rcu: Break call_rcu() deadlock involving scheduler and perf
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a
PM
61#include <trace/events/rcu.h>
62
63#include "rcu.h"
9f77da9f 64
4102adab
PM
65MODULE_ALIAS("rcutree");
66#ifdef MODULE_PARAM_PREFIX
67#undef MODULE_PARAM_PREFIX
68#endif
69#define MODULE_PARAM_PREFIX "rcutree."
70
64db4cff
PM
71/* Data structures. */
72
f885b7f2 73static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 74static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 75
f7f7bac9
SRRH
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
a41bfeb2 84#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
85static char sname##_varname[] = #sname; \
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 87struct rcu_state sname##_state = { \
6c90cc7b 88 .level = { &sname##_state.node[0] }, \
037b64ed 89 .call = cr, \
af446b70 90 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
7b2e6011 93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 98 .name = sname##_varname, \
a4889858 99 .abbr = sabbr, \
a41bfeb2
SRRH
100}; \
101DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 102
a41bfeb2
SRRH
103RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 105
27f4d280 106static struct rcu_state *rcu_state;
6ce75a23 107LIST_HEAD(rcu_struct_flavors);
27f4d280 108
f885b7f2
PM
109/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 111module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119};
120int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
b0d30417
PM
122/*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 126 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
bbad9379
PM
131int rcu_scheduler_active __read_mostly;
132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
b0d30417
PM
134/*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146static int rcu_scheduler_fully_active __read_mostly;
147
a46e0899
PM
148#ifdef CONFIG_RCU_BOOST
149
a26ac245
PM
150/*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 156DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 157DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 158
a46e0899
PM
159#endif /* #ifdef CONFIG_RCU_BOOST */
160
5d01bbd1 161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 164
4a298656
PM
165/*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174unsigned long rcutorture_testseq;
175unsigned long rcutorture_vernum;
176
fc2219d4
PM
177/*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182static int rcu_gp_in_progress(struct rcu_state *rsp)
183{
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185}
186
b1f77b05 187/*
d6714c22 188 * Note a quiescent state. Because we do not need to know
b1f77b05 189 * how many quiescent states passed, just if there was at least
d6714c22 190 * one since the start of the grace period, this just sets a flag.
e4cc1f22 191 * The caller must have disabled preemption.
b1f77b05 192 */
d6714c22 193void rcu_sched_qs(int cpu)
b1f77b05 194{
25502a6c 195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 196
e4cc1f22 197 if (rdp->passed_quiesce == 0)
f7f7bac9 198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 199 rdp->passed_quiesce = 1;
b1f77b05
IM
200}
201
d6714c22 202void rcu_bh_qs(int cpu)
b1f77b05 203{
25502a6c 204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 205
e4cc1f22 206 if (rdp->passed_quiesce == 0)
f7f7bac9 207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 208 rdp->passed_quiesce = 1;
b1f77b05 209}
64db4cff 210
25502a6c
PM
211/*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
e4cc1f22 214 * The caller must have disabled preemption.
25502a6c
PM
215 */
216void rcu_note_context_switch(int cpu)
217{
f7f7bac9 218 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 219 rcu_sched_qs(cpu);
cba6d0d6 220 rcu_preempt_note_context_switch(cpu);
f7f7bac9 221 trace_rcu_utilization(TPS("End context switch"));
25502a6c 222}
29ce8310 223EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 224
01896f7e 225static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 227 .dynticks = ATOMIC_INIT(1),
2333210b
PM
228#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 232};
64db4cff 233
878d7439
ED
234static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235static long qhimark = 10000; /* If this many pending, ignore blimit. */
236static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 237
878d7439
ED
238module_param(blimit, long, 0444);
239module_param(qhimark, long, 0444);
240module_param(qlowmark, long, 0444);
3d76c082 241
026ad283
PM
242static ulong jiffies_till_first_fqs = ULONG_MAX;
243static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
244
245module_param(jiffies_till_first_fqs, ulong, 0644);
246module_param(jiffies_till_next_fqs, ulong, 0644);
247
910ee45d
PM
248static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
217af2a2
PM
250static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
4cdfc175 254static void force_quiescent_state(struct rcu_state *rsp);
a157229c 255static int rcu_pending(int cpu);
64db4cff
PM
256
257/*
d6714c22 258 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 259 */
d6714c22 260long rcu_batches_completed_sched(void)
64db4cff 261{
d6714c22 262 return rcu_sched_state.completed;
64db4cff 263}
d6714c22 264EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
265
266/*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269long rcu_batches_completed_bh(void)
270{
271 return rcu_bh_state.completed;
272}
273EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
bf66f18e
PM
275/*
276 * Force a quiescent state for RCU BH.
277 */
278void rcu_bh_force_quiescent_state(void)
279{
4cdfc175 280 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
281}
282EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
4a298656
PM
284/*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291void rcutorture_record_test_transition(void)
292{
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295}
296EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298/*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303void rcutorture_record_progress(unsigned long vernum)
304{
305 rcutorture_vernum++;
306}
307EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
bf66f18e
PM
309/*
310 * Force a quiescent state for RCU-sched.
311 */
312void rcu_sched_force_quiescent_state(void)
313{
4cdfc175 314 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
315}
316EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
64db4cff
PM
318/*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321static int
322cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323{
3fbfbf7a
PM
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
326}
327
328/*
dc35c893
PM
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
64db4cff
PM
332 */
333static int
334cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335{
dc35c893 336 int i;
3fbfbf7a 337
dc35c893
PM
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
dae6e64d 340 if (rcu_nocb_needs_gp(rsp))
34ed6246 341 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
64db4cff
PM
352}
353
354/*
355 * Return the root node of the specified rcu_state structure.
356 */
357static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358{
359 return &rsp->node[0];
360}
361
9b2e4f18 362/*
adf5091e 363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
adf5091e
FW
369static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
9b2e4f18 371{
96d3fd0d
PM
372 struct rcu_state *rsp;
373 struct rcu_data *rdp;
374
f7f7bac9 375 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 376 if (!user && !is_idle_task(current)) {
289828e6
PM
377 struct task_struct *idle __maybe_unused =
378 idle_task(smp_processor_id());
0989cb46 379
f7f7bac9 380 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 381 ftrace_dump(DUMP_ORIG);
0989cb46
PM
382 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
383 current->pid, current->comm,
384 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 385 }
96d3fd0d
PM
386 for_each_rcu_flavor(rsp) {
387 rdp = this_cpu_ptr(rsp->rda);
388 do_nocb_deferred_wakeup(rdp);
389 }
aea1b35e 390 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
391 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
392 smp_mb__before_atomic_inc(); /* See above. */
393 atomic_inc(&rdtp->dynticks);
394 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
395 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
396
397 /*
adf5091e 398 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
399 * in an RCU read-side critical section.
400 */
401 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
402 "Illegal idle entry in RCU read-side critical section.");
403 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
404 "Illegal idle entry in RCU-bh read-side critical section.");
405 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
406 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 407}
64db4cff 408
adf5091e
FW
409/*
410 * Enter an RCU extended quiescent state, which can be either the
411 * idle loop or adaptive-tickless usermode execution.
64db4cff 412 */
adf5091e 413static void rcu_eqs_enter(bool user)
64db4cff 414{
4145fa7f 415 long long oldval;
64db4cff
PM
416 struct rcu_dynticks *rdtp;
417
c9d4b0af 418 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 419 oldval = rdtp->dynticks_nesting;
29e37d81
PM
420 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
421 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
422 rdtp->dynticks_nesting = 0;
423 else
424 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 425 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 426}
adf5091e
FW
427
428/**
429 * rcu_idle_enter - inform RCU that current CPU is entering idle
430 *
431 * Enter idle mode, in other words, -leave- the mode in which RCU
432 * read-side critical sections can occur. (Though RCU read-side
433 * critical sections can occur in irq handlers in idle, a possibility
434 * handled by irq_enter() and irq_exit().)
435 *
436 * We crowbar the ->dynticks_nesting field to zero to allow for
437 * the possibility of usermode upcalls having messed up our count
438 * of interrupt nesting level during the prior busy period.
439 */
440void rcu_idle_enter(void)
441{
c5d900bf
FW
442 unsigned long flags;
443
444 local_irq_save(flags);
cb349ca9 445 rcu_eqs_enter(false);
c9d4b0af 446 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 447 local_irq_restore(flags);
adf5091e 448}
8a2ecf47 449EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 450
2b1d5024 451#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
452/**
453 * rcu_user_enter - inform RCU that we are resuming userspace.
454 *
455 * Enter RCU idle mode right before resuming userspace. No use of RCU
456 * is permitted between this call and rcu_user_exit(). This way the
457 * CPU doesn't need to maintain the tick for RCU maintenance purposes
458 * when the CPU runs in userspace.
459 */
460void rcu_user_enter(void)
461{
91d1aa43 462 rcu_eqs_enter(1);
adf5091e 463}
2b1d5024 464#endif /* CONFIG_RCU_USER_QS */
19dd1591 465
9b2e4f18
PM
466/**
467 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
468 *
469 * Exit from an interrupt handler, which might possibly result in entering
470 * idle mode, in other words, leaving the mode in which read-side critical
471 * sections can occur.
64db4cff 472 *
9b2e4f18
PM
473 * This code assumes that the idle loop never does anything that might
474 * result in unbalanced calls to irq_enter() and irq_exit(). If your
475 * architecture violates this assumption, RCU will give you what you
476 * deserve, good and hard. But very infrequently and irreproducibly.
477 *
478 * Use things like work queues to work around this limitation.
479 *
480 * You have been warned.
64db4cff 481 */
9b2e4f18 482void rcu_irq_exit(void)
64db4cff
PM
483{
484 unsigned long flags;
4145fa7f 485 long long oldval;
64db4cff
PM
486 struct rcu_dynticks *rdtp;
487
488 local_irq_save(flags);
c9d4b0af 489 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 490 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
491 rdtp->dynticks_nesting--;
492 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 493 if (rdtp->dynticks_nesting)
f7f7bac9 494 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 495 else
cb349ca9 496 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 497 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
498 local_irq_restore(flags);
499}
500
501/*
adf5091e 502 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
503 *
504 * If the new value of the ->dynticks_nesting counter was previously zero,
505 * we really have exited idle, and must do the appropriate accounting.
506 * The caller must have disabled interrupts.
507 */
adf5091e
FW
508static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
509 int user)
9b2e4f18 510{
23b5c8fa
PM
511 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
512 atomic_inc(&rdtp->dynticks);
513 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
514 smp_mb__after_atomic_inc(); /* See above. */
515 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 516 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 517 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 518 if (!user && !is_idle_task(current)) {
289828e6
PM
519 struct task_struct *idle __maybe_unused =
520 idle_task(smp_processor_id());
0989cb46 521
f7f7bac9 522 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 523 oldval, rdtp->dynticks_nesting);
bf1304e9 524 ftrace_dump(DUMP_ORIG);
0989cb46
PM
525 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
526 current->pid, current->comm,
527 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
528 }
529}
530
adf5091e
FW
531/*
532 * Exit an RCU extended quiescent state, which can be either the
533 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 534 */
adf5091e 535static void rcu_eqs_exit(bool user)
9b2e4f18 536{
9b2e4f18
PM
537 struct rcu_dynticks *rdtp;
538 long long oldval;
539
c9d4b0af 540 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 541 oldval = rdtp->dynticks_nesting;
29e37d81
PM
542 WARN_ON_ONCE(oldval < 0);
543 if (oldval & DYNTICK_TASK_NEST_MASK)
544 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
545 else
546 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 547 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 548}
adf5091e
FW
549
550/**
551 * rcu_idle_exit - inform RCU that current CPU is leaving idle
552 *
553 * Exit idle mode, in other words, -enter- the mode in which RCU
554 * read-side critical sections can occur.
555 *
556 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
557 * allow for the possibility of usermode upcalls messing up our count
558 * of interrupt nesting level during the busy period that is just
559 * now starting.
560 */
561void rcu_idle_exit(void)
562{
c5d900bf
FW
563 unsigned long flags;
564
565 local_irq_save(flags);
cb349ca9 566 rcu_eqs_exit(false);
c9d4b0af 567 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 568 local_irq_restore(flags);
adf5091e 569}
8a2ecf47 570EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 571
2b1d5024 572#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
573/**
574 * rcu_user_exit - inform RCU that we are exiting userspace.
575 *
576 * Exit RCU idle mode while entering the kernel because it can
577 * run a RCU read side critical section anytime.
578 */
579void rcu_user_exit(void)
580{
91d1aa43 581 rcu_eqs_exit(1);
adf5091e 582}
2b1d5024 583#endif /* CONFIG_RCU_USER_QS */
19dd1591 584
9b2e4f18
PM
585/**
586 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
587 *
588 * Enter an interrupt handler, which might possibly result in exiting
589 * idle mode, in other words, entering the mode in which read-side critical
590 * sections can occur.
591 *
592 * Note that the Linux kernel is fully capable of entering an interrupt
593 * handler that it never exits, for example when doing upcalls to
594 * user mode! This code assumes that the idle loop never does upcalls to
595 * user mode. If your architecture does do upcalls from the idle loop (or
596 * does anything else that results in unbalanced calls to the irq_enter()
597 * and irq_exit() functions), RCU will give you what you deserve, good
598 * and hard. But very infrequently and irreproducibly.
