Merge branch 'torture.2014.02.23a' into HEAD
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a41bfeb2 82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
83static char sname##_varname[] = #sname; \
84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 85struct rcu_state sname##_state = { \
6c90cc7b 86 .level = { &sname##_state.node[0] }, \
037b64ed 87 .call = cr, \
af446b70 88 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
7b2e6011 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 96 .name = sname##_varname, \
a4889858 97 .abbr = sabbr, \
a41bfeb2
SRRH
98}; \
99DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 100
a41bfeb2
SRRH
101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 103
27f4d280 104static struct rcu_state *rcu_state;
6ce75a23 105LIST_HEAD(rcu_struct_flavors);
27f4d280 106
f885b7f2
PM
107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 109module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117};
118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
b0d30417
PM
120/*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 124 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
bbad9379
PM
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
b0d30417
PM
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
a46e0899
PM
146#ifdef CONFIG_RCU_BOOST
147
a26ac245
PM
148/*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 156
a46e0899
PM
157#endif /* #ifdef CONFIG_RCU_BOOST */
158
5d01bbd1 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
160static void invoke_rcu_core(void);
161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 162
4a298656
PM
163/*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172unsigned long rcutorture_testseq;
173unsigned long rcutorture_vernum;
174
fc2219d4
PM
175/*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180static int rcu_gp_in_progress(struct rcu_state *rsp)
181{
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183}
184
b1f77b05 185/*
d6714c22 186 * Note a quiescent state. Because we do not need to know
b1f77b05 187 * how many quiescent states passed, just if there was at least
d6714c22 188 * one since the start of the grace period, this just sets a flag.
e4cc1f22 189 * The caller must have disabled preemption.
b1f77b05 190 */
d6714c22 191void rcu_sched_qs(int cpu)
b1f77b05 192{
25502a6c 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 194
e4cc1f22 195 if (rdp->passed_quiesce == 0)
f7f7bac9 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 197 rdp->passed_quiesce = 1;
b1f77b05
IM
198}
199
d6714c22 200void rcu_bh_qs(int cpu)
b1f77b05 201{
25502a6c 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 203
e4cc1f22 204 if (rdp->passed_quiesce == 0)
f7f7bac9 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 206 rdp->passed_quiesce = 1;
b1f77b05 207}
64db4cff 208
25502a6c
PM
209/*
210 * Note a context switch. This is a quiescent state for RCU-sched,
211 * and requires special handling for preemptible RCU.
e4cc1f22 212 * The caller must have disabled preemption.
25502a6c
PM
213 */
214void rcu_note_context_switch(int cpu)
215{
f7f7bac9 216 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 217 rcu_sched_qs(cpu);
cba6d0d6 218 rcu_preempt_note_context_switch(cpu);
f7f7bac9 219 trace_rcu_utilization(TPS("End context switch"));
25502a6c 220}
29ce8310 221EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 222
01896f7e 223static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 224 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 225 .dynticks = ATOMIC_INIT(1),
2333210b
PM
226#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
227 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
228 .dynticks_idle = ATOMIC_INIT(1),
229#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 230};
64db4cff 231
878d7439
ED
232static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
233static long qhimark = 10000; /* If this many pending, ignore blimit. */
234static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 235
878d7439
ED
236module_param(blimit, long, 0444);
237module_param(qhimark, long, 0444);
238module_param(qlowmark, long, 0444);
3d76c082 239
026ad283
PM
240static ulong jiffies_till_first_fqs = ULONG_MAX;
241static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
242
243module_param(jiffies_till_first_fqs, ulong, 0644);
244module_param(jiffies_till_next_fqs, ulong, 0644);
245
910ee45d
PM
246static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
247 struct rcu_data *rdp);
217af2a2
PM
248static void force_qs_rnp(struct rcu_state *rsp,
249 int (*f)(struct rcu_data *rsp, bool *isidle,
250 unsigned long *maxj),
251 bool *isidle, unsigned long *maxj);
4cdfc175 252static void force_quiescent_state(struct rcu_state *rsp);
a157229c 253static int rcu_pending(int cpu);
64db4cff
PM
254
255/*
d6714c22 256 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 257 */
d6714c22 258long rcu_batches_completed_sched(void)
64db4cff 259{
d6714c22 260 return rcu_sched_state.completed;
64db4cff 261}
d6714c22 262EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
263
264/*
265 * Return the number of RCU BH batches processed thus far for debug & stats.
