sparse: Add __private to privatize members of structs
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
af658dca 57#include <linux/trace_events.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f7f7bac9
SRRH
71/*
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
78 */
a8a29b3b
AB
79#ifdef CONFIG_TRACING
80# define DEFINE_RCU_TPS(sname) \
f7f7bac9 81static char sname##_varname[] = #sname; \
a8a29b3b
AB
82static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83# define RCU_STATE_NAME(sname) sname##_varname
84#else
85# define DEFINE_RCU_TPS(sname)
86# define RCU_STATE_NAME(sname) __stringify(sname)
87#endif
88
89#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90DEFINE_RCU_TPS(sname) \
c92fb057 91static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 92struct rcu_state sname##_state = { \
6c90cc7b 93 .level = { &sname##_state.node[0] }, \
2723249a 94 .rda = &sname##_data, \
037b64ed 95 .call = cr, \
77f81fe0 96 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
7b2e6011 99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 103 .name = RCU_STATE_NAME(sname), \
a4889858 104 .abbr = sabbr, \
2723249a 105}
64db4cff 106
a41bfeb2
SRRH
107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 109
b28a7c01 110static struct rcu_state *const rcu_state_p;
6ce75a23 111LIST_HEAD(rcu_struct_flavors);
27f4d280 112
a3dc2948
PM
113/* Dump rcu_node combining tree at boot to verify correct setup. */
114static bool dump_tree;
115module_param(dump_tree, bool, 0444);
7fa27001
PM
116/* Control rcu_node-tree auto-balancing at boot time. */
117static bool rcu_fanout_exact;
118module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 121module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
123/* Number of rcu_nodes at specified level. */
124static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126
b0d30417
PM
127/*
128 * The rcu_scheduler_active variable transitions from zero to one just
129 * before the first task is spawned. So when this variable is zero, RCU
130 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 131 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
132 * is one, RCU must actually do all the hard work required to detect real
133 * grace periods. This variable is also used to suppress boot-time false
134 * positives from lockdep-RCU error checking.
135 */
bbad9379
PM
136int rcu_scheduler_active __read_mostly;
137EXPORT_SYMBOL_GPL(rcu_scheduler_active);
138
b0d30417
PM
139/*
140 * The rcu_scheduler_fully_active variable transitions from zero to one
141 * during the early_initcall() processing, which is after the scheduler
142 * is capable of creating new tasks. So RCU processing (for example,
143 * creating tasks for RCU priority boosting) must be delayed until after
144 * rcu_scheduler_fully_active transitions from zero to one. We also
145 * currently delay invocation of any RCU callbacks until after this point.
146 *
147 * It might later prove better for people registering RCU callbacks during
148 * early boot to take responsibility for these callbacks, but one step at
149 * a time.
150 */
151static int rcu_scheduler_fully_active __read_mostly;
152
0aa04b05
PM
153static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
154static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 155static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
156static void invoke_rcu_core(void);
157static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
158static void rcu_report_exp_rdp(struct rcu_state *rsp,
159 struct rcu_data *rdp, bool wake);
a26ac245 160
a94844b2 161/* rcuc/rcub kthread realtime priority */
26730f55 162#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 163static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
164#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
165static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
166#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
167module_param(kthread_prio, int, 0644);
168
8d7dc928 169/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
170
171#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
172static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
173module_param(gp_preinit_delay, int, 0644);
174#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
175static const int gp_preinit_delay;
176#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
177
8d7dc928
PM
178#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
179static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 180module_param(gp_init_delay, int, 0644);
8d7dc928
PM
181#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
182static const int gp_init_delay;
183#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 184
0f41c0dd
PM
185#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
186static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
187module_param(gp_cleanup_delay, int, 0644);
188#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
189static const int gp_cleanup_delay;
190#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
191
eab128e8
PM
192/*
193 * Number of grace periods between delays, normalized by the duration of
194 * the delay. The longer the the delay, the more the grace periods between
195 * each delay. The reason for this normalization is that it means that,
196 * for non-zero delays, the overall slowdown of grace periods is constant
197 * regardless of the duration of the delay. This arrangement balances
198 * the need for long delays to increase some race probabilities with the
199 * need for fast grace periods to increase other race probabilities.
200 */
201#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 202
4a298656
PM
203/*
204 * Track the rcutorture test sequence number and the update version
205 * number within a given test. The rcutorture_testseq is incremented
206 * on every rcutorture module load and unload, so has an odd value
207 * when a test is running. The rcutorture_vernum is set to zero
208 * when rcutorture starts and is incremented on each rcutorture update.
209 * These variables enable correlating rcutorture output with the
210 * RCU tracing information.
211 */
212unsigned long rcutorture_testseq;
213unsigned long rcutorture_vernum;
214
0aa04b05
PM
215/*
216 * Compute the mask of online CPUs for the specified rcu_node structure.
217 * This will not be stable unless the rcu_node structure's ->lock is
218 * held, but the bit corresponding to the current CPU will be stable
219 * in most contexts.
220 */
221unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
222{
7d0ae808 223 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
224}
225
fc2219d4 226/*
7d0ae808 227 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
228 * permit this function to be invoked without holding the root rcu_node
229 * structure's ->lock, but of course results can be subject to change.
230 */
231static int rcu_gp_in_progress(struct rcu_state *rsp)
232{
7d0ae808 233 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
234}
235
b1f77b05 236/*
d6714c22 237 * Note a quiescent state. Because we do not need to know
b1f77b05 238 * how many quiescent states passed, just if there was at least
d6714c22 239 * one since the start of the grace period, this just sets a flag.
e4cc1f22 240 * The caller must have disabled preemption.
b1f77b05 241 */
284a8c93 242void rcu_sched_qs(void)
b1f77b05 243{
fecbf6f0
PM
244 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
245 return;
246 trace_rcu_grace_period(TPS("rcu_sched"),
247 __this_cpu_read(rcu_sched_data.gpnum),
248 TPS("cpuqs"));
249 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
250 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
251 return;
46a5d164
PM
252 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
253 rcu_report_exp_rdp(&rcu_sched_state,
254 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
255}
256
284a8c93 257void rcu_bh_qs(void)
b1f77b05 258{
5b74c458 259 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
260 trace_rcu_grace_period(TPS("rcu_bh"),
261 __this_cpu_read(rcu_bh_data.gpnum),
262 TPS("cpuqs"));
5b74c458 263 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 264 }
b1f77b05 265}
64db4cff 266
4a81e832
PM
267static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
268
269static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
270 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
271 .dynticks = ATOMIC_INIT(1),
272#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
273 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
274 .dynticks_idle = ATOMIC_INIT(1),
275#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
276};
277
5cd37193
PM
278DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
279EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
280
4a81e832
PM
281/*
282 * Let the RCU core know that this CPU has gone through the scheduler,
283 * which is a quiescent state. This is called when the need for a
284 * quiescent state is urgent, so we burn an atomic operation and full
285 * memory barriers to let the RCU core know about it, regardless of what
286 * this CPU might (or might not) do in the near future.
287 *
288 * We inform the RCU core by emulating a zero-duration dyntick-idle
289 * period, which we in turn do by incrementing the ->dynticks counter
290 * by two.
46a5d164
PM
291 *
292 * The caller must have disabled interrupts.
4a81e832
PM
293 */
294static void rcu_momentary_dyntick_idle(void)
295{
4a81e832
PM
296 struct rcu_data *rdp;
297 struct rcu_dynticks *rdtp;
298 int resched_mask;
299 struct rcu_state *rsp;
300
4a81e832
PM
301 /*
302 * Yes, we can lose flag-setting operations. This is OK, because
303 * the flag will be set again after some delay.
304 */
305 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
306 raw_cpu_write(rcu_sched_qs_mask, 0);
307
308 /* Find the flavor that needs a quiescent state. */
309 for_each_rcu_flavor(rsp) {
310 rdp = raw_cpu_ptr(rsp->rda);
311 if (!(resched_mask & rsp->flavor_mask))
312 continue;
313 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
314 if (READ_ONCE(rdp->mynode->completed) !=
315 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
316 continue;
317
318 /*
319 * Pretend to be momentarily idle for the quiescent state.
320 * This allows the grace-period kthread to record the
321 * quiescent state, with no need for this CPU to do anything
322 * further.
323 */
324 rdtp = this_cpu_ptr(&rcu_dynticks);
325 smp_mb__before_atomic(); /* Earlier stuff before QS. */
326 atomic_add(2, &rdtp->dynticks); /* QS. */
327 smp_mb__after_atomic(); /* Later stuff after QS. */
328 break;
329 }
4a81e832
PM
330}
331
25502a6c
PM
332/*
333 * Note a context switch. This is a quiescent state for RCU-sched,
334 * and requires special handling for preemptible RCU.
46a5d164 335 * The caller must have disabled interrupts.
25502a6c 336 */
38200cf2 337void rcu_note_context_switch(void)
25502a6c 338{
bb73c52b 339 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 340 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 341 rcu_sched_qs();
38200cf2 342 rcu_preempt_note_context_switch();
4a81e832
PM
343 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
344 rcu_momentary_dyntick_idle();
f7f7bac9 345 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 346 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 347}
29ce8310 348EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 349
5cd37193 350/*
1925d196 351 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
352 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
353 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 354 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
355 * be none of them). Either way, do a lightweight quiescent state for
356 * all RCU flavors.
bb73c52b
BF
357 *
358 * The barrier() calls are redundant in the common case when this is
359 * called externally, but just in case this is called from within this
360 * file.
361 *
5cd37193
PM
362 */
363void rcu_all_qs(void)
364{
46a5d164
PM
365 unsigned long flags;
366
bb73c52b 367 barrier(); /* Avoid RCU read-side critical sections leaking down. */
46a5d164
PM
368 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
369 local_irq_save(flags);
5cd37193 370 rcu_momentary_dyntick_idle();
46a5d164
PM
371 local_irq_restore(flags);
372 }
5cd37193 373 this_cpu_inc(rcu_qs_ctr);
bb73c52b 374 barrier(); /* Avoid RCU read-side critical sections leaking up. */
5cd37193
PM
375}
376EXPORT_SYMBOL_GPL(rcu_all_qs);
377
878d7439
ED
378static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
379static long qhimark = 10000; /* If this many pending, ignore blimit. */
380static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 381
878d7439
ED
382module_param(blimit, long, 0444);
383module_param(qhimark, long, 0444);
384module_param(qlowmark, long, 0444);
3d76c082 385
026ad283
PM
386static ulong jiffies_till_first_fqs = ULONG_MAX;
387static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
388
389module_param(jiffies_till_first_fqs, ulong, 0644);
390module_param(jiffies_till_next_fqs, ulong, 0644);
391
4a81e832
PM
392/*
393 * How long the grace period must be before we start recruiting
394 * quiescent-state help from rcu_note_context_switch().
395 */
396static ulong jiffies_till_sched_qs = HZ / 20;
397module_param(jiffies_till_sched_qs, ulong, 0644);
398
48a7639c 399static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 400 struct rcu_data *rdp);
217af2a2
PM
401static void force_qs_rnp(struct rcu_state *rsp,
402 int (*f)(struct rcu_data *rsp, bool *isidle,
403 unsigned long *maxj),
404 bool *isidle, unsigned long *maxj);
4cdfc175 405static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 406static int rcu_pending(void);
64db4cff
PM
407
408/*
917963d0 409 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 410 */
917963d0
PM
411unsigned long rcu_batches_started(void)
412{
413 return rcu_state_p->gpnum;
414}
415EXPORT_SYMBOL_GPL(rcu_batches_started);
416
417/*
418 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 419 */
917963d0
PM
420unsigned long rcu_batches_started_sched(void)
421{
422 return rcu_sched_state.gpnum;
423}
424EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
425
426/*
427 * Return the number of RCU BH batches started thus far for debug & stats.
428 */
429unsigned long rcu_batches_started_bh(void)
430{
431 return rcu_bh_state.gpnum;
432}
433EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
434
435/*
436 * Return the number of RCU batches completed thus far for debug & stats.
437 */
438unsigned long rcu_batches_completed(void)
439{
440 return rcu_state_p->completed;
441}
442EXPORT_SYMBOL_GPL(rcu_batches_completed);
443
444/*
445 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 446 */
9733e4f0 447unsigned long rcu_batches_completed_sched(void)
64db4cff 448{
d6714c22 449 return rcu_sched_state.completed;
64db4cff 450}
d6714c22 451EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
452
453/*
917963d0 454 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 455 */
9733e4f0 456unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
457{
458 return rcu_bh_state.completed;
459}
460EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
461
a381d757
ACB
462/*
463 * Force a quiescent state.
464 */
465void rcu_force_quiescent_state(void)
466{
e534165b 467 force_quiescent_state(rcu_state_p);
a381d757
ACB
468}
469EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
470
bf66f18e
PM
471/*
472 * Force a quiescent state for RCU BH.
473 */
474void rcu_bh_force_quiescent_state(void)
475{
4cdfc175 476 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
477}
478EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
479
e7580f33
PM
480/*
481 * Force a quiescent state for RCU-sched.
482 */
483void rcu_sched_force_quiescent_state(void)
484{
485 force_quiescent_state(&rcu_sched_state);
486}
487EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
488
afea227f
PM
489/*
490 * Show the state of the grace-period kthreads.
491 */
492void show_rcu_gp_kthreads(void)
493{
494 struct rcu_state *rsp;
495
496 for_each_rcu_flavor(rsp) {
497 pr_info("%s: wait state: %d ->state: %#lx\n",
498 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
499 /* sched_show_task(rsp->gp_kthread); */
500 }
501}
502EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
503
4a298656
PM
504/*
505 * Record the number of times rcutorture tests have been initiated and
506 * terminated. This information allows the debugfs tracing stats to be
507 * correlated to the rcutorture messages, even when the rcutorture module
508 * is being repeatedly loaded and unloaded. In other words, we cannot
509 * store this state in rcutorture itself.
510 */
511void rcutorture_record_test_transition(void)
512{
513 rcutorture_testseq++;
514 rcutorture_vernum = 0;
515}
516EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
517
ad0dc7f9
PM
518/*
519 * Send along grace-period-related data for rcutorture diagnostics.
520 */
521void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
522 unsigned long *gpnum, unsigned long *completed)
523{
524 struct rcu_state *rsp = NULL;
525
526 switch (test_type) {
527 case RCU_FLAVOR:
e534165b 528 rsp = rcu_state_p;
ad0dc7f9
PM
529 break;
530 case RCU_BH_FLAVOR:
531 rsp = &rcu_bh_state;
532 break;
533 case RCU_SCHED_FLAVOR:
534 rsp = &rcu_sched_state;
535 break;
536 default:
537 break;
538 }
539 if (rsp != NULL) {
7d0ae808
PM
540 *flags = READ_ONCE(rsp->gp_flags);
541 *gpnum = READ_ONCE(rsp->gpnum);
542 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
543 return;
544 }
545 *flags = 0;
546 *gpnum = 0;
547 *completed = 0;
548}
549EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
550
4a298656
PM
551/*
552 * Record the number of writer passes through the current rcutorture test.
553 * This is also used to correlate debugfs tracing stats with the rcutorture
554 * messages.
555 */
556void rcutorture_record_progress(unsigned long vernum)
557{
558 rcutorture_vernum++;
559}
560EXPORT_SYMBOL_GPL(rcutorture_record_progress);
561
64db4cff
PM
562/*
563 * Does the CPU have callbacks ready to be invoked?
564 */
565static int
566cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
567{
3fbfbf7a
PM
568 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
569 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
570}
571
365187fb
PM
572/*
573 * Return the root node of the specified rcu_state structure.
574 */
575static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
576{
577 return &rsp->node[0];
578}
579
580/*
581 * Is there any need for future grace periods?
582 * Interrupts must be disabled. If the caller does not hold the root
583 * rnp_node structure's ->lock, the results are advisory only.
584 */
585static int rcu_future_needs_gp(struct rcu_state *rsp)
586{
587 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 588 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
589 int *fp = &rnp->need_future_gp[idx];
590
7d0ae808 591 return READ_ONCE(*fp);
365187fb
PM
592}
593
64db4cff 594/*
dc35c893
PM
595 * Does the current CPU require a not-yet-started grace period?
596 * The caller must have disabled interrupts to prevent races with
597 * normal callback registry.
64db4cff 598 */
d117c8aa 599static bool
64db4cff
PM
600cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
601{
dc35c893 602 int i;
3fbfbf7a 603
dc35c893 604 if (rcu_gp_in_progress(rsp))
d117c8aa 605 return false; /* No, a grace period is already in progress. */
365187fb 606 if (rcu_future_needs_gp(rsp))
d117c8aa 607 return true; /* Yes, a no-CBs CPU needs one. */
dc35c893 608 if (!rdp->nxttail[RCU_NEXT_TAIL])
d117c8aa 609 return false; /* No, this is a no-CBs (or offline) CPU. */
dc35c893 610 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
d117c8aa 611 return true; /* Yes, CPU has newly registered callbacks. */
dc35c893
PM
612 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
613 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 614 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893 615 rdp->nxtcompleted[i]))
d117c8aa
PM
616 return true; /* Yes, CBs for future grace period. */
617 return false; /* No grace period needed. */
64db4cff
PM
618}
619
9b2e4f18 620/*
adf5091e 621 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
622 *
623 * If the new value of the ->dynticks_nesting counter now is zero,
624 * we really have entered idle, and must do the appropriate accounting.
625 * The caller must have disabled interrupts.
626 */
28ced795 627static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 628{
96d3fd0d
PM
629 struct rcu_state *rsp;
630 struct rcu_data *rdp;
28ced795 631 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 632
f7f7bac9 633 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
634 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
635 !user && !is_idle_task(current)) {
289828e6
PM
636 struct task_struct *idle __maybe_unused =
637 idle_task(smp_processor_id());
0989cb46 638
f7f7bac9 639 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 640 ftrace_dump(DUMP_ORIG);
0989cb46
PM
641 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
642 current->pid, current->comm,
643 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 644 }
96d3fd0d
PM
645 for_each_rcu_flavor(rsp) {
646 rdp = this_cpu_ptr(rsp->rda);
647 do_nocb_deferred_wakeup(rdp);
648 }
198bbf81 649 rcu_prepare_for_idle();
9b2e4f18 650 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 651 smp_mb__before_atomic(); /* See above. */
9b2e4f18 652 atomic_inc(&rdtp->dynticks);
4e857c58 653 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
1ce46ee5
PM
654 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
655 atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 656 rcu_dynticks_task_enter();
c44e2cdd
PM
657
658 /*
adf5091e 659 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
660 * in an RCU read-side critical section.
