rcu: Fix a typo in a comment
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
af658dca 57#include <linux/trace_events.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f7f7bac9
SRRH
71/*
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
78 */
a8a29b3b
AB
79#ifdef CONFIG_TRACING
80# define DEFINE_RCU_TPS(sname) \
f7f7bac9 81static char sname##_varname[] = #sname; \
a8a29b3b
AB
82static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83# define RCU_STATE_NAME(sname) sname##_varname
84#else
85# define DEFINE_RCU_TPS(sname)
86# define RCU_STATE_NAME(sname) __stringify(sname)
87#endif
88
89#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90DEFINE_RCU_TPS(sname) \
c92fb057 91static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 92struct rcu_state sname##_state = { \
6c90cc7b 93 .level = { &sname##_state.node[0] }, \
2723249a 94 .rda = &sname##_data, \
037b64ed 95 .call = cr, \
77f81fe0 96 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
7b2e6011 99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 103 .name = RCU_STATE_NAME(sname), \
a4889858 104 .abbr = sabbr, \
f6a12f34 105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 107}
64db4cff 108
a41bfeb2
SRRH
109RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
110RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 111
b28a7c01 112static struct rcu_state *const rcu_state_p;
6ce75a23 113LIST_HEAD(rcu_struct_flavors);
27f4d280 114
a3dc2948
PM
115/* Dump rcu_node combining tree at boot to verify correct setup. */
116static bool dump_tree;
117module_param(dump_tree, bool, 0444);
7fa27001
PM
118/* Control rcu_node-tree auto-balancing at boot time. */
119static bool rcu_fanout_exact;
120module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
121/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 123module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 124int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
125/* Number of rcu_nodes at specified level. */
126static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
b0d30417
PM
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
0d95092c 133 * optimize synchronize_rcu() to a simple barrier(). When this variable
b0d30417
PM
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
bbad9379
PM
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
b0d30417
PM
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
0aa04b05
PM
155static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 157static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
158static void invoke_rcu_core(void);
159static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
160static void rcu_report_exp_rdp(struct rcu_state *rsp,
161 struct rcu_data *rdp, bool wake);
3549c2bc 162static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 163
a94844b2 164/* rcuc/rcub kthread realtime priority */
26730f55 165#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 166static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
167#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
170module_param(kthread_prio, int, 0644);
171
8d7dc928 172/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
173
174#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
175static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
176module_param(gp_preinit_delay, int, 0644);
177#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
178static const int gp_preinit_delay;
179#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180
8d7dc928
PM
181#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
182static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 183module_param(gp_init_delay, int, 0644);
8d7dc928
PM
184#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185static const int gp_init_delay;
186#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 187
0f41c0dd
PM
188#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
189static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
190module_param(gp_cleanup_delay, int, 0644);
191#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
192static const int gp_cleanup_delay;
193#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194
eab128e8
PM
195/*
196 * Number of grace periods between delays, normalized by the duration of
197 * the delay. The longer the the delay, the more the grace periods between
198 * each delay. The reason for this normalization is that it means that,
199 * for non-zero delays, the overall slowdown of grace periods is constant
200 * regardless of the duration of the delay. This arrangement balances
201 * the need for long delays to increase some race probabilities with the
202 * need for fast grace periods to increase other race probabilities.
203 */
204#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 205
4a298656
PM
206/*
207 * Track the rcutorture test sequence number and the update version
208 * number within a given test. The rcutorture_testseq is incremented
209 * on every rcutorture module load and unload, so has an odd value
210 * when a test is running. The rcutorture_vernum is set to zero
211 * when rcutorture starts and is incremented on each rcutorture update.
212 * These variables enable correlating rcutorture output with the
213 * RCU tracing information.
214 */
215unsigned long rcutorture_testseq;
216unsigned long rcutorture_vernum;
217
0aa04b05
PM
218/*
219 * Compute the mask of online CPUs for the specified rcu_node structure.
220 * This will not be stable unless the rcu_node structure's ->lock is
221 * held, but the bit corresponding to the current CPU will be stable
222 * in most contexts.
223 */
224unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
225{
7d0ae808 226 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
227}
228
fc2219d4 229/*
7d0ae808 230 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
231 * permit this function to be invoked without holding the root rcu_node
232 * structure's ->lock, but of course results can be subject to change.
233 */
234static int rcu_gp_in_progress(struct rcu_state *rsp)
235{
7d0ae808 236 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
237}
238
b1f77b05 239/*
d6714c22 240 * Note a quiescent state. Because we do not need to know
b1f77b05 241 * how many quiescent states passed, just if there was at least
d6714c22 242 * one since the start of the grace period, this just sets a flag.
e4cc1f22 243 * The caller must have disabled preemption.
b1f77b05 244 */
284a8c93 245void rcu_sched_qs(void)
b1f77b05 246{
fecbf6f0
PM
247 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
248 return;
249 trace_rcu_grace_period(TPS("rcu_sched"),
250 __this_cpu_read(rcu_sched_data.gpnum),
251 TPS("cpuqs"));
252 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
253 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
254 return;
46a5d164
PM
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
256 rcu_report_exp_rdp(&rcu_sched_state,
257 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
258}
259
284a8c93 260void rcu_bh_qs(void)
b1f77b05 261{
5b74c458 262 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
263 trace_rcu_grace_period(TPS("rcu_bh"),
264 __this_cpu_read(rcu_bh_data.gpnum),
265 TPS("cpuqs"));
5b74c458 266 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 267 }
b1f77b05 268}
64db4cff 269
4a81e832
PM
270static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
271
272static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
273 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
274 .dynticks = ATOMIC_INIT(1),
275#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
276 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
277 .dynticks_idle = ATOMIC_INIT(1),
278#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
279};
280
5cd37193
PM
281DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
282EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
283
4a81e832
PM
284/*
285 * Let the RCU core know that this CPU has gone through the scheduler,
286 * which is a quiescent state. This is called when the need for a
287 * quiescent state is urgent, so we burn an atomic operation and full
288 * memory barriers to let the RCU core know about it, regardless of what
289 * this CPU might (or might not) do in the near future.
290 *
291 * We inform the RCU core by emulating a zero-duration dyntick-idle
292 * period, which we in turn do by incrementing the ->dynticks counter
293 * by two.
46a5d164
PM
294 *
295 * The caller must have disabled interrupts.
4a81e832
PM
296 */
297static void rcu_momentary_dyntick_idle(void)
298{
4a81e832
PM
299 struct rcu_data *rdp;
300 struct rcu_dynticks *rdtp;
301 int resched_mask;
302 struct rcu_state *rsp;
303
4a81e832
PM
304 /*
305 * Yes, we can lose flag-setting operations. This is OK, because
306 * the flag will be set again after some delay.
307 */
308 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
309 raw_cpu_write(rcu_sched_qs_mask, 0);
310
311 /* Find the flavor that needs a quiescent state. */
312 for_each_rcu_flavor(rsp) {
313 rdp = raw_cpu_ptr(rsp->rda);
314 if (!(resched_mask & rsp->flavor_mask))
315 continue;
316 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
317 if (READ_ONCE(rdp->mynode->completed) !=
318 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
319 continue;
320
321 /*
322 * Pretend to be momentarily idle for the quiescent state.
323 * This allows the grace-period kthread to record the
324 * quiescent state, with no need for this CPU to do anything
325 * further.
326 */
327 rdtp = this_cpu_ptr(&rcu_dynticks);
328 smp_mb__before_atomic(); /* Earlier stuff before QS. */
329 atomic_add(2, &rdtp->dynticks); /* QS. */
330 smp_mb__after_atomic(); /* Later stuff after QS. */
331 break;
332 }
4a81e832
PM
333}
334
25502a6c
PM
335/*
336 * Note a context switch. This is a quiescent state for RCU-sched,
337 * and requires special handling for preemptible RCU.
46a5d164 338 * The caller must have disabled interrupts.
25502a6c 339 */
38200cf2 340void rcu_note_context_switch(void)
25502a6c 341{
bb73c52b 342 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 343 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 344 rcu_sched_qs();
38200cf2 345 rcu_preempt_note_context_switch();
4a81e832
PM
346 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
347 rcu_momentary_dyntick_idle();
f7f7bac9 348 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 349 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 350}
29ce8310 351EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 352
5cd37193 353/*
1925d196 354 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
355 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
356 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 357 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
358 * be none of them). Either way, do a lightweight quiescent state for
359 * all RCU flavors.
bb73c52b
BF
360 *
361 * The barrier() calls are redundant in the common case when this is
362 * called externally, but just in case this is called from within this
363 * file.
364 *
5cd37193
PM
365 */
366void rcu_all_qs(void)
367{
46a5d164
PM
368 unsigned long flags;
369
bb73c52b 370 barrier(); /* Avoid RCU read-side critical sections leaking down. */
46a5d164
PM
371 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
372 local_irq_save(flags);
5cd37193 373 rcu_momentary_dyntick_idle();
46a5d164
PM
374 local_irq_restore(flags);
375 }
a1e12248
PM
376 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
377 /*
378 * Yes, we just checked a per-CPU variable with preemption
379 * enabled, so we might be migrated to some other CPU at
380 * this point. That is OK because in that case, the
381 * migration will supply the needed quiescent state.
382 * We might end up needlessly disabling preemption and
383 * invoking rcu_sched_qs() on the destination CPU, but
384 * the probability and cost are both quite low, so this
385 * should not be a problem in practice.
386 */
387 preempt_disable();
388 rcu_sched_qs();
389 preempt_enable();
390 }
5cd37193 391 this_cpu_inc(rcu_qs_ctr);
bb73c52b 392 barrier(); /* Avoid RCU read-side critical sections leaking up. */
5cd37193
PM
393}
394EXPORT_SYMBOL_GPL(rcu_all_qs);
395
878d7439
ED
396static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
397static long qhimark = 10000; /* If this many pending, ignore blimit. */
398static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 399
878d7439
ED
400module_param(blimit, long, 0444);
401module_param(qhimark, long, 0444);
402module_param(qlowmark, long, 0444);
3d76c082 403
026ad283
PM
404static ulong jiffies_till_first_fqs = ULONG_MAX;
405static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 406static bool rcu_kick_kthreads;
d40011f6
PM
407
408module_param(jiffies_till_first_fqs, ulong, 0644);
409module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 410module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 411
4a81e832
PM
412/*
413 * How long the grace period must be before we start recruiting
414 * quiescent-state help from rcu_note_context_switch().
415 */
416static ulong jiffies_till_sched_qs = HZ / 20;
417module_param(jiffies_till_sched_qs, ulong, 0644);
418
48a7639c 419static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 420 struct rcu_data *rdp);
217af2a2
PM
421static void force_qs_rnp(struct rcu_state *rsp,
422 int (*f)(struct rcu_data *rsp, bool *isidle,
423 unsigned long *maxj),
424 bool *isidle, unsigned long *maxj);
4cdfc175 425static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 426static int rcu_pending(void);
64db4cff
PM
427
428/*
917963d0 429 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 430 */
917963d0
PM
431unsigned long rcu_batches_started(void)
432{
433 return rcu_state_p->gpnum;
434}
435EXPORT_SYMBOL_GPL(rcu_batches_started);
436
437/*
438 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 439 */
917963d0
PM
440unsigned long rcu_batches_started_sched(void)
441{
442 return rcu_sched_state.gpnum;
443}
444EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
445
446/*
447 * Return the number of RCU BH batches started thus far for debug & stats.
448 */
449unsigned long rcu_batches_started_bh(void)
450{
451 return rcu_bh_state.gpnum;
452}
453EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
454
455/*
456 * Return the number of RCU batches completed thus far for debug & stats.
457 */
458unsigned long rcu_batches_completed(void)
459{
460 return rcu_state_p->completed;
461}
462EXPORT_SYMBOL_GPL(rcu_batches_completed);
463
464/*
465 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 466 */
9733e4f0 467unsigned long rcu_batches_completed_sched(void)
64db4cff 468{
d6714c22 469 return rcu_sched_state.completed;
64db4cff 470}
d6714c22 471EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
472
473/*
917963d0 474 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 475 */
9733e4f0 476unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
477{
478 return rcu_bh_state.completed;
479}
480EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
481
291783b8
PM
482/*
483 * Return the number of RCU expedited batches completed thus far for
484 * debug & stats. Odd numbers mean that a batch is in progress, even
485 * numbers mean idle. The value returned will thus be roughly double
486 * the cumulative batches since boot.
487 */
488unsigned long rcu_exp_batches_completed(void)
489{
490 return rcu_state_p->expedited_sequence;
491}
492EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
493
494/*
495 * Return the number of RCU-sched expedited batches completed thus far
496 * for debug & stats. Similar to rcu_exp_batches_completed().
497 */
498unsigned long rcu_exp_batches_completed_sched(void)
499{
500 return rcu_sched_state.expedited_sequence;
501}
502EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
503
a381d757
ACB
504/*
505 * Force a quiescent state.
506 */
507void rcu_force_quiescent_state(void)
508{
e534165b 509 force_quiescent_state(rcu_state_p);
a381d757
ACB
510}
511EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
512
bf66f18e
PM
513/*
514 * Force a quiescent state for RCU BH.
515 */
516void rcu_bh_force_quiescent_state(void)
517{
4cdfc175 518 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
519}
520EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
521
e7580f33
PM
522/*
523 * Force a quiescent state for RCU-sched.
524 */
525void rcu_sched_force_quiescent_state(void)
526{
527 force_quiescent_state(&rcu_sched_state);
528}
529EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
530
afea227f
PM
531/*
532 * Show the state of the grace-period kthreads.
533 */
534void show_rcu_gp_kthreads(void)
535{
536 struct rcu_state *rsp;
537
538 for_each_rcu_flavor(rsp) {
539 pr_info("%s: wait state: %d ->state: %#lx\n",
540 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
541 /* sched_show_task(rsp->gp_kthread); */
542 }
543}
544EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
545
4a298656
PM
546/*
547 * Record the number of times rcutorture tests have been initiated and
548 * terminated. This information allows the debugfs tracing stats to be
549 * correlated to the rcutorture messages, even when the rcutorture module
550 * is being repeatedly loaded and unloaded. In other words, we cannot
551 * store this state in rcutorture itself.
552 */
553void rcutorture_record_test_transition(void)
554{
555 rcutorture_testseq++;
556 rcutorture_vernum = 0;
557}
558EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
559
ad0dc7f9
PM
560/*
561 * Send along grace-period-related data for rcutorture diagnostics.
562 */
563void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
564 unsigned long *gpnum, unsigned long *completed)
565{
566 struct rcu_state *rsp = NULL;
567
568 switch (test_type) {
569 case RCU_FLAVOR:
e534165b 570 rsp = rcu_state_p;
ad0dc7f9
PM
571 break;
572 case RCU_BH_FLAVOR:
573 rsp = &rcu_bh_state;
574 break;
575 case RCU_SCHED_FLAVOR:
576 rsp = &rcu_sched_state;
577 break;
578 default:
579 break;
580 }
581 if (rsp != NULL) {
7d0ae808
PM
582 *flags = READ_ONCE(rsp->gp_flags);
583 *gpnum = READ_ONCE(rsp->gpnum);
584 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
585 return;
586 }
587 *flags = 0;
588 *gpnum = 0;
589 *completed = 0;
590}
591EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
592
4a298656
PM
593/*
594 * Record the number of writer passes through the current rcutorture test.
595 * This is also used to correlate debugfs tracing stats with the rcutorture
596 * messages.
597 */
598void rcutorture_record_progress(unsigned long vernum)
599{
600 rcutorture_vernum++;
601}
602EXPORT_SYMBOL_GPL(rcutorture_record_progress);
603
64db4cff
PM
604/*
605 * Does the CPU have callbacks ready to be invoked?
606 */
607static int
608cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
609{
3fbfbf7a
PM
610 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
611 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
612}
613
365187fb
PM
614/*
615 * Return the root node of the specified rcu_state structure.
616 */
617static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
618{
619 return &rsp->node[0];
620}
621
622/*
623 * Is there any need for future grace periods?
624 * Interrupts must be disabled. If the caller does not hold the root
625 * rnp_node structure's ->lock, the results are advisory only.