266 */
267long rcu_batches_completed_bh(void)
268{
269 return rcu_bh_state.completed;
270}
271EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
272
bf66f18e
PM
273/*
274 * Force a quiescent state for RCU BH.
275 */
276void rcu_bh_force_quiescent_state(void)
277{
4cdfc175 278 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
279}
280EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
281
4a298656
PM
282/*
283 * Record the number of times rcutorture tests have been initiated and
284 * terminated. This information allows the debugfs tracing stats to be
285 * correlated to the rcutorture messages, even when the rcutorture module
286 * is being repeatedly loaded and unloaded. In other words, we cannot
287 * store this state in rcutorture itself.
288 */
289void rcutorture_record_test_transition(void)
290{
291 rcutorture_testseq++;
292 rcutorture_vernum = 0;
293}
294EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
295
296/*
297 * Record the number of writer passes through the current rcutorture test.
298 * This is also used to correlate debugfs tracing stats with the rcutorture
299 * messages.
300 */
301void rcutorture_record_progress(unsigned long vernum)
302{
303 rcutorture_vernum++;
304}
305EXPORT_SYMBOL_GPL(rcutorture_record_progress);
306
bf66f18e
PM
307/*
308 * Force a quiescent state for RCU-sched.
309 */
310void rcu_sched_force_quiescent_state(void)
311{
4cdfc175 312 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
313}
314EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
315
64db4cff
PM
316/*
317 * Does the CPU have callbacks ready to be invoked?
318 */
319static int
320cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
321{
3fbfbf7a
PM
322 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
323 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
324}
325
326/*
dc35c893
PM
327 * Does the current CPU require a not-yet-started grace period?
328 * The caller must have disabled interrupts to prevent races with
329 * normal callback registry.
64db4cff
PM
330 */
331static int
332cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
333{
dc35c893 334 int i;
3fbfbf7a 335
dc35c893
PM
336 if (rcu_gp_in_progress(rsp))
337 return 0; /* No, a grace period is already in progress. */
dae6e64d 338 if (rcu_nocb_needs_gp(rsp))
34ed6246 339 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
340 if (!rdp->nxttail[RCU_NEXT_TAIL])
341 return 0; /* No, this is a no-CBs (or offline) CPU. */
342 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
343 return 1; /* Yes, this CPU has newly registered callbacks. */
344 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
345 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
346 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
347 rdp->nxtcompleted[i]))
348 return 1; /* Yes, CBs for future grace period. */
349 return 0; /* No grace period needed. */
64db4cff
PM
350}
351
352/*
353 * Return the root node of the specified rcu_state structure.
354 */
355static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
356{
357 return &rsp->node[0];
358}
359
9b2e4f18 360/*
adf5091e 361 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
362 *
363 * If the new value of the ->dynticks_nesting counter now is zero,
364 * we really have entered idle, and must do the appropriate accounting.
365 * The caller must have disabled interrupts.
366 */
adf5091e
FW
367static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
368 bool user)
9b2e4f18 369{
96d3fd0d
PM
370 struct rcu_state *rsp;
371 struct rcu_data *rdp;
372
f7f7bac9 373 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 374 if (!user && !is_idle_task(current)) {
289828e6
PM
375 struct task_struct *idle __maybe_unused =
376 idle_task(smp_processor_id());
0989cb46 377
f7f7bac9 378 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 379 ftrace_dump(DUMP_ORIG);
0989cb46
PM
380 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
381 current->pid, current->comm,
382 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 383 }
96d3fd0d
PM
384 for_each_rcu_flavor(rsp) {
385 rdp = this_cpu_ptr(rsp->rda);
386 do_nocb_deferred_wakeup(rdp);
387 }
aea1b35e 388 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
389 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
390 smp_mb__before_atomic_inc(); /* See above. */
391 atomic_inc(&rdtp->dynticks);
392 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
393 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
394
395 /*
adf5091e 396 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
397 * in an RCU read-side critical section.
