Linux 3.19-rc1
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
a41bfeb2 94struct rcu_state sname##_state = { \
6c90cc7b 95 .level = { &sname##_state.node[0] }, \
037b64ed 96 .call = cr, \
af446b70 97 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
a8a29b3b 105 .name = RCU_STATE_NAME(sname), \
a4889858 106 .abbr = sabbr, \
a41bfeb2 107}; \
11bbb235 108DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
e534165b 113static struct rcu_state *rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
f885b7f2
PM
116/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 118module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
119int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126};
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
b0d30417
PM
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 133 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
bbad9379
PM
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
b0d30417
PM
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
5d01bbd1 155static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
156static void invoke_rcu_core(void);
157static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 158
4a298656
PM
159/*
160 * Track the rcutorture test sequence number and the update version
161 * number within a given test. The rcutorture_testseq is incremented
162 * on every rcutorture module load and unload, so has an odd value
163 * when a test is running. The rcutorture_vernum is set to zero
164 * when rcutorture starts and is incremented on each rcutorture update.
165 * These variables enable correlating rcutorture output with the
166 * RCU tracing information.
167 */
168unsigned long rcutorture_testseq;
169unsigned long rcutorture_vernum;
170
fc2219d4
PM
171/*
172 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
173 * permit this function to be invoked without holding the root rcu_node
174 * structure's ->lock, but of course results can be subject to change.
175 */
176static int rcu_gp_in_progress(struct rcu_state *rsp)
177{
178 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
179}
180
b1f77b05 181/*
d6714c22 182 * Note a quiescent state. Because we do not need to know
b1f77b05 183 * how many quiescent states passed, just if there was at least
d6714c22 184 * one since the start of the grace period, this just sets a flag.
e4cc1f22 185 * The caller must have disabled preemption.
b1f77b05 186 */
284a8c93 187void rcu_sched_qs(void)
b1f77b05 188{
284a8c93
PM
189 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
190 trace_rcu_grace_period(TPS("rcu_sched"),
191 __this_cpu_read(rcu_sched_data.gpnum),
192 TPS("cpuqs"));
193 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
194 }
b1f77b05
IM
195}
196
284a8c93 197void rcu_bh_qs(void)
b1f77b05 198{
284a8c93
PM
199 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
200 trace_rcu_grace_period(TPS("rcu_bh"),
201 __this_cpu_read(rcu_bh_data.gpnum),
202 TPS("cpuqs"));
203 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
204 }
b1f77b05 205}
64db4cff 206
4a81e832
PM
207static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
208
209static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
210 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
211 .dynticks = ATOMIC_INIT(1),
212#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
213 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
214 .dynticks_idle = ATOMIC_INIT(1),
215#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
216};
217
218/*
219 * Let the RCU core know that this CPU has gone through the scheduler,
220 * which is a quiescent state. This is called when the need for a
221 * quiescent state is urgent, so we burn an atomic operation and full
222 * memory barriers to let the RCU core know about it, regardless of what
223 * this CPU might (or might not) do in the near future.
224 *
225 * We inform the RCU core by emulating a zero-duration dyntick-idle
226 * period, which we in turn do by incrementing the ->dynticks counter
227 * by two.
228 */
229static void rcu_momentary_dyntick_idle(void)
230{
231 unsigned long flags;
232 struct rcu_data *rdp;
233 struct rcu_dynticks *rdtp;
234 int resched_mask;
235 struct rcu_state *rsp;
236
237 local_irq_save(flags);
238
239 /*
240 * Yes, we can lose flag-setting operations. This is OK, because
241 * the flag will be set again after some delay.
242 */
243 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
244 raw_cpu_write(rcu_sched_qs_mask, 0);
245
246 /* Find the flavor that needs a quiescent state. */
247 for_each_rcu_flavor(rsp) {
248 rdp = raw_cpu_ptr(rsp->rda);
249 if (!(resched_mask & rsp->flavor_mask))
250 continue;
251 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
252 if (ACCESS_ONCE(rdp->mynode->completed) !=
253 ACCESS_ONCE(rdp->cond_resched_completed))
254 continue;
255
256 /*
257 * Pretend to be momentarily idle for the quiescent state.
258 * This allows the grace-period kthread to record the
259 * quiescent state, with no need for this CPU to do anything
260 * further.
261 */
262 rdtp = this_cpu_ptr(&rcu_dynticks);
263 smp_mb__before_atomic(); /* Earlier stuff before QS. */
264 atomic_add(2, &rdtp->dynticks); /* QS. */
265 smp_mb__after_atomic(); /* Later stuff after QS. */
266 break;
267 }
268 local_irq_restore(flags);
269}
270
25502a6c
PM
271/*
272 * Note a context switch. This is a quiescent state for RCU-sched,
273 * and requires special handling for preemptible RCU.
e4cc1f22 274 * The caller must have disabled preemption.
25502a6c 275 */
38200cf2 276void rcu_note_context_switch(void)
25502a6c 277{
f7f7bac9 278 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 279 rcu_sched_qs();
38200cf2 280 rcu_preempt_note_context_switch();
4a81e832
PM
281 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
282 rcu_momentary_dyntick_idle();
f7f7bac9 283 trace_rcu_utilization(TPS("End context switch"));
25502a6c 284}
29ce8310 285EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 286
878d7439
ED
287static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
288static long qhimark = 10000; /* If this many pending, ignore blimit. */
289static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 290
878d7439
ED
291module_param(blimit, long, 0444);
292module_param(qhimark, long, 0444);
293module_param(qlowmark, long, 0444);
3d76c082 294
026ad283
PM
295static ulong jiffies_till_first_fqs = ULONG_MAX;
296static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
297
298module_param(jiffies_till_first_fqs, ulong, 0644);
299module_param(jiffies_till_next_fqs, ulong, 0644);
300
4a81e832
PM
301/*
302 * How long the grace period must be before we start recruiting
303 * quiescent-state help from rcu_note_context_switch().
304 */
305static ulong jiffies_till_sched_qs = HZ / 20;
306module_param(jiffies_till_sched_qs, ulong, 0644);
307
48a7639c 308static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 309 struct rcu_data *rdp);
217af2a2
PM
310static void force_qs_rnp(struct rcu_state *rsp,
311 int (*f)(struct rcu_data *rsp, bool *isidle,
312 unsigned long *maxj),
313 bool *isidle, unsigned long *maxj);
4cdfc175 314static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 315static int rcu_pending(void);
64db4cff
PM
316
317/*
d6714c22 318 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 319 */
d6714c22 320long rcu_batches_completed_sched(void)
64db4cff 321{
d6714c22 322 return rcu_sched_state.completed;
64db4cff 323}
d6714c22 324EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
325
326/*
327 * Return the number of RCU BH batches processed thus far for debug & stats.
328 */
329long rcu_batches_completed_bh(void)
330{
331 return rcu_bh_state.completed;
332}
333EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
334
a381d757
ACB
335/*
336 * Force a quiescent state.
337 */
338void rcu_force_quiescent_state(void)
339{
e534165b 340 force_quiescent_state(rcu_state_p);
a381d757
ACB
341}
342EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
343
bf66f18e
PM
344/*
345 * Force a quiescent state for RCU BH.
346 */
347void rcu_bh_force_quiescent_state(void)
348{
4cdfc175 349 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
350}
351EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
352
afea227f
PM
353/*
354 * Show the state of the grace-period kthreads.
355 */
356void show_rcu_gp_kthreads(void)
357{
358 struct rcu_state *rsp;
359
360 for_each_rcu_flavor(rsp) {
361 pr_info("%s: wait state: %d ->state: %#lx\n",
362 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
363 /* sched_show_task(rsp->gp_kthread); */
364 }
365}
366EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
367
4a298656
PM
368/*
369 * Record the number of times rcutorture tests have been initiated and
370 * terminated. This information allows the debugfs tracing stats to be
371 * correlated to the rcutorture messages, even when the rcutorture module
372 * is being repeatedly loaded and unloaded. In other words, we cannot
373 * store this state in rcutorture itself.
374 */
375void rcutorture_record_test_transition(void)
376{
377 rcutorture_testseq++;
378 rcutorture_vernum = 0;
379}
380EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
381
ad0dc7f9
PM
382/*
383 * Send along grace-period-related data for rcutorture diagnostics.
384 */
385void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
386 unsigned long *gpnum, unsigned long *completed)
387{
388 struct rcu_state *rsp = NULL;
389
390 switch (test_type) {
391 case RCU_FLAVOR:
e534165b 392 rsp = rcu_state_p;
ad0dc7f9
PM
393 break;
394 case RCU_BH_FLAVOR:
395 rsp = &rcu_bh_state;
396 break;
397 case RCU_SCHED_FLAVOR:
398 rsp = &rcu_sched_state;
399 break;
400 default:
401 break;
402 }
403 if (rsp != NULL) {
404 *flags = ACCESS_ONCE(rsp->gp_flags);
405 *gpnum = ACCESS_ONCE(rsp->gpnum);
406 *completed = ACCESS_ONCE(rsp->completed);
407 return;
408 }
409 *flags = 0;
410 *gpnum = 0;
411 *completed = 0;
412}
413EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
414
4a298656
PM
415/*
416 * Record the number of writer passes through the current rcutorture test.
417 * This is also used to correlate debugfs tracing stats with the rcutorture
418 * messages.
419 */
420void rcutorture_record_progress(unsigned long vernum)
421{
422 rcutorture_vernum++;
423}
424EXPORT_SYMBOL_GPL(rcutorture_record_progress);
425
bf66f18e
PM
426/*
427 * Force a quiescent state for RCU-sched.
428 */
429void rcu_sched_force_quiescent_state(void)
430{
4cdfc175 431 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
432}
433EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
434
64db4cff
PM
435/*
436 * Does the CPU have callbacks ready to be invoked?
437 */
438static int
439cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
440{
3fbfbf7a
PM
441 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
442 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
443}
444
365187fb
PM
445/*
446 * Return the root node of the specified rcu_state structure.
447 */
448static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
449{
450 return &rsp->node[0];
451}
452
453/*
454 * Is there any need for future grace periods?
455 * Interrupts must be disabled. If the caller does not hold the root
456 * rnp_node structure's ->lock, the results are advisory only.
457 */
458static int rcu_future_needs_gp(struct rcu_state *rsp)
459{
460 struct rcu_node *rnp = rcu_get_root(rsp);
461 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
462 int *fp = &rnp->need_future_gp[idx];
463
464 return ACCESS_ONCE(*fp);
465}
466
64db4cff 467/*
dc35c893
PM
468 * Does the current CPU require a not-yet-started grace period?
469 * The caller must have disabled interrupts to prevent races with
470 * normal callback registry.
64db4cff
PM
471 */
472static int
473cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
474{
dc35c893 475 int i;
3fbfbf7a 476
dc35c893
PM
477 if (rcu_gp_in_progress(rsp))
478 return 0; /* No, a grace period is already in progress. */
365187fb 479 if (rcu_future_needs_gp(rsp))
34ed6246 480 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
481 if (!rdp->nxttail[RCU_NEXT_TAIL])
482 return 0; /* No, this is a no-CBs (or offline) CPU. */
483 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
484 return 1; /* Yes, this CPU has newly registered callbacks. */
485 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
486 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
487 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
488 rdp->nxtcompleted[i]))
489 return 1; /* Yes, CBs for future grace period. */
490 return 0; /* No grace period needed. */
64db4cff
PM
491}
492
9b2e4f18 493/*
adf5091e 494 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
495 *
496 * If the new value of the ->dynticks_nesting counter now is zero,
497 * we really have entered idle, and must do the appropriate accounting.
498 * The caller must have disabled interrupts.
499 */
28ced795 500static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 501{
96d3fd0d
PM
502 struct rcu_state *rsp;
503 struct rcu_data *rdp;
28ced795 504 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 505
f7f7bac9 506 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 507 if (!user && !is_idle_task(current)) {
289828e6
PM
508 struct task_struct *idle __maybe_unused =
509 idle_task(smp_processor_id());
0989cb46 510
f7f7bac9 511 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 512 ftrace_dump(DUMP_ORIG);
0989cb46
PM
513 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
514 current->pid, current->comm,
515 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 516 }
96d3fd0d
PM
517 for_each_rcu_flavor(rsp) {
518 rdp = this_cpu_ptr(rsp->rda);
519 do_nocb_deferred_wakeup(rdp);
520 }
198bbf81 521 rcu_prepare_for_idle();
9b2e4f18 522 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 523 smp_mb__before_atomic(); /* See above. */
9b2e4f18 524 atomic_inc(&rdtp->dynticks);
4e857c58 525 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 526 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 527 rcu_dynticks_task_enter();
c44e2cdd
PM
528
529 /*
adf5091e 530 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
531 * in an RCU read-side critical section.
532 */
533 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
534 "Illegal idle entry in RCU read-side critical section.");
535 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
536 "Illegal idle entry in RCU-bh read-side critical section.");
537 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
538 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 539}
64db4cff 540
adf5091e
FW
541/*
542 * Enter an RCU extended quiescent state, which can be either the
543 * idle loop or adaptive-tickless usermode execution.
64db4cff 544 */
adf5091e 545static void rcu_eqs_enter(bool user)
64db4cff 546{
4145fa7f 547 long long oldval;
64db4cff
PM
548 struct rcu_dynticks *rdtp;
549
c9d4b0af 550 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 551 oldval = rdtp->dynticks_nesting;
29e37d81 552 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 553 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 554 rdtp->dynticks_nesting = 0;
28ced795 555 rcu_eqs_enter_common(oldval, user);
3a592405 556 } else {
29e37d81 557 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 558 }
64db4cff 559}
adf5091e
FW
560
561/**
562 * rcu_idle_enter - inform RCU that current CPU is entering idle
563 *
564 * Enter idle mode, in other words, -leave- the mode in which RCU
565 * read-side critical sections can occur. (Though RCU read-side
566 * critical sections can occur in irq handlers in idle, a possibility
567 * handled by irq_enter() and irq_exit().)
568 *
569 * We crowbar the ->dynticks_nesting field to zero to allow for
570 * the possibility of usermode upcalls having messed up our count
571 * of interrupt nesting level during the prior busy period.
572 */
573void rcu_idle_enter(void)
574{
c5d900bf
FW
575 unsigned long flags;
576
577 local_irq_save(flags);
cb349ca9 578 rcu_eqs_enter(false);
28ced795 579 rcu_sysidle_enter(0);
c5d900bf 580 local_irq_restore(flags);
adf5091e 581}
8a2ecf47 582EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 583
2b1d5024 584#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
585/**
586 * rcu_user_enter - inform RCU that we are resuming userspace.
587 *
588 * Enter RCU idle mode right before resuming userspace. No use of RCU
589 * is permitted between this call and rcu_user_exit(). This way the
590 * CPU doesn't need to maintain the tick for RCU maintenance purposes
591 * when the CPU runs in userspace.
