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
443
afea227f
PM
444/*
445 * Show the state of the grace-period kthreads.
446 */
447void show_rcu_gp_kthreads(void)
448{
449 struct rcu_state *rsp;
450
451 for_each_rcu_flavor(rsp) {
452 pr_info("%s: wait state: %d ->state: %#lx\n",
453 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
454 /* sched_show_task(rsp->gp_kthread); */
455 }
456}
457EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
458
4a298656
PM
459/*
460 * Record the number of times rcutorture tests have been initiated and
461 * terminated. This information allows the debugfs tracing stats to be
462 * correlated to the rcutorture messages, even when the rcutorture module
463 * is being repeatedly loaded and unloaded. In other words, we cannot
464 * store this state in rcutorture itself.
465 */
466void rcutorture_record_test_transition(void)
467{
468 rcutorture_testseq++;
469 rcutorture_vernum = 0;
470}
471EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
472
ad0dc7f9
PM
473/*
474 * Send along grace-period-related data for rcutorture diagnostics.
475 */
476void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
477 unsigned long *gpnum, unsigned long *completed)
478{
479 struct rcu_state *rsp = NULL;
480
481 switch (test_type) {
482 case RCU_FLAVOR:
e534165b 483 rsp = rcu_state_p;
ad0dc7f9
PM
484 break;
485 case RCU_BH_FLAVOR:
486 rsp = &rcu_bh_state;
487 break;
488 case RCU_SCHED_FLAVOR:
489 rsp = &rcu_sched_state;
490 break;
491 default:
492 break;
493 }
494 if (rsp != NULL) {
7d0ae808
PM
495 *flags = READ_ONCE(rsp->gp_flags);
496 *gpnum = READ_ONCE(rsp->gpnum);
497 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
498 return;
499 }
500 *flags = 0;
501 *gpnum = 0;
502 *completed = 0;
503}
504EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
505
4a298656
PM
506/*
507 * Record the number of writer passes through the current rcutorture test.
508 * This is also used to correlate debugfs tracing stats with the rcutorture
509 * messages.
510 */
511void rcutorture_record_progress(unsigned long vernum)
512{
513 rcutorture_vernum++;
514}
515EXPORT_SYMBOL_GPL(rcutorture_record_progress);
516
64db4cff
PM
517/*
518 * Does the CPU have callbacks ready to be invoked?
519 */
520static int
521cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
522{
3fbfbf7a
PM
523 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
524 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
525}
526
365187fb
PM
527/*
528 * Return the root node of the specified rcu_state structure.
529 */
530static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
531{
532 return &rsp->node[0];
533}
534
535/*
536 * Is there any need for future grace periods?
537 * Interrupts must be disabled. If the caller does not hold the root
538 * rnp_node structure's ->lock, the results are advisory only.
539 */
540static int rcu_future_needs_gp(struct rcu_state *rsp)
541{
542 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 543 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
544 int *fp = &rnp->need_future_gp[idx];
545
7d0ae808 546 return READ_ONCE(*fp);
365187fb
PM
547}
548
64db4cff 549/*
dc35c893
PM
550 * Does the current CPU require a not-yet-started grace period?
551 * The caller must have disabled interrupts to prevent races with
552 * normal callback registry.
64db4cff
PM
553 */
554static int
555cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
556{
dc35c893 557 int i;
3fbfbf7a 558
dc35c893
PM
559 if (rcu_gp_in_progress(rsp))
560 return 0; /* No, a grace period is already in progress. */
365187fb 561 if (rcu_future_needs_gp(rsp))
34ed6246 562 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
563 if (!rdp->nxttail[RCU_NEXT_TAIL])
564 return 0; /* No, this is a no-CBs (or offline) CPU. */
565 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
566 return 1; /* Yes, this CPU has newly registered callbacks. */
567 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
568 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 569 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893
PM
570 rdp->nxtcompleted[i]))
571 return 1; /* Yes, CBs for future grace period. */
572 return 0; /* No grace period needed. */
64db4cff
PM
573}
574
9b2e4f18 575/*
adf5091e 576 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
577 *
578 * If the new value of the ->dynticks_nesting counter now is zero,
579 * we really have entered idle, and must do the appropriate accounting.
580 * The caller must have disabled interrupts.
581 */
28ced795 582static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 583{
96d3fd0d
PM
584 struct rcu_state *rsp;
585 struct rcu_data *rdp;
28ced795 586 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 587
f7f7bac9 588 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 589 if (!user && !is_idle_task(current)) {
289828e6
PM
590 struct task_struct *idle __maybe_unused =
591 idle_task(smp_processor_id());
0989cb46 592
f7f7bac9 593 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 594 ftrace_dump(DUMP_ORIG);
0989cb46
PM
595 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
596 current->pid, current->comm,
597 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 598 }
96d3fd0d
PM
599 for_each_rcu_flavor(rsp) {
600 rdp = this_cpu_ptr(rsp->rda);
601 do_nocb_deferred_wakeup(rdp);
602 }
198bbf81 603 rcu_prepare_for_idle();
9b2e4f18 604 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 605 smp_mb__before_atomic(); /* See above. */
9b2e4f18 606 atomic_inc(&rdtp->dynticks);
4e857c58 607 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 608 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 609 rcu_dynticks_task_enter();
c44e2cdd
PM
610
611 /*
adf5091e 612 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
613 * in an RCU read-side critical section.
614 */
615 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
616 "Illegal idle entry in RCU read-side critical section.");
617 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
618 "Illegal idle entry in RCU-bh read-side critical section.");
619 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
620 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 621}
64db4cff 622
adf5091e
FW
623/*
624 * Enter an RCU extended quiescent state, which can be either the
625 * idle loop or adaptive-tickless usermode execution.
64db4cff 626 */
adf5091e 627static void rcu_eqs_enter(bool user)
64db4cff 628{
4145fa7f 629 long long oldval;
64db4cff
PM
630 struct rcu_dynticks *rdtp;
631
c9d4b0af 632 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 633 oldval = rdtp->dynticks_nesting;
29e37d81 634 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 635 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 636 rdtp->dynticks_nesting = 0;
28ced795 637 rcu_eqs_enter_common(oldval, user);
3a592405 638 } else {
29e37d81 639 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 640 }
64db4cff 641}
adf5091e
FW
642
643/**
644 * rcu_idle_enter - inform RCU that current CPU is entering idle
645 *
646 * Enter idle mode, in other words, -leave- the mode in which RCU
647 * read-side critical sections can occur. (Though RCU read-side
648 * critical sections can occur in irq handlers in idle, a possibility
649 * handled by irq_enter() and irq_exit().)
650 *
651 * We crowbar the ->dynticks_nesting field to zero to allow for
652 * the possibility of usermode upcalls having messed up our count
653 * of interrupt nesting level during the prior busy period.
654 */
655void rcu_idle_enter(void)
656{
c5d900bf
FW
657 unsigned long flags;
658
659 local_irq_save(flags);
cb349ca9 660 rcu_eqs_enter(false);
28ced795 661 rcu_sysidle_enter(0);
c5d900bf 662 local_irq_restore(flags);
adf5091e 663}
8a2ecf47 664EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 665
2b1d5024 666#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
667/**
668 * rcu_user_enter - inform RCU that we are resuming userspace.
669 *
670 * Enter RCU idle mode right before resuming userspace. No use of RCU
671 * is permitted between this call and rcu_user_exit(). This way the
672 * CPU doesn't need to maintain the tick for RCU maintenance purposes
673 * when the CPU runs in userspace.
674 */
675void rcu_user_enter(void)
676{
91d1aa43 677 rcu_eqs_enter(1);
adf5091e 678}
2b1d5024 679#endif /* CONFIG_RCU_USER_QS */
19dd1591 680
9b2e4f18
PM
681/**
682 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
683 *
684 * Exit from an interrupt handler, which might possibly result in entering
685 * idle mode, in other words, leaving the mode in which read-side critical
686 * sections can occur.
64db4cff 687 *
9b2e4f18
PM
688 * This code assumes that the idle loop never does anything that might
689 * result in unbalanced calls to irq_enter() and irq_exit(). If your
690 * architecture violates this assumption, RCU will give you what you
691 * deserve, good and hard. But very infrequently and irreproducibly.
692 *
693 * Use things like work queues to work around this limitation.
694 *
695 * You have been warned.
64db4cff 696 */
9b2e4f18 697void rcu_irq_exit(void)
64db4cff
PM
698{
699 unsigned long flags;
4145fa7f 700 long long oldval;
64db4cff
PM
701 struct rcu_dynticks *rdtp;
702
703 local_irq_save(flags);
c9d4b0af 704 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 705 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
706 rdtp->dynticks_nesting--;
707 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 708 if (rdtp->dynticks_nesting)
f7f7bac9 709 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 710 else
28ced795
CL
711 rcu_eqs_enter_common(oldval, true);
712 rcu_sysidle_enter(1);
9b2e4f18
PM
713 local_irq_restore(flags);
714}
715
716/*
adf5091e 717 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
718 *
719 * If the new value of the ->dynticks_nesting counter was previously zero,
720 * we really have exited idle, and must do the appropriate accounting.
721 * The caller must have disabled interrupts.
722 */
28ced795 723static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 724{
28ced795
CL
725 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
726
176f8f7a 727 rcu_dynticks_task_exit();
4e857c58 728 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
729 atomic_inc(&rdtp->dynticks);
730 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 731 smp_mb__after_atomic(); /* See above. */
23b5c8fa 732 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 733 rcu_cleanup_after_idle();
f7f7bac9 734 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 735 if (!user && !is_idle_task(current)) {
289828e6
PM
736 struct task_struct *idle __maybe_unused =
737 idle_task(smp_processor_id());
0989cb46 738
f7f7bac9 739 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 740 oldval, rdtp->dynticks_nesting);
bf1304e9 741 ftrace_dump(DUMP_ORIG);
0989cb46
PM
742 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
743 current->pid, current->comm,
744 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
745 }
746}
747
adf5091e
FW
748/*
749 * Exit an RCU extended quiescent state, which can be either the
750 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 751 */
adf5091e 752static void rcu_eqs_exit(bool user)
9b2e4f18 753{
9b2e4f18
PM
754 struct rcu_dynticks *rdtp;
755 long long oldval;
756
c9d4b0af 757 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 758 oldval = rdtp->dynticks_nesting;
29e37d81 759 WARN_ON_ONCE(oldval < 0);
3a592405 760 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 761 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 762 } else {
29e37d81 763 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 764 rcu_eqs_exit_common(oldval, user);
3a592405 765 }
9b2e4f18 766}
adf5091e
FW
767
768/**
769 * rcu_idle_exit - inform RCU that current CPU is leaving idle
770 *
771 * Exit idle mode, in other words, -enter- the mode in which RCU
772 * read-side critical sections can occur.
773 *
774 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
775 * allow for the possibility of usermode upcalls messing up our count
776 * of interrupt nesting level during the busy period that is just
777 * now starting.
778 */
779void rcu_idle_exit(void)
780{
c5d900bf
FW
781 unsigned long flags;
782
783 local_irq_save(flags);
cb349ca9 784 rcu_eqs_exit(false);
28ced795 785 rcu_sysidle_exit(0);
c5d900bf 786 local_irq_restore(flags);
adf5091e 787}
8a2ecf47 788EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 789
2b1d5024 790#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
791/**
792 * rcu_user_exit - inform RCU that we are exiting userspace.
793 *
794 * Exit RCU idle mode while entering the kernel because it can
795 * run a RCU read side critical section anytime.
796 */
797void rcu_user_exit(void)
798{
91d1aa43 799 rcu_eqs_exit(1);
adf5091e 800}
2b1d5024 801#endif /* CONFIG_RCU_USER_QS */
19dd1591 802
9b2e4f18
PM
803/**
804 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
805 *
806 * Enter an interrupt handler, which might possibly result in exiting
807 * idle mode, in other words, entering the mode in which read-side critical
808 * sections can occur.
809 *
810 * Note that the Linux kernel is fully capable of entering an interrupt
811 * handler that it never exits, for example when doing upcalls to
812 * user mode! This code assumes that the idle loop never does upcalls to
813 * user mode. If your architecture does do upcalls from the idle loop (or
814 * does anything else that results in unbalanced calls to the irq_enter()
815 * and irq_exit() functions), RCU will give you what you deserve, good
816 * and hard. But very infrequently and irreproducibly.
817 *
818 * Use things like work queues to work around this limitation.
819 *
820 * You have been warned.
821 */
822void rcu_irq_enter(void)
823{
824 unsigned long flags;
825 struct rcu_dynticks *rdtp;
826 long long oldval;
827
828 local_irq_save(flags);
c9d4b0af 829 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
830 oldval = rdtp->dynticks_nesting;
831 rdtp->dynticks_nesting++;
832 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 833 if (oldval)
f7f7bac9 834 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 835 else
28ced795
CL
836 rcu_eqs_exit_common(oldval, true);
837 rcu_sysidle_exit(1);
64db4cff 838 local_irq_restore(flags);
64db4cff
PM
839}
840
841/**
842 * rcu_nmi_enter - inform RCU of entry to NMI context
843 *
734d1680
PM
844 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
845 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
846 * that the CPU is active. This implementation permits nested NMIs, as
847 * long as the nesting level does not overflow an int. (You will probably
848 * run out of stack space first.)
64db4cff
PM
849 */
850void rcu_nmi_enter(void)
851{
c9d4b0af 852 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 853 int incby = 2;
64db4cff 854
734d1680
PM
855 /* Complain about underflow. */
856 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
857
858 /*
859 * If idle from RCU viewpoint, atomically increment ->dynticks
860 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
861 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
862 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
863 * to be in the outermost NMI handler that interrupted an RCU-idle
864 * period (observation due to Andy Lutomirski).
865 */
866 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
867 smp_mb__before_atomic(); /* Force delay from prior write. */
868 atomic_inc(&rdtp->dynticks);
869 /* atomic_inc() before later RCU read-side crit sects */
870 smp_mb__after_atomic(); /* See above. */
871 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
872 incby = 1;
873 }
874 rdtp->dynticks_nmi_nesting += incby;
875 barrier();
64db4cff
PM
876}
877
878/**
879 * rcu_nmi_exit - inform RCU of exit from NMI context
880 *
734d1680
PM
881 * If we are returning from the outermost NMI handler that interrupted an
882 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
883 * to let the RCU grace-period handling know that the CPU is back to
884 * being RCU-idle.
64db4cff
PM
885 */
886void rcu_nmi_exit(void)
887{
c9d4b0af 888 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 889
734d1680
PM
890 /*
891 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
892 * (We are exiting an NMI handler, so RCU better be paying attention
893 * to us!)
894 */
895 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
896 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
897
898 /*
899 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
900 * leave it in non-RCU-idle state.
901 */
902 if (rdtp->dynticks_nmi_nesting != 1) {
903 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 904 return;
734d1680
PM
905 }
906
907 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
908 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 909 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 910 smp_mb__before_atomic(); /* See above. */
23b5c8fa 911 atomic_inc(&rdtp->dynticks);
4e857c58 912 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 913 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
914}
915
916/**
5c173eb8
PM
917 * __rcu_is_watching - are RCU read-side critical sections safe?