398 */
399 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
400 "Illegal idle entry in RCU read-side critical section.");
401 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
402 "Illegal idle entry in RCU-bh read-side critical section.");
403 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
404 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 405}
64db4cff 406
adf5091e
FW
407/*
408 * Enter an RCU extended quiescent state, which can be either the
409 * idle loop or adaptive-tickless usermode execution.
64db4cff 410 */
adf5091e 411static void rcu_eqs_enter(bool user)
64db4cff 412{
4145fa7f 413 long long oldval;
64db4cff
PM
414 struct rcu_dynticks *rdtp;
415
c9d4b0af 416 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 417 oldval = rdtp->dynticks_nesting;
29e37d81 418 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 419 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 420 rdtp->dynticks_nesting = 0;
3a592405
PM
421 rcu_eqs_enter_common(rdtp, oldval, user);
422 } else {
29e37d81 423 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 424 }
64db4cff 425}
adf5091e
FW
426
427/**
428 * rcu_idle_enter - inform RCU that current CPU is entering idle
429 *
430 * Enter idle mode, in other words, -leave- the mode in which RCU
431 * read-side critical sections can occur. (Though RCU read-side
432 * critical sections can occur in irq handlers in idle, a possibility
433 * handled by irq_enter() and irq_exit().)
434 *
435 * We crowbar the ->dynticks_nesting field to zero to allow for
436 * the possibility of usermode upcalls having messed up our count
437 * of interrupt nesting level during the prior busy period.
438 */
439void rcu_idle_enter(void)
440{
c5d900bf
FW
441 unsigned long flags;
442
443 local_irq_save(flags);
cb349ca9 444 rcu_eqs_enter(false);
c9d4b0af 445 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 446 local_irq_restore(flags);
adf5091e 447}
8a2ecf47 448EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 449
2b1d5024 450#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
451/**
452 * rcu_user_enter - inform RCU that we are resuming userspace.
453 *
454 * Enter RCU idle mode right before resuming userspace. No use of RCU
455 * is permitted between this call and rcu_user_exit(). This way the
456 * CPU doesn't need to maintain the tick for RCU maintenance purposes
457 * when the CPU runs in userspace.
458 */
459void rcu_user_enter(void)
460{
91d1aa43 461 rcu_eqs_enter(1);
adf5091e 462}
2b1d5024 463#endif /* CONFIG_RCU_USER_QS */
19dd1591 464
9b2e4f18
PM
465/**
466 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
467 *
468 * Exit from an interrupt handler, which might possibly result in entering
469 * idle mode, in other words, leaving the mode in which read-side critical
470 * sections can occur.
64db4cff 471 *
9b2e4f18
PM
472 * This code assumes that the idle loop never does anything that might
473 * result in unbalanced calls to irq_enter() and irq_exit(). If your
474 * architecture violates this assumption, RCU will give you what you
475 * deserve, good and hard. But very infrequently and irreproducibly.
476 *
477 * Use things like work queues to work around this limitation.
478 *
479 * You have been warned.
64db4cff 480 */
9b2e4f18 481void rcu_irq_exit(void)
64db4cff
PM
482{
483 unsigned long flags;
4145fa7f 484 long long oldval;
64db4cff
PM
485 struct rcu_dynticks *rdtp;
486
487 local_irq_save(flags);
c9d4b0af 488 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 489 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
490 rdtp->dynticks_nesting--;
491 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 492 if (rdtp->dynticks_nesting)
f7f7bac9 493 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 494 else
cb349ca9 495 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 496 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
497 local_irq_restore(flags);
498}
499
500/*
adf5091e 501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
502 *
503 * If the new value of the ->dynticks_nesting counter was previously zero,
504 * we really have exited idle, and must do the appropriate accounting.