592 */
593void rcu_user_enter(void)
594{
91d1aa43 595 rcu_eqs_enter(1);
adf5091e 596}
2b1d5024 597#endif /* CONFIG_RCU_USER_QS */
19dd1591 598
9b2e4f18
PM
599/**
600 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
601 *
602 * Exit from an interrupt handler, which might possibly result in entering
603 * idle mode, in other words, leaving the mode in which read-side critical
604 * sections can occur.
64db4cff 605 *
9b2e4f18
PM
606 * This code assumes that the idle loop never does anything that might
607 * result in unbalanced calls to irq_enter() and irq_exit(). If your
608 * architecture violates this assumption, RCU will give you what you
609 * deserve, good and hard. But very infrequently and irreproducibly.
610 *
611 * Use things like work queues to work around this limitation.
612 *
613 * You have been warned.
64db4cff 614 */
9b2e4f18 615void rcu_irq_exit(void)
64db4cff
PM
616{
617 unsigned long flags;
4145fa7f 618 long long oldval;
64db4cff
PM
619 struct rcu_dynticks *rdtp;
620
621 local_irq_save(flags);
c9d4b0af 622 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 623 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
624 rdtp->dynticks_nesting--;
625 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 626 if (rdtp->dynticks_nesting)
f7f7bac9 627 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 628 else
28ced795
CL
629 rcu_eqs_enter_common(oldval, true);
630 rcu_sysidle_enter(1);
9b2e4f18
PM
631 local_irq_restore(flags);
632}
633
634/*
adf5091e 635 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
636 *
637 * If the new value of the ->dynticks_nesting counter was previously zero,
638 * we really have exited idle, and must do the appropriate accounting.
639 * The caller must have disabled interrupts.
640 */
28ced795 641static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 642{
28ced795
CL
643 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
644
176f8f7a 645 rcu_dynticks_task_exit();
4e857c58 646 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
647 atomic_inc(&rdtp->dynticks);
648 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 649 smp_mb__after_atomic(); /* See above. */
23b5c8fa 650 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 651 rcu_cleanup_after_idle();
f7f7bac9 652 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 653 if (!user && !is_idle_task(current)) {
289828e6
PM
654 struct task_struct *idle __maybe_unused =
655 idle_task(smp_processor_id());
0989cb46 656
f7f7bac9 657 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 658 oldval, rdtp->dynticks_nesting);
bf1304e9 659 ftrace_dump(DUMP_ORIG);
0989cb46
PM
660 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
661 current->pid, current->comm,
662 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
663 }
664}
665
adf5091e
FW
666/*
667 * Exit an RCU extended quiescent state, which can be either the
668 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 669 */
adf5091e 670static void rcu_eqs_exit(bool user)
9b2e4f18 671{
9b2e4f18
PM
672 struct rcu_dynticks *rdtp;
673 long long oldval;
674
c9d4b0af 675 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 676 oldval = rdtp->dynticks_nesting;
29e37d81 677 WARN_ON_ONCE(oldval < 0);
3a592405 678 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 679 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 680 } else {
29e37d81 681 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 682 rcu_eqs_exit_common(oldval, user);
3a592405 683 }
9b2e4f18 684}
adf5091e
FW
685
686/**
687 * rcu_idle_exit - inform RCU that current CPU is leaving idle
688 *
689 * Exit idle mode, in other words, -enter- the mode in which RCU
690 * read-side critical sections can occur.
691 *
692 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
693 * allow for the possibility of usermode upcalls messing up our count
694 * of interrupt nesting level during the busy period that is just
695 * now starting.
696 */
697void rcu_idle_exit(void)
698{
c5d900bf
FW
699 unsigned long flags;
700
701 local_irq_save(flags);
cb349ca9 702 rcu_eqs_exit(false);
28ced795 703 rcu_sysidle_exit(0);
c5d900bf 704 local_irq_restore(flags);
adf5091e 705}
8a2ecf47 706EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 707
2b1d5024 708#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
709/**
710 * rcu_user_exit - inform RCU that we are exiting userspace.
711 *
712 * Exit RCU idle mode while entering the kernel because it can
713 * run a RCU read side critical section anytime.
714 */
715void rcu_user_exit(void)
716{
91d1aa43 717 rcu_eqs_exit(1);
adf5091e 718}
2b1d5024 719#endif /* CONFIG_RCU_USER_QS */
19dd1591 720
9b2e4f18
PM
721/**
722 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
723 *
724 * Enter an interrupt handler, which might possibly result in exiting
725 * idle mode, in other words, entering the mode in which read-side critical
726 * sections can occur.
727 *
728 * Note that the Linux kernel is fully capable of entering an interrupt
729 * handler that it never exits, for example when doing upcalls to
730 * user mode! This code assumes that the idle loop never does upcalls to
731 * user mode. If your architecture does do upcalls from the idle loop (or
732 * does anything else that results in unbalanced calls to the irq_enter()
733 * and irq_exit() functions), RCU will give you what you deserve, good
734 * and hard. But very infrequently and irreproducibly.
735 *
736 * Use things like work queues to work around this limitation.
737 *
738 * You have been warned.
739 */
740void rcu_irq_enter(void)
741{
742 unsigned long flags;
743 struct rcu_dynticks *rdtp;
744 long long oldval;
745
746 local_irq_save(flags);
c9d4b0af 747 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
748 oldval = rdtp->dynticks_nesting;
749 rdtp->dynticks_nesting++;
750 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 751 if (oldval)
f7f7bac9 752 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 753 else
28ced795
CL
754 rcu_eqs_exit_common(oldval, true);
755 rcu_sysidle_exit(1);
64db4cff 756 local_irq_restore(flags);
64db4cff
PM
757}
758
759/**
760 * rcu_nmi_enter - inform RCU of entry to NMI context
761 *
762 * If the CPU was idle with dynamic ticks active, and there is no
763 * irq handler running, this updates rdtp->dynticks_nmi to let the
764 * RCU grace-period handling know that the CPU is active.
765 */
766void rcu_nmi_enter(void)
767{
c9d4b0af 768 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 769
23b5c8fa
PM
770 if (rdtp->dynticks_nmi_nesting == 0 &&
771 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 772 return;
23b5c8fa 773 rdtp->dynticks_nmi_nesting++;
4e857c58 774 smp_mb__before_atomic(); /* Force delay from prior write. */
23b5c8fa
PM
775 atomic_inc(&rdtp->dynticks);
776 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 777 smp_mb__after_atomic(); /* See above. */
23b5c8fa 778 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
779}
780
781/**
782 * rcu_nmi_exit - inform RCU of exit from NMI context
783 *
784 * If the CPU was idle with dynamic ticks active, and there is no
785 * irq handler running, this updates rdtp->dynticks_nmi to let the
786 * RCU grace-period handling know that the CPU is no longer active.
787 */
788void rcu_nmi_exit(void)
789{
c9d4b0af 790 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 791
23b5c8fa
PM
792 if (rdtp->dynticks_nmi_nesting == 0 ||
793 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 794 return;
23b5c8fa 795 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 796 smp_mb__before_atomic(); /* See above. */
23b5c8fa 797 atomic_inc(&rdtp->dynticks);
4e857c58 798 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 799 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
800}
801
802/**
5c173eb8
PM
803 * __rcu_is_watching - are RCU read-side critical sections safe?
804 *
805 * Return true if RCU is watching the running CPU, which means that
806 * this CPU can safely enter RCU read-side critical sections. Unlike
807 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
808 * least disabled preemption.
809 */
9418fb20 810bool notrace __rcu_is_watching(void)
5c173eb8
PM
811{
812 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
813}
814
815/**
816 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 817 *
9b2e4f18 818 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 819 * or NMI handler, return true.
64db4cff 820 */
9418fb20 821bool notrace rcu_is_watching(void)
64db4cff 822{
f534ed1f 823 bool ret;
34240697
PM
824
825 preempt_disable();
5c173eb8 826 ret = __rcu_is_watching();
34240697
PM
827 preempt_enable();
828 return ret;
64db4cff 829}
5c173eb8 830EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 831
62fde6ed 832#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
833
834/*
835 * Is the current CPU online? Disable preemption to avoid false positives
836 * that could otherwise happen due to the current CPU number being sampled,
837 * this task being preempted, its old CPU being taken offline, resuming
838 * on some other CPU, then determining that its old CPU is now offline.
839 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
840 * the check for rcu_scheduler_fully_active. Note also that it is OK
841 * for a CPU coming online to use RCU for one jiffy prior to marking itself
842 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
843 * offline to continue to use RCU for one jiffy after marking itself
844 * offline in the cpu_online_mask. This leniency is necessary given the
845 * non-atomic nature of the online and offline processing, for example,
846 * the fact that a CPU enters the scheduler after completing the CPU_DYING
847 * notifiers.
848 *
849 * This is also why RCU internally marks CPUs online during the
850 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
851 *
852 * Disable checking if in an NMI handler because we cannot safely report
853 * errors from NMI handlers anyway.
854 */
855bool rcu_lockdep_current_cpu_online(void)
856{
2036d94a
PM
857 struct rcu_data *rdp;
858 struct rcu_node *rnp;
c0d6d01b
PM
859 bool ret;
860
861 if (in_nmi())
f6f7ee9a 862 return true;
c0d6d01b 863 preempt_disable();
c9d4b0af 864 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
865 rnp = rdp->mynode;
866 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
867 !rcu_scheduler_fully_active;
868 preempt_enable();
869 return ret;
870}
871EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
872
62fde6ed 873#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 874
64db4cff 875/**
9b2e4f18 876 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 877 *
9b2e4f18
PM
878 * If the current CPU is idle or running at a first-level (not nested)
879 * interrupt from idle, return true. The caller must have at least
880 * disabled preemption.
64db4cff 881 */
62e3cb14 882static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 883{
c9d4b0af 884 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
885}
886
64db4cff
PM
887/*
888 * Snapshot the specified CPU's dynticks counter so that we can later
889 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 890 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 891 */
217af2a2
PM
892static int dyntick_save_progress_counter(struct rcu_data *rdp,
893 bool *isidle, unsigned long *maxj)
64db4cff 894{
23b5c8fa 895 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 896 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
897 if ((rdp->dynticks_snap & 0x1) == 0) {
898 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
899 return 1;
900 } else {
901 return 0;
902 }
64db4cff
PM
903}
904
6193c76a
PM
905/*
906 * This function really isn't for public consumption, but RCU is special in
907 * that context switches can allow the state machine to make progress.
908 */
909extern void resched_cpu(int cpu);
910
64db4cff
PM
911/*
912 * Return true if the specified CPU has passed through a quiescent
913 * state by virtue of being in or having passed through an dynticks
914 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 915 * for this same CPU, or by virtue of having been offline.
64db4cff 916 */
217af2a2
PM
917static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
918 bool *isidle, unsigned long *maxj)
64db4cff 919{
7eb4f455 920 unsigned int curr;
4a81e832 921 int *rcrmp;
7eb4f455 922 unsigned int snap;
64db4cff 923
7eb4f455
PM
924 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
925 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
926
927 /*
928 * If the CPU passed through or entered a dynticks idle phase with
929 * no active irq/NMI handlers, then we can safely pretend that the CPU
930 * already acknowledged the request to pass through a quiescent
931 * state. Either way, that CPU cannot possibly be in an RCU
932 * read-side critical section that started before the beginning
933 * of the current RCU grace period.
934 */
7eb4f455 935 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 936 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
937 rdp->dynticks_fqs++;
938 return 1;
939 }
940
a82dcc76
PM
941 /*
942 * Check for the CPU being offline, but only if the grace period
943 * is old enough. We don't need to worry about the CPU changing
944 * state: If we see it offline even once, it has been through a
945 * quiescent state.
946 *
947 * The reason for insisting that the grace period be at least
948 * one jiffy old is that CPUs that are not quite online and that
949 * have just gone offline can still execute RCU read-side critical
950 * sections.
951 */
952 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
953 return 0; /* Grace period is not old enough. */
954 barrier();
955 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 956 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
957 rdp->offline_fqs++;
958 return 1;
959 }
65d798f0
PM
960
961 /*
4a81e832
PM
962 * A CPU running for an extended time within the kernel can
963 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
964 * even context-switching back and forth between a pair of
965 * in-kernel CPU-bound tasks cannot advance grace periods.
966 * So if the grace period is old enough, make the CPU pay attention.
967 * Note that the unsynchronized assignments to the per-CPU
968 * rcu_sched_qs_mask variable are safe. Yes, setting of
969 * bits can be lost, but they will be set again on the next
970 * force-quiescent-state pass. So lost bit sets do not result
971 * in incorrect behavior, merely in a grace period lasting
972 * a few jiffies longer than it might otherwise. Because
973 * there are at most four threads involved, and because the
974 * updates are only once every few jiffies, the probability of
975 * lossage (and thus of slight grace-period extension) is
976 * quite low.
977 *
978 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
979 * is set too high, we override with half of the RCU CPU stall
980 * warning delay.
6193c76a 981 */
4a81e832
PM
982 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
983 if (ULONG_CMP_GE(jiffies,
984 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 985 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
986 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
987 ACCESS_ONCE(rdp->cond_resched_completed) =
988 ACCESS_ONCE(rdp->mynode->completed);
989 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
990 ACCESS_ONCE(*rcrmp) =
991 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
992 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
993 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
994 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
995 /* Time to beat on that CPU again! */
996 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
997 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
998 }
6193c76a
PM
999 }
1000
a82dcc76 1001 return 0;
64db4cff
PM
1002}
1003
64db4cff
PM
1004static void record_gp_stall_check_time(struct rcu_state *rsp)
1005{
cb1e78cf 1006 unsigned long j = jiffies;
6193c76a 1007 unsigned long j1;
26cdfedf
PM
1008
1009 rsp->gp_start = j;
1010 smp_wmb(); /* Record start time before stall time. */
6193c76a 1011 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1012 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1013 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
1014}
1015
b637a328 1016/*
bc1dce51 1017 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1018 */
1019static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1020{
1021 int cpu;
1022 unsigned long flags;
1023 struct rcu_node *rnp;
1024
1025 rcu_for_each_leaf_node(rsp, rnp) {
1026 raw_spin_lock_irqsave(&rnp->lock, flags);
1027 if (rnp->qsmask != 0) {
1028 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1029 if (rnp->qsmask & (1UL << cpu))
1030 dump_cpu_task(rnp->grplo + cpu);
1031 }
1032 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1033 }
1034}
1035
64db4cff
PM
1036static void print_other_cpu_stall(struct rcu_state *rsp)
1037{
1038 int cpu;
1039 long delta;
1040 unsigned long flags;
285fe294 1041 int ndetected = 0;
64db4cff 1042 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1043 long totqlen = 0;
64db4cff
PM
1044
1045 /* Only let one CPU complain about others per time interval. */
1046
1304afb2 1047 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1048 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1049 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1050 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1051 return;
1052 }
4fc5b755 1053 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1054 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1055
8cdd32a9
PM
1056 /*
1057 * OK, time to rat on our buddy...