599 *
600 * Use things like work queues to work around this limitation.
601 *
602 * You have been warned.
603 */
604void rcu_irq_enter(void)
605{
606 unsigned long flags;
607 struct rcu_dynticks *rdtp;
608 long long oldval;
609
610 local_irq_save(flags);
c9d4b0af 611 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
612 oldval = rdtp->dynticks_nesting;
613 rdtp->dynticks_nesting++;
614 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 615 if (oldval)
f7f7bac9 616 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 617 else
cb349ca9 618 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 619 rcu_sysidle_exit(rdtp, 1);
64db4cff 620 local_irq_restore(flags);
64db4cff
PM
621}
622
623/**
624 * rcu_nmi_enter - inform RCU of entry to NMI context
625 *
626 * If the CPU was idle with dynamic ticks active, and there is no
627 * irq handler running, this updates rdtp->dynticks_nmi to let the
628 * RCU grace-period handling know that the CPU is active.
629 */
630void rcu_nmi_enter(void)
631{
c9d4b0af 632 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 633
23b5c8fa
PM
634 if (rdtp->dynticks_nmi_nesting == 0 &&
635 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 636 return;
23b5c8fa
PM
637 rdtp->dynticks_nmi_nesting++;
638 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
639 atomic_inc(&rdtp->dynticks);
640 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
641 smp_mb__after_atomic_inc(); /* See above. */
642 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
643}
644
645/**
646 * rcu_nmi_exit - inform RCU of exit from NMI context
647 *
648 * If the CPU was idle with dynamic ticks active, and there is no
649 * irq handler running, this updates rdtp->dynticks_nmi to let the
650 * RCU grace-period handling know that the CPU is no longer active.
651 */
652void rcu_nmi_exit(void)
653{
c9d4b0af 654 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 655
23b5c8fa
PM
656 if (rdtp->dynticks_nmi_nesting == 0 ||
657 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 658 return;
23b5c8fa
PM
659 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
660 smp_mb__before_atomic_inc(); /* See above. */
661 atomic_inc(&rdtp->dynticks);
662 smp_mb__after_atomic_inc(); /* Force delay to next write. */
663 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
664}
665
666/**
5c173eb8
PM
667 * __rcu_is_watching - are RCU read-side critical sections safe?
668 *
669 * Return true if RCU is watching the running CPU, which means that
670 * this CPU can safely enter RCU read-side critical sections. Unlike
671 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
672 * least disabled preemption.
673 */
9418fb20 674bool notrace __rcu_is_watching(void)
5c173eb8
PM
675{
676 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
677}
678
679/**
680 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 681 *
9b2e4f18 682 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 683 * or NMI handler, return true.
64db4cff 684 */
9418fb20 685bool notrace rcu_is_watching(void)
64db4cff 686{
34240697
PM
687 int ret;
688
689 preempt_disable();
5c173eb8 690 ret = __rcu_is_watching();
34240697
PM
691 preempt_enable();
692 return ret;
64db4cff 693}
5c173eb8 694EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 695
62fde6ed 696#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
697
698/*
699 * Is the current CPU online? Disable preemption to avoid false positives
700 * that could otherwise happen due to the current CPU number being sampled,
701 * this task being preempted, its old CPU being taken offline, resuming
702 * on some other CPU, then determining that its old CPU is now offline.
703 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
704 * the check for rcu_scheduler_fully_active. Note also that it is OK
705 * for a CPU coming online to use RCU for one jiffy prior to marking itself
706 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
707 * offline to continue to use RCU for one jiffy after marking itself
708 * offline in the cpu_online_mask. This leniency is necessary given the
709 * non-atomic nature of the online and offline processing, for example,
710 * the fact that a CPU enters the scheduler after completing the CPU_DYING
711 * notifiers.
712 *
713 * This is also why RCU internally marks CPUs online during the
714 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
715 *
716 * Disable checking if in an NMI handler because we cannot safely report
717 * errors from NMI handlers anyway.
718 */
719bool rcu_lockdep_current_cpu_online(void)
720{
2036d94a
PM
721 struct rcu_data *rdp;
722 struct rcu_node *rnp;
c0d6d01b
PM
723 bool ret;
724
725 if (in_nmi())
726 return 1;
727 preempt_disable();
c9d4b0af 728 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
729 rnp = rdp->mynode;
730 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
731 !rcu_scheduler_fully_active;
732 preempt_enable();
733 return ret;
734}
735EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
736
62fde6ed 737#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 738
64db4cff 739/**
9b2e4f18 740 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 741 *
9b2e4f18
PM
742 * If the current CPU is idle or running at a first-level (not nested)
743 * interrupt from idle, return true. The caller must have at least
744 * disabled preemption.
64db4cff 745 */
62e3cb14 746static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 747{
c9d4b0af 748 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
749}
750
64db4cff
PM
751/*
752 * Snapshot the specified CPU's dynticks counter so that we can later
753 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 754 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 755 */
217af2a2
PM
756static int dyntick_save_progress_counter(struct rcu_data *rdp,
757 bool *isidle, unsigned long *maxj)
64db4cff 758{
23b5c8fa 759 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 760 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 761 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
762}
763
6193c76a
PM
764/*
765 * This function really isn't for public consumption, but RCU is special in
766 * that context switches can allow the state machine to make progress.
767 */
768extern void resched_cpu(int cpu);
769
64db4cff
PM
770/*
771 * Return true if the specified CPU has passed through a quiescent
772 * state by virtue of being in or having passed through an dynticks
773 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 774 * for this same CPU, or by virtue of having been offline.
64db4cff 775 */
217af2a2
PM
776static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
777 bool *isidle, unsigned long *maxj)
64db4cff 778{
7eb4f455
PM
779 unsigned int curr;
780 unsigned int snap;
64db4cff 781
7eb4f455
PM
782 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
783 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
784
785 /*
786 * If the CPU passed through or entered a dynticks idle phase with
787 * no active irq/NMI handlers, then we can safely pretend that the CPU
788 * already acknowledged the request to pass through a quiescent
789 * state. Either way, that CPU cannot possibly be in an RCU
790 * read-side critical section that started before the beginning
791 * of the current RCU grace period.
792 */
7eb4f455 793 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 794 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
795 rdp->dynticks_fqs++;
796 return 1;
797 }
798
a82dcc76
PM
799 /*
800 * Check for the CPU being offline, but only if the grace period
801 * is old enough. We don't need to worry about the CPU changing
802 * state: If we see it offline even once, it has been through a
803 * quiescent state.
804 *
805 * The reason for insisting that the grace period be at least
806 * one jiffy old is that CPUs that are not quite online and that
807 * have just gone offline can still execute RCU read-side critical
808 * sections.
809 */
810 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
811 return 0; /* Grace period is not old enough. */
812 barrier();
813 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 814 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
815 rdp->offline_fqs++;
816 return 1;
817 }
65d798f0
PM
818
819 /*
820 * There is a possibility that a CPU in adaptive-ticks state
821 * might run in the kernel with the scheduling-clock tick disabled
822 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
823 * force the CPU to restart the scheduling-clock tick in this
824 * CPU is in this state.
825 */
826 rcu_kick_nohz_cpu(rdp->cpu);
827
6193c76a
PM
828 /*
829 * Alternatively, the CPU might be running in the kernel
830 * for an extended period of time without a quiescent state.
831 * Attempt to force the CPU through the scheduler to gain the
832 * needed quiescent state, but only if the grace period has gone
833 * on for an uncommonly long time. If there are many stuck CPUs,
834 * we will beat on the first one until it gets unstuck, then move
835 * to the next. Only do this for the primary flavor of RCU.
836 */
837 if (rdp->rsp == rcu_state &&
838 ULONG_CMP_GE(ACCESS_ONCE(jiffies), rdp->rsp->jiffies_resched)) {
839 rdp->rsp->jiffies_resched += 5;
840 resched_cpu(rdp->cpu);
841 }
842
a82dcc76 843 return 0;
64db4cff
PM
844}
845
64db4cff
PM
846static void record_gp_stall_check_time(struct rcu_state *rsp)
847{
26cdfedf 848 unsigned long j = ACCESS_ONCE(jiffies);
6193c76a 849 unsigned long j1;
26cdfedf
PM
850
851 rsp->gp_start = j;
852 smp_wmb(); /* Record start time before stall time. */
6193c76a
PM
853 j1 = rcu_jiffies_till_stall_check();
854 rsp->jiffies_stall = j + j1;
855 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
856}
857
b637a328
PM
858/*
859 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
860 * for architectures that do not implement trigger_all_cpu_backtrace().
861 * The NMI-triggered stack traces are more accurate because they are
862 * printed by the target CPU.
863 */
864static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
865{
866 int cpu;
867 unsigned long flags;
868 struct rcu_node *rnp;
869
870 rcu_for_each_leaf_node(rsp, rnp) {
871 raw_spin_lock_irqsave(&rnp->lock, flags);
872 if (rnp->qsmask != 0) {
873 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
874 if (rnp->qsmask & (1UL << cpu))
875 dump_cpu_task(rnp->grplo + cpu);
876 }
877 raw_spin_unlock_irqrestore(&rnp->lock, flags);
878 }
879}
880
64db4cff
PM
881static void print_other_cpu_stall(struct rcu_state *rsp)
882{
883 int cpu;
884 long delta;
885 unsigned long flags;
285fe294 886 int ndetected = 0;
64db4cff 887 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 888 long totqlen = 0;
64db4cff
PM
889
890 /* Only let one CPU complain about others per time interval. */
891
1304afb2 892 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 893 delta = jiffies - rsp->jiffies_stall;
fc2219d4 894 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 895 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
896 return;
897 }
6bfc09e2 898 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 899 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 900
8cdd32a9
PM
901 /*
902 * OK, time to rat on our buddy...
903 * See Documentation/RCU/stallwarn.txt for info on how to debug
904 * RCU CPU stall warnings.
905 */
d7f3e207 906 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 907 rsp->name);
a858af28 908 print_cpu_stall_info_begin();
a0b6c9a7 909 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 910 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 911 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
912 if (rnp->qsmask != 0) {
913 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
914 if (rnp->qsmask & (1UL << cpu)) {
915 print_cpu_stall_info(rsp,
916 rnp->grplo + cpu);
917 ndetected++;
918 }
919 }
3acd9eb3 920 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 921 }
a858af28
PM
922
923 /*
924 * Now rat on any tasks that got kicked up to the root rcu_node
925 * due to CPU offlining.
926 */
927 rnp = rcu_get_root(rsp);
928 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 929 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
930 raw_spin_unlock_irqrestore(&rnp->lock, flags);
931
932 print_cpu_stall_info_end();
53bb857c
PM
933 for_each_possible_cpu(cpu)
934 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
935 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 936 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 937 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 938 if (ndetected == 0)
d7f3e207 939 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 940 else if (!trigger_all_cpu_backtrace())
b637a328 941 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 942
4cdfc175 943 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
944
945 rcu_print_detail_task_stall(rsp);
946
4cdfc175 947 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
948}
949
b021fe3e
PZ
950/*
951 * This function really isn't for public consumption, but RCU is special in
952 * that context switches can allow the state machine to make progress.
953 */
954extern void resched_cpu(int cpu);
955
64db4cff
PM
956static void print_cpu_stall(struct rcu_state *rsp)
957{
53bb857c 958 int cpu;
64db4cff
PM
959 unsigned long flags;
960 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 961 long totqlen = 0;
64db4cff 962
8cdd32a9
PM
963 /*
964 * OK, time to rat on ourselves...
965 * See Documentation/RCU/stallwarn.txt for info on how to debug
966 * RCU CPU stall warnings.
967 */
d7f3e207 968 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
969 print_cpu_stall_info_begin();
970 print_cpu_stall_info(rsp, smp_processor_id());
971 print_cpu_stall_info_end();
53bb857c
PM
972 for_each_possible_cpu(cpu)
973 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
974 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
975 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
976 if (!trigger_all_cpu_backtrace())
977 dump_stack();
c1dc0b9c 978
1304afb2 979 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 980 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 981 rsp->jiffies_stall = jiffies +
6bfc09e2 982 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 983 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 984
b021fe3e
PZ
985 /*
986 * Attempt to revive the RCU machinery by forcing a context switch.
987 *
988 * A context switch would normally allow the RCU state machine to make
989 * progress and it could be we're stuck in kernel space without context
990 * switches for an entirely unreasonable amount of time.
991 */
992 resched_cpu(smp_processor_id());
64db4cff
PM
993}
994
995static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
996{
26cdfedf
PM
997 unsigned long completed;
998 unsigned long gpnum;
999 unsigned long gps;
bad6e139
PM
1000 unsigned long j;
1001 unsigned long js;
64db4cff
PM
1002 struct rcu_node *rnp;
1003
26cdfedf 1004 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1005 return;
bad6e139 1006 j = ACCESS_ONCE(jiffies);
26cdfedf
PM
1007
1008 /*
1009 * Lots of memory barriers to reject false positives.