661 */
f78f5b90
PM
662 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
663 "Illegal idle entry in RCU read-side critical section.");
664 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
665 "Illegal idle entry in RCU-bh read-side critical section.");
666 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
667 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 668}
64db4cff 669
adf5091e
FW
670/*
671 * Enter an RCU extended quiescent state, which can be either the
672 * idle loop or adaptive-tickless usermode execution.
64db4cff 673 */
adf5091e 674static void rcu_eqs_enter(bool user)
64db4cff 675{
4145fa7f 676 long long oldval;
64db4cff
PM
677 struct rcu_dynticks *rdtp;
678
c9d4b0af 679 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 680 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
681 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
682 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 683 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 684 rdtp->dynticks_nesting = 0;
28ced795 685 rcu_eqs_enter_common(oldval, user);
3a592405 686 } else {
29e37d81 687 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 688 }
64db4cff 689}
adf5091e
FW
690
691/**
692 * rcu_idle_enter - inform RCU that current CPU is entering idle
693 *
694 * Enter idle mode, in other words, -leave- the mode in which RCU
695 * read-side critical sections can occur. (Though RCU read-side
696 * critical sections can occur in irq handlers in idle, a possibility
697 * handled by irq_enter() and irq_exit().)
698 *
699 * We crowbar the ->dynticks_nesting field to zero to allow for
700 * the possibility of usermode upcalls having messed up our count
701 * of interrupt nesting level during the prior busy period.
702 */
703void rcu_idle_enter(void)
704{
c5d900bf
FW
705 unsigned long flags;
706
707 local_irq_save(flags);
cb349ca9 708 rcu_eqs_enter(false);
28ced795 709 rcu_sysidle_enter(0);
c5d900bf 710 local_irq_restore(flags);
adf5091e 711}
8a2ecf47 712EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 713
d1ec4c34 714#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
715/**
716 * rcu_user_enter - inform RCU that we are resuming userspace.
717 *
718 * Enter RCU idle mode right before resuming userspace. No use of RCU
719 * is permitted between this call and rcu_user_exit(). This way the
720 * CPU doesn't need to maintain the tick for RCU maintenance purposes
721 * when the CPU runs in userspace.
722 */
723void rcu_user_enter(void)
724{
91d1aa43 725 rcu_eqs_enter(1);
adf5091e 726}
d1ec4c34 727#endif /* CONFIG_NO_HZ_FULL */
19dd1591 728
9b2e4f18
PM
729/**
730 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
731 *
732 * Exit from an interrupt handler, which might possibly result in entering
733 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 734 * sections can occur. The caller must have disabled interrupts.
64db4cff 735 *
9b2e4f18
PM
736 * This code assumes that the idle loop never does anything that might
737 * result in unbalanced calls to irq_enter() and irq_exit(). If your
738 * architecture violates this assumption, RCU will give you what you
739 * deserve, good and hard. But very infrequently and irreproducibly.
740 *
741 * Use things like work queues to work around this limitation.
742 *
743 * You have been warned.
64db4cff 744 */
9b2e4f18 745void rcu_irq_exit(void)
64db4cff 746{
4145fa7f 747 long long oldval;
64db4cff
PM
748 struct rcu_dynticks *rdtp;
749
7c9906ca 750 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 751 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 752 oldval = rdtp->dynticks_nesting;
9b2e4f18 753 rdtp->dynticks_nesting--;
1ce46ee5
PM
754 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
755 rdtp->dynticks_nesting < 0);
b6fc6020 756 if (rdtp->dynticks_nesting)
f7f7bac9 757 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 758 else
28ced795
CL
759 rcu_eqs_enter_common(oldval, true);
760 rcu_sysidle_enter(1);
7c9906ca
PM
761}
762
763/*
764 * Wrapper for rcu_irq_exit() where interrupts are enabled.
765 */
766void rcu_irq_exit_irqson(void)
767{
768 unsigned long flags;
769
770 local_irq_save(flags);
771 rcu_irq_exit();
9b2e4f18
PM
772 local_irq_restore(flags);
773}
774
775/*
adf5091e 776 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
777 *
778 * If the new value of the ->dynticks_nesting counter was previously zero,
779 * we really have exited idle, and must do the appropriate accounting.
780 * The caller must have disabled interrupts.
781 */
28ced795 782static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 783{
28ced795
CL
784 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
785
176f8f7a 786 rcu_dynticks_task_exit();
4e857c58 787 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
788 atomic_inc(&rdtp->dynticks);
789 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 790 smp_mb__after_atomic(); /* See above. */
1ce46ee5
PM
791 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
792 !(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 793 rcu_cleanup_after_idle();
f7f7bac9 794 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
795 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
796 !user && !is_idle_task(current)) {
289828e6
PM
797 struct task_struct *idle __maybe_unused =
798 idle_task(smp_processor_id());
0989cb46 799
f7f7bac9 800 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 801 oldval, rdtp->dynticks_nesting);
bf1304e9 802 ftrace_dump(DUMP_ORIG);
0989cb46
PM
803 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
804 current->pid, current->comm,
805 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
806 }
807}
808
adf5091e
FW
809/*
810 * Exit an RCU extended quiescent state, which can be either the
811 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 812 */
adf5091e 813static void rcu_eqs_exit(bool user)
9b2e4f18 814{
9b2e4f18
PM
815 struct rcu_dynticks *rdtp;
816 long long oldval;
817
c9d4b0af 818 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 819 oldval = rdtp->dynticks_nesting;
1ce46ee5 820 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 821 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 822 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 823 } else {
29e37d81 824 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 825 rcu_eqs_exit_common(oldval, user);
3a592405 826 }
9b2e4f18 827}
adf5091e
FW
828
829/**
830 * rcu_idle_exit - inform RCU that current CPU is leaving idle
831 *
832 * Exit idle mode, in other words, -enter- the mode in which RCU
833 * read-side critical sections can occur.
834 *
835 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
836 * allow for the possibility of usermode upcalls messing up our count
837 * of interrupt nesting level during the busy period that is just
838 * now starting.
839 */
840void rcu_idle_exit(void)
841{
c5d900bf
FW
842 unsigned long flags;
843
844 local_irq_save(flags);
cb349ca9 845 rcu_eqs_exit(false);
28ced795 846 rcu_sysidle_exit(0);
c5d900bf 847 local_irq_restore(flags);
adf5091e 848}
8a2ecf47 849EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 850
d1ec4c34 851#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
852/**
853 * rcu_user_exit - inform RCU that we are exiting userspace.
854 *
855 * Exit RCU idle mode while entering the kernel because it can
856 * run a RCU read side critical section anytime.
857 */
858void rcu_user_exit(void)
859{
91d1aa43 860 rcu_eqs_exit(1);
adf5091e 861}
d1ec4c34 862#endif /* CONFIG_NO_HZ_FULL */
19dd1591 863
9b2e4f18
PM
864/**
865 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
866 *
867 * Enter an interrupt handler, which might possibly result in exiting
868 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 869 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
870 *
871 * Note that the Linux kernel is fully capable of entering an interrupt
872 * handler that it never exits, for example when doing upcalls to
873 * user mode! This code assumes that the idle loop never does upcalls to
874 * user mode. If your architecture does do upcalls from the idle loop (or
875 * does anything else that results in unbalanced calls to the irq_enter()
876 * and irq_exit() functions), RCU will give you what you deserve, good
877 * and hard. But very infrequently and irreproducibly.
878 *
879 * Use things like work queues to work around this limitation.
880 *
881 * You have been warned.
882 */
883void rcu_irq_enter(void)
884{
9b2e4f18
PM
885 struct rcu_dynticks *rdtp;
886 long long oldval;
887
7c9906ca 888 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 889 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
890 oldval = rdtp->dynticks_nesting;
891 rdtp->dynticks_nesting++;
1ce46ee5
PM
892 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
893 rdtp->dynticks_nesting == 0);
b6fc6020 894 if (oldval)
f7f7bac9 895 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 896 else
28ced795
CL
897 rcu_eqs_exit_common(oldval, true);
898 rcu_sysidle_exit(1);
7c9906ca
PM
899}
900
901/*
902 * Wrapper for rcu_irq_enter() where interrupts are enabled.
903 */
904void rcu_irq_enter_irqson(void)
905{
906 unsigned long flags;
907
908 local_irq_save(flags);
909 rcu_irq_enter();
64db4cff 910 local_irq_restore(flags);
64db4cff
PM
911}
912
913/**
914 * rcu_nmi_enter - inform RCU of entry to NMI context
915 *
734d1680
PM
916 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
917 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
918 * that the CPU is active. This implementation permits nested NMIs, as
919 * long as the nesting level does not overflow an int. (You will probably
920 * run out of stack space first.)
64db4cff
PM
921 */
922void rcu_nmi_enter(void)
923{
c9d4b0af 924 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 925 int incby = 2;
64db4cff 926
734d1680
PM
927 /* Complain about underflow. */
928 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
929
930 /*
931 * If idle from RCU viewpoint, atomically increment ->dynticks
932 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
933 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
934 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
935 * to be in the outermost NMI handler that interrupted an RCU-idle
936 * period (observation due to Andy Lutomirski).
937 */
938 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
939 smp_mb__before_atomic(); /* Force delay from prior write. */
940 atomic_inc(&rdtp->dynticks);
941 /* atomic_inc() before later RCU read-side crit sects */
942 smp_mb__after_atomic(); /* See above. */
943 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
944 incby = 1;
945 }
946 rdtp->dynticks_nmi_nesting += incby;
947 barrier();
64db4cff
PM
948}
949
950/**
951 * rcu_nmi_exit - inform RCU of exit from NMI context
952 *
734d1680
PM
953 * If we are returning from the outermost NMI handler that interrupted an
954 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
955 * to let the RCU grace-period handling know that the CPU is back to
956 * being RCU-idle.
64db4cff
PM
957 */
958void rcu_nmi_exit(void)
959{
c9d4b0af 960 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 961
734d1680
PM
962 /*
963 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
964 * (We are exiting an NMI handler, so RCU better be paying attention
965 * to us!)
966 */
967 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
968 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
969
970 /*
971 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
972 * leave it in non-RCU-idle state.
973 */
974 if (rdtp->dynticks_nmi_nesting != 1) {
975 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 976 return;
734d1680
PM
977 }
978
979 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
980 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 981 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 982 smp_mb__before_atomic(); /* See above. */
23b5c8fa 983 atomic_inc(&rdtp->dynticks);
4e857c58 984 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 985 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
986}
987
988/**
5c173eb8
PM
989 * __rcu_is_watching - are RCU read-side critical sections safe?
990 *
991 * Return true if RCU is watching the running CPU, which means that
992 * this CPU can safely enter RCU read-side critical sections. Unlike
993 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
994 * least disabled preemption.
995 */
9418fb20 996bool notrace __rcu_is_watching(void)
5c173eb8
PM
997{
998 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
999}
1000
1001/**
1002 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1003 *
9b2e4f18 1004 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1005 * or NMI handler, return true.
64db4cff 1006 */
9418fb20 1007bool notrace rcu_is_watching(void)
64db4cff 1008{
f534ed1f 1009 bool ret;
34240697 1010
46f00d18 1011 preempt_disable_notrace();
5c173eb8 1012 ret = __rcu_is_watching();
46f00d18 1013 preempt_enable_notrace();
34240697 1014 return ret;
64db4cff 1015}
5c173eb8 1016EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1017
62fde6ed 1018#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1019
1020/*
1021 * Is the current CPU online? Disable preemption to avoid false positives
1022 * that could otherwise happen due to the current CPU number being sampled,
1023 * this task being preempted, its old CPU being taken offline, resuming
1024 * on some other CPU, then determining that its old CPU is now offline.
1025 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1026 * the check for rcu_scheduler_fully_active. Note also that it is OK
1027 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1028 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1029 * offline to continue to use RCU for one jiffy after marking itself
1030 * offline in the cpu_online_mask. This leniency is necessary given the
1031 * non-atomic nature of the online and offline processing, for example,
1032 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1033 * notifiers.
1034 *
1035 * This is also why RCU internally marks CPUs online during the
1036 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
1037 *
1038 * Disable checking if in an NMI handler because we cannot safely report
1039 * errors from NMI handlers anyway.
1040 */
1041bool rcu_lockdep_current_cpu_online(void)
1042{
2036d94a
PM
1043 struct rcu_data *rdp;
1044 struct rcu_node *rnp;
c0d6d01b
PM
1045 bool ret;
1046
1047 if (in_nmi())
f6f7ee9a 1048 return true;
c0d6d01b 1049 preempt_disable();
c9d4b0af 1050 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1051 rnp = rdp->mynode;
0aa04b05 1052 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1053 !rcu_scheduler_fully_active;
1054 preempt_enable();
1055 return ret;
1056}
1057EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1058
62fde6ed 1059#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1060
64db4cff 1061/**
9b2e4f18 1062 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1063 *
9b2e4f18
PM
1064 * If the current CPU is idle or running at a first-level (not nested)
1065 * interrupt from idle, return true. The caller must have at least
1066 * disabled preemption.
64db4cff 1067 */
62e3cb14 1068static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1069{
c9d4b0af 1070 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1071}
1072
64db4cff
PM
1073/*
1074 * Snapshot the specified CPU's dynticks counter so that we can later
1075 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1076 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1077 */
217af2a2
PM
1078static int dyntick_save_progress_counter(struct rcu_data *rdp,
1079 bool *isidle, unsigned long *maxj)
64db4cff 1080{
23b5c8fa 1081 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1082 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1083 if ((rdp->dynticks_snap & 0x1) == 0) {
1084 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1085 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1086 rdp->mynode->gpnum))
7d0ae808 1087 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1088 return 1;
7941dbde 1089 }
23a9bacd 1090 return 0;
64db4cff
PM
1091}
1092
1093/*
1094 * Return true if the specified CPU has passed through a quiescent
1095 * state by virtue of being in or having passed through an dynticks
1096 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1097 * for this same CPU, or by virtue of having been offline.
64db4cff 1098 */
217af2a2
PM
1099static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1100 bool *isidle, unsigned long *maxj)
64db4cff 1101{
7eb4f455 1102 unsigned int curr;
4a81e832 1103 int *rcrmp;
7eb4f455 1104 unsigned int snap;
64db4cff 1105
7eb4f455
PM
1106 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1107 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1108
1109 /*
1110 * If the CPU passed through or entered a dynticks idle phase with
1111 * no active irq/NMI handlers, then we can safely pretend that the CPU
1112 * already acknowledged the request to pass through a quiescent
1113 * state. Either way, that CPU cannot possibly be in an RCU
1114 * read-side critical section that started before the beginning
1115 * of the current RCU grace period.
1116 */
7eb4f455 1117 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1118 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1119 rdp->dynticks_fqs++;
1120 return 1;
1121 }
1122
a82dcc76
PM
1123 /*
1124 * Check for the CPU being offline, but only if the grace period
1125 * is old enough. We don't need to worry about the CPU changing
1126 * state: If we see it offline even once, it has been through a
1127 * quiescent state.
1128 *
1129 * The reason for insisting that the grace period be at least
1130 * one jiffy old is that CPUs that are not quite online and that
1131 * have just gone offline can still execute RCU read-side critical
1132 * sections.
1133 */
1134 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1135 return 0; /* Grace period is not old enough. */
1136 barrier();
1137 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1138 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1139 rdp->offline_fqs++;
1140 return 1;
1141 }
65d798f0
PM
1142
1143 /*
4a81e832
PM
1144 * A CPU running for an extended time within the kernel can
1145 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1146 * even context-switching back and forth between a pair of
1147 * in-kernel CPU-bound tasks cannot advance grace periods.
1148 * So if the grace period is old enough, make the CPU pay attention.
1149 * Note that the unsynchronized assignments to the per-CPU
1150 * rcu_sched_qs_mask variable are safe. Yes, setting of
1151 * bits can be lost, but they will be set again on the next
1152 * force-quiescent-state pass. So lost bit sets do not result
1153 * in incorrect behavior, merely in a grace period lasting
1154 * a few jiffies longer than it might otherwise. Because
1155 * there are at most four threads involved, and because the
1156 * updates are only once every few jiffies, the probability of
1157 * lossage (and thus of slight grace-period extension) is
1158 * quite low.
1159 *
1160 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1161 * is set too high, we override with half of the RCU CPU stall
1162 * warning delay.
6193c76a 1163 */
4a81e832
PM
1164 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1165 if (ULONG_CMP_GE(jiffies,
1166 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1167 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1168 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1169 WRITE_ONCE(rdp->cond_resched_completed,
1170 READ_ONCE(rdp->mynode->completed));
4a81e832 1171 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1172 WRITE_ONCE(*rcrmp,
1173 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832 1174 }
4914950a 1175 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1176 }
1177
4914950a
PM
1178 /* And if it has been a really long time, kick the CPU as well. */
1179 if (ULONG_CMP_GE(jiffies,
1180 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1181 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1182 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1183
a82dcc76 1184 return 0;
64db4cff
PM
1185}
1186
64db4cff
PM
1187static void record_gp_stall_check_time(struct rcu_state *rsp)
1188{
cb1e78cf 1189 unsigned long j = jiffies;
6193c76a 1190 unsigned long j1;
26cdfedf
PM
1191
1192 rsp->gp_start = j;
1193 smp_wmb(); /* Record start time before stall time. */
6193c76a 1194 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1195 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1196 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1197 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1198}
1199
6b50e119
PM
1200/*
1201 * Convert a ->gp_state value to a character string.
1202 */
1203static const char *gp_state_getname(short gs)
1204{
1205 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1206 return "???";
1207 return gp_state_names[gs];
1208}
1209
fb81a44b
PM
1210/*
1211 * Complain about starvation of grace-period kthread.