1058 * See Documentation/RCU/stallwarn.txt for info on how to debug
1059 * RCU CPU stall warnings.
1060 */
d7f3e207 1061 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1062 rsp->name);
a858af28 1063 print_cpu_stall_info_begin();
a0b6c9a7 1064 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1065 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1066 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1067 if (rnp->qsmask != 0) {
1068 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1069 if (rnp->qsmask & (1UL << cpu)) {
1070 print_cpu_stall_info(rsp,
1071 rnp->grplo + cpu);
1072 ndetected++;
1073 }
1074 }
3acd9eb3 1075 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1076 }
a858af28
PM
1077
1078 /*
1079 * Now rat on any tasks that got kicked up to the root rcu_node
1080 * due to CPU offlining.
1081 */
1082 rnp = rcu_get_root(rsp);
1083 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 1084 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
1085 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1086
1087 print_cpu_stall_info_end();
53bb857c
PM
1088 for_each_possible_cpu(cpu)
1089 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1090 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1091 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1092 (long)rsp->gpnum, (long)rsp->completed, totqlen);
9bc8b558 1093 if (ndetected == 0)
d7f3e207 1094 pr_err("INFO: Stall ended before state dump start\n");
bc1dce51 1095 else
b637a328 1096 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1097
4cdfc175 1098 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1099
1100 rcu_print_detail_task_stall(rsp);
1101
4cdfc175 1102 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1103}
1104
1105static void print_cpu_stall(struct rcu_state *rsp)
1106{
53bb857c 1107 int cpu;
64db4cff
PM
1108 unsigned long flags;
1109 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1110 long totqlen = 0;
64db4cff 1111
8cdd32a9
PM
1112 /*
1113 * OK, time to rat on ourselves...
1114 * See Documentation/RCU/stallwarn.txt for info on how to debug
1115 * RCU CPU stall warnings.
1116 */
d7f3e207 1117 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1118 print_cpu_stall_info_begin();
1119 print_cpu_stall_info(rsp, smp_processor_id());
1120 print_cpu_stall_info_end();
53bb857c
PM
1121 for_each_possible_cpu(cpu)
1122 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1123 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1124 jiffies - rsp->gp_start,
1125 (long)rsp->gpnum, (long)rsp->completed, totqlen);
bc1dce51 1126 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1127
1304afb2 1128 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1129 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1130 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1131 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1132 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1133
b021fe3e
PZ
1134 /*
1135 * Attempt to revive the RCU machinery by forcing a context switch.
1136 *
1137 * A context switch would normally allow the RCU state machine to make
1138 * progress and it could be we're stuck in kernel space without context
1139 * switches for an entirely unreasonable amount of time.
1140 */
1141 resched_cpu(smp_processor_id());
64db4cff
PM
1142}
1143
1144static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1145{
26cdfedf
PM
1146 unsigned long completed;
1147 unsigned long gpnum;
1148 unsigned long gps;
bad6e139
PM
1149 unsigned long j;
1150 unsigned long js;
64db4cff
PM
1151 struct rcu_node *rnp;
1152
26cdfedf 1153 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1154 return;
cb1e78cf 1155 j = jiffies;
26cdfedf
PM
1156
1157 /*
1158 * Lots of memory barriers to reject false positives.
1159 *
1160 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1161 * then rsp->gp_start, and finally rsp->completed. These values
1162 * are updated in the opposite order with memory barriers (or
1163 * equivalent) during grace-period initialization and cleanup.
1164 * Now, a false positive can occur if we get an new value of
1165 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1166 * the memory barriers, the only way that this can happen is if one
1167 * grace period ends and another starts between these two fetches.
1168 * Detect this by comparing rsp->completed with the previous fetch
1169 * from rsp->gpnum.
1170 *
1171 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1172 * and rsp->gp_start suffice to forestall false positives.
1173 */
1174 gpnum = ACCESS_ONCE(rsp->gpnum);
1175 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1176 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1177 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1178 gps = ACCESS_ONCE(rsp->gp_start);
1179 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1180 completed = ACCESS_ONCE(rsp->completed);
1181 if (ULONG_CMP_GE(completed, gpnum) ||
1182 ULONG_CMP_LT(j, js) ||
1183 ULONG_CMP_GE(gps, js))
1184 return; /* No stall or GP completed since entering function. */
64db4cff 1185 rnp = rdp->mynode;
c96ea7cf 1186 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1187 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1188
1189 /* We haven't checked in, so go dump stack. */
1190 print_cpu_stall(rsp);
1191
bad6e139
PM
1192 } else if (rcu_gp_in_progress(rsp) &&
1193 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1194
bad6e139 1195 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1196 print_other_cpu_stall(rsp);
1197 }
1198}
1199
53d84e00
PM
1200/**
1201 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1202 *
1203 * Set the stall-warning timeout way off into the future, thus preventing
1204 * any RCU CPU stall-warning messages from appearing in the current set of
1205 * RCU grace periods.
1206 *
1207 * The caller must disable hard irqs.
1208 */
1209void rcu_cpu_stall_reset(void)
1210{
6ce75a23
PM
1211 struct rcu_state *rsp;
1212
1213 for_each_rcu_flavor(rsp)
4fc5b755 1214 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1215}
1216
3f5d3ea6
PM
1217/*
1218 * Initialize the specified rcu_data structure's callback list to empty.
1219 */
1220static void init_callback_list(struct rcu_data *rdp)
1221{
1222 int i;
1223
34ed6246
PM
1224 if (init_nocb_callback_list(rdp))
1225 return;
3f5d3ea6
PM
1226 rdp->nxtlist = NULL;
1227 for (i = 0; i < RCU_NEXT_SIZE; i++)
1228 rdp->nxttail[i] = &rdp->nxtlist;
1229}
1230
dc35c893
PM
1231/*
1232 * Determine the value that ->completed will have at the end of the
1233 * next subsequent grace period. This is used to tag callbacks so that
1234 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1235 * been dyntick-idle for an extended period with callbacks under the
1236 * influence of RCU_FAST_NO_HZ.
1237 *
1238 * The caller must hold rnp->lock with interrupts disabled.
1239 */
1240static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1241 struct rcu_node *rnp)
1242{
1243 /*
1244 * If RCU is idle, we just wait for the next grace period.
1245 * But we can only be sure that RCU is idle if we are looking
1246 * at the root rcu_node structure -- otherwise, a new grace
1247 * period might have started, but just not yet gotten around
1248 * to initializing the current non-root rcu_node structure.
1249 */
1250 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1251 return rnp->completed + 1;
1252
1253 /*
1254 * Otherwise, wait for a possible partial grace period and
1255 * then the subsequent full grace period.
1256 */
1257 return rnp->completed + 2;
1258}
1259
0446be48
PM
1260/*
1261 * Trace-event helper function for rcu_start_future_gp() and
1262 * rcu_nocb_wait_gp().
1263 */
1264static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1265 unsigned long c, const char *s)
0446be48
PM
1266{
1267 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1268 rnp->completed, c, rnp->level,
1269 rnp->grplo, rnp->grphi, s);
1270}
1271
1272/*
1273 * Start some future grace period, as needed to handle newly arrived
1274 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1275 * rcu_node structure's ->need_future_gp field. Returns true if there
1276 * is reason to awaken the grace-period kthread.
0446be48
PM
1277 *
1278 * The caller must hold the specified rcu_node structure's ->lock.
1279 */
48a7639c
PM
1280static bool __maybe_unused
1281rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1282 unsigned long *c_out)
0446be48
PM
1283{
1284 unsigned long c;
1285 int i;
48a7639c 1286 bool ret = false;
0446be48
PM
1287 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1288
1289 /*
1290 * Pick up grace-period number for new callbacks. If this
1291 * grace period is already marked as needed, return to the caller.
1292 */
1293 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1294 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1295 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1296 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1297 goto out;
0446be48
PM
1298 }
1299
1300 /*
1301 * If either this rcu_node structure or the root rcu_node structure
1302 * believe that a grace period is in progress, then we must wait
1303 * for the one following, which is in "c". Because our request
1304 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1305 * need to explicitly start one. We only do the lockless check
1306 * of rnp_root's fields if the current rcu_node structure thinks
1307 * there is no grace period in flight, and because we hold rnp->lock,
1308 * the only possible change is when rnp_root's two fields are
1309 * equal, in which case rnp_root->gpnum might be concurrently
1310 * incremented. But that is OK, as it will just result in our
1311 * doing some extra useless work.
0446be48
PM
1312 */
1313 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1314 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1315 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1316 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1317 goto out;
0446be48
PM
1318 }
1319
1320 /*
1321 * There might be no grace period in progress. If we don't already
1322 * hold it, acquire the root rcu_node structure's lock in order to
1323 * start one (if needed).
1324 */
6303b9c8 1325 if (rnp != rnp_root) {
0446be48 1326 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1327 smp_mb__after_unlock_lock();
1328 }
0446be48
PM
1329
1330 /*
1331 * Get a new grace-period number. If there really is no grace
1332 * period in progress, it will be smaller than the one we obtained
1333 * earlier. Adjust callbacks as needed. Note that even no-CBs
1334 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1335 */
1336 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1337 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1338 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1339 rdp->nxtcompleted[i] = c;
1340
1341 /*
1342 * If the needed for the required grace period is already
1343 * recorded, trace and leave.
1344 */
1345 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1346 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1347 goto unlock_out;
1348 }
1349
1350 /* Record the need for the future grace period. */
1351 rnp_root->need_future_gp[c & 0x1]++;
1352
1353 /* If a grace period is not already in progress, start one. */
1354 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1355 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1356 } else {
f7f7bac9 1357 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1358 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1359 }
1360unlock_out:
1361 if (rnp != rnp_root)
1362 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1363out:
1364 if (c_out != NULL)
1365 *c_out = c;
1366 return ret;
0446be48
PM
1367}
1368
1369/*
1370 * Clean up any old requests for the just-ended grace period. Also return
1371 * whether any additional grace periods have been requested. Also invoke
1372 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1373 * waiting for this grace period to complete.
1374 */
1375static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1376{
1377 int c = rnp->completed;
1378 int needmore;
1379 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1380
1381 rcu_nocb_gp_cleanup(rsp, rnp);
1382 rnp->need_future_gp[c & 0x1] = 0;
1383 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1384 trace_rcu_future_gp(rnp, rdp, c,
1385 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1386 return needmore;
1387}
1388
48a7639c
PM
1389/*
1390 * Awaken the grace-period kthread for the specified flavor of RCU.
1391 * Don't do a self-awaken, and don't bother awakening when there is
1392 * nothing for the grace-period kthread to do (as in several CPUs
1393 * raced to awaken, and we lost), and finally don't try to awaken
1394 * a kthread that has not yet been created.
1395 */
1396static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1397{
1398 if (current == rsp->gp_kthread ||
1399 !ACCESS_ONCE(rsp->gp_flags) ||
1400 !rsp->gp_kthread)
1401 return;
1402 wake_up(&rsp->gp_wq);
1403}
1404
dc35c893
PM
1405/*
1406 * If there is room, assign a ->completed number to any callbacks on
1407 * this CPU that have not already been assigned. Also accelerate any
1408 * callbacks that were previously assigned a ->completed number that has
1409 * since proven to be too conservative, which can happen if callbacks get
1410 * assigned a ->completed number while RCU is idle, but with reference to
1411 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1412 * not hurt to call it repeatedly. Returns an flag saying that we should
1413 * awaken the RCU grace-period kthread.
dc35c893
PM
1414 *
1415 * The caller must hold rnp->lock with interrupts disabled.
1416 */
48a7639c 1417static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1418 struct rcu_data *rdp)
1419{
1420 unsigned long c;
1421 int i;
48a7639c 1422 bool ret;
dc35c893
PM
1423
1424 /* If the CPU has no callbacks, nothing to do. */
1425 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1426 return false;
dc35c893
PM
1427
1428 /*
1429 * Starting from the sublist containing the callbacks most
1430 * recently assigned a ->completed number and working down, find the
1431 * first sublist that is not assignable to an upcoming grace period.
1432 * Such a sublist has something in it (first two tests) and has
1433 * a ->completed number assigned that will complete sooner than
1434 * the ->completed number for newly arrived callbacks (last test).
1435 *
1436 * The key point is that any later sublist can be assigned the
1437 * same ->completed number as the newly arrived callbacks, which
1438 * means that the callbacks in any of these later sublist can be
1439 * grouped into a single sublist, whether or not they have already
1440 * been assigned a ->completed number.
1441 */
1442 c = rcu_cbs_completed(rsp, rnp);
1443 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1444 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1445 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1446 break;
1447
1448 /*
1449 * If there are no sublist for unassigned callbacks, leave.
1450 * At the same time, advance "i" one sublist, so that "i" will
1451 * index into the sublist where all the remaining callbacks should
1452 * be grouped into.
1453 */
1454 if (++i >= RCU_NEXT_TAIL)
48a7639c 1455 return false;
dc35c893
PM
1456
1457 /*
1458 * Assign all subsequent callbacks' ->completed number to the next
1459 * full grace period and group them all in the sublist initially
1460 * indexed by "i".
1461 */
1462 for (; i <= RCU_NEXT_TAIL; i++) {
1463 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1464 rdp->nxtcompleted[i] = c;
1465 }
910ee45d 1466 /* Record any needed additional grace periods. */
48a7639c 1467 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1468
1469 /* Trace depending on how much we were able to accelerate. */
1470 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1471 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1472 else
f7f7bac9 1473 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1474 return ret;
dc35c893
PM
1475}
1476
1477/*
1478 * Move any callbacks whose grace period has completed to the
1479 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1480 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1481 * sublist. This function is idempotent, so it does not hurt to
1482 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1483 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1484 *
1485 * The caller must hold rnp->lock with interrupts disabled.