1010 *
1011 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1012 * then rsp->gp_start, and finally rsp->completed. These values
1013 * are updated in the opposite order with memory barriers (or
1014 * equivalent) during grace-period initialization and cleanup.
1015 * Now, a false positive can occur if we get an new value of
1016 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1017 * the memory barriers, the only way that this can happen is if one
1018 * grace period ends and another starts between these two fetches.
1019 * Detect this by comparing rsp->completed with the previous fetch
1020 * from rsp->gpnum.
1021 *
1022 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1023 * and rsp->gp_start suffice to forestall false positives.
1024 */
1025 gpnum = ACCESS_ONCE(rsp->gpnum);
1026 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1027 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1028 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1029 gps = ACCESS_ONCE(rsp->gp_start);
1030 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1031 completed = ACCESS_ONCE(rsp->completed);
1032 if (ULONG_CMP_GE(completed, gpnum) ||
1033 ULONG_CMP_LT(j, js) ||
1034 ULONG_CMP_GE(gps, js))
1035 return; /* No stall or GP completed since entering function. */
64db4cff 1036 rnp = rdp->mynode;
c96ea7cf 1037 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1038 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1039
1040 /* We haven't checked in, so go dump stack. */
1041 print_cpu_stall(rsp);
1042
bad6e139
PM
1043 } else if (rcu_gp_in_progress(rsp) &&
1044 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1045
bad6e139 1046 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1047 print_other_cpu_stall(rsp);
1048 }
1049}
1050
53d84e00
PM
1051/**
1052 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1053 *
1054 * Set the stall-warning timeout way off into the future, thus preventing
1055 * any RCU CPU stall-warning messages from appearing in the current set of
1056 * RCU grace periods.
1057 *
1058 * The caller must disable hard irqs.
1059 */
1060void rcu_cpu_stall_reset(void)
1061{
6ce75a23
PM
1062 struct rcu_state *rsp;
1063
1064 for_each_rcu_flavor(rsp)
1065 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1066}
1067
3f5d3ea6
PM
1068/*
1069 * Initialize the specified rcu_data structure's callback list to empty.
1070 */
1071static void init_callback_list(struct rcu_data *rdp)
1072{
1073 int i;
1074
34ed6246
PM
1075 if (init_nocb_callback_list(rdp))
1076 return;
3f5d3ea6
PM
1077 rdp->nxtlist = NULL;
1078 for (i = 0; i < RCU_NEXT_SIZE; i++)
1079 rdp->nxttail[i] = &rdp->nxtlist;
1080}
1081
dc35c893
PM
1082/*
1083 * Determine the value that ->completed will have at the end of the
1084 * next subsequent grace period. This is used to tag callbacks so that
1085 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1086 * been dyntick-idle for an extended period with callbacks under the
1087 * influence of RCU_FAST_NO_HZ.
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
1091static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1092 struct rcu_node *rnp)
1093{
1094 /*
1095 * If RCU is idle, we just wait for the next grace period.
1096 * But we can only be sure that RCU is idle if we are looking
1097 * at the root rcu_node structure -- otherwise, a new grace
1098 * period might have started, but just not yet gotten around
1099 * to initializing the current non-root rcu_node structure.
1100 */
1101 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1102 return rnp->completed + 1;
1103
1104 /*
1105 * Otherwise, wait for a possible partial grace period and
1106 * then the subsequent full grace period.
1107 */
1108 return rnp->completed + 2;
1109}
1110
0446be48
PM
1111/*
1112 * Trace-event helper function for rcu_start_future_gp() and
1113 * rcu_nocb_wait_gp().
1114 */
1115static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1116 unsigned long c, const char *s)
0446be48
PM
1117{
1118 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1119 rnp->completed, c, rnp->level,
1120 rnp->grplo, rnp->grphi, s);
1121}
1122
1123/*
1124 * Start some future grace period, as needed to handle newly arrived
1125 * callbacks. The required future grace periods are recorded in each
1126 * rcu_node structure's ->need_future_gp field.
1127 *
1128 * The caller must hold the specified rcu_node structure's ->lock.
1129 */
1130static unsigned long __maybe_unused
1131rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1132{
1133 unsigned long c;
1134 int i;
1135 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1136
1137 /*
1138 * Pick up grace-period number for new callbacks. If this
1139 * grace period is already marked as needed, return to the caller.
1140 */
1141 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1142 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1143 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1144 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1145 return c;
1146 }
1147
1148 /*
1149 * If either this rcu_node structure or the root rcu_node structure
1150 * believe that a grace period is in progress, then we must wait
1151 * for the one following, which is in "c". Because our request
1152 * will be noticed at the end of the current grace period, we don't
1153 * need to explicitly start one.
1154 */
1155 if (rnp->gpnum != rnp->completed ||
1156 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1157 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1158 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1159 return c;
1160 }
1161
1162 /*
1163 * There might be no grace period in progress. If we don't already
1164 * hold it, acquire the root rcu_node structure's lock in order to
1165 * start one (if needed).
1166 */
1167 if (rnp != rnp_root)
1168 raw_spin_lock(&rnp_root->lock);
1169
1170 /*
1171 * Get a new grace-period number. If there really is no grace
1172 * period in progress, it will be smaller than the one we obtained
1173 * earlier. Adjust callbacks as needed. Note that even no-CBs
1174 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1175 */
1176 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1177 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1178 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1179 rdp->nxtcompleted[i] = c;
1180
1181 /*
1182 * If the needed for the required grace period is already
1183 * recorded, trace and leave.
1184 */
1185 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1186 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1187 goto unlock_out;
1188 }
1189
1190 /* Record the need for the future grace period. */
1191 rnp_root->need_future_gp[c & 0x1]++;
1192
1193 /* If a grace period is not already in progress, start one. */
1194 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1195 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1196 } else {
f7f7bac9 1197 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1198 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1199 }
1200unlock_out:
1201 if (rnp != rnp_root)
1202 raw_spin_unlock(&rnp_root->lock);
1203 return c;
1204}
1205
1206/*
1207 * Clean up any old requests for the just-ended grace period. Also return
1208 * whether any additional grace periods have been requested. Also invoke
1209 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1210 * waiting for this grace period to complete.
1211 */
1212static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1213{
1214 int c = rnp->completed;
1215 int needmore;
1216 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1217
1218 rcu_nocb_gp_cleanup(rsp, rnp);
1219 rnp->need_future_gp[c & 0x1] = 0;
1220 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1221 trace_rcu_future_gp(rnp, rdp, c,
1222 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1223 return needmore;
1224}
1225
dc35c893
PM
1226/*
1227 * If there is room, assign a ->completed number to any callbacks on
1228 * this CPU that have not already been assigned. Also accelerate any
1229 * callbacks that were previously assigned a ->completed number that has
1230 * since proven to be too conservative, which can happen if callbacks get
1231 * assigned a ->completed number while RCU is idle, but with reference to
1232 * a non-root rcu_node structure. This function is idempotent, so it does
1233 * not hurt to call it repeatedly.
1234 *
1235 * The caller must hold rnp->lock with interrupts disabled.
1236 */
1237static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1238 struct rcu_data *rdp)
1239{
1240 unsigned long c;
1241 int i;
1242
1243 /* If the CPU has no callbacks, nothing to do. */
1244 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1245 return;
1246
1247 /*
1248 * Starting from the sublist containing the callbacks most
1249 * recently assigned a ->completed number and working down, find the
1250 * first sublist that is not assignable to an upcoming grace period.
1251 * Such a sublist has something in it (first two tests) and has
1252 * a ->completed number assigned that will complete sooner than
1253 * the ->completed number for newly arrived callbacks (last test).
1254 *
1255 * The key point is that any later sublist can be assigned the
1256 * same ->completed number as the newly arrived callbacks, which
1257 * means that the callbacks in any of these later sublist can be
1258 * grouped into a single sublist, whether or not they have already
1259 * been assigned a ->completed number.
1260 */
1261 c = rcu_cbs_completed(rsp, rnp);
1262 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1263 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1264 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1265 break;
1266
1267 /*
1268 * If there are no sublist for unassigned callbacks, leave.
1269 * At the same time, advance "i" one sublist, so that "i" will
1270 * index into the sublist where all the remaining callbacks should
1271 * be grouped into.
1272 */
1273 if (++i >= RCU_NEXT_TAIL)
1274 return;
1275
1276 /*
1277 * Assign all subsequent callbacks' ->completed number to the next
1278 * full grace period and group them all in the sublist initially
1279 * indexed by "i".
1280 */
1281 for (; i <= RCU_NEXT_TAIL; i++) {
1282 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1283 rdp->nxtcompleted[i] = c;
1284 }
910ee45d
PM
1285 /* Record any needed additional grace periods. */
1286 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1287
1288 /* Trace depending on how much we were able to accelerate. */
1289 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1290 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1291 else
f7f7bac9 1292 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1293}
1294
1295/*
1296 * Move any callbacks whose grace period has completed to the
1297 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1298 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1299 * sublist. This function is idempotent, so it does not hurt to
1300 * invoke it repeatedly. As long as it is not invoked -too- often...
1301 *
1302 * The caller must hold rnp->lock with interrupts disabled.
1303 */
1304static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1305 struct rcu_data *rdp)
1306{
1307 int i, j;
1308
1309 /* If the CPU has no callbacks, nothing to do. */
1310 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1311 return;
1312
1313 /*
1314 * Find all callbacks whose ->completed numbers indicate that they
1315 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1316 */
1317 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1318 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1319 break;
1320 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1321 }
1322 /* Clean up any sublist tail pointers that were misordered above. */
1323 for (j = RCU_WAIT_TAIL; j < i; j++)
1324 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1325
1326 /* Copy down callbacks to fill in empty sublists. */
1327 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1328 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1329 break;
1330 rdp->nxttail[j] = rdp->nxttail[i];
1331 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1332 }
1333
1334 /* Classify any remaining callbacks. */
1335 rcu_accelerate_cbs(rsp, rnp, rdp);
1336}
1337
d09b62df 1338/*
ba9fbe95
PM
1339 * Update CPU-local rcu_data state to record the beginnings and ends of
1340 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1341 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1342 */
ba9fbe95 1343static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1344{
ba9fbe95 1345 /* Handle the ends of any preceding grace periods first. */
dc35c893 1346 if (rdp->completed == rnp->completed) {
d09b62df 1347
ba9fbe95 1348 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1349 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1350
dc35c893
PM
1351 } else {
1352
1353 /* Advance callbacks. */
1354 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1355
1356 /* Remember that we saw this grace-period completion. */
1357 rdp->completed = rnp->completed;
f7f7bac9 1358 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1359 }
398ebe60 1360
6eaef633
PM
1361 if (rdp->gpnum != rnp->gpnum) {
1362 /*
1363 * If the current grace period is waiting for this CPU,
1364 * set up to detect a quiescent state, otherwise don't
1365 * go looking for one.
1366 */
1367 rdp->gpnum = rnp->gpnum;
f7f7bac9 1368 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1369 rdp->passed_quiesce = 0;
1370 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1371 zero_cpu_stall_ticks(rdp);
1372 }
1373}
1374
d34ea322 1375static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1376{
1377 unsigned long flags;
1378 struct rcu_node *rnp;
1379
1380 local_irq_save(flags);
1381 rnp = rdp->mynode;
d34ea322
PM
1382 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1383 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1384 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1385 local_irq_restore(flags);
1386 return;
1387 }
d34ea322 1388 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1389 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1390}
1391
b3dbec76 1392/*
f7be8209 1393 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1394 */
7fdefc10 1395static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1396{
1397 struct rcu_data *rdp;
7fdefc10 1398 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1399
eb75767b 1400 rcu_bind_gp_kthread();
7fdefc10 1401 raw_spin_lock_irq(&rnp->lock);
f7be8209
PM
1402 if (rsp->gp_flags == 0) {
1403 /* Spurious wakeup, tell caller to go back to sleep. */
1404 raw_spin_unlock_irq(&rnp->lock);
1405 return 0;
1406 }
4cdfc175 1407 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1408
f7be8209
PM
1409 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1410 /*
1411 * Grace period already in progress, don't start another.
1412 * Not supposed to be able to happen.
1413 */
7fdefc10
PM
1414 raw_spin_unlock_irq(&rnp->lock);
1415 return 0;
1416 }
1417
7fdefc10 1418 /* Advance to a new grace period and initialize state. */
26cdfedf
PM
1419 record_gp_stall_check_time(rsp);
1420 smp_wmb(); /* Record GP times before starting GP. */
7fdefc10 1421 rsp->gpnum++;
f7f7bac9 1422 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1423 raw_spin_unlock_irq(&rnp->lock);
1424
1425 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1426 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1427
1428 /*
1429 * Set the quiescent-state-needed bits in all the rcu_node
1430 * structures for all currently online CPUs in breadth-first order,
1431 * starting from the root rcu_node structure, relying on the layout
1432 * of the tree within the rsp->node[] array. Note that other CPUs
1433 * will access only the leaves of the hierarchy, thus seeing that no
1434 * grace period is in progress, at least until the corresponding
1435 * leaf node has been initialized. In addition, we have excluded
1436 * CPU-hotplug operations.
1437 *
1438 * The grace period cannot complete until the initialization
1439 * process finishes, because this kthread handles both.