918 *
919 * Return true if RCU is watching the running CPU, which means that
920 * this CPU can safely enter RCU read-side critical sections. Unlike
921 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
922 * least disabled preemption.
923 */
9418fb20 924bool notrace __rcu_is_watching(void)
5c173eb8
PM
925{
926 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
927}
928
929/**
930 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 931 *
9b2e4f18 932 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 933 * or NMI handler, return true.
64db4cff 934 */
9418fb20 935bool notrace rcu_is_watching(void)
64db4cff 936{
f534ed1f 937 bool ret;
34240697
PM
938
939 preempt_disable();
5c173eb8 940 ret = __rcu_is_watching();
34240697
PM
941 preempt_enable();
942 return ret;
64db4cff 943}
5c173eb8 944EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 945
62fde6ed 946#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
947
948/*
949 * Is the current CPU online? Disable preemption to avoid false positives
950 * that could otherwise happen due to the current CPU number being sampled,
951 * this task being preempted, its old CPU being taken offline, resuming
952 * on some other CPU, then determining that its old CPU is now offline.
953 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
954 * the check for rcu_scheduler_fully_active. Note also that it is OK
955 * for a CPU coming online to use RCU for one jiffy prior to marking itself
956 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
957 * offline to continue to use RCU for one jiffy after marking itself
958 * offline in the cpu_online_mask. This leniency is necessary given the
959 * non-atomic nature of the online and offline processing, for example,
960 * the fact that a CPU enters the scheduler after completing the CPU_DYING
961 * notifiers.
962 *
963 * This is also why RCU internally marks CPUs online during the
964 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
965 *
966 * Disable checking if in an NMI handler because we cannot safely report
967 * errors from NMI handlers anyway.
968 */
969bool rcu_lockdep_current_cpu_online(void)
970{
2036d94a
PM
971 struct rcu_data *rdp;
972 struct rcu_node *rnp;
c0d6d01b
PM
973 bool ret;
974
975 if (in_nmi())
f6f7ee9a 976 return true;
c0d6d01b 977 preempt_disable();
c9d4b0af 978 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 979 rnp = rdp->mynode;
0aa04b05 980 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
981 !rcu_scheduler_fully_active;
982 preempt_enable();
983 return ret;
984}
985EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
986
62fde6ed 987#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 988
64db4cff 989/**
9b2e4f18 990 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 991 *
9b2e4f18
PM
992 * If the current CPU is idle or running at a first-level (not nested)
993 * interrupt from idle, return true. The caller must have at least
994 * disabled preemption.
64db4cff 995 */
62e3cb14 996static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 997{
c9d4b0af 998 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
999}
1000
64db4cff
PM
1001/*
1002 * Snapshot the specified CPU's dynticks counter so that we can later
1003 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1004 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1005 */
217af2a2
PM
1006static int dyntick_save_progress_counter(struct rcu_data *rdp,
1007 bool *isidle, unsigned long *maxj)
64db4cff 1008{
23b5c8fa 1009 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1010 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1011 if ((rdp->dynticks_snap & 0x1) == 0) {
1012 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1013 return 1;
1014 } else {
7d0ae808 1015 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1016 rdp->mynode->gpnum))
7d0ae808 1017 WRITE_ONCE(rdp->gpwrap, true);
7941dbde
ACB
1018 return 0;
1019 }
64db4cff
PM
1020}
1021
1022/*
1023 * Return true if the specified CPU has passed through a quiescent
1024 * state by virtue of being in or having passed through an dynticks
1025 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1026 * for this same CPU, or by virtue of having been offline.
64db4cff 1027 */
217af2a2
PM
1028static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1029 bool *isidle, unsigned long *maxj)
64db4cff 1030{
7eb4f455 1031 unsigned int curr;
4a81e832 1032 int *rcrmp;
7eb4f455 1033 unsigned int snap;
64db4cff 1034
7eb4f455
PM
1035 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1036 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1037
1038 /*
1039 * If the CPU passed through or entered a dynticks idle phase with
1040 * no active irq/NMI handlers, then we can safely pretend that the CPU
1041 * already acknowledged the request to pass through a quiescent
1042 * state. Either way, that CPU cannot possibly be in an RCU
1043 * read-side critical section that started before the beginning
1044 * of the current RCU grace period.
1045 */
7eb4f455 1046 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1047 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1048 rdp->dynticks_fqs++;
1049 return 1;
1050 }
1051
a82dcc76
PM
1052 /*
1053 * Check for the CPU being offline, but only if the grace period
1054 * is old enough. We don't need to worry about the CPU changing
1055 * state: If we see it offline even once, it has been through a
1056 * quiescent state.
1057 *
1058 * The reason for insisting that the grace period be at least
1059 * one jiffy old is that CPUs that are not quite online and that
1060 * have just gone offline can still execute RCU read-side critical
1061 * sections.
1062 */
1063 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1064 return 0; /* Grace period is not old enough. */
1065 barrier();
1066 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1067 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1068 rdp->offline_fqs++;
1069 return 1;
1070 }
65d798f0
PM
1071
1072 /*
4a81e832
PM
1073 * A CPU running for an extended time within the kernel can
1074 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1075 * even context-switching back and forth between a pair of
1076 * in-kernel CPU-bound tasks cannot advance grace periods.
1077 * So if the grace period is old enough, make the CPU pay attention.
1078 * Note that the unsynchronized assignments to the per-CPU
1079 * rcu_sched_qs_mask variable are safe. Yes, setting of
1080 * bits can be lost, but they will be set again on the next
1081 * force-quiescent-state pass. So lost bit sets do not result
1082 * in incorrect behavior, merely in a grace period lasting
1083 * a few jiffies longer than it might otherwise. Because
1084 * there are at most four threads involved, and because the
1085 * updates are only once every few jiffies, the probability of
1086 * lossage (and thus of slight grace-period extension) is
1087 * quite low.
1088 *
1089 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1090 * is set too high, we override with half of the RCU CPU stall
1091 * warning delay.
6193c76a 1092 */
4a81e832
PM
1093 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1094 if (ULONG_CMP_GE(jiffies,
1095 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1096 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1097 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1098 WRITE_ONCE(rdp->cond_resched_completed,
1099 READ_ONCE(rdp->mynode->completed));
4a81e832 1100 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1101 WRITE_ONCE(*rcrmp,
1102 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832
PM
1103 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1104 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1105 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1106 /* Time to beat on that CPU again! */
1107 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1108 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1109 }
6193c76a
PM
1110 }
1111
a82dcc76 1112 return 0;
64db4cff
PM
1113}
1114
64db4cff
PM
1115static void record_gp_stall_check_time(struct rcu_state *rsp)
1116{
cb1e78cf 1117 unsigned long j = jiffies;
6193c76a 1118 unsigned long j1;
26cdfedf
PM
1119
1120 rsp->gp_start = j;
1121 smp_wmb(); /* Record start time before stall time. */
6193c76a 1122 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1123 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1124 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1125 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1126}
1127
fb81a44b
PM
1128/*
1129 * Complain about starvation of grace-period kthread.
1130 */
1131static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1132{
1133 unsigned long gpa;
1134 unsigned long j;
1135
1136 j = jiffies;
7d0ae808 1137 gpa = READ_ONCE(rsp->gp_activity);
fb81a44b
PM
1138 if (j - gpa > 2 * HZ)
1139 pr_err("%s kthread starved for %ld jiffies!\n",
1140 rsp->name, j - gpa);
64db4cff
PM
1141}
1142
b637a328 1143/*
bc1dce51 1144 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1145 */
1146static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1147{
1148 int cpu;
1149 unsigned long flags;
1150 struct rcu_node *rnp;
1151
1152 rcu_for_each_leaf_node(rsp, rnp) {
1153 raw_spin_lock_irqsave(&rnp->lock, flags);
1154 if (rnp->qsmask != 0) {
1155 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1156 if (rnp->qsmask & (1UL << cpu))
1157 dump_cpu_task(rnp->grplo + cpu);
1158 }
1159 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1160 }
1161}
1162
6ccd2ecd 1163static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1164{
1165 int cpu;
1166 long delta;
1167 unsigned long flags;
6ccd2ecd
PM
1168 unsigned long gpa;
1169 unsigned long j;
285fe294 1170 int ndetected = 0;
64db4cff 1171 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1172 long totqlen = 0;
64db4cff
PM
1173
1174 /* Only let one CPU complain about others per time interval. */
1175
1304afb2 1176 raw_spin_lock_irqsave(&rnp->lock, flags);
7d0ae808 1177 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1178 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1179 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1180 return;
1181 }
7d0ae808
PM
1182 WRITE_ONCE(rsp->jiffies_stall,
1183 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1184 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1185
8cdd32a9
PM
1186 /*
1187 * OK, time to rat on our buddy...
1188 * See Documentation/RCU/stallwarn.txt for info on how to debug
1189 * RCU CPU stall warnings.
1190 */
d7f3e207 1191 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1192 rsp->name);
a858af28 1193 print_cpu_stall_info_begin();
a0b6c9a7 1194 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1195 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1196 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1197 if (rnp->qsmask != 0) {
1198 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1199 if (rnp->qsmask & (1UL << cpu)) {
1200 print_cpu_stall_info(rsp,
1201 rnp->grplo + cpu);
1202 ndetected++;
1203 }
1204 }
3acd9eb3 1205 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1206 }
a858af28 1207
a858af28 1208 print_cpu_stall_info_end();
53bb857c
PM
1209 for_each_possible_cpu(cpu)
1210 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1211 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1212 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1213 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1214 if (ndetected) {
b637a328 1215 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1216 } else {
7d0ae808
PM
1217 if (READ_ONCE(rsp->gpnum) != gpnum ||
1218 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1219 pr_err("INFO: Stall ended before state dump start\n");
1220 } else {
1221 j = jiffies;
7d0ae808 1222 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1223 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1224 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1225 jiffies_till_next_fqs,
1226 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1227 /* In this case, the current CPU might be at fault. */
1228 sched_show_task(current);
1229 }
1230 }
c1dc0b9c 1231
4cdfc175 1232 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1233 rcu_print_detail_task_stall(rsp);
1234
fb81a44b
PM
1235 rcu_check_gp_kthread_starvation(rsp);
1236
4cdfc175 1237 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1238}
1239
1240static void print_cpu_stall(struct rcu_state *rsp)
1241{
53bb857c 1242 int cpu;
64db4cff
PM
1243 unsigned long flags;
1244 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1245 long totqlen = 0;
64db4cff 1246
8cdd32a9
PM
1247 /*
1248 * OK, time to rat on ourselves...
1249 * See Documentation/RCU/stallwarn.txt for info on how to debug
1250 * RCU CPU stall warnings.
1251 */
d7f3e207 1252 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1253 print_cpu_stall_info_begin();
1254 print_cpu_stall_info(rsp, smp_processor_id());
1255 print_cpu_stall_info_end();
53bb857c
PM
1256 for_each_possible_cpu(cpu)
1257 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1258 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1259 jiffies - rsp->gp_start,
1260 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1261
1262 rcu_check_gp_kthread_starvation(rsp);
1263
bc1dce51 1264 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1265
1304afb2 1266 raw_spin_lock_irqsave(&rnp->lock, flags);
7d0ae808
PM
1267 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1268 WRITE_ONCE(rsp->jiffies_stall,
1269 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1270 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1271
b021fe3e
PZ
1272 /*
1273 * Attempt to revive the RCU machinery by forcing a context switch.
1274 *
1275 * A context switch would normally allow the RCU state machine to make
1276 * progress and it could be we're stuck in kernel space without context
1277 * switches for an entirely unreasonable amount of time.
1278 */
1279 resched_cpu(smp_processor_id());
64db4cff
PM
1280}
1281
1282static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1283{
26cdfedf
PM
1284 unsigned long completed;
1285 unsigned long gpnum;
1286 unsigned long gps;
bad6e139
PM
1287 unsigned long j;
1288 unsigned long js;
64db4cff
PM
1289 struct rcu_node *rnp;
1290
26cdfedf 1291 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1292 return;
cb1e78cf 1293 j = jiffies;
26cdfedf
PM
1294
1295 /*
1296 * Lots of memory barriers to reject false positives.
1297 *
1298 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1299 * then rsp->gp_start, and finally rsp->completed. These values
1300 * are updated in the opposite order with memory barriers (or
1301 * equivalent) during grace-period initialization and cleanup.
1302 * Now, a false positive can occur if we get an new value of
1303 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1304 * the memory barriers, the only way that this can happen is if one
1305 * grace period ends and another starts between these two fetches.
1306 * Detect this by comparing rsp->completed with the previous fetch
1307 * from rsp->gpnum.
1308 *
1309 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1310 * and rsp->gp_start suffice to forestall false positives.
1311 */
7d0ae808 1312 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1313 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1314 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1315 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1316 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1317 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1318 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1319 if (ULONG_CMP_GE(completed, gpnum) ||
1320 ULONG_CMP_LT(j, js) ||
1321 ULONG_CMP_GE(gps, js))
1322 return; /* No stall or GP completed since entering function. */
64db4cff 1323 rnp = rdp->mynode;
c96ea7cf 1324 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1325 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1326
1327 /* We haven't checked in, so go dump stack. */
1328 print_cpu_stall(rsp);
1329
bad6e139
PM
1330 } else if (rcu_gp_in_progress(rsp) &&
1331 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1332
bad6e139 1333 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1334 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1335 }
1336}
1337
53d84e00
PM
1338/**
1339 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1340 *
1341 * Set the stall-warning timeout way off into the future, thus preventing
1342 * any RCU CPU stall-warning messages from appearing in the current set of
1343 * RCU grace periods.
1344 *
1345 * The caller must disable hard irqs.
1346 */
1347void rcu_cpu_stall_reset(void)
1348{
6ce75a23
PM
1349 struct rcu_state *rsp;
1350
1351 for_each_rcu_flavor(rsp)
7d0ae808 1352 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1353}
1354
3f5d3ea6 1355/*
d3f3f3f2
PM
1356 * Initialize the specified rcu_data structure's default callback list
1357 * to empty. The default callback list is the one that is not used by
1358 * no-callbacks CPUs.
3f5d3ea6 1359 */
d3f3f3f2 1360static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1361{
1362 int i;
1363
1364 rdp->nxtlist = NULL;
1365 for (i = 0; i < RCU_NEXT_SIZE; i++)
1366 rdp->nxttail[i] = &rdp->nxtlist;
1367}
1368
d3f3f3f2
PM
1369/*
1370 * Initialize the specified rcu_data structure's callback list to empty.
1371 */
1372static void init_callback_list(struct rcu_data *rdp)
1373{
1374 if (init_nocb_callback_list(rdp))
1375 return;
1376 init_default_callback_list(rdp);
1377}
1378
dc35c893
PM
1379/*
1380 * Determine the value that ->completed will have at the end of the
1381 * next subsequent grace period. This is used to tag callbacks so that
1382 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1383 * been dyntick-idle for an extended period with callbacks under the
1384 * influence of RCU_FAST_NO_HZ.