626 */
627static int rcu_future_needs_gp(struct rcu_state *rsp)
628{
629 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 630 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
631 int *fp = &rnp->need_future_gp[idx];
632
7d0ae808 633 return READ_ONCE(*fp);
365187fb
PM
634}
635
64db4cff 636/*
dc35c893
PM
637 * Does the current CPU require a not-yet-started grace period?
638 * The caller must have disabled interrupts to prevent races with
639 * normal callback registry.
64db4cff 640 */
d117c8aa 641static bool
64db4cff
PM
642cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
643{
dc35c893 644 int i;
3fbfbf7a 645
dc35c893 646 if (rcu_gp_in_progress(rsp))
d117c8aa 647 return false; /* No, a grace period is already in progress. */
365187fb 648 if (rcu_future_needs_gp(rsp))
d117c8aa 649 return true; /* Yes, a no-CBs CPU needs one. */
dc35c893 650 if (!rdp->nxttail[RCU_NEXT_TAIL])
d117c8aa 651 return false; /* No, this is a no-CBs (or offline) CPU. */
dc35c893 652 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
d117c8aa 653 return true; /* Yes, CPU has newly registered callbacks. */
dc35c893
PM
654 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
655 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 656 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893 657 rdp->nxtcompleted[i]))
d117c8aa
PM
658 return true; /* Yes, CBs for future grace period. */
659 return false; /* No grace period needed. */
64db4cff
PM
660}
661
9b2e4f18 662/*
adf5091e 663 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
664 *
665 * If the new value of the ->dynticks_nesting counter now is zero,
666 * we really have entered idle, and must do the appropriate accounting.
667 * The caller must have disabled interrupts.
668 */
28ced795 669static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 670{
96d3fd0d
PM
671 struct rcu_state *rsp;
672 struct rcu_data *rdp;
28ced795 673 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 674
f7f7bac9 675 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
676 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
677 !user && !is_idle_task(current)) {
289828e6
PM
678 struct task_struct *idle __maybe_unused =
679 idle_task(smp_processor_id());
0989cb46 680
f7f7bac9 681 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
274529ba 682 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
683 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
684 current->pid, current->comm,
685 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 686 }
96d3fd0d
PM
687 for_each_rcu_flavor(rsp) {
688 rdp = this_cpu_ptr(rsp->rda);
689 do_nocb_deferred_wakeup(rdp);
690 }
198bbf81 691 rcu_prepare_for_idle();
9b2e4f18 692 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 693 smp_mb__before_atomic(); /* See above. */
9b2e4f18 694 atomic_inc(&rdtp->dynticks);
4e857c58 695 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
1ce46ee5
PM
696 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
697 atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 698 rcu_dynticks_task_enter();
c44e2cdd
PM
699
700 /*
adf5091e 701 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
702 * in an RCU read-side critical section.
703 */
f78f5b90
PM
704 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
705 "Illegal idle entry in RCU read-side critical section.");
706 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
707 "Illegal idle entry in RCU-bh read-side critical section.");
708 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
709 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 710}
64db4cff 711
adf5091e
FW
712/*
713 * Enter an RCU extended quiescent state, which can be either the
714 * idle loop or adaptive-tickless usermode execution.
64db4cff 715 */
adf5091e 716static void rcu_eqs_enter(bool user)
64db4cff 717{
4145fa7f 718 long long oldval;
64db4cff
PM
719 struct rcu_dynticks *rdtp;
720
c9d4b0af 721 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 722 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
723 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
724 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 725 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 726 rdtp->dynticks_nesting = 0;
28ced795 727 rcu_eqs_enter_common(oldval, user);
3a592405 728 } else {
29e37d81 729 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 730 }
64db4cff 731}
adf5091e
FW
732
733/**
734 * rcu_idle_enter - inform RCU that current CPU is entering idle
735 *
736 * Enter idle mode, in other words, -leave- the mode in which RCU
737 * read-side critical sections can occur. (Though RCU read-side
738 * critical sections can occur in irq handlers in idle, a possibility
739 * handled by irq_enter() and irq_exit().)
740 *
741 * We crowbar the ->dynticks_nesting field to zero to allow for
742 * the possibility of usermode upcalls having messed up our count
743 * of interrupt nesting level during the prior busy period.
744 */
745void rcu_idle_enter(void)
746{
c5d900bf
FW
747 unsigned long flags;
748
749 local_irq_save(flags);
cb349ca9 750 rcu_eqs_enter(false);
28ced795 751 rcu_sysidle_enter(0);
c5d900bf 752 local_irq_restore(flags);
adf5091e 753}
8a2ecf47 754EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 755
d1ec4c34 756#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
757/**
758 * rcu_user_enter - inform RCU that we are resuming userspace.
759 *
760 * Enter RCU idle mode right before resuming userspace. No use of RCU
761 * is permitted between this call and rcu_user_exit(). This way the
762 * CPU doesn't need to maintain the tick for RCU maintenance purposes
763 * when the CPU runs in userspace.
764 */
765void rcu_user_enter(void)
766{
91d1aa43 767 rcu_eqs_enter(1);
adf5091e 768}
d1ec4c34 769#endif /* CONFIG_NO_HZ_FULL */
19dd1591 770
9b2e4f18
PM
771/**
772 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
773 *
774 * Exit from an interrupt handler, which might possibly result in entering
775 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 776 * sections can occur. The caller must have disabled interrupts.
64db4cff 777 *
9b2e4f18
PM
778 * This code assumes that the idle loop never does anything that might
779 * result in unbalanced calls to irq_enter() and irq_exit(). If your
780 * architecture violates this assumption, RCU will give you what you
781 * deserve, good and hard. But very infrequently and irreproducibly.
782 *
783 * Use things like work queues to work around this limitation.
784 *
785 * You have been warned.
64db4cff 786 */
9b2e4f18 787void rcu_irq_exit(void)
64db4cff 788{
4145fa7f 789 long long oldval;
64db4cff
PM
790 struct rcu_dynticks *rdtp;
791
7c9906ca 792 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 793 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 794 oldval = rdtp->dynticks_nesting;
9b2e4f18 795 rdtp->dynticks_nesting--;
1ce46ee5
PM
796 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
797 rdtp->dynticks_nesting < 0);
b6fc6020 798 if (rdtp->dynticks_nesting)
f7f7bac9 799 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 800 else
28ced795
CL
801 rcu_eqs_enter_common(oldval, true);
802 rcu_sysidle_enter(1);
7c9906ca
PM
803}
804
805/*
806 * Wrapper for rcu_irq_exit() where interrupts are enabled.
807 */
808void rcu_irq_exit_irqson(void)
809{
810 unsigned long flags;
811
812 local_irq_save(flags);
813 rcu_irq_exit();
9b2e4f18
PM
814 local_irq_restore(flags);
815}
816
817/*
adf5091e 818 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
819 *
820 * If the new value of the ->dynticks_nesting counter was previously zero,
821 * we really have exited idle, and must do the appropriate accounting.
822 * The caller must have disabled interrupts.
823 */
28ced795 824static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 825{
28ced795
CL
826 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
827
176f8f7a 828 rcu_dynticks_task_exit();
4e857c58 829 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
830 atomic_inc(&rdtp->dynticks);
831 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 832 smp_mb__after_atomic(); /* See above. */
1ce46ee5
PM
833 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
834 !(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 835 rcu_cleanup_after_idle();
f7f7bac9 836 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
837 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
838 !user && !is_idle_task(current)) {
289828e6
PM
839 struct task_struct *idle __maybe_unused =
840 idle_task(smp_processor_id());
0989cb46 841
f7f7bac9 842 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 843 oldval, rdtp->dynticks_nesting);
274529ba 844 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
845 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
846 current->pid, current->comm,
847 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
848 }
849}
850
adf5091e
FW
851/*
852 * Exit an RCU extended quiescent state, which can be either the
853 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 854 */
adf5091e 855static void rcu_eqs_exit(bool user)
9b2e4f18 856{
9b2e4f18
PM
857 struct rcu_dynticks *rdtp;
858 long long oldval;
859
c9d4b0af 860 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 861 oldval = rdtp->dynticks_nesting;
1ce46ee5 862 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 863 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 864 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 865 } else {
29e37d81 866 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 867 rcu_eqs_exit_common(oldval, user);
3a592405 868 }
9b2e4f18 869}
adf5091e
FW
870
871/**
872 * rcu_idle_exit - inform RCU that current CPU is leaving idle
873 *
874 * Exit idle mode, in other words, -enter- the mode in which RCU
875 * read-side critical sections can occur.
876 *
877 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
878 * allow for the possibility of usermode upcalls messing up our count
879 * of interrupt nesting level during the busy period that is just
880 * now starting.
881 */
882void rcu_idle_exit(void)
883{
c5d900bf
FW
884 unsigned long flags;
885
886 local_irq_save(flags);
cb349ca9 887 rcu_eqs_exit(false);
28ced795 888 rcu_sysidle_exit(0);
c5d900bf 889 local_irq_restore(flags);
adf5091e 890}
8a2ecf47 891EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 892
d1ec4c34 893#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
894/**
895 * rcu_user_exit - inform RCU that we are exiting userspace.
896 *
897 * Exit RCU idle mode while entering the kernel because it can
898 * run a RCU read side critical section anytime.
899 */
900void rcu_user_exit(void)
901{
91d1aa43 902 rcu_eqs_exit(1);
adf5091e 903}
d1ec4c34 904#endif /* CONFIG_NO_HZ_FULL */
19dd1591 905
9b2e4f18
PM
906/**
907 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
908 *
909 * Enter an interrupt handler, which might possibly result in exiting
910 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 911 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
912 *
913 * Note that the Linux kernel is fully capable of entering an interrupt
914 * handler that it never exits, for example when doing upcalls to
915 * user mode! This code assumes that the idle loop never does upcalls to
916 * user mode. If your architecture does do upcalls from the idle loop (or
917 * does anything else that results in unbalanced calls to the irq_enter()
918 * and irq_exit() functions), RCU will give you what you deserve, good
919 * and hard. But very infrequently and irreproducibly.
920 *
921 * Use things like work queues to work around this limitation.
922 *
923 * You have been warned.
924 */
925void rcu_irq_enter(void)
926{
9b2e4f18
PM
927 struct rcu_dynticks *rdtp;
928 long long oldval;
929
7c9906ca 930 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 931 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
932 oldval = rdtp->dynticks_nesting;
933 rdtp->dynticks_nesting++;
1ce46ee5
PM
934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
935 rdtp->dynticks_nesting == 0);
b6fc6020 936 if (oldval)
f7f7bac9 937 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 938 else
28ced795
CL
939 rcu_eqs_exit_common(oldval, true);
940 rcu_sysidle_exit(1);
7c9906ca
PM
941}
942
943/*
944 * Wrapper for rcu_irq_enter() where interrupts are enabled.
945 */
946void rcu_irq_enter_irqson(void)
947{
948 unsigned long flags;
949
950 local_irq_save(flags);
951 rcu_irq_enter();
64db4cff 952 local_irq_restore(flags);
64db4cff
PM
953}
954
955/**
956 * rcu_nmi_enter - inform RCU of entry to NMI context
957 *
734d1680
PM
958 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
959 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
960 * that the CPU is active. This implementation permits nested NMIs, as
961 * long as the nesting level does not overflow an int. (You will probably
962 * run out of stack space first.)
64db4cff
PM
963 */
964void rcu_nmi_enter(void)
965{
c9d4b0af 966 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 967 int incby = 2;
64db4cff 968
734d1680
PM
969 /* Complain about underflow. */
970 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
971
972 /*
973 * If idle from RCU viewpoint, atomically increment ->dynticks
974 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
975 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
976 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
977 * to be in the outermost NMI handler that interrupted an RCU-idle
978 * period (observation due to Andy Lutomirski).
979 */
980 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
981 smp_mb__before_atomic(); /* Force delay from prior write. */
982 atomic_inc(&rdtp->dynticks);
983 /* atomic_inc() before later RCU read-side crit sects */
984 smp_mb__after_atomic(); /* See above. */
985 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
986 incby = 1;
987 }
988 rdtp->dynticks_nmi_nesting += incby;
989 barrier();
64db4cff
PM
990}
991
992/**
993 * rcu_nmi_exit - inform RCU of exit from NMI context
994 *
734d1680
PM
995 * If we are returning from the outermost NMI handler that interrupted an
996 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
997 * to let the RCU grace-period handling know that the CPU is back to
998 * being RCU-idle.
64db4cff
PM
999 */
1000void rcu_nmi_exit(void)
1001{
c9d4b0af 1002 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1003
734d1680
PM
1004 /*
1005 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1006 * (We are exiting an NMI handler, so RCU better be paying attention
1007 * to us!)
1008 */
1009 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1010 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1011
1012 /*
1013 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1014 * leave it in non-RCU-idle state.
1015 */
1016 if (rdtp->dynticks_nmi_nesting != 1) {
1017 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1018 return;
734d1680
PM
1019 }
1020
1021 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1022 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 1023 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 1024 smp_mb__before_atomic(); /* See above. */
23b5c8fa 1025 atomic_inc(&rdtp->dynticks);
4e857c58 1026 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 1027 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
1028}
1029
1030/**
5c173eb8
PM
1031 * __rcu_is_watching - are RCU read-side critical sections safe?
1032 *
1033 * Return true if RCU is watching the running CPU, which means that
1034 * this CPU can safely enter RCU read-side critical sections. Unlike
1035 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1036 * least disabled preemption.
1037 */
9418fb20 1038bool notrace __rcu_is_watching(void)
5c173eb8
PM
1039{
1040 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1041}
1042
1043/**
1044 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1045 *
9b2e4f18 1046 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1047 * or NMI handler, return true.
64db4cff 1048 */
9418fb20 1049bool notrace rcu_is_watching(void)
64db4cff 1050{
f534ed1f 1051 bool ret;
34240697 1052
46f00d18 1053 preempt_disable_notrace();
5c173eb8 1054 ret = __rcu_is_watching();
46f00d18 1055 preempt_enable_notrace();
34240697 1056 return ret;
64db4cff 1057}
5c173eb8 1058EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1059
62fde6ed 1060#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1061
1062/*
1063 * Is the current CPU online? Disable preemption to avoid false positives
1064 * that could otherwise happen due to the current CPU number being sampled,
1065 * this task being preempted, its old CPU being taken offline, resuming
1066 * on some other CPU, then determining that its old CPU is now offline.
1067 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1068 * the check for rcu_scheduler_fully_active. Note also that it is OK
1069 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1070 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1071 * offline to continue to use RCU for one jiffy after marking itself
1072 * offline in the cpu_online_mask. This leniency is necessary given the
1073 * non-atomic nature of the online and offline processing, for example,
1074 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1075 * notifiers.
1076 *
1077 * This is also why RCU internally marks CPUs online during the
1078 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
1079 *
1080 * Disable checking if in an NMI handler because we cannot safely report
1081 * errors from NMI handlers anyway.
1082 */
1083bool rcu_lockdep_current_cpu_online(void)
1084{
2036d94a
PM
1085 struct rcu_data *rdp;
1086 struct rcu_node *rnp;
c0d6d01b
PM
1087 bool ret;
1088
1089 if (in_nmi())
f6f7ee9a 1090 return true;
c0d6d01b 1091 preempt_disable();
c9d4b0af 1092 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1093 rnp = rdp->mynode;
0aa04b05 1094 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1095 !rcu_scheduler_fully_active;
1096 preempt_enable();
1097 return ret;
1098}
1099EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1100
62fde6ed 1101#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1102
64db4cff 1103/**
9b2e4f18 1104 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1105 *
9b2e4f18
PM
1106 * If the current CPU is idle or running at a first-level (not nested)
1107 * interrupt from idle, return true. The caller must have at least
1108 * disabled preemption.
64db4cff 1109 */
62e3cb14 1110static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1111{
c9d4b0af 1112 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1113}
1114
64db4cff
PM
1115/*
1116 * Snapshot the specified CPU's dynticks counter so that we can later
1117 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1118 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1119 */
217af2a2
PM
1120static int dyntick_save_progress_counter(struct rcu_data *rdp,
1121 bool *isidle, unsigned long *maxj)
64db4cff 1122{
23b5c8fa 1123 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1124 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1125 if ((rdp->dynticks_snap & 0x1) == 0) {
1126 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1127 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1128 rdp->mynode->gpnum))
7d0ae808 1129 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1130 return 1;
7941dbde 1131 }
23a9bacd 1132 return 0;
64db4cff
PM
1133}
1134
1135/*
1136 * Return true if the specified CPU has passed through a quiescent
1137 * state by virtue of being in or having passed through an dynticks
1138 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1139 * for this same CPU, or by virtue of having been offline.