1440 */
1441 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1442 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1443 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1444 rcu_preempt_check_blocked_tasks(rnp);
1445 rnp->qsmask = rnp->qsmaskinit;
0446be48 1446 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1447 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1448 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1449 if (rnp == rdp->mynode)
ce3d9c03 1450 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1451 rcu_preempt_boost_start_gp(rnp);
1452 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1453 rnp->level, rnp->grplo,
1454 rnp->grphi, rnp->qsmask);
1455 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1456#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1457 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1458 system_state == SYSTEM_RUNNING)
971394f3 1459 udelay(200);
661a85dc 1460#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1461 cond_resched();
1462 }
b3dbec76 1463
a4fbe35a 1464 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1465 return 1;
1466}
b3dbec76 1467
4cdfc175
PM
1468/*
1469 * Do one round of quiescent-state forcing.
1470 */
01896f7e 1471static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1472{
1473 int fqs_state = fqs_state_in;
217af2a2
PM
1474 bool isidle = false;
1475 unsigned long maxj;
4cdfc175
PM
1476 struct rcu_node *rnp = rcu_get_root(rsp);
1477
1478 rsp->n_force_qs++;
1479 if (fqs_state == RCU_SAVE_DYNTICK) {
1480 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1481 if (is_sysidle_rcu_state(rsp)) {
1482 isidle = 1;
1483 maxj = jiffies - ULONG_MAX / 4;
1484 }
217af2a2
PM
1485 force_qs_rnp(rsp, dyntick_save_progress_counter,
1486 &isidle, &maxj);
0edd1b17 1487 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1488 fqs_state = RCU_FORCE_QS;
1489 } else {
1490 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1491 isidle = 0;
217af2a2 1492 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1493 }
1494 /* Clear flag to prevent immediate re-entry. */
1495 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1496 raw_spin_lock_irq(&rnp->lock);
1497 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1498 raw_spin_unlock_irq(&rnp->lock);
1499 }
1500 return fqs_state;
1501}
1502
7fdefc10
PM
1503/*
1504 * Clean up after the old grace period.
1505 */
4cdfc175 1506static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1507{
1508 unsigned long gp_duration;
dae6e64d 1509 int nocb = 0;
7fdefc10
PM
1510 struct rcu_data *rdp;
1511 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1512
7fdefc10
PM
1513 raw_spin_lock_irq(&rnp->lock);
1514 gp_duration = jiffies - rsp->gp_start;
1515 if (gp_duration > rsp->gp_max)
1516 rsp->gp_max = gp_duration;
b3dbec76 1517
7fdefc10
PM
1518 /*
1519 * We know the grace period is complete, but to everyone else
1520 * it appears to still be ongoing. But it is also the case
1521 * that to everyone else it looks like there is nothing that
1522 * they can do to advance the grace period. It is therefore
1523 * safe for us to drop the lock in order to mark the grace
1524 * period as completed in all of the rcu_node structures.
7fdefc10 1525 */
5d4b8659 1526 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1527
5d4b8659
PM
1528 /*
1529 * Propagate new ->completed value to rcu_node structures so
1530 * that other CPUs don't have to wait until the start of the next
1531 * grace period to process their callbacks. This also avoids
1532 * some nasty RCU grace-period initialization races by forcing
1533 * the end of the current grace period to be completely recorded in
1534 * all of the rcu_node structures before the beginning of the next
1535 * grace period is recorded in any of the rcu_node structures.
1536 */
1537 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1538 raw_spin_lock_irq(&rnp->lock);
0446be48 1539 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1540 rdp = this_cpu_ptr(rsp->rda);
1541 if (rnp == rdp->mynode)
470716fc 1542 __note_gp_changes(rsp, rnp, rdp);
78e4bc34 1543 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1544 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1545 raw_spin_unlock_irq(&rnp->lock);
1546 cond_resched();
7fdefc10 1547 }
5d4b8659
PM
1548 rnp = rcu_get_root(rsp);
1549 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1550 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1551
1552 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1553 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1554 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1555 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1556 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
bb311ecc 1557 if (cpu_needs_another_gp(rsp, rdp)) {
b3f2d025 1558 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1559 trace_rcu_grace_period(rsp->name,
1560 ACCESS_ONCE(rsp->gpnum),
1561 TPS("newreq"));
1562 }
7fdefc10 1563 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1564}
1565
1566/*
1567 * Body of kthread that handles grace periods.
1568 */
1569static int __noreturn rcu_gp_kthread(void *arg)
1570{
4cdfc175 1571 int fqs_state;
88d6df61 1572 int gf;
d40011f6 1573 unsigned long j;
4cdfc175 1574 int ret;
7fdefc10
PM
1575 struct rcu_state *rsp = arg;
1576 struct rcu_node *rnp = rcu_get_root(rsp);
1577
1578 for (;;) {
1579
1580 /* Handle grace-period start. */
1581 for (;;) {
63c4db78
PM
1582 trace_rcu_grace_period(rsp->name,
1583 ACCESS_ONCE(rsp->gpnum),
1584 TPS("reqwait"));
4cdfc175 1585 wait_event_interruptible(rsp->gp_wq,
591c6d17 1586 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1587 RCU_GP_FLAG_INIT);
78e4bc34 1588 /* Locking provides needed memory barrier. */
f7be8209 1589 if (rcu_gp_init(rsp))
7fdefc10
PM
1590 break;
1591 cond_resched();
1592 flush_signals(current);
63c4db78
PM
1593 trace_rcu_grace_period(rsp->name,
1594 ACCESS_ONCE(rsp->gpnum),
1595 TPS("reqwaitsig"));
7fdefc10 1596 }
cabc49c1 1597
4cdfc175
PM
1598 /* Handle quiescent-state forcing. */
1599 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1600 j = jiffies_till_first_fqs;
1601 if (j > HZ) {
1602 j = HZ;
1603 jiffies_till_first_fqs = HZ;
1604 }
88d6df61 1605 ret = 0;
cabc49c1 1606 for (;;) {
88d6df61
PM
1607 if (!ret)
1608 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1609 trace_rcu_grace_period(rsp->name,
1610 ACCESS_ONCE(rsp->gpnum),
1611 TPS("fqswait"));
4cdfc175 1612 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1613 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1614 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1615 (!ACCESS_ONCE(rnp->qsmask) &&
1616 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1617 j);
78e4bc34 1618 /* Locking provides needed memory barriers. */
4cdfc175 1619 /* If grace period done, leave loop. */
cabc49c1 1620 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1621 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1622 break;
4cdfc175 1623 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1624 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1625 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1626 trace_rcu_grace_period(rsp->name,
1627 ACCESS_ONCE(rsp->gpnum),
1628 TPS("fqsstart"));
4cdfc175 1629 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1630 trace_rcu_grace_period(rsp->name,
1631 ACCESS_ONCE(rsp->gpnum),
1632 TPS("fqsend"));
4cdfc175
PM
1633 cond_resched();
1634 } else {
1635 /* Deal with stray signal. */
1636 cond_resched();
1637 flush_signals(current);
63c4db78
PM
1638 trace_rcu_grace_period(rsp->name,
1639 ACCESS_ONCE(rsp->gpnum),
1640 TPS("fqswaitsig"));
4cdfc175 1641 }
d40011f6
PM
1642 j = jiffies_till_next_fqs;
1643 if (j > HZ) {
1644 j = HZ;
1645 jiffies_till_next_fqs = HZ;
1646 } else if (j < 1) {
1647 j = 1;
1648 jiffies_till_next_fqs = 1;
1649 }
cabc49c1 1650 }
4cdfc175
PM
1651
1652 /* Handle grace-period end. */
1653 rcu_gp_cleanup(rsp);
b3dbec76 1654 }
b3dbec76
PM
1655}
1656
016a8d5b
SR
1657static void rsp_wakeup(struct irq_work *work)
1658{
1659 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1660
1661 /* Wake up rcu_gp_kthread() to start the grace period. */
1662 wake_up(&rsp->gp_wq);
1663}
1664
64db4cff
PM
1665/*
1666 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1667 * in preparation for detecting the next grace period. The caller must hold
b8462084 1668 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1669 *
1670 * Note that it is legal for a dying CPU (which is marked as offline) to
1671 * invoke this function. This can happen when the dying CPU reports its
1672 * quiescent state.
64db4cff
PM
1673 */
1674static void
910ee45d
PM
1675rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1676 struct rcu_data *rdp)
64db4cff 1677{
b8462084 1678 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1679 /*
b3dbec76 1680 * Either we have not yet spawned the grace-period
62da1921
PM
1681 * task, this CPU does not need another grace period,
1682 * or a grace period is already in progress.
b3dbec76 1683 * Either way, don't start a new grace period.
afe24b12 1684 */
afe24b12
PM
1685 return;
1686 }
4cdfc175 1687 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1688 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1689 TPS("newreq"));
62da1921 1690
016a8d5b
SR
1691 /*
1692 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1693 * could cause possible deadlocks with the rq->lock. Defer
1694 * the wakeup to interrupt context. And don't bother waking
1695 * up the running kthread.
016a8d5b 1696 */
1eafd31c
PM
1697 if (current != rsp->gp_kthread)
1698 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1699}
1700
910ee45d
PM
1701/*
1702 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1703 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1704 * is invoked indirectly from rcu_advance_cbs(), which would result in
1705 * endless recursion -- or would do so if it wasn't for the self-deadlock
1706 * that is encountered beforehand.
1707 */
1708static void
1709rcu_start_gp(struct rcu_state *rsp)
1710{
1711 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1712 struct rcu_node *rnp = rcu_get_root(rsp);
1713
1714 /*
1715 * If there is no grace period in progress right now, any
1716 * callbacks we have up to this point will be satisfied by the
1717 * next grace period. Also, advancing the callbacks reduces the
1718 * probability of false positives from cpu_needs_another_gp()
1719 * resulting in pointless grace periods. So, advance callbacks
1720 * then start the grace period!
1721 */
1722 rcu_advance_cbs(rsp, rnp, rdp);
1723 rcu_start_gp_advanced(rsp, rnp, rdp);
1724}
1725
f41d911f 1726/*
d3f6bad3
PM
1727 * Report a full set of quiescent states to the specified rcu_state
1728 * data structure. This involves cleaning up after the prior grace
1729 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1730 * if one is needed. Note that the caller must hold rnp->lock, which
1731 * is released before return.
f41d911f 1732 */
d3f6bad3 1733static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1734 __releases(rcu_get_root(rsp)->lock)
f41d911f 1735{
fc2219d4 1736 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1737 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1738 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1739}
1740
64db4cff 1741/*
d3f6bad3
PM
1742 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1743 * Allows quiescent states for a group of CPUs to be reported at one go
1744 * to the specified rcu_node structure, though all the CPUs in the group
1745 * must be represented by the same rcu_node structure (which need not be
1746 * a leaf rcu_node structure, though it often will be). That structure's
1747 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1748 */
1749static void
d3f6bad3
PM
1750rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1751 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1752 __releases(rnp->lock)
1753{
28ecd580
PM
1754 struct rcu_node *rnp_c;
1755
64db4cff
PM
1756 /* Walk up the rcu_node hierarchy. */
1757 for (;;) {
1758 if (!(rnp->qsmask & mask)) {
1759
1760 /* Our bit has already been cleared, so done. */
1304afb2 1761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1762 return;
1763 }
1764 rnp->qsmask &= ~mask;
d4c08f2a
PM
1765 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1766 mask, rnp->qsmask, rnp->level,
1767 rnp->grplo, rnp->grphi,
1768 !!rnp->gp_tasks);
27f4d280 1769 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1770
1771 /* Other bits still set at this level, so done. */
1304afb2 1772 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1773 return;
1774 }
1775 mask = rnp->grpmask;
1776 if (rnp->parent == NULL) {
1777
1778 /* No more levels. Exit loop holding root lock. */
1779
1780 break;
1781 }
1304afb2 1782 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1783 rnp_c = rnp;
64db4cff 1784 rnp = rnp->parent;
1304afb2 1785 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1786 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1787 }
1788
1789 /*
1790 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1791 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1792 * to clean up and start the next grace period if one is needed.
64db4cff 1793 */
d3f6bad3 1794 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1795}
1796
1797/*
d3f6bad3
PM
1798 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1799 * structure. This must be either called from the specified CPU, or
1800 * called when the specified CPU is known to be offline (and when it is
1801 * also known that no other CPU is concurrently trying to help the offline
1802 * CPU). The lastcomp argument is used to make sure we are still in the
1803 * grace period of interest. We don't want to end the current grace period
1804 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1805 */
1806static void
d7d6a11e 1807rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1808{
1809 unsigned long flags;
1810 unsigned long mask;
1811 struct rcu_node *rnp;
1812
1813 rnp = rdp->mynode;
1304afb2 1814 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1815 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1816 rnp->completed == rnp->gpnum) {
64db4cff
PM
1817
1818 /*
e4cc1f22
PM
1819 * The grace period in which this quiescent state was
1820 * recorded has ended, so don't report it upwards.
1821 * We will instead need a new quiescent state that lies
1822 * within the current grace period.