1385 *
1386 * The caller must hold rnp->lock with interrupts disabled.
1387 */
1388static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1389 struct rcu_node *rnp)
1390{
1391 /*
1392 * If RCU is idle, we just wait for the next grace period.
1393 * But we can only be sure that RCU is idle if we are looking
1394 * at the root rcu_node structure -- otherwise, a new grace
1395 * period might have started, but just not yet gotten around
1396 * to initializing the current non-root rcu_node structure.
1397 */
1398 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1399 return rnp->completed + 1;
1400
1401 /*
1402 * Otherwise, wait for a possible partial grace period and
1403 * then the subsequent full grace period.
1404 */
1405 return rnp->completed + 2;
1406}
1407
0446be48
PM
1408/*
1409 * Trace-event helper function for rcu_start_future_gp() and
1410 * rcu_nocb_wait_gp().
1411 */
1412static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1413 unsigned long c, const char *s)
0446be48
PM
1414{
1415 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1416 rnp->completed, c, rnp->level,
1417 rnp->grplo, rnp->grphi, s);
1418}
1419
1420/*
1421 * Start some future grace period, as needed to handle newly arrived
1422 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1423 * rcu_node structure's ->need_future_gp field. Returns true if there
1424 * is reason to awaken the grace-period kthread.
0446be48
PM
1425 *
1426 * The caller must hold the specified rcu_node structure's ->lock.
1427 */
48a7639c
PM
1428static bool __maybe_unused
1429rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1430 unsigned long *c_out)
0446be48
PM
1431{
1432 unsigned long c;
1433 int i;
48a7639c 1434 bool ret = false;
0446be48
PM
1435 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1436
1437 /*
1438 * Pick up grace-period number for new callbacks. If this
1439 * grace period is already marked as needed, return to the caller.
1440 */
1441 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1442 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1443 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1444 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1445 goto out;
0446be48
PM
1446 }
1447
1448 /*
1449 * If either this rcu_node structure or the root rcu_node structure
1450 * believe that a grace period is in progress, then we must wait
1451 * for the one following, which is in "c". Because our request
1452 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1453 * need to explicitly start one. We only do the lockless check
1454 * of rnp_root's fields if the current rcu_node structure thinks
1455 * there is no grace period in flight, and because we hold rnp->lock,
1456 * the only possible change is when rnp_root's two fields are
1457 * equal, in which case rnp_root->gpnum might be concurrently
1458 * incremented. But that is OK, as it will just result in our
1459 * doing some extra useless work.
0446be48
PM
1460 */
1461 if (rnp->gpnum != rnp->completed ||
7d0ae808 1462 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1463 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1464 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1465 goto out;
0446be48
PM
1466 }
1467
1468 /*
1469 * There might be no grace period in progress. If we don't already
1470 * hold it, acquire the root rcu_node structure's lock in order to
1471 * start one (if needed).
1472 */
6303b9c8 1473 if (rnp != rnp_root) {
0446be48 1474 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1475 smp_mb__after_unlock_lock();
1476 }
0446be48
PM
1477
1478 /*
1479 * Get a new grace-period number. If there really is no grace
1480 * period in progress, it will be smaller than the one we obtained
1481 * earlier. Adjust callbacks as needed. Note that even no-CBs
1482 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1483 */
1484 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1485 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1486 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1487 rdp->nxtcompleted[i] = c;
1488
1489 /*
1490 * If the needed for the required grace period is already
1491 * recorded, trace and leave.
1492 */
1493 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1494 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1495 goto unlock_out;
1496 }
1497
1498 /* Record the need for the future grace period. */
1499 rnp_root->need_future_gp[c & 0x1]++;
1500
1501 /* If a grace period is not already in progress, start one. */
1502 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1503 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1504 } else {
f7f7bac9 1505 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1506 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1507 }
1508unlock_out:
1509 if (rnp != rnp_root)
1510 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1511out:
1512 if (c_out != NULL)
1513 *c_out = c;
1514 return ret;
0446be48
PM
1515}
1516
1517/*
1518 * Clean up any old requests for the just-ended grace period. Also return
1519 * whether any additional grace periods have been requested. Also invoke
1520 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1521 * waiting for this grace period to complete.
1522 */
1523static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1524{
1525 int c = rnp->completed;
1526 int needmore;
1527 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1528
1529 rcu_nocb_gp_cleanup(rsp, rnp);
1530 rnp->need_future_gp[c & 0x1] = 0;
1531 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1532 trace_rcu_future_gp(rnp, rdp, c,
1533 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1534 return needmore;
1535}
1536
48a7639c
PM
1537/*
1538 * Awaken the grace-period kthread for the specified flavor of RCU.
1539 * Don't do a self-awaken, and don't bother awakening when there is
1540 * nothing for the grace-period kthread to do (as in several CPUs
1541 * raced to awaken, and we lost), and finally don't try to awaken
1542 * a kthread that has not yet been created.
1543 */
1544static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1545{
1546 if (current == rsp->gp_kthread ||
7d0ae808 1547 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1548 !rsp->gp_kthread)
1549 return;
1550 wake_up(&rsp->gp_wq);
1551}
1552
dc35c893
PM
1553/*
1554 * If there is room, assign a ->completed number to any callbacks on
1555 * this CPU that have not already been assigned. Also accelerate any
1556 * callbacks that were previously assigned a ->completed number that has
1557 * since proven to be too conservative, which can happen if callbacks get
1558 * assigned a ->completed number while RCU is idle, but with reference to
1559 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1560 * not hurt to call it repeatedly. Returns an flag saying that we should
1561 * awaken the RCU grace-period kthread.
dc35c893
PM
1562 *
1563 * The caller must hold rnp->lock with interrupts disabled.
1564 */
48a7639c 1565static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1566 struct rcu_data *rdp)
1567{
1568 unsigned long c;
1569 int i;
48a7639c 1570 bool ret;
dc35c893
PM
1571
1572 /* If the CPU has no callbacks, nothing to do. */
1573 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1574 return false;
dc35c893
PM
1575
1576 /*
1577 * Starting from the sublist containing the callbacks most
1578 * recently assigned a ->completed number and working down, find the
1579 * first sublist that is not assignable to an upcoming grace period.
1580 * Such a sublist has something in it (first two tests) and has
1581 * a ->completed number assigned that will complete sooner than
1582 * the ->completed number for newly arrived callbacks (last test).
1583 *
1584 * The key point is that any later sublist can be assigned the
1585 * same ->completed number as the newly arrived callbacks, which
1586 * means that the callbacks in any of these later sublist can be
1587 * grouped into a single sublist, whether or not they have already
1588 * been assigned a ->completed number.
1589 */
1590 c = rcu_cbs_completed(rsp, rnp);
1591 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1592 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1593 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1594 break;
1595
1596 /*
1597 * If there are no sublist for unassigned callbacks, leave.
1598 * At the same time, advance "i" one sublist, so that "i" will
1599 * index into the sublist where all the remaining callbacks should
1600 * be grouped into.
1601 */
1602 if (++i >= RCU_NEXT_TAIL)
48a7639c 1603 return false;
dc35c893
PM
1604
1605 /*
1606 * Assign all subsequent callbacks' ->completed number to the next
1607 * full grace period and group them all in the sublist initially
1608 * indexed by "i".
1609 */
1610 for (; i <= RCU_NEXT_TAIL; i++) {
1611 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1612 rdp->nxtcompleted[i] = c;
1613 }
910ee45d 1614 /* Record any needed additional grace periods. */
48a7639c 1615 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1616
1617 /* Trace depending on how much we were able to accelerate. */
1618 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1619 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1620 else
f7f7bac9 1621 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1622 return ret;
dc35c893
PM
1623}
1624
1625/*
1626 * Move any callbacks whose grace period has completed to the
1627 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1628 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1629 * sublist. This function is idempotent, so it does not hurt to
1630 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1631 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1632 *
1633 * The caller must hold rnp->lock with interrupts disabled.
1634 */
48a7639c 1635static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1636 struct rcu_data *rdp)
1637{
1638 int i, j;
1639
1640 /* If the CPU has no callbacks, nothing to do. */
1641 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1642 return false;
dc35c893
PM
1643
1644 /*
1645 * Find all callbacks whose ->completed numbers indicate that they
1646 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1647 */
1648 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1649 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1650 break;
1651 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1652 }
1653 /* Clean up any sublist tail pointers that were misordered above. */
1654 for (j = RCU_WAIT_TAIL; j < i; j++)
1655 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1656
1657 /* Copy down callbacks to fill in empty sublists. */
1658 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1659 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1660 break;
1661 rdp->nxttail[j] = rdp->nxttail[i];
1662 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1663 }
1664
1665 /* Classify any remaining callbacks. */
48a7639c 1666 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1667}
1668
d09b62df 1669/*
ba9fbe95
PM
1670 * Update CPU-local rcu_data state to record the beginnings and ends of
1671 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1672 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1673 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1674 */
48a7639c
PM
1675static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1676 struct rcu_data *rdp)
d09b62df 1677{
48a7639c
PM
1678 bool ret;
1679
ba9fbe95 1680 /* Handle the ends of any preceding grace periods first. */
e3663b10 1681 if (rdp->completed == rnp->completed &&
7d0ae808 1682 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1683
ba9fbe95 1684 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1685 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1686
dc35c893
PM
1687 } else {
1688
1689 /* Advance callbacks. */
48a7639c 1690 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1691
1692 /* Remember that we saw this grace-period completion. */
1693 rdp->completed = rnp->completed;
f7f7bac9 1694 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1695 }
398ebe60 1696
7d0ae808 1697 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1698 /*
1699 * If the current grace period is waiting for this CPU,
1700 * set up to detect a quiescent state, otherwise don't
1701 * go looking for one.
1702 */
1703 rdp->gpnum = rnp->gpnum;
f7f7bac9 1704 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633 1705 rdp->passed_quiesce = 0;
5cd37193 1706 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
6eaef633
PM
1707 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1708 zero_cpu_stall_ticks(rdp);
7d0ae808 1709 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1710 }
48a7639c 1711 return ret;
6eaef633
PM
1712}
1713
d34ea322 1714static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1715{
1716 unsigned long flags;
48a7639c 1717 bool needwake;
6eaef633
PM
1718 struct rcu_node *rnp;
1719
1720 local_irq_save(flags);
1721 rnp = rdp->mynode;
7d0ae808
PM
1722 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1723 rdp->completed == READ_ONCE(rnp->completed) &&
1724 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
6eaef633
PM
1725 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1726 local_irq_restore(flags);
1727 return;
1728 }
6303b9c8 1729 smp_mb__after_unlock_lock();
48a7639c 1730 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1732 if (needwake)
1733 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1734}
1735
b3dbec76 1736/*
f7be8209 1737 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1738 */
7fdefc10 1739static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1740{
0aa04b05 1741 unsigned long oldmask;
b3dbec76 1742 struct rcu_data *rdp;
7fdefc10 1743 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1744
7d0ae808 1745 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1746 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1747 smp_mb__after_unlock_lock();
7d0ae808 1748 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209
PM
1749 /* Spurious wakeup, tell caller to go back to sleep. */
1750 raw_spin_unlock_irq(&rnp->lock);
1751 return 0;
1752 }
7d0ae808 1753 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1754
f7be8209
PM
1755 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1756 /*
1757 * Grace period already in progress, don't start another.
1758 * Not supposed to be able to happen.
1759 */
7fdefc10
PM
1760 raw_spin_unlock_irq(&rnp->lock);
1761 return 0;
1762 }
1763
7fdefc10 1764 /* Advance to a new grace period and initialize state. */
26cdfedf 1765 record_gp_stall_check_time(rsp);
765a3f4f
PM
1766 /* Record GP times before starting GP, hence smp_store_release(). */
1767 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1768 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1769 raw_spin_unlock_irq(&rnp->lock);
1770
0aa04b05
PM
1771 /*
1772 * Apply per-leaf buffered online and offline operations to the
1773 * rcu_node tree. Note that this new grace period need not wait
1774 * for subsequent online CPUs, and that quiescent-state forcing
1775 * will handle subsequent offline CPUs.
1776 */
1777 rcu_for_each_leaf_node(rsp, rnp) {
1778 raw_spin_lock_irq(&rnp->lock);
1779 smp_mb__after_unlock_lock();
1780 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1781 !rnp->wait_blkd_tasks) {
1782 /* Nothing to do on this leaf rcu_node structure. */
1783 raw_spin_unlock_irq(&rnp->lock);
1784 continue;
1785 }
1786
1787 /* Record old state, apply changes to ->qsmaskinit field. */
1788 oldmask = rnp->qsmaskinit;
1789 rnp->qsmaskinit = rnp->qsmaskinitnext;
1790
1791 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1792 if (!oldmask != !rnp->qsmaskinit) {
1793 if (!oldmask) /* First online CPU for this rcu_node. */
1794 rcu_init_new_rnp(rnp);
1795 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1796 rnp->wait_blkd_tasks = true;
1797 else /* Last offline CPU and can propagate. */
1798 rcu_cleanup_dead_rnp(rnp);
1799 }
1800
1801 /*
1802 * If all waited-on tasks from prior grace period are
1803 * done, and if all this rcu_node structure's CPUs are
1804 * still offline, propagate up the rcu_node tree and
1805 * clear ->wait_blkd_tasks. Otherwise, if one of this
1806 * rcu_node structure's CPUs has since come back online,
1807 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1808 * checks for this, so just call it unconditionally).
1809 */
1810 if (rnp->wait_blkd_tasks &&
1811 (!rcu_preempt_has_tasks(rnp) ||
1812 rnp->qsmaskinit)) {
1813 rnp->wait_blkd_tasks = false;
1814 rcu_cleanup_dead_rnp(rnp);
1815 }
1816
1817 raw_spin_unlock_irq(&rnp->lock);
1818 }
7fdefc10
PM
1819
1820 /*
1821 * Set the quiescent-state-needed bits in all the rcu_node
1822 * structures for all currently online CPUs in breadth-first order,
1823 * starting from the root rcu_node structure, relying on the layout
1824 * of the tree within the rsp->node[] array. Note that other CPUs
1825 * will access only the leaves of the hierarchy, thus seeing that no
1826 * grace period is in progress, at least until the corresponding
1827 * leaf node has been initialized. In addition, we have excluded
1828 * CPU-hotplug operations.
1829 *
1830 * The grace period cannot complete until the initialization
1831 * process finishes, because this kthread handles both.
1832 */
1833 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1834 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1835 smp_mb__after_unlock_lock();
b3dbec76 1836 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1837 rcu_preempt_check_blocked_tasks(rnp);
1838 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 1839 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 1840 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 1841 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 1842 if (rnp == rdp->mynode)
48a7639c 1843 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1844 rcu_preempt_boost_start_gp(rnp);
1845 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1846 rnp->level, rnp->grplo,
1847 rnp->grphi, rnp->qsmask);
1848 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1849 cond_resched_rcu_qs();
7d0ae808 1850 WRITE_ONCE(rsp->gp_activity, jiffies);
8d7dc928
PM
1851 if (gp_init_delay > 0 &&
1852 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD)))
37745d28 1853 schedule_timeout_uninterruptible(gp_init_delay);
7fdefc10 1854 }
b3dbec76 1855
7fdefc10
PM
1856 return 1;
1857}
b3dbec76 1858
4cdfc175
PM
1859/*
1860 * Do one round of quiescent-state forcing.
