rcu: Bind grace-period kthreads to non-NO_HZ_FULL CPUs
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a41bfeb2 82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
83static char sname##_varname[] = #sname; \
84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 85struct rcu_state sname##_state = { \
6c90cc7b 86 .level = { &sname##_state.node[0] }, \
037b64ed 87 .call = cr, \
af446b70 88 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
7b2e6011 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 96 .name = sname##_varname, \
a4889858 97 .abbr = sabbr, \
a41bfeb2
SRRH
98}; \
99DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 100
a41bfeb2
SRRH
101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 103
e534165b 104static struct rcu_state *rcu_state_p;
6ce75a23 105LIST_HEAD(rcu_struct_flavors);
27f4d280 106
f885b7f2
PM
107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 109module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117};
118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
b0d30417
PM
120/*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 124 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
bbad9379
PM
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
b0d30417
PM
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
a46e0899
PM
146#ifdef CONFIG_RCU_BOOST
147
a26ac245
PM
148/*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 156
a46e0899
PM
157#endif /* #ifdef CONFIG_RCU_BOOST */
158
5d01bbd1 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
160static void invoke_rcu_core(void);
161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 162
4a298656
PM
163/*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172unsigned long rcutorture_testseq;
173unsigned long rcutorture_vernum;
174
fc2219d4
PM
175/*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180static int rcu_gp_in_progress(struct rcu_state *rsp)
181{
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183}
184
b1f77b05 185/*
d6714c22 186 * Note a quiescent state. Because we do not need to know
b1f77b05 187 * how many quiescent states passed, just if there was at least
d6714c22 188 * one since the start of the grace period, this just sets a flag.
e4cc1f22 189 * The caller must have disabled preemption.
b1f77b05 190 */
d6714c22 191void rcu_sched_qs(int cpu)
b1f77b05 192{
25502a6c 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 194
e4cc1f22 195 if (rdp->passed_quiesce == 0)
f7f7bac9 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 197 rdp->passed_quiesce = 1;
b1f77b05
IM
198}
199
d6714c22 200void rcu_bh_qs(int cpu)
b1f77b05 201{
25502a6c 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 203
e4cc1f22 204 if (rdp->passed_quiesce == 0)
f7f7bac9 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 206 rdp->passed_quiesce = 1;
b1f77b05 207}
64db4cff 208
4a81e832
PM
209static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
210
211static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
212 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
213 .dynticks = ATOMIC_INIT(1),
214#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
215 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
216 .dynticks_idle = ATOMIC_INIT(1),
217#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
218};
219
220/*
221 * Let the RCU core know that this CPU has gone through the scheduler,
222 * which is a quiescent state. This is called when the need for a
223 * quiescent state is urgent, so we burn an atomic operation and full
224 * memory barriers to let the RCU core know about it, regardless of what
225 * this CPU might (or might not) do in the near future.
226 *
227 * We inform the RCU core by emulating a zero-duration dyntick-idle
228 * period, which we in turn do by incrementing the ->dynticks counter
229 * by two.
230 */
231static void rcu_momentary_dyntick_idle(void)
232{
233 unsigned long flags;
234 struct rcu_data *rdp;
235 struct rcu_dynticks *rdtp;
236 int resched_mask;
237 struct rcu_state *rsp;
238
239 local_irq_save(flags);
240
241 /*
242 * Yes, we can lose flag-setting operations. This is OK, because
243 * the flag will be set again after some delay.
244 */
245 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
246 raw_cpu_write(rcu_sched_qs_mask, 0);
247
248 /* Find the flavor that needs a quiescent state. */
249 for_each_rcu_flavor(rsp) {
250 rdp = raw_cpu_ptr(rsp->rda);
251 if (!(resched_mask & rsp->flavor_mask))
252 continue;
253 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
254 if (ACCESS_ONCE(rdp->mynode->completed) !=
255 ACCESS_ONCE(rdp->cond_resched_completed))
256 continue;
257
258 /*
259 * Pretend to be momentarily idle for the quiescent state.
260 * This allows the grace-period kthread to record the
261 * quiescent state, with no need for this CPU to do anything
262 * further.
263 */
264 rdtp = this_cpu_ptr(&rcu_dynticks);
265 smp_mb__before_atomic(); /* Earlier stuff before QS. */
266 atomic_add(2, &rdtp->dynticks); /* QS. */
267 smp_mb__after_atomic(); /* Later stuff after QS. */
268 break;
269 }
270 local_irq_restore(flags);
271}
272
25502a6c
PM
273/*
274 * Note a context switch. This is a quiescent state for RCU-sched,
275 * and requires special handling for preemptible RCU.
e4cc1f22 276 * The caller must have disabled preemption.
25502a6c
PM
277 */
278void rcu_note_context_switch(int cpu)
279{
f7f7bac9 280 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 281 rcu_sched_qs(cpu);
cba6d0d6 282 rcu_preempt_note_context_switch(cpu);
4a81e832
PM
283 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
284 rcu_momentary_dyntick_idle();
f7f7bac9 285 trace_rcu_utilization(TPS("End context switch"));
25502a6c 286}
29ce8310 287EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 288
878d7439
ED
289static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
290static long qhimark = 10000; /* If this many pending, ignore blimit. */
291static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 292
878d7439
ED
293module_param(blimit, long, 0444);
294module_param(qhimark, long, 0444);
295module_param(qlowmark, long, 0444);
3d76c082 296
026ad283
PM
297static ulong jiffies_till_first_fqs = ULONG_MAX;
298static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
299
300module_param(jiffies_till_first_fqs, ulong, 0644);
301module_param(jiffies_till_next_fqs, ulong, 0644);
302
4a81e832
PM
303/*
304 * How long the grace period must be before we start recruiting
305 * quiescent-state help from rcu_note_context_switch().
306 */
307static ulong jiffies_till_sched_qs = HZ / 20;
308module_param(jiffies_till_sched_qs, ulong, 0644);
309
48a7639c 310static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 311 struct rcu_data *rdp);
217af2a2
PM
312static void force_qs_rnp(struct rcu_state *rsp,
313 int (*f)(struct rcu_data *rsp, bool *isidle,
314 unsigned long *maxj),
315 bool *isidle, unsigned long *maxj);
4cdfc175 316static void force_quiescent_state(struct rcu_state *rsp);
a157229c 317static int rcu_pending(int cpu);
64db4cff
PM
318
319/*
d6714c22 320 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 321 */
d6714c22 322long rcu_batches_completed_sched(void)
64db4cff 323{
d6714c22 324 return rcu_sched_state.completed;
64db4cff 325}
d6714c22 326EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
327
328/*
329 * Return the number of RCU BH batches processed thus far for debug & stats.
330 */
331long rcu_batches_completed_bh(void)
332{
333 return rcu_bh_state.completed;
334}
335EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
336
a381d757
ACB
337/*
338 * Force a quiescent state.
339 */
340void rcu_force_quiescent_state(void)
341{
e534165b 342 force_quiescent_state(rcu_state_p);
a381d757
ACB
343}
344EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
345
bf66f18e
PM
346/*
347 * Force a quiescent state for RCU BH.
348 */
349void rcu_bh_force_quiescent_state(void)
350{
4cdfc175 351 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
352}
353EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
354
afea227f
PM
355/*
356 * Show the state of the grace-period kthreads.
357 */
358void show_rcu_gp_kthreads(void)
359{
360 struct rcu_state *rsp;
361
362 for_each_rcu_flavor(rsp) {
363 pr_info("%s: wait state: %d ->state: %#lx\n",
364 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
365 /* sched_show_task(rsp->gp_kthread); */
366 }
367}
368EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
369
4a298656
PM
370/*
371 * Record the number of times rcutorture tests have been initiated and
372 * terminated. This information allows the debugfs tracing stats to be
373 * correlated to the rcutorture messages, even when the rcutorture module
374 * is being repeatedly loaded and unloaded. In other words, we cannot
375 * store this state in rcutorture itself.
376 */
377void rcutorture_record_test_transition(void)
378{
379 rcutorture_testseq++;
380 rcutorture_vernum = 0;
381}
382EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
383
ad0dc7f9
PM
384/*
385 * Send along grace-period-related data for rcutorture diagnostics.
386 */
387void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
388 unsigned long *gpnum, unsigned long *completed)
389{
390 struct rcu_state *rsp = NULL;
391
392 switch (test_type) {
393 case RCU_FLAVOR:
e534165b 394 rsp = rcu_state_p;
ad0dc7f9
PM
395 break;
396 case RCU_BH_FLAVOR:
397 rsp = &rcu_bh_state;
398 break;
399 case RCU_SCHED_FLAVOR:
400 rsp = &rcu_sched_state;
401 break;
402 default:
403 break;
404 }
405 if (rsp != NULL) {
406 *flags = ACCESS_ONCE(rsp->gp_flags);
407 *gpnum = ACCESS_ONCE(rsp->gpnum);
408 *completed = ACCESS_ONCE(rsp->completed);
409 return;
410 }
411 *flags = 0;
412 *gpnum = 0;
413 *completed = 0;
414}
415EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
416
4a298656
PM
417/*
418 * Record the number of writer passes through the current rcutorture test.
419 * This is also used to correlate debugfs tracing stats with the rcutorture
420 * messages.
421 */
422void rcutorture_record_progress(unsigned long vernum)
423{
424 rcutorture_vernum++;
425}
426EXPORT_SYMBOL_GPL(rcutorture_record_progress);
427
bf66f18e
PM
428/*
429 * Force a quiescent state for RCU-sched.
430 */
431void rcu_sched_force_quiescent_state(void)
432{
4cdfc175 433 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
434}
435EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
436
64db4cff
PM
437/*
438 * Does the CPU have callbacks ready to be invoked?
439 */
440static int
441cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
442{
3fbfbf7a
PM
443 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
444 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
445}
446
365187fb
PM
447/*
448 * Return the root node of the specified rcu_state structure.
449 */
450static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
451{
452 return &rsp->node[0];
453}
454
455/*
456 * Is there any need for future grace periods?
457 * Interrupts must be disabled. If the caller does not hold the root
458 * rnp_node structure's ->lock, the results are advisory only.
459 */
460static int rcu_future_needs_gp(struct rcu_state *rsp)
461{
462 struct rcu_node *rnp = rcu_get_root(rsp);
463 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
464 int *fp = &rnp->need_future_gp[idx];
465
466 return ACCESS_ONCE(*fp);
467}
468
64db4cff 469/*
dc35c893
PM
470 * Does the current CPU require a not-yet-started grace period?
471 * The caller must have disabled interrupts to prevent races with
472 * normal callback registry.
64db4cff
PM
473 */
474static int
475cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
476{
dc35c893 477 int i;
3fbfbf7a 478
dc35c893
PM
479 if (rcu_gp_in_progress(rsp))
480 return 0; /* No, a grace period is already in progress. */
365187fb 481 if (rcu_future_needs_gp(rsp))
34ed6246 482 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
483 if (!rdp->nxttail[RCU_NEXT_TAIL])
484 return 0; /* No, this is a no-CBs (or offline) CPU. */
485 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
486 return 1; /* Yes, this CPU has newly registered callbacks. */
487 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
488 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
489 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
490 rdp->nxtcompleted[i]))
491 return 1; /* Yes, CBs for future grace period. */
492 return 0; /* No grace period needed. */
64db4cff
PM
493}
494
9b2e4f18 495/*
adf5091e 496 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
497 *
498 * If the new value of the ->dynticks_nesting counter now is zero,
499 * we really have entered idle, and must do the appropriate accounting.
500 * The caller must have disabled interrupts.
501 */
adf5091e
FW
502static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
503 bool user)
9b2e4f18 504{
96d3fd0d
PM
505 struct rcu_state *rsp;
506 struct rcu_data *rdp;
507
f7f7bac9 508 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 509 if (!user && !is_idle_task(current)) {
289828e6
PM
510 struct task_struct *idle __maybe_unused =
511 idle_task(smp_processor_id());
0989cb46 512
f7f7bac9 513 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 514 ftrace_dump(DUMP_ORIG);
0989cb46
PM
515 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
516 current->pid, current->comm,
517 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 518 }
96d3fd0d
PM
519 for_each_rcu_flavor(rsp) {
520 rdp = this_cpu_ptr(rsp->rda);
521 do_nocb_deferred_wakeup(rdp);
522 }
aea1b35e 523 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18 524 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 525 smp_mb__before_atomic(); /* See above. */
9b2e4f18 526 atomic_inc(&rdtp->dynticks);
4e857c58 527 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 528 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
529
530 /*
adf5091e 531 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
532 * in an RCU read-side critical section.
533 */
534 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
535 "Illegal idle entry in RCU read-side critical section.");
536 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
537 "Illegal idle entry in RCU-bh read-side critical section.");
538 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
539 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 540}
64db4cff 541
adf5091e
FW
542/*
543 * Enter an RCU extended quiescent state, which can be either the
544 * idle loop or adaptive-tickless usermode execution.
64db4cff 545 */
adf5091e 546static void rcu_eqs_enter(bool user)
64db4cff 547{
4145fa7f 548 long long oldval;
64db4cff
PM
549 struct rcu_dynticks *rdtp;
550
c9d4b0af 551 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 552 oldval = rdtp->dynticks_nesting;
29e37d81 553 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 554 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 555 rdtp->dynticks_nesting = 0;
3a592405
PM
556 rcu_eqs_enter_common(rdtp, oldval, user);
557 } else {
29e37d81 558 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 559 }
64db4cff 560}
adf5091e
FW
561
562/**
563 * rcu_idle_enter - inform RCU that current CPU is entering idle
564 *
565 * Enter idle mode, in other words, -leave- the mode in which RCU
566 * read-side critical sections can occur. (Though RCU read-side
567 * critical sections can occur in irq handlers in idle, a possibility
568 * handled by irq_enter() and irq_exit().)
569 *
570 * We crowbar the ->dynticks_nesting field to zero to allow for
571 * the possibility of usermode upcalls having messed up our count
572 * of interrupt nesting level during the prior busy period.
573 */
574void rcu_idle_enter(void)
575{
c5d900bf
FW
576 unsigned long flags;
577
578 local_irq_save(flags);
cb349ca9 579 rcu_eqs_enter(false);
c9d4b0af 580 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 581 local_irq_restore(flags);
adf5091e 582}
8a2ecf47 583EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 584
2b1d5024 585#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
586/**
587 * rcu_user_enter - inform RCU that we are resuming userspace.
