rcu: Correctly initialize ->rcu_qs_ctr_snap at online time
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
2723249a 94DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 95struct rcu_state sname##_state = { \
6c90cc7b 96 .level = { &sname##_state.node[0] }, \
2723249a 97 .rda = &sname##_data, \
037b64ed 98 .call = cr, \
af446b70 99 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
100 .gpnum = 0UL - 300UL, \
101 .completed = 0UL - 300UL, \
7b2e6011 102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 106 .name = RCU_STATE_NAME(sname), \
a4889858 107 .abbr = sabbr, \
2723249a 108}
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
e534165b 113static struct rcu_state *rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
f885b7f2
PM
116/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 118module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
119int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126};
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
b0d30417
PM
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 133 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
bbad9379
PM
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
b0d30417
PM
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
0aa04b05
PM
155static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 157static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
158static void invoke_rcu_core(void);
159static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 160
a94844b2
PM
161/* rcuc/rcub kthread realtime priority */
162static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
163module_param(kthread_prio, int, 0644);
164
8d7dc928
PM
165/* Delay in jiffies for grace-period initialization delays, debug only. */
166#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
167static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 168module_param(gp_init_delay, int, 0644);
8d7dc928
PM
169#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
170static const int gp_init_delay;
171#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
172#define PER_RCU_NODE_PERIOD 10 /* Number of grace periods between delays. */
37745d28 173
4a298656
PM
174/*
175 * Track the rcutorture test sequence number and the update version
176 * number within a given test. The rcutorture_testseq is incremented
177 * on every rcutorture module load and unload, so has an odd value
178 * when a test is running. The rcutorture_vernum is set to zero
179 * when rcutorture starts and is incremented on each rcutorture update.
180 * These variables enable correlating rcutorture output with the
181 * RCU tracing information.
182 */
183unsigned long rcutorture_testseq;
184unsigned long rcutorture_vernum;
185
0aa04b05
PM
186/*
187 * Compute the mask of online CPUs for the specified rcu_node structure.
188 * This will not be stable unless the rcu_node structure's ->lock is
189 * held, but the bit corresponding to the current CPU will be stable
190 * in most contexts.
191 */
192unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
193{
7d0ae808 194 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
195}
196
fc2219d4 197/*
7d0ae808 198 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
199 * permit this function to be invoked without holding the root rcu_node
200 * structure's ->lock, but of course results can be subject to change.
201 */
202static int rcu_gp_in_progress(struct rcu_state *rsp)
203{
7d0ae808 204 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
205}
206
b1f77b05 207/*
d6714c22 208 * Note a quiescent state. Because we do not need to know
b1f77b05 209 * how many quiescent states passed, just if there was at least
d6714c22 210 * one since the start of the grace period, this just sets a flag.
e4cc1f22 211 * The caller must have disabled preemption.
b1f77b05 212 */
284a8c93 213void rcu_sched_qs(void)
b1f77b05 214{
284a8c93
PM
215 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
216 trace_rcu_grace_period(TPS("rcu_sched"),
217 __this_cpu_read(rcu_sched_data.gpnum),
218 TPS("cpuqs"));
219 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
220 }
b1f77b05
IM
221}
222
284a8c93 223void rcu_bh_qs(void)
b1f77b05 224{
284a8c93
PM
225 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
226 trace_rcu_grace_period(TPS("rcu_bh"),
227 __this_cpu_read(rcu_bh_data.gpnum),
228 TPS("cpuqs"));
229 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
230 }
b1f77b05 231}
64db4cff 232
4a81e832
PM
233static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
234
235static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
236 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
237 .dynticks = ATOMIC_INIT(1),
238#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
239 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
240 .dynticks_idle = ATOMIC_INIT(1),
241#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
242};
243
5cd37193
PM
244DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
245EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
246
4a81e832
PM
247/*
248 * Let the RCU core know that this CPU has gone through the scheduler,
249 * which is a quiescent state. This is called when the need for a
250 * quiescent state is urgent, so we burn an atomic operation and full
251 * memory barriers to let the RCU core know about it, regardless of what
252 * this CPU might (or might not) do in the near future.
253 *
254 * We inform the RCU core by emulating a zero-duration dyntick-idle
255 * period, which we in turn do by incrementing the ->dynticks counter
256 * by two.
257 */
258static void rcu_momentary_dyntick_idle(void)
259{
260 unsigned long flags;
261 struct rcu_data *rdp;
262 struct rcu_dynticks *rdtp;
263 int resched_mask;
264 struct rcu_state *rsp;
265
266 local_irq_save(flags);
267
268 /*
269 * Yes, we can lose flag-setting operations. This is OK, because
270 * the flag will be set again after some delay.
271 */
272 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
273 raw_cpu_write(rcu_sched_qs_mask, 0);
274
275 /* Find the flavor that needs a quiescent state. */
276 for_each_rcu_flavor(rsp) {
277 rdp = raw_cpu_ptr(rsp->rda);
278 if (!(resched_mask & rsp->flavor_mask))
279 continue;
280 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
281 if (READ_ONCE(rdp->mynode->completed) !=
282 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
283 continue;
284
285 /*
286 * Pretend to be momentarily idle for the quiescent state.
287 * This allows the grace-period kthread to record the
288 * quiescent state, with no need for this CPU to do anything
289 * further.
290 */
291 rdtp = this_cpu_ptr(&rcu_dynticks);
292 smp_mb__before_atomic(); /* Earlier stuff before QS. */
293 atomic_add(2, &rdtp->dynticks); /* QS. */
294 smp_mb__after_atomic(); /* Later stuff after QS. */
295 break;
296 }
297 local_irq_restore(flags);
298}
299
25502a6c
PM
300/*
301 * Note a context switch. This is a quiescent state for RCU-sched,
302 * and requires special handling for preemptible RCU.
e4cc1f22 303 * The caller must have disabled preemption.
25502a6c 304 */
38200cf2 305void rcu_note_context_switch(void)
25502a6c 306{
f7f7bac9 307 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 308 rcu_sched_qs();
38200cf2 309 rcu_preempt_note_context_switch();
4a81e832
PM
310 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
311 rcu_momentary_dyntick_idle();
f7f7bac9 312 trace_rcu_utilization(TPS("End context switch"));
25502a6c 313}
29ce8310 314EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 315
5cd37193 316/*
1925d196 317 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
318 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
319 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 320 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
321 * be none of them). Either way, do a lightweight quiescent state for
322 * all RCU flavors.
323 */
324void rcu_all_qs(void)
325{
326 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
327 rcu_momentary_dyntick_idle();
328 this_cpu_inc(rcu_qs_ctr);
329}
330EXPORT_SYMBOL_GPL(rcu_all_qs);
331
878d7439
ED
332static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
333static long qhimark = 10000; /* If this many pending, ignore blimit. */
334static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 335
878d7439
ED
336module_param(blimit, long, 0444);
337module_param(qhimark, long, 0444);
338module_param(qlowmark, long, 0444);
3d76c082 339
026ad283
PM
340static ulong jiffies_till_first_fqs = ULONG_MAX;
341static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
342
343module_param(jiffies_till_first_fqs, ulong, 0644);
344module_param(jiffies_till_next_fqs, ulong, 0644);
345
4a81e832
PM
346/*
347 * How long the grace period must be before we start recruiting
348 * quiescent-state help from rcu_note_context_switch().
349 */
350static ulong jiffies_till_sched_qs = HZ / 20;
351module_param(jiffies_till_sched_qs, ulong, 0644);
352
48a7639c 353static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 354 struct rcu_data *rdp);
217af2a2
PM
355static void force_qs_rnp(struct rcu_state *rsp,
356 int (*f)(struct rcu_data *rsp, bool *isidle,
357 unsigned long *maxj),
358 bool *isidle, unsigned long *maxj);
4cdfc175 359static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 360static int rcu_pending(void);
64db4cff
PM
361
362/*
917963d0 363 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 364 */
917963d0
PM
365unsigned long rcu_batches_started(void)
366{
367 return rcu_state_p->gpnum;
368}
369EXPORT_SYMBOL_GPL(rcu_batches_started);
370
371/*
372 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 373 */
917963d0
PM
374unsigned long rcu_batches_started_sched(void)
375{
376 return rcu_sched_state.gpnum;
377}
378EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
379
380/*
381 * Return the number of RCU BH batches started thus far for debug & stats.
382 */
383unsigned long rcu_batches_started_bh(void)
384{
385 return rcu_bh_state.gpnum;
386}
387EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
388
389/*
390 * Return the number of RCU batches completed thus far for debug & stats.
391 */
392unsigned long rcu_batches_completed(void)
393{
394 return rcu_state_p->completed;
395}
396EXPORT_SYMBOL_GPL(rcu_batches_completed);
397
398/*
399 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 400 */
9733e4f0 401unsigned long rcu_batches_completed_sched(void)
64db4cff 402{
d6714c22 403 return rcu_sched_state.completed;
64db4cff 404}
d6714c22 405EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
406
407/*
917963d0 408 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 409 */
9733e4f0 410unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
411{
412 return rcu_bh_state.completed;
413}
414EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
415
a381d757
ACB
416/*
417 * Force a quiescent state.
418 */
419void rcu_force_quiescent_state(void)
420{
e534165b 421 force_quiescent_state(rcu_state_p);
a381d757
ACB
422}
423EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
424
bf66f18e
PM
425/*
426 * Force a quiescent state for RCU BH.
427 */
428void rcu_bh_force_quiescent_state(void)
429{
4cdfc175 430 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
431}
432EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
433
e7580f33
PM
434/*
435 * Force a quiescent state for RCU-sched.
436 */
437void rcu_sched_force_quiescent_state(void)
438{
439 force_quiescent_state(&rcu_sched_state);
440}
441EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
442
afea227f
PM
443/*
444 * Show the state of the grace-period kthreads.
445 */
446void show_rcu_gp_kthreads(void)
447{
448 struct rcu_state *rsp;
449
450 for_each_rcu_flavor(rsp) {
451 pr_info("%s: wait state: %d ->state: %#lx\n",
452 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
453 /* sched_show_task(rsp->gp_kthread); */
454 }
455}
456EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
457
4a298656
PM
458/*
459 * Record the number of times rcutorture tests have been initiated and
460 * terminated. This information allows the debugfs tracing stats to be
461 * correlated to the rcutorture messages, even when the rcutorture module
462 * is being repeatedly loaded and unloaded. In other words, we cannot
463 * store this state in rcutorture itself.
464 */
465void rcutorture_record_test_transition(void)
466{
467 rcutorture_testseq++;
468 rcutorture_vernum = 0;
469}
470EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
471
ad0dc7f9
PM
472/*
473 * Send along grace-period-related data for rcutorture diagnostics.
474 */
475void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
476 unsigned long *gpnum, unsigned long *completed)
477{
478 struct rcu_state *rsp = NULL;
479
480 switch (test_type) {
481 case RCU_FLAVOR:
e534165b 482 rsp = rcu_state_p;
ad0dc7f9
PM
483 break;
484 case RCU_BH_FLAVOR:
485 rsp = &rcu_bh_state;
486 break;
487 case RCU_SCHED_FLAVOR:
488 rsp = &rcu_sched_state;
489 break;
490 default:
491 break;
492 }
493 if (rsp != NULL) {
7d0ae808
PM
494 *flags = READ_ONCE(rsp->gp_flags);
495 *gpnum = READ_ONCE(rsp->gpnum);
496 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
497 return;
498 }
499 *flags = 0;
500 *gpnum = 0;
501 *completed = 0;
502}
503EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
504
4a298656
PM
505/*
506 * Record the number of writer passes through the current rcutorture test.
507 * This is also used to correlate debugfs tracing stats with the rcutorture
508 * messages.
509 */
510void rcutorture_record_progress(unsigned long vernum)
511{
512 rcutorture_vernum++;
513}
514EXPORT_SYMBOL_GPL(rcutorture_record_progress);
515
64db4cff
PM
516/*
517 * Does the CPU have callbacks ready to be invoked?
518 */
519static int
520cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
521{
3fbfbf7a
PM
522 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
523 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
524}
525
365187fb
PM
526/*
527 * Return the root node of the specified rcu_state structure.
528 */
529static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
530{
531 return &rsp->node[0];
532}
533
534/*
535 * Is there any need for future grace periods?
536 * Interrupts must be disabled. If the caller does not hold the root
537 * rnp_node structure's ->lock, the results are advisory only.
538 */
539static int rcu_future_needs_gp(struct rcu_state *rsp)
540{
541 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 542 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
543 int *fp = &rnp->need_future_gp[idx];
544
7d0ae808 545 return READ_ONCE(*fp);
365187fb
PM
546}
547
64db4cff 548/*
dc35c893
PM
549 * Does the current CPU require a not-yet-started grace period?
550 * The caller must have disabled interrupts to prevent races with
551 * normal callback registry.
64db4cff
PM
552 */
553static int
554cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
555{
dc35c893 556 int i;
3fbfbf7a 557
dc35c893
PM
558 if (rcu_gp_in_progress(rsp))
559 return 0; /* No, a grace period is already in progress. */
365187fb 560 if (rcu_future_needs_gp(rsp))
34ed6246 561 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
562 if (!rdp->nxttail[RCU_NEXT_TAIL])
563 return 0; /* No, this is a no-CBs (or offline) CPU. */
564 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
565 return 1; /* Yes, this CPU has newly registered callbacks. */
566 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
567 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 568 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893
PM
569 rdp->nxtcompleted[i]))
570 return 1; /* Yes, CBs for future grace period. */
571 return 0; /* No grace period needed. */
64db4cff
PM
572}
573
9b2e4f18 574/*
adf5091e 575 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
576 *
577 * If the new value of the ->dynticks_nesting counter now is zero,
578 * we really have entered idle, and must do the appropriate accounting.
579 * The caller must have disabled interrupts.
580 */
28ced795 581static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 582{
96d3fd0d
PM
583 struct rcu_state *rsp;
584 struct rcu_data *rdp;
28ced795 585 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 586
f7f7bac9 587 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 588 if (!user && !is_idle_task(current)) {
289828e6
PM
589 struct task_struct *idle __maybe_unused =
590 idle_task(smp_processor_id());
0989cb46 591
f7f7bac9 592 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 593 ftrace_dump(DUMP_ORIG);
0989cb46
PM
594 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
595 current->pid, current->comm,
596 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 597 }
96d3fd0d
PM
598 for_each_rcu_flavor(rsp) {
599 rdp = this_cpu_ptr(rsp->rda);
600 do_nocb_deferred_wakeup(rdp);
601 }
198bbf81 602 rcu_prepare_for_idle();
9b2e4f18 603 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 604 smp_mb__before_atomic(); /* See above. */
9b2e4f18 605 atomic_inc(&rdtp->dynticks);
4e857c58 606 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 607 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 608 rcu_dynticks_task_enter();
c44e2cdd
PM
609
610 /*
adf5091e 611 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
612 * in an RCU read-side critical section.
613 */
614 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
615 "Illegal idle entry in RCU read-side critical section.");
616 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
617 "Illegal idle entry in RCU-bh read-side critical section.");
618 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
619 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 620}
64db4cff 621
adf5091e
FW
622/*
623 * Enter an RCU extended quiescent state, which can be either the
624 * idle loop or adaptive-tickless usermode execution.
64db4cff 625 */
adf5091e 626static void rcu_eqs_enter(bool user)
64db4cff 627{
4145fa7f 628 long long oldval;
64db4cff
PM
629 struct rcu_dynticks *rdtp;
630
c9d4b0af 631 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 632 oldval = rdtp->dynticks_nesting;
29e37d81 633 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 634 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 635 rdtp->dynticks_nesting = 0;
28ced795 636 rcu_eqs_enter_common(oldval, user);
3a592405 637 } else {
29e37d81 638 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 639 }
64db4cff 640}
adf5091e
FW
641
642/**
643 * rcu_idle_enter - inform RCU that current CPU is entering idle
644 *
645 * Enter idle mode, in other words, -leave- the mode in which RCU
646 * read-side critical sections can occur. (Though RCU read-side
647 * critical sections can occur in irq handlers in idle, a possibility
648 * handled by irq_enter() and irq_exit().)
649 *
650 * We crowbar the ->dynticks_nesting field to zero to allow for
651 * the possibility of usermode upcalls having messed up our count
652 * of interrupt nesting level during the prior busy period.