1861 */
01896f7e 1862static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1863{
1864 int fqs_state = fqs_state_in;
217af2a2
PM
1865 bool isidle = false;
1866 unsigned long maxj;
4cdfc175
PM
1867 struct rcu_node *rnp = rcu_get_root(rsp);
1868
7d0ae808 1869 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
1870 rsp->n_force_qs++;
1871 if (fqs_state == RCU_SAVE_DYNTICK) {
1872 /* Collect dyntick-idle snapshots. */
0edd1b17 1873 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1874 isidle = true;
0edd1b17
PM
1875 maxj = jiffies - ULONG_MAX / 4;
1876 }
217af2a2
PM
1877 force_qs_rnp(rsp, dyntick_save_progress_counter,
1878 &isidle, &maxj);
0edd1b17 1879 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1880 fqs_state = RCU_FORCE_QS;
1881 } else {
1882 /* Handle dyntick-idle and offline CPUs. */
675da67f 1883 isidle = true;
217af2a2 1884 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1885 }
1886 /* Clear flag to prevent immediate re-entry. */
7d0ae808 1887 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
4cdfc175 1888 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1889 smp_mb__after_unlock_lock();
7d0ae808
PM
1890 WRITE_ONCE(rsp->gp_flags,
1891 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
4cdfc175
PM
1892 raw_spin_unlock_irq(&rnp->lock);
1893 }
1894 return fqs_state;
1895}
1896
7fdefc10
PM
1897/*
1898 * Clean up after the old grace period.
1899 */
4cdfc175 1900static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1901{
1902 unsigned long gp_duration;
48a7639c 1903 bool needgp = false;
dae6e64d 1904 int nocb = 0;
7fdefc10
PM
1905 struct rcu_data *rdp;
1906 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1907
7d0ae808 1908 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1909 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1910 smp_mb__after_unlock_lock();
7fdefc10
PM
1911 gp_duration = jiffies - rsp->gp_start;
1912 if (gp_duration > rsp->gp_max)
1913 rsp->gp_max = gp_duration;
b3dbec76 1914
7fdefc10
PM
1915 /*
1916 * We know the grace period is complete, but to everyone else
1917 * it appears to still be ongoing. But it is also the case
1918 * that to everyone else it looks like there is nothing that
1919 * they can do to advance the grace period. It is therefore
1920 * safe for us to drop the lock in order to mark the grace
1921 * period as completed in all of the rcu_node structures.
7fdefc10 1922 */
5d4b8659 1923 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1924
5d4b8659
PM
1925 /*
1926 * Propagate new ->completed value to rcu_node structures so
1927 * that other CPUs don't have to wait until the start of the next
1928 * grace period to process their callbacks. This also avoids
1929 * some nasty RCU grace-period initialization races by forcing
1930 * the end of the current grace period to be completely recorded in
1931 * all of the rcu_node structures before the beginning of the next
1932 * grace period is recorded in any of the rcu_node structures.
1933 */
1934 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1935 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1936 smp_mb__after_unlock_lock();
5c60d25f
PM
1937 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1938 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 1939 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
1940 rdp = this_cpu_ptr(rsp->rda);
1941 if (rnp == rdp->mynode)
48a7639c 1942 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1943 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1944 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1945 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1946 cond_resched_rcu_qs();
7d0ae808 1947 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1948 }
5d4b8659
PM
1949 rnp = rcu_get_root(rsp);
1950 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1951 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1952 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1953
765a3f4f 1954 /* Declare grace period done. */
7d0ae808 1955 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 1956 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1957 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1958 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1959 /* Advance CBs to reduce false positives below. */
1960 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1961 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 1962 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 1963 trace_rcu_grace_period(rsp->name,
7d0ae808 1964 READ_ONCE(rsp->gpnum),
bb311ecc
PM
1965 TPS("newreq"));
1966 }
7fdefc10 1967 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1968}
1969
1970/*
1971 * Body of kthread that handles grace periods.
1972 */
1973static int __noreturn rcu_gp_kthread(void *arg)
1974{
4cdfc175 1975 int fqs_state;
88d6df61 1976 int gf;
d40011f6 1977 unsigned long j;
4cdfc175 1978 int ret;
7fdefc10
PM
1979 struct rcu_state *rsp = arg;
1980 struct rcu_node *rnp = rcu_get_root(rsp);
1981
5871968d 1982 rcu_bind_gp_kthread();
7fdefc10
PM
1983 for (;;) {
1984
1985 /* Handle grace-period start. */
1986 for (;;) {
63c4db78 1987 trace_rcu_grace_period(rsp->name,
7d0ae808 1988 READ_ONCE(rsp->gpnum),
63c4db78 1989 TPS("reqwait"));
afea227f 1990 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1991 wait_event_interruptible(rsp->gp_wq,
7d0ae808 1992 READ_ONCE(rsp->gp_flags) &
4cdfc175 1993 RCU_GP_FLAG_INIT);
78e4bc34 1994 /* Locking provides needed memory barrier. */
f7be8209 1995 if (rcu_gp_init(rsp))
7fdefc10 1996 break;
bde6c3aa 1997 cond_resched_rcu_qs();
7d0ae808 1998 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 1999 WARN_ON(signal_pending(current));
63c4db78 2000 trace_rcu_grace_period(rsp->name,
7d0ae808 2001 READ_ONCE(rsp->gpnum),
63c4db78 2002 TPS("reqwaitsig"));
7fdefc10 2003 }
cabc49c1 2004
4cdfc175
PM
2005 /* Handle quiescent-state forcing. */
2006 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
2007 j = jiffies_till_first_fqs;
2008 if (j > HZ) {
2009 j = HZ;
2010 jiffies_till_first_fqs = HZ;
2011 }
88d6df61 2012 ret = 0;
cabc49c1 2013 for (;;) {
88d6df61
PM
2014 if (!ret)
2015 rsp->jiffies_force_qs = jiffies + j;
63c4db78 2016 trace_rcu_grace_period(rsp->name,
7d0ae808 2017 READ_ONCE(rsp->gpnum),
63c4db78 2018 TPS("fqswait"));
afea227f 2019 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 2020 ret = wait_event_interruptible_timeout(rsp->gp_wq,
7d0ae808 2021 ((gf = READ_ONCE(rsp->gp_flags)) &
88d6df61 2022 RCU_GP_FLAG_FQS) ||
7d0ae808 2023 (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2024 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 2025 j);
78e4bc34 2026 /* Locking provides needed memory barriers. */
4cdfc175 2027 /* If grace period done, leave loop. */
7d0ae808 2028 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2029 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2030 break;
4cdfc175 2031 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2032 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2033 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2034 trace_rcu_grace_period(rsp->name,
7d0ae808 2035 READ_ONCE(rsp->gpnum),
63c4db78 2036 TPS("fqsstart"));
4cdfc175 2037 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78 2038 trace_rcu_grace_period(rsp->name,
7d0ae808 2039 READ_ONCE(rsp->gpnum),
63c4db78 2040 TPS("fqsend"));
bde6c3aa 2041 cond_resched_rcu_qs();
7d0ae808 2042 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
2043 } else {
2044 /* Deal with stray signal. */
bde6c3aa 2045 cond_resched_rcu_qs();
7d0ae808 2046 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2047 WARN_ON(signal_pending(current));
63c4db78 2048 trace_rcu_grace_period(rsp->name,
7d0ae808 2049 READ_ONCE(rsp->gpnum),
63c4db78 2050 TPS("fqswaitsig"));
4cdfc175 2051 }
d40011f6
PM
2052 j = jiffies_till_next_fqs;
2053 if (j > HZ) {
2054 j = HZ;
2055 jiffies_till_next_fqs = HZ;
2056 } else if (j < 1) {
2057 j = 1;
2058 jiffies_till_next_fqs = 1;
2059 }
cabc49c1 2060 }
4cdfc175
PM
2061
2062 /* Handle grace-period end. */
2063 rcu_gp_cleanup(rsp);
b3dbec76 2064 }
b3dbec76
PM
2065}
2066
64db4cff
PM
2067/*
2068 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2069 * in preparation for detecting the next grace period. The caller must hold
b8462084 2070 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2071 *
2072 * Note that it is legal for a dying CPU (which is marked as offline) to
2073 * invoke this function. This can happen when the dying CPU reports its
2074 * quiescent state.
48a7639c
PM
2075 *
2076 * Returns true if the grace-period kthread must be awakened.
64db4cff 2077 */
48a7639c 2078static bool
910ee45d
PM
2079rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2080 struct rcu_data *rdp)
64db4cff 2081{
b8462084 2082 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2083 /*
b3dbec76 2084 * Either we have not yet spawned the grace-period
62da1921
PM
2085 * task, this CPU does not need another grace period,
2086 * or a grace period is already in progress.
b3dbec76 2087 * Either way, don't start a new grace period.
afe24b12 2088 */
48a7639c 2089 return false;
afe24b12 2090 }
7d0ae808
PM
2091 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2092 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2093 TPS("newreq"));
62da1921 2094
016a8d5b
SR
2095 /*
2096 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2097 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2098 * the wakeup to our caller.
016a8d5b 2099 */
48a7639c 2100 return true;
64db4cff
PM
2101}
2102
910ee45d
PM
2103/*
2104 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2105 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2106 * is invoked indirectly from rcu_advance_cbs(), which would result in
2107 * endless recursion -- or would do so if it wasn't for the self-deadlock
2108 * that is encountered beforehand.
48a7639c
PM
2109 *
2110 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2111 */
48a7639c 2112static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2113{
2114 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2115 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2116 bool ret = false;
910ee45d
PM
2117
2118 /*
2119 * If there is no grace period in progress right now, any
2120 * callbacks we have up to this point will be satisfied by the
2121 * next grace period. Also, advancing the callbacks reduces the
2122 * probability of false positives from cpu_needs_another_gp()
2123 * resulting in pointless grace periods. So, advance callbacks
2124 * then start the grace period!
2125 */
48a7639c
PM
2126 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2127 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2128 return ret;
910ee45d
PM
2129}
2130
f41d911f 2131/*
d3f6bad3
PM
2132 * Report a full set of quiescent states to the specified rcu_state
2133 * data structure. This involves cleaning up after the prior grace
2134 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
2135 * if one is needed. Note that the caller must hold rnp->lock, which
2136 * is released before return.
f41d911f 2137 */
d3f6bad3 2138static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2139 __releases(rcu_get_root(rsp)->lock)
f41d911f 2140{
fc2219d4 2141 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2142 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
cabc49c1 2143 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 2144 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2145}
2146
64db4cff 2147/*
d3f6bad3
PM
2148 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2149 * Allows quiescent states for a group of CPUs to be reported at one go
2150 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2151 * must be represented by the same rcu_node structure (which need not be a
2152 * leaf rcu_node structure, though it often will be). The gps parameter
2153 * is the grace-period snapshot, which means that the quiescent states
2154 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2155 * must be held upon entry, and it is released before return.
64db4cff
PM
2156 */
2157static void
d3f6bad3 2158rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2159 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2160 __releases(rnp->lock)
2161{
654e9533 2162 unsigned long oldmask = 0;
28ecd580
PM
2163 struct rcu_node *rnp_c;
2164
64db4cff
PM
2165 /* Walk up the rcu_node hierarchy. */
2166 for (;;) {
654e9533 2167 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2168
654e9533
PM
2169 /*
2170 * Our bit has already been cleared, or the
2171 * relevant grace period is already over, so done.
2172 */
1304afb2 2173 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2174 return;
2175 }
654e9533 2176 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2177 rnp->qsmask &= ~mask;
d4c08f2a
PM
2178 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2179 mask, rnp->qsmask, rnp->level,
2180 rnp->grplo, rnp->grphi,
2181 !!rnp->gp_tasks);
27f4d280 2182 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2183
2184 /* Other bits still set at this level, so done. */
1304afb2 2185 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2186 return;
2187 }
2188 mask = rnp->grpmask;
2189 if (rnp->parent == NULL) {
2190
2191 /* No more levels. Exit loop holding root lock. */
2192
2193 break;
2194 }
1304afb2 2195 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2196 rnp_c = rnp;
64db4cff 2197 rnp = rnp->parent;
1304afb2 2198 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2199 smp_mb__after_unlock_lock();
654e9533 2200 oldmask = rnp_c->qsmask;
64db4cff
PM
2201 }
2202
2203 /*
2204 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2205 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2206 * to clean up and start the next grace period if one is needed.
64db4cff 2207 */
d3f6bad3 2208 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2209}
2210
cc99a310
PM
2211/*
2212 * Record a quiescent state for all tasks that were previously queued
2213 * on the specified rcu_node structure and that were blocking the current
2214 * RCU grace period. The caller must hold the specified rnp->lock with
2215 * irqs disabled, and this lock is released upon return, but irqs remain
2216 * disabled.
2217 */
0aa04b05 2218static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2219 struct rcu_node *rnp, unsigned long flags)
2220 __releases(rnp->lock)
2221{
654e9533 2222 unsigned long gps;
cc99a310
PM
2223 unsigned long mask;
2224 struct rcu_node *rnp_p;
2225
a77da14c
PM
2226 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2227 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
cc99a310
PM
2228 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2229 return; /* Still need more quiescent states! */
2230 }
2231
2232 rnp_p = rnp->parent;
2233 if (rnp_p == NULL) {
2234 /*
a77da14c
PM
2235 * Only one rcu_node structure in the tree, so don't
2236 * try to report up to its nonexistent parent!
cc99a310
PM
2237 */
2238 rcu_report_qs_rsp(rsp, flags);
2239 return;
2240 }
2241
654e9533
PM
2242 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2243 gps = rnp->gpnum;
cc99a310
PM
2244 mask = rnp->grpmask;
2245 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2246 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2247 smp_mb__after_unlock_lock();
654e9533 2248 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2249}
2250
64db4cff 2251/*
d3f6bad3
PM
2252 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2253 * structure. This must be either called from the specified CPU, or
2254 * called when the specified CPU is known to be offline (and when it is
2255 * also known that no other CPU is concurrently trying to help the offline
2256 * CPU). The lastcomp argument is used to make sure we are still in the
2257 * grace period of interest. We don't want to end the current grace period
2258 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2259 */
2260static void
d7d6a11e 2261rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2262{
2263 unsigned long flags;
2264 unsigned long mask;
48a7639c 2265 bool needwake;
64db4cff
PM
2266 struct rcu_node *rnp;
2267
2268 rnp = rdp->mynode;
1304afb2 2269 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2270 smp_mb__after_unlock_lock();
5cd37193
PM
2271 if ((rdp->passed_quiesce == 0 &&
2272 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2273 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2274 rdp->gpwrap) {
64db4cff
PM
2275
2276 /*
e4cc1f22
PM
2277 * The grace period in which this quiescent state was
2278 * recorded has ended, so don't report it upwards.