1212 */
1213static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1214{
1215 unsigned long gpa;
1216 unsigned long j;
1217
1218 j = jiffies;
7d0ae808 1219 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1220 if (j - gpa > 2 * HZ) {
6b50e119 1221 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1222 rsp->name, j - gpa,
319362c9 1223 rsp->gpnum, rsp->completed,
6b50e119
PM
1224 rsp->gp_flags,
1225 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1226 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
b1adb3e2
PM
1227 if (rsp->gp_kthread)
1228 sched_show_task(rsp->gp_kthread);
1229 }
64db4cff
PM
1230}
1231
b637a328 1232/*
bc1dce51 1233 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1234 */
1235static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1236{
1237 int cpu;
1238 unsigned long flags;
1239 struct rcu_node *rnp;
1240
1241 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1242 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b637a328
PM
1243 if (rnp->qsmask != 0) {
1244 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1245 if (rnp->qsmask & (1UL << cpu))
1246 dump_cpu_task(rnp->grplo + cpu);
1247 }
1248 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1249 }
1250}
1251
6ccd2ecd 1252static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1253{
1254 int cpu;
1255 long delta;
1256 unsigned long flags;
6ccd2ecd
PM
1257 unsigned long gpa;
1258 unsigned long j;
285fe294 1259 int ndetected = 0;
64db4cff 1260 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1261 long totqlen = 0;
64db4cff
PM
1262
1263 /* Only let one CPU complain about others per time interval. */
1264
6cf10081 1265 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1266 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1267 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1268 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1269 return;
1270 }
7d0ae808
PM
1271 WRITE_ONCE(rsp->jiffies_stall,
1272 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1273 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1274
8cdd32a9
PM
1275 /*
1276 * OK, time to rat on our buddy...
1277 * See Documentation/RCU/stallwarn.txt for info on how to debug
1278 * RCU CPU stall warnings.
1279 */
d7f3e207 1280 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1281 rsp->name);
a858af28 1282 print_cpu_stall_info_begin();
a0b6c9a7 1283 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1284 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1285 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1286 if (rnp->qsmask != 0) {
1287 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1288 if (rnp->qsmask & (1UL << cpu)) {
1289 print_cpu_stall_info(rsp,
1290 rnp->grplo + cpu);
1291 ndetected++;
1292 }
1293 }
3acd9eb3 1294 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1295 }
a858af28 1296
a858af28 1297 print_cpu_stall_info_end();
53bb857c
PM
1298 for_each_possible_cpu(cpu)
1299 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1300 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1301 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1302 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1303 if (ndetected) {
b637a328 1304 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1305 } else {
7d0ae808
PM
1306 if (READ_ONCE(rsp->gpnum) != gpnum ||
1307 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1308 pr_err("INFO: Stall ended before state dump start\n");
1309 } else {
1310 j = jiffies;
7d0ae808 1311 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1312 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1313 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1314 jiffies_till_next_fqs,
1315 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1316 /* In this case, the current CPU might be at fault. */
1317 sched_show_task(current);
1318 }
1319 }
c1dc0b9c 1320
4cdfc175 1321 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1322 rcu_print_detail_task_stall(rsp);
1323
fb81a44b
PM
1324 rcu_check_gp_kthread_starvation(rsp);
1325
4cdfc175 1326 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1327}
1328
1329static void print_cpu_stall(struct rcu_state *rsp)
1330{
53bb857c 1331 int cpu;
64db4cff
PM
1332 unsigned long flags;
1333 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1334 long totqlen = 0;
64db4cff 1335
8cdd32a9
PM
1336 /*
1337 * OK, time to rat on ourselves...
1338 * See Documentation/RCU/stallwarn.txt for info on how to debug
1339 * RCU CPU stall warnings.
1340 */
d7f3e207 1341 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1342 print_cpu_stall_info_begin();
1343 print_cpu_stall_info(rsp, smp_processor_id());
1344 print_cpu_stall_info_end();
53bb857c
PM
1345 for_each_possible_cpu(cpu)
1346 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1347 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1348 jiffies - rsp->gp_start,
1349 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1350
1351 rcu_check_gp_kthread_starvation(rsp);
1352
bc1dce51 1353 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1354
6cf10081 1355 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1356 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1357 WRITE_ONCE(rsp->jiffies_stall,
1358 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1359 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1360
b021fe3e
PZ
1361 /*
1362 * Attempt to revive the RCU machinery by forcing a context switch.
1363 *
1364 * A context switch would normally allow the RCU state machine to make
1365 * progress and it could be we're stuck in kernel space without context
1366 * switches for an entirely unreasonable amount of time.
1367 */
1368 resched_cpu(smp_processor_id());
64db4cff
PM
1369}
1370
1371static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1372{
26cdfedf
PM
1373 unsigned long completed;
1374 unsigned long gpnum;
1375 unsigned long gps;
bad6e139
PM
1376 unsigned long j;
1377 unsigned long js;
64db4cff
PM
1378 struct rcu_node *rnp;
1379
26cdfedf 1380 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1381 return;
cb1e78cf 1382 j = jiffies;
26cdfedf
PM
1383
1384 /*
1385 * Lots of memory barriers to reject false positives.
1386 *
1387 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1388 * then rsp->gp_start, and finally rsp->completed. These values
1389 * are updated in the opposite order with memory barriers (or
1390 * equivalent) during grace-period initialization and cleanup.
1391 * Now, a false positive can occur if we get an new value of
1392 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1393 * the memory barriers, the only way that this can happen is if one
1394 * grace period ends and another starts between these two fetches.
1395 * Detect this by comparing rsp->completed with the previous fetch
1396 * from rsp->gpnum.
1397 *
1398 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1399 * and rsp->gp_start suffice to forestall false positives.
1400 */
7d0ae808 1401 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1402 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1403 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1404 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1405 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1406 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1407 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1408 if (ULONG_CMP_GE(completed, gpnum) ||
1409 ULONG_CMP_LT(j, js) ||
1410 ULONG_CMP_GE(gps, js))
1411 return; /* No stall or GP completed since entering function. */
64db4cff 1412 rnp = rdp->mynode;
c96ea7cf 1413 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1414 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1415
1416 /* We haven't checked in, so go dump stack. */
1417 print_cpu_stall(rsp);
1418
bad6e139
PM
1419 } else if (rcu_gp_in_progress(rsp) &&
1420 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1421
bad6e139 1422 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1423 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1424 }
1425}
1426
53d84e00
PM
1427/**
1428 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1429 *
1430 * Set the stall-warning timeout way off into the future, thus preventing
1431 * any RCU CPU stall-warning messages from appearing in the current set of
1432 * RCU grace periods.
1433 *
1434 * The caller must disable hard irqs.
1435 */
1436void rcu_cpu_stall_reset(void)
1437{
6ce75a23
PM
1438 struct rcu_state *rsp;
1439
1440 for_each_rcu_flavor(rsp)
7d0ae808 1441 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1442}
1443
3f5d3ea6 1444/*
d3f3f3f2
PM
1445 * Initialize the specified rcu_data structure's default callback list
1446 * to empty. The default callback list is the one that is not used by
1447 * no-callbacks CPUs.
3f5d3ea6 1448 */
d3f3f3f2 1449static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1450{
1451 int i;
1452
1453 rdp->nxtlist = NULL;
1454 for (i = 0; i < RCU_NEXT_SIZE; i++)
1455 rdp->nxttail[i] = &rdp->nxtlist;
1456}
1457
d3f3f3f2
PM
1458/*
1459 * Initialize the specified rcu_data structure's callback list to empty.
1460 */
1461static void init_callback_list(struct rcu_data *rdp)
1462{
1463 if (init_nocb_callback_list(rdp))
1464 return;
1465 init_default_callback_list(rdp);
1466}
1467
dc35c893
PM
1468/*
1469 * Determine the value that ->completed will have at the end of the
1470 * next subsequent grace period. This is used to tag callbacks so that
1471 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1472 * been dyntick-idle for an extended period with callbacks under the
1473 * influence of RCU_FAST_NO_HZ.
1474 *
1475 * The caller must hold rnp->lock with interrupts disabled.
1476 */
1477static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1478 struct rcu_node *rnp)
1479{
1480 /*
1481 * If RCU is idle, we just wait for the next grace period.
1482 * But we can only be sure that RCU is idle if we are looking
1483 * at the root rcu_node structure -- otherwise, a new grace
1484 * period might have started, but just not yet gotten around
1485 * to initializing the current non-root rcu_node structure.
1486 */
1487 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1488 return rnp->completed + 1;
1489
1490 /*
1491 * Otherwise, wait for a possible partial grace period and
1492 * then the subsequent full grace period.
1493 */
1494 return rnp->completed + 2;
1495}
1496
0446be48
PM
1497/*
1498 * Trace-event helper function for rcu_start_future_gp() and
1499 * rcu_nocb_wait_gp().
1500 */
1501static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1502 unsigned long c, const char *s)
0446be48
PM
1503{
1504 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1505 rnp->completed, c, rnp->level,
1506 rnp->grplo, rnp->grphi, s);
1507}
1508
1509/*
1510 * Start some future grace period, as needed to handle newly arrived
1511 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1512 * rcu_node structure's ->need_future_gp field. Returns true if there
1513 * is reason to awaken the grace-period kthread.
0446be48
PM
1514 *
1515 * The caller must hold the specified rcu_node structure's ->lock.
1516 */
48a7639c
PM
1517static bool __maybe_unused
1518rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1519 unsigned long *c_out)
0446be48
PM
1520{
1521 unsigned long c;
1522 int i;
48a7639c 1523 bool ret = false;
0446be48
PM
1524 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1525
1526 /*
1527 * Pick up grace-period number for new callbacks. If this
1528 * grace period is already marked as needed, return to the caller.
1529 */
1530 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1531 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1532 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1533 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1534 goto out;
0446be48
PM
1535 }
1536
1537 /*
1538 * If either this rcu_node structure or the root rcu_node structure
1539 * believe that a grace period is in progress, then we must wait
1540 * for the one following, which is in "c". Because our request
1541 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1542 * need to explicitly start one. We only do the lockless check
1543 * of rnp_root's fields if the current rcu_node structure thinks
1544 * there is no grace period in flight, and because we hold rnp->lock,
1545 * the only possible change is when rnp_root's two fields are
1546 * equal, in which case rnp_root->gpnum might be concurrently
1547 * incremented. But that is OK, as it will just result in our
1548 * doing some extra useless work.
0446be48
PM
1549 */
1550 if (rnp->gpnum != rnp->completed ||
7d0ae808 1551 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1552 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1553 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1554 goto out;
0446be48
PM
1555 }
1556
1557 /*
1558 * There might be no grace period in progress. If we don't already
1559 * hold it, acquire the root rcu_node structure's lock in order to
1560 * start one (if needed).
1561 */
2a67e741
PZ
1562 if (rnp != rnp_root)
1563 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1564
1565 /*
1566 * Get a new grace-period number. If there really is no grace
1567 * period in progress, it will be smaller than the one we obtained
1568 * earlier. Adjust callbacks as needed. Note that even no-CBs
1569 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1570 */
1571 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1572 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1573 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1574 rdp->nxtcompleted[i] = c;
1575
1576 /*
1577 * If the needed for the required grace period is already
1578 * recorded, trace and leave.
1579 */
1580 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1581 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1582 goto unlock_out;
1583 }
1584
1585 /* Record the need for the future grace period. */
1586 rnp_root->need_future_gp[c & 0x1]++;
1587
1588 /* If a grace period is not already in progress, start one. */
1589 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1590 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1591 } else {
f7f7bac9 1592 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1593 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1594 }
1595unlock_out:
1596 if (rnp != rnp_root)
1597 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1598out:
1599 if (c_out != NULL)
1600 *c_out = c;
1601 return ret;
0446be48
PM
1602}
1603
1604/*
1605 * Clean up any old requests for the just-ended grace period. Also return
1606 * whether any additional grace periods have been requested. Also invoke
1607 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1608 * waiting for this grace period to complete.
1609 */
1610static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1611{
1612 int c = rnp->completed;
1613 int needmore;
1614 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1615
1616 rcu_nocb_gp_cleanup(rsp, rnp);
1617 rnp->need_future_gp[c & 0x1] = 0;
1618 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1619 trace_rcu_future_gp(rnp, rdp, c,
1620 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1621 return needmore;
1622}
1623
48a7639c
PM
1624/*
1625 * Awaken the grace-period kthread for the specified flavor of RCU.
1626 * Don't do a self-awaken, and don't bother awakening when there is
1627 * nothing for the grace-period kthread to do (as in several CPUs
1628 * raced to awaken, and we lost), and finally don't try to awaken
1629 * a kthread that has not yet been created.
1630 */
1631static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1632{
1633 if (current == rsp->gp_kthread ||
7d0ae808 1634 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1635 !rsp->gp_kthread)
1636 return;
1637 wake_up(&rsp->gp_wq);
1638}
1639
dc35c893
PM
1640/*
1641 * If there is room, assign a ->completed number to any callbacks on
1642 * this CPU that have not already been assigned. Also accelerate any
1643 * callbacks that were previously assigned a ->completed number that has
1644 * since proven to be too conservative, which can happen if callbacks get
1645 * assigned a ->completed number while RCU is idle, but with reference to
1646 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1647 * not hurt to call it repeatedly. Returns an flag saying that we should
1648 * awaken the RCU grace-period kthread.
dc35c893
PM
1649 *
1650 * The caller must hold rnp->lock with interrupts disabled.
1651 */
48a7639c 1652static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1653 struct rcu_data *rdp)
1654{
1655 unsigned long c;
1656 int i;
48a7639c 1657 bool ret;
dc35c893
PM
1658
1659 /* If the CPU has no callbacks, nothing to do. */
1660 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1661 return false;
dc35c893
PM
1662
1663 /*
1664 * Starting from the sublist containing the callbacks most
1665 * recently assigned a ->completed number and working down, find the
1666 * first sublist that is not assignable to an upcoming grace period.
1667 * Such a sublist has something in it (first two tests) and has
1668 * a ->completed number assigned that will complete sooner than
1669 * the ->completed number for newly arrived callbacks (last test).
1670 *
1671 * The key point is that any later sublist can be assigned the
1672 * same ->completed number as the newly arrived callbacks, which
1673 * means that the callbacks in any of these later sublist can be
1674 * grouped into a single sublist, whether or not they have already
1675 * been assigned a ->completed number.
1676 */
1677 c = rcu_cbs_completed(rsp, rnp);
1678 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1679 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1680 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1681 break;
1682
1683 /*
1684 * If there are no sublist for unassigned callbacks, leave.
1685 * At the same time, advance "i" one sublist, so that "i" will
1686 * index into the sublist where all the remaining callbacks should
1687 * be grouped into.
1688 */
1689 if (++i >= RCU_NEXT_TAIL)
48a7639c 1690 return false;
dc35c893
PM
1691
1692 /*
1693 * Assign all subsequent callbacks' ->completed number to the next
1694 * full grace period and group them all in the sublist initially
1695 * indexed by "i".
1696 */
1697 for (; i <= RCU_NEXT_TAIL; i++) {
1698 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1699 rdp->nxtcompleted[i] = c;
1700 }
910ee45d 1701 /* Record any needed additional grace periods. */
48a7639c 1702 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1703
1704 /* Trace depending on how much we were able to accelerate. */
1705 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1706 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1707 else
f7f7bac9 1708 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1709 return ret;
dc35c893
PM
1710}
1711
1712/*
1713 * Move any callbacks whose grace period has completed to the
1714 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1715 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1716 * sublist. This function is idempotent, so it does not hurt to
1717 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1718 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1719 *
1720 * The caller must hold rnp->lock with interrupts disabled.
1721 */
48a7639c 1722static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1723 struct rcu_data *rdp)
1724{
1725 int i, j;
1726
1727 /* If the CPU has no callbacks, nothing to do. */
1728 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1729 return false;
dc35c893
PM
1730
1731 /*
1732 * Find all callbacks whose ->completed numbers indicate that they
1733 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1734 */
1735 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1736 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1737 break;
1738 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1739 }
1740 /* Clean up any sublist tail pointers that were misordered above. */
1741 for (j = RCU_WAIT_TAIL; j < i; j++)
1742 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1743
1744 /* Copy down callbacks to fill in empty sublists. */
1745 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1746 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1747 break;
1748 rdp->nxttail[j] = rdp->nxttail[i];
1749 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1750 }
1751
1752 /* Classify any remaining callbacks. */
48a7639c 1753 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1754}
1755
d09b62df 1756/*
ba9fbe95
PM
1757 * Update CPU-local rcu_data state to record the beginnings and ends of
1758 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1759 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1760 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1761 */
48a7639c
PM
1762static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1763 struct rcu_data *rdp)
d09b62df 1764{
48a7639c
PM
1765 bool ret;
1766
ba9fbe95 1767 /* Handle the ends of any preceding grace periods first. */
e3663b10 1768 if (rdp->completed == rnp->completed &&
7d0ae808 1769 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1770
ba9fbe95 1771 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1772 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1773
dc35c893
PM
1774 } else {
1775
1776 /* Advance callbacks. */
48a7639c 1777 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1778
1779 /* Remember that we saw this grace-period completion. */
1780 rdp->completed = rnp->completed;
f7f7bac9 1781 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1782 }
398ebe60 1783
7d0ae808 1784 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1785 /*
1786 * If the current grace period is waiting for this CPU,
1787 * set up to detect a quiescent state, otherwise don't
1788 * go looking for one.
1789 */
1790 rdp->gpnum = rnp->gpnum;
f7f7bac9 1791 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
5b74c458 1792 rdp->cpu_no_qs.b.norm = true;
5cd37193 1793 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
97c668b8 1794 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
6eaef633 1795 zero_cpu_stall_ticks(rdp);
7d0ae808 1796 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1797 }
48a7639c 1798 return ret;
6eaef633
PM
1799}
1800
d34ea322 1801static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1802{
1803 unsigned long flags;
48a7639c 1804 bool needwake;
6eaef633
PM
1805 struct rcu_node *rnp;
1806
1807 local_irq_save(flags);
1808 rnp = rdp->mynode;
7d0ae808
PM
1809 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1810 rdp->completed == READ_ONCE(rnp->completed) &&
1811 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1812 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1813 local_irq_restore(flags);
1814 return;
1815 }
48a7639c 1816 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1817 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1818 if (needwake)
1819 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1820}
1821
0f41c0dd
PM
1822static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1823{
1824 if (delay > 0 &&
1825 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1826 schedule_timeout_uninterruptible(delay);
1827}
1828
b3dbec76 1829/*
45fed3e7 1830 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1831 */
45fed3e7 1832static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1833{
0aa04b05 1834 unsigned long oldmask;
b3dbec76 1835 struct rcu_data *rdp;
7fdefc10 1836 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1837
7d0ae808 1838 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1839 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1840 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209
PM
1841 /* Spurious wakeup, tell caller to go back to sleep. */
1842 raw_spin_unlock_irq(&rnp->lock);
45fed3e7 1843 return false;
f7be8209 1844 }
7d0ae808 1845 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1846
f7be8209
PM
1847 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1848 /*
1849 * Grace period already in progress, don't start another.
1850 * Not supposed to be able to happen.
