rcu: Consolidate expedited GP code into exp_funnel_lock()
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
af658dca 57#include <linux/trace_events.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f7f7bac9
SRRH
71/*
72 * In order to export the rcu_state name to the tracing tools, it
73 * needs to be added in the __tracepoint_string section.
74 * This requires defining a separate variable tp_<sname>_varname
75 * that points to the string being used, and this will allow
76 * the tracing userspace tools to be able to decipher the string
77 * address to the matching string.
78 */
a8a29b3b
AB
79#ifdef CONFIG_TRACING
80# define DEFINE_RCU_TPS(sname) \
f7f7bac9 81static char sname##_varname[] = #sname; \
a8a29b3b
AB
82static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
83# define RCU_STATE_NAME(sname) sname##_varname
84#else
85# define DEFINE_RCU_TPS(sname)
86# define RCU_STATE_NAME(sname) __stringify(sname)
87#endif
88
89#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
90DEFINE_RCU_TPS(sname) \
c92fb057 91static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 92struct rcu_state sname##_state = { \
6c90cc7b 93 .level = { &sname##_state.node[0] }, \
2723249a 94 .rda = &sname##_data, \
037b64ed 95 .call = cr, \
77f81fe0 96 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
97 .gpnum = 0UL - 300UL, \
98 .completed = 0UL - 300UL, \
7b2e6011 99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
101 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 103 .name = RCU_STATE_NAME(sname), \
a4889858 104 .abbr = sabbr, \
f6a12f34 105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
2723249a 106}
64db4cff 107
a41bfeb2
SRRH
108RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
109RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 110
b28a7c01 111static struct rcu_state *const rcu_state_p;
6ce75a23 112LIST_HEAD(rcu_struct_flavors);
27f4d280 113
a3dc2948
PM
114/* Dump rcu_node combining tree at boot to verify correct setup. */
115static bool dump_tree;
116module_param(dump_tree, bool, 0444);
7fa27001
PM
117/* Control rcu_node-tree auto-balancing at boot time. */
118static bool rcu_fanout_exact;
119module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
120/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
121static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 122module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 123int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
124/* Number of rcu_nodes at specified level. */
125static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
126int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
127
b0d30417
PM
128/*
129 * The rcu_scheduler_active variable transitions from zero to one just
130 * before the first task is spawned. So when this variable is zero, RCU
131 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 132 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
133 * is one, RCU must actually do all the hard work required to detect real
134 * grace periods. This variable is also used to suppress boot-time false
135 * positives from lockdep-RCU error checking.
136 */
bbad9379
PM
137int rcu_scheduler_active __read_mostly;
138EXPORT_SYMBOL_GPL(rcu_scheduler_active);
139
b0d30417
PM
140/*
141 * The rcu_scheduler_fully_active variable transitions from zero to one
142 * during the early_initcall() processing, which is after the scheduler
143 * is capable of creating new tasks. So RCU processing (for example,
144 * creating tasks for RCU priority boosting) must be delayed until after
145 * rcu_scheduler_fully_active transitions from zero to one. We also
146 * currently delay invocation of any RCU callbacks until after this point.
147 *
148 * It might later prove better for people registering RCU callbacks during
149 * early boot to take responsibility for these callbacks, but one step at
150 * a time.
151 */
152static int rcu_scheduler_fully_active __read_mostly;
153
0aa04b05
PM
154static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
155static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 156static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
157static void invoke_rcu_core(void);
158static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
159static void rcu_report_exp_rdp(struct rcu_state *rsp,
160 struct rcu_data *rdp, bool wake);
a26ac245 161
a94844b2 162/* rcuc/rcub kthread realtime priority */
26730f55 163#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 164static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
165#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
166static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
167#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
168module_param(kthread_prio, int, 0644);
169
8d7dc928 170/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
171
172#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
173static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
174module_param(gp_preinit_delay, int, 0644);
175#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
176static const int gp_preinit_delay;
177#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
178
8d7dc928
PM
179#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
180static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 181module_param(gp_init_delay, int, 0644);
8d7dc928
PM
182#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
183static const int gp_init_delay;
184#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 185
0f41c0dd
PM
186#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
187static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
188module_param(gp_cleanup_delay, int, 0644);
189#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
190static const int gp_cleanup_delay;
191#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
192
eab128e8
PM
193/*
194 * Number of grace periods between delays, normalized by the duration of
195 * the delay. The longer the the delay, the more the grace periods between
196 * each delay. The reason for this normalization is that it means that,
197 * for non-zero delays, the overall slowdown of grace periods is constant
198 * regardless of the duration of the delay. This arrangement balances
199 * the need for long delays to increase some race probabilities with the
200 * need for fast grace periods to increase other race probabilities.
201 */
202#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 203
4a298656
PM
204/*
205 * Track the rcutorture test sequence number and the update version
206 * number within a given test. The rcutorture_testseq is incremented
207 * on every rcutorture module load and unload, so has an odd value
208 * when a test is running. The rcutorture_vernum is set to zero
209 * when rcutorture starts and is incremented on each rcutorture update.
210 * These variables enable correlating rcutorture output with the
211 * RCU tracing information.
212 */
213unsigned long rcutorture_testseq;
214unsigned long rcutorture_vernum;
215
0aa04b05
PM
216/*
217 * Compute the mask of online CPUs for the specified rcu_node structure.
218 * This will not be stable unless the rcu_node structure's ->lock is
219 * held, but the bit corresponding to the current CPU will be stable
220 * in most contexts.
221 */
222unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
223{
7d0ae808 224 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
225}
226
fc2219d4 227/*
7d0ae808 228 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
229 * permit this function to be invoked without holding the root rcu_node
230 * structure's ->lock, but of course results can be subject to change.
231 */
232static int rcu_gp_in_progress(struct rcu_state *rsp)
233{
7d0ae808 234 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
235}
236
b1f77b05 237/*
d6714c22 238 * Note a quiescent state. Because we do not need to know
b1f77b05 239 * how many quiescent states passed, just if there was at least
d6714c22 240 * one since the start of the grace period, this just sets a flag.
e4cc1f22 241 * The caller must have disabled preemption.
b1f77b05 242 */
284a8c93 243void rcu_sched_qs(void)
b1f77b05 244{
fecbf6f0
PM
245 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
246 return;
247 trace_rcu_grace_period(TPS("rcu_sched"),
248 __this_cpu_read(rcu_sched_data.gpnum),
249 TPS("cpuqs"));
250 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
251 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
252 return;
46a5d164
PM
253 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
254 rcu_report_exp_rdp(&rcu_sched_state,
255 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
256}
257
284a8c93 258void rcu_bh_qs(void)
b1f77b05 259{
5b74c458 260 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
261 trace_rcu_grace_period(TPS("rcu_bh"),
262 __this_cpu_read(rcu_bh_data.gpnum),
263 TPS("cpuqs"));
5b74c458 264 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 265 }
b1f77b05 266}
64db4cff 267
4a81e832
PM
268static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
269
270static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
271 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
272 .dynticks = ATOMIC_INIT(1),
273#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
274 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
275 .dynticks_idle = ATOMIC_INIT(1),
276#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
277};
278
5cd37193
PM
279DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
280EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
281
4a81e832
PM
282/*
283 * Let the RCU core know that this CPU has gone through the scheduler,
284 * which is a quiescent state. This is called when the need for a
285 * quiescent state is urgent, so we burn an atomic operation and full
286 * memory barriers to let the RCU core know about it, regardless of what
287 * this CPU might (or might not) do in the near future.
288 *
289 * We inform the RCU core by emulating a zero-duration dyntick-idle
290 * period, which we in turn do by incrementing the ->dynticks counter
291 * by two.
46a5d164
PM
292 *
293 * The caller must have disabled interrupts.
4a81e832
PM
294 */
295static void rcu_momentary_dyntick_idle(void)
296{
4a81e832
PM
297 struct rcu_data *rdp;
298 struct rcu_dynticks *rdtp;
299 int resched_mask;
300 struct rcu_state *rsp;
301
4a81e832
PM
302 /*
303 * Yes, we can lose flag-setting operations. This is OK, because
304 * the flag will be set again after some delay.
305 */
306 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
307 raw_cpu_write(rcu_sched_qs_mask, 0);
308
309 /* Find the flavor that needs a quiescent state. */
310 for_each_rcu_flavor(rsp) {
311 rdp = raw_cpu_ptr(rsp->rda);
312 if (!(resched_mask & rsp->flavor_mask))
313 continue;
314 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
315 if (READ_ONCE(rdp->mynode->completed) !=
316 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
317 continue;
318
319 /*
320 * Pretend to be momentarily idle for the quiescent state.
321 * This allows the grace-period kthread to record the
322 * quiescent state, with no need for this CPU to do anything
323 * further.
324 */
325 rdtp = this_cpu_ptr(&rcu_dynticks);
326 smp_mb__before_atomic(); /* Earlier stuff before QS. */
327 atomic_add(2, &rdtp->dynticks); /* QS. */
328 smp_mb__after_atomic(); /* Later stuff after QS. */
329 break;
330 }
4a81e832
PM
331}
332
25502a6c
PM
333/*
334 * Note a context switch. This is a quiescent state for RCU-sched,
335 * and requires special handling for preemptible RCU.
46a5d164 336 * The caller must have disabled interrupts.
25502a6c 337 */
38200cf2 338void rcu_note_context_switch(void)
25502a6c 339{
bb73c52b 340 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 341 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 342 rcu_sched_qs();
38200cf2 343 rcu_preempt_note_context_switch();
4a81e832
PM
344 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
345 rcu_momentary_dyntick_idle();
f7f7bac9 346 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 347 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 348}
29ce8310 349EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 350
5cd37193 351/*
1925d196 352 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
353 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
354 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 355 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
356 * be none of them). Either way, do a lightweight quiescent state for
357 * all RCU flavors.
bb73c52b
BF
358 *
359 * The barrier() calls are redundant in the common case when this is
360 * called externally, but just in case this is called from within this
361 * file.
362 *
5cd37193
PM
363 */
364void rcu_all_qs(void)
365{
46a5d164
PM
366 unsigned long flags;
367
bb73c52b 368 barrier(); /* Avoid RCU read-side critical sections leaking down. */
46a5d164
PM
369 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
370 local_irq_save(flags);
5cd37193 371 rcu_momentary_dyntick_idle();
46a5d164
PM
372 local_irq_restore(flags);
373 }
a1e12248
PM
374 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
375 /*
376 * Yes, we just checked a per-CPU variable with preemption
377 * enabled, so we might be migrated to some other CPU at
378 * this point. That is OK because in that case, the
379 * migration will supply the needed quiescent state.
380 * We might end up needlessly disabling preemption and
381 * invoking rcu_sched_qs() on the destination CPU, but
382 * the probability and cost are both quite low, so this
383 * should not be a problem in practice.
384 */
385 preempt_disable();
386 rcu_sched_qs();
387 preempt_enable();
388 }
5cd37193 389 this_cpu_inc(rcu_qs_ctr);
bb73c52b 390 barrier(); /* Avoid RCU read-side critical sections leaking up. */
5cd37193
PM
391}
392EXPORT_SYMBOL_GPL(rcu_all_qs);
393
878d7439
ED
394static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
395static long qhimark = 10000; /* If this many pending, ignore blimit. */
396static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 397
878d7439
ED
398module_param(blimit, long, 0444);
399module_param(qhimark, long, 0444);
400module_param(qlowmark, long, 0444);
3d76c082 401
026ad283
PM
402static ulong jiffies_till_first_fqs = ULONG_MAX;
403static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
404
405module_param(jiffies_till_first_fqs, ulong, 0644);
406module_param(jiffies_till_next_fqs, ulong, 0644);
407
4a81e832
PM
408/*
409 * How long the grace period must be before we start recruiting
410 * quiescent-state help from rcu_note_context_switch().
411 */
412static ulong jiffies_till_sched_qs = HZ / 20;
413module_param(jiffies_till_sched_qs, ulong, 0644);
414
48a7639c 415static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 416 struct rcu_data *rdp);
217af2a2
PM
417static void force_qs_rnp(struct rcu_state *rsp,
418 int (*f)(struct rcu_data *rsp, bool *isidle,
419 unsigned long *maxj),
420 bool *isidle, unsigned long *maxj);
4cdfc175 421static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 422static int rcu_pending(void);
64db4cff
PM
423
424/*
917963d0 425 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 426 */
917963d0
PM
427unsigned long rcu_batches_started(void)
428{
429 return rcu_state_p->gpnum;
430}
431EXPORT_SYMBOL_GPL(rcu_batches_started);
432
433/*
434 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 435 */
917963d0
PM
436unsigned long rcu_batches_started_sched(void)
437{
438 return rcu_sched_state.gpnum;
439}
440EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
441
442/*
443 * Return the number of RCU BH batches started thus far for debug & stats.
444 */
445unsigned long rcu_batches_started_bh(void)
446{
447 return rcu_bh_state.gpnum;
448}
449EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
450
451/*
452 * Return the number of RCU batches completed thus far for debug & stats.
453 */
454unsigned long rcu_batches_completed(void)
455{
456 return rcu_state_p->completed;
457}
458EXPORT_SYMBOL_GPL(rcu_batches_completed);
459
460/*
461 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 462 */
9733e4f0 463unsigned long rcu_batches_completed_sched(void)
64db4cff 464{
d6714c22 465 return rcu_sched_state.completed;
64db4cff 466}
d6714c22 467EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
468
469/*
917963d0 470 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 471 */
9733e4f0 472unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
473{
474 return rcu_bh_state.completed;
475}
476EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
477
a381d757
ACB
478/*
479 * Force a quiescent state.
480 */
481void rcu_force_quiescent_state(void)
482{
e534165b 483 force_quiescent_state(rcu_state_p);
a381d757
ACB
484}
485EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
486
bf66f18e
PM
487/*
488 * Force a quiescent state for RCU BH.
489 */
490void rcu_bh_force_quiescent_state(void)
491{
4cdfc175 492 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
493}
494EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
495
e7580f33
PM
496/*
497 * Force a quiescent state for RCU-sched.
498 */
499void rcu_sched_force_quiescent_state(void)
500{
501 force_quiescent_state(&rcu_sched_state);
502}
503EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
504
afea227f
PM
505/*
506 * Show the state of the grace-period kthreads.
507 */
508void show_rcu_gp_kthreads(void)
509{
510 struct rcu_state *rsp;
511
512 for_each_rcu_flavor(rsp) {
513 pr_info("%s: wait state: %d ->state: %#lx\n",
514 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
515 /* sched_show_task(rsp->gp_kthread); */
516 }
517}
518EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
519
4a298656
PM
520/*
521 * Record the number of times rcutorture tests have been initiated and
522 * terminated. This information allows the debugfs tracing stats to be
523 * correlated to the rcutorture messages, even when the rcutorture module
524 * is being repeatedly loaded and unloaded. In other words, we cannot
525 * store this state in rcutorture itself.
526 */
527void rcutorture_record_test_transition(void)
528{
529 rcutorture_testseq++;
530 rcutorture_vernum = 0;
531}
532EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
533
ad0dc7f9
PM
534/*
535 * Send along grace-period-related data for rcutorture diagnostics.
536 */
537void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
538 unsigned long *gpnum, unsigned long *completed)
539{
540 struct rcu_state *rsp = NULL;
541
542 switch (test_type) {
543 case RCU_FLAVOR:
e534165b 544 rsp = rcu_state_p;
ad0dc7f9
PM
545 break;
546 case RCU_BH_FLAVOR:
547 rsp = &rcu_bh_state;
548 break;
549 case RCU_SCHED_FLAVOR:
550 rsp = &rcu_sched_state;
551 break;
552 default:
553 break;
554 }
555 if (rsp != NULL) {
7d0ae808
PM
556 *flags = READ_ONCE(rsp->gp_flags);
557 *gpnum = READ_ONCE(rsp->gpnum);
558 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
559 return;
560 }
561 *flags = 0;
562 *gpnum = 0;
563 *completed = 0;
564}
565EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
566
4a298656
PM
567/*
568 * Record the number of writer passes through the current rcutorture test.
569 * This is also used to correlate debugfs tracing stats with the rcutorture
570 * messages.
571 */
572void rcutorture_record_progress(unsigned long vernum)
573{
574 rcutorture_vernum++;
575}
576EXPORT_SYMBOL_GPL(rcutorture_record_progress);
577
64db4cff
PM
578/*
579 * Does the CPU have callbacks ready to be invoked?
580 */
581static int
582cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
583{
3fbfbf7a
PM
584 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
585 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
586}
587
365187fb
PM
588/*
589 * Return the root node of the specified rcu_state structure.
590 */
591static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
592{
593 return &rsp->node[0];
594}
595
596/*
597 * Is there any need for future grace periods?
598 * Interrupts must be disabled. If the caller does not hold the root
599 * rnp_node structure's ->lock, the results are advisory only.
600 */
601static int rcu_future_needs_gp(struct rcu_state *rsp)
602{
603 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 604 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
605 int *fp = &rnp->need_future_gp[idx];
606
7d0ae808 607 return READ_ONCE(*fp);
365187fb
PM
608}
609
64db4cff 610/*
dc35c893
PM
611 * Does the current CPU require a not-yet-started grace period?
612 * The caller must have disabled interrupts to prevent races with
613 * normal callback registry.
64db4cff 614 */
d117c8aa 615static bool
64db4cff
PM
616cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
617{
dc35c893 618 int i;
3fbfbf7a 619
dc35c893 620 if (rcu_gp_in_progress(rsp))
d117c8aa 621 return false; /* No, a grace period is already in progress. */
365187fb 622 if (rcu_future_needs_gp(rsp))
d117c8aa 623 return true; /* Yes, a no-CBs CPU needs one. */
dc35c893 624 if (!rdp->nxttail[RCU_NEXT_TAIL])
d117c8aa 625 return false; /* No, this is a no-CBs (or offline) CPU. */
dc35c893 626 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
d117c8aa 627 return true; /* Yes, CPU has newly registered callbacks. */
dc35c893
PM
628 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
629 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 630 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893 631 rdp->nxtcompleted[i]))
d117c8aa
PM
632 return true; /* Yes, CBs for future grace period. */
633 return false; /* No grace period needed. */
64db4cff
PM
634}
635
9b2e4f18 636/*
adf5091e 637 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
638 *
639 * If the new value of the ->dynticks_nesting counter now is zero,
640 * we really have entered idle, and must do the appropriate accounting.
641 * The caller must have disabled interrupts.