64db4cff 1140 */
217af2a2
PM
1141static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1142 bool *isidle, unsigned long *maxj)
64db4cff 1143{
7eb4f455 1144 unsigned int curr;
4a81e832 1145 int *rcrmp;
7eb4f455 1146 unsigned int snap;
64db4cff 1147
7eb4f455
PM
1148 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1149 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1150
1151 /*
1152 * If the CPU passed through or entered a dynticks idle phase with
1153 * no active irq/NMI handlers, then we can safely pretend that the CPU
1154 * already acknowledged the request to pass through a quiescent
1155 * state. Either way, that CPU cannot possibly be in an RCU
1156 * read-side critical section that started before the beginning
1157 * of the current RCU grace period.
1158 */
7eb4f455 1159 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1160 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1161 rdp->dynticks_fqs++;
1162 return 1;
1163 }
1164
a82dcc76
PM
1165 /*
1166 * Check for the CPU being offline, but only if the grace period
1167 * is old enough. We don't need to worry about the CPU changing
1168 * state: If we see it offline even once, it has been through a
1169 * quiescent state.
1170 *
1171 * The reason for insisting that the grace period be at least
1172 * one jiffy old is that CPUs that are not quite online and that
1173 * have just gone offline can still execute RCU read-side critical
1174 * sections.
1175 */
1176 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1177 return 0; /* Grace period is not old enough. */
1178 barrier();
1179 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1180 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1181 rdp->offline_fqs++;
1182 return 1;
1183 }
65d798f0
PM
1184
1185 /*
4a81e832
PM
1186 * A CPU running for an extended time within the kernel can
1187 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1188 * even context-switching back and forth between a pair of
1189 * in-kernel CPU-bound tasks cannot advance grace periods.
1190 * So if the grace period is old enough, make the CPU pay attention.
1191 * Note that the unsynchronized assignments to the per-CPU
1192 * rcu_sched_qs_mask variable are safe. Yes, setting of
1193 * bits can be lost, but they will be set again on the next
1194 * force-quiescent-state pass. So lost bit sets do not result
1195 * in incorrect behavior, merely in a grace period lasting
1196 * a few jiffies longer than it might otherwise. Because
1197 * there are at most four threads involved, and because the
1198 * updates are only once every few jiffies, the probability of
1199 * lossage (and thus of slight grace-period extension) is
1200 * quite low.
1201 *
1202 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1203 * is set too high, we override with half of the RCU CPU stall
1204 * warning delay.
6193c76a 1205 */
4a81e832
PM
1206 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1207 if (ULONG_CMP_GE(jiffies,
1208 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1209 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1210 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1211 WRITE_ONCE(rdp->cond_resched_completed,
1212 READ_ONCE(rdp->mynode->completed));
4a81e832 1213 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1214 WRITE_ONCE(*rcrmp,
1215 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832 1216 }
4914950a 1217 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1218 }
1219
4914950a
PM
1220 /* And if it has been a really long time, kick the CPU as well. */
1221 if (ULONG_CMP_GE(jiffies,
1222 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1223 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1224 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1225
a82dcc76 1226 return 0;
64db4cff
PM
1227}
1228
64db4cff
PM
1229static void record_gp_stall_check_time(struct rcu_state *rsp)
1230{
cb1e78cf 1231 unsigned long j = jiffies;
6193c76a 1232 unsigned long j1;
26cdfedf
PM
1233
1234 rsp->gp_start = j;
1235 smp_wmb(); /* Record start time before stall time. */
6193c76a 1236 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1237 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1238 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1239 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1240}
1241
6b50e119
PM
1242/*
1243 * Convert a ->gp_state value to a character string.
1244 */
1245static const char *gp_state_getname(short gs)
1246{
1247 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1248 return "???";
1249 return gp_state_names[gs];
1250}
1251
fb81a44b
PM
1252/*
1253 * Complain about starvation of grace-period kthread.
1254 */
1255static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1256{
1257 unsigned long gpa;
1258 unsigned long j;
1259
1260 j = jiffies;
7d0ae808 1261 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1262 if (j - gpa > 2 * HZ) {
6b50e119 1263 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1264 rsp->name, j - gpa,
319362c9 1265 rsp->gpnum, rsp->completed,
6b50e119
PM
1266 rsp->gp_flags,
1267 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1268 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1269 if (rsp->gp_kthread) {
b1adb3e2 1270 sched_show_task(rsp->gp_kthread);
86057b80
PM
1271 wake_up_process(rsp->gp_kthread);
1272 }
b1adb3e2 1273 }
64db4cff
PM
1274}
1275
b637a328 1276/*
bc1dce51 1277 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1278 */
1279static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1280{
1281 int cpu;
1282 unsigned long flags;
1283 struct rcu_node *rnp;
1284
1285 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1286 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b637a328
PM
1287 if (rnp->qsmask != 0) {
1288 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1289 if (rnp->qsmask & (1UL << cpu))
1290 dump_cpu_task(rnp->grplo + cpu);
1291 }
67c583a7 1292 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1293 }
1294}
1295
8c7c4829
PM
1296/*
1297 * If too much time has passed in the current grace period, and if
1298 * so configured, go kick the relevant kthreads.
1299 */
1300static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1301{
1302 unsigned long j;
1303
1304 if (!rcu_kick_kthreads)
1305 return;
1306 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1307 if (time_after(jiffies, j) && rsp->gp_kthread) {
1308 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1309 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1310 wake_up_process(rsp->gp_kthread);
1311 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1312 }
1313}
1314
6ccd2ecd 1315static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1316{
1317 int cpu;
1318 long delta;
1319 unsigned long flags;
6ccd2ecd
PM
1320 unsigned long gpa;
1321 unsigned long j;
285fe294 1322 int ndetected = 0;
64db4cff 1323 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1324 long totqlen = 0;
64db4cff 1325
8c7c4829
PM
1326 /* Kick and suppress, if so configured. */
1327 rcu_stall_kick_kthreads(rsp);
1328 if (rcu_cpu_stall_suppress)
1329 return;
1330
64db4cff
PM
1331 /* Only let one CPU complain about others per time interval. */
1332
6cf10081 1333 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1334 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1335 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1336 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1337 return;
1338 }
7d0ae808
PM
1339 WRITE_ONCE(rsp->jiffies_stall,
1340 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1341 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1342
8cdd32a9
PM
1343 /*
1344 * OK, time to rat on our buddy...
1345 * See Documentation/RCU/stallwarn.txt for info on how to debug
1346 * RCU CPU stall warnings.
1347 */
d7f3e207 1348 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1349 rsp->name);
a858af28 1350 print_cpu_stall_info_begin();
a0b6c9a7 1351 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1352 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1353 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1354 if (rnp->qsmask != 0) {
1355 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1356 if (rnp->qsmask & (1UL << cpu)) {
1357 print_cpu_stall_info(rsp,
1358 rnp->grplo + cpu);
1359 ndetected++;
1360 }
1361 }
67c583a7 1362 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1363 }
a858af28 1364
a858af28 1365 print_cpu_stall_info_end();
53bb857c
PM
1366 for_each_possible_cpu(cpu)
1367 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1368 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1369 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1370 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1371 if (ndetected) {
b637a328 1372 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1373 } else {
7d0ae808
PM
1374 if (READ_ONCE(rsp->gpnum) != gpnum ||
1375 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1376 pr_err("INFO: Stall ended before state dump start\n");
1377 } else {
1378 j = jiffies;
7d0ae808 1379 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1380 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1381 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1382 jiffies_till_next_fqs,
1383 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1384 /* In this case, the current CPU might be at fault. */
1385 sched_show_task(current);
1386 }
1387 }
c1dc0b9c 1388
4cdfc175 1389 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1390 rcu_print_detail_task_stall(rsp);
1391
fb81a44b
PM
1392 rcu_check_gp_kthread_starvation(rsp);
1393
4cdfc175 1394 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1395}
1396
1397static void print_cpu_stall(struct rcu_state *rsp)
1398{
53bb857c 1399 int cpu;
64db4cff
PM
1400 unsigned long flags;
1401 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1402 long totqlen = 0;
64db4cff 1403
8c7c4829
PM
1404 /* Kick and suppress, if so configured. */
1405 rcu_stall_kick_kthreads(rsp);
1406 if (rcu_cpu_stall_suppress)
1407 return;
1408
8cdd32a9
PM
1409 /*
1410 * OK, time to rat on ourselves...
1411 * See Documentation/RCU/stallwarn.txt for info on how to debug
1412 * RCU CPU stall warnings.
1413 */
d7f3e207 1414 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1415 print_cpu_stall_info_begin();
1416 print_cpu_stall_info(rsp, smp_processor_id());
1417 print_cpu_stall_info_end();
53bb857c
PM
1418 for_each_possible_cpu(cpu)
1419 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1420 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1421 jiffies - rsp->gp_start,
1422 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1423
1424 rcu_check_gp_kthread_starvation(rsp);
1425
bc1dce51 1426 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1427
6cf10081 1428 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1429 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1430 WRITE_ONCE(rsp->jiffies_stall,
1431 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1432 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1433
b021fe3e
PZ
1434 /*
1435 * Attempt to revive the RCU machinery by forcing a context switch.
1436 *
1437 * A context switch would normally allow the RCU state machine to make
1438 * progress and it could be we're stuck in kernel space without context
1439 * switches for an entirely unreasonable amount of time.
1440 */
1441 resched_cpu(smp_processor_id());
64db4cff
PM
1442}
1443
1444static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1445{
26cdfedf
PM
1446 unsigned long completed;
1447 unsigned long gpnum;
1448 unsigned long gps;
bad6e139
PM
1449 unsigned long j;
1450 unsigned long js;
64db4cff
PM
1451 struct rcu_node *rnp;
1452
8c7c4829
PM
1453 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1454 !rcu_gp_in_progress(rsp))
c68de209 1455 return;
8c7c4829 1456 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1457 j = jiffies;
26cdfedf
PM
1458
1459 /*
1460 * Lots of memory barriers to reject false positives.
1461 *
1462 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1463 * then rsp->gp_start, and finally rsp->completed. These values
1464 * are updated in the opposite order with memory barriers (or
1465 * equivalent) during grace-period initialization and cleanup.
1466 * Now, a false positive can occur if we get an new value of
1467 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1468 * the memory barriers, the only way that this can happen is if one
1469 * grace period ends and another starts between these two fetches.
1470 * Detect this by comparing rsp->completed with the previous fetch
1471 * from rsp->gpnum.
1472 *
1473 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1474 * and rsp->gp_start suffice to forestall false positives.
1475 */
7d0ae808 1476 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1477 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1478 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1479 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1480 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1481 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1482 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1483 if (ULONG_CMP_GE(completed, gpnum) ||
1484 ULONG_CMP_LT(j, js) ||
1485 ULONG_CMP_GE(gps, js))
1486 return; /* No stall or GP completed since entering function. */
64db4cff 1487 rnp = rdp->mynode;
c96ea7cf 1488 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1489 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1490
1491 /* We haven't checked in, so go dump stack. */
1492 print_cpu_stall(rsp);
1493
bad6e139
PM
1494 } else if (rcu_gp_in_progress(rsp) &&
1495 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1496
bad6e139 1497 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1498 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1499 }
1500}
1501
53d84e00
PM
1502/**
1503 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1504 *
1505 * Set the stall-warning timeout way off into the future, thus preventing
1506 * any RCU CPU stall-warning messages from appearing in the current set of
1507 * RCU grace periods.
1508 *
1509 * The caller must disable hard irqs.
1510 */
1511void rcu_cpu_stall_reset(void)
1512{
6ce75a23
PM
1513 struct rcu_state *rsp;
1514
1515 for_each_rcu_flavor(rsp)
7d0ae808 1516 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1517}
1518
3f5d3ea6 1519/*
d3f3f3f2
PM
1520 * Initialize the specified rcu_data structure's default callback list
1521 * to empty. The default callback list is the one that is not used by
1522 * no-callbacks CPUs.
3f5d3ea6 1523 */
d3f3f3f2 1524static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1525{
1526 int i;
1527
1528 rdp->nxtlist = NULL;
1529 for (i = 0; i < RCU_NEXT_SIZE; i++)
1530 rdp->nxttail[i] = &rdp->nxtlist;
1531}
1532
d3f3f3f2
PM
1533/*
1534 * Initialize the specified rcu_data structure's callback list to empty.
1535 */
1536static void init_callback_list(struct rcu_data *rdp)
1537{
1538 if (init_nocb_callback_list(rdp))
1539 return;
1540 init_default_callback_list(rdp);
1541}
1542
dc35c893
PM
1543/*
1544 * Determine the value that ->completed will have at the end of the
1545 * next subsequent grace period. This is used to tag callbacks so that
1546 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1547 * been dyntick-idle for an extended period with callbacks under the
1548 * influence of RCU_FAST_NO_HZ.
1549 *
1550 * The caller must hold rnp->lock with interrupts disabled.
1551 */
1552static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1553 struct rcu_node *rnp)
1554{
1555 /*
1556 * If RCU is idle, we just wait for the next grace period.
1557 * But we can only be sure that RCU is idle if we are looking
1558 * at the root rcu_node structure -- otherwise, a new grace
1559 * period might have started, but just not yet gotten around
1560 * to initializing the current non-root rcu_node structure.
1561 */
1562 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1563 return rnp->completed + 1;
1564
1565 /*
1566 * Otherwise, wait for a possible partial grace period and
1567 * then the subsequent full grace period.
1568 */
1569 return rnp->completed + 2;
1570}
1571
0446be48
PM
1572/*
1573 * Trace-event helper function for rcu_start_future_gp() and
1574 * rcu_nocb_wait_gp().
1575 */
1576static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1577 unsigned long c, const char *s)
0446be48
PM
1578{
1579 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1580 rnp->completed, c, rnp->level,
1581 rnp->grplo, rnp->grphi, s);
1582}
1583
1584/*
1585 * Start some future grace period, as needed to handle newly arrived
1586 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1587 * rcu_node structure's ->need_future_gp field. Returns true if there
1588 * is reason to awaken the grace-period kthread.
0446be48
PM
1589 *
1590 * The caller must hold the specified rcu_node structure's ->lock.
1591 */
48a7639c
PM
1592static bool __maybe_unused
1593rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1594 unsigned long *c_out)
0446be48
PM
1595{
1596 unsigned long c;
1597 int i;
48a7639c 1598 bool ret = false;
0446be48
PM
1599 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1600
1601 /*
1602 * Pick up grace-period number for new callbacks. If this
1603 * grace period is already marked as needed, return to the caller.
1604 */
1605 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1606 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1607 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1608 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1609 goto out;
0446be48
PM
1610 }
1611
1612 /*
1613 * If either this rcu_node structure or the root rcu_node structure
1614 * believe that a grace period is in progress, then we must wait
1615 * for the one following, which is in "c". Because our request
1616 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1617 * need to explicitly start one. We only do the lockless check
1618 * of rnp_root's fields if the current rcu_node structure thinks
1619 * there is no grace period in flight, and because we hold rnp->lock,
1620 * the only possible change is when rnp_root's two fields are
1621 * equal, in which case rnp_root->gpnum might be concurrently
1622 * incremented. But that is OK, as it will just result in our
1623 * doing some extra useless work.
0446be48
PM
1624 */
1625 if (rnp->gpnum != rnp->completed ||
7d0ae808 1626 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1627 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1628 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1629 goto out;
0446be48
PM
1630 }
1631
1632 /*
1633 * There might be no grace period in progress. If we don't already
1634 * hold it, acquire the root rcu_node structure's lock in order to
1635 * start one (if needed).
1636 */
2a67e741
PZ
1637 if (rnp != rnp_root)
1638 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1639
1640 /*
1641 * Get a new grace-period number. If there really is no grace
1642 * period in progress, it will be smaller than the one we obtained
1643 * earlier. Adjust callbacks as needed. Note that even no-CBs
1644 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1645 */
1646 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1647 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1648 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1649 rdp->nxtcompleted[i] = c;
1650
1651 /*
1652 * If the needed for the required grace period is already
1653 * recorded, trace and leave.