1851 */
7fdefc10 1852 raw_spin_unlock_irq(&rnp->lock);
45fed3e7 1853 return false;
7fdefc10
PM
1854 }
1855
7fdefc10 1856 /* Advance to a new grace period and initialize state. */
26cdfedf 1857 record_gp_stall_check_time(rsp);
765a3f4f
PM
1858 /* Record GP times before starting GP, hence smp_store_release(). */
1859 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1860 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1861 raw_spin_unlock_irq(&rnp->lock);
1862
0aa04b05
PM
1863 /*
1864 * Apply per-leaf buffered online and offline operations to the
1865 * rcu_node tree. Note that this new grace period need not wait
1866 * for subsequent online CPUs, and that quiescent-state forcing
1867 * will handle subsequent offline CPUs.
1868 */
1869 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1870 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1871 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1872 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1873 !rnp->wait_blkd_tasks) {
1874 /* Nothing to do on this leaf rcu_node structure. */
1875 raw_spin_unlock_irq(&rnp->lock);
1876 continue;
1877 }
1878
1879 /* Record old state, apply changes to ->qsmaskinit field. */
1880 oldmask = rnp->qsmaskinit;
1881 rnp->qsmaskinit = rnp->qsmaskinitnext;
1882
1883 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1884 if (!oldmask != !rnp->qsmaskinit) {
1885 if (!oldmask) /* First online CPU for this rcu_node. */
1886 rcu_init_new_rnp(rnp);
1887 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1888 rnp->wait_blkd_tasks = true;
1889 else /* Last offline CPU and can propagate. */
1890 rcu_cleanup_dead_rnp(rnp);
1891 }
1892
1893 /*
1894 * If all waited-on tasks from prior grace period are
1895 * done, and if all this rcu_node structure's CPUs are
1896 * still offline, propagate up the rcu_node tree and
1897 * clear ->wait_blkd_tasks. Otherwise, if one of this
1898 * rcu_node structure's CPUs has since come back online,
1899 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1900 * checks for this, so just call it unconditionally).
1901 */
1902 if (rnp->wait_blkd_tasks &&
1903 (!rcu_preempt_has_tasks(rnp) ||
1904 rnp->qsmaskinit)) {
1905 rnp->wait_blkd_tasks = false;
1906 rcu_cleanup_dead_rnp(rnp);
1907 }
1908
1909 raw_spin_unlock_irq(&rnp->lock);
1910 }
7fdefc10
PM
1911
1912 /*
1913 * Set the quiescent-state-needed bits in all the rcu_node
1914 * structures for all currently online CPUs in breadth-first order,
1915 * starting from the root rcu_node structure, relying on the layout
1916 * of the tree within the rsp->node[] array. Note that other CPUs
1917 * will access only the leaves of the hierarchy, thus seeing that no
1918 * grace period is in progress, at least until the corresponding
1919 * leaf node has been initialized. In addition, we have excluded
1920 * CPU-hotplug operations.
1921 *
1922 * The grace period cannot complete until the initialization
1923 * process finishes, because this kthread handles both.
1924 */
1925 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 1926 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 1927 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 1928 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1929 rcu_preempt_check_blocked_tasks(rnp);
1930 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 1931 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 1932 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 1933 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 1934 if (rnp == rdp->mynode)
48a7639c 1935 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1936 rcu_preempt_boost_start_gp(rnp);
1937 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1938 rnp->level, rnp->grplo,
1939 rnp->grphi, rnp->qsmask);
1940 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1941 cond_resched_rcu_qs();
7d0ae808 1942 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1943 }
b3dbec76 1944
45fed3e7 1945 return true;
7fdefc10 1946}
b3dbec76 1947
b9a425cf
PM
1948/*
1949 * Helper function for wait_event_interruptible_timeout() wakeup
1950 * at force-quiescent-state time.
1951 */
1952static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1953{
1954 struct rcu_node *rnp = rcu_get_root(rsp);
1955
1956 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1957 *gfp = READ_ONCE(rsp->gp_flags);
1958 if (*gfp & RCU_GP_FLAG_FQS)
1959 return true;
1960
1961 /* The current grace period has completed. */
1962 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1963 return true;
1964
1965 return false;
1966}
1967
4cdfc175
PM
1968/*
1969 * Do one round of quiescent-state forcing.
1970 */
77f81fe0 1971static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 1972{
217af2a2
PM
1973 bool isidle = false;
1974 unsigned long maxj;
4cdfc175
PM
1975 struct rcu_node *rnp = rcu_get_root(rsp);
1976
7d0ae808 1977 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 1978 rsp->n_force_qs++;
77f81fe0 1979 if (first_time) {
4cdfc175 1980 /* Collect dyntick-idle snapshots. */
0edd1b17 1981 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1982 isidle = true;
0edd1b17
PM
1983 maxj = jiffies - ULONG_MAX / 4;
1984 }
217af2a2
PM
1985 force_qs_rnp(rsp, dyntick_save_progress_counter,
1986 &isidle, &maxj);
0edd1b17 1987 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1988 } else {
1989 /* Handle dyntick-idle and offline CPUs. */
675da67f 1990 isidle = true;
217af2a2 1991 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1992 }
1993 /* Clear flag to prevent immediate re-entry. */
7d0ae808 1994 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1995 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
1996 WRITE_ONCE(rsp->gp_flags,
1997 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
4cdfc175
PM
1998 raw_spin_unlock_irq(&rnp->lock);
1999 }
4cdfc175
PM
2000}
2001
7fdefc10
PM
2002/*
2003 * Clean up after the old grace period.
2004 */
4cdfc175 2005static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2006{
2007 unsigned long gp_duration;
48a7639c 2008 bool needgp = false;
dae6e64d 2009 int nocb = 0;
7fdefc10
PM
2010 struct rcu_data *rdp;
2011 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 2012
7d0ae808 2013 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2014 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2015 gp_duration = jiffies - rsp->gp_start;
2016 if (gp_duration > rsp->gp_max)
2017 rsp->gp_max = gp_duration;
b3dbec76 2018
7fdefc10
PM
2019 /*
2020 * We know the grace period is complete, but to everyone else
2021 * it appears to still be ongoing. But it is also the case
2022 * that to everyone else it looks like there is nothing that
2023 * they can do to advance the grace period. It is therefore
2024 * safe for us to drop the lock in order to mark the grace
2025 * period as completed in all of the rcu_node structures.
7fdefc10 2026 */
5d4b8659 2027 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 2028
5d4b8659
PM
2029 /*
2030 * Propagate new ->completed value to rcu_node structures so
2031 * that other CPUs don't have to wait until the start of the next
2032 * grace period to process their callbacks. This also avoids
2033 * some nasty RCU grace-period initialization races by forcing
2034 * the end of the current grace period to be completely recorded in
2035 * all of the rcu_node structures before the beginning of the next
2036 * grace period is recorded in any of the rcu_node structures.
2037 */
2038 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2039 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2040 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2041 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2042 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2043 rdp = this_cpu_ptr(rsp->rda);
2044 if (rnp == rdp->mynode)
48a7639c 2045 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2046 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2047 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 2048 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 2049 cond_resched_rcu_qs();
7d0ae808 2050 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2051 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2052 }
5d4b8659 2053 rnp = rcu_get_root(rsp);
2a67e741 2054 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2055 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2056
765a3f4f 2057 /* Declare grace period done. */
7d0ae808 2058 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2059 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2060 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2061 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2062 /* Advance CBs to reduce false positives below. */
2063 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2064 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2065 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2066 trace_rcu_grace_period(rsp->name,
7d0ae808 2067 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2068 TPS("newreq"));
2069 }
7fdefc10 2070 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
2071}
2072
2073/*
2074 * Body of kthread that handles grace periods.
2075 */
2076static int __noreturn rcu_gp_kthread(void *arg)
2077{
77f81fe0 2078 bool first_gp_fqs;
88d6df61 2079 int gf;
d40011f6 2080 unsigned long j;
4cdfc175 2081 int ret;
7fdefc10
PM
2082 struct rcu_state *rsp = arg;
2083 struct rcu_node *rnp = rcu_get_root(rsp);
2084
5871968d 2085 rcu_bind_gp_kthread();
7fdefc10
PM
2086 for (;;) {
2087
2088 /* Handle grace-period start. */
2089 for (;;) {
63c4db78 2090 trace_rcu_grace_period(rsp->name,
7d0ae808 2091 READ_ONCE(rsp->gpnum),
63c4db78 2092 TPS("reqwait"));
afea227f 2093 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 2094 wait_event_interruptible(rsp->gp_wq,
7d0ae808 2095 READ_ONCE(rsp->gp_flags) &
4cdfc175 2096 RCU_GP_FLAG_INIT);
319362c9 2097 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2098 /* Locking provides needed memory barrier. */
f7be8209 2099 if (rcu_gp_init(rsp))
7fdefc10 2100 break;
bde6c3aa 2101 cond_resched_rcu_qs();
7d0ae808 2102 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2103 WARN_ON(signal_pending(current));
63c4db78 2104 trace_rcu_grace_period(rsp->name,
7d0ae808 2105 READ_ONCE(rsp->gpnum),
63c4db78 2106 TPS("reqwaitsig"));
7fdefc10 2107 }
cabc49c1 2108
4cdfc175 2109 /* Handle quiescent-state forcing. */
77f81fe0 2110 first_gp_fqs = true;
d40011f6
PM
2111 j = jiffies_till_first_fqs;
2112 if (j > HZ) {
2113 j = HZ;
2114 jiffies_till_first_fqs = HZ;
2115 }
88d6df61 2116 ret = 0;
cabc49c1 2117 for (;;) {
88d6df61
PM
2118 if (!ret)
2119 rsp->jiffies_force_qs = jiffies + j;
63c4db78 2120 trace_rcu_grace_period(rsp->name,
7d0ae808 2121 READ_ONCE(rsp->gpnum),
63c4db78 2122 TPS("fqswait"));
afea227f 2123 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 2124 ret = wait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2125 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2126 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2127 /* Locking provides needed memory barriers. */
4cdfc175 2128 /* If grace period done, leave loop. */
7d0ae808 2129 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2130 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2131 break;
4cdfc175 2132 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2133 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2134 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2135 trace_rcu_grace_period(rsp->name,
7d0ae808 2136 READ_ONCE(rsp->gpnum),
63c4db78 2137 TPS("fqsstart"));
77f81fe0
PM
2138 rcu_gp_fqs(rsp, first_gp_fqs);
2139 first_gp_fqs = false;
63c4db78 2140 trace_rcu_grace_period(rsp->name,
7d0ae808 2141 READ_ONCE(rsp->gpnum),
63c4db78 2142 TPS("fqsend"));
bde6c3aa 2143 cond_resched_rcu_qs();
7d0ae808 2144 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
2145 } else {
2146 /* Deal with stray signal. */
bde6c3aa 2147 cond_resched_rcu_qs();
7d0ae808 2148 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2149 WARN_ON(signal_pending(current));
63c4db78 2150 trace_rcu_grace_period(rsp->name,
7d0ae808 2151 READ_ONCE(rsp->gpnum),
63c4db78 2152 TPS("fqswaitsig"));
4cdfc175 2153 }
d40011f6
PM
2154 j = jiffies_till_next_fqs;
2155 if (j > HZ) {
2156 j = HZ;
2157 jiffies_till_next_fqs = HZ;
2158 } else if (j < 1) {
2159 j = 1;
2160 jiffies_till_next_fqs = 1;
2161 }
cabc49c1 2162 }
4cdfc175
PM
2163
2164 /* Handle grace-period end. */
319362c9 2165 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2166 rcu_gp_cleanup(rsp);
319362c9 2167 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2168 }
b3dbec76
PM
2169}
2170
64db4cff
PM
2171/*
2172 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2173 * in preparation for detecting the next grace period. The caller must hold
b8462084 2174 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2175 *
2176 * Note that it is legal for a dying CPU (which is marked as offline) to
2177 * invoke this function. This can happen when the dying CPU reports its
2178 * quiescent state.
48a7639c
PM
2179 *
2180 * Returns true if the grace-period kthread must be awakened.
64db4cff 2181 */
48a7639c 2182static bool
910ee45d
PM
2183rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2184 struct rcu_data *rdp)
64db4cff 2185{
b8462084 2186 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2187 /*
b3dbec76 2188 * Either we have not yet spawned the grace-period
62da1921
PM
2189 * task, this CPU does not need another grace period,
2190 * or a grace period is already in progress.
b3dbec76 2191 * Either way, don't start a new grace period.
afe24b12 2192 */
48a7639c 2193 return false;
afe24b12 2194 }
7d0ae808
PM
2195 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2196 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2197 TPS("newreq"));
62da1921 2198
016a8d5b
SR
2199 /*
2200 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2201 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2202 * the wakeup to our caller.
016a8d5b 2203 */
48a7639c 2204 return true;
64db4cff
PM
2205}
2206
910ee45d
PM
2207/*
2208 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2209 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2210 * is invoked indirectly from rcu_advance_cbs(), which would result in
2211 * endless recursion -- or would do so if it wasn't for the self-deadlock
2212 * that is encountered beforehand.
48a7639c
PM
2213 *
2214 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2215 */
48a7639c 2216static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2217{
2218 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2219 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2220 bool ret = false;
910ee45d
PM
2221
2222 /*
2223 * If there is no grace period in progress right now, any
2224 * callbacks we have up to this point will be satisfied by the
2225 * next grace period. Also, advancing the callbacks reduces the
2226 * probability of false positives from cpu_needs_another_gp()
2227 * resulting in pointless grace periods. So, advance callbacks
2228 * then start the grace period!
2229 */
48a7639c
PM
2230 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2231 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2232 return ret;
910ee45d
PM
2233}
2234
f41d911f 2235/*
8994515c
PM
2236 * Report a full set of quiescent states to the specified rcu_state data
2237 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2238 * kthread if another grace period is required. Whether we wake
2239 * the grace-period kthread or it awakens itself for the next round
2240 * of quiescent-state forcing, that kthread will clean up after the
2241 * just-completed grace period. Note that the caller must hold rnp->lock,
2242 * which is released before return.
f41d911f 2243 */
d3f6bad3 2244static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2245 __releases(rcu_get_root(rsp)->lock)
f41d911f 2246{
fc2219d4 2247 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2248 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
cabc49c1 2249 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 2250 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2251}
2252
64db4cff 2253/*
d3f6bad3
PM
2254 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2255 * Allows quiescent states for a group of CPUs to be reported at one go
2256 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2257 * must be represented by the same rcu_node structure (which need not be a
2258 * leaf rcu_node structure, though it often will be). The gps parameter
2259 * is the grace-period snapshot, which means that the quiescent states
2260 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2261 * must be held upon entry, and it is released before return.
64db4cff
PM
2262 */
2263static void
d3f6bad3 2264rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2265 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2266 __releases(rnp->lock)
2267{
654e9533 2268 unsigned long oldmask = 0;
28ecd580
PM
2269 struct rcu_node *rnp_c;
2270
64db4cff
PM
2271 /* Walk up the rcu_node hierarchy. */
2272 for (;;) {
654e9533 2273 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2274
654e9533
PM
2275 /*
2276 * Our bit has already been cleared, or the
2277 * relevant grace period is already over, so done.
2278 */
1304afb2 2279 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2280 return;
2281 }
654e9533 2282 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2283 rnp->qsmask &= ~mask;
d4c08f2a
PM
2284 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2285 mask, rnp->qsmask, rnp->level,
2286 rnp->grplo, rnp->grphi,
2287 !!rnp->gp_tasks);
27f4d280 2288 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2289
2290 /* Other bits still set at this level, so done. */
1304afb2 2291 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2292 return;
2293 }
2294 mask = rnp->grpmask;
2295 if (rnp->parent == NULL) {
2296
2297 /* No more levels. Exit loop holding root lock. */
2298
2299 break;
2300 }
1304afb2 2301 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2302 rnp_c = rnp;
64db4cff 2303 rnp = rnp->parent;
2a67e741 2304 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2305 oldmask = rnp_c->qsmask;
64db4cff
PM
2306 }
2307
2308 /*
2309 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2310 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2311 * to clean up and start the next grace period if one is needed.
64db4cff 2312 */
d3f6bad3 2313 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2314}
2315
cc99a310
PM
2316/*
2317 * Record a quiescent state for all tasks that were previously queued
2318 * on the specified rcu_node structure and that were blocking the current
2319 * RCU grace period. The caller must hold the specified rnp->lock with
2320 * irqs disabled, and this lock is released upon return, but irqs remain
2321 * disabled.
2322 */
0aa04b05 2323static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2324 struct rcu_node *rnp, unsigned long flags)
2325 __releases(rnp->lock)
2326{
654e9533 2327 unsigned long gps;
cc99a310
PM
2328 unsigned long mask;
2329 struct rcu_node *rnp_p;
2330
a77da14c
PM
2331 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2332 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
cc99a310
PM
2333 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2334 return; /* Still need more quiescent states! */
2335 }
2336
2337 rnp_p = rnp->parent;
2338 if (rnp_p == NULL) {
2339 /*
a77da14c
PM
2340 * Only one rcu_node structure in the tree, so don't
2341 * try to report up to its nonexistent parent!
cc99a310
PM
2342 */
2343 rcu_report_qs_rsp(rsp, flags);
2344 return;
2345 }
2346
654e9533
PM
2347 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2348 gps = rnp->gpnum;
cc99a310
PM
2349 mask = rnp->grpmask;
2350 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2a67e741 2351 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2352 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2353}
2354
64db4cff 2355/*
d3f6bad3
PM
2356 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2357 * structure. This must be either called from the specified CPU, or
2358 * called when the specified CPU is known to be offline (and when it is
2359 * also known that no other CPU is concurrently trying to help the offline
2360 * CPU). The lastcomp argument is used to make sure we are still in the
2361 * grace period of interest. We don't want to end the current grace period
2362 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2363 */
2364static void
d7d6a11e 2365rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2366{
2367 unsigned long flags;
2368 unsigned long mask;
48a7639c 2369 bool needwake;
64db4cff
PM
2370 struct rcu_node *rnp;
2371
2372 rnp = rdp->mynode;
2a67e741 2373 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5b74c458 2374 if ((rdp->cpu_no_qs.b.norm &&
5cd37193
PM
2375 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2376 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2377 rdp->gpwrap) {
64db4cff
PM
2378
2379 /*
e4cc1f22
PM
2380 * The grace period in which this quiescent state was
2381 * recorded has ended, so don't report it upwards.
2382 * We will instead need a new quiescent state that lies
2383 * within the current grace period.