653 */
654void rcu_idle_enter(void)
655{
c5d900bf
FW
656 unsigned long flags;
657
658 local_irq_save(flags);
cb349ca9 659 rcu_eqs_enter(false);
28ced795 660 rcu_sysidle_enter(0);
c5d900bf 661 local_irq_restore(flags);
adf5091e 662}
8a2ecf47 663EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 664
2b1d5024 665#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
666/**
667 * rcu_user_enter - inform RCU that we are resuming userspace.
668 *
669 * Enter RCU idle mode right before resuming userspace. No use of RCU
670 * is permitted between this call and rcu_user_exit(). This way the
671 * CPU doesn't need to maintain the tick for RCU maintenance purposes
672 * when the CPU runs in userspace.
673 */
674void rcu_user_enter(void)
675{
91d1aa43 676 rcu_eqs_enter(1);
adf5091e 677}
2b1d5024 678#endif /* CONFIG_RCU_USER_QS */
19dd1591 679
9b2e4f18
PM
680/**
681 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
682 *
683 * Exit from an interrupt handler, which might possibly result in entering
684 * idle mode, in other words, leaving the mode in which read-side critical
685 * sections can occur.
64db4cff 686 *
9b2e4f18
PM
687 * This code assumes that the idle loop never does anything that might
688 * result in unbalanced calls to irq_enter() and irq_exit(). If your
689 * architecture violates this assumption, RCU will give you what you
690 * deserve, good and hard. But very infrequently and irreproducibly.
691 *
692 * Use things like work queues to work around this limitation.
693 *
694 * You have been warned.
64db4cff 695 */
9b2e4f18 696void rcu_irq_exit(void)
64db4cff
PM
697{
698 unsigned long flags;
4145fa7f 699 long long oldval;
64db4cff
PM
700 struct rcu_dynticks *rdtp;
701
702 local_irq_save(flags);
c9d4b0af 703 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 704 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
705 rdtp->dynticks_nesting--;
706 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 707 if (rdtp->dynticks_nesting)
f7f7bac9 708 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 709 else
28ced795
CL
710 rcu_eqs_enter_common(oldval, true);
711 rcu_sysidle_enter(1);
9b2e4f18
PM
712 local_irq_restore(flags);
713}
714
715/*
adf5091e 716 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
717 *
718 * If the new value of the ->dynticks_nesting counter was previously zero,
719 * we really have exited idle, and must do the appropriate accounting.
720 * The caller must have disabled interrupts.
721 */
28ced795 722static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 723{
28ced795
CL
724 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
725
176f8f7a 726 rcu_dynticks_task_exit();
4e857c58 727 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
728 atomic_inc(&rdtp->dynticks);
729 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 730 smp_mb__after_atomic(); /* See above. */
23b5c8fa 731 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 732 rcu_cleanup_after_idle();
f7f7bac9 733 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 734 if (!user && !is_idle_task(current)) {
289828e6
PM
735 struct task_struct *idle __maybe_unused =
736 idle_task(smp_processor_id());
0989cb46 737
f7f7bac9 738 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 739 oldval, rdtp->dynticks_nesting);
bf1304e9 740 ftrace_dump(DUMP_ORIG);
0989cb46
PM
741 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
742 current->pid, current->comm,
743 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
744 }
745}
746
adf5091e
FW
747/*
748 * Exit an RCU extended quiescent state, which can be either the
749 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 750 */
adf5091e 751static void rcu_eqs_exit(bool user)
9b2e4f18 752{
9b2e4f18
PM
753 struct rcu_dynticks *rdtp;
754 long long oldval;
755
c9d4b0af 756 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 757 oldval = rdtp->dynticks_nesting;
29e37d81 758 WARN_ON_ONCE(oldval < 0);
3a592405 759 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 760 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 761 } else {
29e37d81 762 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 763 rcu_eqs_exit_common(oldval, user);
3a592405 764 }
9b2e4f18 765}
adf5091e
FW
766
767/**
768 * rcu_idle_exit - inform RCU that current CPU is leaving idle
769 *
770 * Exit idle mode, in other words, -enter- the mode in which RCU
771 * read-side critical sections can occur.
772 *
773 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
774 * allow for the possibility of usermode upcalls messing up our count
775 * of interrupt nesting level during the busy period that is just
776 * now starting.
777 */
778void rcu_idle_exit(void)
779{
c5d900bf
FW
780 unsigned long flags;
781
782 local_irq_save(flags);
cb349ca9 783 rcu_eqs_exit(false);
28ced795 784 rcu_sysidle_exit(0);
c5d900bf 785 local_irq_restore(flags);
adf5091e 786}
8a2ecf47 787EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 788
2b1d5024 789#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
790/**
791 * rcu_user_exit - inform RCU that we are exiting userspace.
792 *
793 * Exit RCU idle mode while entering the kernel because it can
794 * run a RCU read side critical section anytime.
795 */
796void rcu_user_exit(void)
797{
91d1aa43 798 rcu_eqs_exit(1);
adf5091e 799}
2b1d5024 800#endif /* CONFIG_RCU_USER_QS */
19dd1591 801
9b2e4f18
PM
802/**
803 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
804 *
805 * Enter an interrupt handler, which might possibly result in exiting
806 * idle mode, in other words, entering the mode in which read-side critical
807 * sections can occur.
808 *
809 * Note that the Linux kernel is fully capable of entering an interrupt
810 * handler that it never exits, for example when doing upcalls to
811 * user mode! This code assumes that the idle loop never does upcalls to
812 * user mode. If your architecture does do upcalls from the idle loop (or
813 * does anything else that results in unbalanced calls to the irq_enter()
814 * and irq_exit() functions), RCU will give you what you deserve, good
815 * and hard. But very infrequently and irreproducibly.
816 *
817 * Use things like work queues to work around this limitation.
818 *
819 * You have been warned.
820 */
821void rcu_irq_enter(void)
822{
823 unsigned long flags;
824 struct rcu_dynticks *rdtp;
825 long long oldval;
826
827 local_irq_save(flags);
c9d4b0af 828 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
829 oldval = rdtp->dynticks_nesting;
830 rdtp->dynticks_nesting++;
831 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 832 if (oldval)
f7f7bac9 833 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 834 else
28ced795
CL
835 rcu_eqs_exit_common(oldval, true);
836 rcu_sysidle_exit(1);
64db4cff 837 local_irq_restore(flags);
64db4cff
PM
838}
839
840/**
841 * rcu_nmi_enter - inform RCU of entry to NMI context
842 *
734d1680
PM
843 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
844 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
845 * that the CPU is active. This implementation permits nested NMIs, as
846 * long as the nesting level does not overflow an int. (You will probably
847 * run out of stack space first.)
64db4cff
PM
848 */
849void rcu_nmi_enter(void)
850{
c9d4b0af 851 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 852 int incby = 2;
64db4cff 853
734d1680
PM
854 /* Complain about underflow. */
855 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
856
857 /*
858 * If idle from RCU viewpoint, atomically increment ->dynticks
859 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
860 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
861 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
862 * to be in the outermost NMI handler that interrupted an RCU-idle
863 * period (observation due to Andy Lutomirski).
864 */
865 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
866 smp_mb__before_atomic(); /* Force delay from prior write. */
867 atomic_inc(&rdtp->dynticks);
868 /* atomic_inc() before later RCU read-side crit sects */
869 smp_mb__after_atomic(); /* See above. */
870 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
871 incby = 1;
872 }
873 rdtp->dynticks_nmi_nesting += incby;
874 barrier();
64db4cff
PM
875}
876
877/**
878 * rcu_nmi_exit - inform RCU of exit from NMI context
879 *
734d1680
PM
880 * If we are returning from the outermost NMI handler that interrupted an
881 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
882 * to let the RCU grace-period handling know that the CPU is back to
883 * being RCU-idle.
64db4cff
PM
884 */
885void rcu_nmi_exit(void)
886{
c9d4b0af 887 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 888
734d1680
PM
889 /*
890 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
891 * (We are exiting an NMI handler, so RCU better be paying attention
892 * to us!)
893 */
894 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
895 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
896
897 /*
898 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
899 * leave it in non-RCU-idle state.
900 */
901 if (rdtp->dynticks_nmi_nesting != 1) {
902 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 903 return;
734d1680
PM
904 }
905
906 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
907 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 908 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 909 smp_mb__before_atomic(); /* See above. */
23b5c8fa 910 atomic_inc(&rdtp->dynticks);
4e857c58 911 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 912 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
913}
914
915/**
5c173eb8
PM
916 * __rcu_is_watching - are RCU read-side critical sections safe?
917 *
918 * Return true if RCU is watching the running CPU, which means that
919 * this CPU can safely enter RCU read-side critical sections. Unlike
920 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
921 * least disabled preemption.
922 */
9418fb20 923bool notrace __rcu_is_watching(void)
5c173eb8
PM
924{
925 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
926}
927
928/**
929 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 930 *
9b2e4f18 931 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 932 * or NMI handler, return true.
64db4cff 933 */
9418fb20 934bool notrace rcu_is_watching(void)
64db4cff 935{
f534ed1f 936 bool ret;
34240697
PM
937
938 preempt_disable();
5c173eb8 939 ret = __rcu_is_watching();
34240697
PM
940 preempt_enable();
941 return ret;
64db4cff 942}
5c173eb8 943EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 944
62fde6ed 945#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
946
947/*
948 * Is the current CPU online? Disable preemption to avoid false positives
949 * that could otherwise happen due to the current CPU number being sampled,
950 * this task being preempted, its old CPU being taken offline, resuming
951 * on some other CPU, then determining that its old CPU is now offline.
952 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
953 * the check for rcu_scheduler_fully_active. Note also that it is OK
954 * for a CPU coming online to use RCU for one jiffy prior to marking itself
955 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
956 * offline to continue to use RCU for one jiffy after marking itself
957 * offline in the cpu_online_mask. This leniency is necessary given the
958 * non-atomic nature of the online and offline processing, for example,
959 * the fact that a CPU enters the scheduler after completing the CPU_DYING
960 * notifiers.
961 *
962 * This is also why RCU internally marks CPUs online during the
963 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
964 *
965 * Disable checking if in an NMI handler because we cannot safely report
966 * errors from NMI handlers anyway.
967 */
968bool rcu_lockdep_current_cpu_online(void)
969{
2036d94a
PM
970 struct rcu_data *rdp;
971 struct rcu_node *rnp;
c0d6d01b
PM
972 bool ret;
973
974 if (in_nmi())
f6f7ee9a 975 return true;
c0d6d01b 976 preempt_disable();
c9d4b0af 977 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 978 rnp = rdp->mynode;
0aa04b05 979 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
980 !rcu_scheduler_fully_active;
981 preempt_enable();
982 return ret;
983}
984EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
985
62fde6ed 986#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 987
64db4cff 988/**
9b2e4f18 989 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 990 *
9b2e4f18
PM
991 * If the current CPU is idle or running at a first-level (not nested)
992 * interrupt from idle, return true. The caller must have at least
993 * disabled preemption.
64db4cff 994 */
62e3cb14 995static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 996{
c9d4b0af 997 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
998}
999
64db4cff
PM
1000/*
1001 * Snapshot the specified CPU's dynticks counter so that we can later
1002 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1003 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1004 */
217af2a2
PM
1005static int dyntick_save_progress_counter(struct rcu_data *rdp,
1006 bool *isidle, unsigned long *maxj)
64db4cff 1007{
23b5c8fa 1008 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1009 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1010 if ((rdp->dynticks_snap & 0x1) == 0) {
1011 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1012 return 1;
1013 } else {
7d0ae808 1014 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1015 rdp->mynode->gpnum))
7d0ae808 1016 WRITE_ONCE(rdp->gpwrap, true);
7941dbde
ACB
1017 return 0;
1018 }
64db4cff
PM
1019}
1020
1021/*
1022 * Return true if the specified CPU has passed through a quiescent
1023 * state by virtue of being in or having passed through an dynticks
1024 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1025 * for this same CPU, or by virtue of having been offline.
64db4cff 1026 */
217af2a2
PM
1027static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1028 bool *isidle, unsigned long *maxj)
64db4cff 1029{
7eb4f455 1030 unsigned int curr;
4a81e832 1031 int *rcrmp;
7eb4f455 1032 unsigned int snap;
64db4cff 1033
7eb4f455
PM
1034 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1035 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1036
1037 /*
1038 * If the CPU passed through or entered a dynticks idle phase with
1039 * no active irq/NMI handlers, then we can safely pretend that the CPU
1040 * already acknowledged the request to pass through a quiescent
1041 * state. Either way, that CPU cannot possibly be in an RCU
1042 * read-side critical section that started before the beginning
1043 * of the current RCU grace period.
1044 */
7eb4f455 1045 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1046 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1047 rdp->dynticks_fqs++;
1048 return 1;
1049 }
1050
a82dcc76
PM
1051 /*
1052 * Check for the CPU being offline, but only if the grace period
1053 * is old enough. We don't need to worry about the CPU changing
1054 * state: If we see it offline even once, it has been through a
1055 * quiescent state.
1056 *
1057 * The reason for insisting that the grace period be at least
1058 * one jiffy old is that CPUs that are not quite online and that
1059 * have just gone offline can still execute RCU read-side critical
1060 * sections.
1061 */
1062 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1063 return 0; /* Grace period is not old enough. */
1064 barrier();
1065 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1066 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1067 rdp->offline_fqs++;
1068 return 1;
1069 }
65d798f0
PM
1070
1071 /*
4a81e832
PM
1072 * A CPU running for an extended time within the kernel can
1073 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1074 * even context-switching back and forth between a pair of
1075 * in-kernel CPU-bound tasks cannot advance grace periods.
1076 * So if the grace period is old enough, make the CPU pay attention.
1077 * Note that the unsynchronized assignments to the per-CPU
1078 * rcu_sched_qs_mask variable are safe. Yes, setting of
1079 * bits can be lost, but they will be set again on the next
1080 * force-quiescent-state pass. So lost bit sets do not result
1081 * in incorrect behavior, merely in a grace period lasting
1082 * a few jiffies longer than it might otherwise. Because
1083 * there are at most four threads involved, and because the
1084 * updates are only once every few jiffies, the probability of
1085 * lossage (and thus of slight grace-period extension) is
1086 * quite low.
1087 *
1088 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1089 * is set too high, we override with half of the RCU CPU stall
1090 * warning delay.
6193c76a 1091 */
4a81e832
PM
1092 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1093 if (ULONG_CMP_GE(jiffies,
1094 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1095 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1096 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1097 WRITE_ONCE(rdp->cond_resched_completed,
1098 READ_ONCE(rdp->mynode->completed));
4a81e832 1099 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1100 WRITE_ONCE(*rcrmp,
1101 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832
PM
1102 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1103 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1104 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1105 /* Time to beat on that CPU again! */
1106 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1107 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1108 }
6193c76a
PM
1109 }
1110
a82dcc76 1111 return 0;
64db4cff
PM
1112}
1113
64db4cff
PM
1114static void record_gp_stall_check_time(struct rcu_state *rsp)
1115{
cb1e78cf 1116 unsigned long j = jiffies;
6193c76a 1117 unsigned long j1;
26cdfedf
PM
1118
1119 rsp->gp_start = j;
1120 smp_wmb(); /* Record start time before stall time. */
6193c76a 1121 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1122 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1123 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1124 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1125}
1126
fb81a44b
PM
1127/*
1128 * Complain about starvation of grace-period kthread.