1654 */
1655 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1656 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1657 goto unlock_out;
1658 }
1659
1660 /* Record the need for the future grace period. */
1661 rnp_root->need_future_gp[c & 0x1]++;
1662
1663 /* If a grace period is not already in progress, start one. */
1664 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1665 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1666 } else {
f7f7bac9 1667 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1668 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1669 }
1670unlock_out:
1671 if (rnp != rnp_root)
67c583a7 1672 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1673out:
1674 if (c_out != NULL)
1675 *c_out = c;
1676 return ret;
0446be48
PM
1677}
1678
1679/*
1680 * Clean up any old requests for the just-ended grace period. Also return
1681 * whether any additional grace periods have been requested. Also invoke
1682 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1683 * waiting for this grace period to complete.
1684 */
1685static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1686{
1687 int c = rnp->completed;
1688 int needmore;
1689 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1690
0446be48
PM
1691 rnp->need_future_gp[c & 0x1] = 0;
1692 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1693 trace_rcu_future_gp(rnp, rdp, c,
1694 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1695 return needmore;
1696}
1697
48a7639c
PM
1698/*
1699 * Awaken the grace-period kthread for the specified flavor of RCU.
1700 * Don't do a self-awaken, and don't bother awakening when there is
1701 * nothing for the grace-period kthread to do (as in several CPUs
1702 * raced to awaken, and we lost), and finally don't try to awaken
1703 * a kthread that has not yet been created.
1704 */
1705static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1706{
1707 if (current == rsp->gp_kthread ||
7d0ae808 1708 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1709 !rsp->gp_kthread)
1710 return;
abedf8e2 1711 swake_up(&rsp->gp_wq);
48a7639c
PM
1712}
1713
dc35c893
PM
1714/*
1715 * If there is room, assign a ->completed number to any callbacks on
1716 * this CPU that have not already been assigned. Also accelerate any
1717 * callbacks that were previously assigned a ->completed number that has
1718 * since proven to be too conservative, which can happen if callbacks get
1719 * assigned a ->completed number while RCU is idle, but with reference to
1720 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1721 * not hurt to call it repeatedly. Returns an flag saying that we should
1722 * awaken the RCU grace-period kthread.
dc35c893
PM
1723 *
1724 * The caller must hold rnp->lock with interrupts disabled.
1725 */
48a7639c 1726static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1727 struct rcu_data *rdp)
1728{
1729 unsigned long c;
1730 int i;
48a7639c 1731 bool ret;
dc35c893
PM
1732
1733 /* If the CPU has no callbacks, nothing to do. */
1734 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1735 return false;
dc35c893
PM
1736
1737 /*
1738 * Starting from the sublist containing the callbacks most
1739 * recently assigned a ->completed number and working down, find the
1740 * first sublist that is not assignable to an upcoming grace period.
1741 * Such a sublist has something in it (first two tests) and has
1742 * a ->completed number assigned that will complete sooner than
1743 * the ->completed number for newly arrived callbacks (last test).
1744 *
1745 * The key point is that any later sublist can be assigned the
1746 * same ->completed number as the newly arrived callbacks, which
1747 * means that the callbacks in any of these later sublist can be
1748 * grouped into a single sublist, whether or not they have already
1749 * been assigned a ->completed number.
1750 */
1751 c = rcu_cbs_completed(rsp, rnp);
1752 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1753 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1754 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1755 break;
1756
1757 /*
1758 * If there are no sublist for unassigned callbacks, leave.
1759 * At the same time, advance "i" one sublist, so that "i" will
1760 * index into the sublist where all the remaining callbacks should
1761 * be grouped into.
1762 */
1763 if (++i >= RCU_NEXT_TAIL)
48a7639c 1764 return false;
dc35c893
PM
1765
1766 /*
1767 * Assign all subsequent callbacks' ->completed number to the next
1768 * full grace period and group them all in the sublist initially
1769 * indexed by "i".
1770 */
1771 for (; i <= RCU_NEXT_TAIL; i++) {
1772 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1773 rdp->nxtcompleted[i] = c;
1774 }
910ee45d 1775 /* Record any needed additional grace periods. */
48a7639c 1776 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1777
1778 /* Trace depending on how much we were able to accelerate. */
1779 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1780 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1781 else
f7f7bac9 1782 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1783 return ret;
dc35c893
PM
1784}
1785
1786/*
1787 * Move any callbacks whose grace period has completed to the
1788 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1789 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1790 * sublist. This function is idempotent, so it does not hurt to
1791 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1792 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1793 *
1794 * The caller must hold rnp->lock with interrupts disabled.
1795 */
48a7639c 1796static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1797 struct rcu_data *rdp)
1798{
1799 int i, j;
1800
1801 /* If the CPU has no callbacks, nothing to do. */
1802 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1803 return false;
dc35c893
PM
1804
1805 /*
1806 * Find all callbacks whose ->completed numbers indicate that they
1807 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1808 */
1809 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1810 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1811 break;
1812 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1813 }
1814 /* Clean up any sublist tail pointers that were misordered above. */
1815 for (j = RCU_WAIT_TAIL; j < i; j++)
1816 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1817
1818 /* Copy down callbacks to fill in empty sublists. */
1819 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1820 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1821 break;
1822 rdp->nxttail[j] = rdp->nxttail[i];
1823 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1824 }
1825
1826 /* Classify any remaining callbacks. */
48a7639c 1827 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1828}
1829
d09b62df 1830/*
ba9fbe95
PM
1831 * Update CPU-local rcu_data state to record the beginnings and ends of
1832 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1833 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1834 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1835 */
48a7639c
PM
1836static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1837 struct rcu_data *rdp)
d09b62df 1838{
48a7639c
PM
1839 bool ret;
1840
ba9fbe95 1841 /* Handle the ends of any preceding grace periods first. */
e3663b10 1842 if (rdp->completed == rnp->completed &&
7d0ae808 1843 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1844
ba9fbe95 1845 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1846 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1847
dc35c893
PM
1848 } else {
1849
1850 /* Advance callbacks. */
48a7639c 1851 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1852
1853 /* Remember that we saw this grace-period completion. */
1854 rdp->completed = rnp->completed;
f7f7bac9 1855 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1856 }
398ebe60 1857
7d0ae808 1858 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1859 /*
1860 * If the current grace period is waiting for this CPU,
1861 * set up to detect a quiescent state, otherwise don't
1862 * go looking for one.
1863 */
1864 rdp->gpnum = rnp->gpnum;
f7f7bac9 1865 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
5b74c458 1866 rdp->cpu_no_qs.b.norm = true;
5cd37193 1867 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
97c668b8 1868 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
6eaef633 1869 zero_cpu_stall_ticks(rdp);
7d0ae808 1870 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1871 }
48a7639c 1872 return ret;
6eaef633
PM
1873}
1874
d34ea322 1875static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1876{
1877 unsigned long flags;
48a7639c 1878 bool needwake;
6eaef633
PM
1879 struct rcu_node *rnp;
1880
1881 local_irq_save(flags);
1882 rnp = rdp->mynode;
7d0ae808
PM
1883 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1884 rdp->completed == READ_ONCE(rnp->completed) &&
1885 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1886 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1887 local_irq_restore(flags);
1888 return;
1889 }
48a7639c 1890 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1891 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1892 if (needwake)
1893 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1894}
1895
0f41c0dd
PM
1896static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1897{
1898 if (delay > 0 &&
1899 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1900 schedule_timeout_uninterruptible(delay);
1901}
1902
b3dbec76 1903/*
45fed3e7 1904 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1905 */
45fed3e7 1906static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1907{
0aa04b05 1908 unsigned long oldmask;
b3dbec76 1909 struct rcu_data *rdp;
7fdefc10 1910 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1911
7d0ae808 1912 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1913 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1914 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1915 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1916 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1917 return false;
f7be8209 1918 }
7d0ae808 1919 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1920
f7be8209
PM
1921 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1922 /*
1923 * Grace period already in progress, don't start another.
1924 * Not supposed to be able to happen.
1925 */
67c583a7 1926 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1927 return false;
7fdefc10
PM
1928 }
1929
7fdefc10 1930 /* Advance to a new grace period and initialize state. */
26cdfedf 1931 record_gp_stall_check_time(rsp);
765a3f4f
PM
1932 /* Record GP times before starting GP, hence smp_store_release(). */
1933 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1934 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 1935 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1936
0aa04b05
PM
1937 /*
1938 * Apply per-leaf buffered online and offline operations to the
1939 * rcu_node tree. Note that this new grace period need not wait
1940 * for subsequent online CPUs, and that quiescent-state forcing
1941 * will handle subsequent offline CPUs.
1942 */
1943 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1944 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1945 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1946 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1947 !rnp->wait_blkd_tasks) {
1948 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1949 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
1950 continue;
1951 }
1952
1953 /* Record old state, apply changes to ->qsmaskinit field. */
1954 oldmask = rnp->qsmaskinit;
1955 rnp->qsmaskinit = rnp->qsmaskinitnext;
1956
1957 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1958 if (!oldmask != !rnp->qsmaskinit) {
1959 if (!oldmask) /* First online CPU for this rcu_node. */
1960 rcu_init_new_rnp(rnp);
1961 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1962 rnp->wait_blkd_tasks = true;
1963 else /* Last offline CPU and can propagate. */
1964 rcu_cleanup_dead_rnp(rnp);
1965 }
1966
1967 /*
1968 * If all waited-on tasks from prior grace period are
1969 * done, and if all this rcu_node structure's CPUs are
1970 * still offline, propagate up the rcu_node tree and
1971 * clear ->wait_blkd_tasks. Otherwise, if one of this
1972 * rcu_node structure's CPUs has since come back online,
1973 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1974 * checks for this, so just call it unconditionally).
1975 */
1976 if (rnp->wait_blkd_tasks &&
1977 (!rcu_preempt_has_tasks(rnp) ||
1978 rnp->qsmaskinit)) {
1979 rnp->wait_blkd_tasks = false;
1980 rcu_cleanup_dead_rnp(rnp);
1981 }
1982
67c583a7 1983 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 1984 }
7fdefc10
PM
1985
1986 /*
1987 * Set the quiescent-state-needed bits in all the rcu_node
1988 * structures for all currently online CPUs in breadth-first order,
1989 * starting from the root rcu_node structure, relying on the layout
1990 * of the tree within the rsp->node[] array. Note that other CPUs
1991 * will access only the leaves of the hierarchy, thus seeing that no
1992 * grace period is in progress, at least until the corresponding
590d1757 1993 * leaf node has been initialized.
7fdefc10
PM
1994 *
1995 * The grace period cannot complete until the initialization
1996 * process finishes, because this kthread handles both.
1997 */
1998 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 1999 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2000 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2001 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2002 rcu_preempt_check_blocked_tasks(rnp);
2003 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2004 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2005 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2006 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2007 if (rnp == rdp->mynode)
48a7639c 2008 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2009 rcu_preempt_boost_start_gp(rnp);
2010 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2011 rnp->level, rnp->grplo,
2012 rnp->grphi, rnp->qsmask);
67c583a7 2013 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2014 cond_resched_rcu_qs();
7d0ae808 2015 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2016 }
b3dbec76 2017
45fed3e7 2018 return true;
7fdefc10 2019}
b3dbec76 2020
b9a425cf
PM
2021/*
2022 * Helper function for wait_event_interruptible_timeout() wakeup
2023 * at force-quiescent-state time.
2024 */
2025static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2026{
2027 struct rcu_node *rnp = rcu_get_root(rsp);
2028
2029 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2030 *gfp = READ_ONCE(rsp->gp_flags);
2031 if (*gfp & RCU_GP_FLAG_FQS)
2032 return true;
2033
2034 /* The current grace period has completed. */
2035 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2036 return true;
2037
2038 return false;
2039}
2040
4cdfc175
PM
2041/*
2042 * Do one round of quiescent-state forcing.
2043 */
77f81fe0 2044static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2045{
217af2a2
PM
2046 bool isidle = false;
2047 unsigned long maxj;
4cdfc175
PM
2048 struct rcu_node *rnp = rcu_get_root(rsp);
2049
7d0ae808 2050 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2051 rsp->n_force_qs++;
77f81fe0 2052 if (first_time) {
4cdfc175 2053 /* Collect dyntick-idle snapshots. */
0edd1b17 2054 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 2055 isidle = true;
0edd1b17
PM
2056 maxj = jiffies - ULONG_MAX / 4;
2057 }
217af2a2
PM
2058 force_qs_rnp(rsp, dyntick_save_progress_counter,
2059 &isidle, &maxj);
0edd1b17 2060 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2061 } else {
2062 /* Handle dyntick-idle and offline CPUs. */
675da67f 2063 isidle = true;
217af2a2 2064 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2065 }
2066 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2067 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2068 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2069 WRITE_ONCE(rsp->gp_flags,
2070 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2071 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2072 }
4cdfc175
PM
2073}
2074
7fdefc10
PM
2075/*
2076 * Clean up after the old grace period.
2077 */
4cdfc175 2078static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2079{
2080 unsigned long gp_duration;
48a7639c 2081 bool needgp = false;
dae6e64d 2082 int nocb = 0;
7fdefc10
PM
2083 struct rcu_data *rdp;
2084 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2085 struct swait_queue_head *sq;
b3dbec76 2086
7d0ae808 2087 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2088 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2089 gp_duration = jiffies - rsp->gp_start;
2090 if (gp_duration > rsp->gp_max)
2091 rsp->gp_max = gp_duration;
b3dbec76 2092
7fdefc10
PM
2093 /*
2094 * We know the grace period is complete, but to everyone else
2095 * it appears to still be ongoing. But it is also the case
2096 * that to everyone else it looks like there is nothing that
2097 * they can do to advance the grace period. It is therefore
2098 * safe for us to drop the lock in order to mark the grace
2099 * period as completed in all of the rcu_node structures.
7fdefc10 2100 */
67c583a7 2101 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2102
5d4b8659
PM
2103 /*
2104 * Propagate new ->completed value to rcu_node structures so
2105 * that other CPUs don't have to wait until the start of the next
2106 * grace period to process their callbacks. This also avoids
2107 * some nasty RCU grace-period initialization races by forcing
2108 * the end of the current grace period to be completely recorded in
2109 * all of the rcu_node structures before the beginning of the next
2110 * grace period is recorded in any of the rcu_node structures.
2111 */
2112 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2113 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2114 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2115 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2116 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2117 rdp = this_cpu_ptr(rsp->rda);
2118 if (rnp == rdp->mynode)
48a7639c 2119 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2120 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2121 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2122 sq = rcu_nocb_gp_get(rnp);
67c583a7 2123 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2124 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2125 cond_resched_rcu_qs();
7d0ae808 2126 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2127 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2128 }
5d4b8659 2129 rnp = rcu_get_root(rsp);
2a67e741 2130 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2131 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2132
765a3f4f 2133 /* Declare grace period done. */
7d0ae808 2134 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2135 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2136 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2137 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2138 /* Advance CBs to reduce false positives below. */
2139 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2140 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2141 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2142 trace_rcu_grace_period(rsp->name,
7d0ae808 2143 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2144 TPS("newreq"));
2145 }
67c583a7 2146 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2147}
2148
2149/*
2150 * Body of kthread that handles grace periods.