64db4cff 2384 */
5b74c458 2385 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
5cd37193 2386 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1304afb2 2387 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2388 return;
2389 }
2390 mask = rdp->grpmask;
2391 if ((rnp->qsmask & mask) == 0) {
1304afb2 2392 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2393 } else {
bb53e416 2394 rdp->core_needs_qs = false;
64db4cff
PM
2395
2396 /*
2397 * This GP can't end until cpu checks in, so all of our
2398 * callbacks can be processed during the next GP.
2399 */
48a7639c 2400 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2401
654e9533
PM
2402 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2403 /* ^^^ Released rnp->lock */
48a7639c
PM
2404 if (needwake)
2405 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2406 }
2407}
2408
2409/*
2410 * Check to see if there is a new grace period of which this CPU
2411 * is not yet aware, and if so, set up local rcu_data state for it.
2412 * Otherwise, see if this CPU has just passed through its first
2413 * quiescent state for this grace period, and record that fact if so.
2414 */
2415static void
2416rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2417{
05eb552b
PM
2418 /* Check for grace-period ends and beginnings. */
2419 note_gp_changes(rsp, rdp);
64db4cff
PM
2420
2421 /*
2422 * Does this CPU still need to do its part for current grace period?
2423 * If no, return and let the other CPUs do their part as well.
2424 */
97c668b8 2425 if (!rdp->core_needs_qs)
64db4cff
PM
2426 return;
2427
2428 /*
2429 * Was there a quiescent state since the beginning of the grace
2430 * period? If no, then exit and wait for the next call.
2431 */
5b74c458 2432 if (rdp->cpu_no_qs.b.norm &&
5cd37193 2433 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2434 return;
2435
d3f6bad3
PM
2436 /*
2437 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2438 * judge of that).
2439 */
d7d6a11e 2440 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2441}
2442
e74f4c45 2443/*
b1420f1c
PM
2444 * Send the specified CPU's RCU callbacks to the orphanage. The
2445 * specified CPU must be offline, and the caller must hold the
7b2e6011 2446 * ->orphan_lock.
e74f4c45 2447 */
b1420f1c
PM
2448static void
2449rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2450 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2451{
3fbfbf7a 2452 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2453 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2454 return;
2455
b1420f1c
PM
2456 /*
2457 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2458 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2459 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2460 */
a50c3af9 2461 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2462 rsp->qlen_lazy += rdp->qlen_lazy;
2463 rsp->qlen += rdp->qlen;
2464 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2465 rdp->qlen_lazy = 0;
7d0ae808 2466 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2467 }
2468
2469 /*
b1420f1c
PM
2470 * Next, move those callbacks still needing a grace period to
2471 * the orphanage, where some other CPU will pick them up.
2472 * Some of the callbacks might have gone partway through a grace
2473 * period, but that is too bad. They get to start over because we
2474 * cannot assume that grace periods are synchronized across CPUs.
2475 * We don't bother updating the ->nxttail[] array yet, instead
2476 * we just reset the whole thing later on.
a50c3af9 2477 */
b1420f1c
PM
2478 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2479 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2480 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2481 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2482 }
2483
2484 /*
b1420f1c
PM
2485 * Then move the ready-to-invoke callbacks to the orphanage,
2486 * where some other CPU will pick them up. These will not be
2487 * required to pass though another grace period: They are done.
a50c3af9 2488 */
e5601400 2489 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2490 *rsp->orphan_donetail = rdp->nxtlist;
2491 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2492 }
e74f4c45 2493
b33078b6
PM
2494 /*
2495 * Finally, initialize the rcu_data structure's list to empty and
2496 * disallow further callbacks on this CPU.
2497 */
3f5d3ea6 2498 init_callback_list(rdp);
b33078b6 2499 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2500}
2501
2502/*
2503 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2504 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2505 */
96d3fd0d 2506static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2507{
2508 int i;
fa07a58f 2509 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2510
3fbfbf7a 2511 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2512 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2513 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2514 return;
2515
b1420f1c
PM
2516 /* Do the accounting first. */
2517 rdp->qlen_lazy += rsp->qlen_lazy;
2518 rdp->qlen += rsp->qlen;
2519 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2520 if (rsp->qlen_lazy != rsp->qlen)
2521 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2522 rsp->qlen_lazy = 0;
2523 rsp->qlen = 0;
2524
2525 /*
2526 * We do not need a memory barrier here because the only way we
2527 * can get here if there is an rcu_barrier() in flight is if
2528 * we are the task doing the rcu_barrier().
2529 */
2530
2531 /* First adopt the ready-to-invoke callbacks. */
2532 if (rsp->orphan_donelist != NULL) {
2533 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2534 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2535 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2536 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2537 rdp->nxttail[i] = rsp->orphan_donetail;
2538 rsp->orphan_donelist = NULL;
2539 rsp->orphan_donetail = &rsp->orphan_donelist;
2540 }
2541
2542 /* And then adopt the callbacks that still need a grace period. */
2543 if (rsp->orphan_nxtlist != NULL) {
2544 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2545 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2546 rsp->orphan_nxtlist = NULL;
2547 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2548 }
2549}
2550
2551/*
2552 * Trace the fact that this CPU is going offline.
2553 */
2554static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2555{
2556 RCU_TRACE(unsigned long mask);
2557 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2558 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2559
ea46351c
PM
2560 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2561 return;
2562
b1420f1c 2563 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2564 trace_rcu_grace_period(rsp->name,
2565 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2566 TPS("cpuofl"));
64db4cff
PM
2567}
2568
8af3a5e7
PM
2569/*
2570 * All CPUs for the specified rcu_node structure have gone offline,
2571 * and all tasks that were preempted within an RCU read-side critical
2572 * section while running on one of those CPUs have since exited their RCU
2573 * read-side critical section. Some other CPU is reporting this fact with
2574 * the specified rcu_node structure's ->lock held and interrupts disabled.
2575 * This function therefore goes up the tree of rcu_node structures,
2576 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2577 * the leaf rcu_node structure's ->qsmaskinit field has already been
2578 * updated
2579 *
2580 * This function does check that the specified rcu_node structure has
2581 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2582 * prematurely. That said, invoking it after the fact will cost you
2583 * a needless lock acquisition. So once it has done its work, don't
2584 * invoke it again.
2585 */
2586static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2587{
2588 long mask;
2589 struct rcu_node *rnp = rnp_leaf;
2590
ea46351c
PM
2591 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2592 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2593 return;
2594 for (;;) {
2595 mask = rnp->grpmask;
2596 rnp = rnp->parent;
2597 if (!rnp)
2598 break;
2a67e741 2599 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2600 rnp->qsmaskinit &= ~mask;
0aa04b05 2601 rnp->qsmask &= ~mask;
8af3a5e7
PM
2602 if (rnp->qsmaskinit) {
2603 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2604 return;
2605 }
2606 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2607 }
2608}
2609
88428cc5
PM
2610/*
2611 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2612 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2613 * bit masks.
2614 */
2615static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2616{
2617 unsigned long flags;
2618 unsigned long mask;
2619 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2620 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2621
ea46351c
PM
2622 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2623 return;
2624
88428cc5
PM
2625 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2626 mask = rdp->grpmask;
2a67e741 2627 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
88428cc5
PM
2628 rnp->qsmaskinitnext &= ~mask;
2629 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2630}
2631
64db4cff 2632/*
e5601400 2633 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2634 * this fact from process context. Do the remainder of the cleanup,
2635 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2636 * adopting them. There can only be one CPU hotplug operation at a time,
2637 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2638 */
e5601400 2639static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2640{
2036d94a 2641 unsigned long flags;
e5601400 2642 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2643 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2644
ea46351c
PM
2645 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2646 return;
2647
2036d94a 2648 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2649 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2650
b1420f1c 2651 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2652 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2653 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2654 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2655 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2656
cf01537e
PM
2657 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2658 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2659 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2660}
2661
64db4cff
PM
2662/*
2663 * Invoke any RCU callbacks that have made it to the end of their grace
2664 * period. Thottle as specified by rdp->blimit.
2665 */
37c72e56 2666static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2667{
2668 unsigned long flags;
2669 struct rcu_head *next, *list, **tail;
878d7439
ED
2670 long bl, count, count_lazy;
2671 int i;
64db4cff 2672
dc35c893 2673 /* If no callbacks are ready, just return. */
29c00b4a 2674 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2675 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2676 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2677 need_resched(), is_idle_task(current),
2678 rcu_is_callbacks_kthread());
64db4cff 2679 return;
29c00b4a 2680 }
64db4cff
PM
2681
2682 /*
2683 * Extract the list of ready callbacks, disabling to prevent
2684 * races with call_rcu() from interrupt handlers.
2685 */
2686 local_irq_save(flags);
8146c4e2 2687 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2688 bl = rdp->blimit;
486e2593 2689 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2690 list = rdp->nxtlist;
2691 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2692 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2693 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2694 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2695 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2696 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2697 local_irq_restore(flags);
2698
2699 /* Invoke callbacks. */
486e2593 2700 count = count_lazy = 0;
64db4cff
PM
2701 while (list) {
2702 next = list->next;
2703 prefetch(next);
551d55a9 2704 debug_rcu_head_unqueue(list);
486e2593
PM
2705 if (__rcu_reclaim(rsp->name, list))
2706 count_lazy++;
64db4cff 2707 list = next;
dff1672d
PM
2708 /* Stop only if limit reached and CPU has something to do. */
2709 if (++count >= bl &&
2710 (need_resched() ||
2711 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2712 break;
2713 }
2714
2715 local_irq_save(flags);
4968c300
PM
2716 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2717 is_idle_task(current),
2718 rcu_is_callbacks_kthread());
64db4cff
PM
2719
2720 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2721 if (list != NULL) {
2722 *tail = rdp->nxtlist;
2723 rdp->nxtlist = list;
b41772ab
PM
2724 for (i = 0; i < RCU_NEXT_SIZE; i++)
2725 if (&rdp->nxtlist == rdp->nxttail[i])
2726 rdp->nxttail[i] = tail;
64db4cff
PM
2727 else
2728 break;
2729 }
b1420f1c
PM
2730 smp_mb(); /* List handling before counting for rcu_barrier(). */
2731 rdp->qlen_lazy -= count_lazy;
7d0ae808 2732 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2733 rdp->n_cbs_invoked += count;
64db4cff
PM
2734
2735 /* Reinstate batch limit if we have worked down the excess. */
2736 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2737 rdp->blimit = blimit;
2738
37c72e56
PM
2739 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2740 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2741 rdp->qlen_last_fqs_check = 0;
2742 rdp->n_force_qs_snap = rsp->n_force_qs;
2743 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2744 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2745 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2746
64db4cff
PM
2747 local_irq_restore(flags);
2748
e0f23060 2749 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2750 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2751 invoke_rcu_core();
64db4cff
PM
2752}
2753
2754/*
2755 * Check to see if this CPU is in a non-context-switch quiescent state
2756 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2757 * Also schedule RCU core processing.
64db4cff 2758 *
9b2e4f18 2759 * This function must be called from hardirq context. It is normally
64db4cff
PM
2760 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2761 * false, there is no point in invoking rcu_check_callbacks().
2762 */
c3377c2d 2763void rcu_check_callbacks(int user)
64db4cff 2764{
f7f7bac9 2765 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2766 increment_cpu_stall_ticks();
9b2e4f18 2767 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2768
2769 /*
2770 * Get here if this CPU took its interrupt from user
2771 * mode or from the idle loop, and if this is not a
2772 * nested interrupt. In this case, the CPU is in
d6714c22 2773 * a quiescent state, so note it.
64db4cff
PM
2774 *
2775 * No memory barrier is required here because both
d6714c22
PM
2776 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2777 * variables that other CPUs neither access nor modify,
2778 * at least not while the corresponding CPU is online.
64db4cff
PM
2779 */
2780
284a8c93
PM
2781 rcu_sched_qs();
2782 rcu_bh_qs();
64db4cff
PM
2783
2784 } else if (!in_softirq()) {
2785
2786 /*
2787 * Get here if this CPU did not take its interrupt from
2788 * softirq, in other words, if it is not interrupting
2789 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2790 * critical section, so note it.
64db4cff
PM
2791 */
2792
284a8c93 2793 rcu_bh_qs();
64db4cff 2794 }
86aea0e6 2795 rcu_preempt_check_callbacks();
e3950ecd 2796 if (rcu_pending())
a46e0899 2797 invoke_rcu_core();
8315f422
PM
2798 if (user)
2799 rcu_note_voluntary_context_switch(current);
f7f7bac9 2800 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2801}
2802
64db4cff
PM
2803/*
2804 * Scan the leaf rcu_node structures, processing dyntick state for any that
2805 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2806 * Also initiate boosting for any threads blocked on the root rcu_node.
2807 *
ee47eb9f 2808 * The caller must have suppressed start of new grace periods.
64db4cff 2809 */
217af2a2
PM
2810static void force_qs_rnp(struct rcu_state *rsp,
2811 int (*f)(struct rcu_data *rsp, bool *isidle,
2812 unsigned long *maxj),
2813 bool *isidle, unsigned long *maxj)
64db4cff
PM
2814{
2815 unsigned long bit;
2816 int cpu;
2817 unsigned long flags;
2818 unsigned long mask;
a0b6c9a7 2819 struct rcu_node *rnp;
64db4cff 2820
a0b6c9a7 2821 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2822 cond_resched_rcu_qs();
64db4cff 2823 mask = 0;
2a67e741 2824 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2825 if (rnp->qsmask == 0) {
a77da14c
PM
2826 if (rcu_state_p == &rcu_sched_state ||
2827 rsp != rcu_state_p ||
2828 rcu_preempt_blocked_readers_cgp(rnp)) {
2829 /*
2830 * No point in scanning bits because they
2831 * are all zero. But we might need to
2832 * priority-boost blocked readers.
2833 */
2834 rcu_initiate_boost(rnp, flags);
2835 /* rcu_initiate_boost() releases rnp->lock */
2836 continue;
2837 }
2838 if (rnp->parent &&
2839 (rnp->parent->qsmask & rnp->grpmask)) {
2840 /*
2841 * Race between grace-period
2842 * initialization and task exiting RCU
2843 * read-side critical section: Report.
2844 */
2845 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2846 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2847 continue;
2848 }
64db4cff 2849 }
a0b6c9a7 2850 cpu = rnp->grplo;
64db4cff 2851 bit = 1;
a0b6c9a7 2852 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17 2853 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2854 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2855 mask |= bit;
2856 }
64db4cff 2857 }
45f014c5 2858 if (mask != 0) {
654e9533
PM
2859 /* Idle/offline CPUs, report (releases rnp->lock. */
2860 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2861 } else {
2862 /* Nothing to do here, so just drop the lock. */
2863 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2864 }
64db4cff 2865 }
64db4cff
PM
2866}
2867
2868/*
2869 * Force quiescent states on reluctant CPUs, and also detect which
2870 * CPUs are in dyntick-idle mode.
2871 */
4cdfc175 2872static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2873{
2874 unsigned long flags;
394f2769
PM
2875 bool ret;
2876 struct rcu_node *rnp;
2877 struct rcu_node *rnp_old = NULL;
2878
2879 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2880 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2881 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2882 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2883 !raw_spin_trylock(&rnp->fqslock);
2884 if (rnp_old != NULL)
2885 raw_spin_unlock(&rnp_old->fqslock);
2886 if (ret) {
a792563b 2887 rsp->n_force_qs_lh++;
394f2769
PM
2888 return;
2889 }
2890 rnp_old = rnp;
2891 }
2892 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2893
394f2769 2894 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2895 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2896 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2897 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2898 rsp->n_force_qs_lh++;
394f2769 2899 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2900 return; /* Someone beat us to it. */
46a1e34e 2901 }
7d0ae808 2902 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
394f2769 2903 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2904 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2905}
2906
64db4cff 2907/*
e0f23060
PM
2908 * This does the RCU core processing work for the specified rcu_state
2909 * and rcu_data structures. This may be called only from the CPU to
2910 * whom the rdp belongs.
64db4cff
PM
2911 */
2912static void
1bca8cf1 2913__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2914{
2915 unsigned long flags;
48a7639c 2916 bool needwake;
fa07a58f 2917 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2918
2e597558
PM
2919 WARN_ON_ONCE(rdp->beenonline == 0);
2920
64db4cff
PM
2921 /* Update RCU state based on any recent quiescent states. */
2922 rcu_check_quiescent_state(rsp, rdp);
2923
2924 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2925 local_irq_save(flags);
64db4cff 2926 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2927 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2928 needwake = rcu_start_gp(rsp);
b8462084 2929 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2930 if (needwake)
2931 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2932 } else {
2933 local_irq_restore(flags);
64db4cff
PM
2934 }
2935
2936 /* If there are callbacks ready, invoke them. */
09223371 2937 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2938 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2939
2940 /* Do any needed deferred wakeups of rcuo kthreads. */
2941 do_nocb_deferred_wakeup(rdp);
09223371
SL
2942}
2943
64db4cff 2944/*
e0f23060 2945 * Do RCU core processing for the current CPU.
64db4cff 2946 */
09223371 2947static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2948{
6ce75a23
PM
2949 struct rcu_state *rsp;
2950
bfa00b4c
PM
2951 if (cpu_is_offline(smp_processor_id()))
2952 return;
f7f7bac9 2953 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2954 for_each_rcu_flavor(rsp)
2955 __rcu_process_callbacks(rsp);
f7f7bac9 2956 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2957}
2958
a26ac245 2959/*
e0f23060
PM
2960 * Schedule RCU callback invocation. If the specified type of RCU
2961 * does not support RCU priority boosting, just do a direct call,
2962 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2963 * are running on the current CPU with softirqs disabled, the
e0f23060 2964 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2965 */
a46e0899 2966static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2967{
7d0ae808 2968 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2969 return;
a46e0899
PM
2970 if (likely(!rsp->boost)) {
2971 rcu_do_batch(rsp, rdp);
a26ac245
PM
2972 return;
2973 }
a46e0899 2974 invoke_rcu_callbacks_kthread();
a26ac245
PM
2975}
2976
a46e0899 2977static void invoke_rcu_core(void)
09223371 2978{
b0f74036
PM
2979 if (cpu_online(smp_processor_id()))
2980 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2981}
2982
29154c57
PM
2983/*
2984 * Handle any core-RCU processing required by a call_rcu() invocation.
2985 */
2986static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2987 struct rcu_head *head, unsigned long flags)
64db4cff 2988{
48a7639c
PM
2989 bool needwake;
2990
62fde6ed
PM
2991 /*
2992 * If called from an extended quiescent state, invoke the RCU
2993 * core in order to force a re-evaluation of RCU's idleness.