1129 */
1130static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1131{
1132 unsigned long gpa;
1133 unsigned long j;
1134
1135 j = jiffies;
7d0ae808 1136 gpa = READ_ONCE(rsp->gp_activity);
fb81a44b
PM
1137 if (j - gpa > 2 * HZ)
1138 pr_err("%s kthread starved for %ld jiffies!\n",
1139 rsp->name, j - gpa);
64db4cff
PM
1140}
1141
b637a328 1142/*
bc1dce51 1143 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1144 */
1145static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1146{
1147 int cpu;
1148 unsigned long flags;
1149 struct rcu_node *rnp;
1150
1151 rcu_for_each_leaf_node(rsp, rnp) {
1152 raw_spin_lock_irqsave(&rnp->lock, flags);
1153 if (rnp->qsmask != 0) {
1154 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1155 if (rnp->qsmask & (1UL << cpu))
1156 dump_cpu_task(rnp->grplo + cpu);
1157 }
1158 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1159 }
1160}
1161
6ccd2ecd 1162static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1163{
1164 int cpu;
1165 long delta;
1166 unsigned long flags;
6ccd2ecd
PM
1167 unsigned long gpa;
1168 unsigned long j;
285fe294 1169 int ndetected = 0;
64db4cff 1170 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1171 long totqlen = 0;
64db4cff
PM
1172
1173 /* Only let one CPU complain about others per time interval. */
1174
1304afb2 1175 raw_spin_lock_irqsave(&rnp->lock, flags);
7d0ae808 1176 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1177 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1178 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1179 return;
1180 }
7d0ae808
PM
1181 WRITE_ONCE(rsp->jiffies_stall,
1182 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1183 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1184
8cdd32a9
PM
1185 /*
1186 * OK, time to rat on our buddy...
1187 * See Documentation/RCU/stallwarn.txt for info on how to debug
1188 * RCU CPU stall warnings.
1189 */
d7f3e207 1190 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1191 rsp->name);
a858af28 1192 print_cpu_stall_info_begin();
a0b6c9a7 1193 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1194 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1195 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1196 if (rnp->qsmask != 0) {
1197 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1198 if (rnp->qsmask & (1UL << cpu)) {
1199 print_cpu_stall_info(rsp,
1200 rnp->grplo + cpu);
1201 ndetected++;
1202 }
1203 }
3acd9eb3 1204 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1205 }
a858af28 1206
a858af28 1207 print_cpu_stall_info_end();
53bb857c
PM
1208 for_each_possible_cpu(cpu)
1209 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1210 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1211 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1212 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1213 if (ndetected) {
b637a328 1214 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1215 } else {
7d0ae808
PM
1216 if (READ_ONCE(rsp->gpnum) != gpnum ||
1217 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1218 pr_err("INFO: Stall ended before state dump start\n");
1219 } else {
1220 j = jiffies;
7d0ae808 1221 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1222 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1223 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1224 jiffies_till_next_fqs,
1225 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1226 /* In this case, the current CPU might be at fault. */
1227 sched_show_task(current);
1228 }
1229 }
c1dc0b9c 1230
4cdfc175 1231 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1232 rcu_print_detail_task_stall(rsp);
1233
fb81a44b
PM
1234 rcu_check_gp_kthread_starvation(rsp);
1235
4cdfc175 1236 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1237}
1238
1239static void print_cpu_stall(struct rcu_state *rsp)
1240{
53bb857c 1241 int cpu;
64db4cff
PM
1242 unsigned long flags;
1243 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1244 long totqlen = 0;
64db4cff 1245
8cdd32a9
PM
1246 /*
1247 * OK, time to rat on ourselves...
1248 * See Documentation/RCU/stallwarn.txt for info on how to debug
1249 * RCU CPU stall warnings.
1250 */
d7f3e207 1251 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1252 print_cpu_stall_info_begin();
1253 print_cpu_stall_info(rsp, smp_processor_id());
1254 print_cpu_stall_info_end();
53bb857c
PM
1255 for_each_possible_cpu(cpu)
1256 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1257 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1258 jiffies - rsp->gp_start,
1259 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1260
1261 rcu_check_gp_kthread_starvation(rsp);
1262
bc1dce51 1263 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1264
1304afb2 1265 raw_spin_lock_irqsave(&rnp->lock, flags);
7d0ae808
PM
1266 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1267 WRITE_ONCE(rsp->jiffies_stall,
1268 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1270
b021fe3e
PZ
1271 /*
1272 * Attempt to revive the RCU machinery by forcing a context switch.
1273 *
1274 * A context switch would normally allow the RCU state machine to make
1275 * progress and it could be we're stuck in kernel space without context
1276 * switches for an entirely unreasonable amount of time.
1277 */
1278 resched_cpu(smp_processor_id());
64db4cff
PM
1279}
1280
1281static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1282{
26cdfedf
PM
1283 unsigned long completed;
1284 unsigned long gpnum;
1285 unsigned long gps;
bad6e139
PM
1286 unsigned long j;
1287 unsigned long js;
64db4cff
PM
1288 struct rcu_node *rnp;
1289
26cdfedf 1290 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1291 return;
cb1e78cf 1292 j = jiffies;
26cdfedf
PM
1293
1294 /*
1295 * Lots of memory barriers to reject false positives.
1296 *
1297 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1298 * then rsp->gp_start, and finally rsp->completed. These values
1299 * are updated in the opposite order with memory barriers (or
1300 * equivalent) during grace-period initialization and cleanup.
1301 * Now, a false positive can occur if we get an new value of
1302 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1303 * the memory barriers, the only way that this can happen is if one
1304 * grace period ends and another starts between these two fetches.
1305 * Detect this by comparing rsp->completed with the previous fetch
1306 * from rsp->gpnum.
1307 *
1308 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1309 * and rsp->gp_start suffice to forestall false positives.
1310 */
7d0ae808 1311 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1312 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1313 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1314 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1315 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1316 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1317 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1318 if (ULONG_CMP_GE(completed, gpnum) ||
1319 ULONG_CMP_LT(j, js) ||
1320 ULONG_CMP_GE(gps, js))
1321 return; /* No stall or GP completed since entering function. */
64db4cff 1322 rnp = rdp->mynode;
c96ea7cf 1323 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1324 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1325
1326 /* We haven't checked in, so go dump stack. */
1327 print_cpu_stall(rsp);
1328
bad6e139
PM
1329 } else if (rcu_gp_in_progress(rsp) &&
1330 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1331
bad6e139 1332 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1333 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1334 }
1335}
1336
53d84e00
PM
1337/**
1338 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1339 *
1340 * Set the stall-warning timeout way off into the future, thus preventing
1341 * any RCU CPU stall-warning messages from appearing in the current set of
1342 * RCU grace periods.
1343 *
1344 * The caller must disable hard irqs.
1345 */
1346void rcu_cpu_stall_reset(void)
1347{
6ce75a23
PM
1348 struct rcu_state *rsp;
1349
1350 for_each_rcu_flavor(rsp)
7d0ae808 1351 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1352}
1353
3f5d3ea6 1354/*
d3f3f3f2
PM
1355 * Initialize the specified rcu_data structure's default callback list
1356 * to empty. The default callback list is the one that is not used by
1357 * no-callbacks CPUs.
3f5d3ea6 1358 */
d3f3f3f2 1359static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1360{
1361 int i;
1362
1363 rdp->nxtlist = NULL;
1364 for (i = 0; i < RCU_NEXT_SIZE; i++)
1365 rdp->nxttail[i] = &rdp->nxtlist;
1366}
1367
d3f3f3f2
PM
1368/*
1369 * Initialize the specified rcu_data structure's callback list to empty.
1370 */
1371static void init_callback_list(struct rcu_data *rdp)
1372{
1373 if (init_nocb_callback_list(rdp))
1374 return;
1375 init_default_callback_list(rdp);
1376}
1377
dc35c893
PM
1378/*
1379 * Determine the value that ->completed will have at the end of the
1380 * next subsequent grace period. This is used to tag callbacks so that
1381 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1382 * been dyntick-idle for an extended period with callbacks under the
1383 * influence of RCU_FAST_NO_HZ.
1384 *
1385 * The caller must hold rnp->lock with interrupts disabled.
1386 */
1387static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1388 struct rcu_node *rnp)
1389{
1390 /*
1391 * If RCU is idle, we just wait for the next grace period.
1392 * But we can only be sure that RCU is idle if we are looking
1393 * at the root rcu_node structure -- otherwise, a new grace
1394 * period might have started, but just not yet gotten around
1395 * to initializing the current non-root rcu_node structure.
1396 */
1397 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1398 return rnp->completed + 1;
1399
1400 /*
1401 * Otherwise, wait for a possible partial grace period and
1402 * then the subsequent full grace period.
1403 */
1404 return rnp->completed + 2;
1405}
1406
0446be48
PM
1407/*
1408 * Trace-event helper function for rcu_start_future_gp() and
1409 * rcu_nocb_wait_gp().
1410 */
1411static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1412 unsigned long c, const char *s)
0446be48
PM
1413{
1414 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1415 rnp->completed, c, rnp->level,
1416 rnp->grplo, rnp->grphi, s);
1417}
1418
1419/*
1420 * Start some future grace period, as needed to handle newly arrived
1421 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1422 * rcu_node structure's ->need_future_gp field. Returns true if there
1423 * is reason to awaken the grace-period kthread.
0446be48
PM
1424 *
1425 * The caller must hold the specified rcu_node structure's ->lock.
1426 */
48a7639c
PM
1427static bool __maybe_unused
1428rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1429 unsigned long *c_out)
0446be48
PM
1430{
1431 unsigned long c;
1432 int i;
48a7639c 1433 bool ret = false;
0446be48
PM
1434 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1435
1436 /*
1437 * Pick up grace-period number for new callbacks. If this
1438 * grace period is already marked as needed, return to the caller.
1439 */
1440 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1441 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1442 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1443 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1444 goto out;
0446be48
PM
1445 }
1446
1447 /*
1448 * If either this rcu_node structure or the root rcu_node structure
1449 * believe that a grace period is in progress, then we must wait
1450 * for the one following, which is in "c". Because our request
1451 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1452 * need to explicitly start one. We only do the lockless check
1453 * of rnp_root's fields if the current rcu_node structure thinks
1454 * there is no grace period in flight, and because we hold rnp->lock,
1455 * the only possible change is when rnp_root's two fields are
1456 * equal, in which case rnp_root->gpnum might be concurrently
1457 * incremented. But that is OK, as it will just result in our
1458 * doing some extra useless work.
0446be48
PM
1459 */
1460 if (rnp->gpnum != rnp->completed ||
7d0ae808 1461 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1462 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1463 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1464 goto out;
0446be48
PM
1465 }
1466
1467 /*
1468 * There might be no grace period in progress. If we don't already
1469 * hold it, acquire the root rcu_node structure's lock in order to
1470 * start one (if needed).
1471 */
6303b9c8 1472 if (rnp != rnp_root) {
0446be48 1473 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1474 smp_mb__after_unlock_lock();
1475 }
0446be48
PM
1476
1477 /*
1478 * Get a new grace-period number. If there really is no grace
1479 * period in progress, it will be smaller than the one we obtained
1480 * earlier. Adjust callbacks as needed. Note that even no-CBs
1481 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1482 */
1483 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1484 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1485 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1486 rdp->nxtcompleted[i] = c;
1487
1488 /*
1489 * If the needed for the required grace period is already
1490 * recorded, trace and leave.
1491 */
1492 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1493 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1494 goto unlock_out;
1495 }
1496
1497 /* Record the need for the future grace period. */
1498 rnp_root->need_future_gp[c & 0x1]++;
1499
1500 /* If a grace period is not already in progress, start one. */
1501 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1502 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1503 } else {
f7f7bac9 1504 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1505 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1506 }
1507unlock_out:
1508 if (rnp != rnp_root)
1509 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1510out:
1511 if (c_out != NULL)
1512 *c_out = c;
1513 return ret;
0446be48
PM
1514}
1515
1516/*
1517 * Clean up any old requests for the just-ended grace period. Also return
1518 * whether any additional grace periods have been requested. Also invoke
1519 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1520 * waiting for this grace period to complete.
1521 */
1522static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1523{
1524 int c = rnp->completed;
1525 int needmore;
1526 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1527
1528 rcu_nocb_gp_cleanup(rsp, rnp);
1529 rnp->need_future_gp[c & 0x1] = 0;
1530 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1531 trace_rcu_future_gp(rnp, rdp, c,
1532 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1533 return needmore;
1534}
1535
48a7639c
PM
1536/*
1537 * Awaken the grace-period kthread for the specified flavor of RCU.
1538 * Don't do a self-awaken, and don't bother awakening when there is
1539 * nothing for the grace-period kthread to do (as in several CPUs
1540 * raced to awaken, and we lost), and finally don't try to awaken
1541 * a kthread that has not yet been created.
1542 */
1543static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1544{
1545 if (current == rsp->gp_kthread ||
7d0ae808 1546 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1547 !rsp->gp_kthread)
1548 return;
1549 wake_up(&rsp->gp_wq);
1550}
1551
dc35c893
PM
1552/*
1553 * If there is room, assign a ->completed number to any callbacks on
1554 * this CPU that have not already been assigned. Also accelerate any
1555 * callbacks that were previously assigned a ->completed number that has
1556 * since proven to be too conservative, which can happen if callbacks get
1557 * assigned a ->completed number while RCU is idle, but with reference to
1558 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1559 * not hurt to call it repeatedly. Returns an flag saying that we should
1560 * awaken the RCU grace-period kthread.
dc35c893
PM
1561 *
1562 * The caller must hold rnp->lock with interrupts disabled.
1563 */
48a7639c 1564static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1565 struct rcu_data *rdp)
1566{
1567 unsigned long c;
1568 int i;
48a7639c 1569 bool ret;
dc35c893
PM
1570
1571 /* If the CPU has no callbacks, nothing to do. */
1572 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1573 return false;
dc35c893
PM
1574
1575 /*
1576 * Starting from the sublist containing the callbacks most
1577 * recently assigned a ->completed number and working down, find the
1578 * first sublist that is not assignable to an upcoming grace period.
1579 * Such a sublist has something in it (first two tests) and has
1580 * a ->completed number assigned that will complete sooner than
1581 * the ->completed number for newly arrived callbacks (last test).
1582 *
1583 * The key point is that any later sublist can be assigned the
1584 * same ->completed number as the newly arrived callbacks, which
1585 * means that the callbacks in any of these later sublist can be
1586 * grouped into a single sublist, whether or not they have already
1587 * been assigned a ->completed number.
1588 */
1589 c = rcu_cbs_completed(rsp, rnp);
1590 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1591 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1592 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1593 break;
1594
1595 /*
1596 * If there are no sublist for unassigned callbacks, leave.
1597 * At the same time, advance "i" one sublist, so that "i" will
1598 * index into the sublist where all the remaining callbacks should
1599 * be grouped into.
1600 */
1601 if (++i >= RCU_NEXT_TAIL)
48a7639c 1602 return false;
dc35c893
PM
1603
1604 /*
1605 * Assign all subsequent callbacks' ->completed number to the next
1606 * full grace period and group them all in the sublist initially
1607 * indexed by "i".
1608 */
1609 for (; i <= RCU_NEXT_TAIL; i++) {
1610 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1611 rdp->nxtcompleted[i] = c;
1612 }
910ee45d 1613 /* Record any needed additional grace periods. */
48a7639c 1614 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1615
1616 /* Trace depending on how much we were able to accelerate. */
1617 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1618 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1619 else
f7f7bac9 1620 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1621 return ret;
dc35c893
PM
1622}
1623
1624/*
1625 * Move any callbacks whose grace period has completed to the
1626 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1627 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1628 * sublist. This function is idempotent, so it does not hurt to
1629 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1630 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1631 *
1632 * The caller must hold rnp->lock with interrupts disabled.
1633 */
48a7639c 1634static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1635 struct rcu_data *rdp)
1636{
1637 int i, j;
1638
1639 /* If the CPU has no callbacks, nothing to do. */
1640 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1641 return false;
dc35c893
PM
1642
1643 /*
1644 * Find all callbacks whose ->completed numbers indicate that they
1645 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1646 */
1647 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1648 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1649 break;
1650 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1651 }
1652 /* Clean up any sublist tail pointers that were misordered above. */
1653 for (j = RCU_WAIT_TAIL; j < i; j++)
1654 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1655
1656 /* Copy down callbacks to fill in empty sublists. */
1657 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1658 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1659 break;
1660 rdp->nxttail[j] = rdp->nxttail[i];
1661 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1662 }
1663
1664 /* Classify any remaining callbacks. */
48a7639c 1665 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1666}
1667
d09b62df 1668/*
ba9fbe95
PM
1669 * Update CPU-local rcu_data state to record the beginnings and ends of
1670 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1671 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1672 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1673 */
48a7639c
PM
1674static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1675 struct rcu_data *rdp)
d09b62df 1676{
48a7639c
PM
1677 bool ret;
1678
ba9fbe95 1679 /* Handle the ends of any preceding grace periods first. */
e3663b10 1680 if (rdp->completed == rnp->completed &&
7d0ae808 1681 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1682
ba9fbe95 1683 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1684 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1685
dc35c893
PM
1686 } else {
1687
1688 /* Advance callbacks. */
48a7639c 1689 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1690
1691 /* Remember that we saw this grace-period completion. */
1692 rdp->completed = rnp->completed;
f7f7bac9 1693 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1694 }
398ebe60 1695
7d0ae808 1696 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1697 /*
1698 * If the current grace period is waiting for this CPU,
1699 * set up to detect a quiescent state, otherwise don't
1700 * go looking for one.