505 * The caller must have disabled interrupts.
506 */
adf5091e
FW
507static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
508 int user)
9b2e4f18 509{
23b5c8fa
PM
510 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
511 atomic_inc(&rdtp->dynticks);
512 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
513 smp_mb__after_atomic_inc(); /* See above. */
514 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 515 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 516 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 517 if (!user && !is_idle_task(current)) {
289828e6
PM
518 struct task_struct *idle __maybe_unused =
519 idle_task(smp_processor_id());
0989cb46 520
f7f7bac9 521 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 522 oldval, rdtp->dynticks_nesting);
bf1304e9 523 ftrace_dump(DUMP_ORIG);
0989cb46
PM
524 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
525 current->pid, current->comm,
526 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
527 }
528}
529
adf5091e
FW
530/*
531 * Exit an RCU extended quiescent state, which can be either the
532 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 533 */
adf5091e 534static void rcu_eqs_exit(bool user)
9b2e4f18 535{
9b2e4f18
PM
536 struct rcu_dynticks *rdtp;
537 long long oldval;
538
c9d4b0af 539 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 540 oldval = rdtp->dynticks_nesting;
29e37d81 541 WARN_ON_ONCE(oldval < 0);
3a592405 542 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 543 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 544 } else {
29e37d81 545 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3a592405
PM
546 rcu_eqs_exit_common(rdtp, oldval, user);
547 }
9b2e4f18 548}
adf5091e
FW
549
550/**
551 * rcu_idle_exit - inform RCU that current CPU is leaving idle
552 *
553 * Exit idle mode, in other words, -enter- the mode in which RCU
554 * read-side critical sections can occur.
555 *
556 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
557 * allow for the possibility of usermode upcalls messing up our count
558 * of interrupt nesting level during the busy period that is just
559 * now starting.
560 */
561void rcu_idle_exit(void)
562{
c5d900bf
FW
563 unsigned long flags;
564
565 local_irq_save(flags);
cb349ca9 566 rcu_eqs_exit(false);
c9d4b0af 567 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 568 local_irq_restore(flags);
adf5091e 569}
8a2ecf47 570EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 571
2b1d5024 572#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
573/**
574 * rcu_user_exit - inform RCU that we are exiting userspace.
575 *
576 * Exit RCU idle mode while entering the kernel because it can
577 * run a RCU read side critical section anytime.
578 */
579void rcu_user_exit(void)
580{
91d1aa43 581 rcu_eqs_exit(1);
adf5091e 582}
2b1d5024 583#endif /* CONFIG_RCU_USER_QS */
19dd1591 584
9b2e4f18
PM
585/**
586 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
587 *
588 * Enter an interrupt handler, which might possibly result in exiting
589 * idle mode, in other words, entering the mode in which read-side critical
590 * sections can occur.
591 *
592 * Note that the Linux kernel is fully capable of entering an interrupt
593 * handler that it never exits, for example when doing upcalls to
594 * user mode! This code assumes that the idle loop never does upcalls to
595 * user mode. If your architecture does do upcalls from the idle loop (or
596 * does anything else that results in unbalanced calls to the irq_enter()
597 * and irq_exit() functions), RCU will give you what you deserve, good
598 * and hard. But very infrequently and irreproducibly.
599 *
600 * Use things like work queues to work around this limitation.
601 *
602 * You have been warned.