2994 */
9910affa 2995 if (!rcu_is_watching())
62fde6ed
PM
2996 invoke_rcu_core();
2997
a16b7a69 2998 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2999 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3000 return;
64db4cff 3001
37c72e56
PM
3002 /*
3003 * Force the grace period if too many callbacks or too long waiting.
3004 * Enforce hysteresis, and don't invoke force_quiescent_state()
3005 * if some other CPU has recently done so. Also, don't bother
3006 * invoking force_quiescent_state() if the newly enqueued callback
3007 * is the only one waiting for a grace period to complete.
3008 */
2655d57e 3009 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3010
3011 /* Are we ignoring a completed grace period? */
470716fc 3012 note_gp_changes(rsp, rdp);
b52573d2
PM
3013
3014 /* Start a new grace period if one not already started. */
3015 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3016 struct rcu_node *rnp_root = rcu_get_root(rsp);
3017
2a67e741 3018 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3019 needwake = rcu_start_gp(rsp);
b8462084 3020 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
3021 if (needwake)
3022 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3023 } else {
3024 /* Give the grace period a kick. */
3025 rdp->blimit = LONG_MAX;
3026 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3027 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3028 force_quiescent_state(rsp);
b52573d2
PM
3029 rdp->n_force_qs_snap = rsp->n_force_qs;
3030 rdp->qlen_last_fqs_check = rdp->qlen;
3031 }
4cdfc175 3032 }
29154c57
PM
3033}
3034
ae150184
PM
3035/*
3036 * RCU callback function to leak a callback.
3037 */
3038static void rcu_leak_callback(struct rcu_head *rhp)
3039{
3040}
3041
3fbfbf7a
PM
3042/*
3043 * Helper function for call_rcu() and friends. The cpu argument will
3044 * normally be -1, indicating "currently running CPU". It may specify
3045 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3046 * is expected to specify a CPU.
3047 */
64db4cff 3048static void
b6a4ae76 3049__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3050 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3051{
3052 unsigned long flags;
3053 struct rcu_data *rdp;
3054
1146edcb 3055 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
3056 if (debug_rcu_head_queue(head)) {
3057 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3058 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3059 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3060 return;
3061 }
64db4cff
PM
3062 head->func = func;
3063 head->next = NULL;
3064
64db4cff
PM
3065 /*
3066 * Opportunistically note grace-period endings and beginnings.
3067 * Note that we might see a beginning right after we see an
3068 * end, but never vice versa, since this CPU has to pass through
3069 * a quiescent state betweentimes.
3070 */
3071 local_irq_save(flags);
394f99a9 3072 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3073
3074 /* Add the callback to our list. */
3fbfbf7a
PM
3075 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3076 int offline;
3077
3078 if (cpu != -1)
3079 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3080 if (likely(rdp->mynode)) {
3081 /* Post-boot, so this should be for a no-CBs CPU. */
3082 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3083 WARN_ON_ONCE(offline);
3084 /* Offline CPU, _call_rcu() illegal, leak callback. */
3085 local_irq_restore(flags);
3086 return;
3087 }
3088 /*
3089 * Very early boot, before rcu_init(). Initialize if needed
3090 * and then drop through to queue the callback.
3091 */
3092 BUG_ON(cpu != -1);
34404ca8 3093 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3094 if (!likely(rdp->nxtlist))
3095 init_default_callback_list(rdp);
0d8ee37e 3096 }
7d0ae808 3097 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3098 if (lazy)
3099 rdp->qlen_lazy++;
c57afe80
PM
3100 else
3101 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3102 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3103 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3104 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3105
d4c08f2a
PM
3106 if (__is_kfree_rcu_offset((unsigned long)func))
3107 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3108 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3109 else
486e2593 3110 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3111
29154c57
PM
3112 /* Go handle any RCU core processing required. */
3113 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3114 local_irq_restore(flags);
3115}
3116
3117/*
d6714c22 3118 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3119 */
b6a4ae76 3120void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3121{
3fbfbf7a 3122 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3123}
d6714c22 3124EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3125
3126/*
486e2593 3127 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3128 */
b6a4ae76 3129void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3130{
3fbfbf7a 3131 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3132}
3133EXPORT_SYMBOL_GPL(call_rcu_bh);
3134
495aa969
ACB
3135/*
3136 * Queue an RCU callback for lazy invocation after a grace period.
3137 * This will likely be later named something like "call_rcu_lazy()",
3138 * but this change will require some way of tagging the lazy RCU
3139 * callbacks in the list of pending callbacks. Until then, this
3140 * function may only be called from __kfree_rcu().
3141 */
3142void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3143 rcu_callback_t func)
495aa969 3144{
e534165b 3145 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3146}
3147EXPORT_SYMBOL_GPL(kfree_call_rcu);
3148
6d813391
PM
3149/*
3150 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3151 * any blocking grace-period wait automatically implies a grace period
3152 * if there is only one CPU online at any point time during execution
3153 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3154 * occasionally incorrectly indicate that there are multiple CPUs online
3155 * when there was in fact only one the whole time, as this just adds
3156 * some overhead: RCU still operates correctly.
6d813391
PM
3157 */
3158static inline int rcu_blocking_is_gp(void)
3159{
95f0c1de
PM
3160 int ret;
3161
6d813391 3162 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3163 preempt_disable();
3164 ret = num_online_cpus() <= 1;
3165 preempt_enable();
3166 return ret;
6d813391
PM
3167}
3168
6ebb237b
PM
3169/**
3170 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3171 *
3172 * Control will return to the caller some time after a full rcu-sched
3173 * grace period has elapsed, in other words after all currently executing
3174 * rcu-sched read-side critical sections have completed. These read-side
3175 * critical sections are delimited by rcu_read_lock_sched() and
3176 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3177 * local_irq_disable(), and so on may be used in place of
3178 * rcu_read_lock_sched().
3179 *
3180 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3181 * non-threaded hardware-interrupt handlers, in progress on entry will
3182 * have completed before this primitive returns. However, this does not
3183 * guarantee that softirq handlers will have completed, since in some
3184 * kernels, these handlers can run in process context, and can block.
3185 *
3186 * Note that this guarantee implies further memory-ordering guarantees.
3187 * On systems with more than one CPU, when synchronize_sched() returns,
3188 * each CPU is guaranteed to have executed a full memory barrier since the
3189 * end of its last RCU-sched read-side critical section whose beginning
3190 * preceded the call to synchronize_sched(). In addition, each CPU having
3191 * an RCU read-side critical section that extends beyond the return from
3192 * synchronize_sched() is guaranteed to have executed a full memory barrier
3193 * after the beginning of synchronize_sched() and before the beginning of
3194 * that RCU read-side critical section. Note that these guarantees include
3195 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3196 * that are executing in the kernel.
3197 *
3198 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3199 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3200 * to have executed a full memory barrier during the execution of
3201 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3202 * again only if the system has more than one CPU).
6ebb237b
PM
3203 *
3204 * This primitive provides the guarantees made by the (now removed)
3205 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3206 * guarantees that rcu_read_lock() sections will have completed.
3207 * In "classic RCU", these two guarantees happen to be one and
3208 * the same, but can differ in realtime RCU implementations.
3209 */
3210void synchronize_sched(void)
3211{
f78f5b90
PM
3212 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3213 lock_is_held(&rcu_lock_map) ||
3214 lock_is_held(&rcu_sched_lock_map),
3215 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3216 if (rcu_blocking_is_gp())
3217 return;
5afff48b 3218 if (rcu_gp_is_expedited())
3705b88d
AM
3219 synchronize_sched_expedited();
3220 else
3221 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3222}
3223EXPORT_SYMBOL_GPL(synchronize_sched);
3224
3225/**
3226 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3227 *
3228 * Control will return to the caller some time after a full rcu_bh grace
3229 * period has elapsed, in other words after all currently executing rcu_bh
3230 * read-side critical sections have completed. RCU read-side critical
3231 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3232 * and may be nested.
f0a0e6f2
PM
3233 *
3234 * See the description of synchronize_sched() for more detailed information
3235 * on memory ordering guarantees.
6ebb237b
PM
3236 */
3237void synchronize_rcu_bh(void)
3238{
f78f5b90
PM
3239 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3240 lock_is_held(&rcu_lock_map) ||
3241 lock_is_held(&rcu_sched_lock_map),
3242 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3243 if (rcu_blocking_is_gp())
3244 return;
5afff48b 3245 if (rcu_gp_is_expedited())
3705b88d
AM
3246 synchronize_rcu_bh_expedited();
3247 else
3248 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3249}
3250EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3251
765a3f4f
PM
3252/**
3253 * get_state_synchronize_rcu - Snapshot current RCU state
3254 *
3255 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3256 * to determine whether or not a full grace period has elapsed in the
3257 * meantime.
3258 */
3259unsigned long get_state_synchronize_rcu(void)
3260{
3261 /*
3262 * Any prior manipulation of RCU-protected data must happen
3263 * before the load from ->gpnum.
3264 */
3265 smp_mb(); /* ^^^ */
3266
3267 /*
3268 * Make sure this load happens before the purportedly
3269 * time-consuming work between get_state_synchronize_rcu()
3270 * and cond_synchronize_rcu().
3271 */
e534165b 3272 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3273}
3274EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3275
3276/**
3277 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3278 *
3279 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3280 *
3281 * If a full RCU grace period has elapsed since the earlier call to
3282 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3283 * synchronize_rcu() to wait for a full grace period.
3284 *
3285 * Yes, this function does not take counter wrap into account. But
3286 * counter wrap is harmless. If the counter wraps, we have waited for
3287 * more than 2 billion grace periods (and way more on a 64-bit system!),
3288 * so waiting for one additional grace period should be just fine.
3289 */
3290void cond_synchronize_rcu(unsigned long oldstate)
3291{
3292 unsigned long newstate;
3293
3294 /*
3295 * Ensure that this load happens before any RCU-destructive
3296 * actions the caller might carry out after we return.
3297 */
e534165b 3298 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3299 if (ULONG_CMP_GE(oldstate, newstate))
3300 synchronize_rcu();
3301}
3302EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3303
24560056
PM
3304/**
3305 * get_state_synchronize_sched - Snapshot current RCU-sched state
3306 *
3307 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3308 * to determine whether or not a full grace period has elapsed in the
3309 * meantime.
3310 */
3311unsigned long get_state_synchronize_sched(void)
3312{
3313 /*
3314 * Any prior manipulation of RCU-protected data must happen
3315 * before the load from ->gpnum.
3316 */
3317 smp_mb(); /* ^^^ */
3318
3319 /*
3320 * Make sure this load happens before the purportedly
3321 * time-consuming work between get_state_synchronize_sched()
3322 * and cond_synchronize_sched().
3323 */
3324 return smp_load_acquire(&rcu_sched_state.gpnum);
3325}
3326EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3327
3328/**
3329 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3330 *
3331 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3332 *
3333 * If a full RCU-sched grace period has elapsed since the earlier call to
3334 * get_state_synchronize_sched(), just return. Otherwise, invoke
3335 * synchronize_sched() to wait for a full grace period.
3336 *
3337 * Yes, this function does not take counter wrap into account. But
3338 * counter wrap is harmless. If the counter wraps, we have waited for
3339 * more than 2 billion grace periods (and way more on a 64-bit system!),
3340 * so waiting for one additional grace period should be just fine.
3341 */
3342void cond_synchronize_sched(unsigned long oldstate)
3343{
3344 unsigned long newstate;
3345
3346 /*
3347 * Ensure that this load happens before any RCU-destructive
3348 * actions the caller might carry out after we return.
3349 */
3350 newstate = smp_load_acquire(&rcu_sched_state.completed);
3351 if (ULONG_CMP_GE(oldstate, newstate))
3352 synchronize_sched();
3353}
3354EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3355
28f00767
PM
3356/* Adjust sequence number for start of update-side operation. */
3357static void rcu_seq_start(unsigned long *sp)
3358{
3359 WRITE_ONCE(*sp, *sp + 1);
3360 smp_mb(); /* Ensure update-side operation after counter increment. */
3361 WARN_ON_ONCE(!(*sp & 0x1));
3362}
3363
3364/* Adjust sequence number for end of update-side operation. */
3365static void rcu_seq_end(unsigned long *sp)
3366{
3367 smp_mb(); /* Ensure update-side operation before counter increment. */
3368 WRITE_ONCE(*sp, *sp + 1);
3369 WARN_ON_ONCE(*sp & 0x1);
3370}
3371
3372/* Take a snapshot of the update side's sequence number. */
3373static unsigned long rcu_seq_snap(unsigned long *sp)
3374{
3375 unsigned long s;
3376
28f00767
PM
3377 s = (READ_ONCE(*sp) + 3) & ~0x1;
3378 smp_mb(); /* Above access must not bleed into critical section. */
3379 return s;
3380}
3381
3382/*
3383 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3384 * full update-side operation has occurred.
3385 */
3386static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3387{
3388 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3389}
3390
3391/* Wrapper functions for expedited grace periods. */
3392static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3393{
3394 rcu_seq_start(&rsp->expedited_sequence);
3395}
3396static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3397{
3398 rcu_seq_end(&rsp->expedited_sequence);
704dd435 3399 smp_mb(); /* Ensure that consecutive grace periods serialize. */
28f00767
PM
3400}
3401static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3402{
886ef5a1 3403 smp_mb(); /* Caller's modifications seen first by other CPUs. */
28f00767
PM
3404 return rcu_seq_snap(&rsp->expedited_sequence);
3405}
3406static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3407{
3408 return rcu_seq_done(&rsp->expedited_sequence, s);
3409}
3410
b9585e94
PM
3411/*
3412 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3413 * recent CPU-online activity. Note that these masks are not cleared
3414 * when CPUs go offline, so they reflect the union of all CPUs that have
3415 * ever been online. This means that this function normally takes its
3416 * no-work-to-do fastpath.
3417 */
3418static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3419{
3420 bool done;
3421 unsigned long flags;
3422 unsigned long mask;
3423 unsigned long oldmask;
3424 int ncpus = READ_ONCE(rsp->ncpus);
3425 struct rcu_node *rnp;
3426 struct rcu_node *rnp_up;
3427
3428 /* If no new CPUs onlined since last time, nothing to do. */
3429 if (likely(ncpus == rsp->ncpus_snap))
3430 return;
3431 rsp->ncpus_snap = ncpus;
3432
3433 /*
3434 * Each pass through the following loop propagates newly onlined
3435 * CPUs for the current rcu_node structure up the rcu_node tree.
3436 */
3437 rcu_for_each_leaf_node(rsp, rnp) {
2a67e741 3438 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b9585e94
PM
3439 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3440 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3441 continue; /* No new CPUs, nothing to do. */
3442 }
3443
3444 /* Update this node's mask, track old value for propagation. */
3445 oldmask = rnp->expmaskinit;
3446 rnp->expmaskinit = rnp->expmaskinitnext;
3447 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3448
3449 /* If was already nonzero, nothing to propagate. */
3450 if (oldmask)
3451 continue;
3452
3453 /* Propagate the new CPU up the tree. */
3454 mask = rnp->grpmask;
3455 rnp_up = rnp->parent;
3456 done = false;
3457 while (rnp_up) {
2a67e741 3458 raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
b9585e94
PM
3459 if (rnp_up->expmaskinit)
3460 done = true;
3461 rnp_up->expmaskinit |= mask;
3462 raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
3463 if (done)
3464 break;
3465 mask = rnp_up->grpmask;
3466 rnp_up = rnp_up->parent;
3467 }
3468 }
3469}
3470
3471/*
3472 * Reset the ->expmask values in the rcu_node tree in preparation for
3473 * a new expedited grace period.
3474 */
3475static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3476{
3477 unsigned long flags;
3478 struct rcu_node *rnp;
3479
3480 sync_exp_reset_tree_hotplug(rsp);
3481 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 3482 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b9585e94
PM
3483 WARN_ON_ONCE(rnp->expmask);
3484 rnp->expmask = rnp->expmaskinit;
3485 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3486 }
3487}
3488
7922cd0e 3489/*
8203d6d0 3490 * Return non-zero if there is no RCU expedited grace period in progress
7922cd0e
PM
3491 * for the specified rcu_node structure, in other words, if all CPUs and
3492 * tasks covered by the specified rcu_node structure have done their bit
3493 * for the current expedited grace period. Works only for preemptible
3494 * RCU -- other RCU implementation use other means.
3495 *
3496 * Caller must hold the root rcu_node's exp_funnel_mutex.
3497 */
3498static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3499{
8203d6d0 3500 return rnp->exp_tasks == NULL &&
7922cd0e
PM
3501 READ_ONCE(rnp->expmask) == 0;
3502}
3503
3504/*
3505 * Report the exit from RCU read-side critical section for the last task
3506 * that queued itself during or before the current expedited preemptible-RCU
3507 * grace period. This event is reported either to the rcu_node structure on
3508 * which the task was queued or to one of that rcu_node structure's ancestors,
3509 * recursively up the tree. (Calm down, calm down, we do the recursion
3510 * iteratively!)
3511 *
8203d6d0
PM
3512 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3513 * specified rcu_node structure's ->lock.
7922cd0e 3514 */
8203d6d0
PM
3515static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3516 bool wake, unsigned long flags)
3517 __releases(rnp->lock)
7922cd0e 3518{
7922cd0e
PM
3519 unsigned long mask;
3520
7922cd0e
PM
3521 for (;;) {
3522 if (!sync_rcu_preempt_exp_done(rnp)) {
8203d6d0
PM
3523 if (!rnp->expmask)
3524 rcu_initiate_boost(rnp, flags);
3525 else
3526 raw_spin_unlock_irqrestore(&rnp->lock, flags);
7922cd0e
PM
3527 break;
3528 }
3529 if (rnp->parent == NULL) {
3530 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3531 if (wake) {
3532 smp_mb(); /* EGP done before wake_up(). */
3533 wake_up(&rsp->expedited_wq);
3534 }
3535 break;
3536 }
3537 mask = rnp->grpmask;
3538 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
3539 rnp = rnp->parent;
2a67e741 3540 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
8203d6d0 3541 WARN_ON_ONCE(!(rnp->expmask & mask));
7922cd0e
PM
3542 rnp->expmask &= ~mask;
3543 }
3544}
3545
8203d6d0
PM
3546/*
3547 * Report expedited quiescent state for specified node. This is a
3548 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3549 *
3550 * Caller must hold the root rcu_node's exp_funnel_mutex.