588 *
589 * Enter RCU idle mode right before resuming userspace. No use of RCU
590 * is permitted between this call and rcu_user_exit(). This way the
591 * CPU doesn't need to maintain the tick for RCU maintenance purposes
592 * when the CPU runs in userspace.
593 */
594void rcu_user_enter(void)
595{
91d1aa43 596 rcu_eqs_enter(1);
adf5091e 597}
2b1d5024 598#endif /* CONFIG_RCU_USER_QS */
19dd1591 599
9b2e4f18
PM
600/**
601 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
602 *
603 * Exit from an interrupt handler, which might possibly result in entering
604 * idle mode, in other words, leaving the mode in which read-side critical
605 * sections can occur.
64db4cff 606 *
9b2e4f18
PM
607 * This code assumes that the idle loop never does anything that might
608 * result in unbalanced calls to irq_enter() and irq_exit(). If your
609 * architecture violates this assumption, RCU will give you what you
610 * deserve, good and hard. But very infrequently and irreproducibly.
611 *
612 * Use things like work queues to work around this limitation.
613 *
614 * You have been warned.
64db4cff 615 */
9b2e4f18 616void rcu_irq_exit(void)
64db4cff
PM
617{
618 unsigned long flags;
4145fa7f 619 long long oldval;
64db4cff
PM
620 struct rcu_dynticks *rdtp;
621
622 local_irq_save(flags);
c9d4b0af 623 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 624 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
625 rdtp->dynticks_nesting--;
626 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 627 if (rdtp->dynticks_nesting)
f7f7bac9 628 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 629 else
cb349ca9 630 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 631 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
632 local_irq_restore(flags);
633}
634
635/*
adf5091e 636 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
637 *
638 * If the new value of the ->dynticks_nesting counter was previously zero,
639 * we really have exited idle, and must do the appropriate accounting.
640 * The caller must have disabled interrupts.
641 */
adf5091e
FW
642static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
643 int user)
9b2e4f18 644{
4e857c58 645 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
646 atomic_inc(&rdtp->dynticks);
647 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 648 smp_mb__after_atomic(); /* See above. */
23b5c8fa 649 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 650 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 651 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 652 if (!user && !is_idle_task(current)) {
289828e6
PM
653 struct task_struct *idle __maybe_unused =
654 idle_task(smp_processor_id());
0989cb46 655
f7f7bac9 656 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 657 oldval, rdtp->dynticks_nesting);
bf1304e9 658 ftrace_dump(DUMP_ORIG);
0989cb46
PM
659 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
660 current->pid, current->comm,
661 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
662 }
663}
664
adf5091e
FW
665/*
666 * Exit an RCU extended quiescent state, which can be either the
667 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 668 */
adf5091e 669static void rcu_eqs_exit(bool user)
9b2e4f18 670{
9b2e4f18
PM
671 struct rcu_dynticks *rdtp;
672 long long oldval;
673
c9d4b0af 674 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 675 oldval = rdtp->dynticks_nesting;
29e37d81 676 WARN_ON_ONCE(oldval < 0);
3a592405 677 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 678 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 679 } else {
29e37d81 680 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3a592405
PM
681 rcu_eqs_exit_common(rdtp, oldval, user);
682 }
9b2e4f18 683}
adf5091e
FW
684
685/**
686 * rcu_idle_exit - inform RCU that current CPU is leaving idle
687 *
688 * Exit idle mode, in other words, -enter- the mode in which RCU
689 * read-side critical sections can occur.
690 *
691 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
692 * allow for the possibility of usermode upcalls messing up our count
693 * of interrupt nesting level during the busy period that is just
694 * now starting.
695 */
696void rcu_idle_exit(void)
697{
c5d900bf
FW
698 unsigned long flags;
699
700 local_irq_save(flags);
cb349ca9 701 rcu_eqs_exit(false);
c9d4b0af 702 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 703 local_irq_restore(flags);
adf5091e 704}
8a2ecf47 705EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 706
2b1d5024 707#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
708/**
709 * rcu_user_exit - inform RCU that we are exiting userspace.
710 *
711 * Exit RCU idle mode while entering the kernel because it can
712 * run a RCU read side critical section anytime.
713 */
714void rcu_user_exit(void)
715{
91d1aa43 716 rcu_eqs_exit(1);
adf5091e 717}
2b1d5024 718#endif /* CONFIG_RCU_USER_QS */
19dd1591 719
9b2e4f18
PM
720/**
721 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
722 *
723 * Enter an interrupt handler, which might possibly result in exiting
724 * idle mode, in other words, entering the mode in which read-side critical
725 * sections can occur.
726 *
727 * Note that the Linux kernel is fully capable of entering an interrupt
728 * handler that it never exits, for example when doing upcalls to
729 * user mode! This code assumes that the idle loop never does upcalls to
730 * user mode. If your architecture does do upcalls from the idle loop (or
731 * does anything else that results in unbalanced calls to the irq_enter()
732 * and irq_exit() functions), RCU will give you what you deserve, good
733 * and hard. But very infrequently and irreproducibly.
734 *
735 * Use things like work queues to work around this limitation.
736 *
737 * You have been warned.
738 */
739void rcu_irq_enter(void)
740{
741 unsigned long flags;
742 struct rcu_dynticks *rdtp;
743 long long oldval;
744
745 local_irq_save(flags);
c9d4b0af 746 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
747 oldval = rdtp->dynticks_nesting;
748 rdtp->dynticks_nesting++;
749 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 750 if (oldval)
f7f7bac9 751 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 752 else
cb349ca9 753 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 754 rcu_sysidle_exit(rdtp, 1);
64db4cff 755 local_irq_restore(flags);
64db4cff
PM
756}
757
758/**
759 * rcu_nmi_enter - inform RCU of entry to NMI context
760 *
761 * If the CPU was idle with dynamic ticks active, and there is no
762 * irq handler running, this updates rdtp->dynticks_nmi to let the
763 * RCU grace-period handling know that the CPU is active.
764 */
765void rcu_nmi_enter(void)
766{
c9d4b0af 767 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 768
23b5c8fa
PM
769 if (rdtp->dynticks_nmi_nesting == 0 &&
770 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 771 return;
23b5c8fa 772 rdtp->dynticks_nmi_nesting++;
4e857c58 773 smp_mb__before_atomic(); /* Force delay from prior write. */
23b5c8fa
PM
774 atomic_inc(&rdtp->dynticks);
775 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 776 smp_mb__after_atomic(); /* See above. */
23b5c8fa 777 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
778}
779
780/**
781 * rcu_nmi_exit - inform RCU of exit from NMI context
782 *
783 * If the CPU was idle with dynamic ticks active, and there is no
784 * irq handler running, this updates rdtp->dynticks_nmi to let the
785 * RCU grace-period handling know that the CPU is no longer active.
786 */
787void rcu_nmi_exit(void)
788{
c9d4b0af 789 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 790
23b5c8fa
PM
791 if (rdtp->dynticks_nmi_nesting == 0 ||
792 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 793 return;
23b5c8fa 794 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 795 smp_mb__before_atomic(); /* See above. */
23b5c8fa 796 atomic_inc(&rdtp->dynticks);
4e857c58 797 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 798 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
799}
800
801/**
5c173eb8
PM
802 * __rcu_is_watching - are RCU read-side critical sections safe?
803 *
804 * Return true if RCU is watching the running CPU, which means that
805 * this CPU can safely enter RCU read-side critical sections. Unlike
806 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
807 * least disabled preemption.
808 */
9418fb20 809bool notrace __rcu_is_watching(void)
5c173eb8
PM
810{
811 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
812}
813
814/**
815 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 816 *
9b2e4f18 817 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 818 * or NMI handler, return true.
64db4cff 819 */
9418fb20 820bool notrace rcu_is_watching(void)
64db4cff 821{
34240697
PM
822 int ret;
823
824 preempt_disable();
5c173eb8 825 ret = __rcu_is_watching();
34240697
PM
826 preempt_enable();
827 return ret;
64db4cff 828}
5c173eb8 829EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 830
62fde6ed 831#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
832
833/*
834 * Is the current CPU online? Disable preemption to avoid false positives
835 * that could otherwise happen due to the current CPU number being sampled,
836 * this task being preempted, its old CPU being taken offline, resuming
837 * on some other CPU, then determining that its old CPU is now offline.
838 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
839 * the check for rcu_scheduler_fully_active. Note also that it is OK
840 * for a CPU coming online to use RCU for one jiffy prior to marking itself
841 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
842 * offline to continue to use RCU for one jiffy after marking itself
843 * offline in the cpu_online_mask. This leniency is necessary given the
844 * non-atomic nature of the online and offline processing, for example,
845 * the fact that a CPU enters the scheduler after completing the CPU_DYING
846 * notifiers.
847 *
848 * This is also why RCU internally marks CPUs online during the
849 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
850 *
851 * Disable checking if in an NMI handler because we cannot safely report
852 * errors from NMI handlers anyway.
853 */
854bool rcu_lockdep_current_cpu_online(void)
855{
2036d94a
PM
856 struct rcu_data *rdp;
857 struct rcu_node *rnp;
c0d6d01b
PM
858 bool ret;
859
860 if (in_nmi())
f6f7ee9a 861 return true;
c0d6d01b 862 preempt_disable();
c9d4b0af 863 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
864 rnp = rdp->mynode;
865 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
866 !rcu_scheduler_fully_active;
867 preempt_enable();
868 return ret;
869}
870EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
871
62fde6ed 872#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 873
64db4cff 874/**
9b2e4f18 875 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 876 *
9b2e4f18
PM
877 * If the current CPU is idle or running at a first-level (not nested)
878 * interrupt from idle, return true. The caller must have at least
879 * disabled preemption.
64db4cff 880 */
62e3cb14 881static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 882{
c9d4b0af 883 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
884}
885
64db4cff
PM
886/*
887 * Snapshot the specified CPU's dynticks counter so that we can later
888 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 889 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 890 */
217af2a2
PM
891static int dyntick_save_progress_counter(struct rcu_data *rdp,
892 bool *isidle, unsigned long *maxj)
64db4cff 893{
23b5c8fa 894 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 895 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
896 if ((rdp->dynticks_snap & 0x1) == 0) {
897 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
898 return 1;
899 } else {
900 return 0;
901 }
64db4cff
PM
902}
903
6193c76a
PM
904/*
905 * This function really isn't for public consumption, but RCU is special in
906 * that context switches can allow the state machine to make progress.
907 */
908extern void resched_cpu(int cpu);
909
64db4cff
PM
910/*
911 * Return true if the specified CPU has passed through a quiescent
912 * state by virtue of being in or having passed through an dynticks
913 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 914 * for this same CPU, or by virtue of having been offline.
64db4cff 915 */
217af2a2
PM
916static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
917 bool *isidle, unsigned long *maxj)
64db4cff 918{
7eb4f455 919 unsigned int curr;
4a81e832 920 int *rcrmp;
7eb4f455 921 unsigned int snap;
64db4cff 922
7eb4f455
PM
923 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
924 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
925
926 /*
927 * If the CPU passed through or entered a dynticks idle phase with
928 * no active irq/NMI handlers, then we can safely pretend that the CPU
929 * already acknowledged the request to pass through a quiescent
930 * state. Either way, that CPU cannot possibly be in an RCU
931 * read-side critical section that started before the beginning
932 * of the current RCU grace period.
933 */
7eb4f455 934 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 935 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
936 rdp->dynticks_fqs++;
937 return 1;
938 }
939
a82dcc76
PM
940 /*
941 * Check for the CPU being offline, but only if the grace period
942 * is old enough. We don't need to worry about the CPU changing
943 * state: If we see it offline even once, it has been through a
944 * quiescent state.
945 *
946 * The reason for insisting that the grace period be at least
947 * one jiffy old is that CPUs that are not quite online and that
948 * have just gone offline can still execute RCU read-side critical
949 * sections.
950 */
951 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
952 return 0; /* Grace period is not old enough. */
953 barrier();
954 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 955 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
956 rdp->offline_fqs++;
957 return 1;
958 }
65d798f0
PM
959
960 /*
4a81e832
PM
961 * A CPU running for an extended time within the kernel can
962 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
963 * even context-switching back and forth between a pair of
964 * in-kernel CPU-bound tasks cannot advance grace periods.
965 * So if the grace period is old enough, make the CPU pay attention.
966 * Note that the unsynchronized assignments to the per-CPU
967 * rcu_sched_qs_mask variable are safe. Yes, setting of
968 * bits can be lost, but they will be set again on the next
969 * force-quiescent-state pass. So lost bit sets do not result
970 * in incorrect behavior, merely in a grace period lasting
971 * a few jiffies longer than it might otherwise. Because
972 * there are at most four threads involved, and because the
973 * updates are only once every few jiffies, the probability of
974 * lossage (and thus of slight grace-period extension) is
975 * quite low.
976 *
977 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
978 * is set too high, we override with half of the RCU CPU stall
979 * warning delay.
6193c76a 980 */
4a81e832
PM
981 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
982 if (ULONG_CMP_GE(jiffies,
983 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 984 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
985 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
986 ACCESS_ONCE(rdp->cond_resched_completed) =
987 ACCESS_ONCE(rdp->mynode->completed);
988 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
989 ACCESS_ONCE(*rcrmp) =
990 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
991 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
992 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
993 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
994 /* Time to beat on that CPU again! */
995 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
996 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
997 }
6193c76a
PM
998 }
999
a82dcc76 1000 return 0;
64db4cff
PM
1001}
1002
64db4cff
PM
1003static void record_gp_stall_check_time(struct rcu_state *rsp)
1004{
cb1e78cf 1005 unsigned long j = jiffies;
6193c76a 1006 unsigned long j1;
26cdfedf
PM
1007
1008 rsp->gp_start = j;
1009 smp_wmb(); /* Record start time before stall time. */
6193c76a 1010 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1011 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1012 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
1013}
1014
b637a328
PM
1015/*
1016 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
1017 * for architectures that do not implement trigger_all_cpu_backtrace().
1018 * The NMI-triggered stack traces are more accurate because they are
1019 * printed by the target CPU.