1486 */
48a7639c 1487static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1488 struct rcu_data *rdp)
1489{
1490 int i, j;
1491
1492 /* If the CPU has no callbacks, nothing to do. */
1493 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1494 return false;
dc35c893
PM
1495
1496 /*
1497 * Find all callbacks whose ->completed numbers indicate that they
1498 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1499 */
1500 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1501 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1502 break;
1503 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1504 }
1505 /* Clean up any sublist tail pointers that were misordered above. */
1506 for (j = RCU_WAIT_TAIL; j < i; j++)
1507 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1508
1509 /* Copy down callbacks to fill in empty sublists. */
1510 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1511 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1512 break;
1513 rdp->nxttail[j] = rdp->nxttail[i];
1514 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1515 }
1516
1517 /* Classify any remaining callbacks. */
48a7639c 1518 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1519}
1520
d09b62df 1521/*
ba9fbe95
PM
1522 * Update CPU-local rcu_data state to record the beginnings and ends of
1523 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1524 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1525 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1526 */
48a7639c
PM
1527static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1528 struct rcu_data *rdp)
d09b62df 1529{
48a7639c
PM
1530 bool ret;
1531
ba9fbe95 1532 /* Handle the ends of any preceding grace periods first. */
dc35c893 1533 if (rdp->completed == rnp->completed) {
d09b62df 1534
ba9fbe95 1535 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1536 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1537
dc35c893
PM
1538 } else {
1539
1540 /* Advance callbacks. */
48a7639c 1541 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1542
1543 /* Remember that we saw this grace-period completion. */
1544 rdp->completed = rnp->completed;
f7f7bac9 1545 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1546 }
398ebe60 1547
6eaef633
PM
1548 if (rdp->gpnum != rnp->gpnum) {
1549 /*
1550 * If the current grace period is waiting for this CPU,
1551 * set up to detect a quiescent state, otherwise don't
1552 * go looking for one.
1553 */
1554 rdp->gpnum = rnp->gpnum;
f7f7bac9 1555 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1556 rdp->passed_quiesce = 0;
1557 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1558 zero_cpu_stall_ticks(rdp);
1559 }
48a7639c 1560 return ret;
6eaef633
PM
1561}
1562
d34ea322 1563static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1564{
1565 unsigned long flags;
48a7639c 1566 bool needwake;
6eaef633
PM
1567 struct rcu_node *rnp;
1568
1569 local_irq_save(flags);
1570 rnp = rdp->mynode;
d34ea322
PM
1571 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1572 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1573 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1574 local_irq_restore(flags);
1575 return;
1576 }
6303b9c8 1577 smp_mb__after_unlock_lock();
48a7639c 1578 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1579 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1580 if (needwake)
1581 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1582}
1583
b3dbec76 1584/*
f7be8209 1585 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1586 */
7fdefc10 1587static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1588{
1589 struct rcu_data *rdp;
7fdefc10 1590 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1591
eb75767b 1592 rcu_bind_gp_kthread();
7fdefc10 1593 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1594 smp_mb__after_unlock_lock();
91dc9542 1595 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1596 /* Spurious wakeup, tell caller to go back to sleep. */
1597 raw_spin_unlock_irq(&rnp->lock);
1598 return 0;
1599 }
91dc9542 1600 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1601
f7be8209
PM
1602 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1603 /*
1604 * Grace period already in progress, don't start another.
1605 * Not supposed to be able to happen.
1606 */
7fdefc10
PM
1607 raw_spin_unlock_irq(&rnp->lock);
1608 return 0;
1609 }
1610
7fdefc10 1611 /* Advance to a new grace period and initialize state. */
26cdfedf 1612 record_gp_stall_check_time(rsp);
765a3f4f
PM
1613 /* Record GP times before starting GP, hence smp_store_release(). */
1614 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1615 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1616 raw_spin_unlock_irq(&rnp->lock);
1617
1618 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1619 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1620 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1621
1622 /*
1623 * Set the quiescent-state-needed bits in all the rcu_node
1624 * structures for all currently online CPUs in breadth-first order,
1625 * starting from the root rcu_node structure, relying on the layout
1626 * of the tree within the rsp->node[] array. Note that other CPUs
1627 * will access only the leaves of the hierarchy, thus seeing that no
1628 * grace period is in progress, at least until the corresponding
1629 * leaf node has been initialized. In addition, we have excluded
1630 * CPU-hotplug operations.
1631 *
1632 * The grace period cannot complete until the initialization
1633 * process finishes, because this kthread handles both.
1634 */
1635 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1636 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1637 smp_mb__after_unlock_lock();
b3dbec76 1638 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1639 rcu_preempt_check_blocked_tasks(rnp);
1640 rnp->qsmask = rnp->qsmaskinit;
0446be48 1641 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1642 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1643 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1644 if (rnp == rdp->mynode)
48a7639c 1645 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1646 rcu_preempt_boost_start_gp(rnp);
1647 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1648 rnp->level, rnp->grplo,
1649 rnp->grphi, rnp->qsmask);
1650 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1651 cond_resched_rcu_qs();
7fdefc10 1652 }
b3dbec76 1653
a4fbe35a 1654 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1655 return 1;
1656}
b3dbec76 1657
4cdfc175
PM
1658/*
1659 * Do one round of quiescent-state forcing.
1660 */
01896f7e 1661static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1662{
1663 int fqs_state = fqs_state_in;
217af2a2
PM
1664 bool isidle = false;
1665 unsigned long maxj;
4cdfc175
PM
1666 struct rcu_node *rnp = rcu_get_root(rsp);
1667
1668 rsp->n_force_qs++;
1669 if (fqs_state == RCU_SAVE_DYNTICK) {
1670 /* Collect dyntick-idle snapshots. */
0edd1b17 1671 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1672 isidle = true;
0edd1b17
PM
1673 maxj = jiffies - ULONG_MAX / 4;
1674 }
217af2a2
PM
1675 force_qs_rnp(rsp, dyntick_save_progress_counter,
1676 &isidle, &maxj);
0edd1b17 1677 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1678 fqs_state = RCU_FORCE_QS;
1679 } else {
1680 /* Handle dyntick-idle and offline CPUs. */
e02b2edf 1681 isidle = false;
217af2a2 1682 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1683 }
1684 /* Clear flag to prevent immediate re-entry. */
1685 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1686 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1687 smp_mb__after_unlock_lock();
4de376a1
PK
1688 ACCESS_ONCE(rsp->gp_flags) =
1689 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1690 raw_spin_unlock_irq(&rnp->lock);
1691 }
1692 return fqs_state;
1693}
1694
7fdefc10
PM
1695/*
1696 * Clean up after the old grace period.
1697 */
4cdfc175 1698static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1699{
1700 unsigned long gp_duration;
48a7639c 1701 bool needgp = false;
dae6e64d 1702 int nocb = 0;
7fdefc10
PM
1703 struct rcu_data *rdp;
1704 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1705
7fdefc10 1706 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1707 smp_mb__after_unlock_lock();
7fdefc10
PM
1708 gp_duration = jiffies - rsp->gp_start;
1709 if (gp_duration > rsp->gp_max)
1710 rsp->gp_max = gp_duration;
b3dbec76 1711
7fdefc10
PM
1712 /*
1713 * We know the grace period is complete, but to everyone else
1714 * it appears to still be ongoing. But it is also the case
1715 * that to everyone else it looks like there is nothing that
1716 * they can do to advance the grace period. It is therefore
1717 * safe for us to drop the lock in order to mark the grace
1718 * period as completed in all of the rcu_node structures.
7fdefc10 1719 */
5d4b8659 1720 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1721
5d4b8659
PM
1722 /*
1723 * Propagate new ->completed value to rcu_node structures so
1724 * that other CPUs don't have to wait until the start of the next
1725 * grace period to process their callbacks. This also avoids
1726 * some nasty RCU grace-period initialization races by forcing
1727 * the end of the current grace period to be completely recorded in
1728 * all of the rcu_node structures before the beginning of the next
1729 * grace period is recorded in any of the rcu_node structures.
1730 */
1731 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1732 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1733 smp_mb__after_unlock_lock();
0446be48 1734 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1735 rdp = this_cpu_ptr(rsp->rda);
1736 if (rnp == rdp->mynode)
48a7639c 1737 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1738 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1739 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1740 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1741 cond_resched_rcu_qs();
7fdefc10 1742 }
5d4b8659
PM
1743 rnp = rcu_get_root(rsp);
1744 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1745 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1746 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1747
765a3f4f
PM
1748 /* Declare grace period done. */
1749 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1750 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1751 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1752 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1753 /* Advance CBs to reduce false positives below. */
1754 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1755 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1756 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1757 trace_rcu_grace_period(rsp->name,
1758 ACCESS_ONCE(rsp->gpnum),
1759 TPS("newreq"));
1760 }
7fdefc10 1761 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1762}
1763
1764/*
1765 * Body of kthread that handles grace periods.
1766 */
1767static int __noreturn rcu_gp_kthread(void *arg)
1768{
4cdfc175 1769 int fqs_state;
88d6df61 1770 int gf;
d40011f6 1771 unsigned long j;
4cdfc175 1772 int ret;
7fdefc10
PM
1773 struct rcu_state *rsp = arg;
1774 struct rcu_node *rnp = rcu_get_root(rsp);
1775
1776 for (;;) {
1777
1778 /* Handle grace-period start. */
1779 for (;;) {
63c4db78
PM
1780 trace_rcu_grace_period(rsp->name,
1781 ACCESS_ONCE(rsp->gpnum),
1782 TPS("reqwait"));
afea227f 1783 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1784 wait_event_interruptible(rsp->gp_wq,
591c6d17 1785 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1786 RCU_GP_FLAG_INIT);
78e4bc34 1787 /* Locking provides needed memory barrier. */
f7be8209 1788 if (rcu_gp_init(rsp))
7fdefc10 1789 break;
bde6c3aa 1790 cond_resched_rcu_qs();
73a860cd 1791 WARN_ON(signal_pending(current));
63c4db78
PM
1792 trace_rcu_grace_period(rsp->name,
1793 ACCESS_ONCE(rsp->gpnum),
1794 TPS("reqwaitsig"));
7fdefc10 1795 }
cabc49c1 1796
4cdfc175
PM
1797 /* Handle quiescent-state forcing. */
1798 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1799 j = jiffies_till_first_fqs;
1800 if (j > HZ) {
1801 j = HZ;
1802 jiffies_till_first_fqs = HZ;
1803 }
88d6df61 1804 ret = 0;
cabc49c1 1805 for (;;) {
88d6df61
PM
1806 if (!ret)
1807 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1808 trace_rcu_grace_period(rsp->name,
1809 ACCESS_ONCE(rsp->gpnum),
1810 TPS("fqswait"));
afea227f 1811 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1812 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1813 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1814 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1815 (!ACCESS_ONCE(rnp->qsmask) &&
1816 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1817 j);
78e4bc34 1818 /* Locking provides needed memory barriers. */
4cdfc175 1819 /* If grace period done, leave loop. */
cabc49c1 1820 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1821 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1822 break;
4cdfc175 1823 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1824 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1825 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1826 trace_rcu_grace_period(rsp->name,
1827 ACCESS_ONCE(rsp->gpnum),
1828 TPS("fqsstart"));
4cdfc175 1829 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1830 trace_rcu_grace_period(rsp->name,
1831 ACCESS_ONCE(rsp->gpnum),
1832 TPS("fqsend"));
bde6c3aa 1833 cond_resched_rcu_qs();
4cdfc175
PM
1834 } else {
1835 /* Deal with stray signal. */
bde6c3aa 1836 cond_resched_rcu_qs();
73a860cd 1837 WARN_ON(signal_pending(current));
63c4db78
PM
1838 trace_rcu_grace_period(rsp->name,
1839 ACCESS_ONCE(rsp->gpnum),
1840 TPS("fqswaitsig"));
4cdfc175 1841 }
d40011f6
PM
1842 j = jiffies_till_next_fqs;
1843 if (j > HZ) {
1844 j = HZ;
1845 jiffies_till_next_fqs = HZ;
1846 } else if (j < 1) {
1847 j = 1;
1848 jiffies_till_next_fqs = 1;
1849 }
cabc49c1 1850 }
4cdfc175
PM
1851
1852 /* Handle grace-period end. */
1853 rcu_gp_cleanup(rsp);
b3dbec76 1854 }
b3dbec76
PM
1855}
1856
64db4cff
PM
1857/*
1858 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1859 * in preparation for detecting the next grace period. The caller must hold
b8462084 1860 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1861 *
1862 * Note that it is legal for a dying CPU (which is marked as offline) to
1863 * invoke this function. This can happen when the dying CPU reports its
1864 * quiescent state.
48a7639c
PM
1865 *
1866 * Returns true if the grace-period kthread must be awakened.
64db4cff 1867 */
48a7639c 1868static bool
910ee45d
PM
1869rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1870 struct rcu_data *rdp)
64db4cff 1871{
b8462084 1872 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1873 /*
b3dbec76 1874 * Either we have not yet spawned the grace-period
62da1921
PM
1875 * task, this CPU does not need another grace period,
1876 * or a grace period is already in progress.
b3dbec76 1877 * Either way, don't start a new grace period.
afe24b12 1878 */
48a7639c 1879 return false;
afe24b12 1880 }
91dc9542 1881 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1882 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1883 TPS("newreq"));
62da1921 1884
016a8d5b
SR
1885 /*
1886 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 1887 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 1888 * the wakeup to our caller.
016a8d5b 1889 */
48a7639c 1890 return true;
64db4cff
PM
1891}
1892
910ee45d
PM
1893/*
1894 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1895 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1896 * is invoked indirectly from rcu_advance_cbs(), which would result in
1897 * endless recursion -- or would do so if it wasn't for the self-deadlock
1898 * that is encountered beforehand.
48a7639c
PM
1899 *
1900 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 1901 */
48a7639c 1902static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
1903{
1904 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1905 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 1906 bool ret = false;
910ee45d
PM
1907
1908 /*
1909 * If there is no grace period in progress right now, any
1910 * callbacks we have up to this point will be satisfied by the
1911 * next grace period. Also, advancing the callbacks reduces the
1912 * probability of false positives from cpu_needs_another_gp()
1913 * resulting in pointless grace periods. So, advance callbacks
1914 * then start the grace period!
1915 */
48a7639c
PM
1916 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1917 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1918 return ret;
910ee45d
PM
1919}
1920
f41d911f 1921/*
d3f6bad3
PM
1922 * Report a full set of quiescent states to the specified rcu_state
1923 * data structure. This involves cleaning up after the prior grace
1924 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1925 * if one is needed. Note that the caller must hold rnp->lock, which
1926 * is released before return.
f41d911f 1927 */
d3f6bad3 1928static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1929 __releases(rcu_get_root(rsp)->lock)
f41d911f 1930{
fc2219d4 1931 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1 1932 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 1933 rcu_gp_kthread_wake(rsp);
f41d911f
PM
1934}
1935
64db4cff 1936/*
d3f6bad3
PM
1937 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1938 * Allows quiescent states for a group of CPUs to be reported at one go
1939 * to the specified rcu_node structure, though all the CPUs in the group
1940 * must be represented by the same rcu_node structure (which need not be
1941 * a leaf rcu_node structure, though it often will be). That structure's
1942 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1943 */
1944static void
d3f6bad3
PM
1945rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1946 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1947 __releases(rnp->lock)
1948{
28ecd580
PM
1949 struct rcu_node *rnp_c;
1950
64db4cff
PM
1951 /* Walk up the rcu_node hierarchy. */
1952 for (;;) {
1953 if (!(rnp->qsmask & mask)) {
1954
1955 /* Our bit has already been cleared, so done. */
1304afb2 1956 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1957 return;
1958 }
1959 rnp->qsmask &= ~mask;
d4c08f2a
PM
1960 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1961 mask, rnp->qsmask, rnp->level,
1962 rnp->grplo, rnp->grphi,
1963 !!rnp->gp_tasks);
27f4d280 1964 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1965
1966 /* Other bits still set at this level, so done. */
1304afb2 1967 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1968 return;
1969 }
1970 mask = rnp->grpmask;
1971 if (rnp->parent == NULL) {
1972
1973 /* No more levels. Exit loop holding root lock. */
1974
1975 break;
1976 }
1304afb2 1977 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1978 rnp_c = rnp;
64db4cff 1979 rnp = rnp->parent;
1304afb2 1980 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1981 smp_mb__after_unlock_lock();
28ecd580 1982 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1983 }
1984
1985 /*
1986 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1987 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1988 * to clean up and start the next grace period if one is needed.