2279 * We will instead need a new quiescent state that lies
2280 * within the current grace period.
64db4cff 2281 */
e4cc1f22 2282 rdp->passed_quiesce = 0; /* need qs for new gp. */
5cd37193 2283 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1304afb2 2284 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2285 return;
2286 }
2287 mask = rdp->grpmask;
2288 if ((rnp->qsmask & mask) == 0) {
1304afb2 2289 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2290 } else {
2291 rdp->qs_pending = 0;
2292
2293 /*
2294 * This GP can't end until cpu checks in, so all of our
2295 * callbacks can be processed during the next GP.
2296 */
48a7639c 2297 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2298
654e9533
PM
2299 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2300 /* ^^^ Released rnp->lock */
48a7639c
PM
2301 if (needwake)
2302 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2303 }
2304}
2305
2306/*
2307 * Check to see if there is a new grace period of which this CPU
2308 * is not yet aware, and if so, set up local rcu_data state for it.
2309 * Otherwise, see if this CPU has just passed through its first
2310 * quiescent state for this grace period, and record that fact if so.
2311 */
2312static void
2313rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2314{
05eb552b
PM
2315 /* Check for grace-period ends and beginnings. */
2316 note_gp_changes(rsp, rdp);
64db4cff
PM
2317
2318 /*
2319 * Does this CPU still need to do its part for current grace period?
2320 * If no, return and let the other CPUs do their part as well.
2321 */
2322 if (!rdp->qs_pending)
2323 return;
2324
2325 /*
2326 * Was there a quiescent state since the beginning of the grace
2327 * period? If no, then exit and wait for the next call.
2328 */
5cd37193
PM
2329 if (!rdp->passed_quiesce &&
2330 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2331 return;
2332
d3f6bad3
PM
2333 /*
2334 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2335 * judge of that).
2336 */
d7d6a11e 2337 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2338}
2339
2340#ifdef CONFIG_HOTPLUG_CPU
2341
e74f4c45 2342/*
b1420f1c
PM
2343 * Send the specified CPU's RCU callbacks to the orphanage. The
2344 * specified CPU must be offline, and the caller must hold the
7b2e6011 2345 * ->orphan_lock.
e74f4c45 2346 */
b1420f1c
PM
2347static void
2348rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2349 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2350{
3fbfbf7a 2351 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2352 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2353 return;
2354
b1420f1c
PM
2355 /*
2356 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2357 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2358 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2359 */
a50c3af9 2360 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2361 rsp->qlen_lazy += rdp->qlen_lazy;
2362 rsp->qlen += rdp->qlen;
2363 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2364 rdp->qlen_lazy = 0;
7d0ae808 2365 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2366 }
2367
2368 /*
b1420f1c
PM
2369 * Next, move those callbacks still needing a grace period to
2370 * the orphanage, where some other CPU will pick them up.
2371 * Some of the callbacks might have gone partway through a grace
2372 * period, but that is too bad. They get to start over because we
2373 * cannot assume that grace periods are synchronized across CPUs.
2374 * We don't bother updating the ->nxttail[] array yet, instead
2375 * we just reset the whole thing later on.
a50c3af9 2376 */
b1420f1c
PM
2377 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2378 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2379 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2380 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2381 }
2382
2383 /*
b1420f1c
PM
2384 * Then move the ready-to-invoke callbacks to the orphanage,
2385 * where some other CPU will pick them up. These will not be
2386 * required to pass though another grace period: They are done.
a50c3af9 2387 */
e5601400 2388 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2389 *rsp->orphan_donetail = rdp->nxtlist;
2390 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2391 }
e74f4c45 2392
b33078b6
PM
2393 /*
2394 * Finally, initialize the rcu_data structure's list to empty and
2395 * disallow further callbacks on this CPU.
2396 */
3f5d3ea6 2397 init_callback_list(rdp);
b33078b6 2398 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2399}
2400
2401/*
2402 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2403 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2404 */
96d3fd0d 2405static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2406{
2407 int i;
fa07a58f 2408 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2409
3fbfbf7a 2410 /* No-CBs CPUs are handled specially. */
96d3fd0d 2411 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2412 return;
2413
b1420f1c
PM
2414 /* Do the accounting first. */
2415 rdp->qlen_lazy += rsp->qlen_lazy;
2416 rdp->qlen += rsp->qlen;
2417 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2418 if (rsp->qlen_lazy != rsp->qlen)
2419 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2420 rsp->qlen_lazy = 0;
2421 rsp->qlen = 0;
2422
2423 /*
2424 * We do not need a memory barrier here because the only way we
2425 * can get here if there is an rcu_barrier() in flight is if
2426 * we are the task doing the rcu_barrier().
2427 */
2428
2429 /* First adopt the ready-to-invoke callbacks. */
2430 if (rsp->orphan_donelist != NULL) {
2431 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2432 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2433 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2434 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2435 rdp->nxttail[i] = rsp->orphan_donetail;
2436 rsp->orphan_donelist = NULL;
2437 rsp->orphan_donetail = &rsp->orphan_donelist;
2438 }
2439
2440 /* And then adopt the callbacks that still need a grace period. */
2441 if (rsp->orphan_nxtlist != NULL) {
2442 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2443 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2444 rsp->orphan_nxtlist = NULL;
2445 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2446 }
2447}
2448
2449/*
2450 * Trace the fact that this CPU is going offline.
2451 */
2452static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2453{
2454 RCU_TRACE(unsigned long mask);
2455 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2456 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2457
2458 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2459 trace_rcu_grace_period(rsp->name,
2460 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2461 TPS("cpuofl"));
64db4cff
PM
2462}
2463
8af3a5e7
PM
2464/*
2465 * All CPUs for the specified rcu_node structure have gone offline,
2466 * and all tasks that were preempted within an RCU read-side critical
2467 * section while running on one of those CPUs have since exited their RCU
2468 * read-side critical section. Some other CPU is reporting this fact with
2469 * the specified rcu_node structure's ->lock held and interrupts disabled.
2470 * This function therefore goes up the tree of rcu_node structures,
2471 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2472 * the leaf rcu_node structure's ->qsmaskinit field has already been
2473 * updated
2474 *
2475 * This function does check that the specified rcu_node structure has
2476 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2477 * prematurely. That said, invoking it after the fact will cost you
2478 * a needless lock acquisition. So once it has done its work, don't
2479 * invoke it again.
2480 */
2481static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2482{
2483 long mask;
2484 struct rcu_node *rnp = rnp_leaf;
2485
2486 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2487 return;
2488 for (;;) {
2489 mask = rnp->grpmask;
2490 rnp = rnp->parent;
2491 if (!rnp)
2492 break;
2493 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2494 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2495 rnp->qsmaskinit &= ~mask;
0aa04b05 2496 rnp->qsmask &= ~mask;
8af3a5e7
PM
2497 if (rnp->qsmaskinit) {
2498 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2499 return;
2500 }
2501 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2502 }
2503}
2504
88428cc5
PM
2505/*
2506 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2507 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2508 * bit masks.
2509 */
2510static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2511{
2512 unsigned long flags;
2513 unsigned long mask;
2514 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2515 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2516
2517 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2518 mask = rdp->grpmask;
2519 raw_spin_lock_irqsave(&rnp->lock, flags);
2520 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2521 rnp->qsmaskinitnext &= ~mask;
2522 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2523}
2524
64db4cff 2525/*
e5601400 2526 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2527 * this fact from process context. Do the remainder of the cleanup,
2528 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2529 * adopting them. There can only be one CPU hotplug operation at a time,
2530 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2531 */
e5601400 2532static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2533{
2036d94a 2534 unsigned long flags;
e5601400 2535 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2536 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2537
2036d94a 2538 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2539 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2540
b1420f1c 2541 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2542 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2543 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2544 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2545 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2546
cf01537e
PM
2547 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2548 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2549 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2550}
2551
2552#else /* #ifdef CONFIG_HOTPLUG_CPU */
2553
e5601400 2554static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2555{
2556}
2557
b6a932d1
PM
2558static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2559{
2560}
2561
88428cc5
PM
2562static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2563{
2564}
2565
e5601400 2566static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2567{
2568}
2569
2570#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2571
2572/*
2573 * Invoke any RCU callbacks that have made it to the end of their grace
2574 * period. Thottle as specified by rdp->blimit.
2575 */
37c72e56 2576static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2577{
2578 unsigned long flags;
2579 struct rcu_head *next, *list, **tail;
878d7439
ED
2580 long bl, count, count_lazy;
2581 int i;
64db4cff 2582
dc35c893 2583 /* If no callbacks are ready, just return. */
29c00b4a 2584 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2585 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2586 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2587 need_resched(), is_idle_task(current),
2588 rcu_is_callbacks_kthread());
64db4cff 2589 return;
29c00b4a 2590 }
64db4cff
PM
2591
2592 /*
2593 * Extract the list of ready callbacks, disabling to prevent
2594 * races with call_rcu() from interrupt handlers.
2595 */
2596 local_irq_save(flags);
8146c4e2 2597 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2598 bl = rdp->blimit;
486e2593 2599 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2600 list = rdp->nxtlist;
2601 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2602 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2603 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2604 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2605 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2606 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2607 local_irq_restore(flags);
2608
2609 /* Invoke callbacks. */
486e2593 2610 count = count_lazy = 0;
64db4cff
PM
2611 while (list) {
2612 next = list->next;
2613 prefetch(next);
551d55a9 2614 debug_rcu_head_unqueue(list);
486e2593
PM
2615 if (__rcu_reclaim(rsp->name, list))
2616 count_lazy++;
64db4cff 2617 list = next;
dff1672d
PM
2618 /* Stop only if limit reached and CPU has something to do. */
2619 if (++count >= bl &&
2620 (need_resched() ||
2621 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2622 break;
2623 }
2624
2625 local_irq_save(flags);
4968c300
PM
2626 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2627 is_idle_task(current),
2628 rcu_is_callbacks_kthread());
64db4cff
PM
2629
2630 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2631 if (list != NULL) {
2632 *tail = rdp->nxtlist;
2633 rdp->nxtlist = list;
b41772ab
PM
2634 for (i = 0; i < RCU_NEXT_SIZE; i++)
2635 if (&rdp->nxtlist == rdp->nxttail[i])
2636 rdp->nxttail[i] = tail;
64db4cff
PM
2637 else
2638 break;
2639 }
b1420f1c
PM
2640 smp_mb(); /* List handling before counting for rcu_barrier(). */
2641 rdp->qlen_lazy -= count_lazy;
7d0ae808 2642 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2643 rdp->n_cbs_invoked += count;
64db4cff
PM
2644
2645 /* Reinstate batch limit if we have worked down the excess. */
2646 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2647 rdp->blimit = blimit;
2648
37c72e56
PM
2649 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2650 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2651 rdp->qlen_last_fqs_check = 0;
2652 rdp->n_force_qs_snap = rsp->n_force_qs;
2653 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2654 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2655 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2656
64db4cff
PM
2657 local_irq_restore(flags);
2658
e0f23060 2659 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2660 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2661 invoke_rcu_core();
64db4cff
PM
2662}
2663
2664/*
2665 * Check to see if this CPU is in a non-context-switch quiescent state
2666 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2667 * Also schedule RCU core processing.
64db4cff 2668 *
9b2e4f18 2669 * This function must be called from hardirq context. It is normally
64db4cff
PM
2670 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2671 * false, there is no point in invoking rcu_check_callbacks().
2672 */
c3377c2d 2673void rcu_check_callbacks(int user)
64db4cff 2674{
f7f7bac9 2675 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2676 increment_cpu_stall_ticks();
9b2e4f18 2677 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2678
2679 /*
2680 * Get here if this CPU took its interrupt from user
2681 * mode or from the idle loop, and if this is not a
2682 * nested interrupt. In this case, the CPU is in
d6714c22 2683 * a quiescent state, so note it.
64db4cff
PM
2684 *
2685 * No memory barrier is required here because both
d6714c22
PM
2686 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2687 * variables that other CPUs neither access nor modify,
2688 * at least not while the corresponding CPU is online.
64db4cff
PM
2689 */
2690
284a8c93
PM
2691 rcu_sched_qs();
2692 rcu_bh_qs();
64db4cff
PM
2693
2694 } else if (!in_softirq()) {
2695
2696 /*
2697 * Get here if this CPU did not take its interrupt from
2698 * softirq, in other words, if it is not interrupting
2699 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2700 * critical section, so note it.
64db4cff
PM
2701 */
2702
284a8c93 2703 rcu_bh_qs();
64db4cff 2704 }
86aea0e6 2705 rcu_preempt_check_callbacks();
e3950ecd 2706 if (rcu_pending())
a46e0899 2707 invoke_rcu_core();
8315f422
PM
2708 if (user)
2709 rcu_note_voluntary_context_switch(current);
f7f7bac9 2710 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2711}
2712
64db4cff
PM
2713/*
2714 * Scan the leaf rcu_node structures, processing dyntick state for any that
2715 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2716 * Also initiate boosting for any threads blocked on the root rcu_node.
2717 *
ee47eb9f 2718 * The caller must have suppressed start of new grace periods.
64db4cff 2719 */
217af2a2
PM
2720static void force_qs_rnp(struct rcu_state *rsp,
2721 int (*f)(struct rcu_data *rsp, bool *isidle,
2722 unsigned long *maxj),
2723 bool *isidle, unsigned long *maxj)
64db4cff
PM
2724{
2725 unsigned long bit;
2726 int cpu;
2727 unsigned long flags;
2728 unsigned long mask;
a0b6c9a7 2729 struct rcu_node *rnp;
64db4cff 2730
a0b6c9a7 2731 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2732 cond_resched_rcu_qs();
64db4cff 2733 mask = 0;
1304afb2 2734 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2735 smp_mb__after_unlock_lock();
ee47eb9f 2736 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2737 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2738 return;
64db4cff 2739 }
a0b6c9a7 2740 if (rnp->qsmask == 0) {
a77da14c
PM
2741 if (rcu_state_p == &rcu_sched_state ||
2742 rsp != rcu_state_p ||
2743 rcu_preempt_blocked_readers_cgp(rnp)) {
2744 /*
2745 * No point in scanning bits because they
2746 * are all zero. But we might need to
2747 * priority-boost blocked readers.
2748 */
2749 rcu_initiate_boost(rnp, flags);
2750 /* rcu_initiate_boost() releases rnp->lock */
2751 continue;
2752 }
2753 if (rnp->parent &&
2754 (rnp->parent->qsmask & rnp->grpmask)) {
2755 /*
2756 * Race between grace-period
2757 * initialization and task exiting RCU
2758 * read-side critical section: Report.