1020 */
1021static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1022{
1023 int cpu;
1024 unsigned long flags;
1025 struct rcu_node *rnp;
1026
1027 rcu_for_each_leaf_node(rsp, rnp) {
1028 raw_spin_lock_irqsave(&rnp->lock, flags);
1029 if (rnp->qsmask != 0) {
1030 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1031 if (rnp->qsmask & (1UL << cpu))
1032 dump_cpu_task(rnp->grplo + cpu);
1033 }
1034 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1035 }
1036}
1037
64db4cff
PM
1038static void print_other_cpu_stall(struct rcu_state *rsp)
1039{
1040 int cpu;
1041 long delta;
1042 unsigned long flags;
285fe294 1043 int ndetected = 0;
64db4cff 1044 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1045 long totqlen = 0;
64db4cff
PM
1046
1047 /* Only let one CPU complain about others per time interval. */
1048
1304afb2 1049 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1050 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1051 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1052 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1053 return;
1054 }
4fc5b755 1055 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1057
8cdd32a9
PM
1058 /*
1059 * OK, time to rat on our buddy...
1060 * See Documentation/RCU/stallwarn.txt for info on how to debug
1061 * RCU CPU stall warnings.
1062 */
d7f3e207 1063 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1064 rsp->name);
a858af28 1065 print_cpu_stall_info_begin();
a0b6c9a7 1066 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1067 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1068 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1069 if (rnp->qsmask != 0) {
1070 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1071 if (rnp->qsmask & (1UL << cpu)) {
1072 print_cpu_stall_info(rsp,
1073 rnp->grplo + cpu);
1074 ndetected++;
1075 }
1076 }
3acd9eb3 1077 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1078 }
a858af28
PM
1079
1080 /*
1081 * Now rat on any tasks that got kicked up to the root rcu_node
1082 * due to CPU offlining.
1083 */
1084 rnp = rcu_get_root(rsp);
1085 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 1086 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
1087 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1088
1089 print_cpu_stall_info_end();
53bb857c
PM
1090 for_each_possible_cpu(cpu)
1091 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1092 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1093 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1094 (long)rsp->gpnum, (long)rsp->completed, totqlen);
9bc8b558 1095 if (ndetected == 0)
d7f3e207 1096 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 1097 else if (!trigger_all_cpu_backtrace())
b637a328 1098 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1099
4cdfc175 1100 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1101
1102 rcu_print_detail_task_stall(rsp);
1103
4cdfc175 1104 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1105}
1106
1107static void print_cpu_stall(struct rcu_state *rsp)
1108{
53bb857c 1109 int cpu;
64db4cff
PM
1110 unsigned long flags;
1111 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1112 long totqlen = 0;
64db4cff 1113
8cdd32a9
PM
1114 /*
1115 * OK, time to rat on ourselves...
1116 * See Documentation/RCU/stallwarn.txt for info on how to debug
1117 * RCU CPU stall warnings.
1118 */
d7f3e207 1119 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1120 print_cpu_stall_info_begin();
1121 print_cpu_stall_info(rsp, smp_processor_id());
1122 print_cpu_stall_info_end();
53bb857c
PM
1123 for_each_possible_cpu(cpu)
1124 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1125 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1126 jiffies - rsp->gp_start,
1127 (long)rsp->gpnum, (long)rsp->completed, totqlen);
4627e240
PM
1128 if (!trigger_all_cpu_backtrace())
1129 dump_stack();
c1dc0b9c 1130
1304afb2 1131 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1132 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1133 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1134 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1135 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1136
b021fe3e
PZ
1137 /*
1138 * Attempt to revive the RCU machinery by forcing a context switch.
1139 *
1140 * A context switch would normally allow the RCU state machine to make
1141 * progress and it could be we're stuck in kernel space without context
1142 * switches for an entirely unreasonable amount of time.
1143 */
1144 resched_cpu(smp_processor_id());
64db4cff
PM
1145}
1146
1147static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1148{
26cdfedf
PM
1149 unsigned long completed;
1150 unsigned long gpnum;
1151 unsigned long gps;
bad6e139
PM
1152 unsigned long j;
1153 unsigned long js;
64db4cff
PM
1154 struct rcu_node *rnp;
1155
26cdfedf 1156 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1157 return;
cb1e78cf 1158 j = jiffies;
26cdfedf
PM
1159
1160 /*
1161 * Lots of memory barriers to reject false positives.
1162 *
1163 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1164 * then rsp->gp_start, and finally rsp->completed. These values
1165 * are updated in the opposite order with memory barriers (or
1166 * equivalent) during grace-period initialization and cleanup.
1167 * Now, a false positive can occur if we get an new value of
1168 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1169 * the memory barriers, the only way that this can happen is if one
1170 * grace period ends and another starts between these two fetches.
1171 * Detect this by comparing rsp->completed with the previous fetch
1172 * from rsp->gpnum.
1173 *
1174 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1175 * and rsp->gp_start suffice to forestall false positives.
1176 */
1177 gpnum = ACCESS_ONCE(rsp->gpnum);
1178 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1179 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1180 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1181 gps = ACCESS_ONCE(rsp->gp_start);
1182 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1183 completed = ACCESS_ONCE(rsp->completed);
1184 if (ULONG_CMP_GE(completed, gpnum) ||
1185 ULONG_CMP_LT(j, js) ||
1186 ULONG_CMP_GE(gps, js))
1187 return; /* No stall or GP completed since entering function. */
64db4cff 1188 rnp = rdp->mynode;
c96ea7cf 1189 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1190 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1191
1192 /* We haven't checked in, so go dump stack. */
1193 print_cpu_stall(rsp);
1194
bad6e139
PM
1195 } else if (rcu_gp_in_progress(rsp) &&
1196 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1197
bad6e139 1198 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1199 print_other_cpu_stall(rsp);
1200 }
1201}
1202
53d84e00
PM
1203/**
1204 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1205 *
1206 * Set the stall-warning timeout way off into the future, thus preventing
1207 * any RCU CPU stall-warning messages from appearing in the current set of
1208 * RCU grace periods.
1209 *
1210 * The caller must disable hard irqs.
1211 */
1212void rcu_cpu_stall_reset(void)
1213{
6ce75a23
PM
1214 struct rcu_state *rsp;
1215
1216 for_each_rcu_flavor(rsp)
4fc5b755 1217 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1218}
1219
3f5d3ea6
PM
1220/*
1221 * Initialize the specified rcu_data structure's callback list to empty.
1222 */
1223static void init_callback_list(struct rcu_data *rdp)
1224{
1225 int i;
1226
34ed6246
PM
1227 if (init_nocb_callback_list(rdp))
1228 return;
3f5d3ea6
PM
1229 rdp->nxtlist = NULL;
1230 for (i = 0; i < RCU_NEXT_SIZE; i++)
1231 rdp->nxttail[i] = &rdp->nxtlist;
1232}
1233
dc35c893
PM
1234/*
1235 * Determine the value that ->completed will have at the end of the
1236 * next subsequent grace period. This is used to tag callbacks so that
1237 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1238 * been dyntick-idle for an extended period with callbacks under the
1239 * influence of RCU_FAST_NO_HZ.
1240 *
1241 * The caller must hold rnp->lock with interrupts disabled.
1242 */
1243static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1244 struct rcu_node *rnp)
1245{
1246 /*
1247 * If RCU is idle, we just wait for the next grace period.
1248 * But we can only be sure that RCU is idle if we are looking
1249 * at the root rcu_node structure -- otherwise, a new grace
1250 * period might have started, but just not yet gotten around
1251 * to initializing the current non-root rcu_node structure.
1252 */
1253 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1254 return rnp->completed + 1;
1255
1256 /*
1257 * Otherwise, wait for a possible partial grace period and
1258 * then the subsequent full grace period.
1259 */
1260 return rnp->completed + 2;
1261}
1262
0446be48
PM
1263/*
1264 * Trace-event helper function for rcu_start_future_gp() and
1265 * rcu_nocb_wait_gp().
1266 */
1267static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1268 unsigned long c, const char *s)
0446be48
PM
1269{
1270 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1271 rnp->completed, c, rnp->level,
1272 rnp->grplo, rnp->grphi, s);
1273}
1274
1275/*
1276 * Start some future grace period, as needed to handle newly arrived
1277 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1278 * rcu_node structure's ->need_future_gp field. Returns true if there
1279 * is reason to awaken the grace-period kthread.
0446be48
PM
1280 *
1281 * The caller must hold the specified rcu_node structure's ->lock.
1282 */
48a7639c
PM
1283static bool __maybe_unused
1284rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1285 unsigned long *c_out)
0446be48
PM
1286{
1287 unsigned long c;
1288 int i;
48a7639c 1289 bool ret = false;
0446be48
PM
1290 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1291
1292 /*
1293 * Pick up grace-period number for new callbacks. If this
1294 * grace period is already marked as needed, return to the caller.
1295 */
1296 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1297 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1298 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1299 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1300 goto out;
0446be48
PM
1301 }
1302
1303 /*
1304 * If either this rcu_node structure or the root rcu_node structure
1305 * believe that a grace period is in progress, then we must wait
1306 * for the one following, which is in "c". Because our request
1307 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1308 * need to explicitly start one. We only do the lockless check
1309 * of rnp_root's fields if the current rcu_node structure thinks
1310 * there is no grace period in flight, and because we hold rnp->lock,
1311 * the only possible change is when rnp_root's two fields are
1312 * equal, in which case rnp_root->gpnum might be concurrently
1313 * incremented. But that is OK, as it will just result in our
1314 * doing some extra useless work.
0446be48
PM
1315 */
1316 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1317 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1318 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1319 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1320 goto out;
0446be48
PM
1321 }
1322
1323 /*
1324 * There might be no grace period in progress. If we don't already
1325 * hold it, acquire the root rcu_node structure's lock in order to
1326 * start one (if needed).
1327 */
6303b9c8 1328 if (rnp != rnp_root) {
0446be48 1329 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1330 smp_mb__after_unlock_lock();
1331 }
0446be48
PM
1332
1333 /*
1334 * Get a new grace-period number. If there really is no grace
1335 * period in progress, it will be smaller than the one we obtained
1336 * earlier. Adjust callbacks as needed. Note that even no-CBs
1337 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1338 */
1339 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1340 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1341 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1342 rdp->nxtcompleted[i] = c;
1343
1344 /*
1345 * If the needed for the required grace period is already
1346 * recorded, trace and leave.
1347 */
1348 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1349 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1350 goto unlock_out;
1351 }
1352
1353 /* Record the need for the future grace period. */
1354 rnp_root->need_future_gp[c & 0x1]++;
1355
1356 /* If a grace period is not already in progress, start one. */
1357 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1358 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1359 } else {
f7f7bac9 1360 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1361 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1362 }
1363unlock_out:
1364 if (rnp != rnp_root)
1365 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1366out:
1367 if (c_out != NULL)
1368 *c_out = c;
1369 return ret;
0446be48
PM
1370}
1371
1372/*
1373 * Clean up any old requests for the just-ended grace period. Also return
1374 * whether any additional grace periods have been requested. Also invoke
1375 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1376 * waiting for this grace period to complete.
1377 */
1378static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1379{
1380 int c = rnp->completed;
1381 int needmore;
1382 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1383
1384 rcu_nocb_gp_cleanup(rsp, rnp);
1385 rnp->need_future_gp[c & 0x1] = 0;
1386 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1387 trace_rcu_future_gp(rnp, rdp, c,
1388 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1389 return needmore;
1390}
1391
48a7639c
PM
1392/*
1393 * Awaken the grace-period kthread for the specified flavor of RCU.
1394 * Don't do a self-awaken, and don't bother awakening when there is
1395 * nothing for the grace-period kthread to do (as in several CPUs
1396 * raced to awaken, and we lost), and finally don't try to awaken
1397 * a kthread that has not yet been created.
1398 */
1399static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1400{
1401 if (current == rsp->gp_kthread ||
1402 !ACCESS_ONCE(rsp->gp_flags) ||
1403 !rsp->gp_kthread)
1404 return;
1405 wake_up(&rsp->gp_wq);
1406}
1407
dc35c893
PM
1408/*
1409 * If there is room, assign a ->completed number to any callbacks on
1410 * this CPU that have not already been assigned. Also accelerate any
1411 * callbacks that were previously assigned a ->completed number that has
1412 * since proven to be too conservative, which can happen if callbacks get
1413 * assigned a ->completed number while RCU is idle, but with reference to
1414 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1415 * not hurt to call it repeatedly. Returns an flag saying that we should
1416 * awaken the RCU grace-period kthread.
dc35c893
PM
1417 *
1418 * The caller must hold rnp->lock with interrupts disabled.
1419 */
48a7639c 1420static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1421 struct rcu_data *rdp)
1422{
1423 unsigned long c;
1424 int i;
48a7639c 1425 bool ret;
dc35c893
PM
1426
1427 /* If the CPU has no callbacks, nothing to do. */
1428 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1429 return false;
dc35c893
PM
1430
1431 /*
1432 * Starting from the sublist containing the callbacks most
1433 * recently assigned a ->completed number and working down, find the
1434 * first sublist that is not assignable to an upcoming grace period.
1435 * Such a sublist has something in it (first two tests) and has
1436 * a ->completed number assigned that will complete sooner than
1437 * the ->completed number for newly arrived callbacks (last test).
1438 *
1439 * The key point is that any later sublist can be assigned the
1440 * same ->completed number as the newly arrived callbacks, which
1441 * means that the callbacks in any of these later sublist can be
1442 * grouped into a single sublist, whether or not they have already
1443 * been assigned a ->completed number.
1444 */
1445 c = rcu_cbs_completed(rsp, rnp);
1446 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1447 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1448 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1449 break;
1450
1451 /*
1452 * If there are no sublist for unassigned callbacks, leave.
1453 * At the same time, advance "i" one sublist, so that "i" will
1454 * index into the sublist where all the remaining callbacks should
1455 * be grouped into.
1456 */
1457 if (++i >= RCU_NEXT_TAIL)
48a7639c 1458 return false;
dc35c893
PM
1459
1460 /*
1461 * Assign all subsequent callbacks' ->completed number to the next
1462 * full grace period and group them all in the sublist initially
1463 * indexed by "i".
1464 */
1465 for (; i <= RCU_NEXT_TAIL; i++) {
1466 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1467 rdp->nxtcompleted[i] = c;
1468 }
910ee45d 1469 /* Record any needed additional grace periods. */
48a7639c 1470 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1471
1472 /* Trace depending on how much we were able to accelerate. */
1473 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1474 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1475 else
f7f7bac9 1476 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1477 return ret;
dc35c893
PM
1478}
1479
1480/*
1481 * Move any callbacks whose grace period has completed to the
1482 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1483 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1484 * sublist. This function is idempotent, so it does not hurt to
1485 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1486 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1487 *
1488 * The caller must hold rnp->lock with interrupts disabled.