603 */
604void rcu_irq_enter(void)
605{
606 unsigned long flags;
607 struct rcu_dynticks *rdtp;
608 long long oldval;
609
610 local_irq_save(flags);
c9d4b0af 611 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
612 oldval = rdtp->dynticks_nesting;
613 rdtp->dynticks_nesting++;
614 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 615 if (oldval)
f7f7bac9 616 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 617 else
cb349ca9 618 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 619 rcu_sysidle_exit(rdtp, 1);
64db4cff 620 local_irq_restore(flags);
64db4cff
PM
621}
622
623/**
624 * rcu_nmi_enter - inform RCU of entry to NMI context
625 *
626 * If the CPU was idle with dynamic ticks active, and there is no
627 * irq handler running, this updates rdtp->dynticks_nmi to let the
628 * RCU grace-period handling know that the CPU is active.
629 */
630void rcu_nmi_enter(void)
631{
c9d4b0af 632 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 633
23b5c8fa
PM
634 if (rdtp->dynticks_nmi_nesting == 0 &&
635 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 636 return;
23b5c8fa
PM
637 rdtp->dynticks_nmi_nesting++;
638 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
639 atomic_inc(&rdtp->dynticks);
640 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
641 smp_mb__after_atomic_inc(); /* See above. */
642 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
643}
644
645/**
646 * rcu_nmi_exit - inform RCU of exit from NMI context
647 *
648 * If the CPU was idle with dynamic ticks active, and there is no
649 * irq handler running, this updates rdtp->dynticks_nmi to let the
650 * RCU grace-period handling know that the CPU is no longer active.
651 */
652void rcu_nmi_exit(void)
653{
c9d4b0af 654 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 655
23b5c8fa
PM
656 if (rdtp->dynticks_nmi_nesting == 0 ||
657 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 658 return;
23b5c8fa
PM
659 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
660 smp_mb__before_atomic_inc(); /* See above. */
661 atomic_inc(&rdtp->dynticks);
662 smp_mb__after_atomic_inc(); /* Force delay to next write. */
663 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
664}
665
666/**
5c173eb8
PM
667 * __rcu_is_watching - are RCU read-side critical sections safe?
668 *
669 * Return true if RCU is watching the running CPU, which means that
670 * this CPU can safely enter RCU read-side critical sections. Unlike
671 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
672 * least disabled preemption.
673 */
9418fb20 674bool notrace __rcu_is_watching(void)
5c173eb8
PM
675{
676 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
677}
678
679/**
680 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 681 *
9b2e4f18 682 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 683 * or NMI handler, return true.
64db4cff 684 */
9418fb20 685bool notrace rcu_is_watching(void)
64db4cff 686{
34240697
PM
687 int ret;
688
689 preempt_disable();
5c173eb8 690 ret = __rcu_is_watching();
34240697
PM
691 preempt_enable();
692 return ret;
64db4cff 693}
5c173eb8 694EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 695
62fde6ed 696#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
697
698/*
699 * Is the current CPU online? Disable preemption to avoid false positives
700 * that could otherwise happen due to the current CPU number being sampled,
701 * this task being preempted, its old CPU being taken offline, resuming
702 * on some other CPU, then determining that its old CPU is now offline.
703 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
704 * the check for rcu_scheduler_fully_active. Note also that it is OK
705 * for a CPU coming online to use RCU for one jiffy prior to marking itself
706 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
707 * offline to continue to use RCU for one jiffy after marking itself
708 * offline in the cpu_online_mask. This leniency is necessary given the
709 * non-atomic nature of the online and offline processing, for example,
710 * the fact that a CPU enters the scheduler after completing the CPU_DYING
711 * notifiers.
712 *
713 * This is also why RCU internally marks CPUs online during the
714 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
715 *
716 * Disable checking if in an NMI handler because we cannot safely report
717 * errors from NMI handlers anyway.
718 */
719bool rcu_lockdep_current_cpu_online(void)
720{
2036d94a
PM
721 struct rcu_data *rdp;
722 struct rcu_node *rnp;
c0d6d01b
PM
723 bool ret;
724
725 if (in_nmi())
f6f7ee9a 726 return true;
c0d6d01b 727 preempt_disable();
c9d4b0af 728 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
729 rnp = rdp->mynode;
730 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
731 !rcu_scheduler_fully_active;
732 preempt_enable();
733 return ret;
734}
735EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
736
62fde6ed 737#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 738
64db4cff 739/**
9b2e4f18 740 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 741 *
9b2e4f18
PM
742 * If the current CPU is idle or running at a first-level (not nested)
743 * interrupt from idle, return true. The caller must have at least
744 * disabled preemption.