2151 */
2152static int __noreturn rcu_gp_kthread(void *arg)
2153{
77f81fe0 2154 bool first_gp_fqs;
88d6df61 2155 int gf;
d40011f6 2156 unsigned long j;
4cdfc175 2157 int ret;
7fdefc10
PM
2158 struct rcu_state *rsp = arg;
2159 struct rcu_node *rnp = rcu_get_root(rsp);
2160
5871968d 2161 rcu_bind_gp_kthread();
7fdefc10
PM
2162 for (;;) {
2163
2164 /* Handle grace-period start. */
2165 for (;;) {
63c4db78 2166 trace_rcu_grace_period(rsp->name,
7d0ae808 2167 READ_ONCE(rsp->gpnum),
63c4db78 2168 TPS("reqwait"));
afea227f 2169 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2170 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2171 READ_ONCE(rsp->gp_flags) &
4cdfc175 2172 RCU_GP_FLAG_INIT);
319362c9 2173 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2174 /* Locking provides needed memory barrier. */
f7be8209 2175 if (rcu_gp_init(rsp))
7fdefc10 2176 break;
bde6c3aa 2177 cond_resched_rcu_qs();
7d0ae808 2178 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2179 WARN_ON(signal_pending(current));
63c4db78 2180 trace_rcu_grace_period(rsp->name,
7d0ae808 2181 READ_ONCE(rsp->gpnum),
63c4db78 2182 TPS("reqwaitsig"));
7fdefc10 2183 }
cabc49c1 2184
4cdfc175 2185 /* Handle quiescent-state forcing. */
77f81fe0 2186 first_gp_fqs = true;
d40011f6
PM
2187 j = jiffies_till_first_fqs;
2188 if (j > HZ) {
2189 j = HZ;
2190 jiffies_till_first_fqs = HZ;
2191 }
88d6df61 2192 ret = 0;
cabc49c1 2193 for (;;) {
8c7c4829 2194 if (!ret) {
88d6df61 2195 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2196 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2197 jiffies + 3 * j);
2198 }
63c4db78 2199 trace_rcu_grace_period(rsp->name,
7d0ae808 2200 READ_ONCE(rsp->gpnum),
63c4db78 2201 TPS("fqswait"));
afea227f 2202 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2203 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2204 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2205 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2206 /* Locking provides needed memory barriers. */
4cdfc175 2207 /* If grace period done, leave loop. */
7d0ae808 2208 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2209 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2210 break;
4cdfc175 2211 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2212 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2213 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2214 trace_rcu_grace_period(rsp->name,
7d0ae808 2215 READ_ONCE(rsp->gpnum),
63c4db78 2216 TPS("fqsstart"));
77f81fe0
PM
2217 rcu_gp_fqs(rsp, first_gp_fqs);
2218 first_gp_fqs = false;
63c4db78 2219 trace_rcu_grace_period(rsp->name,
7d0ae808 2220 READ_ONCE(rsp->gpnum),
63c4db78 2221 TPS("fqsend"));
bde6c3aa 2222 cond_resched_rcu_qs();
7d0ae808 2223 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2224 ret = 0; /* Force full wait till next FQS. */
2225 j = jiffies_till_next_fqs;
2226 if (j > HZ) {
2227 j = HZ;
2228 jiffies_till_next_fqs = HZ;
2229 } else if (j < 1) {
2230 j = 1;
2231 jiffies_till_next_fqs = 1;
2232 }
4cdfc175
PM
2233 } else {
2234 /* Deal with stray signal. */
bde6c3aa 2235 cond_resched_rcu_qs();
7d0ae808 2236 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2237 WARN_ON(signal_pending(current));
63c4db78 2238 trace_rcu_grace_period(rsp->name,
7d0ae808 2239 READ_ONCE(rsp->gpnum),
63c4db78 2240 TPS("fqswaitsig"));
fcfd0a23
PM
2241 ret = 1; /* Keep old FQS timing. */
2242 j = jiffies;
2243 if (time_after(jiffies, rsp->jiffies_force_qs))
2244 j = 1;
2245 else
2246 j = rsp->jiffies_force_qs - j;
d40011f6 2247 }
cabc49c1 2248 }
4cdfc175
PM
2249
2250 /* Handle grace-period end. */
319362c9 2251 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2252 rcu_gp_cleanup(rsp);
319362c9 2253 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2254 }
b3dbec76
PM
2255}
2256
64db4cff
PM
2257/*
2258 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2259 * in preparation for detecting the next grace period. The caller must hold
b8462084 2260 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2261 *
2262 * Note that it is legal for a dying CPU (which is marked as offline) to
2263 * invoke this function. This can happen when the dying CPU reports its
2264 * quiescent state.
48a7639c
PM
2265 *
2266 * Returns true if the grace-period kthread must be awakened.
64db4cff 2267 */
48a7639c 2268static bool
910ee45d
PM
2269rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2270 struct rcu_data *rdp)
64db4cff 2271{
b8462084 2272 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2273 /*
b3dbec76 2274 * Either we have not yet spawned the grace-period
62da1921
PM
2275 * task, this CPU does not need another grace period,
2276 * or a grace period is already in progress.
b3dbec76 2277 * Either way, don't start a new grace period.
afe24b12 2278 */
48a7639c 2279 return false;
afe24b12 2280 }
7d0ae808
PM
2281 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2282 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2283 TPS("newreq"));
62da1921 2284
016a8d5b
SR
2285 /*
2286 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2287 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2288 * the wakeup to our caller.
016a8d5b 2289 */
48a7639c 2290 return true;
64db4cff
PM
2291}
2292
910ee45d
PM
2293/*
2294 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2295 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2296 * is invoked indirectly from rcu_advance_cbs(), which would result in
2297 * endless recursion -- or would do so if it wasn't for the self-deadlock
2298 * that is encountered beforehand.
48a7639c
PM
2299 *
2300 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2301 */
48a7639c 2302static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2303{
2304 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2305 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2306 bool ret = false;
910ee45d
PM
2307
2308 /*
2309 * If there is no grace period in progress right now, any
2310 * callbacks we have up to this point will be satisfied by the
2311 * next grace period. Also, advancing the callbacks reduces the
2312 * probability of false positives from cpu_needs_another_gp()
2313 * resulting in pointless grace periods. So, advance callbacks
2314 * then start the grace period!
2315 */
48a7639c
PM
2316 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2317 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2318 return ret;
910ee45d
PM
2319}
2320
f41d911f 2321/*
8994515c
PM
2322 * Report a full set of quiescent states to the specified rcu_state data
2323 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2324 * kthread if another grace period is required. Whether we wake
2325 * the grace-period kthread or it awakens itself for the next round
2326 * of quiescent-state forcing, that kthread will clean up after the
2327 * just-completed grace period. Note that the caller must hold rnp->lock,
2328 * which is released before return.
f41d911f 2329 */
d3f6bad3 2330static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2331 __releases(rcu_get_root(rsp)->lock)
f41d911f 2332{
fc2219d4 2333 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2334 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2335 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
abedf8e2 2336 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
f41d911f
PM
2337}
2338
64db4cff 2339/*
d3f6bad3
PM
2340 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2341 * Allows quiescent states for a group of CPUs to be reported at one go
2342 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2343 * must be represented by the same rcu_node structure (which need not be a
2344 * leaf rcu_node structure, though it often will be). The gps parameter
2345 * is the grace-period snapshot, which means that the quiescent states
2346 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2347 * must be held upon entry, and it is released before return.
64db4cff
PM
2348 */
2349static void
d3f6bad3 2350rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2351 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2352 __releases(rnp->lock)
2353{
654e9533 2354 unsigned long oldmask = 0;
28ecd580
PM
2355 struct rcu_node *rnp_c;
2356
64db4cff
PM
2357 /* Walk up the rcu_node hierarchy. */
2358 for (;;) {
654e9533 2359 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2360
654e9533
PM
2361 /*
2362 * Our bit has already been cleared, or the
2363 * relevant grace period is already over, so done.
2364 */
67c583a7 2365 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2366 return;
2367 }
654e9533 2368 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2369 rnp->qsmask &= ~mask;
d4c08f2a
PM
2370 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2371 mask, rnp->qsmask, rnp->level,
2372 rnp->grplo, rnp->grphi,
2373 !!rnp->gp_tasks);
27f4d280 2374 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2375
2376 /* Other bits still set at this level, so done. */
67c583a7 2377 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2378 return;
2379 }
2380 mask = rnp->grpmask;
2381 if (rnp->parent == NULL) {
2382
2383 /* No more levels. Exit loop holding root lock. */
2384
2385 break;
2386 }
67c583a7 2387 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2388 rnp_c = rnp;
64db4cff 2389 rnp = rnp->parent;
2a67e741 2390 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2391 oldmask = rnp_c->qsmask;
64db4cff
PM
2392 }
2393
2394 /*
2395 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2396 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2397 * to clean up and start the next grace period if one is needed.
64db4cff 2398 */
d3f6bad3 2399 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2400}
2401
cc99a310
PM
2402/*
2403 * Record a quiescent state for all tasks that were previously queued
2404 * on the specified rcu_node structure and that were blocking the current
2405 * RCU grace period. The caller must hold the specified rnp->lock with
2406 * irqs disabled, and this lock is released upon return, but irqs remain
2407 * disabled.
2408 */
0aa04b05 2409static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2410 struct rcu_node *rnp, unsigned long flags)
2411 __releases(rnp->lock)
2412{
654e9533 2413 unsigned long gps;
cc99a310
PM
2414 unsigned long mask;
2415 struct rcu_node *rnp_p;
2416
a77da14c
PM
2417 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2418 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2419 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2420 return; /* Still need more quiescent states! */
2421 }
2422
2423 rnp_p = rnp->parent;
2424 if (rnp_p == NULL) {
2425 /*
a77da14c
PM
2426 * Only one rcu_node structure in the tree, so don't
2427 * try to report up to its nonexistent parent!
cc99a310
PM
2428 */
2429 rcu_report_qs_rsp(rsp, flags);
2430 return;
2431 }
2432
654e9533
PM
2433 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2434 gps = rnp->gpnum;
cc99a310 2435 mask = rnp->grpmask;
67c583a7 2436 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2437 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2438 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2439}
2440
64db4cff 2441/*
d3f6bad3 2442 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2443 * structure. This must be called from the specified CPU.
64db4cff
PM
2444 */
2445static void
d7d6a11e 2446rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2447{
2448 unsigned long flags;
2449 unsigned long mask;
48a7639c 2450 bool needwake;
64db4cff
PM
2451 struct rcu_node *rnp;
2452
2453 rnp = rdp->mynode;
2a67e741 2454 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5b74c458 2455 if ((rdp->cpu_no_qs.b.norm &&
5cd37193
PM
2456 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2457 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2458 rdp->gpwrap) {
64db4cff
PM
2459
2460 /*
e4cc1f22
PM
2461 * The grace period in which this quiescent state was
2462 * recorded has ended, so don't report it upwards.
2463 * We will instead need a new quiescent state that lies
2464 * within the current grace period.
64db4cff 2465 */
5b74c458 2466 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
5cd37193 2467 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
67c583a7 2468 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2469 return;
2470 }
2471 mask = rdp->grpmask;
2472 if ((rnp->qsmask & mask) == 0) {
67c583a7 2473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2474 } else {
bb53e416 2475 rdp->core_needs_qs = false;
64db4cff
PM
2476
2477 /*
2478 * This GP can't end until cpu checks in, so all of our
2479 * callbacks can be processed during the next GP.
2480 */
48a7639c 2481 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2482
654e9533
PM
2483 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2484 /* ^^^ Released rnp->lock */
48a7639c
PM
2485 if (needwake)
2486 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2487 }
2488}
2489
2490/*
2491 * Check to see if there is a new grace period of which this CPU
2492 * is not yet aware, and if so, set up local rcu_data state for it.
2493 * Otherwise, see if this CPU has just passed through its first
2494 * quiescent state for this grace period, and record that fact if so.
2495 */
2496static void
2497rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2498{
05eb552b
PM
2499 /* Check for grace-period ends and beginnings. */
2500 note_gp_changes(rsp, rdp);
64db4cff
PM
2501
2502 /*
2503 * Does this CPU still need to do its part for current grace period?
2504 * If no, return and let the other CPUs do their part as well.
2505 */
97c668b8 2506 if (!rdp->core_needs_qs)
64db4cff
PM
2507 return;
2508
2509 /*
2510 * Was there a quiescent state since the beginning of the grace
2511 * period? If no, then exit and wait for the next call.
2512 */
5b74c458 2513 if (rdp->cpu_no_qs.b.norm &&
5cd37193 2514 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2515 return;
2516
d3f6bad3
PM
2517 /*
2518 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2519 * judge of that).
2520 */
d7d6a11e 2521 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2522}
2523
e74f4c45 2524/*
b1420f1c
PM
2525 * Send the specified CPU's RCU callbacks to the orphanage. The
2526 * specified CPU must be offline, and the caller must hold the
7b2e6011 2527 * ->orphan_lock.
e74f4c45 2528 */
b1420f1c
PM
2529static void
2530rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2531 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2532{
3fbfbf7a 2533 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2534 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2535 return;
2536
b1420f1c
PM
2537 /*
2538 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2539 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2540 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2541 */
a50c3af9 2542 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2543 rsp->qlen_lazy += rdp->qlen_lazy;
2544 rsp->qlen += rdp->qlen;
2545 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2546 rdp->qlen_lazy = 0;
7d0ae808 2547 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2548 }
2549
2550 /*
b1420f1c
PM
2551 * Next, move those callbacks still needing a grace period to
2552 * the orphanage, where some other CPU will pick them up.
2553 * Some of the callbacks might have gone partway through a grace
2554 * period, but that is too bad. They get to start over because we
2555 * cannot assume that grace periods are synchronized across CPUs.
2556 * We don't bother updating the ->nxttail[] array yet, instead
2557 * we just reset the whole thing later on.
a50c3af9 2558 */
b1420f1c
PM
2559 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2560 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2561 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2562 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2563 }
2564
2565 /*
b1420f1c
PM
2566 * Then move the ready-to-invoke callbacks to the orphanage,
2567 * where some other CPU will pick them up. These will not be
2568 * required to pass though another grace period: They are done.
a50c3af9 2569 */
e5601400 2570 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2571 *rsp->orphan_donetail = rdp->nxtlist;
2572 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2573 }
e74f4c45 2574
b33078b6
PM
2575 /*
2576 * Finally, initialize the rcu_data structure's list to empty and
2577 * disallow further callbacks on this CPU.
2578 */
3f5d3ea6 2579 init_callback_list(rdp);
b33078b6 2580 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2581}
2582
2583/*
2584 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2585 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2586 */
96d3fd0d 2587static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2588{
2589 int i;
fa07a58f 2590 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2591
3fbfbf7a 2592 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2593 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2594 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2595 return;
2596
b1420f1c
PM
2597 /* Do the accounting first. */
2598 rdp->qlen_lazy += rsp->qlen_lazy;
2599 rdp->qlen += rsp->qlen;
2600 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2601 if (rsp->qlen_lazy != rsp->qlen)
2602 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2603 rsp->qlen_lazy = 0;
2604 rsp->qlen = 0;
2605
2606 /*
2607 * We do not need a memory barrier here because the only way we
2608 * can get here if there is an rcu_barrier() in flight is if
2609 * we are the task doing the rcu_barrier().
2610 */
2611
2612 /* First adopt the ready-to-invoke callbacks. */
2613 if (rsp->orphan_donelist != NULL) {
2614 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2615 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2616 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2617 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2618 rdp->nxttail[i] = rsp->orphan_donetail;
2619 rsp->orphan_donelist = NULL;
2620 rsp->orphan_donetail = &rsp->orphan_donelist;
2621 }
2622
2623 /* And then adopt the callbacks that still need a grace period. */
2624 if (rsp->orphan_nxtlist != NULL) {
2625 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2626 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2627 rsp->orphan_nxtlist = NULL;
2628 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2629 }
2630}
2631
2632/*
2633 * Trace the fact that this CPU is going offline.
2634 */
2635static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2636{
2637 RCU_TRACE(unsigned long mask);
2638 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2639 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2640
ea46351c
PM
2641 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2642 return;
2643
b1420f1c 2644 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2645 trace_rcu_grace_period(rsp->name,
2646 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2647 TPS("cpuofl"));
64db4cff
PM
2648}
2649
8af3a5e7
PM
2650/*
2651 * All CPUs for the specified rcu_node structure have gone offline,
2652 * and all tasks that were preempted within an RCU read-side critical
2653 * section while running on one of those CPUs have since exited their RCU
2654 * read-side critical section. Some other CPU is reporting this fact with
2655 * the specified rcu_node structure's ->lock held and interrupts disabled.
2656 * This function therefore goes up the tree of rcu_node structures,
2657 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2658 * the leaf rcu_node structure's ->qsmaskinit field has already been
2659 * updated
2660 *
2661 * This function does check that the specified rcu_node structure has
2662 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2663 * prematurely. That said, invoking it after the fact will cost you
2664 * a needless lock acquisition. So once it has done its work, don't
2665 * invoke it again.