642 */
28ced795 643static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 644{
96d3fd0d
PM
645 struct rcu_state *rsp;
646 struct rcu_data *rdp;
28ced795 647 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 648
f7f7bac9 649 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
650 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
651 !user && !is_idle_task(current)) {
289828e6
PM
652 struct task_struct *idle __maybe_unused =
653 idle_task(smp_processor_id());
0989cb46 654
f7f7bac9 655 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
274529ba 656 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
657 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
658 current->pid, current->comm,
659 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 660 }
96d3fd0d
PM
661 for_each_rcu_flavor(rsp) {
662 rdp = this_cpu_ptr(rsp->rda);
663 do_nocb_deferred_wakeup(rdp);
664 }
198bbf81 665 rcu_prepare_for_idle();
9b2e4f18 666 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 667 smp_mb__before_atomic(); /* See above. */
9b2e4f18 668 atomic_inc(&rdtp->dynticks);
4e857c58 669 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
1ce46ee5
PM
670 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
671 atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 672 rcu_dynticks_task_enter();
c44e2cdd
PM
673
674 /*
adf5091e 675 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
676 * in an RCU read-side critical section.
677 */
f78f5b90
PM
678 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
679 "Illegal idle entry in RCU read-side critical section.");
680 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
681 "Illegal idle entry in RCU-bh read-side critical section.");
682 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
683 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 684}
64db4cff 685
adf5091e
FW
686/*
687 * Enter an RCU extended quiescent state, which can be either the
688 * idle loop or adaptive-tickless usermode execution.
64db4cff 689 */
adf5091e 690static void rcu_eqs_enter(bool user)
64db4cff 691{
4145fa7f 692 long long oldval;
64db4cff
PM
693 struct rcu_dynticks *rdtp;
694
c9d4b0af 695 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 696 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
697 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
698 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 699 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 700 rdtp->dynticks_nesting = 0;
28ced795 701 rcu_eqs_enter_common(oldval, user);
3a592405 702 } else {
29e37d81 703 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 704 }
64db4cff 705}
adf5091e
FW
706
707/**
708 * rcu_idle_enter - inform RCU that current CPU is entering idle
709 *
710 * Enter idle mode, in other words, -leave- the mode in which RCU
711 * read-side critical sections can occur. (Though RCU read-side
712 * critical sections can occur in irq handlers in idle, a possibility
713 * handled by irq_enter() and irq_exit().)
714 *
715 * We crowbar the ->dynticks_nesting field to zero to allow for
716 * the possibility of usermode upcalls having messed up our count
717 * of interrupt nesting level during the prior busy period.
718 */
719void rcu_idle_enter(void)
720{
c5d900bf
FW
721 unsigned long flags;
722
723 local_irq_save(flags);
cb349ca9 724 rcu_eqs_enter(false);
28ced795 725 rcu_sysidle_enter(0);
c5d900bf 726 local_irq_restore(flags);
adf5091e 727}
8a2ecf47 728EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 729
d1ec4c34 730#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
731/**
732 * rcu_user_enter - inform RCU that we are resuming userspace.
733 *
734 * Enter RCU idle mode right before resuming userspace. No use of RCU
735 * is permitted between this call and rcu_user_exit(). This way the
736 * CPU doesn't need to maintain the tick for RCU maintenance purposes
737 * when the CPU runs in userspace.
738 */
739void rcu_user_enter(void)
740{
91d1aa43 741 rcu_eqs_enter(1);
adf5091e 742}
d1ec4c34 743#endif /* CONFIG_NO_HZ_FULL */
19dd1591 744
9b2e4f18
PM
745/**
746 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
747 *
748 * Exit from an interrupt handler, which might possibly result in entering
749 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 750 * sections can occur. The caller must have disabled interrupts.
64db4cff 751 *
9b2e4f18
PM
752 * This code assumes that the idle loop never does anything that might
753 * result in unbalanced calls to irq_enter() and irq_exit(). If your
754 * architecture violates this assumption, RCU will give you what you
755 * deserve, good and hard. But very infrequently and irreproducibly.
756 *
757 * Use things like work queues to work around this limitation.
758 *
759 * You have been warned.
64db4cff 760 */
9b2e4f18 761void rcu_irq_exit(void)
64db4cff 762{
4145fa7f 763 long long oldval;
64db4cff
PM
764 struct rcu_dynticks *rdtp;
765
7c9906ca 766 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 767 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 768 oldval = rdtp->dynticks_nesting;
9b2e4f18 769 rdtp->dynticks_nesting--;
1ce46ee5
PM
770 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
771 rdtp->dynticks_nesting < 0);
b6fc6020 772 if (rdtp->dynticks_nesting)
f7f7bac9 773 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 774 else
28ced795
CL
775 rcu_eqs_enter_common(oldval, true);
776 rcu_sysidle_enter(1);
7c9906ca
PM
777}
778
779/*
780 * Wrapper for rcu_irq_exit() where interrupts are enabled.
781 */
782void rcu_irq_exit_irqson(void)
783{
784 unsigned long flags;
785
786 local_irq_save(flags);
787 rcu_irq_exit();
9b2e4f18
PM
788 local_irq_restore(flags);
789}
790
791/*
adf5091e 792 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
793 *
794 * If the new value of the ->dynticks_nesting counter was previously zero,
795 * we really have exited idle, and must do the appropriate accounting.
796 * The caller must have disabled interrupts.
797 */
28ced795 798static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 799{
28ced795
CL
800 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
801
176f8f7a 802 rcu_dynticks_task_exit();
4e857c58 803 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
804 atomic_inc(&rdtp->dynticks);
805 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 806 smp_mb__after_atomic(); /* See above. */
1ce46ee5
PM
807 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
808 !(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 809 rcu_cleanup_after_idle();
f7f7bac9 810 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
811 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
812 !user && !is_idle_task(current)) {
289828e6
PM
813 struct task_struct *idle __maybe_unused =
814 idle_task(smp_processor_id());
0989cb46 815
f7f7bac9 816 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 817 oldval, rdtp->dynticks_nesting);
274529ba 818 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
819 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
820 current->pid, current->comm,
821 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
822 }
823}
824
adf5091e
FW
825/*
826 * Exit an RCU extended quiescent state, which can be either the
827 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 828 */
adf5091e 829static void rcu_eqs_exit(bool user)
9b2e4f18 830{
9b2e4f18
PM
831 struct rcu_dynticks *rdtp;
832 long long oldval;
833
c9d4b0af 834 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 835 oldval = rdtp->dynticks_nesting;
1ce46ee5 836 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 837 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 838 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 839 } else {
29e37d81 840 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 841 rcu_eqs_exit_common(oldval, user);
3a592405 842 }
9b2e4f18 843}
adf5091e
FW
844
845/**
846 * rcu_idle_exit - inform RCU that current CPU is leaving idle
847 *
848 * Exit idle mode, in other words, -enter- the mode in which RCU
849 * read-side critical sections can occur.
850 *
851 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
852 * allow for the possibility of usermode upcalls messing up our count
853 * of interrupt nesting level during the busy period that is just
854 * now starting.
855 */
856void rcu_idle_exit(void)
857{
c5d900bf
FW
858 unsigned long flags;
859
860 local_irq_save(flags);
cb349ca9 861 rcu_eqs_exit(false);
28ced795 862 rcu_sysidle_exit(0);
c5d900bf 863 local_irq_restore(flags);
adf5091e 864}
8a2ecf47 865EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 866
d1ec4c34 867#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
868/**
869 * rcu_user_exit - inform RCU that we are exiting userspace.
870 *
871 * Exit RCU idle mode while entering the kernel because it can
872 * run a RCU read side critical section anytime.
873 */
874void rcu_user_exit(void)
875{
91d1aa43 876 rcu_eqs_exit(1);
adf5091e 877}
d1ec4c34 878#endif /* CONFIG_NO_HZ_FULL */
19dd1591 879
9b2e4f18
PM
880/**
881 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
882 *
883 * Enter an interrupt handler, which might possibly result in exiting
884 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 885 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
886 *
887 * Note that the Linux kernel is fully capable of entering an interrupt
888 * handler that it never exits, for example when doing upcalls to
889 * user mode! This code assumes that the idle loop never does upcalls to
890 * user mode. If your architecture does do upcalls from the idle loop (or
891 * does anything else that results in unbalanced calls to the irq_enter()
892 * and irq_exit() functions), RCU will give you what you deserve, good
893 * and hard. But very infrequently and irreproducibly.
894 *
895 * Use things like work queues to work around this limitation.
896 *
897 * You have been warned.
898 */
899void rcu_irq_enter(void)
900{
9b2e4f18
PM
901 struct rcu_dynticks *rdtp;
902 long long oldval;
903
7c9906ca 904 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 905 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
906 oldval = rdtp->dynticks_nesting;
907 rdtp->dynticks_nesting++;
1ce46ee5
PM
908 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
909 rdtp->dynticks_nesting == 0);
b6fc6020 910 if (oldval)
f7f7bac9 911 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 912 else
28ced795
CL
913 rcu_eqs_exit_common(oldval, true);
914 rcu_sysidle_exit(1);
7c9906ca
PM
915}
916
917/*
918 * Wrapper for rcu_irq_enter() where interrupts are enabled.
919 */
920void rcu_irq_enter_irqson(void)
921{
922 unsigned long flags;
923
924 local_irq_save(flags);
925 rcu_irq_enter();
64db4cff 926 local_irq_restore(flags);
64db4cff
PM
927}
928
929/**
930 * rcu_nmi_enter - inform RCU of entry to NMI context
931 *
734d1680
PM
932 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
933 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
934 * that the CPU is active. This implementation permits nested NMIs, as
935 * long as the nesting level does not overflow an int. (You will probably
936 * run out of stack space first.)
64db4cff
PM
937 */
938void rcu_nmi_enter(void)
939{
c9d4b0af 940 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 941 int incby = 2;
64db4cff 942
734d1680
PM
943 /* Complain about underflow. */
944 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
945
946 /*
947 * If idle from RCU viewpoint, atomically increment ->dynticks
948 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
949 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
950 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
951 * to be in the outermost NMI handler that interrupted an RCU-idle
952 * period (observation due to Andy Lutomirski).
953 */
954 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
955 smp_mb__before_atomic(); /* Force delay from prior write. */
956 atomic_inc(&rdtp->dynticks);
957 /* atomic_inc() before later RCU read-side crit sects */
958 smp_mb__after_atomic(); /* See above. */
959 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
960 incby = 1;
961 }
962 rdtp->dynticks_nmi_nesting += incby;
963 barrier();
64db4cff
PM
964}
965
966/**
967 * rcu_nmi_exit - inform RCU of exit from NMI context
968 *
734d1680
PM
969 * If we are returning from the outermost NMI handler that interrupted an
970 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
971 * to let the RCU grace-period handling know that the CPU is back to
972 * being RCU-idle.
64db4cff
PM
973 */
974void rcu_nmi_exit(void)
975{
c9d4b0af 976 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 977
734d1680
PM
978 /*
979 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
980 * (We are exiting an NMI handler, so RCU better be paying attention
981 * to us!)
982 */
983 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
984 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
985
986 /*
987 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
988 * leave it in non-RCU-idle state.
989 */
990 if (rdtp->dynticks_nmi_nesting != 1) {
991 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 992 return;
734d1680
PM
993 }
994
995 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
996 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 997 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 998 smp_mb__before_atomic(); /* See above. */
23b5c8fa 999 atomic_inc(&rdtp->dynticks);
4e857c58 1000 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 1001 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
1002}
1003
1004/**
5c173eb8
PM
1005 * __rcu_is_watching - are RCU read-side critical sections safe?
1006 *
1007 * Return true if RCU is watching the running CPU, which means that
1008 * this CPU can safely enter RCU read-side critical sections. Unlike
1009 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1010 * least disabled preemption.
1011 */
9418fb20 1012bool notrace __rcu_is_watching(void)
5c173eb8
PM
1013{
1014 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1015}
1016
1017/**
1018 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1019 *
9b2e4f18 1020 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1021 * or NMI handler, return true.
64db4cff 1022 */
9418fb20 1023bool notrace rcu_is_watching(void)
64db4cff 1024{
f534ed1f 1025 bool ret;
34240697 1026
46f00d18 1027 preempt_disable_notrace();
5c173eb8 1028 ret = __rcu_is_watching();
46f00d18 1029 preempt_enable_notrace();
34240697 1030 return ret;
64db4cff 1031}
5c173eb8 1032EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1033
62fde6ed 1034#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1035
1036/*
1037 * Is the current CPU online? Disable preemption to avoid false positives
1038 * that could otherwise happen due to the current CPU number being sampled,
1039 * this task being preempted, its old CPU being taken offline, resuming
1040 * on some other CPU, then determining that its old CPU is now offline.
1041 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1042 * the check for rcu_scheduler_fully_active. Note also that it is OK
1043 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1044 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1045 * offline to continue to use RCU for one jiffy after marking itself
1046 * offline in the cpu_online_mask. This leniency is necessary given the
1047 * non-atomic nature of the online and offline processing, for example,
1048 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1049 * notifiers.
1050 *
1051 * This is also why RCU internally marks CPUs online during the
1052 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
1053 *
1054 * Disable checking if in an NMI handler because we cannot safely report
1055 * errors from NMI handlers anyway.
1056 */
1057bool rcu_lockdep_current_cpu_online(void)
1058{
2036d94a
PM
1059 struct rcu_data *rdp;
1060 struct rcu_node *rnp;
c0d6d01b
PM
1061 bool ret;
1062
1063 if (in_nmi())
f6f7ee9a 1064 return true;
c0d6d01b 1065 preempt_disable();
c9d4b0af 1066 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1067 rnp = rdp->mynode;
0aa04b05 1068 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1069 !rcu_scheduler_fully_active;
1070 preempt_enable();
1071 return ret;
1072}
1073EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1074
62fde6ed 1075#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1076
64db4cff 1077/**
9b2e4f18 1078 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1079 *
9b2e4f18
PM
1080 * If the current CPU is idle or running at a first-level (not nested)
1081 * interrupt from idle, return true. The caller must have at least
1082 * disabled preemption.
64db4cff 1083 */
62e3cb14 1084static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1085{
c9d4b0af 1086 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1087}
1088
64db4cff
PM
1089/*
1090 * Snapshot the specified CPU's dynticks counter so that we can later
1091 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1092 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1093 */
217af2a2
PM
1094static int dyntick_save_progress_counter(struct rcu_data *rdp,
1095 bool *isidle, unsigned long *maxj)
64db4cff 1096{
23b5c8fa 1097 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1098 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1099 if ((rdp->dynticks_snap & 0x1) == 0) {
1100 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1101 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1102 rdp->mynode->gpnum))
7d0ae808 1103 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1104 return 1;
7941dbde 1105 }
23a9bacd 1106 return 0;
64db4cff
PM
1107}
1108
1109/*
1110 * Return true if the specified CPU has passed through a quiescent
1111 * state by virtue of being in or having passed through an dynticks
1112 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1113 * for this same CPU, or by virtue of having been offline.
64db4cff 1114 */
217af2a2
PM
1115static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1116 bool *isidle, unsigned long *maxj)
64db4cff 1117{
7eb4f455 1118 unsigned int curr;
4a81e832 1119 int *rcrmp;
7eb4f455 1120 unsigned int snap;
64db4cff 1121
7eb4f455
PM
1122 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1123 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1124
1125 /*
1126 * If the CPU passed through or entered a dynticks idle phase with
1127 * no active irq/NMI handlers, then we can safely pretend that the CPU
1128 * already acknowledged the request to pass through a quiescent
1129 * state. Either way, that CPU cannot possibly be in an RCU
1130 * read-side critical section that started before the beginning
1131 * of the current RCU grace period.
1132 */
7eb4f455 1133 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1134 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1135 rdp->dynticks_fqs++;
1136 return 1;
1137 }
1138
a82dcc76
PM
1139 /*
1140 * Check for the CPU being offline, but only if the grace period
1141 * is old enough. We don't need to worry about the CPU changing
1142 * state: If we see it offline even once, it has been through a
1143 * quiescent state.
1144 *
1145 * The reason for insisting that the grace period be at least
1146 * one jiffy old is that CPUs that are not quite online and that
1147 * have just gone offline can still execute RCU read-side critical
1148 * sections.
1149 */
1150 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1151 return 0; /* Grace period is not old enough. */
1152 barrier();
1153 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1154 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1155 rdp->offline_fqs++;
1156 return 1;
1157 }
65d798f0
PM
1158
1159 /*
4a81e832
PM
1160 * A CPU running for an extended time within the kernel can
1161 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1162 * even context-switching back and forth between a pair of
1163 * in-kernel CPU-bound tasks cannot advance grace periods.
1164 * So if the grace period is old enough, make the CPU pay attention.
1165 * Note that the unsynchronized assignments to the per-CPU
1166 * rcu_sched_qs_mask variable are safe. Yes, setting of
1167 * bits can be lost, but they will be set again on the next
1168 * force-quiescent-state pass. So lost bit sets do not result
1169 * in incorrect behavior, merely in a grace period lasting
1170 * a few jiffies longer than it might otherwise. Because
1171 * there are at most four threads involved, and because the
1172 * updates are only once every few jiffies, the probability of
1173 * lossage (and thus of slight grace-period extension) is
1174 * quite low.
1175 *
1176 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1177 * is set too high, we override with half of the RCU CPU stall
1178 * warning delay.
6193c76a 1179 */
4a81e832
PM
1180 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1181 if (ULONG_CMP_GE(jiffies,
1182 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1183 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1184 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1185 WRITE_ONCE(rdp->cond_resched_completed,
1186 READ_ONCE(rdp->mynode->completed));
4a81e832 1187 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1188 WRITE_ONCE(*rcrmp,
1189 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832 1190 }
4914950a 1191 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1192 }
1193
4914950a
PM
1194 /* And if it has been a really long time, kick the CPU as well. */
1195 if (ULONG_CMP_GE(jiffies,
1196 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1197 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1198 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1199
a82dcc76 1200 return 0;
64db4cff
PM
1201}
1202
64db4cff
PM
1203static void record_gp_stall_check_time(struct rcu_state *rsp)
1204{
cb1e78cf 1205 unsigned long j = jiffies;
6193c76a 1206 unsigned long j1;
26cdfedf
PM
1207
1208 rsp->gp_start = j;
1209 smp_wmb(); /* Record start time before stall time. */
6193c76a 1210 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1211 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1212 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1213 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1214}
1215
6b50e119
PM
1216/*
1217 * Convert a ->gp_state value to a character string.
1218 */
1219static const char *gp_state_getname(short gs)
1220{
1221 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1222 return "???";
1223 return gp_state_names[gs];
1224}
1225
fb81a44b
PM
1226/*
1227 * Complain about starvation of grace-period kthread.