3551 */
3552static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3553 struct rcu_node *rnp, bool wake)
3554{
3555 unsigned long flags;
3556
2a67e741 3557 raw_spin_lock_irqsave_rcu_node(rnp, flags);
8203d6d0
PM
3558 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3559}
3560
3561/*
3562 * Report expedited quiescent state for multiple CPUs, all covered by the
3563 * specified leaf rcu_node structure. Caller must hold the root
3564 * rcu_node's exp_funnel_mutex.
3565 */
3566static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3567 unsigned long mask, bool wake)
3568{
3569 unsigned long flags;
3570
2a67e741 3571 raw_spin_lock_irqsave_rcu_node(rnp, flags);
338b0f76
PM
3572 if (!(rnp->expmask & mask)) {
3573 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3574 return;
3575 }
8203d6d0
PM
3576 rnp->expmask &= ~mask;
3577 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3578}
3579
3580/*
3581 * Report expedited quiescent state for specified rcu_data (CPU).
3582 * Caller must hold the root rcu_node's exp_funnel_mutex.
3583 */
6587a23b
PM
3584static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3585 bool wake)
8203d6d0
PM
3586{
3587 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3588}
3589
29fd9309
PM
3590/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3591static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
2cd6ffaf 3592 struct rcu_data *rdp,
29fd9309 3593 atomic_long_t *stat, unsigned long s)
3d3b7db0 3594{
28f00767 3595 if (rcu_exp_gp_seq_done(rsp, s)) {
385b73c0
PM
3596 if (rnp)
3597 mutex_unlock(&rnp->exp_funnel_mutex);
2cd6ffaf
PM
3598 else if (rdp)
3599 mutex_unlock(&rdp->exp_funnel_mutex);
385b73c0
PM
3600 /* Ensure test happens before caller kfree(). */
3601 smp_mb__before_atomic(); /* ^^^ */
3602 atomic_long_inc(stat);
385b73c0
PM
3603 return true;
3604 }
3605 return false;
3606}
3607
b09e5f86
PM
3608/*
3609 * Funnel-lock acquisition for expedited grace periods. Returns a
3610 * pointer to the root rcu_node structure, or NULL if some other
3611 * task did the expedited grace period for us.
3612 */
3613static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3614{
df5bd514 3615 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
b09e5f86
PM
3616 struct rcu_node *rnp0;
3617 struct rcu_node *rnp1 = NULL;
3618
3d3b7db0 3619 /*
cdacbe1f
PM
3620 * First try directly acquiring the root lock in order to reduce
3621 * latency in the common case where expedited grace periods are
3622 * rare. We check mutex_is_locked() to avoid pathological levels of
3623 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3d3b7db0 3624 */
cdacbe1f
PM
3625 rnp0 = rcu_get_root(rsp);
3626 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3627 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3628 if (sync_exp_work_done(rsp, rnp0, NULL,
df5bd514 3629 &rdp->expedited_workdone0, s))
cdacbe1f
PM
3630 return NULL;
3631 return rnp0;
3632 }
3633 }
3634
b09e5f86
PM
3635 /*
3636 * Each pass through the following loop works its way
3637 * up the rcu_node tree, returning if others have done the
3638 * work or otherwise falls through holding the root rnp's
3639 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3640 * can be inexact, as it is just promoting locality and is not
3641 * strictly needed for correctness.
3642 */
df5bd514 3643 if (sync_exp_work_done(rsp, NULL, NULL, &rdp->expedited_workdone1, s))
2cd6ffaf
PM
3644 return NULL;
3645 mutex_lock(&rdp->exp_funnel_mutex);
3646 rnp0 = rdp->mynode;
b09e5f86 3647 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
2cd6ffaf 3648 if (sync_exp_work_done(rsp, rnp1, rdp,
df5bd514 3649 &rdp->expedited_workdone2, s))
b09e5f86
PM
3650 return NULL;
3651 mutex_lock(&rnp0->exp_funnel_mutex);
3652 if (rnp1)
3653 mutex_unlock(&rnp1->exp_funnel_mutex);
2cd6ffaf
PM
3654 else
3655 mutex_unlock(&rdp->exp_funnel_mutex);
b09e5f86
PM
3656 rnp1 = rnp0;
3657 }
2cd6ffaf 3658 if (sync_exp_work_done(rsp, rnp1, rdp,
df5bd514 3659 &rdp->expedited_workdone3, s))
b09e5f86
PM
3660 return NULL;
3661 return rnp1;
3662}
3663
cf3620a6 3664/* Invoked on each online non-idle CPU for expedited quiescent state. */
338b0f76 3665static void sync_sched_exp_handler(void *data)
b09e5f86 3666{
338b0f76
PM
3667 struct rcu_data *rdp;
3668 struct rcu_node *rnp;
3669 struct rcu_state *rsp = data;
b09e5f86 3670
338b0f76
PM
3671 rdp = this_cpu_ptr(rsp->rda);
3672 rnp = rdp->mynode;
3673 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3674 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3675 return;
6587a23b
PM
3676 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3677 resched_cpu(smp_processor_id());
3d3b7db0
PM
3678}
3679
338b0f76
PM
3680/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3681static void sync_sched_exp_online_cleanup(int cpu)
3682{
3683 struct rcu_data *rdp;
3684 int ret;
3685 struct rcu_node *rnp;
3686 struct rcu_state *rsp = &rcu_sched_state;
3687
3688 rdp = per_cpu_ptr(rsp->rda, cpu);
3689 rnp = rdp->mynode;
3690 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3691 return;
3692 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3693 WARN_ON_ONCE(ret);
3694}
3695
bce5fa12
PM
3696/*
3697 * Select the nodes that the upcoming expedited grace period needs
3698 * to wait for.
3699 */
dcdb8807
PM
3700static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3701 smp_call_func_t func)
bce5fa12
PM
3702{
3703 int cpu;
3704 unsigned long flags;
3705 unsigned long mask;
3706 unsigned long mask_ofl_test;
3707 unsigned long mask_ofl_ipi;
6587a23b 3708 int ret;
bce5fa12
PM
3709 struct rcu_node *rnp;
3710
3711 sync_exp_reset_tree(rsp);
3712 rcu_for_each_leaf_node(rsp, rnp) {
2a67e741 3713 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bce5fa12
PM
3714
3715 /* Each pass checks a CPU for identity, offline, and idle. */
3716 mask_ofl_test = 0;
3717 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3718 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3719 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3720
3721 if (raw_smp_processor_id() == cpu ||
bce5fa12
PM
3722 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3723 mask_ofl_test |= rdp->grpmask;
3724 }
3725 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3726
3727 /*
3728 * Need to wait for any blocked tasks as well. Note that
3729 * additional blocking tasks will also block the expedited
3730 * GP until such time as the ->expmask bits are cleared.
3731 */
3732 if (rcu_preempt_has_tasks(rnp))
3733 rnp->exp_tasks = rnp->blkd_tasks.next;
3734 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3735
3736 /* IPI the remaining CPUs for expedited quiescent state. */
3737 mask = 1;
3738 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3739 if (!(mask_ofl_ipi & mask))
3740 continue;
338b0f76 3741retry_ipi:
dcdb8807 3742 ret = smp_call_function_single(cpu, func, rsp, 0);
338b0f76 3743 if (!ret) {
6587a23b 3744 mask_ofl_ipi &= ~mask;
1307f214
PM
3745 continue;
3746 }
3747 /* Failed, raced with offline. */
3748 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3749 if (cpu_online(cpu) &&
3750 (rnp->expmask & mask)) {
338b0f76 3751 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1307f214
PM
3752 schedule_timeout_uninterruptible(1);
3753 if (cpu_online(cpu) &&
3754 (rnp->expmask & mask))
3755 goto retry_ipi;
3756 raw_spin_lock_irqsave_rcu_node(rnp, flags);
338b0f76 3757 }
1307f214
PM
3758 if (!(rnp->expmask & mask))
3759 mask_ofl_ipi &= ~mask;
3760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
bce5fa12
PM
3761 }
3762 /* Report quiescent states for those that went offline. */
3763 mask_ofl_test |= mask_ofl_ipi;
3764 if (mask_ofl_test)
3765 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3766 }
3d3b7db0
PM
3767}
3768
cf3620a6
PM
3769static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3770{
3771 int cpu;
3772 unsigned long jiffies_stall;
3773 unsigned long jiffies_start;
bce5fa12 3774 unsigned long mask;
72611ab9 3775 int ndetected;
bce5fa12
PM
3776 struct rcu_node *rnp;
3777 struct rcu_node *rnp_root = rcu_get_root(rsp);
cf3620a6
PM
3778 int ret;
3779
3780 jiffies_stall = rcu_jiffies_till_stall_check();
3781 jiffies_start = jiffies;
3782
3783 for (;;) {
3784 ret = wait_event_interruptible_timeout(
3785 rsp->expedited_wq,
bce5fa12 3786 sync_rcu_preempt_exp_done(rnp_root),
cf3620a6 3787 jiffies_stall);
73f36f9d 3788 if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
cf3620a6
PM
3789 return;
3790 if (ret < 0) {
3791 /* Hit a signal, disable CPU stall warnings. */
3792 wait_event(rsp->expedited_wq,
bce5fa12 3793 sync_rcu_preempt_exp_done(rnp_root));
cf3620a6
PM
3794 return;
3795 }
c5865638 3796 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
cf3620a6 3797 rsp->name);
72611ab9 3798 ndetected = 0;
bce5fa12 3799 rcu_for_each_leaf_node(rsp, rnp) {
72611ab9 3800 ndetected = rcu_print_task_exp_stall(rnp);
bce5fa12
PM
3801 mask = 1;
3802 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
74611ecb
PM
3803 struct rcu_data *rdp;
3804
bce5fa12
PM
3805 if (!(rnp->expmask & mask))
3806 continue;
72611ab9 3807 ndetected++;
74611ecb
PM
3808 rdp = per_cpu_ptr(rsp->rda, cpu);
3809 pr_cont(" %d-%c%c%c", cpu,
3810 "O."[cpu_online(cpu)],
3811 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3812 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
bce5fa12
PM
3813 }
3814 mask <<= 1;
cf3620a6 3815 }
72611ab9
PM
3816 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3817 jiffies - jiffies_start, rsp->expedited_sequence,
3818 rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
3819 if (!ndetected) {
3820 pr_err("blocking rcu_node structures:");
3821 rcu_for_each_node_breadth_first(rsp, rnp) {
3822 if (rnp == rnp_root)
3823 continue; /* printed unconditionally */
3824 if (sync_rcu_preempt_exp_done(rnp))
3825 continue;
3826 pr_cont(" l=%u:%d-%d:%#lx/%c",
3827 rnp->level, rnp->grplo, rnp->grphi,
3828 rnp->expmask,
3829 ".T"[!!rnp->exp_tasks]);
3830 }
3831 pr_cont("\n");
3832 }
bce5fa12
PM
3833 rcu_for_each_leaf_node(rsp, rnp) {
3834 mask = 1;
3835 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3836 if (!(rnp->expmask & mask))
3837 continue;
3838 dump_cpu_task(cpu);
3839 }
cf3620a6
PM
3840 }
3841 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3842 }
3843}
3844
236fefaf
PM
3845/**
3846 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3847 *
3848 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3849 * approach to force the grace period to end quickly. This consumes
3850 * significant time on all CPUs and is unfriendly to real-time workloads,
3851 * so is thus not recommended for any sort of common-case code. In fact,
3852 * if you are using synchronize_sched_expedited() in a loop, please
3853 * restructure your code to batch your updates, and then use a single
3854 * synchronize_sched() instead.
3d3b7db0 3855 *
d6ada2cf
PM
3856 * This implementation can be thought of as an application of sequence
3857 * locking to expedited grace periods, but using the sequence counter to
3858 * determine when someone else has already done the work instead of for
385b73c0 3859 * retrying readers.
3d3b7db0
PM
3860 */
3861void synchronize_sched_expedited(void)
3862{
7fd0ddc5 3863 unsigned long s;
b09e5f86 3864 struct rcu_node *rnp;
40694d66 3865 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3866
06f60de1
PM
3867 /* If only one CPU, this is automatically a grace period. */
3868 if (rcu_blocking_is_gp())
3869 return;
3870
5a9be7c6
PM
3871 /* If expedited grace periods are prohibited, fall back to normal. */
3872 if (rcu_gp_is_normal()) {
3873 wait_rcu_gp(call_rcu_sched);
3874 return;
3875 }
3876
d6ada2cf 3877 /* Take a snapshot of the sequence number. */
28f00767 3878 s = rcu_exp_gp_seq_snap(rsp);
3d3b7db0 3879
b09e5f86 3880 rnp = exp_funnel_lock(rsp, s);
807226e2 3881 if (rnp == NULL)
b09e5f86 3882 return; /* Someone else did our work for us. */
e0775cef 3883
28f00767 3884 rcu_exp_gp_seq_start(rsp);
338b0f76 3885 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
bce5fa12 3886 synchronize_sched_expedited_wait(rsp);
e0775cef 3887
28f00767 3888 rcu_exp_gp_seq_end(rsp);
b09e5f86 3889 mutex_unlock(&rnp->exp_funnel_mutex);
3d3b7db0
PM
3890}
3891EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3892
64db4cff
PM
3893/*
3894 * Check to see if there is any immediate RCU-related work to be done
3895 * by the current CPU, for the specified type of RCU, returning 1 if so.
3896 * The checks are in order of increasing expense: checks that can be
3897 * carried out against CPU-local state are performed first. However,
3898 * we must check for CPU stalls first, else we might not get a chance.
3899 */
3900static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3901{
2f51f988
PM
3902 struct rcu_node *rnp = rdp->mynode;
3903
64db4cff
PM
3904 rdp->n_rcu_pending++;
3905
3906 /* Check for CPU stalls, if enabled. */
3907 check_cpu_stall(rsp, rdp);
3908
a096932f
PM
3909 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3910 if (rcu_nohz_full_cpu(rsp))
3911 return 0;
3912
64db4cff 3913 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3914 if (rcu_scheduler_fully_active &&
5b74c458 3915 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
5cd37193 3916 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
97c668b8
PM
3917 rdp->n_rp_core_needs_qs++;
3918 } else if (rdp->core_needs_qs &&
5b74c458 3919 (!rdp->cpu_no_qs.b.norm ||
5cd37193 3920 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3921 rdp->n_rp_report_qs++;
64db4cff 3922 return 1;
7ba5c840 3923 }
64db4cff
PM
3924
3925 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3926 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3927 rdp->n_rp_cb_ready++;
64db4cff 3928 return 1;
7ba5c840 3929 }
64db4cff
PM
3930
3931 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3932 if (cpu_needs_another_gp(rsp, rdp)) {
3933 rdp->n_rp_cpu_needs_gp++;
64db4cff 3934 return 1;
7ba5c840 3935 }
64db4cff
PM
3936
3937 /* Has another RCU grace period completed? */
7d0ae808 3938 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3939 rdp->n_rp_gp_completed++;
64db4cff 3940 return 1;
7ba5c840 3941 }
64db4cff
PM
3942
3943 /* Has a new RCU grace period started? */
7d0ae808
PM
3944 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3945 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3946 rdp->n_rp_gp_started++;
64db4cff 3947 return 1;
7ba5c840 3948 }
64db4cff 3949
96d3fd0d
PM
3950 /* Does this CPU need a deferred NOCB wakeup? */
3951 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3952 rdp->n_rp_nocb_defer_wakeup++;
3953 return 1;
3954 }
3955
64db4cff 3956 /* nothing to do */
7ba5c840 3957 rdp->n_rp_need_nothing++;
64db4cff
PM
3958 return 0;
3959}
3960
3961/*
3962 * Check to see if there is any immediate RCU-related work to be done
3963 * by the current CPU, returning 1 if so. This function is part of the
3964 * RCU implementation; it is -not- an exported member of the RCU API.
3965 */
e3950ecd 3966static int rcu_pending(void)
64db4cff 3967{
6ce75a23
PM
3968 struct rcu_state *rsp;
3969
3970 for_each_rcu_flavor(rsp)
e3950ecd 3971 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3972 return 1;
3973 return 0;
64db4cff
PM
3974}
3975
3976/*
c0f4dfd4
PM
3977 * Return true if the specified CPU has any callback. If all_lazy is
3978 * non-NULL, store an indication of whether all callbacks are lazy.
3979 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3980 */
82072c4f 3981static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3982{
c0f4dfd4
PM
3983 bool al = true;
3984 bool hc = false;
3985 struct rcu_data *rdp;
6ce75a23
PM
3986 struct rcu_state *rsp;
3987
c0f4dfd4 3988 for_each_rcu_flavor(rsp) {
aa6da514 3989 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3990 if (!rdp->nxtlist)
3991 continue;
3992 hc = true;
3993 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3994 al = false;
69c8d28c
PM
3995 break;
3996 }
c0f4dfd4
PM
3997 }
3998 if (all_lazy)
3999 *all_lazy = al;
4000 return hc;
64db4cff
PM
4001}
4002
a83eff0a
PM
4003/*
4004 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
4005 * the compiler is expected to optimize this away.
4006 */
e66c33d5 4007static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
4008 int cpu, unsigned long done)
4009{
4010 trace_rcu_barrier(rsp->name, s, cpu,
4011 atomic_read(&rsp->barrier_cpu_count), done);
4012}
4013
b1420f1c
PM
4014/*
4015 * RCU callback function for _rcu_barrier(). If we are last, wake
4016 * up the task executing _rcu_barrier().
4017 */
24ebbca8 4018static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 4019{
24ebbca8
PM
4020 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
4021 struct rcu_state *rsp = rdp->rsp;
4022
a83eff0a 4023 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 4024 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 4025 complete(&rsp->barrier_completion);
a83eff0a 4026 } else {
4f525a52 4027 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 4028 }
d0ec774c
PM
4029}
4030
4031/*
4032 * Called with preemption disabled, and from cross-cpu IRQ context.
4033 */
4034static void rcu_barrier_func(void *type)
4035{
037b64ed 4036 struct rcu_state *rsp = type;
fa07a58f 4037 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 4038
4f525a52 4039 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 4040 atomic_inc(&rsp->barrier_cpu_count);
06668efa 4041 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
4042}
4043
d0ec774c
PM
4044/*
4045 * Orchestrate the specified type of RCU barrier, waiting for all
4046 * RCU callbacks of the specified type to complete.