2666 */
2667static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2668{
2669 long mask;
2670 struct rcu_node *rnp = rnp_leaf;
2671
ea46351c
PM
2672 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2673 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2674 return;
2675 for (;;) {
2676 mask = rnp->grpmask;
2677 rnp = rnp->parent;
2678 if (!rnp)
2679 break;
2a67e741 2680 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2681 rnp->qsmaskinit &= ~mask;
0aa04b05 2682 rnp->qsmask &= ~mask;
8af3a5e7 2683 if (rnp->qsmaskinit) {
67c583a7
BF
2684 raw_spin_unlock_rcu_node(rnp);
2685 /* irqs remain disabled. */
8af3a5e7
PM
2686 return;
2687 }
67c583a7 2688 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2689 }
2690}
2691
64db4cff 2692/*
e5601400 2693 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2694 * this fact from process context. Do the remainder of the cleanup,
2695 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2696 * adopting them. There can only be one CPU hotplug operation at a time,
2697 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2698 */
e5601400 2699static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2700{
2036d94a 2701 unsigned long flags;
e5601400 2702 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2703 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2704
ea46351c
PM
2705 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2706 return;
2707
2036d94a 2708 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2709 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2710
b1420f1c 2711 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2712 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2713 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2714 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2715 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2716
cf01537e
PM
2717 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2718 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2719 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2720}
2721
64db4cff
PM
2722/*
2723 * Invoke any RCU callbacks that have made it to the end of their grace
2724 * period. Thottle as specified by rdp->blimit.
2725 */
37c72e56 2726static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2727{
2728 unsigned long flags;
2729 struct rcu_head *next, *list, **tail;
878d7439
ED
2730 long bl, count, count_lazy;
2731 int i;
64db4cff 2732
dc35c893 2733 /* If no callbacks are ready, just return. */
29c00b4a 2734 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2735 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2736 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2737 need_resched(), is_idle_task(current),
2738 rcu_is_callbacks_kthread());
64db4cff 2739 return;
29c00b4a 2740 }
64db4cff
PM
2741
2742 /*
2743 * Extract the list of ready callbacks, disabling to prevent
2744 * races with call_rcu() from interrupt handlers.
2745 */
2746 local_irq_save(flags);
8146c4e2 2747 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2748 bl = rdp->blimit;
486e2593 2749 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2750 list = rdp->nxtlist;
2751 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2752 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2753 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2754 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2755 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2756 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2757 local_irq_restore(flags);
2758
2759 /* Invoke callbacks. */
486e2593 2760 count = count_lazy = 0;
64db4cff
PM
2761 while (list) {
2762 next = list->next;
2763 prefetch(next);
551d55a9 2764 debug_rcu_head_unqueue(list);
486e2593
PM
2765 if (__rcu_reclaim(rsp->name, list))
2766 count_lazy++;
64db4cff 2767 list = next;
dff1672d
PM
2768 /* Stop only if limit reached and CPU has something to do. */
2769 if (++count >= bl &&
2770 (need_resched() ||
2771 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2772 break;
2773 }
2774
2775 local_irq_save(flags);
4968c300
PM
2776 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2777 is_idle_task(current),
2778 rcu_is_callbacks_kthread());
64db4cff
PM
2779
2780 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2781 if (list != NULL) {
2782 *tail = rdp->nxtlist;
2783 rdp->nxtlist = list;
b41772ab
PM
2784 for (i = 0; i < RCU_NEXT_SIZE; i++)
2785 if (&rdp->nxtlist == rdp->nxttail[i])
2786 rdp->nxttail[i] = tail;
64db4cff
PM
2787 else
2788 break;
2789 }
b1420f1c
PM
2790 smp_mb(); /* List handling before counting for rcu_barrier(). */
2791 rdp->qlen_lazy -= count_lazy;
7d0ae808 2792 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2793 rdp->n_cbs_invoked += count;
64db4cff
PM
2794
2795 /* Reinstate batch limit if we have worked down the excess. */
2796 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2797 rdp->blimit = blimit;
2798
37c72e56
PM
2799 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2800 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2801 rdp->qlen_last_fqs_check = 0;
2802 rdp->n_force_qs_snap = rsp->n_force_qs;
2803 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2804 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2805 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2806
64db4cff
PM
2807 local_irq_restore(flags);
2808
e0f23060 2809 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2810 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2811 invoke_rcu_core();
64db4cff
PM
2812}
2813
2814/*
2815 * Check to see if this CPU is in a non-context-switch quiescent state
2816 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2817 * Also schedule RCU core processing.
64db4cff 2818 *
9b2e4f18 2819 * This function must be called from hardirq context. It is normally
64db4cff
PM
2820 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2821 * false, there is no point in invoking rcu_check_callbacks().
2822 */
c3377c2d 2823void rcu_check_callbacks(int user)
64db4cff 2824{
f7f7bac9 2825 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2826 increment_cpu_stall_ticks();
9b2e4f18 2827 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2828
2829 /*
2830 * Get here if this CPU took its interrupt from user
2831 * mode or from the idle loop, and if this is not a
2832 * nested interrupt. In this case, the CPU is in
d6714c22 2833 * a quiescent state, so note it.
64db4cff
PM
2834 *
2835 * No memory barrier is required here because both
d6714c22
PM
2836 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2837 * variables that other CPUs neither access nor modify,
2838 * at least not while the corresponding CPU is online.
64db4cff
PM
2839 */
2840
284a8c93
PM
2841 rcu_sched_qs();
2842 rcu_bh_qs();
64db4cff
PM
2843
2844 } else if (!in_softirq()) {
2845
2846 /*
2847 * Get here if this CPU did not take its interrupt from
2848 * softirq, in other words, if it is not interrupting
2849 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2850 * critical section, so note it.
64db4cff
PM
2851 */
2852
284a8c93 2853 rcu_bh_qs();
64db4cff 2854 }
86aea0e6 2855 rcu_preempt_check_callbacks();
e3950ecd 2856 if (rcu_pending())
a46e0899 2857 invoke_rcu_core();
8315f422
PM
2858 if (user)
2859 rcu_note_voluntary_context_switch(current);
f7f7bac9 2860 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2861}
2862
64db4cff
PM
2863/*
2864 * Scan the leaf rcu_node structures, processing dyntick state for any that
2865 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2866 * Also initiate boosting for any threads blocked on the root rcu_node.
2867 *
ee47eb9f 2868 * The caller must have suppressed start of new grace periods.
64db4cff 2869 */
217af2a2
PM
2870static void force_qs_rnp(struct rcu_state *rsp,
2871 int (*f)(struct rcu_data *rsp, bool *isidle,
2872 unsigned long *maxj),
2873 bool *isidle, unsigned long *maxj)
64db4cff
PM
2874{
2875 unsigned long bit;
2876 int cpu;
2877 unsigned long flags;
2878 unsigned long mask;
a0b6c9a7 2879 struct rcu_node *rnp;
64db4cff 2880
a0b6c9a7 2881 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2882 cond_resched_rcu_qs();
64db4cff 2883 mask = 0;
2a67e741 2884 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2885 if (rnp->qsmask == 0) {
a77da14c
PM
2886 if (rcu_state_p == &rcu_sched_state ||
2887 rsp != rcu_state_p ||
2888 rcu_preempt_blocked_readers_cgp(rnp)) {
2889 /*
2890 * No point in scanning bits because they
2891 * are all zero. But we might need to
2892 * priority-boost blocked readers.
2893 */
2894 rcu_initiate_boost(rnp, flags);
2895 /* rcu_initiate_boost() releases rnp->lock */
2896 continue;
2897 }
2898 if (rnp->parent &&
2899 (rnp->parent->qsmask & rnp->grpmask)) {
2900 /*
2901 * Race between grace-period
2902 * initialization and task exiting RCU
2903 * read-side critical section: Report.
2904 */
2905 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2906 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2907 continue;
2908 }
64db4cff 2909 }
a0b6c9a7 2910 cpu = rnp->grplo;
64db4cff 2911 bit = 1;
a0b6c9a7 2912 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17 2913 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2914 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2915 mask |= bit;
2916 }
64db4cff 2917 }
45f014c5 2918 if (mask != 0) {
654e9533
PM
2919 /* Idle/offline CPUs, report (releases rnp->lock. */
2920 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2921 } else {
2922 /* Nothing to do here, so just drop the lock. */
67c583a7 2923 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2924 }
64db4cff 2925 }
64db4cff
PM
2926}
2927
2928/*
2929 * Force quiescent states on reluctant CPUs, and also detect which
2930 * CPUs are in dyntick-idle mode.
2931 */
4cdfc175 2932static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2933{
2934 unsigned long flags;
394f2769
PM
2935 bool ret;
2936 struct rcu_node *rnp;
2937 struct rcu_node *rnp_old = NULL;
2938
2939 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2940 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2941 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2942 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2943 !raw_spin_trylock(&rnp->fqslock);
2944 if (rnp_old != NULL)
2945 raw_spin_unlock(&rnp_old->fqslock);
2946 if (ret) {
a792563b 2947 rsp->n_force_qs_lh++;
394f2769
PM
2948 return;
2949 }
2950 rnp_old = rnp;
2951 }
2952 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2953
394f2769 2954 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2955 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2956 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2957 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2958 rsp->n_force_qs_lh++;
67c583a7 2959 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2960 return; /* Someone beat us to it. */
46a1e34e 2961 }
7d0ae808 2962 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2963 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
abedf8e2 2964 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
64db4cff
PM
2965}
2966
64db4cff 2967/*
e0f23060
PM
2968 * This does the RCU core processing work for the specified rcu_state
2969 * and rcu_data structures. This may be called only from the CPU to
2970 * whom the rdp belongs.
64db4cff
PM
2971 */
2972static void
1bca8cf1 2973__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2974{
2975 unsigned long flags;
48a7639c 2976 bool needwake;
fa07a58f 2977 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2978
2e597558
PM
2979 WARN_ON_ONCE(rdp->beenonline == 0);
2980
64db4cff
PM
2981 /* Update RCU state based on any recent quiescent states. */
2982 rcu_check_quiescent_state(rsp, rdp);
2983
2984 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2985 local_irq_save(flags);
64db4cff 2986 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2987 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2988 needwake = rcu_start_gp(rsp);
67c583a7 2989 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
2990 if (needwake)
2991 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2992 } else {
2993 local_irq_restore(flags);
64db4cff
PM
2994 }
2995
2996 /* If there are callbacks ready, invoke them. */
09223371 2997 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2998 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2999
3000 /* Do any needed deferred wakeups of rcuo kthreads. */
3001 do_nocb_deferred_wakeup(rdp);
09223371
SL
3002}
3003
64db4cff 3004/*
e0f23060 3005 * Do RCU core processing for the current CPU.
64db4cff 3006 */
09223371 3007static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3008{
6ce75a23
PM
3009 struct rcu_state *rsp;
3010
bfa00b4c
PM
3011 if (cpu_is_offline(smp_processor_id()))
3012 return;
f7f7bac9 3013 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3014 for_each_rcu_flavor(rsp)
3015 __rcu_process_callbacks(rsp);
f7f7bac9 3016 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3017}
3018
a26ac245 3019/*
e0f23060
PM
3020 * Schedule RCU callback invocation. If the specified type of RCU
3021 * does not support RCU priority boosting, just do a direct call,
3022 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3023 * are running on the current CPU with softirqs disabled, the
e0f23060 3024 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3025 */
a46e0899 3026static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3027{
7d0ae808 3028 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3029 return;
a46e0899
PM
3030 if (likely(!rsp->boost)) {
3031 rcu_do_batch(rsp, rdp);
a26ac245
PM
3032 return;
3033 }
a46e0899 3034 invoke_rcu_callbacks_kthread();
a26ac245
PM
3035}
3036
a46e0899 3037static void invoke_rcu_core(void)
09223371 3038{
b0f74036
PM
3039 if (cpu_online(smp_processor_id()))
3040 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3041}
3042
29154c57
PM
3043/*
3044 * Handle any core-RCU processing required by a call_rcu() invocation.
3045 */
3046static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3047 struct rcu_head *head, unsigned long flags)
64db4cff 3048{
48a7639c
PM
3049 bool needwake;
3050
62fde6ed
PM
3051 /*
3052 * If called from an extended quiescent state, invoke the RCU
3053 * core in order to force a re-evaluation of RCU's idleness.
3054 */
9910affa 3055 if (!rcu_is_watching())
62fde6ed
PM
3056 invoke_rcu_core();
3057
a16b7a69 3058 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3059 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3060 return;
64db4cff 3061
37c72e56
PM
3062 /*
3063 * Force the grace period if too many callbacks or too long waiting.
3064 * Enforce hysteresis, and don't invoke force_quiescent_state()
3065 * if some other CPU has recently done so. Also, don't bother
3066 * invoking force_quiescent_state() if the newly enqueued callback
3067 * is the only one waiting for a grace period to complete.
3068 */
2655d57e 3069 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3070
3071 /* Are we ignoring a completed grace period? */
470716fc 3072 note_gp_changes(rsp, rdp);
b52573d2
PM
3073
3074 /* Start a new grace period if one not already started. */
3075 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3076 struct rcu_node *rnp_root = rcu_get_root(rsp);
3077
2a67e741 3078 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3079 needwake = rcu_start_gp(rsp);
67c583a7 3080 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3081 if (needwake)
3082 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3083 } else {
3084 /* Give the grace period a kick. */
3085 rdp->blimit = LONG_MAX;
3086 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3087 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3088 force_quiescent_state(rsp);
b52573d2
PM
3089 rdp->n_force_qs_snap = rsp->n_force_qs;
3090 rdp->qlen_last_fqs_check = rdp->qlen;
3091 }
4cdfc175 3092 }
29154c57
PM
3093}
3094
ae150184
PM
3095/*
3096 * RCU callback function to leak a callback.
3097 */
3098static void rcu_leak_callback(struct rcu_head *rhp)
3099{
3100}
3101
3fbfbf7a
PM
3102/*
3103 * Helper function for call_rcu() and friends. The cpu argument will
3104 * normally be -1, indicating "currently running CPU". It may specify
3105 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3106 * is expected to specify a CPU.
3107 */
64db4cff 3108static void
b6a4ae76 3109__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3110 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3111{
3112 unsigned long flags;
3113 struct rcu_data *rdp;
3114
1146edcb 3115 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
3116 if (debug_rcu_head_queue(head)) {
3117 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3118 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3119 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3120 return;
3121 }
64db4cff
PM
3122 head->func = func;
3123 head->next = NULL;
3124
64db4cff
PM
3125 /*
3126 * Opportunistically note grace-period endings and beginnings.
3127 * Note that we might see a beginning right after we see an
3128 * end, but never vice versa, since this CPU has to pass through
3129 * a quiescent state betweentimes.
3130 */
3131 local_irq_save(flags);
394f99a9 3132 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3133
3134 /* Add the callback to our list. */
3fbfbf7a
PM
3135 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3136 int offline;
3137
3138 if (cpu != -1)
3139 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3140 if (likely(rdp->mynode)) {
3141 /* Post-boot, so this should be for a no-CBs CPU. */
3142 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3143 WARN_ON_ONCE(offline);
3144 /* Offline CPU, _call_rcu() illegal, leak callback. */
3145 local_irq_restore(flags);
3146 return;
3147 }
3148 /*
3149 * Very early boot, before rcu_init(). Initialize if needed
3150 * and then drop through to queue the callback.
3151 */
3152 BUG_ON(cpu != -1);
34404ca8 3153 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3154 if (!likely(rdp->nxtlist))
3155 init_default_callback_list(rdp);
0d8ee37e 3156 }
7d0ae808 3157 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3158 if (lazy)
3159 rdp->qlen_lazy++;
c57afe80
PM
3160 else
3161 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3162 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3163 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3164 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3165
d4c08f2a
PM
3166 if (__is_kfree_rcu_offset((unsigned long)func))
3167 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3168 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3169 else
486e2593 3170 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3171
29154c57
PM
3172 /* Go handle any RCU core processing required. */
3173 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3174 local_irq_restore(flags);
3175}
3176
3177/*
d6714c22 3178 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3179 */
b6a4ae76 3180void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3181{
3fbfbf7a 3182 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3183}
d6714c22 3184EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3185
3186/*
486e2593 3187 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3188 */
b6a4ae76 3189void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3190{
3fbfbf7a 3191 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3192}
3193EXPORT_SYMBOL_GPL(call_rcu_bh);
3194
495aa969
ACB
3195/*
3196 * Queue an RCU callback for lazy invocation after a grace period.