1228 */
1229static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1230{
1231 unsigned long gpa;
1232 unsigned long j;
1233
1234 j = jiffies;
7d0ae808 1235 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1236 if (j - gpa > 2 * HZ) {
6b50e119 1237 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1238 rsp->name, j - gpa,
319362c9 1239 rsp->gpnum, rsp->completed,
6b50e119
PM
1240 rsp->gp_flags,
1241 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1242 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
b1adb3e2
PM
1243 if (rsp->gp_kthread)
1244 sched_show_task(rsp->gp_kthread);
1245 }
64db4cff
PM
1246}
1247
b637a328 1248/*
bc1dce51 1249 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1250 */
1251static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1252{
1253 int cpu;
1254 unsigned long flags;
1255 struct rcu_node *rnp;
1256
1257 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1258 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b637a328
PM
1259 if (rnp->qsmask != 0) {
1260 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1261 if (rnp->qsmask & (1UL << cpu))
1262 dump_cpu_task(rnp->grplo + cpu);
1263 }
67c583a7 1264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1265 }
1266}
1267
6ccd2ecd 1268static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1269{
1270 int cpu;
1271 long delta;
1272 unsigned long flags;
6ccd2ecd
PM
1273 unsigned long gpa;
1274 unsigned long j;
285fe294 1275 int ndetected = 0;
64db4cff 1276 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1277 long totqlen = 0;
64db4cff
PM
1278
1279 /* Only let one CPU complain about others per time interval. */
1280
6cf10081 1281 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1282 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1283 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1284 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1285 return;
1286 }
7d0ae808
PM
1287 WRITE_ONCE(rsp->jiffies_stall,
1288 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1289 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1290
8cdd32a9
PM
1291 /*
1292 * OK, time to rat on our buddy...
1293 * See Documentation/RCU/stallwarn.txt for info on how to debug
1294 * RCU CPU stall warnings.
1295 */
d7f3e207 1296 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1297 rsp->name);
a858af28 1298 print_cpu_stall_info_begin();
a0b6c9a7 1299 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1300 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1301 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1302 if (rnp->qsmask != 0) {
1303 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1304 if (rnp->qsmask & (1UL << cpu)) {
1305 print_cpu_stall_info(rsp,
1306 rnp->grplo + cpu);
1307 ndetected++;
1308 }
1309 }
67c583a7 1310 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1311 }
a858af28 1312
a858af28 1313 print_cpu_stall_info_end();
53bb857c
PM
1314 for_each_possible_cpu(cpu)
1315 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1316 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1317 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1318 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1319 if (ndetected) {
b637a328 1320 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1321 } else {
7d0ae808
PM
1322 if (READ_ONCE(rsp->gpnum) != gpnum ||
1323 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1324 pr_err("INFO: Stall ended before state dump start\n");
1325 } else {
1326 j = jiffies;
7d0ae808 1327 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1328 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1329 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1330 jiffies_till_next_fqs,
1331 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1332 /* In this case, the current CPU might be at fault. */
1333 sched_show_task(current);
1334 }
1335 }
c1dc0b9c 1336
4cdfc175 1337 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1338 rcu_print_detail_task_stall(rsp);
1339
fb81a44b
PM
1340 rcu_check_gp_kthread_starvation(rsp);
1341
4cdfc175 1342 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1343}
1344
1345static void print_cpu_stall(struct rcu_state *rsp)
1346{
53bb857c 1347 int cpu;
64db4cff
PM
1348 unsigned long flags;
1349 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1350 long totqlen = 0;
64db4cff 1351
8cdd32a9
PM
1352 /*
1353 * OK, time to rat on ourselves...
1354 * See Documentation/RCU/stallwarn.txt for info on how to debug
1355 * RCU CPU stall warnings.
1356 */
d7f3e207 1357 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1358 print_cpu_stall_info_begin();
1359 print_cpu_stall_info(rsp, smp_processor_id());
1360 print_cpu_stall_info_end();
53bb857c
PM
1361 for_each_possible_cpu(cpu)
1362 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1363 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1364 jiffies - rsp->gp_start,
1365 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1366
1367 rcu_check_gp_kthread_starvation(rsp);
1368
bc1dce51 1369 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1370
6cf10081 1371 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1372 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1373 WRITE_ONCE(rsp->jiffies_stall,
1374 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1375 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1376
b021fe3e
PZ
1377 /*
1378 * Attempt to revive the RCU machinery by forcing a context switch.
1379 *
1380 * A context switch would normally allow the RCU state machine to make
1381 * progress and it could be we're stuck in kernel space without context
1382 * switches for an entirely unreasonable amount of time.
1383 */
1384 resched_cpu(smp_processor_id());
64db4cff
PM
1385}
1386
1387static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1388{
26cdfedf
PM
1389 unsigned long completed;
1390 unsigned long gpnum;
1391 unsigned long gps;
bad6e139
PM
1392 unsigned long j;
1393 unsigned long js;
64db4cff
PM
1394 struct rcu_node *rnp;
1395
26cdfedf 1396 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1397 return;
cb1e78cf 1398 j = jiffies;
26cdfedf
PM
1399
1400 /*
1401 * Lots of memory barriers to reject false positives.
1402 *
1403 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1404 * then rsp->gp_start, and finally rsp->completed. These values
1405 * are updated in the opposite order with memory barriers (or
1406 * equivalent) during grace-period initialization and cleanup.
1407 * Now, a false positive can occur if we get an new value of
1408 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1409 * the memory barriers, the only way that this can happen is if one
1410 * grace period ends and another starts between these two fetches.
1411 * Detect this by comparing rsp->completed with the previous fetch
1412 * from rsp->gpnum.
1413 *
1414 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1415 * and rsp->gp_start suffice to forestall false positives.
1416 */
7d0ae808 1417 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1418 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1419 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1420 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1421 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1422 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1423 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1424 if (ULONG_CMP_GE(completed, gpnum) ||
1425 ULONG_CMP_LT(j, js) ||
1426 ULONG_CMP_GE(gps, js))
1427 return; /* No stall or GP completed since entering function. */
64db4cff 1428 rnp = rdp->mynode;
c96ea7cf 1429 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1430 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1431
1432 /* We haven't checked in, so go dump stack. */
1433 print_cpu_stall(rsp);
1434
bad6e139
PM
1435 } else if (rcu_gp_in_progress(rsp) &&
1436 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1437
bad6e139 1438 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1439 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1440 }
1441}
1442
53d84e00
PM
1443/**
1444 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1445 *
1446 * Set the stall-warning timeout way off into the future, thus preventing
1447 * any RCU CPU stall-warning messages from appearing in the current set of
1448 * RCU grace periods.
1449 *
1450 * The caller must disable hard irqs.
1451 */
1452void rcu_cpu_stall_reset(void)
1453{
6ce75a23
PM
1454 struct rcu_state *rsp;
1455
1456 for_each_rcu_flavor(rsp)
7d0ae808 1457 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1458}
1459
3f5d3ea6 1460/*
d3f3f3f2
PM
1461 * Initialize the specified rcu_data structure's default callback list
1462 * to empty. The default callback list is the one that is not used by
1463 * no-callbacks CPUs.
3f5d3ea6 1464 */
d3f3f3f2 1465static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1466{
1467 int i;
1468
1469 rdp->nxtlist = NULL;
1470 for (i = 0; i < RCU_NEXT_SIZE; i++)
1471 rdp->nxttail[i] = &rdp->nxtlist;
1472}
1473
d3f3f3f2
PM
1474/*
1475 * Initialize the specified rcu_data structure's callback list to empty.
1476 */
1477static void init_callback_list(struct rcu_data *rdp)
1478{
1479 if (init_nocb_callback_list(rdp))
1480 return;
1481 init_default_callback_list(rdp);
1482}
1483
dc35c893
PM
1484/*
1485 * Determine the value that ->completed will have at the end of the
1486 * next subsequent grace period. This is used to tag callbacks so that
1487 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1488 * been dyntick-idle for an extended period with callbacks under the
1489 * influence of RCU_FAST_NO_HZ.
1490 *
1491 * The caller must hold rnp->lock with interrupts disabled.
1492 */
1493static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1494 struct rcu_node *rnp)
1495{
1496 /*
1497 * If RCU is idle, we just wait for the next grace period.
1498 * But we can only be sure that RCU is idle if we are looking
1499 * at the root rcu_node structure -- otherwise, a new grace
1500 * period might have started, but just not yet gotten around
1501 * to initializing the current non-root rcu_node structure.
1502 */
1503 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1504 return rnp->completed + 1;
1505
1506 /*
1507 * Otherwise, wait for a possible partial grace period and
1508 * then the subsequent full grace period.
1509 */
1510 return rnp->completed + 2;
1511}
1512
0446be48
PM
1513/*
1514 * Trace-event helper function for rcu_start_future_gp() and
1515 * rcu_nocb_wait_gp().
1516 */
1517static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1518 unsigned long c, const char *s)
0446be48
PM
1519{
1520 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1521 rnp->completed, c, rnp->level,
1522 rnp->grplo, rnp->grphi, s);
1523}
1524
1525/*
1526 * Start some future grace period, as needed to handle newly arrived
1527 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1528 * rcu_node structure's ->need_future_gp field. Returns true if there
1529 * is reason to awaken the grace-period kthread.
0446be48
PM
1530 *
1531 * The caller must hold the specified rcu_node structure's ->lock.
1532 */
48a7639c
PM
1533static bool __maybe_unused
1534rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1535 unsigned long *c_out)
0446be48
PM
1536{
1537 unsigned long c;
1538 int i;
48a7639c 1539 bool ret = false;
0446be48
PM
1540 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1541
1542 /*
1543 * Pick up grace-period number for new callbacks. If this
1544 * grace period is already marked as needed, return to the caller.
1545 */
1546 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1547 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1548 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1549 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1550 goto out;
0446be48
PM
1551 }
1552
1553 /*
1554 * If either this rcu_node structure or the root rcu_node structure
1555 * believe that a grace period is in progress, then we must wait
1556 * for the one following, which is in "c". Because our request
1557 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1558 * need to explicitly start one. We only do the lockless check
1559 * of rnp_root's fields if the current rcu_node structure thinks
1560 * there is no grace period in flight, and because we hold rnp->lock,
1561 * the only possible change is when rnp_root's two fields are
1562 * equal, in which case rnp_root->gpnum might be concurrently
1563 * incremented. But that is OK, as it will just result in our
1564 * doing some extra useless work.
0446be48
PM
1565 */
1566 if (rnp->gpnum != rnp->completed ||
7d0ae808 1567 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1568 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1569 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1570 goto out;
0446be48
PM
1571 }
1572
1573 /*
1574 * There might be no grace period in progress. If we don't already
1575 * hold it, acquire the root rcu_node structure's lock in order to
1576 * start one (if needed).
1577 */
2a67e741
PZ
1578 if (rnp != rnp_root)
1579 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1580
1581 /*
1582 * Get a new grace-period number. If there really is no grace
1583 * period in progress, it will be smaller than the one we obtained
1584 * earlier. Adjust callbacks as needed. Note that even no-CBs
1585 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1586 */
1587 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1588 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1589 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1590 rdp->nxtcompleted[i] = c;
1591
1592 /*
1593 * If the needed for the required grace period is already
1594 * recorded, trace and leave.
1595 */
1596 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1597 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1598 goto unlock_out;
1599 }
1600
1601 /* Record the need for the future grace period. */
1602 rnp_root->need_future_gp[c & 0x1]++;
1603
1604 /* If a grace period is not already in progress, start one. */
1605 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1606 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1607 } else {
f7f7bac9 1608 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1609 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1610 }
1611unlock_out:
1612 if (rnp != rnp_root)
67c583a7 1613 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1614out:
1615 if (c_out != NULL)
1616 *c_out = c;
1617 return ret;
0446be48
PM
1618}
1619
1620/*
1621 * Clean up any old requests for the just-ended grace period. Also return
1622 * whether any additional grace periods have been requested. Also invoke
1623 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1624 * waiting for this grace period to complete.
1625 */
1626static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1627{
1628 int c = rnp->completed;
1629 int needmore;
1630 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1631
0446be48
PM
1632 rnp->need_future_gp[c & 0x1] = 0;
1633 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1634 trace_rcu_future_gp(rnp, rdp, c,
1635 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1636 return needmore;
1637}
1638
48a7639c
PM
1639/*
1640 * Awaken the grace-period kthread for the specified flavor of RCU.
1641 * Don't do a self-awaken, and don't bother awakening when there is
1642 * nothing for the grace-period kthread to do (as in several CPUs
1643 * raced to awaken, and we lost), and finally don't try to awaken
1644 * a kthread that has not yet been created.
1645 */
1646static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1647{
1648 if (current == rsp->gp_kthread ||
7d0ae808 1649 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1650 !rsp->gp_kthread)
1651 return;
abedf8e2 1652 swake_up(&rsp->gp_wq);
48a7639c
PM
1653}
1654
dc35c893
PM
1655/*
1656 * If there is room, assign a ->completed number to any callbacks on
1657 * this CPU that have not already been assigned. Also accelerate any
1658 * callbacks that were previously assigned a ->completed number that has
1659 * since proven to be too conservative, which can happen if callbacks get
1660 * assigned a ->completed number while RCU is idle, but with reference to
1661 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1662 * not hurt to call it repeatedly. Returns an flag saying that we should
1663 * awaken the RCU grace-period kthread.
dc35c893
PM
1664 *
1665 * The caller must hold rnp->lock with interrupts disabled.
1666 */
48a7639c 1667static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1668 struct rcu_data *rdp)
1669{
1670 unsigned long c;
1671 int i;
48a7639c 1672 bool ret;
dc35c893
PM
1673
1674 /* If the CPU has no callbacks, nothing to do. */
1675 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1676 return false;
dc35c893
PM
1677
1678 /*
1679 * Starting from the sublist containing the callbacks most
1680 * recently assigned a ->completed number and working down, find the
1681 * first sublist that is not assignable to an upcoming grace period.
1682 * Such a sublist has something in it (first two tests) and has
1683 * a ->completed number assigned that will complete sooner than
1684 * the ->completed number for newly arrived callbacks (last test).
1685 *
1686 * The key point is that any later sublist can be assigned the
1687 * same ->completed number as the newly arrived callbacks, which
1688 * means that the callbacks in any of these later sublist can be
1689 * grouped into a single sublist, whether or not they have already
1690 * been assigned a ->completed number.
1691 */
1692 c = rcu_cbs_completed(rsp, rnp);
1693 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1694 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1695 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1696 break;
1697
1698 /*
1699 * If there are no sublist for unassigned callbacks, leave.
1700 * At the same time, advance "i" one sublist, so that "i" will
1701 * index into the sublist where all the remaining callbacks should
1702 * be grouped into.
1703 */
1704 if (++i >= RCU_NEXT_TAIL)
48a7639c 1705 return false;
dc35c893
PM
1706
1707 /*
1708 * Assign all subsequent callbacks' ->completed number to the next
1709 * full grace period and group them all in the sublist initially
1710 * indexed by "i".
1711 */
1712 for (; i <= RCU_NEXT_TAIL; i++) {
1713 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1714 rdp->nxtcompleted[i] = c;
1715 }
910ee45d 1716 /* Record any needed additional grace periods. */
48a7639c 1717 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1718
1719 /* Trace depending on how much we were able to accelerate. */
1720 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1721 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1722 else
f7f7bac9 1723 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1724 return ret;
dc35c893
PM
1725}
1726
1727/*
1728 * Move any callbacks whose grace period has completed to the
1729 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1730 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1731 * sublist. This function is idempotent, so it does not hurt to
1732 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1733 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1734 *
1735 * The caller must hold rnp->lock with interrupts disabled.
1736 */
48a7639c 1737static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1738 struct rcu_data *rdp)
1739{
1740 int i, j;
1741
1742 /* If the CPU has no callbacks, nothing to do. */
1743 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1744 return false;
dc35c893
PM
1745
1746 /*
1747 * Find all callbacks whose ->completed numbers indicate that they
1748 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1749 */
1750 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1751 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1752 break;
1753 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1754 }
1755 /* Clean up any sublist tail pointers that were misordered above. */
1756 for (j = RCU_WAIT_TAIL; j < i; j++)
1757 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1758
1759 /* Copy down callbacks to fill in empty sublists. */
1760 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1761 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1762 break;
1763 rdp->nxttail[j] = rdp->nxttail[i];
1764 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1765 }
1766
1767 /* Classify any remaining callbacks. */
48a7639c 1768 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1769}
1770
d09b62df 1771/*
ba9fbe95
PM
1772 * Update CPU-local rcu_data state to record the beginnings and ends of
1773 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1774 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1775 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1776 */
48a7639c
PM
1777static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1778 struct rcu_data *rdp)
d09b62df 1779{
48a7639c
PM
1780 bool ret;
1781
ba9fbe95 1782 /* Handle the ends of any preceding grace periods first. */
e3663b10 1783 if (rdp->completed == rnp->completed &&
7d0ae808 1784 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1785
ba9fbe95 1786 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1787 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1788
dc35c893
PM
1789 } else {
1790
1791 /* Advance callbacks. */
48a7639c 1792 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1793
1794 /* Remember that we saw this grace-period completion. */
1795 rdp->completed = rnp->completed;
f7f7bac9 1796 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1797 }
398ebe60 1798
7d0ae808 1799 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1800 /*
1801 * If the current grace period is waiting for this CPU,
1802 * set up to detect a quiescent state, otherwise don't
1803 * go looking for one.
1804 */
1805 rdp->gpnum = rnp->gpnum;
f7f7bac9 1806 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
5b74c458 1807 rdp->cpu_no_qs.b.norm = true;
5cd37193 1808 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
97c668b8 1809 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
6eaef633 1810 zero_cpu_stall_ticks(rdp);
7d0ae808 1811 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1812 }
48a7639c 1813 return ret;
6eaef633
PM
1814}
1815
d34ea322 1816static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1817{
1818 unsigned long flags;
48a7639c 1819 bool needwake;
6eaef633
PM
1820 struct rcu_node *rnp;
1821
1822 local_irq_save(flags);
1823 rnp = rdp->mynode;
7d0ae808
PM
1824 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1825 rdp->completed == READ_ONCE(rnp->completed) &&
1826 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1827 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1828 local_irq_restore(flags);
1829 return;
1830 }
48a7639c 1831 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1832 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1833 if (needwake)
1834 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1835}
1836
0f41c0dd
PM
1837static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1838{
1839 if (delay > 0 &&
1840 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1841 schedule_timeout_uninterruptible(delay);
1842}
1843
b3dbec76 1844/*
45fed3e7 1845 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1846 */
45fed3e7 1847static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1848{
0aa04b05 1849 unsigned long oldmask;
b3dbec76 1850 struct rcu_data *rdp;
7fdefc10 1851 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1852
7d0ae808 1853 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1854 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1855 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1856 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1857 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1858 return false;
f7be8209 1859 }
7d0ae808 1860 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1861
f7be8209
PM
1862 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1863 /*
1864 * Grace period already in progress, don't start another.
1865 * Not supposed to be able to happen.
1866 */
67c583a7 1867 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1868 return false;
7fdefc10
PM
1869 }
1870
7fdefc10 1871 /* Advance to a new grace period and initialize state. */
26cdfedf 1872 record_gp_stall_check_time(rsp);
765a3f4f
PM
1873 /* Record GP times before starting GP, hence smp_store_release(). */
1874 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1875 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 1876 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1877
0aa04b05
PM
1878 /*
1879 * Apply per-leaf buffered online and offline operations to the
1880 * rcu_node tree. Note that this new grace period need not wait
1881 * for subsequent online CPUs, and that quiescent-state forcing
1882 * will handle subsequent offline CPUs.