1701 */
1702 rdp->gpnum = rnp->gpnum;
f7f7bac9 1703 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633 1704 rdp->passed_quiesce = 0;
5cd37193 1705 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
6eaef633
PM
1706 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1707 zero_cpu_stall_ticks(rdp);
7d0ae808 1708 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1709 }
48a7639c 1710 return ret;
6eaef633
PM
1711}
1712
d34ea322 1713static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1714{
1715 unsigned long flags;
48a7639c 1716 bool needwake;
6eaef633
PM
1717 struct rcu_node *rnp;
1718
1719 local_irq_save(flags);
1720 rnp = rdp->mynode;
7d0ae808
PM
1721 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1722 rdp->completed == READ_ONCE(rnp->completed) &&
1723 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
6eaef633
PM
1724 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1725 local_irq_restore(flags);
1726 return;
1727 }
6303b9c8 1728 smp_mb__after_unlock_lock();
48a7639c 1729 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1730 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1731 if (needwake)
1732 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1733}
1734
b3dbec76 1735/*
f7be8209 1736 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1737 */
7fdefc10 1738static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1739{
0aa04b05 1740 unsigned long oldmask;
b3dbec76 1741 struct rcu_data *rdp;
7fdefc10 1742 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1743
7d0ae808 1744 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1745 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1746 smp_mb__after_unlock_lock();
7d0ae808 1747 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209
PM
1748 /* Spurious wakeup, tell caller to go back to sleep. */
1749 raw_spin_unlock_irq(&rnp->lock);
1750 return 0;
1751 }
7d0ae808 1752 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1753
f7be8209
PM
1754 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1755 /*
1756 * Grace period already in progress, don't start another.
1757 * Not supposed to be able to happen.
1758 */
7fdefc10
PM
1759 raw_spin_unlock_irq(&rnp->lock);
1760 return 0;
1761 }
1762
7fdefc10 1763 /* Advance to a new grace period and initialize state. */
26cdfedf 1764 record_gp_stall_check_time(rsp);
765a3f4f
PM
1765 /* Record GP times before starting GP, hence smp_store_release(). */
1766 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1767 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1768 raw_spin_unlock_irq(&rnp->lock);
1769
0aa04b05
PM
1770 /*
1771 * Apply per-leaf buffered online and offline operations to the
1772 * rcu_node tree. Note that this new grace period need not wait
1773 * for subsequent online CPUs, and that quiescent-state forcing
1774 * will handle subsequent offline CPUs.
1775 */
1776 rcu_for_each_leaf_node(rsp, rnp) {
1777 raw_spin_lock_irq(&rnp->lock);
1778 smp_mb__after_unlock_lock();
1779 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1780 !rnp->wait_blkd_tasks) {
1781 /* Nothing to do on this leaf rcu_node structure. */
1782 raw_spin_unlock_irq(&rnp->lock);
1783 continue;
1784 }
1785
1786 /* Record old state, apply changes to ->qsmaskinit field. */
1787 oldmask = rnp->qsmaskinit;
1788 rnp->qsmaskinit = rnp->qsmaskinitnext;
1789
1790 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1791 if (!oldmask != !rnp->qsmaskinit) {
1792 if (!oldmask) /* First online CPU for this rcu_node. */
1793 rcu_init_new_rnp(rnp);
1794 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1795 rnp->wait_blkd_tasks = true;
1796 else /* Last offline CPU and can propagate. */
1797 rcu_cleanup_dead_rnp(rnp);
1798 }
1799
1800 /*
1801 * If all waited-on tasks from prior grace period are
1802 * done, and if all this rcu_node structure's CPUs are
1803 * still offline, propagate up the rcu_node tree and
1804 * clear ->wait_blkd_tasks. Otherwise, if one of this
1805 * rcu_node structure's CPUs has since come back online,
1806 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1807 * checks for this, so just call it unconditionally).
1808 */
1809 if (rnp->wait_blkd_tasks &&
1810 (!rcu_preempt_has_tasks(rnp) ||
1811 rnp->qsmaskinit)) {
1812 rnp->wait_blkd_tasks = false;
1813 rcu_cleanup_dead_rnp(rnp);
1814 }
1815
1816 raw_spin_unlock_irq(&rnp->lock);
1817 }
7fdefc10
PM
1818
1819 /*
1820 * Set the quiescent-state-needed bits in all the rcu_node
1821 * structures for all currently online CPUs in breadth-first order,
1822 * starting from the root rcu_node structure, relying on the layout
1823 * of the tree within the rsp->node[] array. Note that other CPUs
1824 * will access only the leaves of the hierarchy, thus seeing that no
1825 * grace period is in progress, at least until the corresponding
1826 * leaf node has been initialized. In addition, we have excluded
1827 * CPU-hotplug operations.
1828 *
1829 * The grace period cannot complete until the initialization
1830 * process finishes, because this kthread handles both.
1831 */
1832 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1833 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1834 smp_mb__after_unlock_lock();
b3dbec76 1835 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1836 rcu_preempt_check_blocked_tasks(rnp);
1837 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 1838 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 1839 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 1840 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 1841 if (rnp == rdp->mynode)
48a7639c 1842 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1843 rcu_preempt_boost_start_gp(rnp);
1844 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1845 rnp->level, rnp->grplo,
1846 rnp->grphi, rnp->qsmask);
1847 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1848 cond_resched_rcu_qs();
7d0ae808 1849 WRITE_ONCE(rsp->gp_activity, jiffies);
8d7dc928
PM
1850 if (gp_init_delay > 0 &&
1851 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD)))
37745d28 1852 schedule_timeout_uninterruptible(gp_init_delay);
7fdefc10 1853 }
b3dbec76 1854
7fdefc10
PM
1855 return 1;
1856}
b3dbec76 1857
4cdfc175
PM
1858/*
1859 * Do one round of quiescent-state forcing.
1860 */
01896f7e 1861static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1862{
1863 int fqs_state = fqs_state_in;
217af2a2
PM
1864 bool isidle = false;
1865 unsigned long maxj;
4cdfc175
PM
1866 struct rcu_node *rnp = rcu_get_root(rsp);
1867
7d0ae808 1868 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
1869 rsp->n_force_qs++;
1870 if (fqs_state == RCU_SAVE_DYNTICK) {
1871 /* Collect dyntick-idle snapshots. */
0edd1b17 1872 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1873 isidle = true;
0edd1b17
PM
1874 maxj = jiffies - ULONG_MAX / 4;
1875 }
217af2a2
PM
1876 force_qs_rnp(rsp, dyntick_save_progress_counter,
1877 &isidle, &maxj);
0edd1b17 1878 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1879 fqs_state = RCU_FORCE_QS;
1880 } else {
1881 /* Handle dyntick-idle and offline CPUs. */
675da67f 1882 isidle = true;
217af2a2 1883 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1884 }
1885 /* Clear flag to prevent immediate re-entry. */
7d0ae808 1886 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
4cdfc175 1887 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1888 smp_mb__after_unlock_lock();
7d0ae808
PM
1889 WRITE_ONCE(rsp->gp_flags,
1890 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
4cdfc175
PM
1891 raw_spin_unlock_irq(&rnp->lock);
1892 }
1893 return fqs_state;
1894}
1895
7fdefc10
PM
1896/*
1897 * Clean up after the old grace period.
1898 */
4cdfc175 1899static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1900{
1901 unsigned long gp_duration;
48a7639c 1902 bool needgp = false;
dae6e64d 1903 int nocb = 0;
7fdefc10
PM
1904 struct rcu_data *rdp;
1905 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1906
7d0ae808 1907 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1908 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1909 smp_mb__after_unlock_lock();
7fdefc10
PM
1910 gp_duration = jiffies - rsp->gp_start;
1911 if (gp_duration > rsp->gp_max)
1912 rsp->gp_max = gp_duration;
b3dbec76 1913
7fdefc10
PM
1914 /*
1915 * We know the grace period is complete, but to everyone else
1916 * it appears to still be ongoing. But it is also the case
1917 * that to everyone else it looks like there is nothing that
1918 * they can do to advance the grace period. It is therefore
1919 * safe for us to drop the lock in order to mark the grace
1920 * period as completed in all of the rcu_node structures.
7fdefc10 1921 */
5d4b8659 1922 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1923
5d4b8659
PM
1924 /*
1925 * Propagate new ->completed value to rcu_node structures so
1926 * that other CPUs don't have to wait until the start of the next
1927 * grace period to process their callbacks. This also avoids
1928 * some nasty RCU grace-period initialization races by forcing
1929 * the end of the current grace period to be completely recorded in
1930 * all of the rcu_node structures before the beginning of the next
1931 * grace period is recorded in any of the rcu_node structures.
1932 */
1933 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1934 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1935 smp_mb__after_unlock_lock();
5c60d25f
PM
1936 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
1937 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 1938 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
1939 rdp = this_cpu_ptr(rsp->rda);
1940 if (rnp == rdp->mynode)
48a7639c 1941 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1942 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1943 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1944 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1945 cond_resched_rcu_qs();
7d0ae808 1946 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1947 }
5d4b8659
PM
1948 rnp = rcu_get_root(rsp);
1949 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1950 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1951 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1952
765a3f4f 1953 /* Declare grace period done. */
7d0ae808 1954 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 1955 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1956 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1957 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1958 /* Advance CBs to reduce false positives below. */
1959 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1960 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 1961 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 1962 trace_rcu_grace_period(rsp->name,
7d0ae808 1963 READ_ONCE(rsp->gpnum),
bb311ecc
PM
1964 TPS("newreq"));
1965 }
7fdefc10 1966 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1967}
1968
1969/*
1970 * Body of kthread that handles grace periods.
1971 */
1972static int __noreturn rcu_gp_kthread(void *arg)
1973{
4cdfc175 1974 int fqs_state;
88d6df61 1975 int gf;
d40011f6 1976 unsigned long j;
4cdfc175 1977 int ret;
7fdefc10
PM
1978 struct rcu_state *rsp = arg;
1979 struct rcu_node *rnp = rcu_get_root(rsp);
1980
5871968d 1981 rcu_bind_gp_kthread();
7fdefc10
PM
1982 for (;;) {
1983
1984 /* Handle grace-period start. */
1985 for (;;) {
63c4db78 1986 trace_rcu_grace_period(rsp->name,
7d0ae808 1987 READ_ONCE(rsp->gpnum),
63c4db78 1988 TPS("reqwait"));
afea227f 1989 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1990 wait_event_interruptible(rsp->gp_wq,
7d0ae808 1991 READ_ONCE(rsp->gp_flags) &
4cdfc175 1992 RCU_GP_FLAG_INIT);
78e4bc34 1993 /* Locking provides needed memory barrier. */
f7be8209 1994 if (rcu_gp_init(rsp))
7fdefc10 1995 break;
bde6c3aa 1996 cond_resched_rcu_qs();
7d0ae808 1997 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 1998 WARN_ON(signal_pending(current));
63c4db78 1999 trace_rcu_grace_period(rsp->name,
7d0ae808 2000 READ_ONCE(rsp->gpnum),
63c4db78 2001 TPS("reqwaitsig"));
7fdefc10 2002 }
cabc49c1 2003
4cdfc175
PM
2004 /* Handle quiescent-state forcing. */
2005 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
2006 j = jiffies_till_first_fqs;
2007 if (j > HZ) {
2008 j = HZ;
2009 jiffies_till_first_fqs = HZ;
2010 }
88d6df61 2011 ret = 0;
cabc49c1 2012 for (;;) {
88d6df61
PM
2013 if (!ret)
2014 rsp->jiffies_force_qs = jiffies + j;
63c4db78 2015 trace_rcu_grace_period(rsp->name,
7d0ae808 2016 READ_ONCE(rsp->gpnum),
63c4db78 2017 TPS("fqswait"));
afea227f 2018 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 2019 ret = wait_event_interruptible_timeout(rsp->gp_wq,
7d0ae808 2020 ((gf = READ_ONCE(rsp->gp_flags)) &
88d6df61 2021 RCU_GP_FLAG_FQS) ||
7d0ae808 2022 (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2023 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 2024 j);
78e4bc34 2025 /* Locking provides needed memory barriers. */
4cdfc175 2026 /* If grace period done, leave loop. */
7d0ae808 2027 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2028 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2029 break;
4cdfc175 2030 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2031 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2032 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2033 trace_rcu_grace_period(rsp->name,
7d0ae808 2034 READ_ONCE(rsp->gpnum),
63c4db78 2035 TPS("fqsstart"));
4cdfc175 2036 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78 2037 trace_rcu_grace_period(rsp->name,
7d0ae808 2038 READ_ONCE(rsp->gpnum),
63c4db78 2039 TPS("fqsend"));
bde6c3aa 2040 cond_resched_rcu_qs();
7d0ae808 2041 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
2042 } else {
2043 /* Deal with stray signal. */
bde6c3aa 2044 cond_resched_rcu_qs();
7d0ae808 2045 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2046 WARN_ON(signal_pending(current));
63c4db78 2047 trace_rcu_grace_period(rsp->name,
7d0ae808 2048 READ_ONCE(rsp->gpnum),
63c4db78 2049 TPS("fqswaitsig"));
4cdfc175 2050 }
d40011f6
PM
2051 j = jiffies_till_next_fqs;
2052 if (j > HZ) {
2053 j = HZ;
2054 jiffies_till_next_fqs = HZ;
2055 } else if (j < 1) {
2056 j = 1;
2057 jiffies_till_next_fqs = 1;
2058 }
cabc49c1 2059 }
4cdfc175
PM
2060
2061 /* Handle grace-period end. */
2062 rcu_gp_cleanup(rsp);
b3dbec76 2063 }
b3dbec76
PM
2064}
2065
64db4cff
PM
2066/*
2067 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2068 * in preparation for detecting the next grace period. The caller must hold
b8462084 2069 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2070 *
2071 * Note that it is legal for a dying CPU (which is marked as offline) to
2072 * invoke this function. This can happen when the dying CPU reports its
2073 * quiescent state.
48a7639c
PM
2074 *
2075 * Returns true if the grace-period kthread must be awakened.
64db4cff 2076 */
48a7639c 2077static bool
910ee45d
PM
2078rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2079 struct rcu_data *rdp)
64db4cff 2080{
b8462084 2081 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2082 /*
b3dbec76 2083 * Either we have not yet spawned the grace-period
62da1921
PM
2084 * task, this CPU does not need another grace period,
2085 * or a grace period is already in progress.
b3dbec76 2086 * Either way, don't start a new grace period.
afe24b12 2087 */
48a7639c 2088 return false;
afe24b12 2089 }
7d0ae808
PM
2090 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2091 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2092 TPS("newreq"));
62da1921 2093
016a8d5b
SR
2094 /*
2095 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2096 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2097 * the wakeup to our caller.
016a8d5b 2098 */
48a7639c 2099 return true;
64db4cff
PM
2100}
2101
910ee45d
PM
2102/*
2103 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2104 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2105 * is invoked indirectly from rcu_advance_cbs(), which would result in
2106 * endless recursion -- or would do so if it wasn't for the self-deadlock
2107 * that is encountered beforehand.
48a7639c
PM
2108 *
2109 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2110 */
48a7639c 2111static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2112{
2113 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2114 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2115 bool ret = false;
910ee45d
PM
2116
2117 /*
2118 * If there is no grace period in progress right now, any
2119 * callbacks we have up to this point will be satisfied by the
2120 * next grace period. Also, advancing the callbacks reduces the
2121 * probability of false positives from cpu_needs_another_gp()
2122 * resulting in pointless grace periods. So, advance callbacks
2123 * then start the grace period!