1489 */
48a7639c 1490static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1491 struct rcu_data *rdp)
1492{
1493 int i, j;
1494
1495 /* If the CPU has no callbacks, nothing to do. */
1496 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1497 return false;
dc35c893
PM
1498
1499 /*
1500 * Find all callbacks whose ->completed numbers indicate that they
1501 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1502 */
1503 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1504 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1505 break;
1506 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1507 }
1508 /* Clean up any sublist tail pointers that were misordered above. */
1509 for (j = RCU_WAIT_TAIL; j < i; j++)
1510 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1511
1512 /* Copy down callbacks to fill in empty sublists. */
1513 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1514 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1515 break;
1516 rdp->nxttail[j] = rdp->nxttail[i];
1517 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1518 }
1519
1520 /* Classify any remaining callbacks. */
48a7639c 1521 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1522}
1523
d09b62df 1524/*
ba9fbe95
PM
1525 * Update CPU-local rcu_data state to record the beginnings and ends of
1526 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1527 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1528 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1529 */
48a7639c
PM
1530static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1531 struct rcu_data *rdp)
d09b62df 1532{
48a7639c
PM
1533 bool ret;
1534
ba9fbe95 1535 /* Handle the ends of any preceding grace periods first. */
dc35c893 1536 if (rdp->completed == rnp->completed) {
d09b62df 1537
ba9fbe95 1538 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1539 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1540
dc35c893
PM
1541 } else {
1542
1543 /* Advance callbacks. */
48a7639c 1544 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1545
1546 /* Remember that we saw this grace-period completion. */
1547 rdp->completed = rnp->completed;
f7f7bac9 1548 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1549 }
398ebe60 1550
6eaef633
PM
1551 if (rdp->gpnum != rnp->gpnum) {
1552 /*
1553 * If the current grace period is waiting for this CPU,
1554 * set up to detect a quiescent state, otherwise don't
1555 * go looking for one.
1556 */
1557 rdp->gpnum = rnp->gpnum;
f7f7bac9 1558 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1559 rdp->passed_quiesce = 0;
1560 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1561 zero_cpu_stall_ticks(rdp);
1562 }
48a7639c 1563 return ret;
6eaef633
PM
1564}
1565
d34ea322 1566static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1567{
1568 unsigned long flags;
48a7639c 1569 bool needwake;
6eaef633
PM
1570 struct rcu_node *rnp;
1571
1572 local_irq_save(flags);
1573 rnp = rdp->mynode;
d34ea322
PM
1574 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1575 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1576 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1577 local_irq_restore(flags);
1578 return;
1579 }
6303b9c8 1580 smp_mb__after_unlock_lock();
48a7639c 1581 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1582 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1583 if (needwake)
1584 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1585}
1586
b3dbec76 1587/*
f7be8209 1588 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1589 */
7fdefc10 1590static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1591{
1592 struct rcu_data *rdp;
7fdefc10 1593 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1594
eb75767b 1595 rcu_bind_gp_kthread();
7fdefc10 1596 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1597 smp_mb__after_unlock_lock();
91dc9542 1598 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1599 /* Spurious wakeup, tell caller to go back to sleep. */
1600 raw_spin_unlock_irq(&rnp->lock);
1601 return 0;
1602 }
91dc9542 1603 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1604
f7be8209
PM
1605 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1606 /*
1607 * Grace period already in progress, don't start another.
1608 * Not supposed to be able to happen.
1609 */
7fdefc10
PM
1610 raw_spin_unlock_irq(&rnp->lock);
1611 return 0;
1612 }
1613
7fdefc10 1614 /* Advance to a new grace period and initialize state. */
26cdfedf 1615 record_gp_stall_check_time(rsp);
765a3f4f
PM
1616 /* Record GP times before starting GP, hence smp_store_release(). */
1617 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1618 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1619 raw_spin_unlock_irq(&rnp->lock);
1620
1621 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1622 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1623 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1624
1625 /*
1626 * Set the quiescent-state-needed bits in all the rcu_node
1627 * structures for all currently online CPUs in breadth-first order,
1628 * starting from the root rcu_node structure, relying on the layout
1629 * of the tree within the rsp->node[] array. Note that other CPUs
1630 * will access only the leaves of the hierarchy, thus seeing that no
1631 * grace period is in progress, at least until the corresponding
1632 * leaf node has been initialized. In addition, we have excluded
1633 * CPU-hotplug operations.
1634 *
1635 * The grace period cannot complete until the initialization
1636 * process finishes, because this kthread handles both.
1637 */
1638 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1639 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1640 smp_mb__after_unlock_lock();
b3dbec76 1641 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1642 rcu_preempt_check_blocked_tasks(rnp);
1643 rnp->qsmask = rnp->qsmaskinit;
0446be48 1644 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1645 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1646 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1647 if (rnp == rdp->mynode)
48a7639c 1648 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1649 rcu_preempt_boost_start_gp(rnp);
1650 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1651 rnp->level, rnp->grplo,
1652 rnp->grphi, rnp->qsmask);
1653 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1654#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1655 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1656 system_state == SYSTEM_RUNNING)
971394f3 1657 udelay(200);
661a85dc 1658#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1659 cond_resched();
1660 }
b3dbec76 1661
a4fbe35a 1662 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1663 return 1;
1664}
b3dbec76 1665
4cdfc175
PM
1666/*
1667 * Do one round of quiescent-state forcing.
1668 */
01896f7e 1669static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1670{
1671 int fqs_state = fqs_state_in;
217af2a2
PM
1672 bool isidle = false;
1673 unsigned long maxj;
4cdfc175
PM
1674 struct rcu_node *rnp = rcu_get_root(rsp);
1675
1676 rsp->n_force_qs++;
1677 if (fqs_state == RCU_SAVE_DYNTICK) {
1678 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1679 if (is_sysidle_rcu_state(rsp)) {
1680 isidle = 1;
1681 maxj = jiffies - ULONG_MAX / 4;
1682 }
217af2a2
PM
1683 force_qs_rnp(rsp, dyntick_save_progress_counter,
1684 &isidle, &maxj);
0edd1b17 1685 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1686 fqs_state = RCU_FORCE_QS;
1687 } else {
1688 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1689 isidle = 0;
217af2a2 1690 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1691 }
1692 /* Clear flag to prevent immediate re-entry. */
1693 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1694 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1695 smp_mb__after_unlock_lock();
91dc9542 1696 ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1697 raw_spin_unlock_irq(&rnp->lock);
1698 }
1699 return fqs_state;
1700}
1701
7fdefc10
PM
1702/*
1703 * Clean up after the old grace period.
1704 */
4cdfc175 1705static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1706{
1707 unsigned long gp_duration;
48a7639c 1708 bool needgp = false;
dae6e64d 1709 int nocb = 0;
7fdefc10
PM
1710 struct rcu_data *rdp;
1711 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1712
7fdefc10 1713 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1714 smp_mb__after_unlock_lock();
7fdefc10
PM
1715 gp_duration = jiffies - rsp->gp_start;
1716 if (gp_duration > rsp->gp_max)
1717 rsp->gp_max = gp_duration;
b3dbec76 1718
7fdefc10
PM
1719 /*
1720 * We know the grace period is complete, but to everyone else
1721 * it appears to still be ongoing. But it is also the case
1722 * that to everyone else it looks like there is nothing that
1723 * they can do to advance the grace period. It is therefore
1724 * safe for us to drop the lock in order to mark the grace
1725 * period as completed in all of the rcu_node structures.
7fdefc10 1726 */
5d4b8659 1727 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1728
5d4b8659
PM
1729 /*
1730 * Propagate new ->completed value to rcu_node structures so
1731 * that other CPUs don't have to wait until the start of the next
1732 * grace period to process their callbacks. This also avoids
1733 * some nasty RCU grace-period initialization races by forcing
1734 * the end of the current grace period to be completely recorded in
1735 * all of the rcu_node structures before the beginning of the next
1736 * grace period is recorded in any of the rcu_node structures.
1737 */
1738 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1739 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1740 smp_mb__after_unlock_lock();
0446be48 1741 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1742 rdp = this_cpu_ptr(rsp->rda);
1743 if (rnp == rdp->mynode)
48a7639c 1744 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1745 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1746 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1747 raw_spin_unlock_irq(&rnp->lock);
1748 cond_resched();
7fdefc10 1749 }
5d4b8659
PM
1750 rnp = rcu_get_root(rsp);
1751 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1752 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1753 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1754
765a3f4f
PM
1755 /* Declare grace period done. */
1756 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1757 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1758 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1759 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1760 /* Advance CBs to reduce false positives below. */
1761 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1762 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1763 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1764 trace_rcu_grace_period(rsp->name,
1765 ACCESS_ONCE(rsp->gpnum),
1766 TPS("newreq"));
1767 }
7fdefc10 1768 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1769}
1770
1771/*
1772 * Body of kthread that handles grace periods.
1773 */
1774static int __noreturn rcu_gp_kthread(void *arg)
1775{
4cdfc175 1776 int fqs_state;
88d6df61 1777 int gf;
d40011f6 1778 unsigned long j;
4cdfc175 1779 int ret;
7fdefc10
PM
1780 struct rcu_state *rsp = arg;
1781 struct rcu_node *rnp = rcu_get_root(rsp);
1782
1783 for (;;) {
1784
1785 /* Handle grace-period start. */
1786 for (;;) {
63c4db78
PM
1787 trace_rcu_grace_period(rsp->name,
1788 ACCESS_ONCE(rsp->gpnum),
1789 TPS("reqwait"));
afea227f 1790 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1791 wait_event_interruptible(rsp->gp_wq,
591c6d17 1792 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1793 RCU_GP_FLAG_INIT);
78e4bc34 1794 /* Locking provides needed memory barrier. */
f7be8209 1795 if (rcu_gp_init(rsp))
7fdefc10
PM
1796 break;
1797 cond_resched();
1798 flush_signals(current);
63c4db78
PM
1799 trace_rcu_grace_period(rsp->name,
1800 ACCESS_ONCE(rsp->gpnum),
1801 TPS("reqwaitsig"));
7fdefc10 1802 }
cabc49c1 1803
4cdfc175
PM
1804 /* Handle quiescent-state forcing. */
1805 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1806 j = jiffies_till_first_fqs;
1807 if (j > HZ) {
1808 j = HZ;
1809 jiffies_till_first_fqs = HZ;
1810 }
88d6df61 1811 ret = 0;
cabc49c1 1812 for (;;) {
88d6df61
PM
1813 if (!ret)
1814 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1815 trace_rcu_grace_period(rsp->name,
1816 ACCESS_ONCE(rsp->gpnum),
1817 TPS("fqswait"));
afea227f 1818 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1819 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1820 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1821 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1822 (!ACCESS_ONCE(rnp->qsmask) &&
1823 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1824 j);
78e4bc34 1825 /* Locking provides needed memory barriers. */
4cdfc175 1826 /* If grace period done, leave loop. */
cabc49c1 1827 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1828 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1829 break;
4cdfc175 1830 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1831 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1832 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1833 trace_rcu_grace_period(rsp->name,
1834 ACCESS_ONCE(rsp->gpnum),
1835 TPS("fqsstart"));
4cdfc175 1836 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1837 trace_rcu_grace_period(rsp->name,
1838 ACCESS_ONCE(rsp->gpnum),
1839 TPS("fqsend"));
4cdfc175
PM
1840 cond_resched();
1841 } else {
1842 /* Deal with stray signal. */
1843 cond_resched();
1844 flush_signals(current);
63c4db78
PM
1845 trace_rcu_grace_period(rsp->name,
1846 ACCESS_ONCE(rsp->gpnum),
1847 TPS("fqswaitsig"));
4cdfc175 1848 }
d40011f6
PM
1849 j = jiffies_till_next_fqs;
1850 if (j > HZ) {
1851 j = HZ;
1852 jiffies_till_next_fqs = HZ;
1853 } else if (j < 1) {
1854 j = 1;
1855 jiffies_till_next_fqs = 1;
1856 }
cabc49c1 1857 }
4cdfc175
PM
1858
1859 /* Handle grace-period end. */
1860 rcu_gp_cleanup(rsp);
b3dbec76 1861 }
b3dbec76
PM
1862}
1863
64db4cff
PM
1864/*
1865 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1866 * in preparation for detecting the next grace period. The caller must hold
b8462084 1867 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1868 *
1869 * Note that it is legal for a dying CPU (which is marked as offline) to
1870 * invoke this function. This can happen when the dying CPU reports its
1871 * quiescent state.
48a7639c
PM
1872 *
1873 * Returns true if the grace-period kthread must be awakened.
64db4cff 1874 */
48a7639c 1875static bool
910ee45d
PM
1876rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1877 struct rcu_data *rdp)
64db4cff 1878{
b8462084 1879 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1880 /*
b3dbec76 1881 * Either we have not yet spawned the grace-period
62da1921
PM
1882 * task, this CPU does not need another grace period,
1883 * or a grace period is already in progress.
b3dbec76 1884 * Either way, don't start a new grace period.
afe24b12 1885 */
48a7639c 1886 return false;
afe24b12 1887 }
91dc9542 1888 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1889 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1890 TPS("newreq"));
62da1921 1891
016a8d5b
SR
1892 /*
1893 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 1894 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 1895 * the wakeup to our caller.
016a8d5b 1896 */
48a7639c 1897 return true;
64db4cff
PM
1898}
1899
910ee45d
PM
1900/*
1901 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1902 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1903 * is invoked indirectly from rcu_advance_cbs(), which would result in
1904 * endless recursion -- or would do so if it wasn't for the self-deadlock
1905 * that is encountered beforehand.
48a7639c
PM
1906 *
1907 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 1908 */
48a7639c 1909static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
1910{
1911 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1912 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 1913 bool ret = false;
910ee45d
PM
1914
1915 /*
1916 * If there is no grace period in progress right now, any
1917 * callbacks we have up to this point will be satisfied by the
1918 * next grace period. Also, advancing the callbacks reduces the
1919 * probability of false positives from cpu_needs_another_gp()
1920 * resulting in pointless grace periods. So, advance callbacks
1921 * then start the grace period!