64db4cff 745 */
62e3cb14 746static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 747{
c9d4b0af 748 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
749}
750
64db4cff
PM
751/*
752 * Snapshot the specified CPU's dynticks counter so that we can later
753 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 754 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 755 */
217af2a2
PM
756static int dyntick_save_progress_counter(struct rcu_data *rdp,
757 bool *isidle, unsigned long *maxj)
64db4cff 758{
23b5c8fa 759 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 760 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 761 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
762}
763
6193c76a
PM
764/*
765 * This function really isn't for public consumption, but RCU is special in
766 * that context switches can allow the state machine to make progress.
767 */
768extern void resched_cpu(int cpu);
769
64db4cff
PM
770/*
771 * Return true if the specified CPU has passed through a quiescent
772 * state by virtue of being in or having passed through an dynticks
773 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 774 * for this same CPU, or by virtue of having been offline.
64db4cff 775 */
217af2a2
PM
776static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
777 bool *isidle, unsigned long *maxj)
64db4cff 778{
7eb4f455
PM
779 unsigned int curr;
780 unsigned int snap;
64db4cff 781
7eb4f455
PM
782 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
783 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
784
785 /*
786 * If the CPU passed through or entered a dynticks idle phase with
787 * no active irq/NMI handlers, then we can safely pretend that the CPU
788 * already acknowledged the request to pass through a quiescent
789 * state. Either way, that CPU cannot possibly be in an RCU
790 * read-side critical section that started before the beginning
791 * of the current RCU grace period.
792 */
7eb4f455 793 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 794 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
795 rdp->dynticks_fqs++;
796 return 1;
797 }
798
a82dcc76
PM
799 /*
800 * Check for the CPU being offline, but only if the grace period
801 * is old enough. We don't need to worry about the CPU changing
802 * state: If we see it offline even once, it has been through a
803 * quiescent state.
804 *
805 * The reason for insisting that the grace period be at least
806 * one jiffy old is that CPUs that are not quite online and that
807 * have just gone offline can still execute RCU read-side critical
808 * sections.
809 */
810 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
811 return 0; /* Grace period is not old enough. */
812 barrier();
813 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 814 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
815 rdp->offline_fqs++;
816 return 1;
817 }
65d798f0
PM
818
819 /*
820 * There is a possibility that a CPU in adaptive-ticks state
821 * might run in the kernel with the scheduling-clock tick disabled
822 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
823 * force the CPU to restart the scheduling-clock tick in this
824 * CPU is in this state.
825 */
826 rcu_kick_nohz_cpu(rdp->cpu);
827
6193c76a
PM
828 /*
829 * Alternatively, the CPU might be running in the kernel
830 * for an extended period of time without a quiescent state.
831 * Attempt to force the CPU through the scheduler to gain the
832 * needed quiescent state, but only if the grace period has gone
833 * on for an uncommonly long time. If there are many stuck CPUs,
834 * we will beat on the first one until it gets unstuck, then move
835 * to the next. Only do this for the primary flavor of RCU.
836 */
837 if (rdp->rsp == rcu_state &&
cb1e78cf 838 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
6193c76a
PM
839 rdp->rsp->jiffies_resched += 5;
840 resched_cpu(rdp->cpu);
841 }
842
a82dcc76 843 return 0;
64db4cff
PM
844}
845
64db4cff
PM
846static void record_gp_stall_check_time(struct rcu_state *rsp)
847{
cb1e78cf 848 unsigned long j = jiffies;
6193c76a 849 unsigned long j1;
26cdfedf
PM
850
851 rsp->gp_start = j;
852 smp_wmb(); /* Record start time before stall time. */
6193c76a
PM
853 j1 = rcu_jiffies_till_stall_check();
854 rsp->jiffies_stall = j + j1;
855 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
856}
857
b637a328
PM
858/*
859 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
860 * for architectures that do not implement trigger_all_cpu_backtrace().