2124 */
48a7639c
PM
2125 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2126 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2127 return ret;
910ee45d
PM
2128}
2129
f41d911f 2130/*
d3f6bad3
PM
2131 * Report a full set of quiescent states to the specified rcu_state
2132 * data structure. This involves cleaning up after the prior grace
2133 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
2134 * if one is needed. Note that the caller must hold rnp->lock, which
2135 * is released before return.
f41d911f 2136 */
d3f6bad3 2137static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2138 __releases(rcu_get_root(rsp)->lock)
f41d911f 2139{
fc2219d4 2140 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1 2141 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 2142 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2143}
2144
64db4cff 2145/*
d3f6bad3
PM
2146 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2147 * Allows quiescent states for a group of CPUs to be reported at one go
2148 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2149 * must be represented by the same rcu_node structure (which need not be a
2150 * leaf rcu_node structure, though it often will be). The gps parameter
2151 * is the grace-period snapshot, which means that the quiescent states
2152 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2153 * must be held upon entry, and it is released before return.
64db4cff
PM
2154 */
2155static void
d3f6bad3 2156rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2157 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2158 __releases(rnp->lock)
2159{
654e9533 2160 unsigned long oldmask = 0;
28ecd580
PM
2161 struct rcu_node *rnp_c;
2162
64db4cff
PM
2163 /* Walk up the rcu_node hierarchy. */
2164 for (;;) {
654e9533 2165 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2166
654e9533
PM
2167 /*
2168 * Our bit has already been cleared, or the
2169 * relevant grace period is already over, so done.
2170 */
1304afb2 2171 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2172 return;
2173 }
654e9533 2174 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2175 rnp->qsmask &= ~mask;
d4c08f2a
PM
2176 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2177 mask, rnp->qsmask, rnp->level,
2178 rnp->grplo, rnp->grphi,
2179 !!rnp->gp_tasks);
27f4d280 2180 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2181
2182 /* Other bits still set at this level, so done. */
1304afb2 2183 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2184 return;
2185 }
2186 mask = rnp->grpmask;
2187 if (rnp->parent == NULL) {
2188
2189 /* No more levels. Exit loop holding root lock. */
2190
2191 break;
2192 }
1304afb2 2193 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2194 rnp_c = rnp;
64db4cff 2195 rnp = rnp->parent;
1304afb2 2196 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2197 smp_mb__after_unlock_lock();
654e9533 2198 oldmask = rnp_c->qsmask;
64db4cff
PM
2199 }
2200
2201 /*
2202 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2203 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2204 * to clean up and start the next grace period if one is needed.
64db4cff 2205 */
d3f6bad3 2206 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2207}
2208
cc99a310
PM
2209/*
2210 * Record a quiescent state for all tasks that were previously queued
2211 * on the specified rcu_node structure and that were blocking the current
2212 * RCU grace period. The caller must hold the specified rnp->lock with
2213 * irqs disabled, and this lock is released upon return, but irqs remain
2214 * disabled.
2215 */
0aa04b05 2216static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2217 struct rcu_node *rnp, unsigned long flags)
2218 __releases(rnp->lock)
2219{
654e9533 2220 unsigned long gps;
cc99a310
PM
2221 unsigned long mask;
2222 struct rcu_node *rnp_p;
2223
a77da14c
PM
2224 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2225 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
cc99a310
PM
2226 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2227 return; /* Still need more quiescent states! */
2228 }
2229
2230 rnp_p = rnp->parent;
2231 if (rnp_p == NULL) {
2232 /*
a77da14c
PM
2233 * Only one rcu_node structure in the tree, so don't
2234 * try to report up to its nonexistent parent!
cc99a310
PM
2235 */
2236 rcu_report_qs_rsp(rsp, flags);
2237 return;
2238 }
2239
654e9533
PM
2240 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2241 gps = rnp->gpnum;
cc99a310
PM
2242 mask = rnp->grpmask;
2243 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2244 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2245 smp_mb__after_unlock_lock();
654e9533 2246 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2247}
2248
64db4cff 2249/*
d3f6bad3
PM
2250 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2251 * structure. This must be either called from the specified CPU, or
2252 * called when the specified CPU is known to be offline (and when it is
2253 * also known that no other CPU is concurrently trying to help the offline
2254 * CPU). The lastcomp argument is used to make sure we are still in the
2255 * grace period of interest. We don't want to end the current grace period
2256 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2257 */
2258static void
d7d6a11e 2259rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2260{
2261 unsigned long flags;
2262 unsigned long mask;
48a7639c 2263 bool needwake;
64db4cff
PM
2264 struct rcu_node *rnp;
2265
2266 rnp = rdp->mynode;
1304afb2 2267 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2268 smp_mb__after_unlock_lock();
5cd37193
PM
2269 if ((rdp->passed_quiesce == 0 &&
2270 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2271 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2272 rdp->gpwrap) {
64db4cff
PM
2273
2274 /*
e4cc1f22
PM
2275 * The grace period in which this quiescent state was
2276 * recorded has ended, so don't report it upwards.
2277 * We will instead need a new quiescent state that lies
2278 * within the current grace period.
64db4cff 2279 */
e4cc1f22 2280 rdp->passed_quiesce = 0; /* need qs for new gp. */
5cd37193 2281 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1304afb2 2282 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2283 return;
2284 }
2285 mask = rdp->grpmask;
2286 if ((rnp->qsmask & mask) == 0) {
1304afb2 2287 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2288 } else {
2289 rdp->qs_pending = 0;
2290
2291 /*
2292 * This GP can't end until cpu checks in, so all of our
2293 * callbacks can be processed during the next GP.
2294 */
48a7639c 2295 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2296
654e9533
PM
2297 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2298 /* ^^^ Released rnp->lock */
48a7639c
PM
2299 if (needwake)
2300 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2301 }
2302}
2303
2304/*
2305 * Check to see if there is a new grace period of which this CPU
2306 * is not yet aware, and if so, set up local rcu_data state for it.
2307 * Otherwise, see if this CPU has just passed through its first
2308 * quiescent state for this grace period, and record that fact if so.
2309 */
2310static void
2311rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2312{
05eb552b
PM
2313 /* Check for grace-period ends and beginnings. */
2314 note_gp_changes(rsp, rdp);
64db4cff
PM
2315
2316 /*
2317 * Does this CPU still need to do its part for current grace period?
2318 * If no, return and let the other CPUs do their part as well.
2319 */
2320 if (!rdp->qs_pending)
2321 return;
2322
2323 /*
2324 * Was there a quiescent state since the beginning of the grace
2325 * period? If no, then exit and wait for the next call.
2326 */
5cd37193
PM
2327 if (!rdp->passed_quiesce &&
2328 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2329 return;
2330
d3f6bad3
PM
2331 /*
2332 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2333 * judge of that).
2334 */
d7d6a11e 2335 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2336}
2337
e74f4c45 2338/*
b1420f1c
PM
2339 * Send the specified CPU's RCU callbacks to the orphanage. The
2340 * specified CPU must be offline, and the caller must hold the
7b2e6011 2341 * ->orphan_lock.
e74f4c45 2342 */
b1420f1c
PM
2343static void
2344rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2345 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2346{
3fbfbf7a 2347 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2348 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2349 return;
2350
b1420f1c
PM
2351 /*
2352 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2353 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2354 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2355 */
a50c3af9 2356 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2357 rsp->qlen_lazy += rdp->qlen_lazy;
2358 rsp->qlen += rdp->qlen;
2359 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2360 rdp->qlen_lazy = 0;
7d0ae808 2361 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2362 }
2363
2364 /*
b1420f1c
PM
2365 * Next, move those callbacks still needing a grace period to
2366 * the orphanage, where some other CPU will pick them up.
2367 * Some of the callbacks might have gone partway through a grace
2368 * period, but that is too bad. They get to start over because we
2369 * cannot assume that grace periods are synchronized across CPUs.
2370 * We don't bother updating the ->nxttail[] array yet, instead
2371 * we just reset the whole thing later on.
a50c3af9 2372 */
b1420f1c
PM
2373 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2374 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2375 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2376 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2377 }
2378
2379 /*
b1420f1c
PM
2380 * Then move the ready-to-invoke callbacks to the orphanage,
2381 * where some other CPU will pick them up. These will not be
2382 * required to pass though another grace period: They are done.
a50c3af9 2383 */
e5601400 2384 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2385 *rsp->orphan_donetail = rdp->nxtlist;
2386 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2387 }
e74f4c45 2388
b33078b6
PM
2389 /*
2390 * Finally, initialize the rcu_data structure's list to empty and
2391 * disallow further callbacks on this CPU.
2392 */
3f5d3ea6 2393 init_callback_list(rdp);
b33078b6 2394 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2395}
2396
2397/*
2398 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2399 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2400 */
96d3fd0d 2401static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2402{
2403 int i;
fa07a58f 2404 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2405
3fbfbf7a 2406 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2407 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2408 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2409 return;
2410
b1420f1c
PM
2411 /* Do the accounting first. */
2412 rdp->qlen_lazy += rsp->qlen_lazy;
2413 rdp->qlen += rsp->qlen;
2414 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2415 if (rsp->qlen_lazy != rsp->qlen)
2416 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2417 rsp->qlen_lazy = 0;
2418 rsp->qlen = 0;
2419
2420 /*
2421 * We do not need a memory barrier here because the only way we
2422 * can get here if there is an rcu_barrier() in flight is if
2423 * we are the task doing the rcu_barrier().
2424 */
2425
2426 /* First adopt the ready-to-invoke callbacks. */
2427 if (rsp->orphan_donelist != NULL) {
2428 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2429 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2430 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2431 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2432 rdp->nxttail[i] = rsp->orphan_donetail;
2433 rsp->orphan_donelist = NULL;
2434 rsp->orphan_donetail = &rsp->orphan_donelist;
2435 }
2436
2437 /* And then adopt the callbacks that still need a grace period. */
2438 if (rsp->orphan_nxtlist != NULL) {
2439 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2440 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2441 rsp->orphan_nxtlist = NULL;
2442 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2443 }
2444}
2445
2446/*
2447 * Trace the fact that this CPU is going offline.
2448 */
2449static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2450{
2451 RCU_TRACE(unsigned long mask);
2452 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2453 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2454
ea46351c
PM
2455 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2456 return;
2457
b1420f1c 2458 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2459 trace_rcu_grace_period(rsp->name,
2460 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2461 TPS("cpuofl"));
64db4cff
PM
2462}
2463
8af3a5e7
PM
2464/*
2465 * All CPUs for the specified rcu_node structure have gone offline,
2466 * and all tasks that were preempted within an RCU read-side critical
2467 * section while running on one of those CPUs have since exited their RCU
2468 * read-side critical section. Some other CPU is reporting this fact with
2469 * the specified rcu_node structure's ->lock held and interrupts disabled.
2470 * This function therefore goes up the tree of rcu_node structures,
2471 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2472 * the leaf rcu_node structure's ->qsmaskinit field has already been
2473 * updated
2474 *
2475 * This function does check that the specified rcu_node structure has
2476 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2477 * prematurely. That said, invoking it after the fact will cost you
2478 * a needless lock acquisition. So once it has done its work, don't
2479 * invoke it again.
2480 */
2481static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2482{
2483 long mask;
2484 struct rcu_node *rnp = rnp_leaf;
2485
ea46351c
PM
2486 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2487 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2488 return;
2489 for (;;) {
2490 mask = rnp->grpmask;
2491 rnp = rnp->parent;
2492 if (!rnp)
2493 break;
2494 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2495 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2496 rnp->qsmaskinit &= ~mask;
0aa04b05 2497 rnp->qsmask &= ~mask;
8af3a5e7
PM
2498 if (rnp->qsmaskinit) {
2499 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2500 return;
2501 }
2502 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2503 }
2504}
2505
88428cc5
PM
2506/*
2507 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2508 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2509 * bit masks.
2510 */
2511static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2512{
2513 unsigned long flags;
2514 unsigned long mask;
2515 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2516 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2517
ea46351c
PM
2518 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2519 return;
2520
88428cc5
PM
2521 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2522 mask = rdp->grpmask;
2523 raw_spin_lock_irqsave(&rnp->lock, flags);
2524 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2525 rnp->qsmaskinitnext &= ~mask;
2526 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2527}
2528
64db4cff 2529/*
e5601400 2530 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2531 * this fact from process context. Do the remainder of the cleanup,
2532 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2533 * adopting them. There can only be one CPU hotplug operation at a time,
2534 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2535 */
e5601400 2536static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2537{
2036d94a 2538 unsigned long flags;
e5601400 2539 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2540 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2541
ea46351c
PM
2542 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2543 return;
2544
2036d94a 2545 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2546 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2547
b1420f1c 2548 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2549 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2550 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2551 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2552 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2553
cf01537e
PM
2554 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2555 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2556 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2557}
2558
64db4cff
PM
2559/*
2560 * Invoke any RCU callbacks that have made it to the end of their grace
2561 * period. Thottle as specified by rdp->blimit.
2562 */
37c72e56 2563static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2564{
2565 unsigned long flags;
2566 struct rcu_head *next, *list, **tail;
878d7439
ED
2567 long bl, count, count_lazy;
2568 int i;
64db4cff 2569
dc35c893 2570 /* If no callbacks are ready, just return. */
29c00b4a 2571 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2572 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2573 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2574 need_resched(), is_idle_task(current),
2575 rcu_is_callbacks_kthread());
64db4cff 2576 return;
29c00b4a 2577 }
64db4cff
PM
2578
2579 /*
2580 * Extract the list of ready callbacks, disabling to prevent
2581 * races with call_rcu() from interrupt handlers.
2582 */
2583 local_irq_save(flags);
8146c4e2 2584 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2585 bl = rdp->blimit;
486e2593 2586 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2587 list = rdp->nxtlist;
2588 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2589 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2590 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2591 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2592 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2593 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2594 local_irq_restore(flags);
2595
2596 /* Invoke callbacks. */
486e2593 2597 count = count_lazy = 0;
64db4cff
PM
2598 while (list) {
2599 next = list->next;
2600 prefetch(next);
551d55a9 2601 debug_rcu_head_unqueue(list);
486e2593
PM
2602 if (__rcu_reclaim(rsp->name, list))
2603 count_lazy++;
64db4cff 2604 list = next;
dff1672d
PM
2605 /* Stop only if limit reached and CPU has something to do. */
2606 if (++count >= bl &&
2607 (need_resched() ||
2608 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2609 break;
2610 }
2611
2612 local_irq_save(flags);
4968c300
PM
2613 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2614 is_idle_task(current),
2615 rcu_is_callbacks_kthread());
64db4cff
PM
2616
2617 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2618 if (list != NULL) {
2619 *tail = rdp->nxtlist;
2620 rdp->nxtlist = list;
b41772ab
PM
2621 for (i = 0; i < RCU_NEXT_SIZE; i++)
2622 if (&rdp->nxtlist == rdp->nxttail[i])
2623 rdp->nxttail[i] = tail;
64db4cff
PM
2624 else
2625 break;
2626 }
b1420f1c
PM
2627 smp_mb(); /* List handling before counting for rcu_barrier(). */
2628 rdp->qlen_lazy -= count_lazy;
7d0ae808 2629 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2630 rdp->n_cbs_invoked += count;
64db4cff
PM
2631
2632 /* Reinstate batch limit if we have worked down the excess. */
2633 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2634 rdp->blimit = blimit;
2635
37c72e56
PM
2636 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2637 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2638 rdp->qlen_last_fqs_check = 0;
2639 rdp->n_force_qs_snap = rsp->n_force_qs;
2640 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2641 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2642 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2643
64db4cff
PM
2644 local_irq_restore(flags);
2645
e0f23060 2646 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2647 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2648 invoke_rcu_core();
64db4cff
PM
2649}
2650
2651/*
2652 * Check to see if this CPU is in a non-context-switch quiescent state
2653 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2654 * Also schedule RCU core processing.
64db4cff 2655 *
9b2e4f18 2656 * This function must be called from hardirq context. It is normally
64db4cff
PM
2657 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2658 * false, there is no point in invoking rcu_check_callbacks().