1883 */
1884 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1885 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 1886 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1887 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1888 !rnp->wait_blkd_tasks) {
1889 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1890 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
1891 continue;
1892 }
1893
1894 /* Record old state, apply changes to ->qsmaskinit field. */
1895 oldmask = rnp->qsmaskinit;
1896 rnp->qsmaskinit = rnp->qsmaskinitnext;
1897
1898 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1899 if (!oldmask != !rnp->qsmaskinit) {
1900 if (!oldmask) /* First online CPU for this rcu_node. */
1901 rcu_init_new_rnp(rnp);
1902 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1903 rnp->wait_blkd_tasks = true;
1904 else /* Last offline CPU and can propagate. */
1905 rcu_cleanup_dead_rnp(rnp);
1906 }
1907
1908 /*
1909 * If all waited-on tasks from prior grace period are
1910 * done, and if all this rcu_node structure's CPUs are
1911 * still offline, propagate up the rcu_node tree and
1912 * clear ->wait_blkd_tasks. Otherwise, if one of this
1913 * rcu_node structure's CPUs has since come back online,
1914 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1915 * checks for this, so just call it unconditionally).
1916 */
1917 if (rnp->wait_blkd_tasks &&
1918 (!rcu_preempt_has_tasks(rnp) ||
1919 rnp->qsmaskinit)) {
1920 rnp->wait_blkd_tasks = false;
1921 rcu_cleanup_dead_rnp(rnp);
1922 }
1923
67c583a7 1924 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 1925 }
7fdefc10
PM
1926
1927 /*
1928 * Set the quiescent-state-needed bits in all the rcu_node
1929 * structures for all currently online CPUs in breadth-first order,
1930 * starting from the root rcu_node structure, relying on the layout
1931 * of the tree within the rsp->node[] array. Note that other CPUs
1932 * will access only the leaves of the hierarchy, thus seeing that no
1933 * grace period is in progress, at least until the corresponding
1934 * leaf node has been initialized. In addition, we have excluded
1935 * CPU-hotplug operations.
1936 *
1937 * The grace period cannot complete until the initialization
1938 * process finishes, because this kthread handles both.
1939 */
1940 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 1941 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 1942 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 1943 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1944 rcu_preempt_check_blocked_tasks(rnp);
1945 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 1946 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 1947 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 1948 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 1949 if (rnp == rdp->mynode)
48a7639c 1950 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1951 rcu_preempt_boost_start_gp(rnp);
1952 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1953 rnp->level, rnp->grplo,
1954 rnp->grphi, rnp->qsmask);
67c583a7 1955 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 1956 cond_resched_rcu_qs();
7d0ae808 1957 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1958 }
b3dbec76 1959
45fed3e7 1960 return true;
7fdefc10 1961}
b3dbec76 1962
b9a425cf
PM
1963/*
1964 * Helper function for wait_event_interruptible_timeout() wakeup
1965 * at force-quiescent-state time.
1966 */
1967static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1968{
1969 struct rcu_node *rnp = rcu_get_root(rsp);
1970
1971 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1972 *gfp = READ_ONCE(rsp->gp_flags);
1973 if (*gfp & RCU_GP_FLAG_FQS)
1974 return true;
1975
1976 /* The current grace period has completed. */
1977 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1978 return true;
1979
1980 return false;
1981}
1982
4cdfc175
PM
1983/*
1984 * Do one round of quiescent-state forcing.
1985 */
77f81fe0 1986static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 1987{
217af2a2
PM
1988 bool isidle = false;
1989 unsigned long maxj;
4cdfc175
PM
1990 struct rcu_node *rnp = rcu_get_root(rsp);
1991
7d0ae808 1992 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 1993 rsp->n_force_qs++;
77f81fe0 1994 if (first_time) {
4cdfc175 1995 /* Collect dyntick-idle snapshots. */
0edd1b17 1996 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1997 isidle = true;
0edd1b17
PM
1998 maxj = jiffies - ULONG_MAX / 4;
1999 }
217af2a2
PM
2000 force_qs_rnp(rsp, dyntick_save_progress_counter,
2001 &isidle, &maxj);
0edd1b17 2002 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2003 } else {
2004 /* Handle dyntick-idle and offline CPUs. */
675da67f 2005 isidle = true;
217af2a2 2006 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2007 }
2008 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2009 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2010 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2011 WRITE_ONCE(rsp->gp_flags,
2012 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2013 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2014 }
4cdfc175
PM
2015}
2016
7fdefc10
PM
2017/*
2018 * Clean up after the old grace period.
2019 */
4cdfc175 2020static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2021{
2022 unsigned long gp_duration;
48a7639c 2023 bool needgp = false;
dae6e64d 2024 int nocb = 0;
7fdefc10
PM
2025 struct rcu_data *rdp;
2026 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2027 struct swait_queue_head *sq;
b3dbec76 2028
7d0ae808 2029 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2030 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2031 gp_duration = jiffies - rsp->gp_start;
2032 if (gp_duration > rsp->gp_max)
2033 rsp->gp_max = gp_duration;
b3dbec76 2034
7fdefc10
PM
2035 /*
2036 * We know the grace period is complete, but to everyone else
2037 * it appears to still be ongoing. But it is also the case
2038 * that to everyone else it looks like there is nothing that
2039 * they can do to advance the grace period. It is therefore
2040 * safe for us to drop the lock in order to mark the grace
2041 * period as completed in all of the rcu_node structures.
7fdefc10 2042 */
67c583a7 2043 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2044
5d4b8659
PM
2045 /*
2046 * Propagate new ->completed value to rcu_node structures so
2047 * that other CPUs don't have to wait until the start of the next
2048 * grace period to process their callbacks. This also avoids
2049 * some nasty RCU grace-period initialization races by forcing
2050 * the end of the current grace period to be completely recorded in
2051 * all of the rcu_node structures before the beginning of the next
2052 * grace period is recorded in any of the rcu_node structures.
2053 */
2054 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2055 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2056 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2057 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2058 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2059 rdp = this_cpu_ptr(rsp->rda);
2060 if (rnp == rdp->mynode)
48a7639c 2061 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2062 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2063 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2064 sq = rcu_nocb_gp_get(rnp);
67c583a7 2065 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2066 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2067 cond_resched_rcu_qs();
7d0ae808 2068 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2069 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2070 }
5d4b8659 2071 rnp = rcu_get_root(rsp);
2a67e741 2072 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2073 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2074
765a3f4f 2075 /* Declare grace period done. */
7d0ae808 2076 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2077 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2078 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2079 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2080 /* Advance CBs to reduce false positives below. */
2081 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2082 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2083 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2084 trace_rcu_grace_period(rsp->name,
7d0ae808 2085 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2086 TPS("newreq"));
2087 }
67c583a7 2088 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2089}
2090
2091/*
2092 * Body of kthread that handles grace periods.
2093 */
2094static int __noreturn rcu_gp_kthread(void *arg)
2095{
77f81fe0 2096 bool first_gp_fqs;
88d6df61 2097 int gf;
d40011f6 2098 unsigned long j;
4cdfc175 2099 int ret;
7fdefc10
PM
2100 struct rcu_state *rsp = arg;
2101 struct rcu_node *rnp = rcu_get_root(rsp);
2102
5871968d 2103 rcu_bind_gp_kthread();
7fdefc10
PM
2104 for (;;) {
2105
2106 /* Handle grace-period start. */
2107 for (;;) {
63c4db78 2108 trace_rcu_grace_period(rsp->name,
7d0ae808 2109 READ_ONCE(rsp->gpnum),
63c4db78 2110 TPS("reqwait"));
afea227f 2111 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2112 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2113 READ_ONCE(rsp->gp_flags) &
4cdfc175 2114 RCU_GP_FLAG_INIT);
319362c9 2115 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2116 /* Locking provides needed memory barrier. */
f7be8209 2117 if (rcu_gp_init(rsp))
7fdefc10 2118 break;
bde6c3aa 2119 cond_resched_rcu_qs();
7d0ae808 2120 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2121 WARN_ON(signal_pending(current));
63c4db78 2122 trace_rcu_grace_period(rsp->name,
7d0ae808 2123 READ_ONCE(rsp->gpnum),
63c4db78 2124 TPS("reqwaitsig"));
7fdefc10 2125 }
cabc49c1 2126
4cdfc175 2127 /* Handle quiescent-state forcing. */
77f81fe0 2128 first_gp_fqs = true;
d40011f6
PM
2129 j = jiffies_till_first_fqs;
2130 if (j > HZ) {
2131 j = HZ;
2132 jiffies_till_first_fqs = HZ;
2133 }
88d6df61 2134 ret = 0;
cabc49c1 2135 for (;;) {
88d6df61
PM
2136 if (!ret)
2137 rsp->jiffies_force_qs = jiffies + j;
63c4db78 2138 trace_rcu_grace_period(rsp->name,
7d0ae808 2139 READ_ONCE(rsp->gpnum),
63c4db78 2140 TPS("fqswait"));
afea227f 2141 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2142 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2143 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2144 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2145 /* Locking provides needed memory barriers. */
4cdfc175 2146 /* If grace period done, leave loop. */
7d0ae808 2147 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2148 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2149 break;
4cdfc175 2150 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2151 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2152 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2153 trace_rcu_grace_period(rsp->name,
7d0ae808 2154 READ_ONCE(rsp->gpnum),
63c4db78 2155 TPS("fqsstart"));
77f81fe0
PM
2156 rcu_gp_fqs(rsp, first_gp_fqs);
2157 first_gp_fqs = false;
63c4db78 2158 trace_rcu_grace_period(rsp->name,
7d0ae808 2159 READ_ONCE(rsp->gpnum),
63c4db78 2160 TPS("fqsend"));
bde6c3aa 2161 cond_resched_rcu_qs();
7d0ae808 2162 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
2163 } else {
2164 /* Deal with stray signal. */
bde6c3aa 2165 cond_resched_rcu_qs();
7d0ae808 2166 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2167 WARN_ON(signal_pending(current));
63c4db78 2168 trace_rcu_grace_period(rsp->name,
7d0ae808 2169 READ_ONCE(rsp->gpnum),
63c4db78 2170 TPS("fqswaitsig"));
4cdfc175 2171 }
d40011f6
PM
2172 j = jiffies_till_next_fqs;
2173 if (j > HZ) {
2174 j = HZ;
2175 jiffies_till_next_fqs = HZ;
2176 } else if (j < 1) {
2177 j = 1;
2178 jiffies_till_next_fqs = 1;
2179 }
cabc49c1 2180 }
4cdfc175
PM
2181
2182 /* Handle grace-period end. */
319362c9 2183 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2184 rcu_gp_cleanup(rsp);
319362c9 2185 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2186 }
b3dbec76
PM
2187}
2188
64db4cff
PM
2189/*
2190 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2191 * in preparation for detecting the next grace period. The caller must hold
b8462084 2192 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2193 *
2194 * Note that it is legal for a dying CPU (which is marked as offline) to
2195 * invoke this function. This can happen when the dying CPU reports its
2196 * quiescent state.
48a7639c
PM
2197 *
2198 * Returns true if the grace-period kthread must be awakened.
64db4cff 2199 */
48a7639c 2200static bool
910ee45d
PM
2201rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2202 struct rcu_data *rdp)
64db4cff 2203{
b8462084 2204 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2205 /*
b3dbec76 2206 * Either we have not yet spawned the grace-period
62da1921
PM
2207 * task, this CPU does not need another grace period,
2208 * or a grace period is already in progress.
b3dbec76 2209 * Either way, don't start a new grace period.
afe24b12 2210 */
48a7639c 2211 return false;
afe24b12 2212 }
7d0ae808
PM
2213 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2214 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2215 TPS("newreq"));
62da1921 2216
016a8d5b
SR
2217 /*
2218 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2219 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2220 * the wakeup to our caller.
016a8d5b 2221 */
48a7639c 2222 return true;
64db4cff
PM
2223}
2224
910ee45d
PM
2225/*
2226 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2227 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2228 * is invoked indirectly from rcu_advance_cbs(), which would result in
2229 * endless recursion -- or would do so if it wasn't for the self-deadlock
2230 * that is encountered beforehand.
48a7639c
PM
2231 *
2232 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2233 */
48a7639c 2234static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2235{
2236 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2237 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2238 bool ret = false;
910ee45d
PM
2239
2240 /*
2241 * If there is no grace period in progress right now, any
2242 * callbacks we have up to this point will be satisfied by the
2243 * next grace period. Also, advancing the callbacks reduces the
2244 * probability of false positives from cpu_needs_another_gp()
2245 * resulting in pointless grace periods. So, advance callbacks
2246 * then start the grace period!
2247 */
48a7639c
PM
2248 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2249 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2250 return ret;
910ee45d
PM
2251}
2252
f41d911f 2253/*
8994515c
PM
2254 * Report a full set of quiescent states to the specified rcu_state data
2255 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2256 * kthread if another grace period is required. Whether we wake
2257 * the grace-period kthread or it awakens itself for the next round
2258 * of quiescent-state forcing, that kthread will clean up after the
2259 * just-completed grace period. Note that the caller must hold rnp->lock,
2260 * which is released before return.
f41d911f 2261 */
d3f6bad3 2262static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2263 __releases(rcu_get_root(rsp)->lock)
f41d911f 2264{
fc2219d4 2265 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2266 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2267 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
abedf8e2 2268 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
f41d911f
PM
2269}
2270
64db4cff 2271/*
d3f6bad3
PM
2272 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2273 * Allows quiescent states for a group of CPUs to be reported at one go
2274 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2275 * must be represented by the same rcu_node structure (which need not be a
2276 * leaf rcu_node structure, though it often will be). The gps parameter
2277 * is the grace-period snapshot, which means that the quiescent states
2278 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2279 * must be held upon entry, and it is released before return.
64db4cff
PM
2280 */
2281static void
d3f6bad3 2282rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2283 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2284 __releases(rnp->lock)
2285{
654e9533 2286 unsigned long oldmask = 0;
28ecd580
PM
2287 struct rcu_node *rnp_c;
2288
64db4cff
PM
2289 /* Walk up the rcu_node hierarchy. */
2290 for (;;) {
654e9533 2291 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2292
654e9533
PM
2293 /*
2294 * Our bit has already been cleared, or the
2295 * relevant grace period is already over, so done.
2296 */
67c583a7 2297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2298 return;
2299 }
654e9533 2300 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2301 rnp->qsmask &= ~mask;
d4c08f2a
PM
2302 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2303 mask, rnp->qsmask, rnp->level,
2304 rnp->grplo, rnp->grphi,
2305 !!rnp->gp_tasks);
27f4d280 2306 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2307
2308 /* Other bits still set at this level, so done. */
67c583a7 2309 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2310 return;
2311 }
2312 mask = rnp->grpmask;
2313 if (rnp->parent == NULL) {
2314
2315 /* No more levels. Exit loop holding root lock. */
2316
2317 break;
2318 }
67c583a7 2319 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2320 rnp_c = rnp;
64db4cff 2321 rnp = rnp->parent;
2a67e741 2322 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2323 oldmask = rnp_c->qsmask;
64db4cff
PM
2324 }
2325
2326 /*
2327 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2328 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2329 * to clean up and start the next grace period if one is needed.
64db4cff 2330 */
d3f6bad3 2331 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2332}
2333
cc99a310
PM
2334/*
2335 * Record a quiescent state for all tasks that were previously queued
2336 * on the specified rcu_node structure and that were blocking the current
2337 * RCU grace period. The caller must hold the specified rnp->lock with
2338 * irqs disabled, and this lock is released upon return, but irqs remain
2339 * disabled.
2340 */
0aa04b05 2341static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2342 struct rcu_node *rnp, unsigned long flags)
2343 __releases(rnp->lock)
2344{
654e9533 2345 unsigned long gps;
cc99a310
PM
2346 unsigned long mask;
2347 struct rcu_node *rnp_p;
2348
a77da14c
PM
2349 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2350 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2351 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2352 return; /* Still need more quiescent states! */
2353 }
2354
2355 rnp_p = rnp->parent;
2356 if (rnp_p == NULL) {
2357 /*
a77da14c
PM
2358 * Only one rcu_node structure in the tree, so don't
2359 * try to report up to its nonexistent parent!
cc99a310
PM
2360 */
2361 rcu_report_qs_rsp(rsp, flags);
2362 return;
2363 }
2364
654e9533
PM
2365 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2366 gps = rnp->gpnum;
cc99a310 2367 mask = rnp->grpmask;
67c583a7 2368 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2369 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2370 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2371}
2372
64db4cff 2373/*
d3f6bad3 2374 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2375 * structure. This must be called from the specified CPU.
64db4cff
PM
2376 */
2377static void
d7d6a11e 2378rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2379{
2380 unsigned long flags;
2381 unsigned long mask;
48a7639c 2382 bool needwake;
64db4cff
PM
2383 struct rcu_node *rnp;
2384
2385 rnp = rdp->mynode;
2a67e741 2386 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5b74c458 2387 if ((rdp->cpu_no_qs.b.norm &&
5cd37193
PM
2388 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2389 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2390 rdp->gpwrap) {
64db4cff
PM
2391
2392 /*
e4cc1f22
PM
2393 * The grace period in which this quiescent state was
2394 * recorded has ended, so don't report it upwards.
2395 * We will instead need a new quiescent state that lies
2396 * within the current grace period.
64db4cff 2397 */
5b74c458 2398 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
5cd37193 2399 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
67c583a7 2400 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2401 return;
2402 }
2403 mask = rdp->grpmask;
2404 if ((rnp->qsmask & mask) == 0) {
67c583a7 2405 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2406 } else {
bb53e416 2407 rdp->core_needs_qs = false;
64db4cff
PM
2408
2409 /*
2410 * This GP can't end until cpu checks in, so all of our
2411 * callbacks can be processed during the next GP.
2412 */
48a7639c 2413 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2414
654e9533
PM
2415 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2416 /* ^^^ Released rnp->lock */
48a7639c
PM
2417 if (needwake)
2418 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2419 }
2420}
2421
2422/*
2423 * Check to see if there is a new grace period of which this CPU
2424 * is not yet aware, and if so, set up local rcu_data state for it.
2425 * Otherwise, see if this CPU has just passed through its first
2426 * quiescent state for this grace period, and record that fact if so.
2427 */
2428static void
2429rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2430{
05eb552b
PM
2431 /* Check for grace-period ends and beginnings. */
2432 note_gp_changes(rsp, rdp);
64db4cff
PM
2433
2434 /*
2435 * Does this CPU still need to do its part for current grace period?
2436 * If no, return and let the other CPUs do their part as well.
2437 */
97c668b8 2438 if (!rdp->core_needs_qs)
64db4cff
PM
2439 return;
2440
2441 /*
2442 * Was there a quiescent state since the beginning of the grace
2443 * period? If no, then exit and wait for the next call.