64db4cff 1823 */
e4cc1f22 1824 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1825 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1826 return;
1827 }
1828 mask = rdp->grpmask;
1829 if ((rnp->qsmask & mask) == 0) {
1304afb2 1830 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1831 } else {
1832 rdp->qs_pending = 0;
1833
1834 /*
1835 * This GP can't end until cpu checks in, so all of our
1836 * callbacks can be processed during the next GP.
1837 */
dc35c893 1838 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1839
d3f6bad3 1840 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1841 }
1842}
1843
1844/*
1845 * Check to see if there is a new grace period of which this CPU
1846 * is not yet aware, and if so, set up local rcu_data state for it.
1847 * Otherwise, see if this CPU has just passed through its first
1848 * quiescent state for this grace period, and record that fact if so.
1849 */
1850static void
1851rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1852{
05eb552b
PM
1853 /* Check for grace-period ends and beginnings. */
1854 note_gp_changes(rsp, rdp);
64db4cff
PM
1855
1856 /*
1857 * Does this CPU still need to do its part for current grace period?
1858 * If no, return and let the other CPUs do their part as well.
1859 */
1860 if (!rdp->qs_pending)
1861 return;
1862
1863 /*
1864 * Was there a quiescent state since the beginning of the grace
1865 * period? If no, then exit and wait for the next call.
1866 */
e4cc1f22 1867 if (!rdp->passed_quiesce)
64db4cff
PM
1868 return;
1869
d3f6bad3
PM
1870 /*
1871 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1872 * judge of that).
1873 */
d7d6a11e 1874 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1875}
1876
1877#ifdef CONFIG_HOTPLUG_CPU
1878
e74f4c45 1879/*
b1420f1c
PM
1880 * Send the specified CPU's RCU callbacks to the orphanage. The
1881 * specified CPU must be offline, and the caller must hold the
7b2e6011 1882 * ->orphan_lock.
e74f4c45 1883 */
b1420f1c
PM
1884static void
1885rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1886 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1887{
3fbfbf7a 1888 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1889 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1890 return;
1891
b1420f1c
PM
1892 /*
1893 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1894 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1895 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1896 */
a50c3af9 1897 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1898 rsp->qlen_lazy += rdp->qlen_lazy;
1899 rsp->qlen += rdp->qlen;
1900 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1901 rdp->qlen_lazy = 0;
1d1fb395 1902 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1903 }
1904
1905 /*
b1420f1c
PM
1906 * Next, move those callbacks still needing a grace period to
1907 * the orphanage, where some other CPU will pick them up.
1908 * Some of the callbacks might have gone partway through a grace
1909 * period, but that is too bad. They get to start over because we
1910 * cannot assume that grace periods are synchronized across CPUs.
1911 * We don't bother updating the ->nxttail[] array yet, instead
1912 * we just reset the whole thing later on.
a50c3af9 1913 */
b1420f1c
PM
1914 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1915 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1916 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1917 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1918 }
1919
1920 /*
b1420f1c
PM
1921 * Then move the ready-to-invoke callbacks to the orphanage,
1922 * where some other CPU will pick them up. These will not be
1923 * required to pass though another grace period: They are done.
a50c3af9 1924 */
e5601400 1925 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1926 *rsp->orphan_donetail = rdp->nxtlist;
1927 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1928 }
e74f4c45 1929
b1420f1c 1930 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1931 init_callback_list(rdp);
b1420f1c
PM
1932}
1933
1934/*
1935 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1936 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 1937 */
96d3fd0d 1938static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
1939{
1940 int i;
1941 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1942
3fbfbf7a 1943 /* No-CBs CPUs are handled specially. */
96d3fd0d 1944 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
1945 return;
1946
b1420f1c
PM
1947 /* Do the accounting first. */
1948 rdp->qlen_lazy += rsp->qlen_lazy;
1949 rdp->qlen += rsp->qlen;
1950 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1951 if (rsp->qlen_lazy != rsp->qlen)
1952 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1953 rsp->qlen_lazy = 0;
1954 rsp->qlen = 0;
1955
1956 /*
1957 * We do not need a memory barrier here because the only way we
1958 * can get here if there is an rcu_barrier() in flight is if
1959 * we are the task doing the rcu_barrier().
1960 */
1961
1962 /* First adopt the ready-to-invoke callbacks. */
1963 if (rsp->orphan_donelist != NULL) {
1964 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1965 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1966 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1967 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1968 rdp->nxttail[i] = rsp->orphan_donetail;
1969 rsp->orphan_donelist = NULL;
1970 rsp->orphan_donetail = &rsp->orphan_donelist;
1971 }
1972
1973 /* And then adopt the callbacks that still need a grace period. */
1974 if (rsp->orphan_nxtlist != NULL) {
1975 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1976 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1977 rsp->orphan_nxtlist = NULL;
1978 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1979 }
1980}
1981
1982/*
1983 * Trace the fact that this CPU is going offline.
1984 */
1985static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1986{
1987 RCU_TRACE(unsigned long mask);
1988 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1989 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1990
1991 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1992 trace_rcu_grace_period(rsp->name,
1993 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1994 TPS("cpuofl"));
64db4cff
PM
1995}
1996
1997/*
e5601400 1998 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1999 * this fact from process context. Do the remainder of the cleanup,
2000 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2001 * adopting them. There can only be one CPU hotplug operation at a time,
2002 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2003 */
e5601400 2004static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2005{
2036d94a
PM
2006 unsigned long flags;
2007 unsigned long mask;
2008 int need_report = 0;
e5601400 2009 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2010 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2011
2036d94a 2012 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2013 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2014
b1420f1c 2015 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2016
2017 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2018 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2019 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2020
b1420f1c
PM
2021 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2022 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2023 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2024
2036d94a
PM
2025 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2026 mask = rdp->grpmask; /* rnp->grplo is constant. */
2027 do {
2028 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2029 rnp->qsmaskinit &= ~mask;
2030 if (rnp->qsmaskinit != 0) {
2031 if (rnp != rdp->mynode)
2032 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2033 break;
2034 }
2035 if (rnp == rdp->mynode)
2036 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2037 else
2038 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2039 mask = rnp->grpmask;
2040 rnp = rnp->parent;
2041 } while (rnp != NULL);
2042
2043 /*
2044 * We still hold the leaf rcu_node structure lock here, and
2045 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2046 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2047 * held leads to deadlock.
2048 */
7b2e6011 2049 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2050 rnp = rdp->mynode;
2051 if (need_report & RCU_OFL_TASKS_NORM_GP)
2052 rcu_report_unblock_qs_rnp(rnp, flags);
2053 else
2054 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2055 if (need_report & RCU_OFL_TASKS_EXP_GP)
2056 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2057 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2058 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2059 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2060 init_callback_list(rdp);
2061 /* Disallow further callbacks on this CPU. */
2062 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2063 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2064}
2065
2066#else /* #ifdef CONFIG_HOTPLUG_CPU */
2067
e5601400 2068static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2069{
2070}
2071
e5601400 2072static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2073{
2074}
2075
2076#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2077
2078/*
2079 * Invoke any RCU callbacks that have made it to the end of their grace
2080 * period. Thottle as specified by rdp->blimit.
2081 */
37c72e56 2082static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2083{
2084 unsigned long flags;
2085 struct rcu_head *next, *list, **tail;
878d7439
ED
2086 long bl, count, count_lazy;
2087 int i;
64db4cff 2088
dc35c893 2089 /* If no callbacks are ready, just return. */
29c00b4a 2090 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2091 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2092 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2093 need_resched(), is_idle_task(current),
2094 rcu_is_callbacks_kthread());
64db4cff 2095 return;
29c00b4a 2096 }
64db4cff
PM
2097
2098 /*
2099 * Extract the list of ready callbacks, disabling to prevent
2100 * races with call_rcu() from interrupt handlers.
2101 */
2102 local_irq_save(flags);
8146c4e2 2103 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2104 bl = rdp->blimit;
486e2593 2105 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2106 list = rdp->nxtlist;
2107 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2108 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2109 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2110 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2111 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2112 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2113 local_irq_restore(flags);
2114
2115 /* Invoke callbacks. */
486e2593 2116 count = count_lazy = 0;
64db4cff
PM
2117 while (list) {
2118 next = list->next;
2119 prefetch(next);
551d55a9 2120 debug_rcu_head_unqueue(list);
486e2593
PM
2121 if (__rcu_reclaim(rsp->name, list))
2122 count_lazy++;
64db4cff 2123 list = next;
dff1672d
PM
2124 /* Stop only if limit reached and CPU has something to do. */
2125 if (++count >= bl &&
2126 (need_resched() ||
2127 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2128 break;
2129 }
2130
2131 local_irq_save(flags);
4968c300
PM
2132 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2133 is_idle_task(current),
2134 rcu_is_callbacks_kthread());
64db4cff
PM
2135
2136 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2137 if (list != NULL) {
2138 *tail = rdp->nxtlist;
2139 rdp->nxtlist = list;
b41772ab
PM
2140 for (i = 0; i < RCU_NEXT_SIZE; i++)
2141 if (&rdp->nxtlist == rdp->nxttail[i])
2142 rdp->nxttail[i] = tail;
64db4cff
PM
2143 else
2144 break;
2145 }
b1420f1c
PM
2146 smp_mb(); /* List handling before counting for rcu_barrier(). */
2147 rdp->qlen_lazy -= count_lazy;
1d1fb395 2148 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2149 rdp->n_cbs_invoked += count;
64db4cff
PM
2150
2151 /* Reinstate batch limit if we have worked down the excess. */
2152 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2153 rdp->blimit = blimit;
2154
37c72e56
PM
2155 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2156 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2157 rdp->qlen_last_fqs_check = 0;
2158 rdp->n_force_qs_snap = rsp->n_force_qs;
2159 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2160 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2161 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2162
64db4cff
PM
2163 local_irq_restore(flags);
2164
e0f23060 2165 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2166 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2167 invoke_rcu_core();
64db4cff
PM
2168}
2169
2170/*
2171 * Check to see if this CPU is in a non-context-switch quiescent state
2172 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2173 * Also schedule RCU core processing.
64db4cff 2174 *
9b2e4f18 2175 * This function must be called from hardirq context. It is normally
64db4cff
PM
2176 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2177 * false, there is no point in invoking rcu_check_callbacks().
2178 */
2179void rcu_check_callbacks(int cpu, int user)
2180{
f7f7bac9 2181 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2182 increment_cpu_stall_ticks();
9b2e4f18 2183 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2184
2185 /*
2186 * Get here if this CPU took its interrupt from user
2187 * mode or from the idle loop, and if this is not a
2188 * nested interrupt. In this case, the CPU is in
d6714c22 2189 * a quiescent state, so note it.
64db4cff
PM
2190 *
2191 * No memory barrier is required here because both
d6714c22
PM
2192 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2193 * variables that other CPUs neither access nor modify,
2194 * at least not while the corresponding CPU is online.
64db4cff
PM
2195 */
2196
d6714c22
PM
2197 rcu_sched_qs(cpu);
2198 rcu_bh_qs(cpu);
64db4cff
PM
2199
2200 } else if (!in_softirq()) {
2201
2202 /*
2203 * Get here if this CPU did not take its interrupt from
2204 * softirq, in other words, if it is not interrupting
2205 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2206 * critical section, so note it.
64db4cff
PM
2207 */
2208
d6714c22 2209 rcu_bh_qs(cpu);
64db4cff 2210 }
f41d911f 2211 rcu_preempt_check_callbacks(cpu);
d21670ac 2212 if (rcu_pending(cpu))
a46e0899 2213 invoke_rcu_core();
f7f7bac9 2214 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2215}
2216
64db4cff
PM
2217/*
2218 * Scan the leaf rcu_node structures, processing dyntick state for any that
2219 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2220 * Also initiate boosting for any threads blocked on the root rcu_node.
2221 *
ee47eb9f 2222 * The caller must have suppressed start of new grace periods.
64db4cff 2223 */
217af2a2
PM
2224static void force_qs_rnp(struct rcu_state *rsp,
2225 int (*f)(struct rcu_data *rsp, bool *isidle,
2226 unsigned long *maxj),
2227 bool *isidle, unsigned long *maxj)
64db4cff
PM
2228{
2229 unsigned long bit;
2230 int cpu;
2231 unsigned long flags;
2232 unsigned long mask;
a0b6c9a7 2233 struct rcu_node *rnp;
64db4cff 2234
a0b6c9a7 2235 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2236 cond_resched();
64db4cff 2237 mask = 0;
1304afb2 2238 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2239 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2240 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2241 return;
64db4cff 2242 }
a0b6c9a7 2243 if (rnp->qsmask == 0) {
1217ed1b 2244 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2245 continue;
2246 }
a0b6c9a7 2247 cpu = rnp->grplo;
64db4cff 2248 bit = 1;
a0b6c9a7 2249 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2250 if ((rnp->qsmask & bit) != 0) {
2251 if ((rnp->qsmaskinit & bit) != 0)
2252 *isidle = 0;
2253 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2254 mask |= bit;
2255 }
64db4cff 2256 }
45f014c5 2257 if (mask != 0) {
64db4cff 2258
d3f6bad3
PM
2259 /* rcu_report_qs_rnp() releases rnp->lock. */
2260 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2261 continue;
2262 }
1304afb2 2263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2264 }
27f4d280 2265 rnp = rcu_get_root(rsp);
1217ed1b
PM
2266 if (rnp->qsmask == 0) {
2267 raw_spin_lock_irqsave(&rnp->lock, flags);
2268 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2269 }
64db4cff
PM
2270}
2271
2272/*
2273 * Force quiescent states on reluctant CPUs, and also detect which
2274 * CPUs are in dyntick-idle mode.