2659 */
c3377c2d 2660void rcu_check_callbacks(int user)
64db4cff 2661{
f7f7bac9 2662 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2663 increment_cpu_stall_ticks();
9b2e4f18 2664 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2665
2666 /*
2667 * Get here if this CPU took its interrupt from user
2668 * mode or from the idle loop, and if this is not a
2669 * nested interrupt. In this case, the CPU is in
d6714c22 2670 * a quiescent state, so note it.
64db4cff
PM
2671 *
2672 * No memory barrier is required here because both
d6714c22
PM
2673 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2674 * variables that other CPUs neither access nor modify,
2675 * at least not while the corresponding CPU is online.
64db4cff
PM
2676 */
2677
284a8c93
PM
2678 rcu_sched_qs();
2679 rcu_bh_qs();
64db4cff
PM
2680
2681 } else if (!in_softirq()) {
2682
2683 /*
2684 * Get here if this CPU did not take its interrupt from
2685 * softirq, in other words, if it is not interrupting
2686 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2687 * critical section, so note it.
64db4cff
PM
2688 */
2689
284a8c93 2690 rcu_bh_qs();
64db4cff 2691 }
86aea0e6 2692 rcu_preempt_check_callbacks();
e3950ecd 2693 if (rcu_pending())
a46e0899 2694 invoke_rcu_core();
8315f422
PM
2695 if (user)
2696 rcu_note_voluntary_context_switch(current);
f7f7bac9 2697 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2698}
2699
64db4cff
PM
2700/*
2701 * Scan the leaf rcu_node structures, processing dyntick state for any that
2702 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2703 * Also initiate boosting for any threads blocked on the root rcu_node.
2704 *
ee47eb9f 2705 * The caller must have suppressed start of new grace periods.
64db4cff 2706 */
217af2a2
PM
2707static void force_qs_rnp(struct rcu_state *rsp,
2708 int (*f)(struct rcu_data *rsp, bool *isidle,
2709 unsigned long *maxj),
2710 bool *isidle, unsigned long *maxj)
64db4cff
PM
2711{
2712 unsigned long bit;
2713 int cpu;
2714 unsigned long flags;
2715 unsigned long mask;
a0b6c9a7 2716 struct rcu_node *rnp;
64db4cff 2717
a0b6c9a7 2718 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2719 cond_resched_rcu_qs();
64db4cff 2720 mask = 0;
1304afb2 2721 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2722 smp_mb__after_unlock_lock();
a0b6c9a7 2723 if (rnp->qsmask == 0) {
a77da14c
PM
2724 if (rcu_state_p == &rcu_sched_state ||
2725 rsp != rcu_state_p ||
2726 rcu_preempt_blocked_readers_cgp(rnp)) {
2727 /*
2728 * No point in scanning bits because they
2729 * are all zero. But we might need to
2730 * priority-boost blocked readers.
2731 */
2732 rcu_initiate_boost(rnp, flags);
2733 /* rcu_initiate_boost() releases rnp->lock */
2734 continue;
2735 }
2736 if (rnp->parent &&
2737 (rnp->parent->qsmask & rnp->grpmask)) {
2738 /*
2739 * Race between grace-period
2740 * initialization and task exiting RCU
2741 * read-side critical section: Report.
2742 */
2743 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2744 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2745 continue;
2746 }
64db4cff 2747 }
a0b6c9a7 2748 cpu = rnp->grplo;
64db4cff 2749 bit = 1;
a0b6c9a7 2750 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17 2751 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2752 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2753 mask |= bit;
2754 }
64db4cff 2755 }
45f014c5 2756 if (mask != 0) {
654e9533
PM
2757 /* Idle/offline CPUs, report (releases rnp->lock. */
2758 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2759 } else {
2760 /* Nothing to do here, so just drop the lock. */
2761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2762 }
64db4cff 2763 }
64db4cff
PM
2764}
2765
2766/*
2767 * Force quiescent states on reluctant CPUs, and also detect which
2768 * CPUs are in dyntick-idle mode.
2769 */
4cdfc175 2770static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2771{
2772 unsigned long flags;
394f2769
PM
2773 bool ret;
2774 struct rcu_node *rnp;
2775 struct rcu_node *rnp_old = NULL;
2776
2777 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2778 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2779 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2780 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2781 !raw_spin_trylock(&rnp->fqslock);
2782 if (rnp_old != NULL)
2783 raw_spin_unlock(&rnp_old->fqslock);
2784 if (ret) {
a792563b 2785 rsp->n_force_qs_lh++;
394f2769
PM
2786 return;
2787 }
2788 rnp_old = rnp;
2789 }
2790 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2791
394f2769
PM
2792 /* Reached the root of the rcu_node tree, acquire lock. */
2793 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2794 smp_mb__after_unlock_lock();
394f2769 2795 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2796 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2797 rsp->n_force_qs_lh++;
394f2769 2798 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2799 return; /* Someone beat us to it. */
46a1e34e 2800 }
7d0ae808 2801 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
394f2769 2802 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2803 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2804}
2805
64db4cff 2806/*
e0f23060
PM
2807 * This does the RCU core processing work for the specified rcu_state
2808 * and rcu_data structures. This may be called only from the CPU to
2809 * whom the rdp belongs.
64db4cff
PM
2810 */
2811static void
1bca8cf1 2812__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2813{
2814 unsigned long flags;
48a7639c 2815 bool needwake;
fa07a58f 2816 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2817
2e597558
PM
2818 WARN_ON_ONCE(rdp->beenonline == 0);
2819
64db4cff
PM
2820 /* Update RCU state based on any recent quiescent states. */
2821 rcu_check_quiescent_state(rsp, rdp);
2822
2823 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2824 local_irq_save(flags);
64db4cff 2825 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2826 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2827 needwake = rcu_start_gp(rsp);
b8462084 2828 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2829 if (needwake)
2830 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2831 } else {
2832 local_irq_restore(flags);
64db4cff
PM
2833 }
2834
2835 /* If there are callbacks ready, invoke them. */
09223371 2836 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2837 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2838
2839 /* Do any needed deferred wakeups of rcuo kthreads. */
2840 do_nocb_deferred_wakeup(rdp);
09223371
SL
2841}
2842
64db4cff 2843/*
e0f23060 2844 * Do RCU core processing for the current CPU.
64db4cff 2845 */
09223371 2846static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2847{
6ce75a23
PM
2848 struct rcu_state *rsp;
2849
bfa00b4c
PM
2850 if (cpu_is_offline(smp_processor_id()))
2851 return;
f7f7bac9 2852 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2853 for_each_rcu_flavor(rsp)
2854 __rcu_process_callbacks(rsp);
f7f7bac9 2855 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2856}
2857
a26ac245 2858/*
e0f23060
PM
2859 * Schedule RCU callback invocation. If the specified type of RCU
2860 * does not support RCU priority boosting, just do a direct call,
2861 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2862 * are running on the current CPU with softirqs disabled, the
e0f23060 2863 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2864 */
a46e0899 2865static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2866{
7d0ae808 2867 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2868 return;
a46e0899
PM
2869 if (likely(!rsp->boost)) {
2870 rcu_do_batch(rsp, rdp);
a26ac245
PM
2871 return;
2872 }
a46e0899 2873 invoke_rcu_callbacks_kthread();
a26ac245
PM
2874}
2875
a46e0899 2876static void invoke_rcu_core(void)
09223371 2877{
b0f74036
PM
2878 if (cpu_online(smp_processor_id()))
2879 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2880}
2881
29154c57
PM
2882/*
2883 * Handle any core-RCU processing required by a call_rcu() invocation.
2884 */
2885static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2886 struct rcu_head *head, unsigned long flags)
64db4cff 2887{
48a7639c
PM
2888 bool needwake;
2889
62fde6ed
PM
2890 /*
2891 * If called from an extended quiescent state, invoke the RCU
2892 * core in order to force a re-evaluation of RCU's idleness.
2893 */
9910affa 2894 if (!rcu_is_watching())
62fde6ed
PM
2895 invoke_rcu_core();
2896
a16b7a69 2897 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2898 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2899 return;
64db4cff 2900
37c72e56
PM
2901 /*
2902 * Force the grace period if too many callbacks or too long waiting.
2903 * Enforce hysteresis, and don't invoke force_quiescent_state()
2904 * if some other CPU has recently done so. Also, don't bother
2905 * invoking force_quiescent_state() if the newly enqueued callback
2906 * is the only one waiting for a grace period to complete.
2907 */
2655d57e 2908 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2909
2910 /* Are we ignoring a completed grace period? */
470716fc 2911 note_gp_changes(rsp, rdp);
b52573d2
PM
2912
2913 /* Start a new grace period if one not already started. */
2914 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2915 struct rcu_node *rnp_root = rcu_get_root(rsp);
2916
b8462084 2917 raw_spin_lock(&rnp_root->lock);
6303b9c8 2918 smp_mb__after_unlock_lock();
48a7639c 2919 needwake = rcu_start_gp(rsp);
b8462084 2920 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2921 if (needwake)
2922 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2923 } else {
2924 /* Give the grace period a kick. */
2925 rdp->blimit = LONG_MAX;
2926 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2927 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2928 force_quiescent_state(rsp);
b52573d2
PM
2929 rdp->n_force_qs_snap = rsp->n_force_qs;
2930 rdp->qlen_last_fqs_check = rdp->qlen;
2931 }
4cdfc175 2932 }
29154c57
PM
2933}
2934
ae150184
PM
2935/*
2936 * RCU callback function to leak a callback.
2937 */
2938static void rcu_leak_callback(struct rcu_head *rhp)
2939{
2940}
2941
3fbfbf7a
PM
2942/*
2943 * Helper function for call_rcu() and friends. The cpu argument will
2944 * normally be -1, indicating "currently running CPU". It may specify
2945 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2946 * is expected to specify a CPU.
2947 */
64db4cff
PM
2948static void
2949__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2950 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2951{
2952 unsigned long flags;
2953 struct rcu_data *rdp;
2954
1146edcb 2955 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2956 if (debug_rcu_head_queue(head)) {
2957 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 2958 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2959 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2960 return;
2961 }
64db4cff
PM
2962 head->func = func;
2963 head->next = NULL;
2964
64db4cff
PM
2965 /*
2966 * Opportunistically note grace-period endings and beginnings.
2967 * Note that we might see a beginning right after we see an
2968 * end, but never vice versa, since this CPU has to pass through
2969 * a quiescent state betweentimes.
2970 */
2971 local_irq_save(flags);
394f99a9 2972 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2973
2974 /* Add the callback to our list. */
3fbfbf7a
PM
2975 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2976 int offline;
2977
2978 if (cpu != -1)
2979 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
2980 if (likely(rdp->mynode)) {
2981 /* Post-boot, so this should be for a no-CBs CPU. */
2982 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2983 WARN_ON_ONCE(offline);
2984 /* Offline CPU, _call_rcu() illegal, leak callback. */
2985 local_irq_restore(flags);
2986 return;
2987 }
2988 /*
2989 * Very early boot, before rcu_init(). Initialize if needed
2990 * and then drop through to queue the callback.
2991 */
2992 BUG_ON(cpu != -1);
34404ca8 2993 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
2994 if (!likely(rdp->nxtlist))
2995 init_default_callback_list(rdp);
0d8ee37e 2996 }
7d0ae808 2997 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
2998 if (lazy)
2999 rdp->qlen_lazy++;
c57afe80
PM
3000 else
3001 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3002 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3003 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3004 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3005
d4c08f2a
PM
3006 if (__is_kfree_rcu_offset((unsigned long)func))
3007 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3008 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3009 else
486e2593 3010 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3011
29154c57
PM
3012 /* Go handle any RCU core processing required. */
3013 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3014 local_irq_restore(flags);
3015}
3016
3017/*
d6714c22 3018 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3019 */
d6714c22 3020void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 3021{
3fbfbf7a 3022 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3023}
d6714c22 3024EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3025
3026/*
486e2593 3027 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
3028 */
3029void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3030{
3fbfbf7a 3031 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3032}
3033EXPORT_SYMBOL_GPL(call_rcu_bh);
3034
495aa969
ACB
3035/*
3036 * Queue an RCU callback for lazy invocation after a grace period.
3037 * This will likely be later named something like "call_rcu_lazy()",
3038 * but this change will require some way of tagging the lazy RCU
3039 * callbacks in the list of pending callbacks. Until then, this
3040 * function may only be called from __kfree_rcu().
3041 */
3042void kfree_call_rcu(struct rcu_head *head,
3043 void (*func)(struct rcu_head *rcu))
3044{
e534165b 3045 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3046}
3047EXPORT_SYMBOL_GPL(kfree_call_rcu);
3048
6d813391
PM
3049/*
3050 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3051 * any blocking grace-period wait automatically implies a grace period
3052 * if there is only one CPU online at any point time during execution
3053 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3054 * occasionally incorrectly indicate that there are multiple CPUs online
3055 * when there was in fact only one the whole time, as this just adds
3056 * some overhead: RCU still operates correctly.
6d813391
PM
3057 */
3058static inline int rcu_blocking_is_gp(void)
3059{
95f0c1de
PM
3060 int ret;
3061
6d813391 3062 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3063 preempt_disable();
3064 ret = num_online_cpus() <= 1;
3065 preempt_enable();
3066 return ret;
6d813391
PM
3067}
3068
6ebb237b
PM
3069/**
3070 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3071 *
3072 * Control will return to the caller some time after a full rcu-sched
3073 * grace period has elapsed, in other words after all currently executing
3074 * rcu-sched read-side critical sections have completed. These read-side
3075 * critical sections are delimited by rcu_read_lock_sched() and
3076 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3077 * local_irq_disable(), and so on may be used in place of
3078 * rcu_read_lock_sched().
3079 *
3080 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3081 * non-threaded hardware-interrupt handlers, in progress on entry will
3082 * have completed before this primitive returns. However, this does not
3083 * guarantee that softirq handlers will have completed, since in some
3084 * kernels, these handlers can run in process context, and can block.
3085 *
3086 * Note that this guarantee implies further memory-ordering guarantees.
3087 * On systems with more than one CPU, when synchronize_sched() returns,
3088 * each CPU is guaranteed to have executed a full memory barrier since the
3089 * end of its last RCU-sched read-side critical section whose beginning
3090 * preceded the call to synchronize_sched(). In addition, each CPU having
3091 * an RCU read-side critical section that extends beyond the return from
3092 * synchronize_sched() is guaranteed to have executed a full memory barrier
3093 * after the beginning of synchronize_sched() and before the beginning of
3094 * that RCU read-side critical section. Note that these guarantees include
3095 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3096 * that are executing in the kernel.
3097 *
3098 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3099 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3100 * to have executed a full memory barrier during the execution of
3101 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3102 * again only if the system has more than one CPU).
6ebb237b
PM
3103 *
3104 * This primitive provides the guarantees made by the (now removed)
3105 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3106 * guarantees that rcu_read_lock() sections will have completed.
3107 * In "classic RCU", these two guarantees happen to be one and
3108 * the same, but can differ in realtime RCU implementations.
3109 */
3110void synchronize_sched(void)
3111{
fe15d706
PM
3112 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3113 !lock_is_held(&rcu_lock_map) &&
3114 !lock_is_held(&rcu_sched_lock_map),
3115 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3116 if (rcu_blocking_is_gp())
3117 return;
5afff48b 3118 if (rcu_gp_is_expedited())
3705b88d
AM
3119 synchronize_sched_expedited();
3120 else
3121 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3122}
3123EXPORT_SYMBOL_GPL(synchronize_sched);
3124
3125/**
3126 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3127 *
3128 * Control will return to the caller some time after a full rcu_bh grace
3129 * period has elapsed, in other words after all currently executing rcu_bh
3130 * read-side critical sections have completed. RCU read-side critical
3131 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3132 * and may be nested.
f0a0e6f2
PM
3133 *
3134 * See the description of synchronize_sched() for more detailed information
3135 * on memory ordering guarantees.
6ebb237b
PM
3136 */
3137void synchronize_rcu_bh(void)
3138{
fe15d706
PM
3139 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3140 !lock_is_held(&rcu_lock_map) &&
3141 !lock_is_held(&rcu_sched_lock_map),
3142 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3143 if (rcu_blocking_is_gp())
3144 return;
5afff48b 3145 if (rcu_gp_is_expedited())
3705b88d
AM
3146 synchronize_rcu_bh_expedited();
3147 else
3148 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3149}
3150EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3151
765a3f4f
PM
3152/**
3153 * get_state_synchronize_rcu - Snapshot current RCU state
3154 *
3155 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3156 * to determine whether or not a full grace period has elapsed in the
3157 * meantime.