4047 */
037b64ed 4048static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 4049{
b1420f1c 4050 int cpu;
b1420f1c 4051 struct rcu_data *rdp;
4f525a52 4052 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 4053
4f525a52 4054 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 4055
e74f4c45 4056 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 4057 mutex_lock(&rsp->barrier_mutex);
b1420f1c 4058
4f525a52
PM
4059 /* Did someone else do our work for us? */
4060 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4061 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
4062 smp_mb(); /* caller's subsequent code after above check. */
4063 mutex_unlock(&rsp->barrier_mutex);
4064 return;
4065 }
4066
4f525a52
PM
4067 /* Mark the start of the barrier operation. */
4068 rcu_seq_start(&rsp->barrier_sequence);
4069 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 4070
d0ec774c 4071 /*
b1420f1c
PM
4072 * Initialize the count to one rather than to zero in order to
4073 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
4074 * (or preemption of this task). Exclude CPU-hotplug operations
4075 * to ensure that no offline CPU has callbacks queued.
d0ec774c 4076 */
7db74df8 4077 init_completion(&rsp->barrier_completion);
24ebbca8 4078 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 4079 get_online_cpus();
b1420f1c
PM
4080
4081 /*
1331e7a1
PM
4082 * Force each CPU with callbacks to register a new callback.
4083 * When that callback is invoked, we will know that all of the
4084 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 4085 */
3fbfbf7a 4086 for_each_possible_cpu(cpu) {
d1e43fa5 4087 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 4088 continue;
b1420f1c 4089 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 4090 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
4091 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4092 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 4093 rsp->barrier_sequence);
d7e29933
PM
4094 } else {
4095 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 4096 rsp->barrier_sequence);
41050a00 4097 smp_mb__before_atomic();
d7e29933
PM
4098 atomic_inc(&rsp->barrier_cpu_count);
4099 __call_rcu(&rdp->barrier_head,
4100 rcu_barrier_callback, rsp, cpu, 0);
4101 }
7d0ae808 4102 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 4103 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 4104 rsp->barrier_sequence);
037b64ed 4105 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 4106 } else {
a83eff0a 4107 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 4108 rsp->barrier_sequence);
b1420f1c
PM
4109 }
4110 }
1331e7a1 4111 put_online_cpus();
b1420f1c
PM
4112
4113 /*
4114 * Now that we have an rcu_barrier_callback() callback on each
4115 * CPU, and thus each counted, remove the initial count.
4116 */
24ebbca8 4117 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 4118 complete(&rsp->barrier_completion);
b1420f1c
PM
4119
4120 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 4121 wait_for_completion(&rsp->barrier_completion);
b1420f1c 4122
4f525a52
PM
4123 /* Mark the end of the barrier operation. */
4124 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4125 rcu_seq_end(&rsp->barrier_sequence);
4126
b1420f1c 4127 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 4128 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 4129}
d0ec774c
PM
4130
4131/**
4132 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4133 */
4134void rcu_barrier_bh(void)
4135{
037b64ed 4136 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
4137}
4138EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4139
4140/**
4141 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4142 */
4143void rcu_barrier_sched(void)
4144{
037b64ed 4145 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
4146}
4147EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4148
0aa04b05
PM
4149/*
4150 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4151 * first CPU in a given leaf rcu_node structure coming online. The caller
4152 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4153 * disabled.
4154 */
4155static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4156{
4157 long mask;
4158 struct rcu_node *rnp = rnp_leaf;
4159
4160 for (;;) {
4161 mask = rnp->grpmask;
4162 rnp = rnp->parent;
4163 if (rnp == NULL)
4164 return;
6cf10081 4165 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05
PM
4166 rnp->qsmaskinit |= mask;
4167 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
4168 }
4169}
4170
64db4cff 4171/*
27569620 4172 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 4173 */
27569620
PM
4174static void __init
4175rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
4176{
4177 unsigned long flags;
394f99a9 4178 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
4179 struct rcu_node *rnp = rcu_get_root(rsp);
4180
4181 /* Set up local state, ensuring consistent view of global state. */
6cf10081 4182 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27569620 4183 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 4184 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 4185 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 4186 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 4187 rdp->cpu = cpu;
d4c08f2a 4188 rdp->rsp = rsp;
2cd6ffaf 4189 mutex_init(&rdp->exp_funnel_mutex);
3fbfbf7a 4190 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 4191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
4192}
4193
4194/*
4195 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4196 * offline event can be happening at a given time. Note also that we
4197 * can accept some slop in the rsp->completed access due to the fact
4198 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 4199 */
49fb4c62 4200static void
9b67122a 4201rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
4202{
4203 unsigned long flags;
64db4cff 4204 unsigned long mask;
394f99a9 4205 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
4206 struct rcu_node *rnp = rcu_get_root(rsp);
4207
4208 /* Set up local state, ensuring consistent view of global state. */
6cf10081 4209 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
4210 rdp->qlen_last_fqs_check = 0;
4211 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 4212 rdp->blimit = blimit;
39c8d313
PM
4213 if (!rdp->nxtlist)
4214 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 4215 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 4216 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
4217 atomic_set(&rdp->dynticks->dynticks,
4218 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 4219 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 4220
0aa04b05
PM
4221 /*
4222 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4223 * propagation up the rcu_node tree will happen at the beginning
4224 * of the next grace period.
4225 */
64db4cff
PM
4226 rnp = rdp->mynode;
4227 mask = rdp->grpmask;
2a67e741 4228 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
0aa04b05 4229 rnp->qsmaskinitnext |= mask;
b9585e94
PM
4230 rnp->expmaskinitnext |= mask;
4231 if (!rdp->beenonline)
4232 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4233 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
4234 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4235 rdp->completed = rnp->completed;
5b74c458 4236 rdp->cpu_no_qs.b.norm = true;
a738eec6 4237 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
97c668b8 4238 rdp->core_needs_qs = false;
0aa04b05
PM
4239 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4240 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
4241}
4242
49fb4c62 4243static void rcu_prepare_cpu(int cpu)
64db4cff 4244{
6ce75a23
PM
4245 struct rcu_state *rsp;
4246
4247 for_each_rcu_flavor(rsp)
9b67122a 4248 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
4249}
4250
4251/*
f41d911f 4252 * Handle CPU online/offline notification events.
64db4cff 4253 */
88428cc5
PM
4254int rcu_cpu_notify(struct notifier_block *self,
4255 unsigned long action, void *hcpu)
64db4cff
PM
4256{
4257 long cpu = (long)hcpu;
e534165b 4258 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 4259 struct rcu_node *rnp = rdp->mynode;
6ce75a23 4260 struct rcu_state *rsp;
64db4cff
PM
4261
4262 switch (action) {
4263 case CPU_UP_PREPARE:
4264 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
4265 rcu_prepare_cpu(cpu);
4266 rcu_prepare_kthreads(cpu);
35ce7f29 4267 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
4268 break;
4269 case CPU_ONLINE:
0f962a5e 4270 case CPU_DOWN_FAILED:
338b0f76 4271 sync_sched_exp_online_cleanup(cpu);
5d01bbd1 4272 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
4273 break;
4274 case CPU_DOWN_PREPARE:
34ed6246 4275 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 4276 break;
d0ec774c
PM
4277 case CPU_DYING:
4278 case CPU_DYING_FROZEN:
6ce75a23
PM
4279 for_each_rcu_flavor(rsp)
4280 rcu_cleanup_dying_cpu(rsp);
d0ec774c 4281 break;
88428cc5 4282 case CPU_DYING_IDLE:
6587a23b 4283 /* QS for any half-done expedited RCU-sched GP. */
338b0f76
PM
4284 preempt_disable();
4285 rcu_report_exp_rdp(&rcu_sched_state,
4286 this_cpu_ptr(rcu_sched_state.rda), true);
4287 preempt_enable();
6587a23b 4288
88428cc5
PM
4289 for_each_rcu_flavor(rsp) {
4290 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4291 }
4292 break;
64db4cff
PM
4293 case CPU_DEAD:
4294 case CPU_DEAD_FROZEN:
4295 case CPU_UP_CANCELED:
4296 case CPU_UP_CANCELED_FROZEN:
776d6807 4297 for_each_rcu_flavor(rsp) {
6ce75a23 4298 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
4299 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4300 }
64db4cff
PM
4301 break;
4302 default:
4303 break;
4304 }
34ed6246 4305 return NOTIFY_OK;
64db4cff
PM
4306}
4307
d1d74d14
BP
4308static int rcu_pm_notify(struct notifier_block *self,
4309 unsigned long action, void *hcpu)
4310{
4311 switch (action) {
4312 case PM_HIBERNATION_PREPARE:
4313 case PM_SUSPEND_PREPARE:
4314 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4315 rcu_expedite_gp();
d1d74d14
BP
4316 break;
4317 case PM_POST_HIBERNATION:
4318 case PM_POST_SUSPEND:
5afff48b
PM
4319 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4320 rcu_unexpedite_gp();
d1d74d14
BP
4321 break;
4322 default:
4323 break;
4324 }
4325 return NOTIFY_OK;
4326}
4327
b3dbec76 4328/*
9386c0b7 4329 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4330 */
4331static int __init rcu_spawn_gp_kthread(void)
4332{
4333 unsigned long flags;
a94844b2 4334 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4335 struct rcu_node *rnp;
4336 struct rcu_state *rsp;
a94844b2 4337 struct sched_param sp;
b3dbec76
PM
4338 struct task_struct *t;
4339
a94844b2
PM
4340 /* Force priority into range. */
4341 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4342 kthread_prio = 1;
4343 else if (kthread_prio < 0)
4344 kthread_prio = 0;
4345 else if (kthread_prio > 99)
4346 kthread_prio = 99;
4347 if (kthread_prio != kthread_prio_in)
4348 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4349 kthread_prio, kthread_prio_in);
4350
9386c0b7 4351 rcu_scheduler_fully_active = 1;
b3dbec76 4352 for_each_rcu_flavor(rsp) {
a94844b2 4353 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4354 BUG_ON(IS_ERR(t));
4355 rnp = rcu_get_root(rsp);
6cf10081 4356 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 4357 rsp->gp_kthread = t;
a94844b2
PM
4358 if (kthread_prio) {
4359 sp.sched_priority = kthread_prio;
4360 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4361 }
b3dbec76 4362 raw_spin_unlock_irqrestore(&rnp->lock, flags);
e11f1335 4363 wake_up_process(t);
b3dbec76 4364 }
35ce7f29 4365 rcu_spawn_nocb_kthreads();
9386c0b7 4366 rcu_spawn_boost_kthreads();
b3dbec76
PM
4367 return 0;
4368}
4369early_initcall(rcu_spawn_gp_kthread);
4370
bbad9379
PM
4371/*
4372 * This function is invoked towards the end of the scheduler's initialization
4373 * process. Before this is called, the idle task might contain
4374 * RCU read-side critical sections (during which time, this idle
4375 * task is booting the system). After this function is called, the
4376 * idle tasks are prohibited from containing RCU read-side critical
4377 * sections. This function also enables RCU lockdep checking.
4378 */
4379void rcu_scheduler_starting(void)
4380{
4381 WARN_ON(num_online_cpus() != 1);
4382 WARN_ON(nr_context_switches() > 0);
4383 rcu_scheduler_active = 1;
4384}
4385
64db4cff
PM
4386/*
4387 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 4388 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 4389 */
199977bf 4390static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 4391{
64db4cff
PM
4392 int i;
4393
7fa27001 4394 if (rcu_fanout_exact) {
199977bf 4395 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 4396 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 4397 levelspread[i] = RCU_FANOUT;
66292405
PM
4398 } else {
4399 int ccur;
4400 int cprv;
4401
4402 cprv = nr_cpu_ids;
4403 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
4404 ccur = levelcnt[i];
4405 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
4406 cprv = ccur;
4407 }
64db4cff
PM
4408 }
4409}
64db4cff
PM
4410
4411/*
4412 * Helper function for rcu_init() that initializes one rcu_state structure.
4413 */
a87f203e 4414static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4415{
cb007102
AG
4416 static const char * const buf[] = RCU_NODE_NAME_INIT;
4417 static const char * const fqs[] = RCU_FQS_NAME_INIT;
385b73c0 4418 static const char * const exp[] = RCU_EXP_NAME_INIT;
3dc5dbe9
PM
4419 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4420 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4421 static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
4a81e832 4422 static u8 fl_mask = 0x1;
199977bf
AG
4423
4424 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4425 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4426 int cpustride = 1;
4427 int i;
4428 int j;
4429 struct rcu_node *rnp;
4430
05b84aec 4431 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4432
3eaaaf6c
PM
4433 /* Silence gcc 4.8 false positive about array index out of range. */
4434 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4435 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4436
64db4cff
PM
4437 /* Initialize the level-tracking arrays. */
4438
f885b7f2 4439 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4440 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4441 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4442 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4443 rcu_init_levelspread(levelspread, levelcnt);
4a81e832
PM
4444 rsp->flavor_mask = fl_mask;
4445 fl_mask <<= 1;
64db4cff
PM
4446
4447 /* Initialize the elements themselves, starting from the leaves. */
4448
f885b7f2 4449 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4450 cpustride *= levelspread[i];
64db4cff 4451 rnp = rsp->level[i];
199977bf 4452 for (j = 0; j < levelcnt[i]; j++, rnp++) {
1304afb2 4453 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
4454 lockdep_set_class_and_name(&rnp->lock,
4455 &rcu_node_class[i], buf[i]);
394f2769
PM
4456 raw_spin_lock_init(&rnp->fqslock);
4457 lockdep_set_class_and_name(&rnp->fqslock,
4458 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4459 rnp->gpnum = rsp->gpnum;
4460 rnp->completed = rsp->completed;
64db4cff
PM
4461 rnp->qsmask = 0;
4462 rnp->qsmaskinit = 0;
4463 rnp->grplo = j * cpustride;
4464 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4465 if (rnp->grphi >= nr_cpu_ids)
4466 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4467 if (i == 0) {
4468 rnp->grpnum = 0;
4469 rnp->grpmask = 0;
4470 rnp->parent = NULL;
4471 } else {
199977bf 4472 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4473 rnp->grpmask = 1UL << rnp->grpnum;
4474 rnp->parent = rsp->level[i - 1] +
199977bf 4475 j / levelspread[i - 1];
64db4cff
PM
4476 }
4477 rnp->level = i;
12f5f524 4478 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4479 rcu_init_one_nocb(rnp);
385b73c0 4480 mutex_init(&rnp->exp_funnel_mutex);
83c2c735
PM
4481 lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4482 &rcu_exp_class[i], exp[i]);
64db4cff
PM
4483 }
4484 }
0c34029a 4485
b3dbec76 4486 init_waitqueue_head(&rsp->gp_wq);
f4ecea30 4487 init_waitqueue_head(&rsp->expedited_wq);
f885b7f2 4488 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4489 for_each_possible_cpu(i) {
4a90a068 4490 while (i > rnp->grphi)
0c34029a 4491 rnp++;
394f99a9 4492 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4493 rcu_boot_init_percpu_data(i, rsp);
4494 }
6ce75a23 4495 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4496}
4497
f885b7f2
PM
4498/*
4499 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4500 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4501 * the ->node array in the rcu_state structure.
4502 */
4503static void __init rcu_init_geometry(void)
4504{
026ad283 4505 ulong d;
f885b7f2 4506 int i;
05b84aec 4507 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4508
026ad283
PM
4509 /*
4510 * Initialize any unspecified boot parameters.
4511 * The default values of jiffies_till_first_fqs and
4512 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4513 * value, which is a function of HZ, then adding one for each
4514 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4515 */
4516 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4517 if (jiffies_till_first_fqs == ULONG_MAX)
4518 jiffies_till_first_fqs = d;
4519 if (jiffies_till_next_fqs == ULONG_MAX)
4520 jiffies_till_next_fqs = d;
4521
f885b7f2 4522 /* If the compile-time values are accurate, just leave. */
47d631af 4523 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4524 nr_cpu_ids == NR_CPUS)
f885b7f2 4525 return;
39479098
PM
4526 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4527 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4528
f885b7f2 4529 /*
ee968ac6
PM
4530 * The boot-time rcu_fanout_leaf parameter must be at least two
4531 * and cannot exceed the number of bits in the rcu_node masks.
4532 * Complain and fall back to the compile-time values if this
4533 * limit is exceeded.
f885b7f2 4534 */
ee968ac6 4535 if (rcu_fanout_leaf < 2 ||
75cf15a4 4536 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4537 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4538 WARN_ON(1);
4539 return;
4540 }
4541
f885b7f2
PM
4542 /*
4543 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4544 * with the given number of levels.
f885b7f2 4545 */
9618138b 4546 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4547 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4548 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4549
4550 /*
75cf15a4 4551 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4552 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4553 */
ee968ac6
PM
4554 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4555 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4556 WARN_ON(1);
4557 return;
4558 }
f885b7f2 4559
679f9858 4560 /* Calculate the number of levels in the tree. */
9618138b 4561 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4562 }
9618138b 4563 rcu_num_lvls = i + 1;
679f9858 4564
f885b7f2 4565 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4566 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4567 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4568 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4569 }
f885b7f2
PM
4570
4571 /* Calculate the total number of rcu_node structures. */
4572 rcu_num_nodes = 0;
679f9858 4573 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4574 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4575}
4576
a3dc2948
PM
4577/*
4578 * Dump out the structure of the rcu_node combining tree associated
4579 * with the rcu_state structure referenced by rsp.
4580 */
4581static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4582{
4583 int level = 0;
4584 struct rcu_node *rnp;
4585
4586 pr_info("rcu_node tree layout dump\n");
4587 pr_info(" ");
4588 rcu_for_each_node_breadth_first(rsp, rnp) {
4589 if (rnp->level != level) {
4590 pr_cont("\n");
4591 pr_info(" ");
4592 level = rnp->level;
4593 }
4594 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4595 }
4596 pr_cont("\n");
4597}
4598
9f680ab4 4599void __init rcu_init(void)
64db4cff 4600{
017c4261 4601 int cpu;
9f680ab4 4602
47627678
PM
4603 rcu_early_boot_tests();
4604
f41d911f 4605 rcu_bootup_announce();
f885b7f2 4606 rcu_init_geometry();
a87f203e
PM
4607 rcu_init_one(&rcu_bh_state);
4608 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4609 if (dump_tree)
4610 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4611 __rcu_init_preempt();
b5b39360 4612 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4613
4614 /*
4615 * We don't need protection against CPU-hotplug here because
4616 * this is called early in boot, before either interrupts
4617 * or the scheduler are operational.
4618 */
4619 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4620 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4621 for_each_online_cpu(cpu)
4622 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
4623}
4624
4102adab 4625#include "tree_plugin.h"
This page took 0.745574 seconds and 5 git commands to generate.