2275 */
4cdfc175 2276static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2277{
2278 unsigned long flags;
394f2769
PM
2279 bool ret;
2280 struct rcu_node *rnp;
2281 struct rcu_node *rnp_old = NULL;
2282
2283 /* Funnel through hierarchy to reduce memory contention. */
2284 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2285 for (; rnp != NULL; rnp = rnp->parent) {
2286 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2287 !raw_spin_trylock(&rnp->fqslock);
2288 if (rnp_old != NULL)
2289 raw_spin_unlock(&rnp_old->fqslock);
2290 if (ret) {
2291 rsp->n_force_qs_lh++;
2292 return;
2293 }
2294 rnp_old = rnp;
2295 }
2296 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2297
394f2769
PM
2298 /* Reached the root of the rcu_node tree, acquire lock. */
2299 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2300 raw_spin_unlock(&rnp_old->fqslock);
2301 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2302 rsp->n_force_qs_lh++;
2303 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2304 return; /* Someone beat us to it. */
46a1e34e 2305 }
4cdfc175 2306 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2307 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2308 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2309}
2310
64db4cff 2311/*
e0f23060
PM
2312 * This does the RCU core processing work for the specified rcu_state
2313 * and rcu_data structures. This may be called only from the CPU to
2314 * whom the rdp belongs.
64db4cff
PM
2315 */
2316static void
1bca8cf1 2317__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2318{
2319 unsigned long flags;
1bca8cf1 2320 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2321
2e597558
PM
2322 WARN_ON_ONCE(rdp->beenonline == 0);
2323
64db4cff
PM
2324 /* Update RCU state based on any recent quiescent states. */
2325 rcu_check_quiescent_state(rsp, rdp);
2326
2327 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2328 local_irq_save(flags);
64db4cff 2329 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2330 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2331 rcu_start_gp(rsp);
2332 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2333 } else {
2334 local_irq_restore(flags);
64db4cff
PM
2335 }
2336
2337 /* If there are callbacks ready, invoke them. */
09223371 2338 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2339 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2340
2341 /* Do any needed deferred wakeups of rcuo kthreads. */
2342 do_nocb_deferred_wakeup(rdp);
09223371
SL
2343}
2344
64db4cff 2345/*
e0f23060 2346 * Do RCU core processing for the current CPU.
64db4cff 2347 */
09223371 2348static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2349{
6ce75a23
PM
2350 struct rcu_state *rsp;
2351
bfa00b4c
PM
2352 if (cpu_is_offline(smp_processor_id()))
2353 return;
f7f7bac9 2354 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2355 for_each_rcu_flavor(rsp)
2356 __rcu_process_callbacks(rsp);
f7f7bac9 2357 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2358}
2359
a26ac245 2360/*
e0f23060
PM
2361 * Schedule RCU callback invocation. If the specified type of RCU
2362 * does not support RCU priority boosting, just do a direct call,
2363 * otherwise wake up the per-CPU kernel kthread. Note that because we
2364 * are running on the current CPU with interrupts disabled, the
2365 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2366 */
a46e0899 2367static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2368{
b0d30417
PM
2369 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2370 return;
a46e0899
PM
2371 if (likely(!rsp->boost)) {
2372 rcu_do_batch(rsp, rdp);
a26ac245
PM
2373 return;
2374 }
a46e0899 2375 invoke_rcu_callbacks_kthread();
a26ac245
PM
2376}
2377
a46e0899 2378static void invoke_rcu_core(void)
09223371 2379{
b0f74036
PM
2380 if (cpu_online(smp_processor_id()))
2381 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2382}
2383
29154c57
PM
2384/*
2385 * Handle any core-RCU processing required by a call_rcu() invocation.
2386 */
2387static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2388 struct rcu_head *head, unsigned long flags)
64db4cff 2389{
62fde6ed
PM
2390 /*
2391 * If called from an extended quiescent state, invoke the RCU
2392 * core in order to force a re-evaluation of RCU's idleness.
2393 */
5c173eb8 2394 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2395 invoke_rcu_core();
2396
a16b7a69 2397 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2398 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2399 return;
64db4cff 2400
37c72e56
PM
2401 /*
2402 * Force the grace period if too many callbacks or too long waiting.
2403 * Enforce hysteresis, and don't invoke force_quiescent_state()
2404 * if some other CPU has recently done so. Also, don't bother
2405 * invoking force_quiescent_state() if the newly enqueued callback
2406 * is the only one waiting for a grace period to complete.
2407 */
2655d57e 2408 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2409
2410 /* Are we ignoring a completed grace period? */
470716fc 2411 note_gp_changes(rsp, rdp);
b52573d2
PM
2412
2413 /* Start a new grace period if one not already started. */
2414 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2415 struct rcu_node *rnp_root = rcu_get_root(rsp);
2416
b8462084
PM
2417 raw_spin_lock(&rnp_root->lock);
2418 rcu_start_gp(rsp);
2419 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2420 } else {
2421 /* Give the grace period a kick. */
2422 rdp->blimit = LONG_MAX;
2423 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2424 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2425 force_quiescent_state(rsp);
b52573d2
PM
2426 rdp->n_force_qs_snap = rsp->n_force_qs;
2427 rdp->qlen_last_fqs_check = rdp->qlen;
2428 }
4cdfc175 2429 }
29154c57
PM
2430}
2431
ae150184
PM
2432/*
2433 * RCU callback function to leak a callback.
2434 */
2435static void rcu_leak_callback(struct rcu_head *rhp)
2436{
2437}
2438
3fbfbf7a
PM
2439/*
2440 * Helper function for call_rcu() and friends. The cpu argument will
2441 * normally be -1, indicating "currently running CPU". It may specify
2442 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2443 * is expected to specify a CPU.
2444 */
64db4cff
PM
2445static void
2446__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2447 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2448{
2449 unsigned long flags;
2450 struct rcu_data *rdp;
2451
0bb7b59d 2452 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2453 if (debug_rcu_head_queue(head)) {
2454 /* Probable double call_rcu(), so leak the callback. */
2455 ACCESS_ONCE(head->func) = rcu_leak_callback;
2456 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2457 return;
2458 }
64db4cff
PM
2459 head->func = func;
2460 head->next = NULL;
2461
64db4cff
PM
2462 /*
2463 * Opportunistically note grace-period endings and beginnings.
2464 * Note that we might see a beginning right after we see an
2465 * end, but never vice versa, since this CPU has to pass through
2466 * a quiescent state betweentimes.
2467 */
2468 local_irq_save(flags);
394f99a9 2469 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2470
2471 /* Add the callback to our list. */
3fbfbf7a
PM
2472 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2473 int offline;
2474
2475 if (cpu != -1)
2476 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2477 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2478 WARN_ON_ONCE(offline);
0d8ee37e 2479 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2480 local_irq_restore(flags);
2481 return;
2482 }
29154c57 2483 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2484 if (lazy)
2485 rdp->qlen_lazy++;
c57afe80
PM
2486 else
2487 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2488 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2489 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2490 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2491
d4c08f2a
PM
2492 if (__is_kfree_rcu_offset((unsigned long)func))
2493 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2494 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2495 else
486e2593 2496 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2497
29154c57
PM
2498 /* Go handle any RCU core processing required. */
2499 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2500 local_irq_restore(flags);
2501}
2502
2503/*
d6714c22 2504 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2505 */
d6714c22 2506void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2507{
3fbfbf7a 2508 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2509}
d6714c22 2510EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2511
2512/*
486e2593 2513 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2514 */
2515void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2516{
3fbfbf7a 2517 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2518}
2519EXPORT_SYMBOL_GPL(call_rcu_bh);
2520
6d813391
PM
2521/*
2522 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2523 * any blocking grace-period wait automatically implies a grace period
2524 * if there is only one CPU online at any point time during execution
2525 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2526 * occasionally incorrectly indicate that there are multiple CPUs online
2527 * when there was in fact only one the whole time, as this just adds
2528 * some overhead: RCU still operates correctly.
6d813391
PM
2529 */
2530static inline int rcu_blocking_is_gp(void)
2531{
95f0c1de
PM
2532 int ret;
2533
6d813391 2534 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2535 preempt_disable();
2536 ret = num_online_cpus() <= 1;
2537 preempt_enable();
2538 return ret;
6d813391
PM
2539}
2540
6ebb237b
PM
2541/**
2542 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2543 *
2544 * Control will return to the caller some time after a full rcu-sched
2545 * grace period has elapsed, in other words after all currently executing
2546 * rcu-sched read-side critical sections have completed. These read-side
2547 * critical sections are delimited by rcu_read_lock_sched() and
2548 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2549 * local_irq_disable(), and so on may be used in place of
2550 * rcu_read_lock_sched().
2551 *
2552 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2553 * non-threaded hardware-interrupt handlers, in progress on entry will
2554 * have completed before this primitive returns. However, this does not
2555 * guarantee that softirq handlers will have completed, since in some
2556 * kernels, these handlers can run in process context, and can block.
2557 *
2558 * Note that this guarantee implies further memory-ordering guarantees.
2559 * On systems with more than one CPU, when synchronize_sched() returns,
2560 * each CPU is guaranteed to have executed a full memory barrier since the
2561 * end of its last RCU-sched read-side critical section whose beginning
2562 * preceded the call to synchronize_sched(). In addition, each CPU having
2563 * an RCU read-side critical section that extends beyond the return from
2564 * synchronize_sched() is guaranteed to have executed a full memory barrier
2565 * after the beginning of synchronize_sched() and before the beginning of
2566 * that RCU read-side critical section. Note that these guarantees include
2567 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2568 * that are executing in the kernel.
2569 *
2570 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2571 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2572 * to have executed a full memory barrier during the execution of
2573 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2574 * again only if the system has more than one CPU).
6ebb237b
PM
2575 *
2576 * This primitive provides the guarantees made by the (now removed)
2577 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2578 * guarantees that rcu_read_lock() sections will have completed.
2579 * In "classic RCU", these two guarantees happen to be one and
2580 * the same, but can differ in realtime RCU implementations.
2581 */
2582void synchronize_sched(void)
2583{
fe15d706
PM
2584 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2585 !lock_is_held(&rcu_lock_map) &&
2586 !lock_is_held(&rcu_sched_lock_map),
2587 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2588 if (rcu_blocking_is_gp())
2589 return;
3705b88d
AM
2590 if (rcu_expedited)
2591 synchronize_sched_expedited();
2592 else
2593 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2594}
2595EXPORT_SYMBOL_GPL(synchronize_sched);
2596
2597/**
2598 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2599 *
2600 * Control will return to the caller some time after a full rcu_bh grace
2601 * period has elapsed, in other words after all currently executing rcu_bh
2602 * read-side critical sections have completed. RCU read-side critical
2603 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2604 * and may be nested.
f0a0e6f2
PM
2605 *
2606 * See the description of synchronize_sched() for more detailed information
2607 * on memory ordering guarantees.
6ebb237b
PM
2608 */
2609void synchronize_rcu_bh(void)
2610{
fe15d706
PM
2611 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2612 !lock_is_held(&rcu_lock_map) &&
2613 !lock_is_held(&rcu_sched_lock_map),
2614 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2615 if (rcu_blocking_is_gp())
2616 return;
3705b88d
AM
2617 if (rcu_expedited)
2618 synchronize_rcu_bh_expedited();
2619 else
2620 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2621}
2622EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2623
3d3b7db0
PM
2624static int synchronize_sched_expedited_cpu_stop(void *data)
2625{
2626 /*
2627 * There must be a full memory barrier on each affected CPU
2628 * between the time that try_stop_cpus() is called and the
2629 * time that it returns.
2630 *
2631 * In the current initial implementation of cpu_stop, the
2632 * above condition is already met when the control reaches
2633 * this point and the following smp_mb() is not strictly
2634 * necessary. Do smp_mb() anyway for documentation and
2635 * robustness against future implementation changes.
2636 */
2637 smp_mb(); /* See above comment block. */
2638 return 0;
2639}
2640
236fefaf
PM
2641/**
2642 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2643 *
2644 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2645 * approach to force the grace period to end quickly. This consumes
2646 * significant time on all CPUs and is unfriendly to real-time workloads,
2647 * so is thus not recommended for any sort of common-case code. In fact,
2648 * if you are using synchronize_sched_expedited() in a loop, please
2649 * restructure your code to batch your updates, and then use a single
2650 * synchronize_sched() instead.
3d3b7db0 2651 *
236fefaf
PM
2652 * Note that it is illegal to call this function while holding any lock
2653 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2654 * to call this function from a CPU-hotplug notifier. Failing to observe
2655 * these restriction will result in deadlock.