1922 */
48a7639c
PM
1923 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1924 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1925 return ret;
910ee45d
PM
1926}
1927
f41d911f 1928/*
d3f6bad3
PM
1929 * Report a full set of quiescent states to the specified rcu_state
1930 * data structure. This involves cleaning up after the prior grace
1931 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1932 * if one is needed. Note that the caller must hold rnp->lock, which
1933 * is released before return.
f41d911f 1934 */
d3f6bad3 1935static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1936 __releases(rcu_get_root(rsp)->lock)
f41d911f 1937{
fc2219d4 1938 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1939 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1940 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1941}
1942
64db4cff 1943/*
d3f6bad3
PM
1944 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1945 * Allows quiescent states for a group of CPUs to be reported at one go
1946 * to the specified rcu_node structure, though all the CPUs in the group
1947 * must be represented by the same rcu_node structure (which need not be
1948 * a leaf rcu_node structure, though it often will be). That structure's
1949 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1950 */
1951static void
d3f6bad3
PM
1952rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1953 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1954 __releases(rnp->lock)
1955{
28ecd580
PM
1956 struct rcu_node *rnp_c;
1957
64db4cff
PM
1958 /* Walk up the rcu_node hierarchy. */
1959 for (;;) {
1960 if (!(rnp->qsmask & mask)) {
1961
1962 /* Our bit has already been cleared, so done. */
1304afb2 1963 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1964 return;
1965 }
1966 rnp->qsmask &= ~mask;
d4c08f2a
PM
1967 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1968 mask, rnp->qsmask, rnp->level,
1969 rnp->grplo, rnp->grphi,
1970 !!rnp->gp_tasks);
27f4d280 1971 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1972
1973 /* Other bits still set at this level, so done. */
1304afb2 1974 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1975 return;
1976 }
1977 mask = rnp->grpmask;
1978 if (rnp->parent == NULL) {
1979
1980 /* No more levels. Exit loop holding root lock. */
1981
1982 break;
1983 }
1304afb2 1984 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1985 rnp_c = rnp;
64db4cff 1986 rnp = rnp->parent;
1304afb2 1987 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1988 smp_mb__after_unlock_lock();
28ecd580 1989 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1990 }
1991
1992 /*
1993 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1994 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1995 * to clean up and start the next grace period if one is needed.
64db4cff 1996 */
d3f6bad3 1997 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1998}
1999
2000/*
d3f6bad3
PM
2001 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2002 * structure. This must be either called from the specified CPU, or
2003 * called when the specified CPU is known to be offline (and when it is
2004 * also known that no other CPU is concurrently trying to help the offline
2005 * CPU). The lastcomp argument is used to make sure we are still in the
2006 * grace period of interest. We don't want to end the current grace period
2007 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2008 */
2009static void
d7d6a11e 2010rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2011{
2012 unsigned long flags;
2013 unsigned long mask;
48a7639c 2014 bool needwake;
64db4cff
PM
2015 struct rcu_node *rnp;
2016
2017 rnp = rdp->mynode;
1304afb2 2018 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2019 smp_mb__after_unlock_lock();
d7d6a11e
PM
2020 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2021 rnp->completed == rnp->gpnum) {
64db4cff
PM
2022
2023 /*
e4cc1f22
PM
2024 * The grace period in which this quiescent state was
2025 * recorded has ended, so don't report it upwards.
2026 * We will instead need a new quiescent state that lies
2027 * within the current grace period.
64db4cff 2028 */
e4cc1f22 2029 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 2030 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2031 return;
2032 }
2033 mask = rdp->grpmask;
2034 if ((rnp->qsmask & mask) == 0) {
1304afb2 2035 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2036 } else {
2037 rdp->qs_pending = 0;
2038
2039 /*
2040 * This GP can't end until cpu checks in, so all of our
2041 * callbacks can be processed during the next GP.
2042 */
48a7639c 2043 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2044
d3f6bad3 2045 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2046 if (needwake)
2047 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2048 }
2049}
2050
2051/*
2052 * Check to see if there is a new grace period of which this CPU
2053 * is not yet aware, and if so, set up local rcu_data state for it.
2054 * Otherwise, see if this CPU has just passed through its first
2055 * quiescent state for this grace period, and record that fact if so.
2056 */
2057static void
2058rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2059{
05eb552b
PM
2060 /* Check for grace-period ends and beginnings. */
2061 note_gp_changes(rsp, rdp);
64db4cff
PM
2062
2063 /*
2064 * Does this CPU still need to do its part for current grace period?
2065 * If no, return and let the other CPUs do their part as well.
2066 */
2067 if (!rdp->qs_pending)
2068 return;
2069
2070 /*
2071 * Was there a quiescent state since the beginning of the grace
2072 * period? If no, then exit and wait for the next call.
2073 */
e4cc1f22 2074 if (!rdp->passed_quiesce)
64db4cff
PM
2075 return;
2076
d3f6bad3
PM
2077 /*
2078 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2079 * judge of that).
2080 */
d7d6a11e 2081 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2082}
2083
2084#ifdef CONFIG_HOTPLUG_CPU
2085
e74f4c45 2086/*
b1420f1c
PM
2087 * Send the specified CPU's RCU callbacks to the orphanage. The
2088 * specified CPU must be offline, and the caller must hold the
7b2e6011 2089 * ->orphan_lock.
e74f4c45 2090 */
b1420f1c
PM
2091static void
2092rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2093 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2094{
3fbfbf7a 2095 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2096 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2097 return;
2098
b1420f1c
PM
2099 /*
2100 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2101 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2102 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2103 */
a50c3af9 2104 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2105 rsp->qlen_lazy += rdp->qlen_lazy;
2106 rsp->qlen += rdp->qlen;
2107 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2108 rdp->qlen_lazy = 0;
1d1fb395 2109 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2110 }
2111
2112 /*
b1420f1c
PM
2113 * Next, move those callbacks still needing a grace period to
2114 * the orphanage, where some other CPU will pick them up.
2115 * Some of the callbacks might have gone partway through a grace
2116 * period, but that is too bad. They get to start over because we
2117 * cannot assume that grace periods are synchronized across CPUs.
2118 * We don't bother updating the ->nxttail[] array yet, instead
2119 * we just reset the whole thing later on.
a50c3af9 2120 */
b1420f1c
PM
2121 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2122 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2123 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2124 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2125 }
2126
2127 /*
b1420f1c
PM
2128 * Then move the ready-to-invoke callbacks to the orphanage,
2129 * where some other CPU will pick them up. These will not be
2130 * required to pass though another grace period: They are done.
a50c3af9 2131 */
e5601400 2132 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2133 *rsp->orphan_donetail = rdp->nxtlist;
2134 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2135 }
e74f4c45 2136
b1420f1c 2137 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2138 init_callback_list(rdp);
b1420f1c
PM
2139}
2140
2141/*
2142 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2143 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2144 */
96d3fd0d 2145static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2146{
2147 int i;
fa07a58f 2148 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2149
3fbfbf7a 2150 /* No-CBs CPUs are handled specially. */
96d3fd0d 2151 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2152 return;
2153
b1420f1c
PM
2154 /* Do the accounting first. */
2155 rdp->qlen_lazy += rsp->qlen_lazy;
2156 rdp->qlen += rsp->qlen;
2157 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2158 if (rsp->qlen_lazy != rsp->qlen)
2159 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2160 rsp->qlen_lazy = 0;
2161 rsp->qlen = 0;
2162
2163 /*
2164 * We do not need a memory barrier here because the only way we
2165 * can get here if there is an rcu_barrier() in flight is if
2166 * we are the task doing the rcu_barrier().
2167 */
2168
2169 /* First adopt the ready-to-invoke callbacks. */
2170 if (rsp->orphan_donelist != NULL) {
2171 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2172 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2173 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2174 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2175 rdp->nxttail[i] = rsp->orphan_donetail;
2176 rsp->orphan_donelist = NULL;
2177 rsp->orphan_donetail = &rsp->orphan_donelist;
2178 }
2179
2180 /* And then adopt the callbacks that still need a grace period. */
2181 if (rsp->orphan_nxtlist != NULL) {
2182 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2183 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2184 rsp->orphan_nxtlist = NULL;
2185 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2186 }
2187}
2188
2189/*
2190 * Trace the fact that this CPU is going offline.
2191 */
2192static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2193{
2194 RCU_TRACE(unsigned long mask);
2195 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2196 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2197
2198 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2199 trace_rcu_grace_period(rsp->name,
2200 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2201 TPS("cpuofl"));
64db4cff
PM
2202}
2203
2204/*
e5601400 2205 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2206 * this fact from process context. Do the remainder of the cleanup,
2207 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2208 * adopting them. There can only be one CPU hotplug operation at a time,
2209 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2210 */
e5601400 2211static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2212{
2036d94a
PM
2213 unsigned long flags;
2214 unsigned long mask;
2215 int need_report = 0;
e5601400 2216 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2217 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2218
2036d94a 2219 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2220 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2221
b1420f1c 2222 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2223
2224 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2225 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2226 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2227
b1420f1c
PM
2228 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2229 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2230 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2231
2036d94a
PM
2232 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2233 mask = rdp->grpmask; /* rnp->grplo is constant. */
2234 do {
2235 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2236 smp_mb__after_unlock_lock();
2036d94a
PM
2237 rnp->qsmaskinit &= ~mask;
2238 if (rnp->qsmaskinit != 0) {
2239 if (rnp != rdp->mynode)
2240 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2241 break;
2242 }
2243 if (rnp == rdp->mynode)
2244 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2245 else
2246 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2247 mask = rnp->grpmask;
2248 rnp = rnp->parent;
2249 } while (rnp != NULL);
2250
2251 /*
2252 * We still hold the leaf rcu_node structure lock here, and
2253 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2254 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2255 * held leads to deadlock.
2256 */
7b2e6011 2257 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2258 rnp = rdp->mynode;
2259 if (need_report & RCU_OFL_TASKS_NORM_GP)
2260 rcu_report_unblock_qs_rnp(rnp, flags);
2261 else
2262 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2263 if (need_report & RCU_OFL_TASKS_EXP_GP)
2264 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2265 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2266 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2267 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2268 init_callback_list(rdp);
2269 /* Disallow further callbacks on this CPU. */
2270 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2271 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2272}
2273
2274#else /* #ifdef CONFIG_HOTPLUG_CPU */
2275
e5601400 2276static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2277{
2278}
2279
e5601400 2280static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2281{
2282}
2283
2284#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2285
2286/*
2287 * Invoke any RCU callbacks that have made it to the end of their grace
2288 * period. Thottle as specified by rdp->blimit.
2289 */
37c72e56 2290static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2291{
2292 unsigned long flags;
2293 struct rcu_head *next, *list, **tail;
878d7439
ED
2294 long bl, count, count_lazy;
2295 int i;
64db4cff 2296
dc35c893 2297 /* If no callbacks are ready, just return. */
29c00b4a 2298 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2299 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2300 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2301 need_resched(), is_idle_task(current),
2302 rcu_is_callbacks_kthread());
64db4cff 2303 return;
29c00b4a 2304 }
64db4cff
PM
2305
2306 /*
2307 * Extract the list of ready callbacks, disabling to prevent
2308 * races with call_rcu() from interrupt handlers.
2309 */
2310 local_irq_save(flags);
8146c4e2 2311 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2312 bl = rdp->blimit;
486e2593 2313 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2314 list = rdp->nxtlist;
2315 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2316 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2317 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2318 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2319 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2320 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2321 local_irq_restore(flags);
2322
2323 /* Invoke callbacks. */
486e2593 2324 count = count_lazy = 0;
64db4cff
PM
2325 while (list) {
2326 next = list->next;
2327 prefetch(next);
551d55a9 2328 debug_rcu_head_unqueue(list);
486e2593
PM
2329 if (__rcu_reclaim(rsp->name, list))
2330 count_lazy++;
64db4cff 2331 list = next;
dff1672d
PM
2332 /* Stop only if limit reached and CPU has something to do. */
2333 if (++count >= bl &&
2334 (need_resched() ||
2335 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2336 break;
2337 }
2338
2339 local_irq_save(flags);
4968c300
PM
2340 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2341 is_idle_task(current),
2342 rcu_is_callbacks_kthread());
64db4cff
PM
2343
2344 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2345 if (list != NULL) {
2346 *tail = rdp->nxtlist;
2347 rdp->nxtlist = list;
b41772ab
PM
2348 for (i = 0; i < RCU_NEXT_SIZE; i++)
2349 if (&rdp->nxtlist == rdp->nxttail[i])
2350 rdp->nxttail[i] = tail;
64db4cff
PM
2351 else
2352 break;
2353 }
b1420f1c
PM
2354 smp_mb(); /* List handling before counting for rcu_barrier(). */
2355 rdp->qlen_lazy -= count_lazy;
a792563b 2356 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2357 rdp->n_cbs_invoked += count;
64db4cff
PM
2358
2359 /* Reinstate batch limit if we have worked down the excess. */
2360 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2361 rdp->blimit = blimit;
2362
37c72e56
PM
2363 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2364 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2365 rdp->qlen_last_fqs_check = 0;
2366 rdp->n_force_qs_snap = rsp->n_force_qs;
2367 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2368 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2369 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2370
64db4cff
PM
2371 local_irq_restore(flags);
2372
e0f23060 2373 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2374 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2375 invoke_rcu_core();
64db4cff
PM
2376}
2377
2378/*
2379 * Check to see if this CPU is in a non-context-switch quiescent state
2380 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2381 * Also schedule RCU core processing.
64db4cff 2382 *
9b2e4f18 2383 * This function must be called from hardirq context. It is normally
64db4cff
PM
2384 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2385 * false, there is no point in invoking rcu_check_callbacks().
2386 */
2387void rcu_check_callbacks(int cpu, int user)
2388{
f7f7bac9 2389 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2390 increment_cpu_stall_ticks();
9b2e4f18 2391 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2392
2393 /*
2394 * Get here if this CPU took its interrupt from user
2395 * mode or from the idle loop, and if this is not a
2396 * nested interrupt. In this case, the CPU is in
d6714c22 2397 * a quiescent state, so note it.
64db4cff
PM
2398 *
2399 * No memory barrier is required here because both
d6714c22
PM
2400 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2401 * variables that other CPUs neither access nor modify,
2402 * at least not while the corresponding CPU is online.
64db4cff
PM
2403 */
2404
d6714c22
PM
2405 rcu_sched_qs(cpu);
2406 rcu_bh_qs(cpu);
64db4cff
PM
2407
2408 } else if (!in_softirq()) {
2409
2410 /*
2411 * Get here if this CPU did not take its interrupt from
2412 * softirq, in other words, if it is not interrupting
2413 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2414 * critical section, so note it.
64db4cff
PM
2415 */
2416
d6714c22 2417 rcu_bh_qs(cpu);
64db4cff 2418 }
f41d911f 2419 rcu_preempt_check_callbacks(cpu);
d21670ac 2420 if (rcu_pending(cpu))
a46e0899 2421 invoke_rcu_core();
f7f7bac9 2422 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2423}
2424
64db4cff
PM
2425/*
2426 * Scan the leaf rcu_node structures, processing dyntick state for any that
2427 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2428 * Also initiate boosting for any threads blocked on the root rcu_node.