64db4cff 1989 */
d3f6bad3 1990 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1991}
1992
1993/*
d3f6bad3
PM
1994 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1995 * structure. This must be either called from the specified CPU, or
1996 * called when the specified CPU is known to be offline (and when it is
1997 * also known that no other CPU is concurrently trying to help the offline
1998 * CPU). The lastcomp argument is used to make sure we are still in the
1999 * grace period of interest. We don't want to end the current grace period
2000 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2001 */
2002static void
d7d6a11e 2003rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2004{
2005 unsigned long flags;
2006 unsigned long mask;
48a7639c 2007 bool needwake;
64db4cff
PM
2008 struct rcu_node *rnp;
2009
2010 rnp = rdp->mynode;
1304afb2 2011 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2012 smp_mb__after_unlock_lock();
d7d6a11e
PM
2013 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2014 rnp->completed == rnp->gpnum) {
64db4cff
PM
2015
2016 /*
e4cc1f22
PM
2017 * The grace period in which this quiescent state was
2018 * recorded has ended, so don't report it upwards.
2019 * We will instead need a new quiescent state that lies
2020 * within the current grace period.
64db4cff 2021 */
e4cc1f22 2022 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 2023 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2024 return;
2025 }
2026 mask = rdp->grpmask;
2027 if ((rnp->qsmask & mask) == 0) {
1304afb2 2028 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2029 } else {
2030 rdp->qs_pending = 0;
2031
2032 /*
2033 * This GP can't end until cpu checks in, so all of our
2034 * callbacks can be processed during the next GP.
2035 */
48a7639c 2036 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2037
d3f6bad3 2038 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2039 if (needwake)
2040 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2041 }
2042}
2043
2044/*
2045 * Check to see if there is a new grace period of which this CPU
2046 * is not yet aware, and if so, set up local rcu_data state for it.
2047 * Otherwise, see if this CPU has just passed through its first
2048 * quiescent state for this grace period, and record that fact if so.
2049 */
2050static void
2051rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2052{
05eb552b
PM
2053 /* Check for grace-period ends and beginnings. */
2054 note_gp_changes(rsp, rdp);
64db4cff
PM
2055
2056 /*
2057 * Does this CPU still need to do its part for current grace period?
2058 * If no, return and let the other CPUs do their part as well.
2059 */
2060 if (!rdp->qs_pending)
2061 return;
2062
2063 /*
2064 * Was there a quiescent state since the beginning of the grace
2065 * period? If no, then exit and wait for the next call.
2066 */
e4cc1f22 2067 if (!rdp->passed_quiesce)
64db4cff
PM
2068 return;
2069
d3f6bad3
PM
2070 /*
2071 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2072 * judge of that).
2073 */
d7d6a11e 2074 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2075}
2076
2077#ifdef CONFIG_HOTPLUG_CPU
2078
e74f4c45 2079/*
b1420f1c
PM
2080 * Send the specified CPU's RCU callbacks to the orphanage. The
2081 * specified CPU must be offline, and the caller must hold the
7b2e6011 2082 * ->orphan_lock.
e74f4c45 2083 */
b1420f1c
PM
2084static void
2085rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2086 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2087{
3fbfbf7a 2088 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2089 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2090 return;
2091
b1420f1c
PM
2092 /*
2093 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2094 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2095 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2096 */
a50c3af9 2097 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2098 rsp->qlen_lazy += rdp->qlen_lazy;
2099 rsp->qlen += rdp->qlen;
2100 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2101 rdp->qlen_lazy = 0;
1d1fb395 2102 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2103 }
2104
2105 /*
b1420f1c
PM
2106 * Next, move those callbacks still needing a grace period to
2107 * the orphanage, where some other CPU will pick them up.
2108 * Some of the callbacks might have gone partway through a grace
2109 * period, but that is too bad. They get to start over because we
2110 * cannot assume that grace periods are synchronized across CPUs.
2111 * We don't bother updating the ->nxttail[] array yet, instead
2112 * we just reset the whole thing later on.
a50c3af9 2113 */
b1420f1c
PM
2114 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2115 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2116 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2117 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2118 }
2119
2120 /*
b1420f1c
PM
2121 * Then move the ready-to-invoke callbacks to the orphanage,
2122 * where some other CPU will pick them up. These will not be
2123 * required to pass though another grace period: They are done.
a50c3af9 2124 */
e5601400 2125 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2126 *rsp->orphan_donetail = rdp->nxtlist;
2127 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2128 }
e74f4c45 2129
b1420f1c 2130 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2131 init_callback_list(rdp);
b1420f1c
PM
2132}
2133
2134/*
2135 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2136 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2137 */
96d3fd0d 2138static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2139{
2140 int i;
fa07a58f 2141 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2142
3fbfbf7a 2143 /* No-CBs CPUs are handled specially. */
96d3fd0d 2144 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2145 return;
2146
b1420f1c
PM
2147 /* Do the accounting first. */
2148 rdp->qlen_lazy += rsp->qlen_lazy;
2149 rdp->qlen += rsp->qlen;
2150 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2151 if (rsp->qlen_lazy != rsp->qlen)
2152 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2153 rsp->qlen_lazy = 0;
2154 rsp->qlen = 0;
2155
2156 /*
2157 * We do not need a memory barrier here because the only way we
2158 * can get here if there is an rcu_barrier() in flight is if
2159 * we are the task doing the rcu_barrier().
2160 */
2161
2162 /* First adopt the ready-to-invoke callbacks. */
2163 if (rsp->orphan_donelist != NULL) {
2164 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2165 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2166 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2167 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2168 rdp->nxttail[i] = rsp->orphan_donetail;
2169 rsp->orphan_donelist = NULL;
2170 rsp->orphan_donetail = &rsp->orphan_donelist;
2171 }
2172
2173 /* And then adopt the callbacks that still need a grace period. */
2174 if (rsp->orphan_nxtlist != NULL) {
2175 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2176 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2177 rsp->orphan_nxtlist = NULL;
2178 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2179 }
2180}
2181
2182/*
2183 * Trace the fact that this CPU is going offline.
2184 */
2185static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2186{
2187 RCU_TRACE(unsigned long mask);
2188 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2189 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2190
2191 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2192 trace_rcu_grace_period(rsp->name,
2193 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2194 TPS("cpuofl"));
64db4cff
PM
2195}
2196
2197/*
e5601400 2198 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2199 * this fact from process context. Do the remainder of the cleanup,
2200 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2201 * adopting them. There can only be one CPU hotplug operation at a time,
2202 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2203 */
e5601400 2204static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2205{
2036d94a
PM
2206 unsigned long flags;
2207 unsigned long mask;
2208 int need_report = 0;
e5601400 2209 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2210 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2211
2036d94a 2212 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2213 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2214
2036d94a 2215 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2216 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2217 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2218
b1420f1c
PM
2219 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2220 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2221 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2222
2036d94a
PM
2223 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2224 mask = rdp->grpmask; /* rnp->grplo is constant. */
2225 do {
2226 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2227 smp_mb__after_unlock_lock();
2036d94a
PM
2228 rnp->qsmaskinit &= ~mask;
2229 if (rnp->qsmaskinit != 0) {
2230 if (rnp != rdp->mynode)
2231 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2232 break;
2233 }
2234 if (rnp == rdp->mynode)
2235 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2236 else
2237 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2238 mask = rnp->grpmask;
2239 rnp = rnp->parent;
2240 } while (rnp != NULL);
2241
2242 /*
2243 * We still hold the leaf rcu_node structure lock here, and
2244 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2245 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2246 * held leads to deadlock.
2247 */
7b2e6011 2248 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2249 rnp = rdp->mynode;
2250 if (need_report & RCU_OFL_TASKS_NORM_GP)
2251 rcu_report_unblock_qs_rnp(rnp, flags);
2252 else
2253 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2254 if (need_report & RCU_OFL_TASKS_EXP_GP)
2255 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2256 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2257 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2258 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2259 init_callback_list(rdp);
2260 /* Disallow further callbacks on this CPU. */
2261 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2262 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2263}
2264
2265#else /* #ifdef CONFIG_HOTPLUG_CPU */
2266
e5601400 2267static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2268{
2269}
2270
e5601400 2271static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2272{
2273}
2274
2275#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2276
2277/*
2278 * Invoke any RCU callbacks that have made it to the end of their grace
2279 * period. Thottle as specified by rdp->blimit.
2280 */
37c72e56 2281static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2282{
2283 unsigned long flags;
2284 struct rcu_head *next, *list, **tail;
878d7439
ED
2285 long bl, count, count_lazy;
2286 int i;
64db4cff 2287
dc35c893 2288 /* If no callbacks are ready, just return. */
29c00b4a 2289 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2290 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2291 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2292 need_resched(), is_idle_task(current),
2293 rcu_is_callbacks_kthread());
64db4cff 2294 return;
29c00b4a 2295 }
64db4cff
PM
2296
2297 /*
2298 * Extract the list of ready callbacks, disabling to prevent
2299 * races with call_rcu() from interrupt handlers.
2300 */
2301 local_irq_save(flags);
8146c4e2 2302 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2303 bl = rdp->blimit;
486e2593 2304 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2305 list = rdp->nxtlist;
2306 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2307 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2308 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2309 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2310 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2311 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2312 local_irq_restore(flags);
2313
2314 /* Invoke callbacks. */
486e2593 2315 count = count_lazy = 0;
64db4cff
PM
2316 while (list) {
2317 next = list->next;
2318 prefetch(next);
551d55a9 2319 debug_rcu_head_unqueue(list);
486e2593
PM
2320 if (__rcu_reclaim(rsp->name, list))
2321 count_lazy++;
64db4cff 2322 list = next;
dff1672d
PM
2323 /* Stop only if limit reached and CPU has something to do. */
2324 if (++count >= bl &&
2325 (need_resched() ||
2326 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2327 break;
2328 }
2329
2330 local_irq_save(flags);
4968c300
PM
2331 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2332 is_idle_task(current),
2333 rcu_is_callbacks_kthread());
64db4cff
PM
2334
2335 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2336 if (list != NULL) {
2337 *tail = rdp->nxtlist;
2338 rdp->nxtlist = list;
b41772ab
PM
2339 for (i = 0; i < RCU_NEXT_SIZE; i++)
2340 if (&rdp->nxtlist == rdp->nxttail[i])
2341 rdp->nxttail[i] = tail;
64db4cff
PM
2342 else
2343 break;
2344 }
b1420f1c
PM
2345 smp_mb(); /* List handling before counting for rcu_barrier(). */
2346 rdp->qlen_lazy -= count_lazy;
a792563b 2347 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2348 rdp->n_cbs_invoked += count;
64db4cff
PM
2349
2350 /* Reinstate batch limit if we have worked down the excess. */
2351 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2352 rdp->blimit = blimit;
2353
37c72e56
PM
2354 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2355 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2356 rdp->qlen_last_fqs_check = 0;
2357 rdp->n_force_qs_snap = rsp->n_force_qs;
2358 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2359 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2360 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2361
64db4cff
PM
2362 local_irq_restore(flags);
2363
e0f23060 2364 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2365 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2366 invoke_rcu_core();
64db4cff
PM
2367}
2368
2369/*
2370 * Check to see if this CPU is in a non-context-switch quiescent state
2371 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2372 * Also schedule RCU core processing.
64db4cff 2373 *
9b2e4f18 2374 * This function must be called from hardirq context. It is normally
64db4cff
PM
2375 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2376 * false, there is no point in invoking rcu_check_callbacks().
2377 */
c3377c2d 2378void rcu_check_callbacks(int user)
64db4cff 2379{
f7f7bac9 2380 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2381 increment_cpu_stall_ticks();
9b2e4f18 2382 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2383
2384 /*
2385 * Get here if this CPU took its interrupt from user
2386 * mode or from the idle loop, and if this is not a
2387 * nested interrupt. In this case, the CPU is in
d6714c22 2388 * a quiescent state, so note it.
64db4cff
PM
2389 *
2390 * No memory barrier is required here because both
d6714c22
PM
2391 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2392 * variables that other CPUs neither access nor modify,
2393 * at least not while the corresponding CPU is online.
64db4cff
PM
2394 */
2395
284a8c93
PM
2396 rcu_sched_qs();
2397 rcu_bh_qs();
64db4cff
PM
2398
2399 } else if (!in_softirq()) {
2400
2401 /*
2402 * Get here if this CPU did not take its interrupt from
2403 * softirq, in other words, if it is not interrupting
2404 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2405 * critical section, so note it.
64db4cff
PM
2406 */
2407
284a8c93 2408 rcu_bh_qs();
64db4cff 2409 }
86aea0e6 2410 rcu_preempt_check_callbacks();
e3950ecd 2411 if (rcu_pending())
a46e0899 2412 invoke_rcu_core();
8315f422
PM
2413 if (user)
2414 rcu_note_voluntary_context_switch(current);
f7f7bac9 2415 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2416}
2417
64db4cff
PM
2418/*
2419 * Scan the leaf rcu_node structures, processing dyntick state for any that
2420 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2421 * Also initiate boosting for any threads blocked on the root rcu_node.
2422 *
ee47eb9f 2423 * The caller must have suppressed start of new grace periods.