2444 */
5b74c458 2445 if (rdp->cpu_no_qs.b.norm &&
5cd37193 2446 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2447 return;
2448
d3f6bad3
PM
2449 /*
2450 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2451 * judge of that).
2452 */
d7d6a11e 2453 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2454}
2455
e74f4c45 2456/*
b1420f1c
PM
2457 * Send the specified CPU's RCU callbacks to the orphanage. The
2458 * specified CPU must be offline, and the caller must hold the
7b2e6011 2459 * ->orphan_lock.
e74f4c45 2460 */
b1420f1c
PM
2461static void
2462rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2463 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2464{
3fbfbf7a 2465 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2466 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2467 return;
2468
b1420f1c
PM
2469 /*
2470 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2471 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2472 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2473 */
a50c3af9 2474 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2475 rsp->qlen_lazy += rdp->qlen_lazy;
2476 rsp->qlen += rdp->qlen;
2477 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2478 rdp->qlen_lazy = 0;
7d0ae808 2479 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2480 }
2481
2482 /*
b1420f1c
PM
2483 * Next, move those callbacks still needing a grace period to
2484 * the orphanage, where some other CPU will pick them up.
2485 * Some of the callbacks might have gone partway through a grace
2486 * period, but that is too bad. They get to start over because we
2487 * cannot assume that grace periods are synchronized across CPUs.
2488 * We don't bother updating the ->nxttail[] array yet, instead
2489 * we just reset the whole thing later on.
a50c3af9 2490 */
b1420f1c
PM
2491 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2492 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2493 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2494 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2495 }
2496
2497 /*
b1420f1c
PM
2498 * Then move the ready-to-invoke callbacks to the orphanage,
2499 * where some other CPU will pick them up. These will not be
2500 * required to pass though another grace period: They are done.
a50c3af9 2501 */
e5601400 2502 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2503 *rsp->orphan_donetail = rdp->nxtlist;
2504 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2505 }
e74f4c45 2506
b33078b6
PM
2507 /*
2508 * Finally, initialize the rcu_data structure's list to empty and
2509 * disallow further callbacks on this CPU.
2510 */
3f5d3ea6 2511 init_callback_list(rdp);
b33078b6 2512 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2513}
2514
2515/*
2516 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2517 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2518 */
96d3fd0d 2519static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2520{
2521 int i;
fa07a58f 2522 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2523
3fbfbf7a 2524 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2525 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2526 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2527 return;
2528
b1420f1c
PM
2529 /* Do the accounting first. */
2530 rdp->qlen_lazy += rsp->qlen_lazy;
2531 rdp->qlen += rsp->qlen;
2532 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2533 if (rsp->qlen_lazy != rsp->qlen)
2534 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2535 rsp->qlen_lazy = 0;
2536 rsp->qlen = 0;
2537
2538 /*
2539 * We do not need a memory barrier here because the only way we
2540 * can get here if there is an rcu_barrier() in flight is if
2541 * we are the task doing the rcu_barrier().
2542 */
2543
2544 /* First adopt the ready-to-invoke callbacks. */
2545 if (rsp->orphan_donelist != NULL) {
2546 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2547 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2548 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2549 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2550 rdp->nxttail[i] = rsp->orphan_donetail;
2551 rsp->orphan_donelist = NULL;
2552 rsp->orphan_donetail = &rsp->orphan_donelist;
2553 }
2554
2555 /* And then adopt the callbacks that still need a grace period. */
2556 if (rsp->orphan_nxtlist != NULL) {
2557 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2558 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2559 rsp->orphan_nxtlist = NULL;
2560 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2561 }
2562}
2563
2564/*
2565 * Trace the fact that this CPU is going offline.
2566 */
2567static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2568{
2569 RCU_TRACE(unsigned long mask);
2570 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2571 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2572
ea46351c
PM
2573 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2574 return;
2575
b1420f1c 2576 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2577 trace_rcu_grace_period(rsp->name,
2578 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2579 TPS("cpuofl"));
64db4cff
PM
2580}
2581
8af3a5e7
PM
2582/*
2583 * All CPUs for the specified rcu_node structure have gone offline,
2584 * and all tasks that were preempted within an RCU read-side critical
2585 * section while running on one of those CPUs have since exited their RCU
2586 * read-side critical section. Some other CPU is reporting this fact with
2587 * the specified rcu_node structure's ->lock held and interrupts disabled.
2588 * This function therefore goes up the tree of rcu_node structures,
2589 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2590 * the leaf rcu_node structure's ->qsmaskinit field has already been
2591 * updated
2592 *
2593 * This function does check that the specified rcu_node structure has
2594 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2595 * prematurely. That said, invoking it after the fact will cost you
2596 * a needless lock acquisition. So once it has done its work, don't
2597 * invoke it again.
2598 */
2599static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2600{
2601 long mask;
2602 struct rcu_node *rnp = rnp_leaf;
2603
ea46351c
PM
2604 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2605 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2606 return;
2607 for (;;) {
2608 mask = rnp->grpmask;
2609 rnp = rnp->parent;
2610 if (!rnp)
2611 break;
2a67e741 2612 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2613 rnp->qsmaskinit &= ~mask;
0aa04b05 2614 rnp->qsmask &= ~mask;
8af3a5e7 2615 if (rnp->qsmaskinit) {
67c583a7
BF
2616 raw_spin_unlock_rcu_node(rnp);
2617 /* irqs remain disabled. */
8af3a5e7
PM
2618 return;
2619 }
67c583a7 2620 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2621 }
2622}
2623
64db4cff 2624/*
e5601400 2625 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2626 * this fact from process context. Do the remainder of the cleanup,
2627 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2628 * adopting them. There can only be one CPU hotplug operation at a time,
2629 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2630 */
e5601400 2631static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2632{
2036d94a 2633 unsigned long flags;
e5601400 2634 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2635 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2636
ea46351c
PM
2637 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2638 return;
2639
2036d94a 2640 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2641 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2642
b1420f1c 2643 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2644 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2645 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2646 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2647 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2648
cf01537e
PM
2649 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2650 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2651 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2652}
2653
64db4cff
PM
2654/*
2655 * Invoke any RCU callbacks that have made it to the end of their grace
2656 * period. Thottle as specified by rdp->blimit.
2657 */
37c72e56 2658static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2659{
2660 unsigned long flags;
2661 struct rcu_head *next, *list, **tail;
878d7439
ED
2662 long bl, count, count_lazy;
2663 int i;
64db4cff 2664
dc35c893 2665 /* If no callbacks are ready, just return. */
29c00b4a 2666 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2667 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2668 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2669 need_resched(), is_idle_task(current),
2670 rcu_is_callbacks_kthread());
64db4cff 2671 return;
29c00b4a 2672 }
64db4cff
PM
2673
2674 /*
2675 * Extract the list of ready callbacks, disabling to prevent
2676 * races with call_rcu() from interrupt handlers.
2677 */
2678 local_irq_save(flags);
8146c4e2 2679 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2680 bl = rdp->blimit;
486e2593 2681 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2682 list = rdp->nxtlist;
2683 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2684 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2685 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2686 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2687 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2688 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2689 local_irq_restore(flags);
2690
2691 /* Invoke callbacks. */
486e2593 2692 count = count_lazy = 0;
64db4cff
PM
2693 while (list) {
2694 next = list->next;
2695 prefetch(next);
551d55a9 2696 debug_rcu_head_unqueue(list);
486e2593
PM
2697 if (__rcu_reclaim(rsp->name, list))
2698 count_lazy++;
64db4cff 2699 list = next;
dff1672d
PM
2700 /* Stop only if limit reached and CPU has something to do. */
2701 if (++count >= bl &&
2702 (need_resched() ||
2703 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2704 break;
2705 }
2706
2707 local_irq_save(flags);
4968c300
PM
2708 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2709 is_idle_task(current),
2710 rcu_is_callbacks_kthread());
64db4cff
PM
2711
2712 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2713 if (list != NULL) {
2714 *tail = rdp->nxtlist;
2715 rdp->nxtlist = list;
b41772ab
PM
2716 for (i = 0; i < RCU_NEXT_SIZE; i++)
2717 if (&rdp->nxtlist == rdp->nxttail[i])
2718 rdp->nxttail[i] = tail;
64db4cff
PM
2719 else
2720 break;
2721 }
b1420f1c
PM
2722 smp_mb(); /* List handling before counting for rcu_barrier(). */
2723 rdp->qlen_lazy -= count_lazy;
7d0ae808 2724 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2725 rdp->n_cbs_invoked += count;
64db4cff
PM
2726
2727 /* Reinstate batch limit if we have worked down the excess. */
2728 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2729 rdp->blimit = blimit;
2730
37c72e56
PM
2731 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2732 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2733 rdp->qlen_last_fqs_check = 0;
2734 rdp->n_force_qs_snap = rsp->n_force_qs;
2735 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2736 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2737 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2738
64db4cff
PM
2739 local_irq_restore(flags);
2740
e0f23060 2741 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2742 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2743 invoke_rcu_core();
64db4cff
PM
2744}
2745
2746/*
2747 * Check to see if this CPU is in a non-context-switch quiescent state
2748 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2749 * Also schedule RCU core processing.
64db4cff 2750 *
9b2e4f18 2751 * This function must be called from hardirq context. It is normally
64db4cff
PM
2752 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2753 * false, there is no point in invoking rcu_check_callbacks().
2754 */
c3377c2d 2755void rcu_check_callbacks(int user)
64db4cff 2756{
f7f7bac9 2757 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2758 increment_cpu_stall_ticks();
9b2e4f18 2759 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2760
2761 /*
2762 * Get here if this CPU took its interrupt from user
2763 * mode or from the idle loop, and if this is not a
2764 * nested interrupt. In this case, the CPU is in
d6714c22 2765 * a quiescent state, so note it.
64db4cff
PM
2766 *
2767 * No memory barrier is required here because both
d6714c22
PM
2768 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2769 * variables that other CPUs neither access nor modify,
2770 * at least not while the corresponding CPU is online.
64db4cff
PM
2771 */
2772
284a8c93
PM
2773 rcu_sched_qs();
2774 rcu_bh_qs();
64db4cff
PM
2775
2776 } else if (!in_softirq()) {
2777
2778 /*
2779 * Get here if this CPU did not take its interrupt from
2780 * softirq, in other words, if it is not interrupting
2781 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2782 * critical section, so note it.
64db4cff
PM
2783 */
2784
284a8c93 2785 rcu_bh_qs();
64db4cff 2786 }
86aea0e6 2787 rcu_preempt_check_callbacks();
e3950ecd 2788 if (rcu_pending())
a46e0899 2789 invoke_rcu_core();
8315f422
PM
2790 if (user)
2791 rcu_note_voluntary_context_switch(current);
f7f7bac9 2792 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2793}
2794
64db4cff
PM
2795/*
2796 * Scan the leaf rcu_node structures, processing dyntick state for any that
2797 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2798 * Also initiate boosting for any threads blocked on the root rcu_node.
2799 *
ee47eb9f 2800 * The caller must have suppressed start of new grace periods.
64db4cff 2801 */
217af2a2
PM
2802static void force_qs_rnp(struct rcu_state *rsp,
2803 int (*f)(struct rcu_data *rsp, bool *isidle,
2804 unsigned long *maxj),
2805 bool *isidle, unsigned long *maxj)
64db4cff
PM
2806{
2807 unsigned long bit;
2808 int cpu;
2809 unsigned long flags;
2810 unsigned long mask;
a0b6c9a7 2811 struct rcu_node *rnp;
64db4cff 2812
a0b6c9a7 2813 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2814 cond_resched_rcu_qs();
64db4cff 2815 mask = 0;
2a67e741 2816 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2817 if (rnp->qsmask == 0) {
a77da14c
PM
2818 if (rcu_state_p == &rcu_sched_state ||
2819 rsp != rcu_state_p ||
2820 rcu_preempt_blocked_readers_cgp(rnp)) {
2821 /*
2822 * No point in scanning bits because they
2823 * are all zero. But we might need to
2824 * priority-boost blocked readers.
2825 */
2826 rcu_initiate_boost(rnp, flags);
2827 /* rcu_initiate_boost() releases rnp->lock */
2828 continue;
2829 }
2830 if (rnp->parent &&
2831 (rnp->parent->qsmask & rnp->grpmask)) {
2832 /*
2833 * Race between grace-period
2834 * initialization and task exiting RCU
2835 * read-side critical section: Report.
2836 */
2837 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2838 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2839 continue;
2840 }
64db4cff 2841 }
a0b6c9a7 2842 cpu = rnp->grplo;
64db4cff 2843 bit = 1;
a0b6c9a7 2844 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17 2845 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2846 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2847 mask |= bit;
2848 }
64db4cff 2849 }
45f014c5 2850 if (mask != 0) {
654e9533
PM
2851 /* Idle/offline CPUs, report (releases rnp->lock. */
2852 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2853 } else {
2854 /* Nothing to do here, so just drop the lock. */
67c583a7 2855 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2856 }
64db4cff 2857 }
64db4cff
PM
2858}
2859
2860/*
2861 * Force quiescent states on reluctant CPUs, and also detect which
2862 * CPUs are in dyntick-idle mode.
2863 */
4cdfc175 2864static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2865{
2866 unsigned long flags;
394f2769
PM
2867 bool ret;
2868 struct rcu_node *rnp;
2869 struct rcu_node *rnp_old = NULL;
2870
2871 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2872 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2873 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2874 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2875 !raw_spin_trylock(&rnp->fqslock);
2876 if (rnp_old != NULL)
2877 raw_spin_unlock(&rnp_old->fqslock);
2878 if (ret) {
a792563b 2879 rsp->n_force_qs_lh++;
394f2769
PM
2880 return;
2881 }
2882 rnp_old = rnp;
2883 }
2884 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2885
394f2769 2886 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2887 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2888 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2889 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2890 rsp->n_force_qs_lh++;
67c583a7 2891 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2892 return; /* Someone beat us to it. */
46a1e34e 2893 }
7d0ae808 2894 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2895 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
abedf8e2 2896 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */
64db4cff
PM
2897}
2898
64db4cff 2899/*
e0f23060
PM
2900 * This does the RCU core processing work for the specified rcu_state
2901 * and rcu_data structures. This may be called only from the CPU to
2902 * whom the rdp belongs.
64db4cff
PM
2903 */
2904static void
1bca8cf1 2905__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2906{
2907 unsigned long flags;
48a7639c 2908 bool needwake;
fa07a58f 2909 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2910
2e597558
PM
2911 WARN_ON_ONCE(rdp->beenonline == 0);
2912
64db4cff
PM
2913 /* Update RCU state based on any recent quiescent states. */
2914 rcu_check_quiescent_state(rsp, rdp);
2915
2916 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2917 local_irq_save(flags);
64db4cff 2918 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 2919 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 2920 needwake = rcu_start_gp(rsp);
67c583a7 2921 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
2922 if (needwake)
2923 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2924 } else {
2925 local_irq_restore(flags);
64db4cff
PM
2926 }
2927
2928 /* If there are callbacks ready, invoke them. */
09223371 2929 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2930 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2931
2932 /* Do any needed deferred wakeups of rcuo kthreads. */
2933 do_nocb_deferred_wakeup(rdp);
09223371
SL
2934}
2935
64db4cff 2936/*
e0f23060 2937 * Do RCU core processing for the current CPU.
64db4cff 2938 */
09223371 2939static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2940{
6ce75a23
PM
2941 struct rcu_state *rsp;
2942
bfa00b4c
PM
2943 if (cpu_is_offline(smp_processor_id()))
2944 return;
f7f7bac9 2945 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2946 for_each_rcu_flavor(rsp)
2947 __rcu_process_callbacks(rsp);
f7f7bac9 2948 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2949}
2950
a26ac245 2951/*
e0f23060
PM
2952 * Schedule RCU callback invocation. If the specified type of RCU
2953 * does not support RCU priority boosting, just do a direct call,
2954 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2955 * are running on the current CPU with softirqs disabled, the
e0f23060 2956 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2957 */
a46e0899 2958static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2959{
7d0ae808 2960 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2961 return;
a46e0899
PM
2962 if (likely(!rsp->boost)) {
2963 rcu_do_batch(rsp, rdp);
a26ac245
PM
2964 return;
2965 }
a46e0899 2966 invoke_rcu_callbacks_kthread();
a26ac245
PM
2967}
2968
a46e0899 2969static void invoke_rcu_core(void)
09223371 2970{
b0f74036
PM
2971 if (cpu_online(smp_processor_id()))
2972 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2973}
2974
29154c57
PM
2975/*
2976 * Handle any core-RCU processing required by a call_rcu() invocation.
2977 */
2978static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2979 struct rcu_head *head, unsigned long flags)
64db4cff 2980{
48a7639c
PM
2981 bool needwake;
2982
62fde6ed
PM
2983 /*
2984 * If called from an extended quiescent state, invoke the RCU
2985 * core in order to force a re-evaluation of RCU's idleness.
2986 */
9910affa 2987 if (!rcu_is_watching())
62fde6ed
PM
2988 invoke_rcu_core();
2989
a16b7a69 2990 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2991 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2992 return;
64db4cff 2993
37c72e56
PM
2994 /*
2995 * Force the grace period if too many callbacks or too long waiting.
2996 * Enforce hysteresis, and don't invoke force_quiescent_state()
2997 * if some other CPU has recently done so. Also, don't bother
2998 * invoking force_quiescent_state() if the newly enqueued callback
2999 * is the only one waiting for a grace period to complete.
3000 */
2655d57e 3001 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3002
3003 /* Are we ignoring a completed grace period? */
470716fc 3004 note_gp_changes(rsp, rdp);
b52573d2
PM
3005
3006 /* Start a new grace period if one not already started. */
3007 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3008 struct rcu_node *rnp_root = rcu_get_root(rsp);
3009
2a67e741 3010 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3011 needwake = rcu_start_gp(rsp);
67c583a7 3012 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3013 if (needwake)
3014 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3015 } else {
3016 /* Give the grace period a kick. */
3017 rdp->blimit = LONG_MAX;
3018 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3019 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3020 force_quiescent_state(rsp);
b52573d2
PM
3021 rdp->n_force_qs_snap = rsp->n_force_qs;
3022 rdp->qlen_last_fqs_check = rdp->qlen;
3023 }
4cdfc175 3024 }
29154c57
PM
3025}
3026
ae150184
PM
3027/*
3028 * RCU callback function to leak a callback.
3029 */
3030static void rcu_leak_callback(struct rcu_head *rhp)
3031{
3032}
3033
3fbfbf7a
PM
3034/*
3035 * Helper function for call_rcu() and friends. The cpu argument will
3036 * normally be -1, indicating "currently running CPU". It may specify
3037 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3038 * is expected to specify a CPU.