3197 * This will likely be later named something like "call_rcu_lazy()",
3198 * but this change will require some way of tagging the lazy RCU
3199 * callbacks in the list of pending callbacks. Until then, this
3200 * function may only be called from __kfree_rcu().
3201 */
3202void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3203 rcu_callback_t func)
495aa969 3204{
e534165b 3205 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3206}
3207EXPORT_SYMBOL_GPL(kfree_call_rcu);
3208
6d813391
PM
3209/*
3210 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3211 * any blocking grace-period wait automatically implies a grace period
3212 * if there is only one CPU online at any point time during execution
3213 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3214 * occasionally incorrectly indicate that there are multiple CPUs online
3215 * when there was in fact only one the whole time, as this just adds
3216 * some overhead: RCU still operates correctly.
6d813391
PM
3217 */
3218static inline int rcu_blocking_is_gp(void)
3219{
95f0c1de
PM
3220 int ret;
3221
6d813391 3222 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3223 preempt_disable();
3224 ret = num_online_cpus() <= 1;
3225 preempt_enable();
3226 return ret;
6d813391
PM
3227}
3228
6ebb237b
PM
3229/**
3230 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3231 *
3232 * Control will return to the caller some time after a full rcu-sched
3233 * grace period has elapsed, in other words after all currently executing
3234 * rcu-sched read-side critical sections have completed. These read-side
3235 * critical sections are delimited by rcu_read_lock_sched() and
3236 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3237 * local_irq_disable(), and so on may be used in place of
3238 * rcu_read_lock_sched().
3239 *
3240 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3241 * non-threaded hardware-interrupt handlers, in progress on entry will
3242 * have completed before this primitive returns. However, this does not
3243 * guarantee that softirq handlers will have completed, since in some
3244 * kernels, these handlers can run in process context, and can block.
3245 *
3246 * Note that this guarantee implies further memory-ordering guarantees.
3247 * On systems with more than one CPU, when synchronize_sched() returns,
3248 * each CPU is guaranteed to have executed a full memory barrier since the
3249 * end of its last RCU-sched read-side critical section whose beginning
3250 * preceded the call to synchronize_sched(). In addition, each CPU having
3251 * an RCU read-side critical section that extends beyond the return from
3252 * synchronize_sched() is guaranteed to have executed a full memory barrier
3253 * after the beginning of synchronize_sched() and before the beginning of
3254 * that RCU read-side critical section. Note that these guarantees include
3255 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3256 * that are executing in the kernel.
3257 *
3258 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3259 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3260 * to have executed a full memory barrier during the execution of
3261 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3262 * again only if the system has more than one CPU).
6ebb237b
PM
3263 *
3264 * This primitive provides the guarantees made by the (now removed)
3265 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3266 * guarantees that rcu_read_lock() sections will have completed.
3267 * In "classic RCU", these two guarantees happen to be one and
3268 * the same, but can differ in realtime RCU implementations.
3269 */
3270void synchronize_sched(void)
3271{
f78f5b90
PM
3272 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3273 lock_is_held(&rcu_lock_map) ||
3274 lock_is_held(&rcu_sched_lock_map),
3275 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3276 if (rcu_blocking_is_gp())
3277 return;
5afff48b 3278 if (rcu_gp_is_expedited())
3705b88d
AM
3279 synchronize_sched_expedited();
3280 else
3281 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3282}
3283EXPORT_SYMBOL_GPL(synchronize_sched);
3284
3285/**
3286 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3287 *
3288 * Control will return to the caller some time after a full rcu_bh grace
3289 * period has elapsed, in other words after all currently executing rcu_bh
3290 * read-side critical sections have completed. RCU read-side critical
3291 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3292 * and may be nested.
f0a0e6f2
PM
3293 *
3294 * See the description of synchronize_sched() for more detailed information
3295 * on memory ordering guarantees.
6ebb237b
PM
3296 */
3297void synchronize_rcu_bh(void)
3298{
f78f5b90
PM
3299 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3300 lock_is_held(&rcu_lock_map) ||
3301 lock_is_held(&rcu_sched_lock_map),
3302 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3303 if (rcu_blocking_is_gp())
3304 return;
5afff48b 3305 if (rcu_gp_is_expedited())
3705b88d
AM
3306 synchronize_rcu_bh_expedited();
3307 else
3308 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3309}
3310EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3311
765a3f4f
PM
3312/**
3313 * get_state_synchronize_rcu - Snapshot current RCU state
3314 *
3315 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3316 * to determine whether or not a full grace period has elapsed in the
3317 * meantime.
3318 */
3319unsigned long get_state_synchronize_rcu(void)
3320{
3321 /*
3322 * Any prior manipulation of RCU-protected data must happen
3323 * before the load from ->gpnum.
3324 */
3325 smp_mb(); /* ^^^ */
3326
3327 /*
3328 * Make sure this load happens before the purportedly
3329 * time-consuming work between get_state_synchronize_rcu()
3330 * and cond_synchronize_rcu().
3331 */
e534165b 3332 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3333}
3334EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3335
3336/**
3337 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3338 *
3339 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3340 *
3341 * If a full RCU grace period has elapsed since the earlier call to
3342 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3343 * synchronize_rcu() to wait for a full grace period.
3344 *
3345 * Yes, this function does not take counter wrap into account. But
3346 * counter wrap is harmless. If the counter wraps, we have waited for
3347 * more than 2 billion grace periods (and way more on a 64-bit system!),
3348 * so waiting for one additional grace period should be just fine.
3349 */
3350void cond_synchronize_rcu(unsigned long oldstate)
3351{
3352 unsigned long newstate;
3353
3354 /*
3355 * Ensure that this load happens before any RCU-destructive
3356 * actions the caller might carry out after we return.
3357 */
e534165b 3358 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3359 if (ULONG_CMP_GE(oldstate, newstate))
3360 synchronize_rcu();
3361}
3362EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3363
24560056
PM
3364/**
3365 * get_state_synchronize_sched - Snapshot current RCU-sched state
3366 *
3367 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3368 * to determine whether or not a full grace period has elapsed in the
3369 * meantime.
3370 */
3371unsigned long get_state_synchronize_sched(void)
3372{
3373 /*
3374 * Any prior manipulation of RCU-protected data must happen
3375 * before the load from ->gpnum.
3376 */
3377 smp_mb(); /* ^^^ */
3378
3379 /*
3380 * Make sure this load happens before the purportedly
3381 * time-consuming work between get_state_synchronize_sched()
3382 * and cond_synchronize_sched().
3383 */
3384 return smp_load_acquire(&rcu_sched_state.gpnum);
3385}
3386EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3387
3388/**
3389 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3390 *
3391 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3392 *
3393 * If a full RCU-sched grace period has elapsed since the earlier call to
3394 * get_state_synchronize_sched(), just return. Otherwise, invoke
3395 * synchronize_sched() to wait for a full grace period.
3396 *
3397 * Yes, this function does not take counter wrap into account. But
3398 * counter wrap is harmless. If the counter wraps, we have waited for
3399 * more than 2 billion grace periods (and way more on a 64-bit system!),
3400 * so waiting for one additional grace period should be just fine.
3401 */
3402void cond_synchronize_sched(unsigned long oldstate)
3403{
3404 unsigned long newstate;
3405
3406 /*
3407 * Ensure that this load happens before any RCU-destructive
3408 * actions the caller might carry out after we return.
3409 */
3410 newstate = smp_load_acquire(&rcu_sched_state.completed);
3411 if (ULONG_CMP_GE(oldstate, newstate))
3412 synchronize_sched();
3413}
3414EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3415
28f00767
PM
3416/* Adjust sequence number for start of update-side operation. */
3417static void rcu_seq_start(unsigned long *sp)
3418{
3419 WRITE_ONCE(*sp, *sp + 1);
3420 smp_mb(); /* Ensure update-side operation after counter increment. */
3421 WARN_ON_ONCE(!(*sp & 0x1));
3422}
3423
3424/* Adjust sequence number for end of update-side operation. */
3425static void rcu_seq_end(unsigned long *sp)
3426{
3427 smp_mb(); /* Ensure update-side operation before counter increment. */
3428 WRITE_ONCE(*sp, *sp + 1);
3429 WARN_ON_ONCE(*sp & 0x1);
3430}
3431
3432/* Take a snapshot of the update side's sequence number. */
3433static unsigned long rcu_seq_snap(unsigned long *sp)
3434{
3435 unsigned long s;
3436
28f00767
PM
3437 s = (READ_ONCE(*sp) + 3) & ~0x1;
3438 smp_mb(); /* Above access must not bleed into critical section. */
3439 return s;
3440}
3441
3442/*
3443 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3444 * full update-side operation has occurred.
3445 */
3446static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3447{
3448 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3449}
3450
64db4cff
PM
3451/*
3452 * Check to see if there is any immediate RCU-related work to be done
3453 * by the current CPU, for the specified type of RCU, returning 1 if so.
3454 * The checks are in order of increasing expense: checks that can be
3455 * carried out against CPU-local state are performed first. However,
3456 * we must check for CPU stalls first, else we might not get a chance.
3457 */
3458static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3459{
2f51f988
PM
3460 struct rcu_node *rnp = rdp->mynode;
3461
64db4cff
PM
3462 rdp->n_rcu_pending++;
3463
3464 /* Check for CPU stalls, if enabled. */
3465 check_cpu_stall(rsp, rdp);
3466
a096932f
PM
3467 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3468 if (rcu_nohz_full_cpu(rsp))
3469 return 0;
3470
64db4cff 3471 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3472 if (rcu_scheduler_fully_active &&
5b74c458 3473 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
5cd37193 3474 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
97c668b8
PM
3475 rdp->n_rp_core_needs_qs++;
3476 } else if (rdp->core_needs_qs &&
5b74c458 3477 (!rdp->cpu_no_qs.b.norm ||
5cd37193 3478 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3479 rdp->n_rp_report_qs++;
64db4cff 3480 return 1;
7ba5c840 3481 }
64db4cff
PM
3482
3483 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3484 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3485 rdp->n_rp_cb_ready++;
64db4cff 3486 return 1;
7ba5c840 3487 }
64db4cff
PM
3488
3489 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3490 if (cpu_needs_another_gp(rsp, rdp)) {
3491 rdp->n_rp_cpu_needs_gp++;
64db4cff 3492 return 1;
7ba5c840 3493 }
64db4cff
PM
3494
3495 /* Has another RCU grace period completed? */
7d0ae808 3496 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3497 rdp->n_rp_gp_completed++;
64db4cff 3498 return 1;
7ba5c840 3499 }
64db4cff
PM
3500
3501 /* Has a new RCU grace period started? */
7d0ae808
PM
3502 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3503 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3504 rdp->n_rp_gp_started++;
64db4cff 3505 return 1;
7ba5c840 3506 }
64db4cff 3507
96d3fd0d
PM
3508 /* Does this CPU need a deferred NOCB wakeup? */
3509 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3510 rdp->n_rp_nocb_defer_wakeup++;
3511 return 1;
3512 }
3513
64db4cff 3514 /* nothing to do */
7ba5c840 3515 rdp->n_rp_need_nothing++;
64db4cff
PM
3516 return 0;
3517}
3518
3519/*
3520 * Check to see if there is any immediate RCU-related work to be done
3521 * by the current CPU, returning 1 if so. This function is part of the
3522 * RCU implementation; it is -not- an exported member of the RCU API.
3523 */
e3950ecd 3524static int rcu_pending(void)
64db4cff 3525{
6ce75a23
PM
3526 struct rcu_state *rsp;
3527
3528 for_each_rcu_flavor(rsp)
e3950ecd 3529 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3530 return 1;
3531 return 0;
64db4cff
PM
3532}
3533
3534/*
c0f4dfd4
PM
3535 * Return true if the specified CPU has any callback. If all_lazy is
3536 * non-NULL, store an indication of whether all callbacks are lazy.
3537 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3538 */
82072c4f 3539static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3540{
c0f4dfd4
PM
3541 bool al = true;
3542 bool hc = false;
3543 struct rcu_data *rdp;
6ce75a23
PM
3544 struct rcu_state *rsp;
3545
c0f4dfd4 3546 for_each_rcu_flavor(rsp) {
aa6da514 3547 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3548 if (!rdp->nxtlist)
3549 continue;
3550 hc = true;
3551 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3552 al = false;
69c8d28c
PM
3553 break;
3554 }
c0f4dfd4
PM
3555 }
3556 if (all_lazy)
3557 *all_lazy = al;
3558 return hc;
64db4cff
PM
3559}
3560
a83eff0a
PM
3561/*
3562 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3563 * the compiler is expected to optimize this away.
3564 */
e66c33d5 3565static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3566 int cpu, unsigned long done)
3567{
3568 trace_rcu_barrier(rsp->name, s, cpu,
3569 atomic_read(&rsp->barrier_cpu_count), done);
3570}
3571
b1420f1c
PM
3572/*
3573 * RCU callback function for _rcu_barrier(). If we are last, wake
3574 * up the task executing _rcu_barrier().
3575 */
24ebbca8 3576static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3577{
24ebbca8
PM
3578 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3579 struct rcu_state *rsp = rdp->rsp;
3580
a83eff0a 3581 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3582 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3583 complete(&rsp->barrier_completion);
a83eff0a 3584 } else {
4f525a52 3585 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3586 }
d0ec774c
PM
3587}
3588
3589/*
3590 * Called with preemption disabled, and from cross-cpu IRQ context.
3591 */
3592static void rcu_barrier_func(void *type)
3593{
037b64ed 3594 struct rcu_state *rsp = type;
fa07a58f 3595 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3596
4f525a52 3597 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 3598 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3599 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3600}
3601
d0ec774c
PM
3602/*
3603 * Orchestrate the specified type of RCU barrier, waiting for all
3604 * RCU callbacks of the specified type to complete.
3605 */
037b64ed 3606static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3607{
b1420f1c 3608 int cpu;
b1420f1c 3609 struct rcu_data *rdp;
4f525a52 3610 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3611
4f525a52 3612 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3613
e74f4c45 3614 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3615 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3616
4f525a52
PM
3617 /* Did someone else do our work for us? */
3618 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3619 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3620 smp_mb(); /* caller's subsequent code after above check. */
3621 mutex_unlock(&rsp->barrier_mutex);
3622 return;
3623 }
3624
4f525a52
PM
3625 /* Mark the start of the barrier operation. */
3626 rcu_seq_start(&rsp->barrier_sequence);
3627 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3628
d0ec774c 3629 /*
b1420f1c
PM
3630 * Initialize the count to one rather than to zero in order to
3631 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3632 * (or preemption of this task). Exclude CPU-hotplug operations
3633 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3634 */
7db74df8 3635 init_completion(&rsp->barrier_completion);
24ebbca8 3636 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3637 get_online_cpus();
b1420f1c
PM
3638
3639 /*
1331e7a1
PM
3640 * Force each CPU with callbacks to register a new callback.
3641 * When that callback is invoked, we will know that all of the
3642 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3643 */
3fbfbf7a 3644 for_each_possible_cpu(cpu) {
d1e43fa5 3645 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3646 continue;
b1420f1c 3647 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3648 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3649 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3650 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3651 rsp->barrier_sequence);
d7e29933
PM
3652 } else {
3653 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3654 rsp->barrier_sequence);
41050a00 3655 smp_mb__before_atomic();
d7e29933
PM
3656 atomic_inc(&rsp->barrier_cpu_count);
3657 __call_rcu(&rdp->barrier_head,
3658 rcu_barrier_callback, rsp, cpu, 0);
3659 }
7d0ae808 3660 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 3661 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3662 rsp->barrier_sequence);
037b64ed 3663 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3664 } else {
a83eff0a 3665 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3666 rsp->barrier_sequence);
b1420f1c
PM
3667 }
3668 }
1331e7a1 3669 put_online_cpus();
b1420f1c
PM
3670
3671 /*
3672 * Now that we have an rcu_barrier_callback() callback on each
3673 * CPU, and thus each counted, remove the initial count.