64db4cff 2424 */
217af2a2
PM
2425static void force_qs_rnp(struct rcu_state *rsp,
2426 int (*f)(struct rcu_data *rsp, bool *isidle,
2427 unsigned long *maxj),
2428 bool *isidle, unsigned long *maxj)
64db4cff
PM
2429{
2430 unsigned long bit;
2431 int cpu;
2432 unsigned long flags;
2433 unsigned long mask;
a0b6c9a7 2434 struct rcu_node *rnp;
64db4cff 2435
a0b6c9a7 2436 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2437 cond_resched_rcu_qs();
64db4cff 2438 mask = 0;
1304afb2 2439 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2440 smp_mb__after_unlock_lock();
ee47eb9f 2441 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2442 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2443 return;
64db4cff 2444 }
a0b6c9a7 2445 if (rnp->qsmask == 0) {
1217ed1b 2446 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2447 continue;
2448 }
a0b6c9a7 2449 cpu = rnp->grplo;
64db4cff 2450 bit = 1;
a0b6c9a7 2451 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2452 if ((rnp->qsmask & bit) != 0) {
2453 if ((rnp->qsmaskinit & bit) != 0)
e02b2edf 2454 *isidle = false;
0edd1b17
PM
2455 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2456 mask |= bit;
2457 }
64db4cff 2458 }
45f014c5 2459 if (mask != 0) {
64db4cff 2460
d3f6bad3
PM
2461 /* rcu_report_qs_rnp() releases rnp->lock. */
2462 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2463 continue;
2464 }
1304afb2 2465 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2466 }
27f4d280 2467 rnp = rcu_get_root(rsp);
1217ed1b
PM
2468 if (rnp->qsmask == 0) {
2469 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2470 smp_mb__after_unlock_lock();
1217ed1b
PM
2471 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2472 }
64db4cff
PM
2473}
2474
2475/*
2476 * Force quiescent states on reluctant CPUs, and also detect which
2477 * CPUs are in dyntick-idle mode.
2478 */
4cdfc175 2479static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2480{
2481 unsigned long flags;
394f2769
PM
2482 bool ret;
2483 struct rcu_node *rnp;
2484 struct rcu_node *rnp_old = NULL;
2485
2486 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2487 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2488 for (; rnp != NULL; rnp = rnp->parent) {
2489 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2490 !raw_spin_trylock(&rnp->fqslock);
2491 if (rnp_old != NULL)
2492 raw_spin_unlock(&rnp_old->fqslock);
2493 if (ret) {
a792563b 2494 rsp->n_force_qs_lh++;
394f2769
PM
2495 return;
2496 }
2497 rnp_old = rnp;
2498 }
2499 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2500
394f2769
PM
2501 /* Reached the root of the rcu_node tree, acquire lock. */
2502 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2503 smp_mb__after_unlock_lock();
394f2769
PM
2504 raw_spin_unlock(&rnp_old->fqslock);
2505 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2506 rsp->n_force_qs_lh++;
394f2769 2507 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2508 return; /* Someone beat us to it. */
46a1e34e 2509 }
4de376a1
PK
2510 ACCESS_ONCE(rsp->gp_flags) =
2511 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
394f2769 2512 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2513 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2514}
2515
64db4cff 2516/*
e0f23060
PM
2517 * This does the RCU core processing work for the specified rcu_state
2518 * and rcu_data structures. This may be called only from the CPU to
2519 * whom the rdp belongs.
64db4cff
PM
2520 */
2521static void
1bca8cf1 2522__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2523{
2524 unsigned long flags;
48a7639c 2525 bool needwake;
fa07a58f 2526 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2527
2e597558
PM
2528 WARN_ON_ONCE(rdp->beenonline == 0);
2529
64db4cff
PM
2530 /* Update RCU state based on any recent quiescent states. */
2531 rcu_check_quiescent_state(rsp, rdp);
2532
2533 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2534 local_irq_save(flags);
64db4cff 2535 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2536 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2537 needwake = rcu_start_gp(rsp);
b8462084 2538 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2539 if (needwake)
2540 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2541 } else {
2542 local_irq_restore(flags);
64db4cff
PM
2543 }
2544
2545 /* If there are callbacks ready, invoke them. */
09223371 2546 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2547 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2548
2549 /* Do any needed deferred wakeups of rcuo kthreads. */
2550 do_nocb_deferred_wakeup(rdp);
09223371
SL
2551}
2552
64db4cff 2553/*
e0f23060 2554 * Do RCU core processing for the current CPU.
64db4cff 2555 */
09223371 2556static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2557{
6ce75a23
PM
2558 struct rcu_state *rsp;
2559
bfa00b4c
PM
2560 if (cpu_is_offline(smp_processor_id()))
2561 return;
f7f7bac9 2562 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2563 for_each_rcu_flavor(rsp)
2564 __rcu_process_callbacks(rsp);
f7f7bac9 2565 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2566}
2567
a26ac245 2568/*
e0f23060
PM
2569 * Schedule RCU callback invocation. If the specified type of RCU
2570 * does not support RCU priority boosting, just do a direct call,
2571 * otherwise wake up the per-CPU kernel kthread. Note that because we
2572 * are running on the current CPU with interrupts disabled, the
2573 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2574 */
a46e0899 2575static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2576{
b0d30417
PM
2577 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2578 return;
a46e0899
PM
2579 if (likely(!rsp->boost)) {
2580 rcu_do_batch(rsp, rdp);
a26ac245
PM
2581 return;
2582 }
a46e0899 2583 invoke_rcu_callbacks_kthread();
a26ac245
PM
2584}
2585
a46e0899 2586static void invoke_rcu_core(void)
09223371 2587{
b0f74036
PM
2588 if (cpu_online(smp_processor_id()))
2589 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2590}
2591
29154c57
PM
2592/*
2593 * Handle any core-RCU processing required by a call_rcu() invocation.
2594 */
2595static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2596 struct rcu_head *head, unsigned long flags)
64db4cff 2597{
48a7639c
PM
2598 bool needwake;
2599
62fde6ed
PM
2600 /*
2601 * If called from an extended quiescent state, invoke the RCU
2602 * core in order to force a re-evaluation of RCU's idleness.
2603 */
5c173eb8 2604 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2605 invoke_rcu_core();
2606
a16b7a69 2607 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2608 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2609 return;
64db4cff 2610
37c72e56
PM
2611 /*
2612 * Force the grace period if too many callbacks or too long waiting.
2613 * Enforce hysteresis, and don't invoke force_quiescent_state()
2614 * if some other CPU has recently done so. Also, don't bother
2615 * invoking force_quiescent_state() if the newly enqueued callback
2616 * is the only one waiting for a grace period to complete.
2617 */
2655d57e 2618 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2619
2620 /* Are we ignoring a completed grace period? */
470716fc 2621 note_gp_changes(rsp, rdp);
b52573d2
PM
2622
2623 /* Start a new grace period if one not already started. */
2624 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2625 struct rcu_node *rnp_root = rcu_get_root(rsp);
2626
b8462084 2627 raw_spin_lock(&rnp_root->lock);
6303b9c8 2628 smp_mb__after_unlock_lock();
48a7639c 2629 needwake = rcu_start_gp(rsp);
b8462084 2630 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2631 if (needwake)
2632 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2633 } else {
2634 /* Give the grace period a kick. */
2635 rdp->blimit = LONG_MAX;
2636 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2637 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2638 force_quiescent_state(rsp);
b52573d2
PM
2639 rdp->n_force_qs_snap = rsp->n_force_qs;
2640 rdp->qlen_last_fqs_check = rdp->qlen;
2641 }
4cdfc175 2642 }
29154c57
PM
2643}
2644
ae150184
PM
2645/*
2646 * RCU callback function to leak a callback.
2647 */
2648static void rcu_leak_callback(struct rcu_head *rhp)
2649{
2650}
2651
3fbfbf7a
PM
2652/*
2653 * Helper function for call_rcu() and friends. The cpu argument will
2654 * normally be -1, indicating "currently running CPU". It may specify
2655 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2656 * is expected to specify a CPU.
2657 */
64db4cff
PM
2658static void
2659__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2660 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2661{
2662 unsigned long flags;
2663 struct rcu_data *rdp;
2664
1146edcb 2665 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2666 if (debug_rcu_head_queue(head)) {
2667 /* Probable double call_rcu(), so leak the callback. */
2668 ACCESS_ONCE(head->func) = rcu_leak_callback;
2669 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2670 return;
2671 }
64db4cff
PM
2672 head->func = func;
2673 head->next = NULL;
2674
64db4cff
PM
2675 /*
2676 * Opportunistically note grace-period endings and beginnings.
2677 * Note that we might see a beginning right after we see an
2678 * end, but never vice versa, since this CPU has to pass through
2679 * a quiescent state betweentimes.
2680 */
2681 local_irq_save(flags);
394f99a9 2682 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2683
2684 /* Add the callback to our list. */
3fbfbf7a
PM
2685 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2686 int offline;
2687
2688 if (cpu != -1)
2689 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2690 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2691 WARN_ON_ONCE(offline);
0d8ee37e 2692 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2693 local_irq_restore(flags);
2694 return;
2695 }
a792563b 2696 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2697 if (lazy)
2698 rdp->qlen_lazy++;
c57afe80
PM
2699 else
2700 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2701 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2702 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2703 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2704
d4c08f2a
PM
2705 if (__is_kfree_rcu_offset((unsigned long)func))
2706 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2707 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2708 else
486e2593 2709 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2710
29154c57
PM
2711 /* Go handle any RCU core processing required. */
2712 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2713 local_irq_restore(flags);
2714}
2715
2716/*
d6714c22 2717 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2718 */
d6714c22 2719void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2720{
3fbfbf7a 2721 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2722}
d6714c22 2723EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2724
2725/*
486e2593 2726 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2727 */
2728void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2729{
3fbfbf7a 2730 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2731}
2732EXPORT_SYMBOL_GPL(call_rcu_bh);
2733
495aa969
ACB
2734/*
2735 * Queue an RCU callback for lazy invocation after a grace period.
2736 * This will likely be later named something like "call_rcu_lazy()",
2737 * but this change will require some way of tagging the lazy RCU
2738 * callbacks in the list of pending callbacks. Until then, this
2739 * function may only be called from __kfree_rcu().
2740 */
2741void kfree_call_rcu(struct rcu_head *head,
2742 void (*func)(struct rcu_head *rcu))
2743{
e534165b 2744 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2745}
2746EXPORT_SYMBOL_GPL(kfree_call_rcu);
2747
6d813391
PM
2748/*
2749 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2750 * any blocking grace-period wait automatically implies a grace period
2751 * if there is only one CPU online at any point time during execution
2752 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2753 * occasionally incorrectly indicate that there are multiple CPUs online
2754 * when there was in fact only one the whole time, as this just adds
2755 * some overhead: RCU still operates correctly.
6d813391
PM
2756 */
2757static inline int rcu_blocking_is_gp(void)
2758{
95f0c1de
PM
2759 int ret;
2760
6d813391 2761 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2762 preempt_disable();
2763 ret = num_online_cpus() <= 1;
2764 preempt_enable();
2765 return ret;
6d813391
PM
2766}
2767
6ebb237b
PM
2768/**
2769 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2770 *
2771 * Control will return to the caller some time after a full rcu-sched
2772 * grace period has elapsed, in other words after all currently executing
2773 * rcu-sched read-side critical sections have completed. These read-side
2774 * critical sections are delimited by rcu_read_lock_sched() and
2775 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2776 * local_irq_disable(), and so on may be used in place of
2777 * rcu_read_lock_sched().
2778 *
2779 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2780 * non-threaded hardware-interrupt handlers, in progress on entry will
2781 * have completed before this primitive returns. However, this does not
2782 * guarantee that softirq handlers will have completed, since in some
2783 * kernels, these handlers can run in process context, and can block.
2784 *
2785 * Note that this guarantee implies further memory-ordering guarantees.
2786 * On systems with more than one CPU, when synchronize_sched() returns,
2787 * each CPU is guaranteed to have executed a full memory barrier since the
2788 * end of its last RCU-sched read-side critical section whose beginning
2789 * preceded the call to synchronize_sched(). In addition, each CPU having
2790 * an RCU read-side critical section that extends beyond the return from
2791 * synchronize_sched() is guaranteed to have executed a full memory barrier
2792 * after the beginning of synchronize_sched() and before the beginning of
2793 * that RCU read-side critical section. Note that these guarantees include
2794 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2795 * that are executing in the kernel.
2796 *
2797 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2798 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2799 * to have executed a full memory barrier during the execution of
2800 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2801 * again only if the system has more than one CPU).
6ebb237b
PM
2802 *
2803 * This primitive provides the guarantees made by the (now removed)
2804 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2805 * guarantees that rcu_read_lock() sections will have completed.
2806 * In "classic RCU", these two guarantees happen to be one and
2807 * the same, but can differ in realtime RCU implementations.
2808 */
2809void synchronize_sched(void)
2810{
fe15d706
PM
2811 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2812 !lock_is_held(&rcu_lock_map) &&
2813 !lock_is_held(&rcu_sched_lock_map),
2814 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2815 if (rcu_blocking_is_gp())
2816 return;
3705b88d
AM
2817 if (rcu_expedited)
2818 synchronize_sched_expedited();
2819 else
2820 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2821}
2822EXPORT_SYMBOL_GPL(synchronize_sched);
2823
2824/**
2825 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2826 *
2827 * Control will return to the caller some time after a full rcu_bh grace
2828 * period has elapsed, in other words after all currently executing rcu_bh
2829 * read-side critical sections have completed. RCU read-side critical
2830 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2831 * and may be nested.
f0a0e6f2
PM
2832 *
2833 * See the description of synchronize_sched() for more detailed information
2834 * on memory ordering guarantees.
6ebb237b
PM
2835 */
2836void synchronize_rcu_bh(void)
2837{
fe15d706
PM
2838 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2839 !lock_is_held(&rcu_lock_map) &&
2840 !lock_is_held(&rcu_sched_lock_map),
2841 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2842 if (rcu_blocking_is_gp())
2843 return;
3705b88d
AM
2844 if (rcu_expedited)
2845 synchronize_rcu_bh_expedited();
2846 else
2847 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2848}
2849EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2850
765a3f4f
PM
2851/**
2852 * get_state_synchronize_rcu - Snapshot current RCU state
2853 *
2854 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2855 * to determine whether or not a full grace period has elapsed in the
2856 * meantime.
2857 */
2858unsigned long get_state_synchronize_rcu(void)
2859{
2860 /*
2861 * Any prior manipulation of RCU-protected data must happen
2862 * before the load from ->gpnum.
2863 */
2864 smp_mb(); /* ^^^ */
2865
2866 /*
2867 * Make sure this load happens before the purportedly
2868 * time-consuming work between get_state_synchronize_rcu()
2869 * and cond_synchronize_rcu().
2870 */
e534165b 2871 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
2872}
2873EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2874
2875/**
2876 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2877 *
2878 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2879 *
2880 * If a full RCU grace period has elapsed since the earlier call to
2881 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2882 * synchronize_rcu() to wait for a full grace period.
2883 *
2884 * Yes, this function does not take counter wrap into account. But
2885 * counter wrap is harmless. If the counter wraps, we have waited for
2886 * more than 2 billion grace periods (and way more on a 64-bit system!),
2887 * so waiting for one additional grace period should be just fine.
2888 */
2889void cond_synchronize_rcu(unsigned long oldstate)
2890{
2891 unsigned long newstate;
2892
2893 /*
2894 * Ensure that this load happens before any RCU-destructive
2895 * actions the caller might carry out after we return.