3039 */
64db4cff 3040static void
b6a4ae76 3041__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3042 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3043{
3044 unsigned long flags;
3045 struct rcu_data *rdp;
3046
1146edcb 3047 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
3048 if (debug_rcu_head_queue(head)) {
3049 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3050 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3051 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3052 return;
3053 }
64db4cff
PM
3054 head->func = func;
3055 head->next = NULL;
3056
64db4cff
PM
3057 /*
3058 * Opportunistically note grace-period endings and beginnings.
3059 * Note that we might see a beginning right after we see an
3060 * end, but never vice versa, since this CPU has to pass through
3061 * a quiescent state betweentimes.
3062 */
3063 local_irq_save(flags);
394f99a9 3064 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3065
3066 /* Add the callback to our list. */
3fbfbf7a
PM
3067 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3068 int offline;
3069
3070 if (cpu != -1)
3071 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3072 if (likely(rdp->mynode)) {
3073 /* Post-boot, so this should be for a no-CBs CPU. */
3074 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3075 WARN_ON_ONCE(offline);
3076 /* Offline CPU, _call_rcu() illegal, leak callback. */
3077 local_irq_restore(flags);
3078 return;
3079 }
3080 /*
3081 * Very early boot, before rcu_init(). Initialize if needed
3082 * and then drop through to queue the callback.
3083 */
3084 BUG_ON(cpu != -1);
34404ca8 3085 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3086 if (!likely(rdp->nxtlist))
3087 init_default_callback_list(rdp);
0d8ee37e 3088 }
7d0ae808 3089 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3090 if (lazy)
3091 rdp->qlen_lazy++;
c57afe80
PM
3092 else
3093 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3094 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3095 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3096 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3097
d4c08f2a
PM
3098 if (__is_kfree_rcu_offset((unsigned long)func))
3099 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3100 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3101 else
486e2593 3102 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3103
29154c57
PM
3104 /* Go handle any RCU core processing required. */
3105 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3106 local_irq_restore(flags);
3107}
3108
3109/*
d6714c22 3110 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3111 */
b6a4ae76 3112void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3113{
3fbfbf7a 3114 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3115}
d6714c22 3116EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3117
3118/*
486e2593 3119 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3120 */
b6a4ae76 3121void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3122{
3fbfbf7a 3123 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3124}
3125EXPORT_SYMBOL_GPL(call_rcu_bh);
3126
495aa969
ACB
3127/*
3128 * Queue an RCU callback for lazy invocation after a grace period.
3129 * This will likely be later named something like "call_rcu_lazy()",
3130 * but this change will require some way of tagging the lazy RCU
3131 * callbacks in the list of pending callbacks. Until then, this
3132 * function may only be called from __kfree_rcu().
3133 */
3134void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3135 rcu_callback_t func)
495aa969 3136{
e534165b 3137 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3138}
3139EXPORT_SYMBOL_GPL(kfree_call_rcu);
3140
6d813391
PM
3141/*
3142 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3143 * any blocking grace-period wait automatically implies a grace period
3144 * if there is only one CPU online at any point time during execution
3145 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3146 * occasionally incorrectly indicate that there are multiple CPUs online
3147 * when there was in fact only one the whole time, as this just adds
3148 * some overhead: RCU still operates correctly.
6d813391
PM
3149 */
3150static inline int rcu_blocking_is_gp(void)
3151{
95f0c1de
PM
3152 int ret;
3153
6d813391 3154 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3155 preempt_disable();
3156 ret = num_online_cpus() <= 1;
3157 preempt_enable();
3158 return ret;
6d813391
PM
3159}
3160
6ebb237b
PM
3161/**
3162 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3163 *
3164 * Control will return to the caller some time after a full rcu-sched
3165 * grace period has elapsed, in other words after all currently executing
3166 * rcu-sched read-side critical sections have completed. These read-side
3167 * critical sections are delimited by rcu_read_lock_sched() and
3168 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3169 * local_irq_disable(), and so on may be used in place of
3170 * rcu_read_lock_sched().
3171 *
3172 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3173 * non-threaded hardware-interrupt handlers, in progress on entry will
3174 * have completed before this primitive returns. However, this does not
3175 * guarantee that softirq handlers will have completed, since in some
3176 * kernels, these handlers can run in process context, and can block.
3177 *
3178 * Note that this guarantee implies further memory-ordering guarantees.
3179 * On systems with more than one CPU, when synchronize_sched() returns,
3180 * each CPU is guaranteed to have executed a full memory barrier since the
3181 * end of its last RCU-sched read-side critical section whose beginning
3182 * preceded the call to synchronize_sched(). In addition, each CPU having
3183 * an RCU read-side critical section that extends beyond the return from
3184 * synchronize_sched() is guaranteed to have executed a full memory barrier
3185 * after the beginning of synchronize_sched() and before the beginning of
3186 * that RCU read-side critical section. Note that these guarantees include
3187 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3188 * that are executing in the kernel.
3189 *
3190 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3191 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3192 * to have executed a full memory barrier during the execution of
3193 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3194 * again only if the system has more than one CPU).
6ebb237b
PM
3195 *
3196 * This primitive provides the guarantees made by the (now removed)
3197 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3198 * guarantees that rcu_read_lock() sections will have completed.
3199 * In "classic RCU", these two guarantees happen to be one and
3200 * the same, but can differ in realtime RCU implementations.
3201 */
3202void synchronize_sched(void)
3203{
f78f5b90
PM
3204 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3205 lock_is_held(&rcu_lock_map) ||
3206 lock_is_held(&rcu_sched_lock_map),
3207 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3208 if (rcu_blocking_is_gp())
3209 return;
5afff48b 3210 if (rcu_gp_is_expedited())
3705b88d
AM
3211 synchronize_sched_expedited();
3212 else
3213 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3214}
3215EXPORT_SYMBOL_GPL(synchronize_sched);
3216
3217/**
3218 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3219 *
3220 * Control will return to the caller some time after a full rcu_bh grace
3221 * period has elapsed, in other words after all currently executing rcu_bh
3222 * read-side critical sections have completed. RCU read-side critical
3223 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3224 * and may be nested.
f0a0e6f2
PM
3225 *
3226 * See the description of synchronize_sched() for more detailed information
3227 * on memory ordering guarantees.
6ebb237b
PM
3228 */
3229void synchronize_rcu_bh(void)
3230{
f78f5b90
PM
3231 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3232 lock_is_held(&rcu_lock_map) ||
3233 lock_is_held(&rcu_sched_lock_map),
3234 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3235 if (rcu_blocking_is_gp())
3236 return;
5afff48b 3237 if (rcu_gp_is_expedited())
3705b88d
AM
3238 synchronize_rcu_bh_expedited();
3239 else
3240 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3241}
3242EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3243
765a3f4f
PM
3244/**
3245 * get_state_synchronize_rcu - Snapshot current RCU state
3246 *
3247 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3248 * to determine whether or not a full grace period has elapsed in the
3249 * meantime.
3250 */
3251unsigned long get_state_synchronize_rcu(void)
3252{
3253 /*
3254 * Any prior manipulation of RCU-protected data must happen
3255 * before the load from ->gpnum.
3256 */
3257 smp_mb(); /* ^^^ */
3258
3259 /*
3260 * Make sure this load happens before the purportedly
3261 * time-consuming work between get_state_synchronize_rcu()
3262 * and cond_synchronize_rcu().
3263 */
e534165b 3264 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3265}
3266EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3267
3268/**
3269 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3270 *
3271 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3272 *
3273 * If a full RCU grace period has elapsed since the earlier call to
3274 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3275 * synchronize_rcu() to wait for a full grace period.
3276 *
3277 * Yes, this function does not take counter wrap into account. But
3278 * counter wrap is harmless. If the counter wraps, we have waited for
3279 * more than 2 billion grace periods (and way more on a 64-bit system!),
3280 * so waiting for one additional grace period should be just fine.
3281 */
3282void cond_synchronize_rcu(unsigned long oldstate)
3283{
3284 unsigned long newstate;
3285
3286 /*
3287 * Ensure that this load happens before any RCU-destructive
3288 * actions the caller might carry out after we return.
3289 */
e534165b 3290 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3291 if (ULONG_CMP_GE(oldstate, newstate))
3292 synchronize_rcu();
3293}
3294EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3295
24560056
PM
3296/**
3297 * get_state_synchronize_sched - Snapshot current RCU-sched state
3298 *
3299 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3300 * to determine whether or not a full grace period has elapsed in the
3301 * meantime.
3302 */
3303unsigned long get_state_synchronize_sched(void)
3304{
3305 /*
3306 * Any prior manipulation of RCU-protected data must happen
3307 * before the load from ->gpnum.
3308 */
3309 smp_mb(); /* ^^^ */
3310
3311 /*
3312 * Make sure this load happens before the purportedly
3313 * time-consuming work between get_state_synchronize_sched()
3314 * and cond_synchronize_sched().
3315 */
3316 return smp_load_acquire(&rcu_sched_state.gpnum);
3317}
3318EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3319
3320/**
3321 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3322 *
3323 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3324 *
3325 * If a full RCU-sched grace period has elapsed since the earlier call to
3326 * get_state_synchronize_sched(), just return. Otherwise, invoke
3327 * synchronize_sched() to wait for a full grace period.
3328 *
3329 * Yes, this function does not take counter wrap into account. But
3330 * counter wrap is harmless. If the counter wraps, we have waited for
3331 * more than 2 billion grace periods (and way more on a 64-bit system!),
3332 * so waiting for one additional grace period should be just fine.
3333 */
3334void cond_synchronize_sched(unsigned long oldstate)
3335{
3336 unsigned long newstate;
3337
3338 /*
3339 * Ensure that this load happens before any RCU-destructive
3340 * actions the caller might carry out after we return.
3341 */
3342 newstate = smp_load_acquire(&rcu_sched_state.completed);
3343 if (ULONG_CMP_GE(oldstate, newstate))
3344 synchronize_sched();
3345}
3346EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3347
28f00767
PM
3348/* Adjust sequence number for start of update-side operation. */
3349static void rcu_seq_start(unsigned long *sp)
3350{
3351 WRITE_ONCE(*sp, *sp + 1);
3352 smp_mb(); /* Ensure update-side operation after counter increment. */
3353 WARN_ON_ONCE(!(*sp & 0x1));
3354}
3355
3356/* Adjust sequence number for end of update-side operation. */
3357static void rcu_seq_end(unsigned long *sp)
3358{
3359 smp_mb(); /* Ensure update-side operation before counter increment. */
3360 WRITE_ONCE(*sp, *sp + 1);
3361 WARN_ON_ONCE(*sp & 0x1);
3362}
3363
3364/* Take a snapshot of the update side's sequence number. */
3365static unsigned long rcu_seq_snap(unsigned long *sp)
3366{
3367 unsigned long s;
3368
28f00767
PM
3369 s = (READ_ONCE(*sp) + 3) & ~0x1;
3370 smp_mb(); /* Above access must not bleed into critical section. */
3371 return s;
3372}
3373
3374/*
3375 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3376 * full update-side operation has occurred.
3377 */
3378static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3379{
3380 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3381}
3382
3383/* Wrapper functions for expedited grace periods. */
3384static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3385{
3386 rcu_seq_start(&rsp->expedited_sequence);
3387}
3388static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3389{
3390 rcu_seq_end(&rsp->expedited_sequence);
704dd435 3391 smp_mb(); /* Ensure that consecutive grace periods serialize. */
28f00767
PM
3392}
3393static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3394{
179e5dcd
PM
3395 unsigned long s;
3396
886ef5a1 3397 smp_mb(); /* Caller's modifications seen first by other CPUs. */
179e5dcd
PM
3398 s = rcu_seq_snap(&rsp->expedited_sequence);
3399 trace_rcu_exp_grace_period(rsp->name, s, TPS("snap"));
3400 return s;
28f00767
PM
3401}
3402static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3403{
3404 return rcu_seq_done(&rsp->expedited_sequence, s);
3405}
3406
b9585e94
PM
3407/*
3408 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3409 * recent CPU-online activity. Note that these masks are not cleared
3410 * when CPUs go offline, so they reflect the union of all CPUs that have
3411 * ever been online. This means that this function normally takes its
3412 * no-work-to-do fastpath.
3413 */
3414static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3415{
3416 bool done;
3417 unsigned long flags;
3418 unsigned long mask;
3419 unsigned long oldmask;
3420 int ncpus = READ_ONCE(rsp->ncpus);
3421 struct rcu_node *rnp;
3422 struct rcu_node *rnp_up;
3423
3424 /* If no new CPUs onlined since last time, nothing to do. */
3425 if (likely(ncpus == rsp->ncpus_snap))
3426 return;
3427 rsp->ncpus_snap = ncpus;
3428
3429 /*
3430 * Each pass through the following loop propagates newly onlined
3431 * CPUs for the current rcu_node structure up the rcu_node tree.
3432 */
3433 rcu_for_each_leaf_node(rsp, rnp) {
2a67e741 3434 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b9585e94 3435 if (rnp->expmaskinit == rnp->expmaskinitnext) {
67c583a7 3436 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b9585e94
PM
3437 continue; /* No new CPUs, nothing to do. */
3438 }
3439
3440 /* Update this node's mask, track old value for propagation. */
3441 oldmask = rnp->expmaskinit;
3442 rnp->expmaskinit = rnp->expmaskinitnext;
67c583a7 3443 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b9585e94
PM
3444
3445 /* If was already nonzero, nothing to propagate. */
3446 if (oldmask)
3447 continue;
3448
3449 /* Propagate the new CPU up the tree. */
3450 mask = rnp->grpmask;
3451 rnp_up = rnp->parent;
3452 done = false;
3453 while (rnp_up) {
2a67e741 3454 raw_spin_lock_irqsave_rcu_node(rnp_up, flags);
b9585e94
PM
3455 if (rnp_up->expmaskinit)
3456 done = true;
3457 rnp_up->expmaskinit |= mask;
67c583a7 3458 raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags);
b9585e94
PM
3459 if (done)
3460 break;
3461 mask = rnp_up->grpmask;
3462 rnp_up = rnp_up->parent;
3463 }
3464 }
3465}
3466
3467/*
3468 * Reset the ->expmask values in the rcu_node tree in preparation for
3469 * a new expedited grace period.
3470 */
3471static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3472{
3473 unsigned long flags;
3474 struct rcu_node *rnp;
3475
3476 sync_exp_reset_tree_hotplug(rsp);
3477 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 3478 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b9585e94
PM
3479 WARN_ON_ONCE(rnp->expmask);
3480 rnp->expmask = rnp->expmaskinit;
67c583a7 3481 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b9585e94
PM
3482 }
3483}
3484
7922cd0e 3485/*
8203d6d0 3486 * Return non-zero if there is no RCU expedited grace period in progress
7922cd0e
PM
3487 * for the specified rcu_node structure, in other words, if all CPUs and
3488 * tasks covered by the specified rcu_node structure have done their bit
3489 * for the current expedited grace period. Works only for preemptible
3490 * RCU -- other RCU implementation use other means.
3491 *
f6a12f34 3492 * Caller must hold the rcu_state's exp_mutex.
7922cd0e
PM
3493 */
3494static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3495{
8203d6d0 3496 return rnp->exp_tasks == NULL &&
7922cd0e
PM
3497 READ_ONCE(rnp->expmask) == 0;
3498}
3499
3500/*
3501 * Report the exit from RCU read-side critical section for the last task
3502 * that queued itself during or before the current expedited preemptible-RCU
3503 * grace period. This event is reported either to the rcu_node structure on
3504 * which the task was queued or to one of that rcu_node structure's ancestors,
3505 * recursively up the tree. (Calm down, calm down, we do the recursion
3506 * iteratively!)
3507 *
f6a12f34
PM
3508 * Caller must hold the rcu_state's exp_mutex and the specified rcu_node
3509 * structure's ->lock.
7922cd0e 3510 */
8203d6d0
PM
3511static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3512 bool wake, unsigned long flags)
3513 __releases(rnp->lock)
7922cd0e 3514{
7922cd0e
PM
3515 unsigned long mask;
3516
7922cd0e
PM
3517 for (;;) {
3518 if (!sync_rcu_preempt_exp_done(rnp)) {
8203d6d0
PM
3519 if (!rnp->expmask)
3520 rcu_initiate_boost(rnp, flags);
3521 else
67c583a7 3522 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
7922cd0e
PM
3523 break;
3524 }
3525 if (rnp->parent == NULL) {
67c583a7 3526 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
7922cd0e
PM
3527 if (wake) {
3528 smp_mb(); /* EGP done before wake_up(). */
abedf8e2 3529 swake_up(&rsp->expedited_wq);
7922cd0e
PM
3530 }
3531 break;
3532 }
3533 mask = rnp->grpmask;
67c583a7 3534 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */
7922cd0e 3535 rnp = rnp->parent;
2a67e741 3536 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */
8203d6d0 3537 WARN_ON_ONCE(!(rnp->expmask & mask));
7922cd0e
PM
3538 rnp->expmask &= ~mask;
3539 }
3540}
3541
8203d6d0
PM
3542/*
3543 * Report expedited quiescent state for specified node. This is a
3544 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3545 *
f6a12f34 3546 * Caller must hold the rcu_state's exp_mutex.
8203d6d0
PM
3547 */
3548static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3549 struct rcu_node *rnp, bool wake)
3550{
3551 unsigned long flags;
3552
2a67e741 3553 raw_spin_lock_irqsave_rcu_node(rnp, flags);
8203d6d0
PM
3554 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3555}
3556
3557/*
3558 * Report expedited quiescent state for multiple CPUs, all covered by the
f6a12f34
PM
3559 * specified leaf rcu_node structure. Caller must hold the rcu_state's
3560 * exp_mutex.
8203d6d0
PM
3561 */
3562static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3563 unsigned long mask, bool wake)
3564{
3565 unsigned long flags;
3566
2a67e741 3567 raw_spin_lock_irqsave_rcu_node(rnp, flags);
338b0f76 3568 if (!(rnp->expmask & mask)) {
67c583a7 3569 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
338b0f76
PM
3570 return;
3571 }
8203d6d0
PM
3572 rnp->expmask &= ~mask;
3573 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3574}
3575
3576/*
3577 * Report expedited quiescent state for specified rcu_data (CPU).