2429 *
ee47eb9f 2430 * The caller must have suppressed start of new grace periods.
64db4cff 2431 */
217af2a2
PM
2432static void force_qs_rnp(struct rcu_state *rsp,
2433 int (*f)(struct rcu_data *rsp, bool *isidle,
2434 unsigned long *maxj),
2435 bool *isidle, unsigned long *maxj)
64db4cff
PM
2436{
2437 unsigned long bit;
2438 int cpu;
2439 unsigned long flags;
2440 unsigned long mask;
a0b6c9a7 2441 struct rcu_node *rnp;
64db4cff 2442
a0b6c9a7 2443 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2444 cond_resched();
64db4cff 2445 mask = 0;
1304afb2 2446 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2447 smp_mb__after_unlock_lock();
ee47eb9f 2448 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2449 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2450 return;
64db4cff 2451 }
a0b6c9a7 2452 if (rnp->qsmask == 0) {
1217ed1b 2453 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2454 continue;
2455 }
a0b6c9a7 2456 cpu = rnp->grplo;
64db4cff 2457 bit = 1;
a0b6c9a7 2458 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2459 if ((rnp->qsmask & bit) != 0) {
2460 if ((rnp->qsmaskinit & bit) != 0)
2461 *isidle = 0;
2462 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2463 mask |= bit;
2464 }
64db4cff 2465 }
45f014c5 2466 if (mask != 0) {
64db4cff 2467
d3f6bad3
PM
2468 /* rcu_report_qs_rnp() releases rnp->lock. */
2469 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2470 continue;
2471 }
1304afb2 2472 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2473 }
27f4d280 2474 rnp = rcu_get_root(rsp);
1217ed1b
PM
2475 if (rnp->qsmask == 0) {
2476 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2477 smp_mb__after_unlock_lock();
1217ed1b
PM
2478 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2479 }
64db4cff
PM
2480}
2481
2482/*
2483 * Force quiescent states on reluctant CPUs, and also detect which
2484 * CPUs are in dyntick-idle mode.
2485 */
4cdfc175 2486static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2487{
2488 unsigned long flags;
394f2769
PM
2489 bool ret;
2490 struct rcu_node *rnp;
2491 struct rcu_node *rnp_old = NULL;
2492
2493 /* Funnel through hierarchy to reduce memory contention. */
2494 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2495 for (; rnp != NULL; rnp = rnp->parent) {
2496 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2497 !raw_spin_trylock(&rnp->fqslock);
2498 if (rnp_old != NULL)
2499 raw_spin_unlock(&rnp_old->fqslock);
2500 if (ret) {
a792563b 2501 rsp->n_force_qs_lh++;
394f2769
PM
2502 return;
2503 }
2504 rnp_old = rnp;
2505 }
2506 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2507
394f2769
PM
2508 /* Reached the root of the rcu_node tree, acquire lock. */
2509 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2510 smp_mb__after_unlock_lock();
394f2769
PM
2511 raw_spin_unlock(&rnp_old->fqslock);
2512 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2513 rsp->n_force_qs_lh++;
394f2769 2514 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2515 return; /* Someone beat us to it. */
46a1e34e 2516 }
91dc9542 2517 ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
394f2769 2518 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2519 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2520}
2521
64db4cff 2522/*
e0f23060
PM
2523 * This does the RCU core processing work for the specified rcu_state
2524 * and rcu_data structures. This may be called only from the CPU to
2525 * whom the rdp belongs.
64db4cff
PM
2526 */
2527static void
1bca8cf1 2528__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2529{
2530 unsigned long flags;
48a7639c 2531 bool needwake;
fa07a58f 2532 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2533
2e597558
PM
2534 WARN_ON_ONCE(rdp->beenonline == 0);
2535
64db4cff
PM
2536 /* Update RCU state based on any recent quiescent states. */
2537 rcu_check_quiescent_state(rsp, rdp);
2538
2539 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2540 local_irq_save(flags);
64db4cff 2541 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2542 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2543 needwake = rcu_start_gp(rsp);
b8462084 2544 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2545 if (needwake)
2546 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2547 } else {
2548 local_irq_restore(flags);
64db4cff
PM
2549 }
2550
2551 /* If there are callbacks ready, invoke them. */
09223371 2552 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2553 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2554
2555 /* Do any needed deferred wakeups of rcuo kthreads. */
2556 do_nocb_deferred_wakeup(rdp);
09223371
SL
2557}
2558
64db4cff 2559/*
e0f23060 2560 * Do RCU core processing for the current CPU.
64db4cff 2561 */
09223371 2562static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2563{
6ce75a23
PM
2564 struct rcu_state *rsp;
2565
bfa00b4c
PM
2566 if (cpu_is_offline(smp_processor_id()))
2567 return;
f7f7bac9 2568 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2569 for_each_rcu_flavor(rsp)
2570 __rcu_process_callbacks(rsp);
f7f7bac9 2571 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2572}
2573
a26ac245 2574/*
e0f23060
PM
2575 * Schedule RCU callback invocation. If the specified type of RCU
2576 * does not support RCU priority boosting, just do a direct call,
2577 * otherwise wake up the per-CPU kernel kthread. Note that because we
2578 * are running on the current CPU with interrupts disabled, the
2579 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2580 */
a46e0899 2581static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2582{
b0d30417
PM
2583 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2584 return;
a46e0899
PM
2585 if (likely(!rsp->boost)) {
2586 rcu_do_batch(rsp, rdp);
a26ac245
PM
2587 return;
2588 }
a46e0899 2589 invoke_rcu_callbacks_kthread();
a26ac245
PM
2590}
2591
a46e0899 2592static void invoke_rcu_core(void)
09223371 2593{
b0f74036
PM
2594 if (cpu_online(smp_processor_id()))
2595 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2596}
2597
29154c57
PM
2598/*
2599 * Handle any core-RCU processing required by a call_rcu() invocation.
2600 */
2601static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2602 struct rcu_head *head, unsigned long flags)
64db4cff 2603{
48a7639c
PM
2604 bool needwake;
2605
62fde6ed
PM
2606 /*
2607 * If called from an extended quiescent state, invoke the RCU
2608 * core in order to force a re-evaluation of RCU's idleness.
2609 */
5c173eb8 2610 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2611 invoke_rcu_core();
2612
a16b7a69 2613 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2614 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2615 return;
64db4cff 2616
37c72e56
PM
2617 /*
2618 * Force the grace period if too many callbacks or too long waiting.
2619 * Enforce hysteresis, and don't invoke force_quiescent_state()
2620 * if some other CPU has recently done so. Also, don't bother
2621 * invoking force_quiescent_state() if the newly enqueued callback
2622 * is the only one waiting for a grace period to complete.
2623 */
2655d57e 2624 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2625
2626 /* Are we ignoring a completed grace period? */
470716fc 2627 note_gp_changes(rsp, rdp);
b52573d2
PM
2628
2629 /* Start a new grace period if one not already started. */
2630 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2631 struct rcu_node *rnp_root = rcu_get_root(rsp);
2632
b8462084 2633 raw_spin_lock(&rnp_root->lock);
6303b9c8 2634 smp_mb__after_unlock_lock();
48a7639c 2635 needwake = rcu_start_gp(rsp);
b8462084 2636 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2637 if (needwake)
2638 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2639 } else {
2640 /* Give the grace period a kick. */
2641 rdp->blimit = LONG_MAX;
2642 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2643 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2644 force_quiescent_state(rsp);
b52573d2
PM
2645 rdp->n_force_qs_snap = rsp->n_force_qs;
2646 rdp->qlen_last_fqs_check = rdp->qlen;
2647 }
4cdfc175 2648 }
29154c57
PM
2649}
2650
ae150184
PM
2651/*
2652 * RCU callback function to leak a callback.
2653 */
2654static void rcu_leak_callback(struct rcu_head *rhp)
2655{
2656}
2657
3fbfbf7a
PM
2658/*
2659 * Helper function for call_rcu() and friends. The cpu argument will
2660 * normally be -1, indicating "currently running CPU". It may specify
2661 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2662 * is expected to specify a CPU.
2663 */
64db4cff
PM
2664static void
2665__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2666 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2667{
2668 unsigned long flags;
2669 struct rcu_data *rdp;
2670
1146edcb 2671 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2672 if (debug_rcu_head_queue(head)) {
2673 /* Probable double call_rcu(), so leak the callback. */
2674 ACCESS_ONCE(head->func) = rcu_leak_callback;
2675 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2676 return;
2677 }
64db4cff
PM
2678 head->func = func;
2679 head->next = NULL;
2680
64db4cff
PM
2681 /*
2682 * Opportunistically note grace-period endings and beginnings.
2683 * Note that we might see a beginning right after we see an
2684 * end, but never vice versa, since this CPU has to pass through
2685 * a quiescent state betweentimes.
2686 */
2687 local_irq_save(flags);
394f99a9 2688 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2689
2690 /* Add the callback to our list. */
3fbfbf7a
PM
2691 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2692 int offline;
2693
2694 if (cpu != -1)
2695 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2696 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2697 WARN_ON_ONCE(offline);
0d8ee37e 2698 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2699 local_irq_restore(flags);
2700 return;
2701 }
a792563b 2702 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2703 if (lazy)
2704 rdp->qlen_lazy++;
c57afe80
PM
2705 else
2706 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2707 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2708 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2709 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2710
d4c08f2a
PM
2711 if (__is_kfree_rcu_offset((unsigned long)func))
2712 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2713 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2714 else
486e2593 2715 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2716
29154c57
PM
2717 /* Go handle any RCU core processing required. */
2718 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2719 local_irq_restore(flags);
2720}
2721
2722/*
d6714c22 2723 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2724 */
d6714c22 2725void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2726{
3fbfbf7a 2727 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2728}
d6714c22 2729EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2730
2731/*
486e2593 2732 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2733 */
2734void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2735{
3fbfbf7a 2736 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2737}
2738EXPORT_SYMBOL_GPL(call_rcu_bh);
2739
495aa969
ACB
2740/*
2741 * Queue an RCU callback for lazy invocation after a grace period.
2742 * This will likely be later named something like "call_rcu_lazy()",
2743 * but this change will require some way of tagging the lazy RCU
2744 * callbacks in the list of pending callbacks. Until then, this
2745 * function may only be called from __kfree_rcu().
2746 */
2747void kfree_call_rcu(struct rcu_head *head,
2748 void (*func)(struct rcu_head *rcu))
2749{
e534165b 2750 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2751}
2752EXPORT_SYMBOL_GPL(kfree_call_rcu);
2753
6d813391
PM
2754/*
2755 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2756 * any blocking grace-period wait automatically implies a grace period
2757 * if there is only one CPU online at any point time during execution
2758 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2759 * occasionally incorrectly indicate that there are multiple CPUs online
2760 * when there was in fact only one the whole time, as this just adds
2761 * some overhead: RCU still operates correctly.
6d813391
PM
2762 */
2763static inline int rcu_blocking_is_gp(void)
2764{
95f0c1de
PM
2765 int ret;
2766
6d813391 2767 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2768 preempt_disable();
2769 ret = num_online_cpus() <= 1;
2770 preempt_enable();
2771 return ret;
6d813391
PM
2772}
2773
6ebb237b
PM
2774/**
2775 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2776 *
2777 * Control will return to the caller some time after a full rcu-sched
2778 * grace period has elapsed, in other words after all currently executing
2779 * rcu-sched read-side critical sections have completed. These read-side
2780 * critical sections are delimited by rcu_read_lock_sched() and
2781 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2782 * local_irq_disable(), and so on may be used in place of
2783 * rcu_read_lock_sched().
2784 *
2785 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2786 * non-threaded hardware-interrupt handlers, in progress on entry will
2787 * have completed before this primitive returns. However, this does not
2788 * guarantee that softirq handlers will have completed, since in some
2789 * kernels, these handlers can run in process context, and can block.
2790 *
2791 * Note that this guarantee implies further memory-ordering guarantees.
2792 * On systems with more than one CPU, when synchronize_sched() returns,
2793 * each CPU is guaranteed to have executed a full memory barrier since the
2794 * end of its last RCU-sched read-side critical section whose beginning
2795 * preceded the call to synchronize_sched(). In addition, each CPU having
2796 * an RCU read-side critical section that extends beyond the return from
2797 * synchronize_sched() is guaranteed to have executed a full memory barrier
2798 * after the beginning of synchronize_sched() and before the beginning of
2799 * that RCU read-side critical section. Note that these guarantees include
2800 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2801 * that are executing in the kernel.
2802 *
2803 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2804 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2805 * to have executed a full memory barrier during the execution of
2806 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2807 * again only if the system has more than one CPU).
6ebb237b
PM
2808 *
2809 * This primitive provides the guarantees made by the (now removed)
2810 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2811 * guarantees that rcu_read_lock() sections will have completed.
2812 * In "classic RCU", these two guarantees happen to be one and
2813 * the same, but can differ in realtime RCU implementations.
2814 */
2815void synchronize_sched(void)
2816{
fe15d706
PM
2817 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2818 !lock_is_held(&rcu_lock_map) &&
2819 !lock_is_held(&rcu_sched_lock_map),
2820 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2821 if (rcu_blocking_is_gp())
2822 return;
3705b88d
AM
2823 if (rcu_expedited)
2824 synchronize_sched_expedited();
2825 else
2826 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2827}
2828EXPORT_SYMBOL_GPL(synchronize_sched);
2829
2830/**
2831 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2832 *
2833 * Control will return to the caller some time after a full rcu_bh grace
2834 * period has elapsed, in other words after all currently executing rcu_bh
2835 * read-side critical sections have completed. RCU read-side critical
2836 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2837 * and may be nested.
f0a0e6f2
PM
2838 *
2839 * See the description of synchronize_sched() for more detailed information
2840 * on memory ordering guarantees.
6ebb237b
PM
2841 */
2842void synchronize_rcu_bh(void)
2843{
fe15d706
PM
2844 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2845 !lock_is_held(&rcu_lock_map) &&
2846 !lock_is_held(&rcu_sched_lock_map),
2847 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2848 if (rcu_blocking_is_gp())
2849 return;
3705b88d
AM
2850 if (rcu_expedited)
2851 synchronize_rcu_bh_expedited();
2852 else
2853 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2854}
2855EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2856
765a3f4f
PM
2857/**
2858 * get_state_synchronize_rcu - Snapshot current RCU state
2859 *
2860 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2861 * to determine whether or not a full grace period has elapsed in the
2862 * meantime.