3158 */
3159unsigned long get_state_synchronize_rcu(void)
3160{
3161 /*
3162 * Any prior manipulation of RCU-protected data must happen
3163 * before the load from ->gpnum.
3164 */
3165 smp_mb(); /* ^^^ */
3166
3167 /*
3168 * Make sure this load happens before the purportedly
3169 * time-consuming work between get_state_synchronize_rcu()
3170 * and cond_synchronize_rcu().
3171 */
e534165b 3172 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3173}
3174EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3175
3176/**
3177 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3178 *
3179 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3180 *
3181 * If a full RCU grace period has elapsed since the earlier call to
3182 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3183 * synchronize_rcu() to wait for a full grace period.
3184 *
3185 * Yes, this function does not take counter wrap into account. But
3186 * counter wrap is harmless. If the counter wraps, we have waited for
3187 * more than 2 billion grace periods (and way more on a 64-bit system!),
3188 * so waiting for one additional grace period should be just fine.
3189 */
3190void cond_synchronize_rcu(unsigned long oldstate)
3191{
3192 unsigned long newstate;
3193
3194 /*
3195 * Ensure that this load happens before any RCU-destructive
3196 * actions the caller might carry out after we return.
3197 */
e534165b 3198 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3199 if (ULONG_CMP_GE(oldstate, newstate))
3200 synchronize_rcu();
3201}
3202EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3203
3d3b7db0
PM
3204static int synchronize_sched_expedited_cpu_stop(void *data)
3205{
3206 /*
3207 * There must be a full memory barrier on each affected CPU
3208 * between the time that try_stop_cpus() is called and the
3209 * time that it returns.
3210 *
3211 * In the current initial implementation of cpu_stop, the
3212 * above condition is already met when the control reaches
3213 * this point and the following smp_mb() is not strictly
3214 * necessary. Do smp_mb() anyway for documentation and
3215 * robustness against future implementation changes.
3216 */
3217 smp_mb(); /* See above comment block. */
3218 return 0;
3219}
3220
236fefaf
PM
3221/**
3222 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3223 *
3224 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3225 * approach to force the grace period to end quickly. This consumes
3226 * significant time on all CPUs and is unfriendly to real-time workloads,
3227 * so is thus not recommended for any sort of common-case code. In fact,
3228 * if you are using synchronize_sched_expedited() in a loop, please
3229 * restructure your code to batch your updates, and then use a single
3230 * synchronize_sched() instead.
3d3b7db0 3231 *
3d3b7db0
PM
3232 * This implementation can be thought of as an application of ticket
3233 * locking to RCU, with sync_sched_expedited_started and
3234 * sync_sched_expedited_done taking on the roles of the halves
3235 * of the ticket-lock word. Each task atomically increments
3236 * sync_sched_expedited_started upon entry, snapshotting the old value,
3237 * then attempts to stop all the CPUs. If this succeeds, then each
3238 * CPU will have executed a context switch, resulting in an RCU-sched
3239 * grace period. We are then done, so we use atomic_cmpxchg() to
3240 * update sync_sched_expedited_done to match our snapshot -- but
3241 * only if someone else has not already advanced past our snapshot.
3242 *
3243 * On the other hand, if try_stop_cpus() fails, we check the value
3244 * of sync_sched_expedited_done. If it has advanced past our
3245 * initial snapshot, then someone else must have forced a grace period
3246 * some time after we took our snapshot. In this case, our work is
3247 * done for us, and we can simply return. Otherwise, we try again,
3248 * but keep our initial snapshot for purposes of checking for someone
3249 * doing our work for us.
3250 *
3251 * If we fail too many times in a row, we fall back to synchronize_sched().
3252 */
3253void synchronize_sched_expedited(void)
3254{
e0775cef
PM
3255 cpumask_var_t cm;
3256 bool cma = false;
3257 int cpu;
1924bcb0
PM
3258 long firstsnap, s, snap;
3259 int trycount = 0;
40694d66 3260 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3261
1924bcb0
PM
3262 /*
3263 * If we are in danger of counter wrap, just do synchronize_sched().
3264 * By allowing sync_sched_expedited_started to advance no more than
3265 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3266 * that more than 3.5 billion CPUs would be required to force a
3267 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3268 * course be required on a 64-bit system.
3269 */
40694d66
PM
3270 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3271 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
3272 ULONG_MAX / 8)) {
3273 synchronize_sched();
a30489c5 3274 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
3275 return;
3276 }
3d3b7db0 3277
1924bcb0
PM
3278 /*
3279 * Take a ticket. Note that atomic_inc_return() implies a
3280 * full memory barrier.
3281 */
40694d66 3282 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 3283 firstsnap = snap;
dd56af42
PM
3284 if (!try_get_online_cpus()) {
3285 /* CPU hotplug operation in flight, fall back to normal GP. */
3286 wait_rcu_gp(call_rcu_sched);
3287 atomic_long_inc(&rsp->expedited_normal);
3288 return;
3289 }
1cc85961 3290 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0 3291
e0775cef
PM
3292 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3293 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3294 if (cma) {
3295 cpumask_copy(cm, cpu_online_mask);
3296 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3297 for_each_cpu(cpu, cm) {
3298 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3299
3300 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3301 cpumask_clear_cpu(cpu, cm);
3302 }
3303 if (cpumask_weight(cm) == 0)
3304 goto all_cpus_idle;
3305 }
3306
3d3b7db0
PM
3307 /*
3308 * Each pass through the following loop attempts to force a
3309 * context switch on each CPU.
3310 */
e0775cef 3311 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3d3b7db0
PM
3312 synchronize_sched_expedited_cpu_stop,
3313 NULL) == -EAGAIN) {
3314 put_online_cpus();
a30489c5 3315 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3316
1924bcb0 3317 /* Check to see if someone else did our work for us. */
40694d66 3318 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3319 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3320 /* ensure test happens before caller kfree */
4e857c58 3321 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3322 atomic_long_inc(&rsp->expedited_workdone1);
e0775cef 3323 free_cpumask_var(cm);
1924bcb0
PM
3324 return;
3325 }
3d3b7db0
PM
3326
3327 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3328 if (trycount++ < 10) {
3d3b7db0 3329 udelay(trycount * num_online_cpus());
c701d5d9 3330 } else {
3705b88d 3331 wait_rcu_gp(call_rcu_sched);
a30489c5 3332 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3333 free_cpumask_var(cm);
3d3b7db0
PM
3334 return;
3335 }
3336
1924bcb0 3337 /* Recheck to see if someone else did our work for us. */
40694d66 3338 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3339 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3340 /* ensure test happens before caller kfree */
4e857c58 3341 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3342 atomic_long_inc(&rsp->expedited_workdone2);
e0775cef 3343 free_cpumask_var(cm);
3d3b7db0
PM
3344 return;
3345 }
3346
3347 /*
3348 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3349 * callers to piggyback on our grace period. We retry
3350 * after they started, so our grace period works for them,
3351 * and they started after our first try, so their grace
3352 * period works for us.
3d3b7db0 3353 */
dd56af42
PM
3354 if (!try_get_online_cpus()) {
3355 /* CPU hotplug operation in flight, use normal GP. */
3356 wait_rcu_gp(call_rcu_sched);
3357 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3358 free_cpumask_var(cm);
dd56af42
PM
3359 return;
3360 }
40694d66 3361 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3362 smp_mb(); /* ensure read is before try_stop_cpus(). */
3363 }
a30489c5 3364 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0 3365
e0775cef
PM
3366all_cpus_idle:
3367 free_cpumask_var(cm);
3368
3d3b7db0
PM
3369 /*
3370 * Everyone up to our most recent fetch is covered by our grace
3371 * period. Update the counter, but only if our work is still
3372 * relevant -- which it won't be if someone who started later
1924bcb0 3373 * than we did already did their update.
3d3b7db0
PM
3374 */
3375 do {
a30489c5 3376 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3377 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3378 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3379 /* ensure test happens before caller kfree */
4e857c58 3380 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3381 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3382 break;
3383 }
40694d66 3384 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3385 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3386
3387 put_online_cpus();
3388}
3389EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3390
64db4cff
PM
3391/*
3392 * Check to see if there is any immediate RCU-related work to be done
3393 * by the current CPU, for the specified type of RCU, returning 1 if so.
3394 * The checks are in order of increasing expense: checks that can be
3395 * carried out against CPU-local state are performed first. However,
3396 * we must check for CPU stalls first, else we might not get a chance.
3397 */
3398static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3399{
2f51f988
PM
3400 struct rcu_node *rnp = rdp->mynode;
3401
64db4cff
PM
3402 rdp->n_rcu_pending++;
3403
3404 /* Check for CPU stalls, if enabled. */
3405 check_cpu_stall(rsp, rdp);
3406
a096932f
PM
3407 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3408 if (rcu_nohz_full_cpu(rsp))
3409 return 0;
3410
64db4cff 3411 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3412 if (rcu_scheduler_fully_active &&
5cd37193
PM
3413 rdp->qs_pending && !rdp->passed_quiesce &&
3414 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
d21670ac 3415 rdp->n_rp_qs_pending++;
5cd37193
PM
3416 } else if (rdp->qs_pending &&
3417 (rdp->passed_quiesce ||
3418 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3419 rdp->n_rp_report_qs++;
64db4cff 3420 return 1;
7ba5c840 3421 }
64db4cff
PM
3422
3423 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3424 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3425 rdp->n_rp_cb_ready++;
64db4cff 3426 return 1;
7ba5c840 3427 }
64db4cff
PM
3428
3429 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3430 if (cpu_needs_another_gp(rsp, rdp)) {
3431 rdp->n_rp_cpu_needs_gp++;
64db4cff 3432 return 1;
7ba5c840 3433 }
64db4cff
PM
3434
3435 /* Has another RCU grace period completed? */
7d0ae808 3436 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3437 rdp->n_rp_gp_completed++;
64db4cff 3438 return 1;
7ba5c840 3439 }
64db4cff
PM
3440
3441 /* Has a new RCU grace period started? */
7d0ae808
PM
3442 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3443 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3444 rdp->n_rp_gp_started++;
64db4cff 3445 return 1;
7ba5c840 3446 }
64db4cff 3447
96d3fd0d
PM
3448 /* Does this CPU need a deferred NOCB wakeup? */
3449 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3450 rdp->n_rp_nocb_defer_wakeup++;
3451 return 1;
3452 }
3453
64db4cff 3454 /* nothing to do */
7ba5c840 3455 rdp->n_rp_need_nothing++;
64db4cff
PM
3456 return 0;
3457}
3458
3459/*
3460 * Check to see if there is any immediate RCU-related work to be done
3461 * by the current CPU, returning 1 if so. This function is part of the
3462 * RCU implementation; it is -not- an exported member of the RCU API.
3463 */
e3950ecd 3464static int rcu_pending(void)
64db4cff 3465{
6ce75a23
PM
3466 struct rcu_state *rsp;
3467
3468 for_each_rcu_flavor(rsp)
e3950ecd 3469 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3470 return 1;
3471 return 0;
64db4cff
PM
3472}
3473
3474/*
c0f4dfd4
PM
3475 * Return true if the specified CPU has any callback. If all_lazy is
3476 * non-NULL, store an indication of whether all callbacks are lazy.
3477 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3478 */
aa6da514 3479static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3480{
c0f4dfd4
PM
3481 bool al = true;
3482 bool hc = false;
3483 struct rcu_data *rdp;
6ce75a23
PM
3484 struct rcu_state *rsp;
3485
c0f4dfd4 3486 for_each_rcu_flavor(rsp) {
aa6da514 3487 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3488 if (!rdp->nxtlist)
3489 continue;
3490 hc = true;
3491 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3492 al = false;
69c8d28c
PM
3493 break;
3494 }
c0f4dfd4
PM
3495 }
3496 if (all_lazy)
3497 *all_lazy = al;
3498 return hc;
64db4cff
PM
3499}
3500
a83eff0a
PM
3501/*
3502 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3503 * the compiler is expected to optimize this away.
3504 */
e66c33d5 3505static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3506 int cpu, unsigned long done)
3507{
3508 trace_rcu_barrier(rsp->name, s, cpu,
3509 atomic_read(&rsp->barrier_cpu_count), done);
3510}
3511
b1420f1c
PM
3512/*
3513 * RCU callback function for _rcu_barrier(). If we are last, wake
3514 * up the task executing _rcu_barrier().
3515 */
24ebbca8 3516static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3517{
24ebbca8
PM
3518 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3519 struct rcu_state *rsp = rdp->rsp;
3520
a83eff0a
PM
3521 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3522 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3523 complete(&rsp->barrier_completion);
a83eff0a
PM
3524 } else {
3525 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3526 }
d0ec774c
PM
3527}
3528
3529/*
3530 * Called with preemption disabled, and from cross-cpu IRQ context.
3531 */
3532static void rcu_barrier_func(void *type)
3533{
037b64ed 3534 struct rcu_state *rsp = type;
fa07a58f 3535 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3536
a83eff0a 3537 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3538 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3539 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3540}
3541
d0ec774c
PM
3542/*
3543 * Orchestrate the specified type of RCU barrier, waiting for all
3544 * RCU callbacks of the specified type to complete.
3545 */
037b64ed 3546static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3547{
b1420f1c 3548 int cpu;
b1420f1c 3549 struct rcu_data *rdp;
7d0ae808 3550 unsigned long snap = READ_ONCE(rsp->n_barrier_done);
cf3a9c48 3551 unsigned long snap_done;
b1420f1c 3552
a83eff0a 3553 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3554
e74f4c45 3555 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3556 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3557
cf3a9c48
PM
3558 /*
3559 * Ensure that all prior references, including to ->n_barrier_done,
3560 * are ordered before the _rcu_barrier() machinery.
3561 */
3562 smp_mb(); /* See above block comment. */
3563
3564 /*
3565 * Recheck ->n_barrier_done to see if others did our work for us.
3566 * This means checking ->n_barrier_done for an even-to-odd-to-even
3567 * transition. The "if" expression below therefore rounds the old
3568 * value up to the next even number and adds two before comparing.
3569 */
458fb381 3570 snap_done = rsp->n_barrier_done;
a83eff0a 3571 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3572
3573 /*
3574 * If the value in snap is odd, we needed to wait for the current
3575 * rcu_barrier() to complete, then wait for the next one, in other
3576 * words, we need the value of snap_done to be three larger than
3577 * the value of snap. On the other hand, if the value in snap is
3578 * even, we only had to wait for the next rcu_barrier() to complete,
3579 * in other words, we need the value of snap_done to be only two
3580 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3581 * this for us (thank you, Linus!).
3582 */
3583 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3584 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3585 smp_mb(); /* caller's subsequent code after above check. */
3586 mutex_unlock(&rsp->barrier_mutex);
3587 return;
3588 }
3589
3590 /*
3591 * Increment ->n_barrier_done to avoid duplicate work. Use
7d0ae808 3592 * WRITE_ONCE() to prevent the compiler from speculating
cf3a9c48
PM
3593 * the increment to precede the early-exit check.
3594 */
7d0ae808 3595 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
cf3a9c48 3596 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3597 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3598 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3599
d0ec774c 3600 /*
b1420f1c
PM
3601 * Initialize the count to one rather than to zero in order to
3602 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3603 * (or preemption of this task). Exclude CPU-hotplug operations
3604 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3605 */
7db74df8 3606 init_completion(&rsp->barrier_completion);
24ebbca8 3607 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3608 get_online_cpus();
b1420f1c
PM
3609
3610 /*
1331e7a1
PM
3611 * Force each CPU with callbacks to register a new callback.