8203d6d0 3578 */
6587a23b
PM
3579static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3580 bool wake)
8203d6d0
PM
3581{
3582 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3583}
3584
29fd9309 3585/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
f6a12f34
PM
3586static bool sync_exp_work_done(struct rcu_state *rsp, atomic_long_t *stat,
3587 unsigned long s)
3d3b7db0 3588{
28f00767 3589 if (rcu_exp_gp_seq_done(rsp, s)) {
4f415302 3590 trace_rcu_exp_grace_period(rsp->name, s, TPS("done"));
385b73c0
PM
3591 /* Ensure test happens before caller kfree(). */
3592 smp_mb__before_atomic(); /* ^^^ */
3593 atomic_long_inc(stat);
385b73c0
PM
3594 return true;
3595 }
3596 return false;
3597}
3598
b09e5f86 3599/*
f6a12f34
PM
3600 * Funnel-lock acquisition for expedited grace periods. Returns true
3601 * if some other task completed an expedited grace period that this task
3602 * can piggy-back on, and with no mutex held. Otherwise, returns false
3603 * with the mutex held, indicating that the caller must actually do the
3604 * expedited grace period.
b09e5f86 3605 */
f6a12f34 3606static bool exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
b09e5f86 3607{
df5bd514 3608 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
f6a12f34 3609 struct rcu_node *rnp = rdp->mynode;
356051e1
PM
3610 struct rcu_node *rnp_root = rcu_get_root(rsp);
3611
3612 /* Low-contention fastpath. */
3613 if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) &&
3614 (rnp == rnp_root ||
3615 ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) &&
3616 !mutex_is_locked(&rsp->exp_mutex) &&
3617 mutex_trylock(&rsp->exp_mutex))
3618 goto fastpath;
b09e5f86
PM
3619
3620 /*
f6a12f34
PM
3621 * Each pass through the following loop works its way up
3622 * the rcu_node tree, returning if others have done the work or
3623 * otherwise falls through to acquire rsp->exp_mutex. The mapping
3624 * from CPU to rcu_node structure can be inexact, as it is just
3625 * promoting locality and is not strictly needed for correctness.
b09e5f86 3626 */
f6a12f34
PM
3627 for (; rnp != NULL; rnp = rnp->parent) {
3628 if (sync_exp_work_done(rsp, &rdp->exp_workdone1, s))
3629 return true;
3630
3631 /* Work not done, either wait here or go up. */
3632 spin_lock(&rnp->exp_lock);
3633 if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) {
3634
3635 /* Someone else doing GP, so wait for them. */
3636 spin_unlock(&rnp->exp_lock);
3637 trace_rcu_exp_funnel_lock(rsp->name, rnp->level,
3638 rnp->grplo, rnp->grphi,
3639 TPS("wait"));
3640 wait_event(rnp->exp_wq[(s >> 1) & 0x1],
3641 sync_exp_work_done(rsp,
3642 &rdp->exp_workdone2, s));
3643 return true;
bea2de44 3644 }
f6a12f34
PM
3645 rnp->exp_seq_rq = s; /* Followers can wait on us. */
3646 spin_unlock(&rnp->exp_lock);
3647 trace_rcu_exp_funnel_lock(rsp->name, rnp->level, rnp->grplo,
3648 rnp->grphi, TPS("nxtlvl"));
b09e5f86 3649 }
f6a12f34 3650 mutex_lock(&rsp->exp_mutex);
356051e1 3651fastpath:
f6a12f34
PM
3652 if (sync_exp_work_done(rsp, &rdp->exp_workdone3, s)) {
3653 mutex_unlock(&rsp->exp_mutex);
3654 return true;
3655 }
aff12cdf
PM
3656 rcu_exp_gp_seq_start(rsp);
3657 trace_rcu_exp_grace_period(rsp->name, s, TPS("start"));
f6a12f34 3658 return false;
b09e5f86
PM
3659}
3660
cf3620a6 3661/* Invoked on each online non-idle CPU for expedited quiescent state. */
338b0f76 3662static void sync_sched_exp_handler(void *data)
b09e5f86 3663{
338b0f76
PM
3664 struct rcu_data *rdp;
3665 struct rcu_node *rnp;
3666 struct rcu_state *rsp = data;
b09e5f86 3667
338b0f76
PM
3668 rdp = this_cpu_ptr(rsp->rda);
3669 rnp = rdp->mynode;
3670 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) ||
3671 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
3672 return;
28728dd3
PM
3673 if (rcu_is_cpu_rrupt_from_idle()) {
3674 rcu_report_exp_rdp(&rcu_sched_state,
3675 this_cpu_ptr(&rcu_sched_data), true);
3676 return;
3677 }
6587a23b
PM
3678 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3679 resched_cpu(smp_processor_id());
3d3b7db0
PM
3680}
3681
338b0f76
PM
3682/* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */
3683static void sync_sched_exp_online_cleanup(int cpu)
3684{
3685 struct rcu_data *rdp;
3686 int ret;
3687 struct rcu_node *rnp;
3688 struct rcu_state *rsp = &rcu_sched_state;
3689
3690 rdp = per_cpu_ptr(rsp->rda, cpu);
3691 rnp = rdp->mynode;
3692 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask))
3693 return;
3694 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0);
3695 WARN_ON_ONCE(ret);
3696}
3697
bce5fa12
PM
3698/*
3699 * Select the nodes that the upcoming expedited grace period needs
3700 * to wait for.
3701 */
dcdb8807
PM
3702static void sync_rcu_exp_select_cpus(struct rcu_state *rsp,
3703 smp_call_func_t func)
bce5fa12
PM
3704{
3705 int cpu;
3706 unsigned long flags;
3707 unsigned long mask;
3708 unsigned long mask_ofl_test;
3709 unsigned long mask_ofl_ipi;
6587a23b 3710 int ret;
bce5fa12
PM
3711 struct rcu_node *rnp;
3712
3713 sync_exp_reset_tree(rsp);
3714 rcu_for_each_leaf_node(rsp, rnp) {
2a67e741 3715 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bce5fa12
PM
3716
3717 /* Each pass checks a CPU for identity, offline, and idle. */
3718 mask_ofl_test = 0;
3719 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3720 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3721 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3722
3723 if (raw_smp_processor_id() == cpu ||
bce5fa12
PM
3724 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3725 mask_ofl_test |= rdp->grpmask;
3726 }
3727 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3728
3729 /*
3730 * Need to wait for any blocked tasks as well. Note that
3731 * additional blocking tasks will also block the expedited
3732 * GP until such time as the ->expmask bits are cleared.
3733 */
3734 if (rcu_preempt_has_tasks(rnp))
3735 rnp->exp_tasks = rnp->blkd_tasks.next;
67c583a7 3736 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
bce5fa12
PM
3737
3738 /* IPI the remaining CPUs for expedited quiescent state. */
3739 mask = 1;
3740 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3741 if (!(mask_ofl_ipi & mask))
3742 continue;
338b0f76 3743retry_ipi:
dcdb8807 3744 ret = smp_call_function_single(cpu, func, rsp, 0);
338b0f76 3745 if (!ret) {
6587a23b 3746 mask_ofl_ipi &= ~mask;
1307f214
PM
3747 continue;
3748 }
3749 /* Failed, raced with offline. */
3750 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3751 if (cpu_online(cpu) &&
3752 (rnp->expmask & mask)) {
67c583a7 3753 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1307f214
PM
3754 schedule_timeout_uninterruptible(1);
3755 if (cpu_online(cpu) &&
3756 (rnp->expmask & mask))
3757 goto retry_ipi;
3758 raw_spin_lock_irqsave_rcu_node(rnp, flags);
338b0f76 3759 }
1307f214
PM
3760 if (!(rnp->expmask & mask))
3761 mask_ofl_ipi &= ~mask;
67c583a7 3762 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
bce5fa12
PM
3763 }
3764 /* Report quiescent states for those that went offline. */
3765 mask_ofl_test |= mask_ofl_ipi;
3766 if (mask_ofl_test)
3767 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3768 }
3d3b7db0
PM
3769}
3770
cf3620a6
PM
3771static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3772{
3773 int cpu;
3774 unsigned long jiffies_stall;
3775 unsigned long jiffies_start;
bce5fa12 3776 unsigned long mask;
72611ab9 3777 int ndetected;
bce5fa12
PM
3778 struct rcu_node *rnp;
3779 struct rcu_node *rnp_root = rcu_get_root(rsp);
cf3620a6
PM
3780 int ret;
3781
3782 jiffies_stall = rcu_jiffies_till_stall_check();
3783 jiffies_start = jiffies;
3784
3785 for (;;) {
abedf8e2 3786 ret = swait_event_timeout(
cf3620a6 3787 rsp->expedited_wq,
bce5fa12 3788 sync_rcu_preempt_exp_done(rnp_root),
cf3620a6 3789 jiffies_stall);
73f36f9d 3790 if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root))
cf3620a6
PM
3791 return;
3792 if (ret < 0) {
3793 /* Hit a signal, disable CPU stall warnings. */
abedf8e2 3794 swait_event(rsp->expedited_wq,
bce5fa12 3795 sync_rcu_preempt_exp_done(rnp_root));
cf3620a6
PM
3796 return;
3797 }
c5865638 3798 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {",
cf3620a6 3799 rsp->name);
72611ab9 3800 ndetected = 0;
bce5fa12 3801 rcu_for_each_leaf_node(rsp, rnp) {
251c617c 3802 ndetected += rcu_print_task_exp_stall(rnp);
bce5fa12
PM
3803 mask = 1;
3804 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
74611ecb
PM
3805 struct rcu_data *rdp;
3806
bce5fa12
PM
3807 if (!(rnp->expmask & mask))
3808 continue;
72611ab9 3809 ndetected++;
74611ecb
PM
3810 rdp = per_cpu_ptr(rsp->rda, cpu);
3811 pr_cont(" %d-%c%c%c", cpu,
ec3833ed 3812 "O."[!!cpu_online(cpu)],
74611ecb
PM
3813 "o."[!!(rdp->grpmask & rnp->expmaskinit)],
3814 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]);
bce5fa12
PM
3815 }
3816 mask <<= 1;
cf3620a6 3817 }
72611ab9
PM
3818 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n",
3819 jiffies - jiffies_start, rsp->expedited_sequence,
3820 rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]);
251c617c 3821 if (ndetected) {
72611ab9
PM
3822 pr_err("blocking rcu_node structures:");
3823 rcu_for_each_node_breadth_first(rsp, rnp) {
3824 if (rnp == rnp_root)
3825 continue; /* printed unconditionally */
3826 if (sync_rcu_preempt_exp_done(rnp))
3827 continue;
3828 pr_cont(" l=%u:%d-%d:%#lx/%c",
3829 rnp->level, rnp->grplo, rnp->grphi,
3830 rnp->expmask,
3831 ".T"[!!rnp->exp_tasks]);
3832 }
3833 pr_cont("\n");
3834 }
bce5fa12
PM
3835 rcu_for_each_leaf_node(rsp, rnp) {
3836 mask = 1;
3837 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3838 if (!(rnp->expmask & mask))
3839 continue;
3840 dump_cpu_task(cpu);
3841 }
cf3620a6
PM
3842 }
3843 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3844 }
3845}
3846
f6a12f34 3847/*
4ea3e85b
PM
3848 * Wait for the current expedited grace period to complete, and then
3849 * wake up everyone who piggybacked on the just-completed expedited
f6a12f34
PM
3850 * grace period. Also update all the ->exp_seq_rq counters as needed
3851 * in order to avoid counter-wrap problems.
3852 */
4ea3e85b 3853static void rcu_exp_wait_wake(struct rcu_state *rsp, unsigned long s)
f6a12f34
PM
3854{
3855 struct rcu_node *rnp;
3856
4ea3e85b
PM
3857 synchronize_sched_expedited_wait(rsp);
3858 rcu_exp_gp_seq_end(rsp);
3859 trace_rcu_exp_grace_period(rsp->name, s, TPS("end"));
f6a12f34
PM
3860 rcu_for_each_node_breadth_first(rsp, rnp) {
3861 if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) {
3862 spin_lock(&rnp->exp_lock);
3863 /* Recheck, avoid hang in case someone just arrived. */
3864 if (ULONG_CMP_LT(rnp->exp_seq_rq, s))
3865 rnp->exp_seq_rq = s;
3866 spin_unlock(&rnp->exp_lock);
3867 }
3868 wake_up_all(&rnp->exp_wq[(rsp->expedited_sequence >> 1) & 0x1]);
3869 }
4ea3e85b
PM
3870 trace_rcu_exp_grace_period(rsp->name, s, TPS("endwake"));
3871 mutex_unlock(&rsp->exp_mutex);
f6a12f34
PM
3872}
3873
236fefaf
PM
3874/**
3875 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3876 *
3877 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3878 * approach to force the grace period to end quickly. This consumes
3879 * significant time on all CPUs and is unfriendly to real-time workloads,
3880 * so is thus not recommended for any sort of common-case code. In fact,
3881 * if you are using synchronize_sched_expedited() in a loop, please
3882 * restructure your code to batch your updates, and then use a single
3883 * synchronize_sched() instead.
3d3b7db0 3884 *
d6ada2cf
PM
3885 * This implementation can be thought of as an application of sequence
3886 * locking to expedited grace periods, but using the sequence counter to
3887 * determine when someone else has already done the work instead of for
385b73c0 3888 * retrying readers.
3d3b7db0
PM
3889 */
3890void synchronize_sched_expedited(void)
3891{
7fd0ddc5 3892 unsigned long s;
40694d66 3893 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3894
06f60de1
PM
3895 /* If only one CPU, this is automatically a grace period. */
3896 if (rcu_blocking_is_gp())
3897 return;
3898
5a9be7c6
PM
3899 /* If expedited grace periods are prohibited, fall back to normal. */
3900 if (rcu_gp_is_normal()) {
3901 wait_rcu_gp(call_rcu_sched);
3902 return;
3903 }
3904
d6ada2cf 3905 /* Take a snapshot of the sequence number. */
28f00767 3906 s = rcu_exp_gp_seq_snap(rsp);
f6a12f34 3907 if (exp_funnel_lock(rsp, s))
b09e5f86 3908 return; /* Someone else did our work for us. */
e0775cef 3909
f6a12f34 3910 /* Initialize the rcu_node tree in preparation for the wait. */
338b0f76 3911 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler);
e0775cef 3912
f6a12f34 3913 /* Wait and clean up, including waking everyone. */
4ea3e85b 3914 rcu_exp_wait_wake(rsp, s);
3d3b7db0
PM
3915}
3916EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3917
64db4cff
PM
3918/*
3919 * Check to see if there is any immediate RCU-related work to be done
3920 * by the current CPU, for the specified type of RCU, returning 1 if so.
3921 * The checks are in order of increasing expense: checks that can be
3922 * carried out against CPU-local state are performed first. However,
3923 * we must check for CPU stalls first, else we might not get a chance.
3924 */
3925static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3926{
2f51f988
PM
3927 struct rcu_node *rnp = rdp->mynode;
3928
64db4cff
PM
3929 rdp->n_rcu_pending++;
3930
3931 /* Check for CPU stalls, if enabled. */
3932 check_cpu_stall(rsp, rdp);
3933
a096932f
PM
3934 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3935 if (rcu_nohz_full_cpu(rsp))
3936 return 0;
3937
64db4cff 3938 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3939 if (rcu_scheduler_fully_active &&
5b74c458 3940 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
5cd37193 3941 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
97c668b8
PM
3942 rdp->n_rp_core_needs_qs++;
3943 } else if (rdp->core_needs_qs &&
5b74c458 3944 (!rdp->cpu_no_qs.b.norm ||
5cd37193 3945 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3946 rdp->n_rp_report_qs++;
64db4cff 3947 return 1;
7ba5c840 3948 }
64db4cff
PM
3949
3950 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3951 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3952 rdp->n_rp_cb_ready++;
64db4cff 3953 return 1;
7ba5c840 3954 }
64db4cff
PM
3955
3956 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3957 if (cpu_needs_another_gp(rsp, rdp)) {
3958 rdp->n_rp_cpu_needs_gp++;
64db4cff 3959 return 1;
7ba5c840 3960 }
64db4cff
PM
3961
3962 /* Has another RCU grace period completed? */
7d0ae808 3963 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3964 rdp->n_rp_gp_completed++;
64db4cff 3965 return 1;
7ba5c840 3966 }
64db4cff
PM
3967
3968 /* Has a new RCU grace period started? */
7d0ae808
PM
3969 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3970 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3971 rdp->n_rp_gp_started++;
64db4cff 3972 return 1;
7ba5c840 3973 }
64db4cff 3974
96d3fd0d
PM
3975 /* Does this CPU need a deferred NOCB wakeup? */
3976 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3977 rdp->n_rp_nocb_defer_wakeup++;
3978 return 1;
3979 }
3980
64db4cff 3981 /* nothing to do */
7ba5c840 3982 rdp->n_rp_need_nothing++;
64db4cff
PM
3983 return 0;
3984}
3985
3986/*
3987 * Check to see if there is any immediate RCU-related work to be done
3988 * by the current CPU, returning 1 if so. This function is part of the
3989 * RCU implementation; it is -not- an exported member of the RCU API.
3990 */
e3950ecd 3991static int rcu_pending(void)
64db4cff 3992{
6ce75a23
PM
3993 struct rcu_state *rsp;
3994
3995 for_each_rcu_flavor(rsp)
e3950ecd 3996 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3997 return 1;
3998 return 0;
64db4cff
PM
3999}
4000
4001/*
c0f4dfd4
PM
4002 * Return true if the specified CPU has any callback. If all_lazy is
4003 * non-NULL, store an indication of whether all callbacks are lazy.
4004 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 4005 */
82072c4f 4006static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 4007{
c0f4dfd4
PM
4008 bool al = true;
4009 bool hc = false;
4010 struct rcu_data *rdp;
6ce75a23
PM
4011 struct rcu_state *rsp;
4012
c0f4dfd4 4013 for_each_rcu_flavor(rsp) {
aa6da514 4014 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
4015 if (!rdp->nxtlist)
4016 continue;
4017 hc = true;
4018 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 4019 al = false;
69c8d28c
PM
4020 break;
4021 }
c0f4dfd4
PM
4022 }
4023 if (all_lazy)
4024 *all_lazy = al;
4025 return hc;
64db4cff
PM
4026}
4027
a83eff0a
PM
4028/*
4029 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
4030 * the compiler is expected to optimize this away.
4031 */
e66c33d5 4032static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
4033 int cpu, unsigned long done)
4034{
4035 trace_rcu_barrier(rsp->name, s, cpu,
4036 atomic_read(&rsp->barrier_cpu_count), done);
4037}
4038
b1420f1c
PM
4039/*
4040 * RCU callback function for _rcu_barrier(). If we are last, wake
4041 * up the task executing _rcu_barrier().
4042 */
24ebbca8 4043static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 4044{
24ebbca8
PM
4045 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
4046 struct rcu_state *rsp = rdp->rsp;
4047
a83eff0a 4048 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 4049 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 4050 complete(&rsp->barrier_completion);
a83eff0a 4051 } else {
4f525a52 4052 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 4053 }
d0ec774c
PM
4054}
4055
4056/*
4057 * Called with preemption disabled, and from cross-cpu IRQ context.
4058 */
4059static void rcu_barrier_func(void *type)
4060{
037b64ed 4061 struct rcu_state *rsp = type;
fa07a58f 4062 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 4063
4f525a52 4064 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 4065 atomic_inc(&rsp->barrier_cpu_count);
06668efa 4066 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
4067}
4068
d0ec774c
PM
4069/*
4070 * Orchestrate the specified type of RCU barrier, waiting for all
4071 * RCU callbacks of the specified type to complete.