861 * The NMI-triggered stack traces are more accurate because they are
862 * printed by the target CPU.
863 */
864static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
865{
866 int cpu;
867 unsigned long flags;
868 struct rcu_node *rnp;
869
870 rcu_for_each_leaf_node(rsp, rnp) {
871 raw_spin_lock_irqsave(&rnp->lock, flags);
872 if (rnp->qsmask != 0) {
873 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
874 if (rnp->qsmask & (1UL << cpu))
875 dump_cpu_task(rnp->grplo + cpu);
876 }
877 raw_spin_unlock_irqrestore(&rnp->lock, flags);
878 }
879}
880
64db4cff
PM
881static void print_other_cpu_stall(struct rcu_state *rsp)
882{
883 int cpu;
884 long delta;
885 unsigned long flags;
285fe294 886 int ndetected = 0;
64db4cff 887 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 888 long totqlen = 0;
64db4cff
PM
889
890 /* Only let one CPU complain about others per time interval. */
891
1304afb2 892 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 893 delta = jiffies - rsp->jiffies_stall;
fc2219d4 894 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 895 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
896 return;
897 }
6bfc09e2 898 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 899 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 900
8cdd32a9
PM
901 /*
902 * OK, time to rat on our buddy...
903 * See Documentation/RCU/stallwarn.txt for info on how to debug
904 * RCU CPU stall warnings.
905 */
d7f3e207 906 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 907 rsp->name);
a858af28 908 print_cpu_stall_info_begin();
a0b6c9a7 909 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 910 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 911 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
912 if (rnp->qsmask != 0) {
913 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
914 if (rnp->qsmask & (1UL << cpu)) {
915 print_cpu_stall_info(rsp,
916 rnp->grplo + cpu);
917 ndetected++;
918 }
919 }
3acd9eb3 920 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 921 }
a858af28
PM
922
923 /*
924 * Now rat on any tasks that got kicked up to the root rcu_node
925 * due to CPU offlining.
926 */
927 rnp = rcu_get_root(rsp);
928 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 929 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
930 raw_spin_unlock_irqrestore(&rnp->lock, flags);
931
932 print_cpu_stall_info_end();
53bb857c
PM
933 for_each_possible_cpu(cpu)
934 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
935 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 936 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 937 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 938 if (ndetected == 0)
d7f3e207 939 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 940 else if (!trigger_all_cpu_backtrace())
b637a328 941 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 942
4cdfc175 943 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
944
945 rcu_print_detail_task_stall(rsp);
946
4cdfc175 947 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
948}
949
b021fe3e
PZ
950/*
951 * This function really isn't for public consumption, but RCU is special in
952 * that context switches can allow the state machine to make progress.
953 */
954extern void resched_cpu(int cpu);
955
64db4cff
PM
956static void print_cpu_stall(struct rcu_state *rsp)
957{
53bb857c 958 int cpu;
64db4cff
PM
959 unsigned long flags;
960 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 961 long totqlen = 0;
64db4cff 962
8cdd32a9
PM
963 /*
964 * OK, time to rat on ourselves...
965 * See Documentation/RCU/stallwarn.txt for info on how to debug
966 * RCU CPU stall warnings.
967 */
d7f3e207 968 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
969 print_cpu_stall_info_begin();
970 print_cpu_stall_info(rsp, smp_processor_id());
971 print_cpu_stall_info_end();
53bb857c
PM
972 for_each_possible_cpu(cpu)
973 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
974 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
975 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
976 if (!trigger_all_cpu_backtrace())
977 dump_stack();
c1dc0b9c 978
1304afb2 979 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 980 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 981 rsp->jiffies_stall = jiffies +
6bfc09e2 982 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 983 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 984
b021fe3e
PZ
985 /*
986 * Attempt to revive the RCU machinery by forcing a context switch.