2896 */
e534165b 2897 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
2898 if (ULONG_CMP_GE(oldstate, newstate))
2899 synchronize_rcu();
2900}
2901EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2902
3d3b7db0
PM
2903static int synchronize_sched_expedited_cpu_stop(void *data)
2904{
2905 /*
2906 * There must be a full memory barrier on each affected CPU
2907 * between the time that try_stop_cpus() is called and the
2908 * time that it returns.
2909 *
2910 * In the current initial implementation of cpu_stop, the
2911 * above condition is already met when the control reaches
2912 * this point and the following smp_mb() is not strictly
2913 * necessary. Do smp_mb() anyway for documentation and
2914 * robustness against future implementation changes.
2915 */
2916 smp_mb(); /* See above comment block. */
2917 return 0;
2918}
2919
236fefaf
PM
2920/**
2921 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2922 *
2923 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2924 * approach to force the grace period to end quickly. This consumes
2925 * significant time on all CPUs and is unfriendly to real-time workloads,
2926 * so is thus not recommended for any sort of common-case code. In fact,
2927 * if you are using synchronize_sched_expedited() in a loop, please
2928 * restructure your code to batch your updates, and then use a single
2929 * synchronize_sched() instead.
3d3b7db0 2930 *
3d3b7db0
PM
2931 * This implementation can be thought of as an application of ticket
2932 * locking to RCU, with sync_sched_expedited_started and
2933 * sync_sched_expedited_done taking on the roles of the halves
2934 * of the ticket-lock word. Each task atomically increments
2935 * sync_sched_expedited_started upon entry, snapshotting the old value,
2936 * then attempts to stop all the CPUs. If this succeeds, then each
2937 * CPU will have executed a context switch, resulting in an RCU-sched
2938 * grace period. We are then done, so we use atomic_cmpxchg() to
2939 * update sync_sched_expedited_done to match our snapshot -- but
2940 * only if someone else has not already advanced past our snapshot.
2941 *
2942 * On the other hand, if try_stop_cpus() fails, we check the value
2943 * of sync_sched_expedited_done. If it has advanced past our
2944 * initial snapshot, then someone else must have forced a grace period
2945 * some time after we took our snapshot. In this case, our work is
2946 * done for us, and we can simply return. Otherwise, we try again,
2947 * but keep our initial snapshot for purposes of checking for someone
2948 * doing our work for us.
2949 *
2950 * If we fail too many times in a row, we fall back to synchronize_sched().
2951 */
2952void synchronize_sched_expedited(void)
2953{
e0775cef
PM
2954 cpumask_var_t cm;
2955 bool cma = false;
2956 int cpu;
1924bcb0
PM
2957 long firstsnap, s, snap;
2958 int trycount = 0;
40694d66 2959 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2960
1924bcb0
PM
2961 /*
2962 * If we are in danger of counter wrap, just do synchronize_sched().
2963 * By allowing sync_sched_expedited_started to advance no more than
2964 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2965 * that more than 3.5 billion CPUs would be required to force a
2966 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2967 * course be required on a 64-bit system.
2968 */
40694d66
PM
2969 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2970 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2971 ULONG_MAX / 8)) {
2972 synchronize_sched();
a30489c5 2973 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2974 return;
2975 }
3d3b7db0 2976
1924bcb0
PM
2977 /*
2978 * Take a ticket. Note that atomic_inc_return() implies a
2979 * full memory barrier.
2980 */
40694d66 2981 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2982 firstsnap = snap;
dd56af42
PM
2983 if (!try_get_online_cpus()) {
2984 /* CPU hotplug operation in flight, fall back to normal GP. */
2985 wait_rcu_gp(call_rcu_sched);
2986 atomic_long_inc(&rsp->expedited_normal);
2987 return;
2988 }
1cc85961 2989 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0 2990
e0775cef
PM
2991 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
2992 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
2993 if (cma) {
2994 cpumask_copy(cm, cpu_online_mask);
2995 cpumask_clear_cpu(raw_smp_processor_id(), cm);
2996 for_each_cpu(cpu, cm) {
2997 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2998
2999 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3000 cpumask_clear_cpu(cpu, cm);
3001 }
3002 if (cpumask_weight(cm) == 0)
3003 goto all_cpus_idle;
3004 }
3005
3d3b7db0
PM
3006 /*
3007 * Each pass through the following loop attempts to force a
3008 * context switch on each CPU.
3009 */
e0775cef 3010 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3d3b7db0
PM
3011 synchronize_sched_expedited_cpu_stop,
3012 NULL) == -EAGAIN) {
3013 put_online_cpus();
a30489c5 3014 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3015
1924bcb0 3016 /* Check to see if someone else did our work for us. */
40694d66 3017 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3018 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3019 /* ensure test happens before caller kfree */
4e857c58 3020 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3021 atomic_long_inc(&rsp->expedited_workdone1);
e0775cef 3022 free_cpumask_var(cm);
1924bcb0
PM
3023 return;
3024 }
3d3b7db0
PM
3025
3026 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3027 if (trycount++ < 10) {
3d3b7db0 3028 udelay(trycount * num_online_cpus());
c701d5d9 3029 } else {
3705b88d 3030 wait_rcu_gp(call_rcu_sched);
a30489c5 3031 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3032 free_cpumask_var(cm);
3d3b7db0
PM
3033 return;
3034 }
3035
1924bcb0 3036 /* Recheck to see if someone else did our work for us. */
40694d66 3037 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3038 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3039 /* ensure test happens before caller kfree */
4e857c58 3040 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3041 atomic_long_inc(&rsp->expedited_workdone2);
e0775cef 3042 free_cpumask_var(cm);
3d3b7db0
PM
3043 return;
3044 }
3045
3046 /*
3047 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3048 * callers to piggyback on our grace period. We retry
3049 * after they started, so our grace period works for them,
3050 * and they started after our first try, so their grace
3051 * period works for us.
3d3b7db0 3052 */
dd56af42
PM
3053 if (!try_get_online_cpus()) {
3054 /* CPU hotplug operation in flight, use normal GP. */
3055 wait_rcu_gp(call_rcu_sched);
3056 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3057 free_cpumask_var(cm);
dd56af42
PM
3058 return;
3059 }
40694d66 3060 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3061 smp_mb(); /* ensure read is before try_stop_cpus(). */
3062 }
a30489c5 3063 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0 3064
e0775cef
PM
3065all_cpus_idle:
3066 free_cpumask_var(cm);
3067
3d3b7db0
PM
3068 /*
3069 * Everyone up to our most recent fetch is covered by our grace
3070 * period. Update the counter, but only if our work is still
3071 * relevant -- which it won't be if someone who started later
1924bcb0 3072 * than we did already did their update.
3d3b7db0
PM
3073 */
3074 do {
a30489c5 3075 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3076 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3077 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3078 /* ensure test happens before caller kfree */
4e857c58 3079 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3080 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3081 break;
3082 }
40694d66 3083 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3084 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3085
3086 put_online_cpus();
3087}
3088EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3089
64db4cff
PM
3090/*
3091 * Check to see if there is any immediate RCU-related work to be done
3092 * by the current CPU, for the specified type of RCU, returning 1 if so.
3093 * The checks are in order of increasing expense: checks that can be
3094 * carried out against CPU-local state are performed first. However,
3095 * we must check for CPU stalls first, else we might not get a chance.
3096 */
3097static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3098{
2f51f988
PM
3099 struct rcu_node *rnp = rdp->mynode;
3100
64db4cff
PM
3101 rdp->n_rcu_pending++;
3102
3103 /* Check for CPU stalls, if enabled. */
3104 check_cpu_stall(rsp, rdp);
3105
a096932f
PM
3106 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3107 if (rcu_nohz_full_cpu(rsp))
3108 return 0;
3109
64db4cff 3110 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
3111 if (rcu_scheduler_fully_active &&
3112 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 3113 rdp->n_rp_qs_pending++;
e4cc1f22 3114 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 3115 rdp->n_rp_report_qs++;
64db4cff 3116 return 1;
7ba5c840 3117 }
64db4cff
PM
3118
3119 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3120 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3121 rdp->n_rp_cb_ready++;
64db4cff 3122 return 1;
7ba5c840 3123 }
64db4cff
PM
3124
3125 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3126 if (cpu_needs_another_gp(rsp, rdp)) {
3127 rdp->n_rp_cpu_needs_gp++;
64db4cff 3128 return 1;
7ba5c840 3129 }
64db4cff
PM
3130
3131 /* Has another RCU grace period completed? */
2f51f988 3132 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3133 rdp->n_rp_gp_completed++;
64db4cff 3134 return 1;
7ba5c840 3135 }
64db4cff
PM
3136
3137 /* Has a new RCU grace period started? */
2f51f988 3138 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 3139 rdp->n_rp_gp_started++;
64db4cff 3140 return 1;
7ba5c840 3141 }
64db4cff 3142
96d3fd0d
PM
3143 /* Does this CPU need a deferred NOCB wakeup? */
3144 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3145 rdp->n_rp_nocb_defer_wakeup++;
3146 return 1;
3147 }
3148
64db4cff 3149 /* nothing to do */
7ba5c840 3150 rdp->n_rp_need_nothing++;
64db4cff
PM
3151 return 0;
3152}
3153
3154/*
3155 * Check to see if there is any immediate RCU-related work to be done
3156 * by the current CPU, returning 1 if so. This function is part of the
3157 * RCU implementation; it is -not- an exported member of the RCU API.
3158 */
e3950ecd 3159static int rcu_pending(void)
64db4cff 3160{
6ce75a23
PM
3161 struct rcu_state *rsp;
3162
3163 for_each_rcu_flavor(rsp)
e3950ecd 3164 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3165 return 1;
3166 return 0;
64db4cff
PM
3167}
3168
3169/*
c0f4dfd4
PM
3170 * Return true if the specified CPU has any callback. If all_lazy is
3171 * non-NULL, store an indication of whether all callbacks are lazy.
3172 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3173 */
aa6da514 3174static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3175{
c0f4dfd4
PM
3176 bool al = true;
3177 bool hc = false;
3178 struct rcu_data *rdp;
6ce75a23
PM
3179 struct rcu_state *rsp;
3180
c0f4dfd4 3181 for_each_rcu_flavor(rsp) {
aa6da514 3182 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3183 if (!rdp->nxtlist)
3184 continue;
3185 hc = true;
3186 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3187 al = false;
69c8d28c
PM
3188 break;
3189 }
c0f4dfd4
PM
3190 }
3191 if (all_lazy)
3192 *all_lazy = al;
3193 return hc;
64db4cff
PM
3194}
3195
a83eff0a
PM
3196/*
3197 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3198 * the compiler is expected to optimize this away.
3199 */
e66c33d5 3200static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3201 int cpu, unsigned long done)
3202{
3203 trace_rcu_barrier(rsp->name, s, cpu,
3204 atomic_read(&rsp->barrier_cpu_count), done);
3205}
3206
b1420f1c
PM
3207/*
3208 * RCU callback function for _rcu_barrier(). If we are last, wake
3209 * up the task executing _rcu_barrier().
3210 */
24ebbca8 3211static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3212{
24ebbca8
PM
3213 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3214 struct rcu_state *rsp = rdp->rsp;
3215
a83eff0a
PM
3216 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3217 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3218 complete(&rsp->barrier_completion);
a83eff0a
PM
3219 } else {
3220 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3221 }
d0ec774c
PM
3222}
3223
3224/*
3225 * Called with preemption disabled, and from cross-cpu IRQ context.
3226 */
3227static void rcu_barrier_func(void *type)
3228{
037b64ed 3229 struct rcu_state *rsp = type;
fa07a58f 3230 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3231
a83eff0a 3232 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3233 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3234 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3235}
3236
d0ec774c
PM
3237/*
3238 * Orchestrate the specified type of RCU barrier, waiting for all
3239 * RCU callbacks of the specified type to complete.
3240 */
037b64ed 3241static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3242{
b1420f1c 3243 int cpu;
b1420f1c 3244 struct rcu_data *rdp;
cf3a9c48
PM
3245 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3246 unsigned long snap_done;
b1420f1c 3247
a83eff0a 3248 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3249
e74f4c45 3250 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3251 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3252
cf3a9c48
PM
3253 /*
3254 * Ensure that all prior references, including to ->n_barrier_done,
3255 * are ordered before the _rcu_barrier() machinery.
3256 */
3257 smp_mb(); /* See above block comment. */
3258
3259 /*
3260 * Recheck ->n_barrier_done to see if others did our work for us.
3261 * This means checking ->n_barrier_done for an even-to-odd-to-even
3262 * transition. The "if" expression below therefore rounds the old
3263 * value up to the next even number and adds two before comparing.
3264 */
458fb381 3265 snap_done = rsp->n_barrier_done;
a83eff0a 3266 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3267
3268 /*
3269 * If the value in snap is odd, we needed to wait for the current
3270 * rcu_barrier() to complete, then wait for the next one, in other
3271 * words, we need the value of snap_done to be three larger than
3272 * the value of snap. On the other hand, if the value in snap is
3273 * even, we only had to wait for the next rcu_barrier() to complete,
3274 * in other words, we need the value of snap_done to be only two
3275 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3276 * this for us (thank you, Linus!).
3277 */
3278 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3279 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3280 smp_mb(); /* caller's subsequent code after above check. */
3281 mutex_unlock(&rsp->barrier_mutex);
3282 return;
3283 }
3284
3285 /*
3286 * Increment ->n_barrier_done to avoid duplicate work. Use
3287 * ACCESS_ONCE() to prevent the compiler from speculating
3288 * the increment to precede the early-exit check.
3289 */
a792563b 3290 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3291 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3292 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3293 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3294
d0ec774c 3295 /*
b1420f1c
PM
3296 * Initialize the count to one rather than to zero in order to
3297 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3298 * (or preemption of this task). Exclude CPU-hotplug operations
3299 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3300 */
7db74df8 3301 init_completion(&rsp->barrier_completion);
24ebbca8 3302 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3303 get_online_cpus();
b1420f1c
PM
3304
3305 /*
1331e7a1
PM
3306 * Force each CPU with callbacks to register a new callback.
3307 * When that callback is invoked, we will know that all of the
3308 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3309 */
3fbfbf7a 3310 for_each_possible_cpu(cpu) {
d1e43fa5 3311 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3312 continue;
b1420f1c 3313 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3314 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3315 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3316 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3317 rsp->n_barrier_done);
3318 } else {
3319 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3320 rsp->n_barrier_done);
3321 atomic_inc(&rsp->barrier_cpu_count);
3322 __call_rcu(&rdp->barrier_head,
3323 rcu_barrier_callback, rsp, cpu, 0);
3324 }
3fbfbf7a 3325 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3326 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3327 rsp->n_barrier_done);
037b64ed 3328 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3329 } else {
a83eff0a
PM
3330 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3331 rsp->n_barrier_done);
b1420f1c
PM
3332 }
3333 }
1331e7a1 3334 put_online_cpus();
b1420f1c
PM
3335
3336 /*
3337 * Now that we have an rcu_barrier_callback() callback on each
3338 * CPU, and thus each counted, remove the initial count.