2759 */
2760 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2761 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2762 continue;
2763 }
64db4cff 2764 }
a0b6c9a7 2765 cpu = rnp->grplo;
64db4cff 2766 bit = 1;
a0b6c9a7 2767 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17 2768 if ((rnp->qsmask & bit) != 0) {
675da67f
PM
2769 if ((rnp->qsmaskinit & bit) == 0)
2770 *isidle = false; /* Pending hotplug. */
0edd1b17
PM
2771 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2772 mask |= bit;
2773 }
64db4cff 2774 }
45f014c5 2775 if (mask != 0) {
654e9533
PM
2776 /* Idle/offline CPUs, report (releases rnp->lock. */
2777 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2778 } else {
2779 /* Nothing to do here, so just drop the lock. */
2780 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2781 }
64db4cff 2782 }
64db4cff
PM
2783}
2784
2785/*
2786 * Force quiescent states on reluctant CPUs, and also detect which
2787 * CPUs are in dyntick-idle mode.
2788 */
4cdfc175 2789static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2790{
2791 unsigned long flags;
394f2769
PM
2792 bool ret;
2793 struct rcu_node *rnp;
2794 struct rcu_node *rnp_old = NULL;
2795
2796 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2797 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2798 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2799 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2800 !raw_spin_trylock(&rnp->fqslock);
2801 if (rnp_old != NULL)
2802 raw_spin_unlock(&rnp_old->fqslock);
2803 if (ret) {
a792563b 2804 rsp->n_force_qs_lh++;
394f2769
PM
2805 return;
2806 }
2807 rnp_old = rnp;
2808 }
2809 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2810
394f2769
PM
2811 /* Reached the root of the rcu_node tree, acquire lock. */
2812 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2813 smp_mb__after_unlock_lock();
394f2769 2814 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2815 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2816 rsp->n_force_qs_lh++;
394f2769 2817 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2818 return; /* Someone beat us to it. */
46a1e34e 2819 }
7d0ae808 2820 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
394f2769 2821 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2822 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2823}
2824
64db4cff 2825/*
e0f23060
PM
2826 * This does the RCU core processing work for the specified rcu_state
2827 * and rcu_data structures. This may be called only from the CPU to
2828 * whom the rdp belongs.
64db4cff
PM
2829 */
2830static void
1bca8cf1 2831__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2832{
2833 unsigned long flags;
48a7639c 2834 bool needwake;
fa07a58f 2835 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2836
2e597558
PM
2837 WARN_ON_ONCE(rdp->beenonline == 0);
2838
64db4cff
PM
2839 /* Update RCU state based on any recent quiescent states. */
2840 rcu_check_quiescent_state(rsp, rdp);
2841
2842 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2843 local_irq_save(flags);
64db4cff 2844 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2845 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2846 needwake = rcu_start_gp(rsp);
b8462084 2847 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2848 if (needwake)
2849 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2850 } else {
2851 local_irq_restore(flags);
64db4cff
PM
2852 }
2853
2854 /* If there are callbacks ready, invoke them. */
09223371 2855 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2856 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2857
2858 /* Do any needed deferred wakeups of rcuo kthreads. */
2859 do_nocb_deferred_wakeup(rdp);
09223371
SL
2860}
2861
64db4cff 2862/*
e0f23060 2863 * Do RCU core processing for the current CPU.
64db4cff 2864 */
09223371 2865static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2866{
6ce75a23
PM
2867 struct rcu_state *rsp;
2868
bfa00b4c
PM
2869 if (cpu_is_offline(smp_processor_id()))
2870 return;
f7f7bac9 2871 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2872 for_each_rcu_flavor(rsp)
2873 __rcu_process_callbacks(rsp);
f7f7bac9 2874 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2875}
2876
a26ac245 2877/*
e0f23060
PM
2878 * Schedule RCU callback invocation. If the specified type of RCU
2879 * does not support RCU priority boosting, just do a direct call,
2880 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2881 * are running on the current CPU with softirqs disabled, the
e0f23060 2882 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2883 */
a46e0899 2884static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2885{
7d0ae808 2886 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2887 return;
a46e0899
PM
2888 if (likely(!rsp->boost)) {
2889 rcu_do_batch(rsp, rdp);
a26ac245
PM
2890 return;
2891 }
a46e0899 2892 invoke_rcu_callbacks_kthread();
a26ac245
PM
2893}
2894
a46e0899 2895static void invoke_rcu_core(void)
09223371 2896{
b0f74036
PM
2897 if (cpu_online(smp_processor_id()))
2898 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2899}
2900
29154c57
PM
2901/*
2902 * Handle any core-RCU processing required by a call_rcu() invocation.
2903 */
2904static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2905 struct rcu_head *head, unsigned long flags)
64db4cff 2906{
48a7639c
PM
2907 bool needwake;
2908
62fde6ed
PM
2909 /*
2910 * If called from an extended quiescent state, invoke the RCU
2911 * core in order to force a re-evaluation of RCU's idleness.
2912 */
9910affa 2913 if (!rcu_is_watching())
62fde6ed
PM
2914 invoke_rcu_core();
2915
a16b7a69 2916 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2917 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2918 return;
64db4cff 2919
37c72e56
PM
2920 /*
2921 * Force the grace period if too many callbacks or too long waiting.
2922 * Enforce hysteresis, and don't invoke force_quiescent_state()
2923 * if some other CPU has recently done so. Also, don't bother
2924 * invoking force_quiescent_state() if the newly enqueued callback
2925 * is the only one waiting for a grace period to complete.
2926 */
2655d57e 2927 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2928
2929 /* Are we ignoring a completed grace period? */
470716fc 2930 note_gp_changes(rsp, rdp);
b52573d2
PM
2931
2932 /* Start a new grace period if one not already started. */
2933 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2934 struct rcu_node *rnp_root = rcu_get_root(rsp);
2935
b8462084 2936 raw_spin_lock(&rnp_root->lock);
6303b9c8 2937 smp_mb__after_unlock_lock();
48a7639c 2938 needwake = rcu_start_gp(rsp);
b8462084 2939 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2940 if (needwake)
2941 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2942 } else {
2943 /* Give the grace period a kick. */
2944 rdp->blimit = LONG_MAX;
2945 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2946 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2947 force_quiescent_state(rsp);
b52573d2
PM
2948 rdp->n_force_qs_snap = rsp->n_force_qs;
2949 rdp->qlen_last_fqs_check = rdp->qlen;
2950 }
4cdfc175 2951 }
29154c57
PM
2952}
2953
ae150184
PM
2954/*
2955 * RCU callback function to leak a callback.
2956 */
2957static void rcu_leak_callback(struct rcu_head *rhp)
2958{
2959}
2960
3fbfbf7a
PM
2961/*
2962 * Helper function for call_rcu() and friends. The cpu argument will
2963 * normally be -1, indicating "currently running CPU". It may specify
2964 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2965 * is expected to specify a CPU.
2966 */
64db4cff
PM
2967static void
2968__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2969 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2970{
2971 unsigned long flags;
2972 struct rcu_data *rdp;
2973
1146edcb 2974 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2975 if (debug_rcu_head_queue(head)) {
2976 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 2977 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2978 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2979 return;
2980 }
64db4cff
PM
2981 head->func = func;
2982 head->next = NULL;
2983
64db4cff
PM
2984 /*
2985 * Opportunistically note grace-period endings and beginnings.
2986 * Note that we might see a beginning right after we see an
2987 * end, but never vice versa, since this CPU has to pass through
2988 * a quiescent state betweentimes.
2989 */
2990 local_irq_save(flags);
394f99a9 2991 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2992
2993 /* Add the callback to our list. */
3fbfbf7a
PM
2994 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2995 int offline;
2996
2997 if (cpu != -1)
2998 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
2999 if (likely(rdp->mynode)) {
3000 /* Post-boot, so this should be for a no-CBs CPU. */
3001 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3002 WARN_ON_ONCE(offline);
3003 /* Offline CPU, _call_rcu() illegal, leak callback. */
3004 local_irq_restore(flags);
3005 return;
3006 }
3007 /*
3008 * Very early boot, before rcu_init(). Initialize if needed
3009 * and then drop through to queue the callback.
3010 */
3011 BUG_ON(cpu != -1);
34404ca8 3012 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3013 if (!likely(rdp->nxtlist))
3014 init_default_callback_list(rdp);
0d8ee37e 3015 }
7d0ae808 3016 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3017 if (lazy)
3018 rdp->qlen_lazy++;
c57afe80
PM
3019 else
3020 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3021 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3022 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3023 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3024
d4c08f2a
PM
3025 if (__is_kfree_rcu_offset((unsigned long)func))
3026 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3027 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3028 else
486e2593 3029 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3030
29154c57
PM
3031 /* Go handle any RCU core processing required. */
3032 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3033 local_irq_restore(flags);
3034}
3035
3036/*
d6714c22 3037 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3038 */
d6714c22 3039void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 3040{
3fbfbf7a 3041 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3042}
d6714c22 3043EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3044
3045/*
486e2593 3046 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
3047 */
3048void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3049{
3fbfbf7a 3050 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3051}
3052EXPORT_SYMBOL_GPL(call_rcu_bh);
3053
495aa969
ACB
3054/*
3055 * Queue an RCU callback for lazy invocation after a grace period.
3056 * This will likely be later named something like "call_rcu_lazy()",
3057 * but this change will require some way of tagging the lazy RCU
3058 * callbacks in the list of pending callbacks. Until then, this
3059 * function may only be called from __kfree_rcu().
3060 */
3061void kfree_call_rcu(struct rcu_head *head,
3062 void (*func)(struct rcu_head *rcu))
3063{
e534165b 3064 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3065}
3066EXPORT_SYMBOL_GPL(kfree_call_rcu);
3067
6d813391
PM
3068/*
3069 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3070 * any blocking grace-period wait automatically implies a grace period
3071 * if there is only one CPU online at any point time during execution
3072 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3073 * occasionally incorrectly indicate that there are multiple CPUs online
3074 * when there was in fact only one the whole time, as this just adds
3075 * some overhead: RCU still operates correctly.
6d813391
PM
3076 */
3077static inline int rcu_blocking_is_gp(void)
3078{
95f0c1de
PM
3079 int ret;
3080
6d813391 3081 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3082 preempt_disable();
3083 ret = num_online_cpus() <= 1;
3084 preempt_enable();
3085 return ret;
6d813391
PM
3086}
3087
6ebb237b
PM
3088/**
3089 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3090 *
3091 * Control will return to the caller some time after a full rcu-sched
3092 * grace period has elapsed, in other words after all currently executing
3093 * rcu-sched read-side critical sections have completed. These read-side
3094 * critical sections are delimited by rcu_read_lock_sched() and
3095 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3096 * local_irq_disable(), and so on may be used in place of
3097 * rcu_read_lock_sched().
3098 *
3099 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3100 * non-threaded hardware-interrupt handlers, in progress on entry will
3101 * have completed before this primitive returns. However, this does not
3102 * guarantee that softirq handlers will have completed, since in some
3103 * kernels, these handlers can run in process context, and can block.
3104 *
3105 * Note that this guarantee implies further memory-ordering guarantees.
3106 * On systems with more than one CPU, when synchronize_sched() returns,
3107 * each CPU is guaranteed to have executed a full memory barrier since the
3108 * end of its last RCU-sched read-side critical section whose beginning
3109 * preceded the call to synchronize_sched(). In addition, each CPU having
3110 * an RCU read-side critical section that extends beyond the return from
3111 * synchronize_sched() is guaranteed to have executed a full memory barrier
3112 * after the beginning of synchronize_sched() and before the beginning of
3113 * that RCU read-side critical section. Note that these guarantees include
3114 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3115 * that are executing in the kernel.
3116 *
3117 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3118 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3119 * to have executed a full memory barrier during the execution of
3120 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3121 * again only if the system has more than one CPU).
6ebb237b
PM
3122 *
3123 * This primitive provides the guarantees made by the (now removed)
3124 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3125 * guarantees that rcu_read_lock() sections will have completed.
3126 * In "classic RCU", these two guarantees happen to be one and
3127 * the same, but can differ in realtime RCU implementations.
3128 */
3129void synchronize_sched(void)
3130{
fe15d706
PM
3131 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3132 !lock_is_held(&rcu_lock_map) &&
3133 !lock_is_held(&rcu_sched_lock_map),
3134 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3135 if (rcu_blocking_is_gp())
3136 return;
5afff48b 3137 if (rcu_gp_is_expedited())
3705b88d
AM
3138 synchronize_sched_expedited();
3139 else
3140 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3141}
3142EXPORT_SYMBOL_GPL(synchronize_sched);
3143
3144/**
3145 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3146 *
3147 * Control will return to the caller some time after a full rcu_bh grace
3148 * period has elapsed, in other words after all currently executing rcu_bh
3149 * read-side critical sections have completed. RCU read-side critical
3150 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3151 * and may be nested.
f0a0e6f2
PM
3152 *
3153 * See the description of synchronize_sched() for more detailed information
3154 * on memory ordering guarantees.
6ebb237b
PM
3155 */
3156void synchronize_rcu_bh(void)
3157{
fe15d706
PM
3158 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3159 !lock_is_held(&rcu_lock_map) &&
3160 !lock_is_held(&rcu_sched_lock_map),
3161 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3162 if (rcu_blocking_is_gp())
3163 return;
5afff48b 3164 if (rcu_gp_is_expedited())
3705b88d
AM
3165 synchronize_rcu_bh_expedited();
3166 else
3167 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3168}
3169EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3170
765a3f4f
PM
3171/**
3172 * get_state_synchronize_rcu - Snapshot current RCU state
3173 *
3174 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3175 * to determine whether or not a full grace period has elapsed in the
3176 * meantime.
3177 */
3178unsigned long get_state_synchronize_rcu(void)
3179{
3180 /*
3181 * Any prior manipulation of RCU-protected data must happen
3182 * before the load from ->gpnum.
3183 */
3184 smp_mb(); /* ^^^ */
3185
3186 /*
3187 * Make sure this load happens before the purportedly
3188 * time-consuming work between get_state_synchronize_rcu()
3189 * and cond_synchronize_rcu().
3190 */
e534165b 3191 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3192}
3193EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3194
3195/**
3196 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3197 *
3198 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3199 *
3200 * If a full RCU grace period has elapsed since the earlier call to
3201 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3202 * synchronize_rcu() to wait for a full grace period.
3203 *
3204 * Yes, this function does not take counter wrap into account. But
3205 * counter wrap is harmless. If the counter wraps, we have waited for
3206 * more than 2 billion grace periods (and way more on a 64-bit system!),
3207 * so waiting for one additional grace period should be just fine.
3208 */
3209void cond_synchronize_rcu(unsigned long oldstate)
3210{
3211 unsigned long newstate;
3212
3213 /*
3214 * Ensure that this load happens before any RCU-destructive
3215 * actions the caller might carry out after we return.
3216 */
e534165b 3217 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3218 if (ULONG_CMP_GE(oldstate, newstate))
3219 synchronize_rcu();
3220}
3221EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3222
3d3b7db0
PM
3223static int synchronize_sched_expedited_cpu_stop(void *data)
3224{
3225 /*
3226 * There must be a full memory barrier on each affected CPU
3227 * between the time that try_stop_cpus() is called and the
3228 * time that it returns.
3229 *
3230 * In the current initial implementation of cpu_stop, the
3231 * above condition is already met when the control reaches
3232 * this point and the following smp_mb() is not strictly
3233 * necessary. Do smp_mb() anyway for documentation and
3234 * robustness against future implementation changes.