3674 */
24ebbca8 3675 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3676 complete(&rsp->barrier_completion);
b1420f1c
PM
3677
3678 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3679 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3680
4f525a52
PM
3681 /* Mark the end of the barrier operation. */
3682 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3683 rcu_seq_end(&rsp->barrier_sequence);
3684
b1420f1c 3685 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3686 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3687}
d0ec774c
PM
3688
3689/**
3690 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3691 */
3692void rcu_barrier_bh(void)
3693{
037b64ed 3694 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3695}
3696EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3697
3698/**
3699 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3700 */
3701void rcu_barrier_sched(void)
3702{
037b64ed 3703 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3704}
3705EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3706
0aa04b05
PM
3707/*
3708 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3709 * first CPU in a given leaf rcu_node structure coming online. The caller
3710 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3711 * disabled.
3712 */
3713static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3714{
3715 long mask;
3716 struct rcu_node *rnp = rnp_leaf;
3717
3718 for (;;) {
3719 mask = rnp->grpmask;
3720 rnp = rnp->parent;
3721 if (rnp == NULL)
3722 return;
6cf10081 3723 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3724 rnp->qsmaskinit |= mask;
67c583a7 3725 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3726 }
3727}
3728
64db4cff 3729/*
27569620 3730 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3731 */
27569620
PM
3732static void __init
3733rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3734{
3735 unsigned long flags;
394f99a9 3736 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3737 struct rcu_node *rnp = rcu_get_root(rsp);
3738
3739 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3740 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27569620 3741 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 3742 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3743 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3744 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3745 rdp->cpu = cpu;
d4c08f2a 3746 rdp->rsp = rsp;
3fbfbf7a 3747 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3748 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3749}
3750
3751/*
3752 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3753 * offline event can be happening at a given time. Note also that we
3754 * can accept some slop in the rsp->completed access due to the fact
3755 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3756 */
49fb4c62 3757static void
9b67122a 3758rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3759{
3760 unsigned long flags;
64db4cff 3761 unsigned long mask;
394f99a9 3762 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3763 struct rcu_node *rnp = rcu_get_root(rsp);
3764
3765 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3766 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3767 rdp->qlen_last_fqs_check = 0;
3768 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3769 rdp->blimit = blimit;
39c8d313
PM
3770 if (!rdp->nxtlist)
3771 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3772 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3773 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3774 atomic_set(&rdp->dynticks->dynticks,
3775 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
67c583a7 3776 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3777
0aa04b05
PM
3778 /*
3779 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3780 * propagation up the rcu_node tree will happen at the beginning
3781 * of the next grace period.
3782 */
64db4cff
PM
3783 rnp = rdp->mynode;
3784 mask = rdp->grpmask;
2a67e741 3785 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
0aa04b05 3786 rnp->qsmaskinitnext |= mask;
b9585e94
PM
3787 rnp->expmaskinitnext |= mask;
3788 if (!rdp->beenonline)
3789 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3790 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3791 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3792 rdp->completed = rnp->completed;
5b74c458 3793 rdp->cpu_no_qs.b.norm = true;
a738eec6 3794 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
97c668b8 3795 rdp->core_needs_qs = false;
0aa04b05 3796 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3797 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3798}
3799
49fb4c62 3800static void rcu_prepare_cpu(int cpu)
64db4cff 3801{
6ce75a23
PM
3802 struct rcu_state *rsp;
3803
3804 for_each_rcu_flavor(rsp)
9b67122a 3805 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3806}
3807
27d50c7e
TG
3808#ifdef CONFIG_HOTPLUG_CPU
3809/*
710d60cb
LT
3810 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3811 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3812 * bit masks.
27d50c7e
TG
3813 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3814 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3815 * bit masks.
3816 */
3817static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3818{
3819 unsigned long flags;
3820 unsigned long mask;
3821 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3822 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3823
27d50c7e
TG
3824 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3825 mask = rdp->grpmask;
3826 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3827 rnp->qsmaskinitnext &= ~mask;
710d60cb 3828 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3829}
3830
3831void rcu_report_dead(unsigned int cpu)
3832{
3833 struct rcu_state *rsp;
3834
3835 /* QS for any half-done expedited RCU-sched GP. */
3836 preempt_disable();
3837 rcu_report_exp_rdp(&rcu_sched_state,
3838 this_cpu_ptr(rcu_sched_state.rda), true);
3839 preempt_enable();
3840 for_each_rcu_flavor(rsp)
3841 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3842}
3843#endif
3844
64db4cff 3845/*
f41d911f 3846 * Handle CPU online/offline notification events.
64db4cff 3847 */
88428cc5
PM
3848int rcu_cpu_notify(struct notifier_block *self,
3849 unsigned long action, void *hcpu)
64db4cff
PM
3850{
3851 long cpu = (long)hcpu;
e534165b 3852 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3853 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3854 struct rcu_state *rsp;
64db4cff
PM
3855
3856 switch (action) {
3857 case CPU_UP_PREPARE:
3858 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3859 rcu_prepare_cpu(cpu);
3860 rcu_prepare_kthreads(cpu);
35ce7f29 3861 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3862 break;
3863 case CPU_ONLINE:
0f962a5e 3864 case CPU_DOWN_FAILED:
338b0f76 3865 sync_sched_exp_online_cleanup(cpu);
5d01bbd1 3866 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3867 break;
3868 case CPU_DOWN_PREPARE:
34ed6246 3869 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3870 break;
d0ec774c
PM
3871 case CPU_DYING:
3872 case CPU_DYING_FROZEN:
6ce75a23
PM
3873 for_each_rcu_flavor(rsp)
3874 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3875 break;
64db4cff
PM
3876 case CPU_DEAD:
3877 case CPU_DEAD_FROZEN:
3878 case CPU_UP_CANCELED:
3879 case CPU_UP_CANCELED_FROZEN:
776d6807 3880 for_each_rcu_flavor(rsp) {
6ce75a23 3881 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3882 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3883 }
64db4cff
PM
3884 break;
3885 default:
3886 break;
3887 }
34ed6246 3888 return NOTIFY_OK;
64db4cff
PM
3889}
3890
d1d74d14
BP
3891static int rcu_pm_notify(struct notifier_block *self,
3892 unsigned long action, void *hcpu)
3893{
3894 switch (action) {
3895 case PM_HIBERNATION_PREPARE:
3896 case PM_SUSPEND_PREPARE:
3897 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3898 rcu_expedite_gp();
d1d74d14
BP
3899 break;
3900 case PM_POST_HIBERNATION:
3901 case PM_POST_SUSPEND:
5afff48b
PM
3902 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3903 rcu_unexpedite_gp();
d1d74d14
BP
3904 break;
3905 default:
3906 break;
3907 }
3908 return NOTIFY_OK;
3909}
3910
b3dbec76 3911/*
9386c0b7 3912 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3913 */
3914static int __init rcu_spawn_gp_kthread(void)
3915{
3916 unsigned long flags;
a94844b2 3917 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3918 struct rcu_node *rnp;
3919 struct rcu_state *rsp;
a94844b2 3920 struct sched_param sp;
b3dbec76
PM
3921 struct task_struct *t;
3922
a94844b2
PM
3923 /* Force priority into range. */
3924 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3925 kthread_prio = 1;
3926 else if (kthread_prio < 0)
3927 kthread_prio = 0;
3928 else if (kthread_prio > 99)
3929 kthread_prio = 99;
3930 if (kthread_prio != kthread_prio_in)
3931 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3932 kthread_prio, kthread_prio_in);
3933
9386c0b7 3934 rcu_scheduler_fully_active = 1;
b3dbec76 3935 for_each_rcu_flavor(rsp) {
a94844b2 3936 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3937 BUG_ON(IS_ERR(t));
3938 rnp = rcu_get_root(rsp);
6cf10081 3939 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3940 rsp->gp_kthread = t;
a94844b2
PM
3941 if (kthread_prio) {
3942 sp.sched_priority = kthread_prio;
3943 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3944 }
67c583a7 3945 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3946 wake_up_process(t);
b3dbec76 3947 }
35ce7f29 3948 rcu_spawn_nocb_kthreads();
9386c0b7 3949 rcu_spawn_boost_kthreads();
b3dbec76
PM
3950 return 0;
3951}
3952early_initcall(rcu_spawn_gp_kthread);
3953
bbad9379
PM
3954/*
3955 * This function is invoked towards the end of the scheduler's initialization
3956 * process. Before this is called, the idle task might contain
3957 * RCU read-side critical sections (during which time, this idle
3958 * task is booting the system). After this function is called, the
3959 * idle tasks are prohibited from containing RCU read-side critical
3960 * sections. This function also enables RCU lockdep checking.
3961 */
3962void rcu_scheduler_starting(void)
3963{
3964 WARN_ON(num_online_cpus() != 1);
3965 WARN_ON(nr_context_switches() > 0);
3966 rcu_scheduler_active = 1;
3967}
3968
64db4cff
PM
3969/*
3970 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 3971 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 3972 */
199977bf 3973static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 3974{
64db4cff
PM
3975 int i;
3976
7fa27001 3977 if (rcu_fanout_exact) {
199977bf 3978 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 3979 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 3980 levelspread[i] = RCU_FANOUT;
66292405
PM
3981 } else {
3982 int ccur;
3983 int cprv;
3984
3985 cprv = nr_cpu_ids;
3986 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
3987 ccur = levelcnt[i];
3988 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
3989 cprv = ccur;
3990 }
64db4cff
PM
3991 }
3992}
64db4cff
PM
3993
3994/*
3995 * Helper function for rcu_init() that initializes one rcu_state structure.
3996 */
a87f203e 3997static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 3998{
cb007102
AG
3999 static const char * const buf[] = RCU_NODE_NAME_INIT;
4000 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4001 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4002 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4a81e832 4003 static u8 fl_mask = 0x1;
199977bf
AG
4004
4005 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4006 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4007 int cpustride = 1;
4008 int i;
4009 int j;
4010 struct rcu_node *rnp;
4011
05b84aec 4012 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4013
3eaaaf6c
PM
4014 /* Silence gcc 4.8 false positive about array index out of range. */
4015 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4016 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4017
64db4cff
PM
4018 /* Initialize the level-tracking arrays. */
4019
f885b7f2 4020 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4021 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4022 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4023 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4024 rcu_init_levelspread(levelspread, levelcnt);
4a81e832
PM
4025 rsp->flavor_mask = fl_mask;
4026 fl_mask <<= 1;
64db4cff
PM
4027
4028 /* Initialize the elements themselves, starting from the leaves. */
4029
f885b7f2 4030 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4031 cpustride *= levelspread[i];
64db4cff 4032 rnp = rsp->level[i];
199977bf 4033 for (j = 0; j < levelcnt[i]; j++, rnp++) {
67c583a7
BF
4034 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4035 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4036 &rcu_node_class[i], buf[i]);
394f2769
PM
4037 raw_spin_lock_init(&rnp->fqslock);
4038 lockdep_set_class_and_name(&rnp->fqslock,
4039 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4040 rnp->gpnum = rsp->gpnum;
4041 rnp->completed = rsp->completed;
64db4cff
PM
4042 rnp->qsmask = 0;
4043 rnp->qsmaskinit = 0;
4044 rnp->grplo = j * cpustride;
4045 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4046 if (rnp->grphi >= nr_cpu_ids)
4047 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4048 if (i == 0) {
4049 rnp->grpnum = 0;
4050 rnp->grpmask = 0;
4051 rnp->parent = NULL;
4052 } else {
199977bf 4053 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4054 rnp->grpmask = 1UL << rnp->grpnum;
4055 rnp->parent = rsp->level[i - 1] +
199977bf 4056 j / levelspread[i - 1];
64db4cff
PM
4057 }
4058 rnp->level = i;
12f5f524 4059 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4060 rcu_init_one_nocb(rnp);
f6a12f34
PM
4061 init_waitqueue_head(&rnp->exp_wq[0]);
4062 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4063 init_waitqueue_head(&rnp->exp_wq[2]);
4064 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4065 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4066 }
4067 }
0c34029a 4068
abedf8e2
PG
4069 init_swait_queue_head(&rsp->gp_wq);
4070 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4071 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4072 for_each_possible_cpu(i) {
4a90a068 4073 while (i > rnp->grphi)
0c34029a 4074 rnp++;
394f99a9 4075 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4076 rcu_boot_init_percpu_data(i, rsp);
4077 }
6ce75a23 4078 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4079}
4080
f885b7f2
PM
4081/*
4082 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4083 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4084 * the ->node array in the rcu_state structure.
4085 */
4086static void __init rcu_init_geometry(void)
4087{
026ad283 4088 ulong d;
f885b7f2 4089 int i;
05b84aec 4090 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4091
026ad283
PM
4092 /*
4093 * Initialize any unspecified boot parameters.
4094 * The default values of jiffies_till_first_fqs and
4095 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4096 * value, which is a function of HZ, then adding one for each
4097 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4098 */
4099 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4100 if (jiffies_till_first_fqs == ULONG_MAX)
4101 jiffies_till_first_fqs = d;
4102 if (jiffies_till_next_fqs == ULONG_MAX)
4103 jiffies_till_next_fqs = d;
4104
f885b7f2 4105 /* If the compile-time values are accurate, just leave. */
47d631af 4106 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4107 nr_cpu_ids == NR_CPUS)
f885b7f2 4108 return;
39479098
PM
4109 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4110 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4111
f885b7f2 4112 /*
ee968ac6
PM
4113 * The boot-time rcu_fanout_leaf parameter must be at least two
4114 * and cannot exceed the number of bits in the rcu_node masks.
4115 * Complain and fall back to the compile-time values if this
4116 * limit is exceeded.
f885b7f2 4117 */
ee968ac6 4118 if (rcu_fanout_leaf < 2 ||
75cf15a4 4119 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4120 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4121 WARN_ON(1);
4122 return;
4123 }
4124
f885b7f2
PM
4125 /*
4126 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4127 * with the given number of levels.
f885b7f2 4128 */
9618138b 4129 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4130 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4131 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4132
4133 /*
75cf15a4 4134 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4135 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4136 */
ee968ac6
PM
4137 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4138 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4139 WARN_ON(1);
4140 return;
4141 }
f885b7f2 4142
679f9858 4143 /* Calculate the number of levels in the tree. */
9618138b 4144 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4145 }
9618138b 4146 rcu_num_lvls = i + 1;
679f9858 4147
f885b7f2 4148 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4149 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4150 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4151 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4152 }
f885b7f2
PM
4153
4154 /* Calculate the total number of rcu_node structures. */
4155 rcu_num_nodes = 0;
679f9858 4156 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4157 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4158}
4159
a3dc2948
PM
4160/*
4161 * Dump out the structure of the rcu_node combining tree associated
4162 * with the rcu_state structure referenced by rsp.
4163 */
4164static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4165{
4166 int level = 0;
4167 struct rcu_node *rnp;
4168
4169 pr_info("rcu_node tree layout dump\n");
4170 pr_info(" ");
4171 rcu_for_each_node_breadth_first(rsp, rnp) {
4172 if (rnp->level != level) {
4173 pr_cont("\n");
4174 pr_info(" ");
4175 level = rnp->level;
4176 }
4177 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4178 }
4179 pr_cont("\n");
4180}
4181
9f680ab4 4182void __init rcu_init(void)
64db4cff 4183{
017c4261 4184 int cpu;
9f680ab4 4185
47627678
PM
4186 rcu_early_boot_tests();
4187
f41d911f 4188 rcu_bootup_announce();
f885b7f2 4189 rcu_init_geometry();
a87f203e
PM
4190 rcu_init_one(&rcu_bh_state);
4191 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4192 if (dump_tree)
4193 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4194 __rcu_init_preempt();
b5b39360 4195 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4196
4197 /*
4198 * We don't need protection against CPU-hotplug here because
4199 * this is called early in boot, before either interrupts
4200 * or the scheduler are operational.
4201 */
4202 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4203 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4204 for_each_online_cpu(cpu)
4205 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
4206}
4207
3549c2bc 4208#include "tree_exp.h"
4102adab 4209#include "tree_plugin.h"
This page took 0.786328 seconds and 5 git commands to generate.