3339 */
24ebbca8 3340 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3341 complete(&rsp->barrier_completion);
b1420f1c 3342
cf3a9c48
PM
3343 /* Increment ->n_barrier_done to prevent duplicate work. */
3344 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3345 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3346 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3347 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3348 smp_mb(); /* Keep increment before caller's subsequent code. */
3349
b1420f1c 3350 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3351 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3352
3353 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3354 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3355}
d0ec774c
PM
3356
3357/**
3358 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3359 */
3360void rcu_barrier_bh(void)
3361{
037b64ed 3362 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3363}
3364EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3365
3366/**
3367 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3368 */
3369void rcu_barrier_sched(void)
3370{
037b64ed 3371 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3372}
3373EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3374
64db4cff 3375/*
27569620 3376 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3377 */
27569620
PM
3378static void __init
3379rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3380{
3381 unsigned long flags;
394f99a9 3382 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3383 struct rcu_node *rnp = rcu_get_root(rsp);
3384
3385 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3386 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3387 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3388 init_callback_list(rdp);
486e2593 3389 rdp->qlen_lazy = 0;
1d1fb395 3390 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3391 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3392 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3393 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3394 rdp->cpu = cpu;
d4c08f2a 3395 rdp->rsp = rsp;
3fbfbf7a 3396 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3397 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3398}
3399
3400/*
3401 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3402 * offline event can be happening at a given time. Note also that we
3403 * can accept some slop in the rsp->completed access due to the fact
3404 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3405 */
49fb4c62 3406static void
9b67122a 3407rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3408{
3409 unsigned long flags;
64db4cff 3410 unsigned long mask;
394f99a9 3411 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3412 struct rcu_node *rnp = rcu_get_root(rsp);
3413
a4fbe35a
PM
3414 /* Exclude new grace periods. */
3415 mutex_lock(&rsp->onoff_mutex);
3416
64db4cff 3417 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3418 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3419 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3420 rdp->qlen_last_fqs_check = 0;
3421 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3422 rdp->blimit = blimit;
0d8ee37e 3423 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3424 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3425 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3426 atomic_set(&rdp->dynticks->dynticks,
3427 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3428 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3429
64db4cff
PM
3430 /* Add CPU to rcu_node bitmasks. */
3431 rnp = rdp->mynode;
3432 mask = rdp->grpmask;
3433 do {
3434 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3435 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3436 rnp->qsmaskinit |= mask;
3437 mask = rnp->grpmask;
d09b62df 3438 if (rnp == rdp->mynode) {
06ae115a
PM
3439 /*
3440 * If there is a grace period in progress, we will
3441 * set up to wait for it next time we run the
3442 * RCU core code.
3443 */
3444 rdp->gpnum = rnp->completed;
d09b62df 3445 rdp->completed = rnp->completed;
06ae115a
PM
3446 rdp->passed_quiesce = 0;
3447 rdp->qs_pending = 0;
f7f7bac9 3448 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3449 }
1304afb2 3450 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3451 rnp = rnp->parent;
3452 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3453 local_irq_restore(flags);
64db4cff 3454
a4fbe35a 3455 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3456}
3457
49fb4c62 3458static void rcu_prepare_cpu(int cpu)
64db4cff 3459{
6ce75a23
PM
3460 struct rcu_state *rsp;
3461
3462 for_each_rcu_flavor(rsp)
9b67122a 3463 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3464}
3465
3466/*
f41d911f 3467 * Handle CPU online/offline notification events.
64db4cff 3468 */
49fb4c62 3469static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3470 unsigned long action, void *hcpu)
64db4cff
PM
3471{
3472 long cpu = (long)hcpu;
e534165b 3473 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3474 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3475 struct rcu_state *rsp;
64db4cff 3476
f7f7bac9 3477 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3478 switch (action) {
3479 case CPU_UP_PREPARE:
3480 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3481 rcu_prepare_cpu(cpu);
3482 rcu_prepare_kthreads(cpu);
35ce7f29 3483 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3484 break;
3485 case CPU_ONLINE:
0f962a5e 3486 case CPU_DOWN_FAILED:
5d01bbd1 3487 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3488 break;
3489 case CPU_DOWN_PREPARE:
34ed6246 3490 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3491 break;
d0ec774c
PM
3492 case CPU_DYING:
3493 case CPU_DYING_FROZEN:
6ce75a23
PM
3494 for_each_rcu_flavor(rsp)
3495 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3496 break;
64db4cff
PM
3497 case CPU_DEAD:
3498 case CPU_DEAD_FROZEN:
3499 case CPU_UP_CANCELED:
3500 case CPU_UP_CANCELED_FROZEN:
776d6807 3501 for_each_rcu_flavor(rsp) {
6ce75a23 3502 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3503 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3504 }
64db4cff
PM
3505 break;
3506 default:
3507 break;
3508 }
f7f7bac9 3509 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3510 return NOTIFY_OK;
64db4cff
PM
3511}
3512
d1d74d14
BP
3513static int rcu_pm_notify(struct notifier_block *self,
3514 unsigned long action, void *hcpu)
3515{
3516 switch (action) {
3517 case PM_HIBERNATION_PREPARE:
3518 case PM_SUSPEND_PREPARE:
3519 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3520 rcu_expedited = 1;
3521 break;
3522 case PM_POST_HIBERNATION:
3523 case PM_POST_SUSPEND:
3524 rcu_expedited = 0;
3525 break;
3526 default:
3527 break;
3528 }
3529 return NOTIFY_OK;
3530}
3531
b3dbec76 3532/*
9386c0b7 3533 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3534 */
3535static int __init rcu_spawn_gp_kthread(void)
3536{
3537 unsigned long flags;
3538 struct rcu_node *rnp;
3539 struct rcu_state *rsp;
3540 struct task_struct *t;
3541
9386c0b7 3542 rcu_scheduler_fully_active = 1;
b3dbec76 3543 for_each_rcu_flavor(rsp) {
f170168b 3544 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3545 BUG_ON(IS_ERR(t));
3546 rnp = rcu_get_root(rsp);
3547 raw_spin_lock_irqsave(&rnp->lock, flags);
3548 rsp->gp_kthread = t;
3549 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3550 }
35ce7f29 3551 rcu_spawn_nocb_kthreads();
9386c0b7 3552 rcu_spawn_boost_kthreads();
b3dbec76
PM
3553 return 0;
3554}
3555early_initcall(rcu_spawn_gp_kthread);
3556
bbad9379
PM
3557/*
3558 * This function is invoked towards the end of the scheduler's initialization
3559 * process. Before this is called, the idle task might contain
3560 * RCU read-side critical sections (during which time, this idle
3561 * task is booting the system). After this function is called, the
3562 * idle tasks are prohibited from containing RCU read-side critical
3563 * sections. This function also enables RCU lockdep checking.
3564 */
3565void rcu_scheduler_starting(void)
3566{
3567 WARN_ON(num_online_cpus() != 1);
3568 WARN_ON(nr_context_switches() > 0);
3569 rcu_scheduler_active = 1;
3570}
3571
64db4cff
PM
3572/*
3573 * Compute the per-level fanout, either using the exact fanout specified
3574 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3575 */
3576#ifdef CONFIG_RCU_FANOUT_EXACT
3577static void __init rcu_init_levelspread(struct rcu_state *rsp)
3578{
3579 int i;
3580
04f34650
PM
3581 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3582 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3583 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3584}
3585#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3586static void __init rcu_init_levelspread(struct rcu_state *rsp)
3587{
3588 int ccur;
3589 int cprv;
3590 int i;
3591
4dbd6bb3 3592 cprv = nr_cpu_ids;
f885b7f2 3593 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3594 ccur = rsp->levelcnt[i];
3595 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3596 cprv = ccur;
3597 }
3598}
3599#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3600
3601/*
3602 * Helper function for rcu_init() that initializes one rcu_state structure.
3603 */
394f99a9
LJ
3604static void __init rcu_init_one(struct rcu_state *rsp,
3605 struct rcu_data __percpu *rda)
64db4cff 3606{
b4426b49
FF
3607 static const char * const buf[] = {
3608 "rcu_node_0",
3609 "rcu_node_1",
3610 "rcu_node_2",
3611 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3612 static const char * const fqs[] = {
3613 "rcu_node_fqs_0",
3614 "rcu_node_fqs_1",
3615 "rcu_node_fqs_2",
3616 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3617 static u8 fl_mask = 0x1;
64db4cff
PM
3618 int cpustride = 1;
3619 int i;
3620 int j;
3621 struct rcu_node *rnp;
3622
b6407e86
PM
3623 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3624
4930521a
PM
3625 /* Silence gcc 4.8 warning about array index out of range. */
3626 if (rcu_num_lvls > RCU_NUM_LVLS)
3627 panic("rcu_init_one: rcu_num_lvls overflow");
3628
64db4cff
PM
3629 /* Initialize the level-tracking arrays. */
3630
f885b7f2
PM
3631 for (i = 0; i < rcu_num_lvls; i++)
3632 rsp->levelcnt[i] = num_rcu_lvl[i];
3633 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3634 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3635 rcu_init_levelspread(rsp);
4a81e832
PM
3636 rsp->flavor_mask = fl_mask;
3637 fl_mask <<= 1;
64db4cff
PM
3638
3639 /* Initialize the elements themselves, starting from the leaves. */
3640
f885b7f2 3641 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3642 cpustride *= rsp->levelspread[i];
3643 rnp = rsp->level[i];
3644 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3645 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3646 lockdep_set_class_and_name(&rnp->lock,
3647 &rcu_node_class[i], buf[i]);
394f2769
PM
3648 raw_spin_lock_init(&rnp->fqslock);
3649 lockdep_set_class_and_name(&rnp->fqslock,
3650 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3651 rnp->gpnum = rsp->gpnum;
3652 rnp->completed = rsp->completed;
64db4cff
PM
3653 rnp->qsmask = 0;
3654 rnp->qsmaskinit = 0;
3655 rnp->grplo = j * cpustride;
3656 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3657 if (rnp->grphi >= nr_cpu_ids)
3658 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3659 if (i == 0) {
3660 rnp->grpnum = 0;
3661 rnp->grpmask = 0;
3662 rnp->parent = NULL;
3663 } else {
3664 rnp->grpnum = j % rsp->levelspread[i - 1];
3665 rnp->grpmask = 1UL << rnp->grpnum;
3666 rnp->parent = rsp->level[i - 1] +
3667 j / rsp->levelspread[i - 1];
3668 }
3669 rnp->level = i;
12f5f524 3670 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3671 rcu_init_one_nocb(rnp);
64db4cff
PM
3672 }
3673 }
0c34029a 3674
394f99a9 3675 rsp->rda = rda;
b3dbec76 3676 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3677 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3678 for_each_possible_cpu(i) {
4a90a068 3679 while (i > rnp->grphi)
0c34029a 3680 rnp++;
394f99a9 3681 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3682 rcu_boot_init_percpu_data(i, rsp);
3683 }
6ce75a23 3684 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3685}
3686
f885b7f2
PM
3687/*
3688 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3689 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3690 * the ->node array in the rcu_state structure.
3691 */
3692static void __init rcu_init_geometry(void)
3693{
026ad283 3694 ulong d;
f885b7f2
PM
3695 int i;
3696 int j;
cca6f393 3697 int n = nr_cpu_ids;
f885b7f2
PM
3698 int rcu_capacity[MAX_RCU_LVLS + 1];
3699
026ad283
PM
3700 /*
3701 * Initialize any unspecified boot parameters.
3702 * The default values of jiffies_till_first_fqs and
3703 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3704 * value, which is a function of HZ, then adding one for each
3705 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3706 */
3707 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3708 if (jiffies_till_first_fqs == ULONG_MAX)
3709 jiffies_till_first_fqs = d;
3710 if (jiffies_till_next_fqs == ULONG_MAX)
3711 jiffies_till_next_fqs = d;
3712
f885b7f2 3713 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3714 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3715 nr_cpu_ids == NR_CPUS)
f885b7f2 3716 return;
39479098
PM
3717 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3718 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3719
3720 /*
3721 * Compute number of nodes that can be handled an rcu_node tree
3722 * with the given number of levels. Setting rcu_capacity[0] makes
3723 * some of the arithmetic easier.
3724 */
3725 rcu_capacity[0] = 1;
3726 rcu_capacity[1] = rcu_fanout_leaf;
3727 for (i = 2; i <= MAX_RCU_LVLS; i++)
3728 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3729
3730 /*
3731 * The boot-time rcu_fanout_leaf parameter is only permitted
3732 * to increase the leaf-level fanout, not decrease it. Of course,
3733 * the leaf-level fanout cannot exceed the number of bits in
3734 * the rcu_node masks. Finally, the tree must be able to accommodate
3735 * the configured number of CPUs. Complain and fall back to the
3736 * compile-time values if these limits are exceeded.
3737 */
3738 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3739 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3740 n > rcu_capacity[MAX_RCU_LVLS]) {
3741 WARN_ON(1);
3742 return;
3743 }
3744
3745 /* Calculate the number of rcu_nodes at each level of the tree. */
3746 for (i = 1; i <= MAX_RCU_LVLS; i++)
3747 if (n <= rcu_capacity[i]) {
3748 for (j = 0; j <= i; j++)
3749 num_rcu_lvl[j] =
3750 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3751 rcu_num_lvls = i;
3752 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3753 num_rcu_lvl[j] = 0;
3754 break;
3755 }
3756
3757 /* Calculate the total number of rcu_node structures. */
3758 rcu_num_nodes = 0;
3759 for (i = 0; i <= MAX_RCU_LVLS; i++)
3760 rcu_num_nodes += num_rcu_lvl[i];
3761 rcu_num_nodes -= n;
3762}
3763
9f680ab4 3764void __init rcu_init(void)
64db4cff 3765{
017c4261 3766 int cpu;
9f680ab4 3767
f41d911f 3768 rcu_bootup_announce();
f885b7f2 3769 rcu_init_geometry();
394f99a9 3770 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3771 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3772 __rcu_init_preempt();
b5b39360 3773 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3774
3775 /*
3776 * We don't need protection against CPU-hotplug here because
3777 * this is called early in boot, before either interrupts
3778 * or the scheduler are operational.
3779 */
3780 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3781 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3782 for_each_online_cpu(cpu)
3783 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
aa23c6fb
PK
3784
3785 rcu_early_boot_tests();
64db4cff
PM
3786}
3787
4102adab 3788#include "tree_plugin.h"
This page took 0.648797 seconds and 5 git commands to generate.