2863 */
2864unsigned long get_state_synchronize_rcu(void)
2865{
2866 /*
2867 * Any prior manipulation of RCU-protected data must happen
2868 * before the load from ->gpnum.
2869 */
2870 smp_mb(); /* ^^^ */
2871
2872 /*
2873 * Make sure this load happens before the purportedly
2874 * time-consuming work between get_state_synchronize_rcu()
2875 * and cond_synchronize_rcu().
2876 */
e534165b 2877 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
2878}
2879EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2880
2881/**
2882 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2883 *
2884 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2885 *
2886 * If a full RCU grace period has elapsed since the earlier call to
2887 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2888 * synchronize_rcu() to wait for a full grace period.
2889 *
2890 * Yes, this function does not take counter wrap into account. But
2891 * counter wrap is harmless. If the counter wraps, we have waited for
2892 * more than 2 billion grace periods (and way more on a 64-bit system!),
2893 * so waiting for one additional grace period should be just fine.
2894 */
2895void cond_synchronize_rcu(unsigned long oldstate)
2896{
2897 unsigned long newstate;
2898
2899 /*
2900 * Ensure that this load happens before any RCU-destructive
2901 * actions the caller might carry out after we return.
2902 */
e534165b 2903 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
2904 if (ULONG_CMP_GE(oldstate, newstate))
2905 synchronize_rcu();
2906}
2907EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2908
3d3b7db0
PM
2909static int synchronize_sched_expedited_cpu_stop(void *data)
2910{
2911 /*
2912 * There must be a full memory barrier on each affected CPU
2913 * between the time that try_stop_cpus() is called and the
2914 * time that it returns.
2915 *
2916 * In the current initial implementation of cpu_stop, the
2917 * above condition is already met when the control reaches
2918 * this point and the following smp_mb() is not strictly
2919 * necessary. Do smp_mb() anyway for documentation and
2920 * robustness against future implementation changes.
2921 */
2922 smp_mb(); /* See above comment block. */
2923 return 0;
2924}
2925
236fefaf
PM
2926/**
2927 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2928 *
2929 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2930 * approach to force the grace period to end quickly. This consumes
2931 * significant time on all CPUs and is unfriendly to real-time workloads,
2932 * so is thus not recommended for any sort of common-case code. In fact,
2933 * if you are using synchronize_sched_expedited() in a loop, please
2934 * restructure your code to batch your updates, and then use a single
2935 * synchronize_sched() instead.
3d3b7db0 2936 *
236fefaf
PM
2937 * Note that it is illegal to call this function while holding any lock
2938 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2939 * to call this function from a CPU-hotplug notifier. Failing to observe
2940 * these restriction will result in deadlock.
3d3b7db0
PM
2941 *
2942 * This implementation can be thought of as an application of ticket
2943 * locking to RCU, with sync_sched_expedited_started and
2944 * sync_sched_expedited_done taking on the roles of the halves
2945 * of the ticket-lock word. Each task atomically increments
2946 * sync_sched_expedited_started upon entry, snapshotting the old value,
2947 * then attempts to stop all the CPUs. If this succeeds, then each
2948 * CPU will have executed a context switch, resulting in an RCU-sched
2949 * grace period. We are then done, so we use atomic_cmpxchg() to
2950 * update sync_sched_expedited_done to match our snapshot -- but
2951 * only if someone else has not already advanced past our snapshot.
2952 *
2953 * On the other hand, if try_stop_cpus() fails, we check the value
2954 * of sync_sched_expedited_done. If it has advanced past our
2955 * initial snapshot, then someone else must have forced a grace period
2956 * some time after we took our snapshot. In this case, our work is
2957 * done for us, and we can simply return. Otherwise, we try again,
2958 * but keep our initial snapshot for purposes of checking for someone
2959 * doing our work for us.
2960 *
2961 * If we fail too many times in a row, we fall back to synchronize_sched().
2962 */
2963void synchronize_sched_expedited(void)
2964{
1924bcb0
PM
2965 long firstsnap, s, snap;
2966 int trycount = 0;
40694d66 2967 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2968
1924bcb0
PM
2969 /*
2970 * If we are in danger of counter wrap, just do synchronize_sched().
2971 * By allowing sync_sched_expedited_started to advance no more than
2972 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2973 * that more than 3.5 billion CPUs would be required to force a
2974 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2975 * course be required on a 64-bit system.
2976 */
40694d66
PM
2977 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2978 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2979 ULONG_MAX / 8)) {
2980 synchronize_sched();
a30489c5 2981 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2982 return;
2983 }
3d3b7db0 2984
1924bcb0
PM
2985 /*
2986 * Take a ticket. Note that atomic_inc_return() implies a
2987 * full memory barrier.
2988 */
40694d66 2989 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2990 firstsnap = snap;
3d3b7db0 2991 get_online_cpus();
1cc85961 2992 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2993
2994 /*
2995 * Each pass through the following loop attempts to force a
2996 * context switch on each CPU.
2997 */
2998 while (try_stop_cpus(cpu_online_mask,
2999 synchronize_sched_expedited_cpu_stop,
3000 NULL) == -EAGAIN) {
3001 put_online_cpus();
a30489c5 3002 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3003
1924bcb0 3004 /* Check to see if someone else did our work for us. */
40694d66 3005 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3006 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3007 /* ensure test happens before caller kfree */
4e857c58 3008 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3009 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
3010 return;
3011 }
3d3b7db0
PM
3012
3013 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3014 if (trycount++ < 10) {
3d3b7db0 3015 udelay(trycount * num_online_cpus());
c701d5d9 3016 } else {
3705b88d 3017 wait_rcu_gp(call_rcu_sched);
a30489c5 3018 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
3019 return;
3020 }
3021
1924bcb0 3022 /* Recheck to see if someone else did our work for us. */
40694d66 3023 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3024 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3025 /* ensure test happens before caller kfree */
4e857c58 3026 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3027 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
3028 return;
3029 }
3030
3031 /*
3032 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3033 * callers to piggyback on our grace period. We retry
3034 * after they started, so our grace period works for them,
3035 * and they started after our first try, so their grace
3036 * period works for us.
3d3b7db0
PM
3037 */
3038 get_online_cpus();
40694d66 3039 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3040 smp_mb(); /* ensure read is before try_stop_cpus(). */
3041 }
a30489c5 3042 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
3043
3044 /*
3045 * Everyone up to our most recent fetch is covered by our grace
3046 * period. Update the counter, but only if our work is still
3047 * relevant -- which it won't be if someone who started later
1924bcb0 3048 * than we did already did their update.
3d3b7db0
PM
3049 */
3050 do {
a30489c5 3051 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3052 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3053 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3054 /* ensure test happens before caller kfree */
4e857c58 3055 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3056 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3057 break;
3058 }
40694d66 3059 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3060 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3061
3062 put_online_cpus();
3063}
3064EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3065
64db4cff
PM
3066/*
3067 * Check to see if there is any immediate RCU-related work to be done
3068 * by the current CPU, for the specified type of RCU, returning 1 if so.
3069 * The checks are in order of increasing expense: checks that can be
3070 * carried out against CPU-local state are performed first. However,
3071 * we must check for CPU stalls first, else we might not get a chance.
3072 */
3073static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3074{
2f51f988
PM
3075 struct rcu_node *rnp = rdp->mynode;
3076
64db4cff
PM
3077 rdp->n_rcu_pending++;
3078
3079 /* Check for CPU stalls, if enabled. */
3080 check_cpu_stall(rsp, rdp);
3081
a096932f
PM
3082 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3083 if (rcu_nohz_full_cpu(rsp))
3084 return 0;
3085
64db4cff 3086 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
3087 if (rcu_scheduler_fully_active &&
3088 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 3089 rdp->n_rp_qs_pending++;
e4cc1f22 3090 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 3091 rdp->n_rp_report_qs++;
64db4cff 3092 return 1;
7ba5c840 3093 }
64db4cff
PM
3094
3095 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3096 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3097 rdp->n_rp_cb_ready++;
64db4cff 3098 return 1;
7ba5c840 3099 }
64db4cff
PM
3100
3101 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3102 if (cpu_needs_another_gp(rsp, rdp)) {
3103 rdp->n_rp_cpu_needs_gp++;
64db4cff 3104 return 1;
7ba5c840 3105 }
64db4cff
PM
3106
3107 /* Has another RCU grace period completed? */
2f51f988 3108 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3109 rdp->n_rp_gp_completed++;
64db4cff 3110 return 1;
7ba5c840 3111 }
64db4cff
PM
3112
3113 /* Has a new RCU grace period started? */
2f51f988 3114 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 3115 rdp->n_rp_gp_started++;
64db4cff 3116 return 1;
7ba5c840 3117 }
64db4cff 3118
96d3fd0d
PM
3119 /* Does this CPU need a deferred NOCB wakeup? */
3120 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3121 rdp->n_rp_nocb_defer_wakeup++;
3122 return 1;
3123 }
3124
64db4cff 3125 /* nothing to do */
7ba5c840 3126 rdp->n_rp_need_nothing++;
64db4cff
PM
3127 return 0;
3128}
3129
3130/*
3131 * Check to see if there is any immediate RCU-related work to be done
3132 * by the current CPU, returning 1 if so. This function is part of the
3133 * RCU implementation; it is -not- an exported member of the RCU API.
3134 */
a157229c 3135static int rcu_pending(int cpu)
64db4cff 3136{
6ce75a23
PM
3137 struct rcu_state *rsp;
3138
3139 for_each_rcu_flavor(rsp)
3140 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
3141 return 1;
3142 return 0;
64db4cff
PM
3143}
3144
3145/*
c0f4dfd4
PM
3146 * Return true if the specified CPU has any callback. If all_lazy is
3147 * non-NULL, store an indication of whether all callbacks are lazy.
3148 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3149 */
ffa83fb5 3150static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 3151{
c0f4dfd4
PM
3152 bool al = true;
3153 bool hc = false;
3154 struct rcu_data *rdp;
6ce75a23
PM
3155 struct rcu_state *rsp;
3156
c0f4dfd4
PM
3157 for_each_rcu_flavor(rsp) {
3158 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
3159 if (!rdp->nxtlist)
3160 continue;
3161 hc = true;
3162 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3163 al = false;
69c8d28c
PM
3164 break;
3165 }
c0f4dfd4
PM
3166 }
3167 if (all_lazy)
3168 *all_lazy = al;
3169 return hc;
64db4cff
PM
3170}
3171
a83eff0a
PM
3172/*
3173 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3174 * the compiler is expected to optimize this away.
3175 */
e66c33d5 3176static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3177 int cpu, unsigned long done)
3178{
3179 trace_rcu_barrier(rsp->name, s, cpu,
3180 atomic_read(&rsp->barrier_cpu_count), done);
3181}
3182
b1420f1c
PM
3183/*
3184 * RCU callback function for _rcu_barrier(). If we are last, wake
3185 * up the task executing _rcu_barrier().
3186 */
24ebbca8 3187static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3188{
24ebbca8
PM
3189 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3190 struct rcu_state *rsp = rdp->rsp;
3191
a83eff0a
PM
3192 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3193 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3194 complete(&rsp->barrier_completion);
a83eff0a
PM
3195 } else {
3196 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3197 }
d0ec774c
PM
3198}
3199
3200/*
3201 * Called with preemption disabled, and from cross-cpu IRQ context.
3202 */
3203static void rcu_barrier_func(void *type)
3204{
037b64ed 3205 struct rcu_state *rsp = type;
fa07a58f 3206 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3207
a83eff0a 3208 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3209 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3210 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3211}
3212
d0ec774c
PM
3213/*
3214 * Orchestrate the specified type of RCU barrier, waiting for all
3215 * RCU callbacks of the specified type to complete.
3216 */
037b64ed 3217static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3218{
b1420f1c 3219 int cpu;
b1420f1c 3220 struct rcu_data *rdp;
cf3a9c48
PM
3221 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3222 unsigned long snap_done;
b1420f1c 3223
a83eff0a 3224 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3225
e74f4c45 3226 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3227 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3228
cf3a9c48
PM
3229 /*
3230 * Ensure that all prior references, including to ->n_barrier_done,
3231 * are ordered before the _rcu_barrier() machinery.
3232 */
3233 smp_mb(); /* See above block comment. */
3234
3235 /*
3236 * Recheck ->n_barrier_done to see if others did our work for us.
3237 * This means checking ->n_barrier_done for an even-to-odd-to-even
3238 * transition. The "if" expression below therefore rounds the old
3239 * value up to the next even number and adds two before comparing.
3240 */
458fb381 3241 snap_done = rsp->n_barrier_done;
a83eff0a 3242 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3243
3244 /*
3245 * If the value in snap is odd, we needed to wait for the current
3246 * rcu_barrier() to complete, then wait for the next one, in other
3247 * words, we need the value of snap_done to be three larger than
3248 * the value of snap. On the other hand, if the value in snap is
3249 * even, we only had to wait for the next rcu_barrier() to complete,
3250 * in other words, we need the value of snap_done to be only two
3251 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3252 * this for us (thank you, Linus!).
3253 */
3254 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3255 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3256 smp_mb(); /* caller's subsequent code after above check. */
3257 mutex_unlock(&rsp->barrier_mutex);
3258 return;
3259 }
3260
3261 /*
3262 * Increment ->n_barrier_done to avoid duplicate work. Use
3263 * ACCESS_ONCE() to prevent the compiler from speculating
3264 * the increment to precede the early-exit check.
3265 */
a792563b 3266 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3267 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3268 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3269 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3270
d0ec774c 3271 /*
b1420f1c
PM
3272 * Initialize the count to one rather than to zero in order to
3273 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3274 * (or preemption of this task). Exclude CPU-hotplug operations
3275 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3276 */
7db74df8 3277 init_completion(&rsp->barrier_completion);
24ebbca8 3278 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3279 get_online_cpus();
b1420f1c
PM
3280
3281 /*
1331e7a1
PM
3282 * Force each CPU with callbacks to register a new callback.