3612 * When that callback is invoked, we will know that all of the
3613 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3614 */
3fbfbf7a 3615 for_each_possible_cpu(cpu) {
d1e43fa5 3616 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3617 continue;
b1420f1c 3618 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3619 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3620 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3621 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3622 rsp->n_barrier_done);
3623 } else {
3624 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3625 rsp->n_barrier_done);
41050a00 3626 smp_mb__before_atomic();
d7e29933
PM
3627 atomic_inc(&rsp->barrier_cpu_count);
3628 __call_rcu(&rdp->barrier_head,
3629 rcu_barrier_callback, rsp, cpu, 0);
3630 }
7d0ae808 3631 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a
PM
3632 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3633 rsp->n_barrier_done);
037b64ed 3634 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3635 } else {
a83eff0a
PM
3636 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3637 rsp->n_barrier_done);
b1420f1c
PM
3638 }
3639 }
1331e7a1 3640 put_online_cpus();
b1420f1c
PM
3641
3642 /*
3643 * Now that we have an rcu_barrier_callback() callback on each
3644 * CPU, and thus each counted, remove the initial count.
3645 */
24ebbca8 3646 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3647 complete(&rsp->barrier_completion);
b1420f1c 3648
cf3a9c48
PM
3649 /* Increment ->n_barrier_done to prevent duplicate work. */
3650 smp_mb(); /* Keep increment after above mechanism. */
7d0ae808 3651 WRITE_ONCE(rsp->n_barrier_done, rsp->n_barrier_done + 1);
cf3a9c48 3652 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3653 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3654 smp_mb(); /* Keep increment before caller's subsequent code. */
3655
b1420f1c 3656 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3657 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3658
3659 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3660 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3661}
d0ec774c
PM
3662
3663/**
3664 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3665 */
3666void rcu_barrier_bh(void)
3667{
037b64ed 3668 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3669}
3670EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3671
3672/**
3673 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3674 */
3675void rcu_barrier_sched(void)
3676{
037b64ed 3677 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3678}
3679EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3680
0aa04b05
PM
3681/*
3682 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3683 * first CPU in a given leaf rcu_node structure coming online. The caller
3684 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3685 * disabled.
3686 */
3687static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3688{
3689 long mask;
3690 struct rcu_node *rnp = rnp_leaf;
3691
3692 for (;;) {
3693 mask = rnp->grpmask;
3694 rnp = rnp->parent;
3695 if (rnp == NULL)
3696 return;
3697 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
3698 rnp->qsmaskinit |= mask;
3699 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
3700 }
3701}
3702
64db4cff 3703/*
27569620 3704 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3705 */
27569620
PM
3706static void __init
3707rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3708{
3709 unsigned long flags;
394f99a9 3710 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3711 struct rcu_node *rnp = rcu_get_root(rsp);
3712
3713 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3714 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3715 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 3716 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3717 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3718 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3719 rdp->cpu = cpu;
d4c08f2a 3720 rdp->rsp = rsp;
3fbfbf7a 3721 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3722 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3723}
3724
3725/*
3726 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3727 * offline event can be happening at a given time. Note also that we
3728 * can accept some slop in the rsp->completed access due to the fact
3729 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3730 */
49fb4c62 3731static void
9b67122a 3732rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3733{
3734 unsigned long flags;
64db4cff 3735 unsigned long mask;
394f99a9 3736 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3737 struct rcu_node *rnp = rcu_get_root(rsp);
3738
3739 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3740 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3741 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3742 rdp->qlen_last_fqs_check = 0;
3743 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3744 rdp->blimit = blimit;
39c8d313
PM
3745 if (!rdp->nxtlist)
3746 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3747 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3748 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3749 atomic_set(&rdp->dynticks->dynticks,
3750 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3751 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3752
0aa04b05
PM
3753 /*
3754 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3755 * propagation up the rcu_node tree will happen at the beginning
3756 * of the next grace period.
3757 */
64db4cff
PM
3758 rnp = rdp->mynode;
3759 mask = rdp->grpmask;
0aa04b05
PM
3760 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
3761 smp_mb__after_unlock_lock();
3762 rnp->qsmaskinitnext |= mask;
3763 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3764 rdp->completed = rnp->completed;
3765 rdp->passed_quiesce = false;
a738eec6 3766 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
0aa04b05
PM
3767 rdp->qs_pending = false;
3768 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3769 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
3770}
3771
49fb4c62 3772static void rcu_prepare_cpu(int cpu)
64db4cff 3773{
6ce75a23
PM
3774 struct rcu_state *rsp;
3775
3776 for_each_rcu_flavor(rsp)
9b67122a 3777 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3778}
3779
3780/*
f41d911f 3781 * Handle CPU online/offline notification events.
64db4cff 3782 */
88428cc5
PM
3783int rcu_cpu_notify(struct notifier_block *self,
3784 unsigned long action, void *hcpu)
64db4cff
PM
3785{
3786 long cpu = (long)hcpu;
e534165b 3787 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3788 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3789 struct rcu_state *rsp;
64db4cff
PM
3790
3791 switch (action) {
3792 case CPU_UP_PREPARE:
3793 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3794 rcu_prepare_cpu(cpu);
3795 rcu_prepare_kthreads(cpu);
35ce7f29 3796 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3797 break;
3798 case CPU_ONLINE:
0f962a5e 3799 case CPU_DOWN_FAILED:
5d01bbd1 3800 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3801 break;
3802 case CPU_DOWN_PREPARE:
34ed6246 3803 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3804 break;
d0ec774c
PM
3805 case CPU_DYING:
3806 case CPU_DYING_FROZEN:
6ce75a23
PM
3807 for_each_rcu_flavor(rsp)
3808 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3809 break;
88428cc5
PM
3810 case CPU_DYING_IDLE:
3811 for_each_rcu_flavor(rsp) {
3812 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3813 }
3814 break;
64db4cff
PM
3815 case CPU_DEAD:
3816 case CPU_DEAD_FROZEN:
3817 case CPU_UP_CANCELED:
3818 case CPU_UP_CANCELED_FROZEN:
776d6807 3819 for_each_rcu_flavor(rsp) {
6ce75a23 3820 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3821 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3822 }
64db4cff
PM
3823 break;
3824 default:
3825 break;
3826 }
34ed6246 3827 return NOTIFY_OK;
64db4cff
PM
3828}
3829
d1d74d14
BP
3830static int rcu_pm_notify(struct notifier_block *self,
3831 unsigned long action, void *hcpu)
3832{
3833 switch (action) {
3834 case PM_HIBERNATION_PREPARE:
3835 case PM_SUSPEND_PREPARE:
3836 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3837 rcu_expedite_gp();
d1d74d14
BP
3838 break;
3839 case PM_POST_HIBERNATION:
3840 case PM_POST_SUSPEND:
5afff48b
PM
3841 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3842 rcu_unexpedite_gp();
d1d74d14
BP
3843 break;
3844 default:
3845 break;
3846 }
3847 return NOTIFY_OK;
3848}
3849
b3dbec76 3850/*
9386c0b7 3851 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3852 */
3853static int __init rcu_spawn_gp_kthread(void)
3854{
3855 unsigned long flags;
a94844b2 3856 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3857 struct rcu_node *rnp;
3858 struct rcu_state *rsp;
a94844b2 3859 struct sched_param sp;
b3dbec76
PM
3860 struct task_struct *t;
3861
a94844b2
PM
3862 /* Force priority into range. */
3863 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3864 kthread_prio = 1;
3865 else if (kthread_prio < 0)
3866 kthread_prio = 0;
3867 else if (kthread_prio > 99)
3868 kthread_prio = 99;
3869 if (kthread_prio != kthread_prio_in)
3870 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3871 kthread_prio, kthread_prio_in);
3872
9386c0b7 3873 rcu_scheduler_fully_active = 1;
b3dbec76 3874 for_each_rcu_flavor(rsp) {
a94844b2 3875 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3876 BUG_ON(IS_ERR(t));
3877 rnp = rcu_get_root(rsp);
3878 raw_spin_lock_irqsave(&rnp->lock, flags);
3879 rsp->gp_kthread = t;
a94844b2
PM
3880 if (kthread_prio) {
3881 sp.sched_priority = kthread_prio;
3882 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3883 }
3884 wake_up_process(t);
b3dbec76
PM
3885 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3886 }
35ce7f29 3887 rcu_spawn_nocb_kthreads();
9386c0b7 3888 rcu_spawn_boost_kthreads();
b3dbec76
PM
3889 return 0;
3890}
3891early_initcall(rcu_spawn_gp_kthread);
3892
bbad9379
PM
3893/*
3894 * This function is invoked towards the end of the scheduler's initialization
3895 * process. Before this is called, the idle task might contain
3896 * RCU read-side critical sections (during which time, this idle
3897 * task is booting the system). After this function is called, the
3898 * idle tasks are prohibited from containing RCU read-side critical
3899 * sections. This function also enables RCU lockdep checking.
3900 */
3901void rcu_scheduler_starting(void)
3902{
3903 WARN_ON(num_online_cpus() != 1);
3904 WARN_ON(nr_context_switches() > 0);
3905 rcu_scheduler_active = 1;
3906}
3907
64db4cff
PM
3908/*
3909 * Compute the per-level fanout, either using the exact fanout specified
3910 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3911 */
64db4cff
PM
3912static void __init rcu_init_levelspread(struct rcu_state *rsp)
3913{
64db4cff
PM
3914 int i;
3915
66292405
PM
3916 if (IS_ENABLED(CONFIG_RCU_FANOUT_EXACT)) {
3917 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3918 for (i = rcu_num_lvls - 2; i >= 0; i--)
3919 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3920 } else {
3921 int ccur;
3922 int cprv;
3923
3924 cprv = nr_cpu_ids;
3925 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3926 ccur = rsp->levelcnt[i];
3927 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3928 cprv = ccur;
3929 }
64db4cff
PM
3930 }
3931}
64db4cff
PM
3932
3933/*
3934 * Helper function for rcu_init() that initializes one rcu_state structure.
3935 */
394f99a9
LJ
3936static void __init rcu_init_one(struct rcu_state *rsp,
3937 struct rcu_data __percpu *rda)
64db4cff 3938{
b4426b49
FF
3939 static const char * const buf[] = {
3940 "rcu_node_0",
3941 "rcu_node_1",
3942 "rcu_node_2",
3943 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3944 static const char * const fqs[] = {
3945 "rcu_node_fqs_0",
3946 "rcu_node_fqs_1",
3947 "rcu_node_fqs_2",
3948 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3949 static u8 fl_mask = 0x1;
64db4cff
PM
3950 int cpustride = 1;
3951 int i;
3952 int j;
3953 struct rcu_node *rnp;
3954
b6407e86
PM
3955 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3956
4930521a
PM
3957 /* Silence gcc 4.8 warning about array index out of range. */
3958 if (rcu_num_lvls > RCU_NUM_LVLS)
3959 panic("rcu_init_one: rcu_num_lvls overflow");
3960
64db4cff
PM
3961 /* Initialize the level-tracking arrays. */
3962
f885b7f2
PM
3963 for (i = 0; i < rcu_num_lvls; i++)
3964 rsp->levelcnt[i] = num_rcu_lvl[i];
3965 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3966 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3967 rcu_init_levelspread(rsp);
4a81e832
PM
3968 rsp->flavor_mask = fl_mask;
3969 fl_mask <<= 1;
64db4cff
PM
3970
3971 /* Initialize the elements themselves, starting from the leaves. */
3972
f885b7f2 3973 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3974 cpustride *= rsp->levelspread[i];
3975 rnp = rsp->level[i];
3976 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3977 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3978 lockdep_set_class_and_name(&rnp->lock,
3979 &rcu_node_class[i], buf[i]);
394f2769
PM
3980 raw_spin_lock_init(&rnp->fqslock);
3981 lockdep_set_class_and_name(&rnp->fqslock,
3982 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3983 rnp->gpnum = rsp->gpnum;
3984 rnp->completed = rsp->completed;
64db4cff
PM
3985 rnp->qsmask = 0;
3986 rnp->qsmaskinit = 0;
3987 rnp->grplo = j * cpustride;
3988 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3989 if (rnp->grphi >= nr_cpu_ids)
3990 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3991 if (i == 0) {
3992 rnp->grpnum = 0;
3993 rnp->grpmask = 0;
3994 rnp->parent = NULL;
3995 } else {
3996 rnp->grpnum = j % rsp->levelspread[i - 1];
3997 rnp->grpmask = 1UL << rnp->grpnum;
3998 rnp->parent = rsp->level[i - 1] +
3999 j / rsp->levelspread[i - 1];
4000 }
4001 rnp->level = i;
12f5f524 4002 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4003 rcu_init_one_nocb(rnp);
64db4cff
PM
4004 }
4005 }
0c34029a 4006
b3dbec76 4007 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 4008 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4009 for_each_possible_cpu(i) {
4a90a068 4010 while (i > rnp->grphi)
0c34029a 4011 rnp++;
394f99a9 4012 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4013 rcu_boot_init_percpu_data(i, rsp);
4014 }
6ce75a23 4015 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4016}
4017
f885b7f2
PM
4018/*
4019 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4020 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4021 * the ->node array in the rcu_state structure.
4022 */
4023static void __init rcu_init_geometry(void)
4024{
026ad283 4025 ulong d;
f885b7f2
PM
4026 int i;
4027 int j;
cca6f393 4028 int n = nr_cpu_ids;
f885b7f2
PM
4029 int rcu_capacity[MAX_RCU_LVLS + 1];
4030
026ad283
PM
4031 /*
4032 * Initialize any unspecified boot parameters.
4033 * The default values of jiffies_till_first_fqs and
4034 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4035 * value, which is a function of HZ, then adding one for each
4036 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4037 */
4038 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4039 if (jiffies_till_first_fqs == ULONG_MAX)
4040 jiffies_till_first_fqs = d;
4041 if (jiffies_till_next_fqs == ULONG_MAX)
4042 jiffies_till_next_fqs = d;
4043
f885b7f2 4044 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
4045 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
4046 nr_cpu_ids == NR_CPUS)
f885b7f2 4047 return;
39479098
PM
4048 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4049 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
4050
4051 /*
4052 * Compute number of nodes that can be handled an rcu_node tree
4053 * with the given number of levels. Setting rcu_capacity[0] makes
4054 * some of the arithmetic easier.
4055 */
4056 rcu_capacity[0] = 1;
4057 rcu_capacity[1] = rcu_fanout_leaf;
4058 for (i = 2; i <= MAX_RCU_LVLS; i++)
4059 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
4060
4061 /*
4062 * The boot-time rcu_fanout_leaf parameter is only permitted
4063 * to increase the leaf-level fanout, not decrease it. Of course,
4064 * the leaf-level fanout cannot exceed the number of bits in
4065 * the rcu_node masks. Finally, the tree must be able to accommodate
4066 * the configured number of CPUs. Complain and fall back to the
4067 * compile-time values if these limits are exceeded.
4068 */
4069 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
4070 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
4071 n > rcu_capacity[MAX_RCU_LVLS]) {
4072 WARN_ON(1);
4073 return;
4074 }
4075
4076 /* Calculate the number of rcu_nodes at each level of the tree. */
4077 for (i = 1; i <= MAX_RCU_LVLS; i++)
4078 if (n <= rcu_capacity[i]) {
4079 for (j = 0; j <= i; j++)
4080 num_rcu_lvl[j] =
4081 DIV_ROUND_UP(n, rcu_capacity[i - j]);
4082 rcu_num_lvls = i;
4083 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
4084 num_rcu_lvl[j] = 0;
4085 break;
4086 }
4087
4088 /* Calculate the total number of rcu_node structures. */
4089 rcu_num_nodes = 0;
4090 for (i = 0; i <= MAX_RCU_LVLS; i++)
4091 rcu_num_nodes += num_rcu_lvl[i];
4092 rcu_num_nodes -= n;
4093}
4094
9f680ab4 4095void __init rcu_init(void)
64db4cff 4096{
017c4261 4097 int cpu;
9f680ab4 4098
47627678
PM
4099 rcu_early_boot_tests();
4100
f41d911f 4101 rcu_bootup_announce();
f885b7f2 4102 rcu_init_geometry();
394f99a9 4103 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 4104 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 4105 __rcu_init_preempt();
b5b39360 4106 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4107
4108 /*
4109 * We don't need protection against CPU-hotplug here because
4110 * this is called early in boot, before either interrupts
4111 * or the scheduler are operational.
4112 */
4113 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4114 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4115 for_each_online_cpu(cpu)
4116 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
4117}
4118
4102adab 4119#include "tree_plugin.h"
This page took 2.147641 seconds and 5 git commands to generate.