4072 */
037b64ed 4073static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 4074{
b1420f1c 4075 int cpu;
b1420f1c 4076 struct rcu_data *rdp;
4f525a52 4077 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 4078
4f525a52 4079 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 4080
e74f4c45 4081 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 4082 mutex_lock(&rsp->barrier_mutex);
b1420f1c 4083
4f525a52
PM
4084 /* Did someone else do our work for us? */
4085 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
4086 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
4087 smp_mb(); /* caller's subsequent code after above check. */
4088 mutex_unlock(&rsp->barrier_mutex);
4089 return;
4090 }
4091
4f525a52
PM
4092 /* Mark the start of the barrier operation. */
4093 rcu_seq_start(&rsp->barrier_sequence);
4094 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 4095
d0ec774c 4096 /*
b1420f1c
PM
4097 * Initialize the count to one rather than to zero in order to
4098 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
4099 * (or preemption of this task). Exclude CPU-hotplug operations
4100 * to ensure that no offline CPU has callbacks queued.
d0ec774c 4101 */
7db74df8 4102 init_completion(&rsp->barrier_completion);
24ebbca8 4103 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 4104 get_online_cpus();
b1420f1c
PM
4105
4106 /*
1331e7a1
PM
4107 * Force each CPU with callbacks to register a new callback.
4108 * When that callback is invoked, we will know that all of the
4109 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 4110 */
3fbfbf7a 4111 for_each_possible_cpu(cpu) {
d1e43fa5 4112 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 4113 continue;
b1420f1c 4114 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 4115 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
4116 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
4117 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 4118 rsp->barrier_sequence);
d7e29933
PM
4119 } else {
4120 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 4121 rsp->barrier_sequence);
41050a00 4122 smp_mb__before_atomic();
d7e29933
PM
4123 atomic_inc(&rsp->barrier_cpu_count);
4124 __call_rcu(&rdp->barrier_head,
4125 rcu_barrier_callback, rsp, cpu, 0);
4126 }
7d0ae808 4127 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 4128 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 4129 rsp->barrier_sequence);
037b64ed 4130 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 4131 } else {
a83eff0a 4132 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 4133 rsp->barrier_sequence);
b1420f1c
PM
4134 }
4135 }
1331e7a1 4136 put_online_cpus();
b1420f1c
PM
4137
4138 /*
4139 * Now that we have an rcu_barrier_callback() callback on each
4140 * CPU, and thus each counted, remove the initial count.
4141 */
24ebbca8 4142 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 4143 complete(&rsp->barrier_completion);
b1420f1c
PM
4144
4145 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 4146 wait_for_completion(&rsp->barrier_completion);
b1420f1c 4147
4f525a52
PM
4148 /* Mark the end of the barrier operation. */
4149 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4150 rcu_seq_end(&rsp->barrier_sequence);
4151
b1420f1c 4152 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 4153 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 4154}
d0ec774c
PM
4155
4156/**
4157 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4158 */
4159void rcu_barrier_bh(void)
4160{
037b64ed 4161 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
4162}
4163EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4164
4165/**
4166 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4167 */
4168void rcu_barrier_sched(void)
4169{
037b64ed 4170 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
4171}
4172EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4173
0aa04b05
PM
4174/*
4175 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4176 * first CPU in a given leaf rcu_node structure coming online. The caller
4177 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4178 * disabled.
4179 */
4180static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4181{
4182 long mask;
4183 struct rcu_node *rnp = rnp_leaf;
4184
4185 for (;;) {
4186 mask = rnp->grpmask;
4187 rnp = rnp->parent;
4188 if (rnp == NULL)
4189 return;
6cf10081 4190 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 4191 rnp->qsmaskinit |= mask;
67c583a7 4192 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
4193 }
4194}
4195
64db4cff 4196/*
27569620 4197 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 4198 */
27569620
PM
4199static void __init
4200rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
4201{
4202 unsigned long flags;
394f99a9 4203 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
4204 struct rcu_node *rnp = rcu_get_root(rsp);
4205
4206 /* Set up local state, ensuring consistent view of global state. */
6cf10081 4207 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27569620 4208 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 4209 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 4210 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 4211 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 4212 rdp->cpu = cpu;
d4c08f2a 4213 rdp->rsp = rsp;
3fbfbf7a 4214 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 4215 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
4216}
4217
4218/*
4219 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4220 * offline event can be happening at a given time. Note also that we
4221 * can accept some slop in the rsp->completed access due to the fact
4222 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 4223 */
49fb4c62 4224static void
9b67122a 4225rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
4226{
4227 unsigned long flags;
64db4cff 4228 unsigned long mask;
394f99a9 4229 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
4230 struct rcu_node *rnp = rcu_get_root(rsp);
4231
4232 /* Set up local state, ensuring consistent view of global state. */
6cf10081 4233 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
4234 rdp->qlen_last_fqs_check = 0;
4235 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 4236 rdp->blimit = blimit;
39c8d313
PM
4237 if (!rdp->nxtlist)
4238 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 4239 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 4240 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
4241 atomic_set(&rdp->dynticks->dynticks,
4242 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
67c583a7 4243 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 4244
0aa04b05
PM
4245 /*
4246 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4247 * propagation up the rcu_node tree will happen at the beginning
4248 * of the next grace period.
4249 */
64db4cff
PM
4250 rnp = rdp->mynode;
4251 mask = rdp->grpmask;
2a67e741 4252 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
0aa04b05 4253 rnp->qsmaskinitnext |= mask;
b9585e94
PM
4254 rnp->expmaskinitnext |= mask;
4255 if (!rdp->beenonline)
4256 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4257 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
4258 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4259 rdp->completed = rnp->completed;
5b74c458 4260 rdp->cpu_no_qs.b.norm = true;
a738eec6 4261 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
97c668b8 4262 rdp->core_needs_qs = false;
0aa04b05 4263 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 4264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
4265}
4266
49fb4c62 4267static void rcu_prepare_cpu(int cpu)
64db4cff 4268{
6ce75a23
PM
4269 struct rcu_state *rsp;
4270
4271 for_each_rcu_flavor(rsp)
9b67122a 4272 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
4273}
4274
27d50c7e
TG
4275#ifdef CONFIG_HOTPLUG_CPU
4276/*
710d60cb
LT
4277 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4278 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4279 * bit masks.
27d50c7e
TG
4280 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
4281 * function. We now remove it from the rcu_node tree's ->qsmaskinit
4282 * bit masks.
4283 */
4284static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
4285{
4286 unsigned long flags;
4287 unsigned long mask;
4288 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
4289 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4290
4291 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4292 return;
4293
4294 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4295 mask = rdp->grpmask;
4296 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4297 rnp->qsmaskinitnext &= ~mask;
710d60cb 4298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
4299}
4300
4301void rcu_report_dead(unsigned int cpu)
4302{
4303 struct rcu_state *rsp;
4304
4305 /* QS for any half-done expedited RCU-sched GP. */
4306 preempt_disable();
4307 rcu_report_exp_rdp(&rcu_sched_state,
4308 this_cpu_ptr(rcu_sched_state.rda), true);
4309 preempt_enable();
4310 for_each_rcu_flavor(rsp)
4311 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4312}
4313#endif
4314
64db4cff 4315/*
f41d911f 4316 * Handle CPU online/offline notification events.
64db4cff 4317 */
88428cc5
PM
4318int rcu_cpu_notify(struct notifier_block *self,
4319 unsigned long action, void *hcpu)
64db4cff
PM
4320{
4321 long cpu = (long)hcpu;
e534165b 4322 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 4323 struct rcu_node *rnp = rdp->mynode;
6ce75a23 4324 struct rcu_state *rsp;
64db4cff
PM
4325
4326 switch (action) {
4327 case CPU_UP_PREPARE:
4328 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
4329 rcu_prepare_cpu(cpu);
4330 rcu_prepare_kthreads(cpu);
35ce7f29 4331 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
4332 break;
4333 case CPU_ONLINE:
0f962a5e 4334 case CPU_DOWN_FAILED:
338b0f76 4335 sync_sched_exp_online_cleanup(cpu);
5d01bbd1 4336 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
4337 break;
4338 case CPU_DOWN_PREPARE:
34ed6246 4339 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 4340 break;
d0ec774c
PM
4341 case CPU_DYING:
4342 case CPU_DYING_FROZEN:
6ce75a23
PM
4343 for_each_rcu_flavor(rsp)
4344 rcu_cleanup_dying_cpu(rsp);
d0ec774c 4345 break;
64db4cff
PM
4346 case CPU_DEAD:
4347 case CPU_DEAD_FROZEN:
4348 case CPU_UP_CANCELED:
4349 case CPU_UP_CANCELED_FROZEN:
776d6807 4350 for_each_rcu_flavor(rsp) {
6ce75a23 4351 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
4352 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4353 }
64db4cff
PM
4354 break;
4355 default:
4356 break;
4357 }
34ed6246 4358 return NOTIFY_OK;
64db4cff
PM
4359}
4360
d1d74d14
BP
4361static int rcu_pm_notify(struct notifier_block *self,
4362 unsigned long action, void *hcpu)
4363{
4364 switch (action) {
4365 case PM_HIBERNATION_PREPARE:
4366 case PM_SUSPEND_PREPARE:
4367 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4368 rcu_expedite_gp();
d1d74d14
BP
4369 break;
4370 case PM_POST_HIBERNATION:
4371 case PM_POST_SUSPEND:
5afff48b
PM
4372 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4373 rcu_unexpedite_gp();
d1d74d14
BP
4374 break;
4375 default:
4376 break;
4377 }
4378 return NOTIFY_OK;
4379}
4380
b3dbec76 4381/*
9386c0b7 4382 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4383 */
4384static int __init rcu_spawn_gp_kthread(void)
4385{
4386 unsigned long flags;
a94844b2 4387 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4388 struct rcu_node *rnp;
4389 struct rcu_state *rsp;
a94844b2 4390 struct sched_param sp;
b3dbec76
PM
4391 struct task_struct *t;
4392
a94844b2
PM
4393 /* Force priority into range. */
4394 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4395 kthread_prio = 1;
4396 else if (kthread_prio < 0)
4397 kthread_prio = 0;
4398 else if (kthread_prio > 99)
4399 kthread_prio = 99;
4400 if (kthread_prio != kthread_prio_in)
4401 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4402 kthread_prio, kthread_prio_in);
4403
9386c0b7 4404 rcu_scheduler_fully_active = 1;
b3dbec76 4405 for_each_rcu_flavor(rsp) {
a94844b2 4406 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4407 BUG_ON(IS_ERR(t));
4408 rnp = rcu_get_root(rsp);
6cf10081 4409 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 4410 rsp->gp_kthread = t;
a94844b2
PM
4411 if (kthread_prio) {
4412 sp.sched_priority = kthread_prio;
4413 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4414 }
67c583a7 4415 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 4416 wake_up_process(t);
b3dbec76 4417 }
35ce7f29 4418 rcu_spawn_nocb_kthreads();
9386c0b7 4419 rcu_spawn_boost_kthreads();
b3dbec76
PM
4420 return 0;
4421}
4422early_initcall(rcu_spawn_gp_kthread);
4423
bbad9379
PM
4424/*
4425 * This function is invoked towards the end of the scheduler's initialization
4426 * process. Before this is called, the idle task might contain
4427 * RCU read-side critical sections (during which time, this idle
4428 * task is booting the system). After this function is called, the
4429 * idle tasks are prohibited from containing RCU read-side critical
4430 * sections. This function also enables RCU lockdep checking.
4431 */
4432void rcu_scheduler_starting(void)
4433{
4434 WARN_ON(num_online_cpus() != 1);
4435 WARN_ON(nr_context_switches() > 0);
4436 rcu_scheduler_active = 1;
4437}
4438
64db4cff
PM
4439/*
4440 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 4441 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 4442 */
199977bf 4443static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 4444{
64db4cff
PM
4445 int i;
4446
7fa27001 4447 if (rcu_fanout_exact) {
199977bf 4448 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 4449 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 4450 levelspread[i] = RCU_FANOUT;
66292405
PM
4451 } else {
4452 int ccur;
4453 int cprv;
4454
4455 cprv = nr_cpu_ids;
4456 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
4457 ccur = levelcnt[i];
4458 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
4459 cprv = ccur;
4460 }
64db4cff
PM
4461 }
4462}
64db4cff
PM
4463
4464/*
4465 * Helper function for rcu_init() that initializes one rcu_state structure.
4466 */
a87f203e 4467static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4468{
cb007102
AG
4469 static const char * const buf[] = RCU_NODE_NAME_INIT;
4470 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4471 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4472 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4a81e832 4473 static u8 fl_mask = 0x1;
199977bf
AG
4474
4475 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4476 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4477 int cpustride = 1;
4478 int i;
4479 int j;
4480 struct rcu_node *rnp;
4481
05b84aec 4482 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4483
3eaaaf6c
PM
4484 /* Silence gcc 4.8 false positive about array index out of range. */
4485 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4486 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4487
64db4cff
PM
4488 /* Initialize the level-tracking arrays. */
4489
f885b7f2 4490 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4491 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4492 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4493 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4494 rcu_init_levelspread(levelspread, levelcnt);
4a81e832
PM
4495 rsp->flavor_mask = fl_mask;
4496 fl_mask <<= 1;
64db4cff
PM
4497
4498 /* Initialize the elements themselves, starting from the leaves. */
4499
f885b7f2 4500 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4501 cpustride *= levelspread[i];
64db4cff 4502 rnp = rsp->level[i];
199977bf 4503 for (j = 0; j < levelcnt[i]; j++, rnp++) {
67c583a7
BF
4504 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4505 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4506 &rcu_node_class[i], buf[i]);
394f2769
PM
4507 raw_spin_lock_init(&rnp->fqslock);
4508 lockdep_set_class_and_name(&rnp->fqslock,
4509 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4510 rnp->gpnum = rsp->gpnum;
4511 rnp->completed = rsp->completed;
64db4cff
PM
4512 rnp->qsmask = 0;
4513 rnp->qsmaskinit = 0;
4514 rnp->grplo = j * cpustride;
4515 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4516 if (rnp->grphi >= nr_cpu_ids)
4517 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4518 if (i == 0) {
4519 rnp->grpnum = 0;
4520 rnp->grpmask = 0;
4521 rnp->parent = NULL;
4522 } else {
199977bf 4523 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4524 rnp->grpmask = 1UL << rnp->grpnum;
4525 rnp->parent = rsp->level[i - 1] +
199977bf 4526 j / levelspread[i - 1];
64db4cff
PM
4527 }
4528 rnp->level = i;
12f5f524 4529 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4530 rcu_init_one_nocb(rnp);
f6a12f34
PM
4531 init_waitqueue_head(&rnp->exp_wq[0]);
4532 init_waitqueue_head(&rnp->exp_wq[1]);
4533 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4534 }
4535 }
0c34029a 4536
abedf8e2
PG
4537 init_swait_queue_head(&rsp->gp_wq);
4538 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4539 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4540 for_each_possible_cpu(i) {
4a90a068 4541 while (i > rnp->grphi)
0c34029a 4542 rnp++;
394f99a9 4543 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4544 rcu_boot_init_percpu_data(i, rsp);
4545 }
6ce75a23 4546 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4547}
4548
f885b7f2
PM
4549/*
4550 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4551 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4552 * the ->node array in the rcu_state structure.
4553 */
4554static void __init rcu_init_geometry(void)
4555{
026ad283 4556 ulong d;
f885b7f2 4557 int i;
05b84aec 4558 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4559
026ad283
PM
4560 /*
4561 * Initialize any unspecified boot parameters.
4562 * The default values of jiffies_till_first_fqs and
4563 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4564 * value, which is a function of HZ, then adding one for each
4565 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4566 */
4567 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4568 if (jiffies_till_first_fqs == ULONG_MAX)
4569 jiffies_till_first_fqs = d;
4570 if (jiffies_till_next_fqs == ULONG_MAX)
4571 jiffies_till_next_fqs = d;
4572
f885b7f2 4573 /* If the compile-time values are accurate, just leave. */
47d631af 4574 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4575 nr_cpu_ids == NR_CPUS)
f885b7f2 4576 return;
39479098
PM
4577 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4578 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4579
f885b7f2 4580 /*
ee968ac6
PM
4581 * The boot-time rcu_fanout_leaf parameter must be at least two
4582 * and cannot exceed the number of bits in the rcu_node masks.
4583 * Complain and fall back to the compile-time values if this
4584 * limit is exceeded.
f885b7f2 4585 */
ee968ac6 4586 if (rcu_fanout_leaf < 2 ||
75cf15a4 4587 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4588 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4589 WARN_ON(1);
4590 return;
4591 }
4592
f885b7f2
PM
4593 /*
4594 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4595 * with the given number of levels.
f885b7f2 4596 */
9618138b 4597 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4598 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4599 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4600
4601 /*
75cf15a4 4602 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4603 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4604 */
ee968ac6
PM
4605 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4606 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4607 WARN_ON(1);
4608 return;
4609 }
f885b7f2 4610
679f9858 4611 /* Calculate the number of levels in the tree. */
9618138b 4612 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4613 }
9618138b 4614 rcu_num_lvls = i + 1;
679f9858 4615
f885b7f2 4616 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4617 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4618 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4619 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4620 }
f885b7f2
PM
4621
4622 /* Calculate the total number of rcu_node structures. */
4623 rcu_num_nodes = 0;
679f9858 4624 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4625 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4626}
4627
a3dc2948
PM
4628/*
4629 * Dump out the structure of the rcu_node combining tree associated
4630 * with the rcu_state structure referenced by rsp.
4631 */
4632static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4633{
4634 int level = 0;
4635 struct rcu_node *rnp;
4636
4637 pr_info("rcu_node tree layout dump\n");
4638 pr_info(" ");
4639 rcu_for_each_node_breadth_first(rsp, rnp) {
4640 if (rnp->level != level) {
4641 pr_cont("\n");
4642 pr_info(" ");
4643 level = rnp->level;
4644 }
4645 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4646 }
4647 pr_cont("\n");
4648}
4649
9f680ab4 4650void __init rcu_init(void)
64db4cff 4651{
017c4261 4652 int cpu;
9f680ab4 4653
47627678
PM
4654 rcu_early_boot_tests();
4655
f41d911f 4656 rcu_bootup_announce();
f885b7f2 4657 rcu_init_geometry();
a87f203e
PM
4658 rcu_init_one(&rcu_bh_state);
4659 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4660 if (dump_tree)
4661 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4662 __rcu_init_preempt();
b5b39360 4663 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4664
4665 /*
4666 * We don't need protection against CPU-hotplug here because
4667 * this is called early in boot, before either interrupts
4668 * or the scheduler are operational.
4669 */
4670 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4671 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4672 for_each_online_cpu(cpu)
4673 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
4674}
4675
4102adab 4676#include "tree_plugin.h"
This page took 0.777605 seconds and 5 git commands to generate.