3283 * When that callback is invoked, we will know that all of the
3284 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3285 */
3fbfbf7a 3286 for_each_possible_cpu(cpu) {
d1e43fa5 3287 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3288 continue;
b1420f1c 3289 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3290 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3291 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3292 rsp->n_barrier_done);
3293 atomic_inc(&rsp->barrier_cpu_count);
3294 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3295 rsp, cpu, 0);
3296 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3297 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3298 rsp->n_barrier_done);
037b64ed 3299 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3300 } else {
a83eff0a
PM
3301 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3302 rsp->n_barrier_done);
b1420f1c
PM
3303 }
3304 }
1331e7a1 3305 put_online_cpus();
b1420f1c
PM
3306
3307 /*
3308 * Now that we have an rcu_barrier_callback() callback on each
3309 * CPU, and thus each counted, remove the initial count.
3310 */
24ebbca8 3311 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3312 complete(&rsp->barrier_completion);
b1420f1c 3313
cf3a9c48
PM
3314 /* Increment ->n_barrier_done to prevent duplicate work. */
3315 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3316 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3317 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3318 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3319 smp_mb(); /* Keep increment before caller's subsequent code. */
3320
b1420f1c 3321 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3322 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3323
3324 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3325 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3326}
d0ec774c
PM
3327
3328/**
3329 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3330 */
3331void rcu_barrier_bh(void)
3332{
037b64ed 3333 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3334}
3335EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3336
3337/**
3338 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3339 */
3340void rcu_barrier_sched(void)
3341{
037b64ed 3342 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3343}
3344EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3345
64db4cff 3346/*
27569620 3347 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3348 */
27569620
PM
3349static void __init
3350rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3351{
3352 unsigned long flags;
394f99a9 3353 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3354 struct rcu_node *rnp = rcu_get_root(rsp);
3355
3356 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3357 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3358 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3359 init_callback_list(rdp);
486e2593 3360 rdp->qlen_lazy = 0;
1d1fb395 3361 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3362 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3363 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3364 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3365 rdp->cpu = cpu;
d4c08f2a 3366 rdp->rsp = rsp;
3fbfbf7a 3367 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3368 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3369}
3370
3371/*
3372 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3373 * offline event can be happening at a given time. Note also that we
3374 * can accept some slop in the rsp->completed access due to the fact
3375 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3376 */
49fb4c62 3377static void
9b67122a 3378rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3379{
3380 unsigned long flags;
64db4cff 3381 unsigned long mask;
394f99a9 3382 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3383 struct rcu_node *rnp = rcu_get_root(rsp);
3384
a4fbe35a
PM
3385 /* Exclude new grace periods. */
3386 mutex_lock(&rsp->onoff_mutex);
3387
64db4cff 3388 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3389 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3390 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3391 rdp->qlen_last_fqs_check = 0;
3392 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3393 rdp->blimit = blimit;
0d8ee37e 3394 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3395 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3396 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3397 atomic_set(&rdp->dynticks->dynticks,
3398 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3399 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3400
64db4cff
PM
3401 /* Add CPU to rcu_node bitmasks. */
3402 rnp = rdp->mynode;
3403 mask = rdp->grpmask;
3404 do {
3405 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3406 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3407 rnp->qsmaskinit |= mask;
3408 mask = rnp->grpmask;
d09b62df 3409 if (rnp == rdp->mynode) {
06ae115a
PM
3410 /*
3411 * If there is a grace period in progress, we will
3412 * set up to wait for it next time we run the
3413 * RCU core code.
3414 */
3415 rdp->gpnum = rnp->completed;
d09b62df 3416 rdp->completed = rnp->completed;
06ae115a
PM
3417 rdp->passed_quiesce = 0;
3418 rdp->qs_pending = 0;
f7f7bac9 3419 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3420 }
1304afb2 3421 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3422 rnp = rnp->parent;
3423 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3424 local_irq_restore(flags);
64db4cff 3425
a4fbe35a 3426 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3427}
3428
49fb4c62 3429static void rcu_prepare_cpu(int cpu)
64db4cff 3430{
6ce75a23
PM
3431 struct rcu_state *rsp;
3432
3433 for_each_rcu_flavor(rsp)
9b67122a 3434 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3435}
3436
3437/*
f41d911f 3438 * Handle CPU online/offline notification events.
64db4cff 3439 */
49fb4c62 3440static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3441 unsigned long action, void *hcpu)
64db4cff
PM
3442{
3443 long cpu = (long)hcpu;
e534165b 3444 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3445 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3446 struct rcu_state *rsp;
64db4cff 3447
f7f7bac9 3448 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3449 switch (action) {
3450 case CPU_UP_PREPARE:
3451 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3452 rcu_prepare_cpu(cpu);
3453 rcu_prepare_kthreads(cpu);
a26ac245
PM
3454 break;
3455 case CPU_ONLINE:
0f962a5e 3456 case CPU_DOWN_FAILED:
5d01bbd1 3457 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3458 break;
3459 case CPU_DOWN_PREPARE:
34ed6246 3460 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3461 break;
d0ec774c
PM
3462 case CPU_DYING:
3463 case CPU_DYING_FROZEN:
6ce75a23
PM
3464 for_each_rcu_flavor(rsp)
3465 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3466 break;
64db4cff
PM
3467 case CPU_DEAD:
3468 case CPU_DEAD_FROZEN:
3469 case CPU_UP_CANCELED:
3470 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3471 for_each_rcu_flavor(rsp)
3472 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3473 break;
3474 default:
3475 break;
3476 }
f7f7bac9 3477 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3478 return NOTIFY_OK;
64db4cff
PM
3479}
3480
d1d74d14
BP
3481static int rcu_pm_notify(struct notifier_block *self,
3482 unsigned long action, void *hcpu)
3483{
3484 switch (action) {
3485 case PM_HIBERNATION_PREPARE:
3486 case PM_SUSPEND_PREPARE:
3487 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3488 rcu_expedited = 1;
3489 break;
3490 case PM_POST_HIBERNATION:
3491 case PM_POST_SUSPEND:
3492 rcu_expedited = 0;
3493 break;
3494 default:
3495 break;
3496 }
3497 return NOTIFY_OK;
3498}
3499
b3dbec76
PM
3500/*
3501 * Spawn the kthread that handles this RCU flavor's grace periods.
3502 */
3503static int __init rcu_spawn_gp_kthread(void)
3504{
3505 unsigned long flags;
3506 struct rcu_node *rnp;
3507 struct rcu_state *rsp;
3508 struct task_struct *t;
3509
3510 for_each_rcu_flavor(rsp) {
f170168b 3511 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3512 BUG_ON(IS_ERR(t));
3513 rnp = rcu_get_root(rsp);
3514 raw_spin_lock_irqsave(&rnp->lock, flags);
3515 rsp->gp_kthread = t;
3516 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3517 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3518 }
3519 return 0;
3520}
3521early_initcall(rcu_spawn_gp_kthread);
3522
bbad9379
PM
3523/*
3524 * This function is invoked towards the end of the scheduler's initialization
3525 * process. Before this is called, the idle task might contain
3526 * RCU read-side critical sections (during which time, this idle
3527 * task is booting the system). After this function is called, the
3528 * idle tasks are prohibited from containing RCU read-side critical
3529 * sections. This function also enables RCU lockdep checking.
3530 */
3531void rcu_scheduler_starting(void)
3532{
3533 WARN_ON(num_online_cpus() != 1);
3534 WARN_ON(nr_context_switches() > 0);
3535 rcu_scheduler_active = 1;
3536}
3537
64db4cff
PM
3538/*
3539 * Compute the per-level fanout, either using the exact fanout specified
3540 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3541 */
3542#ifdef CONFIG_RCU_FANOUT_EXACT
3543static void __init rcu_init_levelspread(struct rcu_state *rsp)
3544{
3545 int i;
3546
04f34650
PM
3547 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3548 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3549 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3550}
3551#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3552static void __init rcu_init_levelspread(struct rcu_state *rsp)
3553{
3554 int ccur;
3555 int cprv;
3556 int i;
3557
4dbd6bb3 3558 cprv = nr_cpu_ids;
f885b7f2 3559 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3560 ccur = rsp->levelcnt[i];
3561 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3562 cprv = ccur;
3563 }
3564}
3565#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3566
3567/*
3568 * Helper function for rcu_init() that initializes one rcu_state structure.
3569 */
394f99a9
LJ
3570static void __init rcu_init_one(struct rcu_state *rsp,
3571 struct rcu_data __percpu *rda)
64db4cff 3572{
b4426b49
FF
3573 static const char * const buf[] = {
3574 "rcu_node_0",
3575 "rcu_node_1",
3576 "rcu_node_2",
3577 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3578 static const char * const fqs[] = {
3579 "rcu_node_fqs_0",
3580 "rcu_node_fqs_1",
3581 "rcu_node_fqs_2",
3582 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3583 static u8 fl_mask = 0x1;
64db4cff
PM
3584 int cpustride = 1;
3585 int i;
3586 int j;
3587 struct rcu_node *rnp;
3588
b6407e86
PM
3589 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3590
4930521a
PM
3591 /* Silence gcc 4.8 warning about array index out of range. */
3592 if (rcu_num_lvls > RCU_NUM_LVLS)
3593 panic("rcu_init_one: rcu_num_lvls overflow");
3594
64db4cff
PM
3595 /* Initialize the level-tracking arrays. */
3596
f885b7f2
PM
3597 for (i = 0; i < rcu_num_lvls; i++)
3598 rsp->levelcnt[i] = num_rcu_lvl[i];
3599 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3600 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3601 rcu_init_levelspread(rsp);
4a81e832
PM
3602 rsp->flavor_mask = fl_mask;
3603 fl_mask <<= 1;
64db4cff
PM
3604
3605 /* Initialize the elements themselves, starting from the leaves. */
3606
f885b7f2 3607 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3608 cpustride *= rsp->levelspread[i];
3609 rnp = rsp->level[i];
3610 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3611 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3612 lockdep_set_class_and_name(&rnp->lock,
3613 &rcu_node_class[i], buf[i]);
394f2769
PM
3614 raw_spin_lock_init(&rnp->fqslock);
3615 lockdep_set_class_and_name(&rnp->fqslock,
3616 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3617 rnp->gpnum = rsp->gpnum;
3618 rnp->completed = rsp->completed;
64db4cff
PM
3619 rnp->qsmask = 0;
3620 rnp->qsmaskinit = 0;
3621 rnp->grplo = j * cpustride;
3622 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3623 if (rnp->grphi >= nr_cpu_ids)
3624 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3625 if (i == 0) {
3626 rnp->grpnum = 0;
3627 rnp->grpmask = 0;
3628 rnp->parent = NULL;
3629 } else {
3630 rnp->grpnum = j % rsp->levelspread[i - 1];
3631 rnp->grpmask = 1UL << rnp->grpnum;
3632 rnp->parent = rsp->level[i - 1] +
3633 j / rsp->levelspread[i - 1];
3634 }
3635 rnp->level = i;
12f5f524 3636 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3637 rcu_init_one_nocb(rnp);
64db4cff
PM
3638 }
3639 }
0c34029a 3640
394f99a9 3641 rsp->rda = rda;
b3dbec76 3642 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3643 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3644 for_each_possible_cpu(i) {
4a90a068 3645 while (i > rnp->grphi)
0c34029a 3646 rnp++;
394f99a9 3647 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3648 rcu_boot_init_percpu_data(i, rsp);
3649 }
6ce75a23 3650 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3651}
3652
f885b7f2
PM
3653/*
3654 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3655 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3656 * the ->node array in the rcu_state structure.
3657 */
3658static void __init rcu_init_geometry(void)
3659{
026ad283 3660 ulong d;
f885b7f2
PM
3661 int i;
3662 int j;
cca6f393 3663 int n = nr_cpu_ids;
f885b7f2
PM
3664 int rcu_capacity[MAX_RCU_LVLS + 1];
3665
026ad283
PM
3666 /*
3667 * Initialize any unspecified boot parameters.
3668 * The default values of jiffies_till_first_fqs and
3669 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3670 * value, which is a function of HZ, then adding one for each
3671 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3672 */
3673 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3674 if (jiffies_till_first_fqs == ULONG_MAX)
3675 jiffies_till_first_fqs = d;
3676 if (jiffies_till_next_fqs == ULONG_MAX)
3677 jiffies_till_next_fqs = d;
3678
f885b7f2 3679 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3680 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3681 nr_cpu_ids == NR_CPUS)
f885b7f2 3682 return;
39479098
PM
3683 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3684 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3685
3686 /*
3687 * Compute number of nodes that can be handled an rcu_node tree
3688 * with the given number of levels. Setting rcu_capacity[0] makes
3689 * some of the arithmetic easier.
3690 */
3691 rcu_capacity[0] = 1;
3692 rcu_capacity[1] = rcu_fanout_leaf;
3693 for (i = 2; i <= MAX_RCU_LVLS; i++)
3694 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3695
3696 /*
3697 * The boot-time rcu_fanout_leaf parameter is only permitted
3698 * to increase the leaf-level fanout, not decrease it. Of course,
3699 * the leaf-level fanout cannot exceed the number of bits in
3700 * the rcu_node masks. Finally, the tree must be able to accommodate
3701 * the configured number of CPUs. Complain and fall back to the
3702 * compile-time values if these limits are exceeded.
3703 */
3704 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3705 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3706 n > rcu_capacity[MAX_RCU_LVLS]) {
3707 WARN_ON(1);
3708 return;
3709 }
3710
3711 /* Calculate the number of rcu_nodes at each level of the tree. */
3712 for (i = 1; i <= MAX_RCU_LVLS; i++)
3713 if (n <= rcu_capacity[i]) {
3714 for (j = 0; j <= i; j++)
3715 num_rcu_lvl[j] =
3716 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3717 rcu_num_lvls = i;
3718 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3719 num_rcu_lvl[j] = 0;
3720 break;
3721 }
3722
3723 /* Calculate the total number of rcu_node structures. */
3724 rcu_num_nodes = 0;
3725 for (i = 0; i <= MAX_RCU_LVLS; i++)
3726 rcu_num_nodes += num_rcu_lvl[i];
3727 rcu_num_nodes -= n;
3728}
3729
9f680ab4 3730void __init rcu_init(void)
64db4cff 3731{
017c4261 3732 int cpu;
9f680ab4 3733
f41d911f 3734 rcu_bootup_announce();
f885b7f2 3735 rcu_init_geometry();
394f99a9 3736 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3737 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3738 __rcu_init_preempt();
b5b39360 3739 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3740
3741 /*
3742 * We don't need protection against CPU-hotplug here because
3743 * this is called early in boot, before either interrupts
3744 * or the scheduler are operational.
3745 */
3746 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3747 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3748 for_each_online_cpu(cpu)
3749 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3750}
3751
4102adab 3752#include "tree_plugin.h"
This page took 0.640978 seconds and 5 git commands to generate.