3d3b7db0
PM
2656 *
2657 * This implementation can be thought of as an application of ticket
2658 * locking to RCU, with sync_sched_expedited_started and
2659 * sync_sched_expedited_done taking on the roles of the halves
2660 * of the ticket-lock word. Each task atomically increments
2661 * sync_sched_expedited_started upon entry, snapshotting the old value,
2662 * then attempts to stop all the CPUs. If this succeeds, then each
2663 * CPU will have executed a context switch, resulting in an RCU-sched
2664 * grace period. We are then done, so we use atomic_cmpxchg() to
2665 * update sync_sched_expedited_done to match our snapshot -- but
2666 * only if someone else has not already advanced past our snapshot.
2667 *
2668 * On the other hand, if try_stop_cpus() fails, we check the value
2669 * of sync_sched_expedited_done. If it has advanced past our
2670 * initial snapshot, then someone else must have forced a grace period
2671 * some time after we took our snapshot. In this case, our work is
2672 * done for us, and we can simply return. Otherwise, we try again,
2673 * but keep our initial snapshot for purposes of checking for someone
2674 * doing our work for us.
2675 *
2676 * If we fail too many times in a row, we fall back to synchronize_sched().
2677 */
2678void synchronize_sched_expedited(void)
2679{
1924bcb0
PM
2680 long firstsnap, s, snap;
2681 int trycount = 0;
40694d66 2682 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2683
1924bcb0
PM
2684 /*
2685 * If we are in danger of counter wrap, just do synchronize_sched().
2686 * By allowing sync_sched_expedited_started to advance no more than
2687 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2688 * that more than 3.5 billion CPUs would be required to force a
2689 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2690 * course be required on a 64-bit system.
2691 */
40694d66
PM
2692 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2693 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2694 ULONG_MAX / 8)) {
2695 synchronize_sched();
a30489c5 2696 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2697 return;
2698 }
3d3b7db0 2699
1924bcb0
PM
2700 /*
2701 * Take a ticket. Note that atomic_inc_return() implies a
2702 * full memory barrier.
2703 */
40694d66 2704 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2705 firstsnap = snap;
3d3b7db0 2706 get_online_cpus();
1cc85961 2707 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2708
2709 /*
2710 * Each pass through the following loop attempts to force a
2711 * context switch on each CPU.
2712 */
2713 while (try_stop_cpus(cpu_online_mask,
2714 synchronize_sched_expedited_cpu_stop,
2715 NULL) == -EAGAIN) {
2716 put_online_cpus();
a30489c5 2717 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2718
1924bcb0 2719 /* Check to see if someone else did our work for us. */
40694d66 2720 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2721 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2722 /* ensure test happens before caller kfree */
2723 smp_mb__before_atomic_inc(); /* ^^^ */
2724 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2725 return;
2726 }
3d3b7db0
PM
2727
2728 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2729 if (trycount++ < 10) {
3d3b7db0 2730 udelay(trycount * num_online_cpus());
c701d5d9 2731 } else {
3705b88d 2732 wait_rcu_gp(call_rcu_sched);
a30489c5 2733 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2734 return;
2735 }
2736
1924bcb0 2737 /* Recheck to see if someone else did our work for us. */
40694d66 2738 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2739 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2740 /* ensure test happens before caller kfree */
2741 smp_mb__before_atomic_inc(); /* ^^^ */
2742 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2743 return;
2744 }
2745
2746 /*
2747 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2748 * callers to piggyback on our grace period. We retry
2749 * after they started, so our grace period works for them,
2750 * and they started after our first try, so their grace
2751 * period works for us.
3d3b7db0
PM
2752 */
2753 get_online_cpus();
40694d66 2754 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2755 smp_mb(); /* ensure read is before try_stop_cpus(). */
2756 }
a30489c5 2757 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2758
2759 /*
2760 * Everyone up to our most recent fetch is covered by our grace
2761 * period. Update the counter, but only if our work is still
2762 * relevant -- which it won't be if someone who started later
1924bcb0 2763 * than we did already did their update.
3d3b7db0
PM
2764 */
2765 do {
a30489c5 2766 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2767 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2768 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2769 /* ensure test happens before caller kfree */
2770 smp_mb__before_atomic_inc(); /* ^^^ */
2771 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2772 break;
2773 }
40694d66 2774 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2775 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2776
2777 put_online_cpus();
2778}
2779EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2780
64db4cff
PM
2781/*
2782 * Check to see if there is any immediate RCU-related work to be done
2783 * by the current CPU, for the specified type of RCU, returning 1 if so.
2784 * The checks are in order of increasing expense: checks that can be
2785 * carried out against CPU-local state are performed first. However,
2786 * we must check for CPU stalls first, else we might not get a chance.
2787 */
2788static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2789{
2f51f988
PM
2790 struct rcu_node *rnp = rdp->mynode;
2791
64db4cff
PM
2792 rdp->n_rcu_pending++;
2793
2794 /* Check for CPU stalls, if enabled. */
2795 check_cpu_stall(rsp, rdp);
2796
2797 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2798 if (rcu_scheduler_fully_active &&
2799 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2800 rdp->n_rp_qs_pending++;
e4cc1f22 2801 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2802 rdp->n_rp_report_qs++;
64db4cff 2803 return 1;
7ba5c840 2804 }
64db4cff
PM
2805
2806 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2807 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2808 rdp->n_rp_cb_ready++;
64db4cff 2809 return 1;
7ba5c840 2810 }
64db4cff
PM
2811
2812 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2813 if (cpu_needs_another_gp(rsp, rdp)) {
2814 rdp->n_rp_cpu_needs_gp++;
64db4cff 2815 return 1;
7ba5c840 2816 }
64db4cff
PM
2817
2818 /* Has another RCU grace period completed? */
2f51f988 2819 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2820 rdp->n_rp_gp_completed++;
64db4cff 2821 return 1;
7ba5c840 2822 }
64db4cff
PM
2823
2824 /* Has a new RCU grace period started? */
2f51f988 2825 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2826 rdp->n_rp_gp_started++;
64db4cff 2827 return 1;
7ba5c840 2828 }
64db4cff 2829
96d3fd0d
PM
2830 /* Does this CPU need a deferred NOCB wakeup? */
2831 if (rcu_nocb_need_deferred_wakeup(rdp)) {
2832 rdp->n_rp_nocb_defer_wakeup++;
2833 return 1;
2834 }
2835
64db4cff 2836 /* nothing to do */
7ba5c840 2837 rdp->n_rp_need_nothing++;
64db4cff
PM
2838 return 0;
2839}
2840
2841/*
2842 * Check to see if there is any immediate RCU-related work to be done
2843 * by the current CPU, returning 1 if so. This function is part of the
2844 * RCU implementation; it is -not- an exported member of the RCU API.
2845 */
a157229c 2846static int rcu_pending(int cpu)
64db4cff 2847{
6ce75a23
PM
2848 struct rcu_state *rsp;
2849
2850 for_each_rcu_flavor(rsp)
2851 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2852 return 1;
2853 return 0;
64db4cff
PM
2854}
2855
2856/*
c0f4dfd4
PM
2857 * Return true if the specified CPU has any callback. If all_lazy is
2858 * non-NULL, store an indication of whether all callbacks are lazy.
2859 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2860 */
c0f4dfd4 2861static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2862{
c0f4dfd4
PM
2863 bool al = true;
2864 bool hc = false;
2865 struct rcu_data *rdp;
6ce75a23
PM
2866 struct rcu_state *rsp;
2867
c0f4dfd4
PM
2868 for_each_rcu_flavor(rsp) {
2869 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
2870 if (!rdp->nxtlist)
2871 continue;
2872 hc = true;
2873 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 2874 al = false;
69c8d28c
PM
2875 break;
2876 }
c0f4dfd4
PM
2877 }
2878 if (all_lazy)
2879 *all_lazy = al;
2880 return hc;
64db4cff
PM
2881}
2882
a83eff0a
PM
2883/*
2884 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2885 * the compiler is expected to optimize this away.
2886 */
e66c33d5 2887static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2888 int cpu, unsigned long done)
2889{
2890 trace_rcu_barrier(rsp->name, s, cpu,
2891 atomic_read(&rsp->barrier_cpu_count), done);
2892}
2893
b1420f1c
PM
2894/*
2895 * RCU callback function for _rcu_barrier(). If we are last, wake
2896 * up the task executing _rcu_barrier().
2897 */
24ebbca8 2898static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2899{
24ebbca8
PM
2900 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2901 struct rcu_state *rsp = rdp->rsp;
2902
a83eff0a
PM
2903 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2904 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2905 complete(&rsp->barrier_completion);
a83eff0a
PM
2906 } else {
2907 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2908 }
d0ec774c
PM
2909}
2910
2911/*
2912 * Called with preemption disabled, and from cross-cpu IRQ context.
2913 */
2914static void rcu_barrier_func(void *type)
2915{
037b64ed 2916 struct rcu_state *rsp = type;
06668efa 2917 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2918
a83eff0a 2919 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2920 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2921 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2922}
2923
d0ec774c
PM
2924/*
2925 * Orchestrate the specified type of RCU barrier, waiting for all
2926 * RCU callbacks of the specified type to complete.
2927 */
037b64ed 2928static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2929{
b1420f1c 2930 int cpu;
b1420f1c 2931 struct rcu_data *rdp;
cf3a9c48
PM
2932 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2933 unsigned long snap_done;
b1420f1c 2934
a83eff0a 2935 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2936
e74f4c45 2937 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2938 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2939
cf3a9c48
PM
2940 /*
2941 * Ensure that all prior references, including to ->n_barrier_done,
2942 * are ordered before the _rcu_barrier() machinery.
2943 */
2944 smp_mb(); /* See above block comment. */
2945
2946 /*
2947 * Recheck ->n_barrier_done to see if others did our work for us.
2948 * This means checking ->n_barrier_done for an even-to-odd-to-even
2949 * transition. The "if" expression below therefore rounds the old
2950 * value up to the next even number and adds two before comparing.
2951 */
458fb381 2952 snap_done = rsp->n_barrier_done;
a83eff0a 2953 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
2954
2955 /*
2956 * If the value in snap is odd, we needed to wait for the current
2957 * rcu_barrier() to complete, then wait for the next one, in other
2958 * words, we need the value of snap_done to be three larger than
2959 * the value of snap. On the other hand, if the value in snap is
2960 * even, we only had to wait for the next rcu_barrier() to complete,
2961 * in other words, we need the value of snap_done to be only two
2962 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2963 * this for us (thank you, Linus!).
2964 */
2965 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 2966 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2967 smp_mb(); /* caller's subsequent code after above check. */
2968 mutex_unlock(&rsp->barrier_mutex);
2969 return;
2970 }
2971
2972 /*
2973 * Increment ->n_barrier_done to avoid duplicate work. Use
2974 * ACCESS_ONCE() to prevent the compiler from speculating
2975 * the increment to precede the early-exit check.
2976 */
2977 ACCESS_ONCE(rsp->n_barrier_done)++;
2978 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2979 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2980 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2981
d0ec774c 2982 /*
b1420f1c
PM
2983 * Initialize the count to one rather than to zero in order to
2984 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2985 * (or preemption of this task). Exclude CPU-hotplug operations
2986 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2987 */
7db74df8 2988 init_completion(&rsp->barrier_completion);
24ebbca8 2989 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2990 get_online_cpus();
b1420f1c
PM
2991
2992 /*
1331e7a1
PM
2993 * Force each CPU with callbacks to register a new callback.
2994 * When that callback is invoked, we will know that all of the
2995 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2996 */
3fbfbf7a 2997 for_each_possible_cpu(cpu) {
d1e43fa5 2998 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2999 continue;
b1420f1c 3000 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3001 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3002 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3003 rsp->n_barrier_done);
3004 atomic_inc(&rsp->barrier_cpu_count);
3005 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3006 rsp, cpu, 0);
3007 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3008 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3009 rsp->n_barrier_done);
037b64ed 3010 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3011 } else {
a83eff0a
PM
3012 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3013 rsp->n_barrier_done);
b1420f1c
PM
3014 }
3015 }
1331e7a1 3016 put_online_cpus();
b1420f1c
PM
3017
3018 /*
3019 * Now that we have an rcu_barrier_callback() callback on each
3020 * CPU, and thus each counted, remove the initial count.