3235 */
3236 smp_mb(); /* See above comment block. */
3237 return 0;
3238}
3239
236fefaf
PM
3240/**
3241 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3242 *
3243 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3244 * approach to force the grace period to end quickly. This consumes
3245 * significant time on all CPUs and is unfriendly to real-time workloads,
3246 * so is thus not recommended for any sort of common-case code. In fact,
3247 * if you are using synchronize_sched_expedited() in a loop, please
3248 * restructure your code to batch your updates, and then use a single
3249 * synchronize_sched() instead.
3d3b7db0 3250 *
3d3b7db0
PM
3251 * This implementation can be thought of as an application of ticket
3252 * locking to RCU, with sync_sched_expedited_started and
3253 * sync_sched_expedited_done taking on the roles of the halves
3254 * of the ticket-lock word. Each task atomically increments
3255 * sync_sched_expedited_started upon entry, snapshotting the old value,
3256 * then attempts to stop all the CPUs. If this succeeds, then each
3257 * CPU will have executed a context switch, resulting in an RCU-sched
3258 * grace period. We are then done, so we use atomic_cmpxchg() to
3259 * update sync_sched_expedited_done to match our snapshot -- but
3260 * only if someone else has not already advanced past our snapshot.
3261 *
3262 * On the other hand, if try_stop_cpus() fails, we check the value
3263 * of sync_sched_expedited_done. If it has advanced past our
3264 * initial snapshot, then someone else must have forced a grace period
3265 * some time after we took our snapshot. In this case, our work is
3266 * done for us, and we can simply return. Otherwise, we try again,
3267 * but keep our initial snapshot for purposes of checking for someone
3268 * doing our work for us.
3269 *
3270 * If we fail too many times in a row, we fall back to synchronize_sched().
3271 */
3272void synchronize_sched_expedited(void)
3273{
e0775cef
PM
3274 cpumask_var_t cm;
3275 bool cma = false;
3276 int cpu;
1924bcb0
PM
3277 long firstsnap, s, snap;
3278 int trycount = 0;
40694d66 3279 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3280
1924bcb0
PM
3281 /*
3282 * If we are in danger of counter wrap, just do synchronize_sched().
3283 * By allowing sync_sched_expedited_started to advance no more than
3284 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3285 * that more than 3.5 billion CPUs would be required to force a
3286 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3287 * course be required on a 64-bit system.
3288 */
40694d66
PM
3289 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3290 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
3291 ULONG_MAX / 8)) {
3292 synchronize_sched();
a30489c5 3293 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
3294 return;
3295 }
3d3b7db0 3296
1924bcb0
PM
3297 /*
3298 * Take a ticket. Note that atomic_inc_return() implies a
3299 * full memory barrier.
3300 */
40694d66 3301 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 3302 firstsnap = snap;
dd56af42
PM
3303 if (!try_get_online_cpus()) {
3304 /* CPU hotplug operation in flight, fall back to normal GP. */
3305 wait_rcu_gp(call_rcu_sched);
3306 atomic_long_inc(&rsp->expedited_normal);
3307 return;
3308 }
1cc85961 3309 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0 3310
e0775cef
PM
3311 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3312 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3313 if (cma) {
3314 cpumask_copy(cm, cpu_online_mask);
3315 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3316 for_each_cpu(cpu, cm) {
3317 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3318
3319 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3320 cpumask_clear_cpu(cpu, cm);
3321 }
3322 if (cpumask_weight(cm) == 0)
3323 goto all_cpus_idle;
3324 }
3325
3d3b7db0
PM
3326 /*
3327 * Each pass through the following loop attempts to force a
3328 * context switch on each CPU.
3329 */
e0775cef 3330 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3d3b7db0
PM
3331 synchronize_sched_expedited_cpu_stop,
3332 NULL) == -EAGAIN) {
3333 put_online_cpus();
a30489c5 3334 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3335
1924bcb0 3336 /* Check to see if someone else did our work for us. */
40694d66 3337 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3338 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3339 /* ensure test happens before caller kfree */
4e857c58 3340 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3341 atomic_long_inc(&rsp->expedited_workdone1);
e0775cef 3342 free_cpumask_var(cm);
1924bcb0
PM
3343 return;
3344 }
3d3b7db0
PM
3345
3346 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3347 if (trycount++ < 10) {
3d3b7db0 3348 udelay(trycount * num_online_cpus());
c701d5d9 3349 } else {
3705b88d 3350 wait_rcu_gp(call_rcu_sched);
a30489c5 3351 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3352 free_cpumask_var(cm);
3d3b7db0
PM
3353 return;
3354 }
3355
1924bcb0 3356 /* Recheck to see if someone else did our work for us. */
40694d66 3357 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3358 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3359 /* ensure test happens before caller kfree */
4e857c58 3360 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3361 atomic_long_inc(&rsp->expedited_workdone2);
e0775cef 3362 free_cpumask_var(cm);
3d3b7db0
PM
3363 return;
3364 }
3365
3366 /*
3367 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3368 * callers to piggyback on our grace period. We retry
3369 * after they started, so our grace period works for them,
3370 * and they started after our first try, so their grace
3371 * period works for us.
3d3b7db0 3372 */
dd56af42
PM
3373 if (!try_get_online_cpus()) {
3374 /* CPU hotplug operation in flight, use normal GP. */
3375 wait_rcu_gp(call_rcu_sched);
3376 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3377 free_cpumask_var(cm);
dd56af42
PM
3378 return;
3379 }
40694d66 3380 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3381 smp_mb(); /* ensure read is before try_stop_cpus(). */
3382 }
a30489c5 3383 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0 3384
e0775cef
PM
3385all_cpus_idle:
3386 free_cpumask_var(cm);
3387
3d3b7db0
PM
3388 /*
3389 * Everyone up to our most recent fetch is covered by our grace
3390 * period. Update the counter, but only if our work is still
3391 * relevant -- which it won't be if someone who started later
1924bcb0 3392 * than we did already did their update.
3d3b7db0
PM
3393 */
3394 do {
a30489c5 3395 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3396 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3397 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3398 /* ensure test happens before caller kfree */
4e857c58 3399 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3400 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3401 break;
3402 }
40694d66 3403 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3404 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3405
3406 put_online_cpus();
3407}
3408EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3409
64db4cff
PM
3410/*
3411 * Check to see if there is any immediate RCU-related work to be done
3412 * by the current CPU, for the specified type of RCU, returning 1 if so.
3413 * The checks are in order of increasing expense: checks that can be
3414 * carried out against CPU-local state are performed first. However,
3415 * we must check for CPU stalls first, else we might not get a chance.
3416 */
3417static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3418{
2f51f988
PM
3419 struct rcu_node *rnp = rdp->mynode;
3420
64db4cff
PM
3421 rdp->n_rcu_pending++;
3422
3423 /* Check for CPU stalls, if enabled. */
3424 check_cpu_stall(rsp, rdp);
3425
a096932f
PM
3426 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3427 if (rcu_nohz_full_cpu(rsp))
3428 return 0;
3429
64db4cff 3430 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3431 if (rcu_scheduler_fully_active &&
5cd37193
PM
3432 rdp->qs_pending && !rdp->passed_quiesce &&
3433 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
d21670ac 3434 rdp->n_rp_qs_pending++;
5cd37193
PM
3435 } else if (rdp->qs_pending &&
3436 (rdp->passed_quiesce ||
3437 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3438 rdp->n_rp_report_qs++;
64db4cff 3439 return 1;
7ba5c840 3440 }
64db4cff
PM
3441
3442 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3443 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3444 rdp->n_rp_cb_ready++;
64db4cff 3445 return 1;
7ba5c840 3446 }
64db4cff
PM
3447
3448 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3449 if (cpu_needs_another_gp(rsp, rdp)) {
3450 rdp->n_rp_cpu_needs_gp++;
64db4cff 3451 return 1;
7ba5c840 3452 }
64db4cff
PM
3453
3454 /* Has another RCU grace period completed? */
7d0ae808 3455 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3456 rdp->n_rp_gp_completed++;
64db4cff 3457 return 1;
7ba5c840 3458 }
64db4cff
PM
3459
3460 /* Has a new RCU grace period started? */
7d0ae808
PM
3461 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3462 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3463 rdp->n_rp_gp_started++;
64db4cff 3464 return 1;
7ba5c840 3465 }
64db4cff 3466
96d3fd0d
PM
3467 /* Does this CPU need a deferred NOCB wakeup? */
3468 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3469 rdp->n_rp_nocb_defer_wakeup++;
3470 return 1;
3471 }
3472
64db4cff 3473 /* nothing to do */
7ba5c840 3474 rdp->n_rp_need_nothing++;
64db4cff
PM
3475 return 0;
3476}
3477
3478/*
3479 * Check to see if there is any immediate RCU-related work to be done
3480 * by the current CPU, returning 1 if so. This function is part of the
3481 * RCU implementation; it is -not- an exported member of the RCU API.
3482 */
e3950ecd 3483static int rcu_pending(void)
64db4cff 3484{
6ce75a23
PM
3485 struct rcu_state *rsp;
3486
3487 for_each_rcu_flavor(rsp)
e3950ecd 3488 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3489 return 1;
3490 return 0;
64db4cff
PM
3491}
3492
3493/*
c0f4dfd4
PM
3494 * Return true if the specified CPU has any callback. If all_lazy is
3495 * non-NULL, store an indication of whether all callbacks are lazy.
3496 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3497 */
aa6da514 3498static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3499{
c0f4dfd4
PM
3500 bool al = true;
3501 bool hc = false;
3502 struct rcu_data *rdp;
6ce75a23
PM
3503 struct rcu_state *rsp;
3504
c0f4dfd4 3505 for_each_rcu_flavor(rsp) {
aa6da514 3506 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3507 if (!rdp->nxtlist)
3508 continue;
3509 hc = true;
3510 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3511 al = false;
69c8d28c
PM
3512 break;
3513 }
c0f4dfd4
PM
3514 }
3515 if (all_lazy)
3516 *all_lazy = al;
3517 return hc;
64db4cff
PM
3518}
3519
a83eff0a
PM
3520/*
3521 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3522 * the compiler is expected to optimize this away.
3523 */
e66c33d5 3524static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3525 int cpu, unsigned long done)
3526{
3527 trace_rcu_barrier(rsp->name, s, cpu,
3528 atomic_read(&rsp->barrier_cpu_count), done);
3529}
3530
b1420f1c
PM
3531/*
3532 * RCU callback function for _rcu_barrier(). If we are last, wake
3533 * up the task executing _rcu_barrier().
3534 */
24ebbca8 3535static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3536{
24ebbca8
PM
3537 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3538 struct rcu_state *rsp = rdp->rsp;
3539
a83eff0a
PM
3540 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3541 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3542 complete(&rsp->barrier_completion);
a83eff0a
PM
3543 } else {
3544 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3545 }
d0ec774c
PM
3546}
3547
3548/*
3549 * Called with preemption disabled, and from cross-cpu IRQ context.
3550 */
3551static void rcu_barrier_func(void *type)
3552{
037b64ed 3553 struct rcu_state *rsp = type;
fa07a58f 3554 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3555
a83eff0a 3556 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3557 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3558 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3559}
3560
d0ec774c
PM
3561/*
3562 * Orchestrate the specified type of RCU barrier, waiting for all
3563 * RCU callbacks of the specified type to complete.
3564 */
037b64ed 3565static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3566{
b1420f1c 3567 int cpu;
b1420f1c 3568 struct rcu_data *rdp;
7d0ae808 3569 unsigned long snap = READ_ONCE(rsp->n_barrier_done);
cf3a9c48 3570 unsigned long snap_done;
b1420f1c 3571
a83eff0a 3572 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3573
e74f4c45 3574 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3575 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3576
cf3a9c48
PM
3577 /*
3578 * Ensure that all prior references, including to ->n_barrier_done,
3579 * are ordered before the _rcu_barrier() machinery.
3580 */
3581 smp_mb(); /* See above block comment. */
3582
3583 /*
3584 * Recheck ->n_barrier_done to see if others did our work for us.
3585 * This means checking ->n_barrier_done for an even-to-odd-to-even
3586 * transition. The "if" expression below therefore rounds the old
3587 * value up to the next even number and adds two before comparing.
3588 */
458fb381 3589 snap_done = rsp->n_barrier_done;
a83eff0a 3590 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3591
3592 /*
3593 * If the value in snap is odd, we needed to wait for the current
3594 * rcu_barrier() to complete, then wait for the next one, in other
3595 * words, we need the value of snap_done to be three larger than
3596 * the value of snap. On the other hand, if the value in snap is
3597 * even, we only had to wait for the next rcu_barrier() to complete,
3598 * in other words, we need the value of snap_done to be only two
3599 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3600 * this for us (thank you, Linus!).
3601 */
3602 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3603 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3604 smp_mb(); /* caller's subsequent code after above check. */
3605 mutex_unlock(&rsp->barrier_mutex);
3606 return;
3607 }
3608
3609 /*
3610 * Increment ->n_barrier_done to avoid duplicate work. Use
7d0ae808 3611 * WRITE_ONCE() to prevent the compiler from speculating
cf3a9c48
PM
3612 * the increment to precede the early-exit check.
3613 */
7d0ae808 3614 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
cf3a9c48 3615 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3616 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3617 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3618
d0ec774c 3619 /*
b1420f1c
PM
3620 * Initialize the count to one rather than to zero in order to
3621 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3622 * (or preemption of this task). Exclude CPU-hotplug operations
3623 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3624 */
7db74df8 3625 init_completion(&rsp->barrier_completion);
24ebbca8 3626 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3627 get_online_cpus();
b1420f1c
PM
3628
3629 /*
1331e7a1
PM
3630 * Force each CPU with callbacks to register a new callback.
3631 * When that callback is invoked, we will know that all of the
3632 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3633 */
3fbfbf7a 3634 for_each_possible_cpu(cpu) {
d1e43fa5 3635 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3636 continue;
b1420f1c 3637 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3638 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3639 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3640 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3641 rsp->n_barrier_done);
3642 } else {
3643 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3644 rsp->n_barrier_done);
41050a00 3645 smp_mb__before_atomic();
d7e29933
PM
3646 atomic_inc(&rsp->barrier_cpu_count);
3647 __call_rcu(&rdp->barrier_head,
3648 rcu_barrier_callback, rsp, cpu, 0);
3649 }
7d0ae808 3650 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a
PM
3651 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3652 rsp->n_barrier_done);
037b64ed 3653 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3654 } else {
a83eff0a
PM
3655 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3656 rsp->n_barrier_done);
b1420f1c
PM
3657 }
3658 }
1331e7a1 3659 put_online_cpus();
b1420f1c
PM
3660
3661 /*
3662 * Now that we have an rcu_barrier_callback() callback on each
3663 * CPU, and thus each counted, remove the initial count.