3021 */
24ebbca8 3022 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3023 complete(&rsp->barrier_completion);
b1420f1c 3024
cf3a9c48
PM
3025 /* Increment ->n_barrier_done to prevent duplicate work. */
3026 smp_mb(); /* Keep increment after above mechanism. */
3027 ACCESS_ONCE(rsp->n_barrier_done)++;
3028 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3029 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3030 smp_mb(); /* Keep increment before caller's subsequent code. */
3031
b1420f1c 3032 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3033 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3034
3035 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3036 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3037}
d0ec774c
PM
3038
3039/**
3040 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3041 */
3042void rcu_barrier_bh(void)
3043{
037b64ed 3044 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3045}
3046EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3047
3048/**
3049 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3050 */
3051void rcu_barrier_sched(void)
3052{
037b64ed 3053 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3054}
3055EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3056
64db4cff 3057/*
27569620 3058 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3059 */
27569620
PM
3060static void __init
3061rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3062{
3063 unsigned long flags;
394f99a9 3064 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3065 struct rcu_node *rnp = rcu_get_root(rsp);
3066
3067 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3068 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3069 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3070 init_callback_list(rdp);
486e2593 3071 rdp->qlen_lazy = 0;
1d1fb395 3072 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3073 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3074 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3075 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3076 rdp->cpu = cpu;
d4c08f2a 3077 rdp->rsp = rsp;
3fbfbf7a 3078 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3079 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3080}
3081
3082/*
3083 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3084 * offline event can be happening at a given time. Note also that we
3085 * can accept some slop in the rsp->completed access due to the fact
3086 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3087 */
49fb4c62 3088static void
6cc68793 3089rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
3090{
3091 unsigned long flags;
64db4cff 3092 unsigned long mask;
394f99a9 3093 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3094 struct rcu_node *rnp = rcu_get_root(rsp);
3095
a4fbe35a
PM
3096 /* Exclude new grace periods. */
3097 mutex_lock(&rsp->onoff_mutex);
3098
64db4cff 3099 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3100 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3101 rdp->beenonline = 1; /* We have now been online. */
6cc68793 3102 rdp->preemptible = preemptible;
37c72e56
PM
3103 rdp->qlen_last_fqs_check = 0;
3104 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3105 rdp->blimit = blimit;
0d8ee37e 3106 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3107 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3108 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3109 atomic_set(&rdp->dynticks->dynticks,
3110 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3111 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3112
64db4cff
PM
3113 /* Add CPU to rcu_node bitmasks. */
3114 rnp = rdp->mynode;
3115 mask = rdp->grpmask;
3116 do {
3117 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3118 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3119 rnp->qsmaskinit |= mask;
3120 mask = rnp->grpmask;
d09b62df 3121 if (rnp == rdp->mynode) {
06ae115a
PM
3122 /*
3123 * If there is a grace period in progress, we will
3124 * set up to wait for it next time we run the
3125 * RCU core code.
3126 */
3127 rdp->gpnum = rnp->completed;
d09b62df 3128 rdp->completed = rnp->completed;
06ae115a
PM
3129 rdp->passed_quiesce = 0;
3130 rdp->qs_pending = 0;
f7f7bac9 3131 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3132 }
1304afb2 3133 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3134 rnp = rnp->parent;
3135 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3136 local_irq_restore(flags);
64db4cff 3137
a4fbe35a 3138 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3139}
3140
49fb4c62 3141static void rcu_prepare_cpu(int cpu)
64db4cff 3142{
6ce75a23
PM
3143 struct rcu_state *rsp;
3144
3145 for_each_rcu_flavor(rsp)
3146 rcu_init_percpu_data(cpu, rsp,
3147 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3148}
3149
3150/*
f41d911f 3151 * Handle CPU online/offline notification events.
64db4cff 3152 */
49fb4c62 3153static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3154 unsigned long action, void *hcpu)
64db4cff
PM
3155{
3156 long cpu = (long)hcpu;
27f4d280 3157 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3158 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3159 struct rcu_state *rsp;
64db4cff 3160
f7f7bac9 3161 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3162 switch (action) {
3163 case CPU_UP_PREPARE:
3164 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3165 rcu_prepare_cpu(cpu);
3166 rcu_prepare_kthreads(cpu);
a26ac245
PM
3167 break;
3168 case CPU_ONLINE:
0f962a5e 3169 case CPU_DOWN_FAILED:
5d01bbd1 3170 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3171 break;
3172 case CPU_DOWN_PREPARE:
34ed6246 3173 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3174 break;
d0ec774c
PM
3175 case CPU_DYING:
3176 case CPU_DYING_FROZEN:
6ce75a23
PM
3177 for_each_rcu_flavor(rsp)
3178 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3179 break;
64db4cff
PM
3180 case CPU_DEAD:
3181 case CPU_DEAD_FROZEN:
3182 case CPU_UP_CANCELED:
3183 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3184 for_each_rcu_flavor(rsp)
3185 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3186 break;
3187 default:
3188 break;
3189 }
f7f7bac9 3190 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3191 return NOTIFY_OK;
64db4cff
PM
3192}
3193
d1d74d14
BP
3194static int rcu_pm_notify(struct notifier_block *self,
3195 unsigned long action, void *hcpu)
3196{
3197 switch (action) {
3198 case PM_HIBERNATION_PREPARE:
3199 case PM_SUSPEND_PREPARE:
3200 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3201 rcu_expedited = 1;
3202 break;
3203 case PM_POST_HIBERNATION:
3204 case PM_POST_SUSPEND:
3205 rcu_expedited = 0;
3206 break;
3207 default:
3208 break;
3209 }
3210 return NOTIFY_OK;
3211}
3212
b3dbec76
PM
3213/*
3214 * Spawn the kthread that handles this RCU flavor's grace periods.
3215 */
3216static int __init rcu_spawn_gp_kthread(void)
3217{
3218 unsigned long flags;
3219 struct rcu_node *rnp;
3220 struct rcu_state *rsp;
3221 struct task_struct *t;
3222
3223 for_each_rcu_flavor(rsp) {
f170168b 3224 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3225 BUG_ON(IS_ERR(t));
3226 rnp = rcu_get_root(rsp);
3227 raw_spin_lock_irqsave(&rnp->lock, flags);
3228 rsp->gp_kthread = t;
3229 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3230 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3231 }
3232 return 0;
3233}
3234early_initcall(rcu_spawn_gp_kthread);
3235
bbad9379
PM
3236/*
3237 * This function is invoked towards the end of the scheduler's initialization
3238 * process. Before this is called, the idle task might contain
3239 * RCU read-side critical sections (during which time, this idle
3240 * task is booting the system). After this function is called, the
3241 * idle tasks are prohibited from containing RCU read-side critical
3242 * sections. This function also enables RCU lockdep checking.
3243 */
3244void rcu_scheduler_starting(void)
3245{
3246 WARN_ON(num_online_cpus() != 1);
3247 WARN_ON(nr_context_switches() > 0);
3248 rcu_scheduler_active = 1;
3249}
3250
64db4cff
PM
3251/*
3252 * Compute the per-level fanout, either using the exact fanout specified
3253 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3254 */
3255#ifdef CONFIG_RCU_FANOUT_EXACT
3256static void __init rcu_init_levelspread(struct rcu_state *rsp)
3257{
3258 int i;
3259
f885b7f2 3260 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3261 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3262 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3263}
3264#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3265static void __init rcu_init_levelspread(struct rcu_state *rsp)
3266{
3267 int ccur;
3268 int cprv;
3269 int i;
3270
4dbd6bb3 3271 cprv = nr_cpu_ids;
f885b7f2 3272 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3273 ccur = rsp->levelcnt[i];
3274 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3275 cprv = ccur;
3276 }
3277}
3278#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3279
3280/*
3281 * Helper function for rcu_init() that initializes one rcu_state structure.
3282 */
394f99a9
LJ
3283static void __init rcu_init_one(struct rcu_state *rsp,
3284 struct rcu_data __percpu *rda)
64db4cff 3285{
394f2769
PM
3286 static char *buf[] = { "rcu_node_0",
3287 "rcu_node_1",
3288 "rcu_node_2",
3289 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3290 static char *fqs[] = { "rcu_node_fqs_0",
3291 "rcu_node_fqs_1",
3292 "rcu_node_fqs_2",
3293 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3294 int cpustride = 1;
3295 int i;
3296 int j;
3297 struct rcu_node *rnp;
3298
b6407e86
PM
3299 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3300
4930521a
PM
3301 /* Silence gcc 4.8 warning about array index out of range. */
3302 if (rcu_num_lvls > RCU_NUM_LVLS)
3303 panic("rcu_init_one: rcu_num_lvls overflow");
3304
64db4cff
PM
3305 /* Initialize the level-tracking arrays. */
3306
f885b7f2
PM
3307 for (i = 0; i < rcu_num_lvls; i++)
3308 rsp->levelcnt[i] = num_rcu_lvl[i];
3309 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3310 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3311 rcu_init_levelspread(rsp);
3312
3313 /* Initialize the elements themselves, starting from the leaves. */
3314
f885b7f2 3315 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3316 cpustride *= rsp->levelspread[i];
3317 rnp = rsp->level[i];
3318 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3319 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3320 lockdep_set_class_and_name(&rnp->lock,
3321 &rcu_node_class[i], buf[i]);
394f2769
PM
3322 raw_spin_lock_init(&rnp->fqslock);
3323 lockdep_set_class_and_name(&rnp->fqslock,
3324 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3325 rnp->gpnum = rsp->gpnum;
3326 rnp->completed = rsp->completed;
64db4cff
PM
3327 rnp->qsmask = 0;
3328 rnp->qsmaskinit = 0;
3329 rnp->grplo = j * cpustride;
3330 rnp->grphi = (j + 1) * cpustride - 1;
3331 if (rnp->grphi >= NR_CPUS)
3332 rnp->grphi = NR_CPUS - 1;
3333 if (i == 0) {
3334 rnp->grpnum = 0;
3335 rnp->grpmask = 0;
3336 rnp->parent = NULL;
3337 } else {
3338 rnp->grpnum = j % rsp->levelspread[i - 1];
3339 rnp->grpmask = 1UL << rnp->grpnum;
3340 rnp->parent = rsp->level[i - 1] +
3341 j / rsp->levelspread[i - 1];
3342 }
3343 rnp->level = i;
12f5f524 3344 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3345 rcu_init_one_nocb(rnp);
64db4cff
PM
3346 }
3347 }
0c34029a 3348
394f99a9 3349 rsp->rda = rda;
b3dbec76 3350 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3351 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3352 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3353 for_each_possible_cpu(i) {
4a90a068 3354 while (i > rnp->grphi)
0c34029a 3355 rnp++;
394f99a9 3356 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3357 rcu_boot_init_percpu_data(i, rsp);
3358 }
6ce75a23 3359 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3360}
3361
f885b7f2
PM
3362/*
3363 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3364 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3365 * the ->node array in the rcu_state structure.
3366 */
3367static void __init rcu_init_geometry(void)
3368{
026ad283 3369 ulong d;
f885b7f2
PM
3370 int i;
3371 int j;
cca6f393 3372 int n = nr_cpu_ids;
f885b7f2
PM
3373 int rcu_capacity[MAX_RCU_LVLS + 1];
3374
026ad283
PM
3375 /*
3376 * Initialize any unspecified boot parameters.
3377 * The default values of jiffies_till_first_fqs and
3378 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3379 * value, which is a function of HZ, then adding one for each
3380 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3381 */
3382 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3383 if (jiffies_till_first_fqs == ULONG_MAX)
3384 jiffies_till_first_fqs = d;
3385 if (jiffies_till_next_fqs == ULONG_MAX)
3386 jiffies_till_next_fqs = d;
3387
f885b7f2 3388 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3389 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3390 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3391 return;
3392
3393 /*
3394 * Compute number of nodes that can be handled an rcu_node tree
3395 * with the given number of levels. Setting rcu_capacity[0] makes
3396 * some of the arithmetic easier.
3397 */
3398 rcu_capacity[0] = 1;
3399 rcu_capacity[1] = rcu_fanout_leaf;
3400 for (i = 2; i <= MAX_RCU_LVLS; i++)
3401 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3402
3403 /*
3404 * The boot-time rcu_fanout_leaf parameter is only permitted
3405 * to increase the leaf-level fanout, not decrease it. Of course,
3406 * the leaf-level fanout cannot exceed the number of bits in
3407 * the rcu_node masks. Finally, the tree must be able to accommodate
3408 * the configured number of CPUs. Complain and fall back to the
3409 * compile-time values if these limits are exceeded.
3410 */
3411 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3412 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3413 n > rcu_capacity[MAX_RCU_LVLS]) {
3414 WARN_ON(1);
3415 return;
3416 }
3417
3418 /* Calculate the number of rcu_nodes at each level of the tree. */
3419 for (i = 1; i <= MAX_RCU_LVLS; i++)
3420 if (n <= rcu_capacity[i]) {
3421 for (j = 0; j <= i; j++)
3422 num_rcu_lvl[j] =
3423 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3424 rcu_num_lvls = i;
3425 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3426 num_rcu_lvl[j] = 0;
3427 break;
3428 }
3429
3430 /* Calculate the total number of rcu_node structures. */
3431 rcu_num_nodes = 0;
3432 for (i = 0; i <= MAX_RCU_LVLS; i++)
3433 rcu_num_nodes += num_rcu_lvl[i];
3434 rcu_num_nodes -= n;
3435}
3436
9f680ab4 3437void __init rcu_init(void)
64db4cff 3438{
017c4261 3439 int cpu;
9f680ab4 3440
f41d911f 3441 rcu_bootup_announce();
f885b7f2 3442 rcu_init_geometry();
394f99a9 3443 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3444 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3445 __rcu_init_preempt();
b5b39360 3446 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3447
3448 /*
3449 * We don't need protection against CPU-hotplug here because
3450 * this is called early in boot, before either interrupts
3451 * or the scheduler are operational.
3452 */
3453 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3454 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3455 for_each_online_cpu(cpu)
3456 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3457}
3458
4102adab 3459#include "tree_plugin.h"
This page took 0.541601 seconds and 5 git commands to generate.