3664 */
24ebbca8 3665 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3666 complete(&rsp->barrier_completion);
b1420f1c 3667
cf3a9c48
PM
3668 /* Increment ->n_barrier_done to prevent duplicate work. */
3669 smp_mb(); /* Keep increment after above mechanism. */
7d0ae808 3670 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
cf3a9c48 3671 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3672 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3673 smp_mb(); /* Keep increment before caller's subsequent code. */
3674
b1420f1c 3675 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3676 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3677
3678 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3679 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3680}
d0ec774c
PM
3681
3682/**
3683 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3684 */
3685void rcu_barrier_bh(void)
3686{
037b64ed 3687 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3688}
3689EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3690
3691/**
3692 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3693 */
3694void rcu_barrier_sched(void)
3695{
037b64ed 3696 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3697}
3698EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3699
0aa04b05
PM
3700/*
3701 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3702 * first CPU in a given leaf rcu_node structure coming online. The caller
3703 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3704 * disabled.
3705 */
3706static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3707{
3708 long mask;
3709 struct rcu_node *rnp = rnp_leaf;
3710
3711 for (;;) {
3712 mask = rnp->grpmask;
3713 rnp = rnp->parent;
3714 if (rnp == NULL)
3715 return;
3716 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3717 rnp->qsmaskinit |= mask;
3718 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3719 }
3720}
3721
64db4cff 3722/*
27569620 3723 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3724 */
27569620
PM
3725static void __init
3726rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3727{
3728 unsigned long flags;
394f99a9 3729 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3730 struct rcu_node *rnp = rcu_get_root(rsp);
3731
3732 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3733 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3734 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 3735 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3736 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3737 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3738 rdp->cpu = cpu;
d4c08f2a 3739 rdp->rsp = rsp;
3fbfbf7a 3740 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3741 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3742}
3743
3744/*
3745 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3746 * offline event can be happening at a given time. Note also that we
3747 * can accept some slop in the rsp->completed access due to the fact
3748 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3749 */
49fb4c62 3750static void
9b67122a 3751rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3752{
3753 unsigned long flags;
64db4cff 3754 unsigned long mask;
394f99a9 3755 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3756 struct rcu_node *rnp = rcu_get_root(rsp);
3757
3758 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3759 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3760 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3761 rdp->qlen_last_fqs_check = 0;
3762 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3763 rdp->blimit = blimit;
39c8d313
PM
3764 if (!rdp->nxtlist)
3765 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3766 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3767 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3768 atomic_set(&rdp->dynticks->dynticks,
3769 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3770 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3771
0aa04b05
PM
3772 /*
3773 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3774 * propagation up the rcu_node tree will happen at the beginning
3775 * of the next grace period.
3776 */
64db4cff
PM
3777 rnp = rdp->mynode;
3778 mask = rdp->grpmask;
0aa04b05
PM
3779 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3780 smp_mb__after_unlock_lock();
3781 rnp->qsmaskinitnext |= mask;
3782 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3783 rdp->completed = rnp->completed;
3784 rdp->passed_quiesce = false;
3785 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
3786 rdp->qs_pending = false;
3787 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3788 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
3789}
3790
49fb4c62 3791static void rcu_prepare_cpu(int cpu)
64db4cff 3792{
6ce75a23
PM
3793 struct rcu_state *rsp;
3794
3795 for_each_rcu_flavor(rsp)
9b67122a 3796 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3797}
3798
3799/*
f41d911f 3800 * Handle CPU online/offline notification events.
64db4cff 3801 */
88428cc5
PM
3802int rcu_cpu_notify(struct notifier_block *self,
3803 unsigned long action, void *hcpu)
64db4cff
PM
3804{
3805 long cpu = (long)hcpu;
e534165b 3806 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3807 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3808 struct rcu_state *rsp;
64db4cff
PM
3809
3810 switch (action) {
3811 case CPU_UP_PREPARE:
3812 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3813 rcu_prepare_cpu(cpu);
3814 rcu_prepare_kthreads(cpu);
35ce7f29 3815 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3816 break;
3817 case CPU_ONLINE:
0f962a5e 3818 case CPU_DOWN_FAILED:
5d01bbd1 3819 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3820 break;
3821 case CPU_DOWN_PREPARE:
34ed6246 3822 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3823 break;
d0ec774c
PM
3824 case CPU_DYING:
3825 case CPU_DYING_FROZEN:
6ce75a23
PM
3826 for_each_rcu_flavor(rsp)
3827 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3828 break;
88428cc5
PM
3829 case CPU_DYING_IDLE:
3830 for_each_rcu_flavor(rsp) {
3831 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3832 }
3833 break;
64db4cff
PM
3834 case CPU_DEAD:
3835 case CPU_DEAD_FROZEN:
3836 case CPU_UP_CANCELED:
3837 case CPU_UP_CANCELED_FROZEN:
776d6807 3838 for_each_rcu_flavor(rsp) {
6ce75a23 3839 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3840 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3841 }
64db4cff
PM
3842 break;
3843 default:
3844 break;
3845 }
34ed6246 3846 return NOTIFY_OK;
64db4cff
PM
3847}
3848
d1d74d14
BP
3849static int rcu_pm_notify(struct notifier_block *self,
3850 unsigned long action, void *hcpu)
3851{
3852 switch (action) {
3853 case PM_HIBERNATION_PREPARE:
3854 case PM_SUSPEND_PREPARE:
3855 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3856 rcu_expedite_gp();
d1d74d14
BP
3857 break;
3858 case PM_POST_HIBERNATION:
3859 case PM_POST_SUSPEND:
5afff48b
PM
3860 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3861 rcu_unexpedite_gp();
d1d74d14
BP
3862 break;
3863 default:
3864 break;
3865 }
3866 return NOTIFY_OK;
3867}
3868
b3dbec76 3869/*
9386c0b7 3870 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3871 */
3872static int __init rcu_spawn_gp_kthread(void)
3873{
3874 unsigned long flags;
a94844b2 3875 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3876 struct rcu_node *rnp;
3877 struct rcu_state *rsp;
a94844b2 3878 struct sched_param sp;
b3dbec76
PM
3879 struct task_struct *t;
3880
a94844b2
PM
3881 /* Force priority into range. */
3882 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3883 kthread_prio = 1;
3884 else if (kthread_prio < 0)
3885 kthread_prio = 0;
3886 else if (kthread_prio > 99)
3887 kthread_prio = 99;
3888 if (kthread_prio != kthread_prio_in)
3889 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3890 kthread_prio, kthread_prio_in);
3891
9386c0b7 3892 rcu_scheduler_fully_active = 1;
b3dbec76 3893 for_each_rcu_flavor(rsp) {
a94844b2 3894 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3895 BUG_ON(IS_ERR(t));
3896 rnp = rcu_get_root(rsp);
3897 raw_spin_lock_irqsave(&rnp->lock, flags);
3898 rsp->gp_kthread = t;
a94844b2
PM
3899 if (kthread_prio) {
3900 sp.sched_priority = kthread_prio;
3901 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3902 }
3903 wake_up_process(t);
b3dbec76
PM
3904 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3905 }
35ce7f29 3906 rcu_spawn_nocb_kthreads();
9386c0b7 3907 rcu_spawn_boost_kthreads();
b3dbec76
PM
3908 return 0;
3909}
3910early_initcall(rcu_spawn_gp_kthread);
3911
bbad9379
PM
3912/*
3913 * This function is invoked towards the end of the scheduler's initialization
3914 * process. Before this is called, the idle task might contain
3915 * RCU read-side critical sections (during which time, this idle
3916 * task is booting the system). After this function is called, the
3917 * idle tasks are prohibited from containing RCU read-side critical
3918 * sections. This function also enables RCU lockdep checking.
3919 */
3920void rcu_scheduler_starting(void)
3921{
3922 WARN_ON(num_online_cpus() != 1);
3923 WARN_ON(nr_context_switches() > 0);
3924 rcu_scheduler_active = 1;
3925}
3926
64db4cff
PM
3927/*
3928 * Compute the per-level fanout, either using the exact fanout specified
3929 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3930 */
64db4cff
PM
3931static void __init rcu_init_levelspread(struct rcu_state *rsp)
3932{
64db4cff
PM
3933 int i;
3934
66292405
PM
3935 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
3936 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3937 for (i = rcu_num_lvls - 2; i >= 0; i--)
3938 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3939 } else {
3940 int ccur;
3941 int cprv;
3942
3943 cprv = nr_cpu_ids;
3944 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3945 ccur = rsp->levelcnt[i];
3946 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3947 cprv = ccur;
3948 }
64db4cff
PM
3949 }
3950}
64db4cff
PM
3951
3952/*
3953 * Helper function for rcu_init() that initializes one rcu_state structure.
3954 */
394f99a9
LJ
3955static void __init rcu_init_one(struct rcu_state *rsp,
3956 struct rcu_data __percpu *rda)
64db4cff 3957{
b4426b49
FF
3958 static const char * const buf[] = {
3959 "rcu_node_0",
3960 "rcu_node_1",
3961 "rcu_node_2",
3962 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3963 static const char * const fqs[] = {
3964 "rcu_node_fqs_0",
3965 "rcu_node_fqs_1",
3966 "rcu_node_fqs_2",
3967 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3968 static u8 fl_mask = 0x1;
64db4cff
PM
3969 int cpustride = 1;
3970 int i;
3971 int j;
3972 struct rcu_node *rnp;
3973
b6407e86
PM
3974 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3975
4930521a
PM
3976 /* Silence gcc 4.8 warning about array index out of range. */
3977 if (rcu_num_lvls > RCU_NUM_LVLS)
3978 panic("rcu_init_one: rcu_num_lvls overflow");
3979
64db4cff
PM
3980 /* Initialize the level-tracking arrays. */
3981
f885b7f2
PM
3982 for (i = 0; i < rcu_num_lvls; i++)
3983 rsp->levelcnt[i] = num_rcu_lvl[i];
3984 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3985 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3986 rcu_init_levelspread(rsp);
4a81e832
PM
3987 rsp->flavor_mask = fl_mask;
3988 fl_mask <<= 1;
64db4cff
PM
3989
3990 /* Initialize the elements themselves, starting from the leaves. */
3991
f885b7f2 3992 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3993 cpustride *= rsp->levelspread[i];
3994 rnp = rsp->level[i];
3995 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3996 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3997 lockdep_set_class_and_name(&rnp->lock,
3998 &rcu_node_class[i], buf[i]);
394f2769
PM
3999 raw_spin_lock_init(&rnp->fqslock);
4000 lockdep_set_class_and_name(&rnp->fqslock,
4001 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4002 rnp->gpnum = rsp->gpnum;
4003 rnp->completed = rsp->completed;
64db4cff
PM
4004 rnp->qsmask = 0;
4005 rnp->qsmaskinit = 0;
4006 rnp->grplo = j * cpustride;
4007 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4008 if (rnp->grphi >= nr_cpu_ids)
4009 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4010 if (i == 0) {
4011 rnp->grpnum = 0;
4012 rnp->grpmask = 0;
4013 rnp->parent = NULL;
4014 } else {
4015 rnp->grpnum = j % rsp->levelspread[i - 1];
4016 rnp->grpmask = 1UL << rnp->grpnum;
4017 rnp->parent = rsp->level[i - 1] +
4018 j / rsp->levelspread[i - 1];
4019 }
4020 rnp->level = i;
12f5f524 4021 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4022 rcu_init_one_nocb(rnp);
64db4cff
PM
4023 }
4024 }
0c34029a 4025
b3dbec76 4026 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 4027 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4028 for_each_possible_cpu(i) {
4a90a068 4029 while (i > rnp->grphi)
0c34029a 4030 rnp++;
394f99a9 4031 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4032 rcu_boot_init_percpu_data(i, rsp);
4033 }
6ce75a23 4034 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4035}
4036
f885b7f2
PM
4037/*
4038 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4039 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4040 * the ->node array in the rcu_state structure.
4041 */
4042static void __init rcu_init_geometry(void)
4043{
026ad283 4044 ulong d;
f885b7f2
PM
4045 int i;
4046 int j;
cca6f393 4047 int n = nr_cpu_ids;
f885b7f2
PM
4048 int rcu_capacity[MAX_RCU_LVLS + 1];
4049
026ad283
PM
4050 /*
4051 * Initialize any unspecified boot parameters.
4052 * The default values of jiffies_till_first_fqs and
4053 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4054 * value, which is a function of HZ, then adding one for each
4055 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4056 */
4057 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4058 if (jiffies_till_first_fqs == ULONG_MAX)
4059 jiffies_till_first_fqs = d;
4060 if (jiffies_till_next_fqs == ULONG_MAX)
4061 jiffies_till_next_fqs = d;
4062
f885b7f2 4063 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
4064 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
4065 nr_cpu_ids == NR_CPUS)
f885b7f2 4066 return;
39479098
PM
4067 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4068 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
4069
4070 /*
4071 * Compute number of nodes that can be handled an rcu_node tree
4072 * with the given number of levels. Setting rcu_capacity[0] makes
4073 * some of the arithmetic easier.
4074 */
4075 rcu_capacity[0] = 1;
4076 rcu_capacity[1] = rcu_fanout_leaf;
4077 for (i = 2; i <= MAX_RCU_LVLS; i++)
4078 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
4079
4080 /*
4081 * The boot-time rcu_fanout_leaf parameter is only permitted
4082 * to increase the leaf-level fanout, not decrease it. Of course,
4083 * the leaf-level fanout cannot exceed the number of bits in
4084 * the rcu_node masks. Finally, the tree must be able to accommodate
4085 * the configured number of CPUs. Complain and fall back to the
4086 * compile-time values if these limits are exceeded.
4087 */
4088 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
4089 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4090 n > rcu_capacity[MAX_RCU_LVLS]) {
4091 WARN_ON(1);
4092 return;
4093 }
4094
4095 /* Calculate the number of rcu_nodes at each level of the tree. */
4096 for (i = 1; i <= MAX_RCU_LVLS; i++)
4097 if (n <= rcu_capacity[i]) {
4098 for (j = 0; j <= i; j++)
4099 num_rcu_lvl[j] =
4100 DIV_ROUND_UP(n, rcu_capacity[i - j]);
4101 rcu_num_lvls = i;
4102 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4103 num_rcu_lvl[j] = 0;
4104 break;
4105 }
4106
4107 /* Calculate the total number of rcu_node structures. */
4108 rcu_num_nodes = 0;
4109 for (i = 0; i <= MAX_RCU_LVLS; i++)
4110 rcu_num_nodes += num_rcu_lvl[i];
4111 rcu_num_nodes -= n;
4112}
4113
9f680ab4 4114void __init rcu_init(void)
64db4cff 4115{
017c4261 4116 int cpu;
9f680ab4 4117
47627678
PM
4118 rcu_early_boot_tests();
4119
f41d911f 4120 rcu_bootup_announce();
f885b7f2 4121 rcu_init_geometry();
394f99a9 4122 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 4123 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 4124 __rcu_init_preempt();
b5b39360 4125 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4126
4127 /*
4128 * We don't need protection against CPU-hotplug here because
4129 * this is called early in boot, before either interrupts
4130 * or the scheduler are operational.
4131 */
4132 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4133 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4134 for_each_online_cpu(cpu)
4135 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
4136}
4137
4102adab 4138#include "tree_plugin.h"
This page took 0.691923 seconds and 5 git commands to generate.