987 *
988 * A context switch would normally allow the RCU state machine to make
989 * progress and it could be we're stuck in kernel space without context
990 * switches for an entirely unreasonable amount of time.
991 */
992 resched_cpu(smp_processor_id());
64db4cff
PM
993}
994
995static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
996{
26cdfedf
PM
997 unsigned long completed;
998 unsigned long gpnum;
999 unsigned long gps;
bad6e139
PM
1000 unsigned long j;
1001 unsigned long js;
64db4cff
PM
1002 struct rcu_node *rnp;
1003
26cdfedf 1004 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1005 return;
cb1e78cf 1006 j = jiffies;
26cdfedf
PM
1007
1008 /*
1009 * Lots of memory barriers to reject false positives.
1010 *
1011 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1012 * then rsp->gp_start, and finally rsp->completed. These values
1013 * are updated in the opposite order with memory barriers (or
1014 * equivalent) during grace-period initialization and cleanup.
1015 * Now, a false positive can occur if we get an new value of
1016 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1017 * the memory barriers, the only way that this can happen is if one
1018 * grace period ends and another starts between these two fetches.
1019 * Detect this by comparing rsp->completed with the previous fetch
1020 * from rsp->gpnum.
1021 *
1022 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1023 * and rsp->gp_start suffice to forestall false positives.
1024 */
1025 gpnum = ACCESS_ONCE(rsp->gpnum);
1026 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1027 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1028 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1029 gps = ACCESS_ONCE(rsp->gp_start);
1030 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1031 completed = ACCESS_ONCE(rsp->completed);
1032 if (ULONG_CMP_GE(completed, gpnum) ||
1033 ULONG_CMP_LT(j, js) ||
1034 ULONG_CMP_GE(gps, js))
1035 return; /* No stall or GP completed since entering function. */
64db4cff 1036 rnp = rdp->mynode;
c96ea7cf 1037 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1038 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1039
1040 /* We haven't checked in, so go dump stack. */
1041 print_cpu_stall(rsp);
1042
bad6e139
PM
1043 } else if (rcu_gp_in_progress(rsp) &&
1044 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1045
bad6e139 1046 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1047 print_other_cpu_stall(rsp);
1048 }
1049}
1050
53d84e00
PM
1051/**
1052 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1053 *
1054 * Set the stall-warning timeout way off into the future, thus preventing
1055 * any RCU CPU stall-warning messages from appearing in the current set of
1056 * RCU grace periods.
1057 *
1058 * The caller must disable hard irqs.
1059 */
1060void rcu_cpu_stall_reset(void)
1061{
6ce75a23
PM
1062 struct rcu_state *rsp;
1063
1064 for_each_rcu_flavor(rsp)
1065 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1066}
1067
3f5d3ea6
PM
1068/*
1069 * Initialize the specified rcu_data structure's callback list to empty.
1070 */
1071static void init_callback_list(struct rcu_data *rdp)
1072{
1073 int i;
1074
34ed6246
PM
1075 if (init_nocb_callback_list(rdp))
1076 return;
3f5d3ea6
PM
1077 rdp->nxtlist = NULL;
1078 for (i = 0; i < RCU_NEXT_SIZE; i++)
1079 rdp->nxttail[i] = &rdp->nxtlist;
1080}
1081
dc35c893
PM
1082/*
1083 * Determine the value that ->completed will have at the end of the
1084 * next subsequent grace period. This is used to tag callbacks so that
1085 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1086 * been dyntick-idle for an extended period with callbacks under the
1087 * influence of RCU_FAST_NO_HZ.
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
1091static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1092 struct rcu_node *rnp)
1093{
1094 /*
1095 * If RCU is idle, we just wait for the next grace period.
1096 * But we can only be sure that RCU is idle if we are looking
1097 * at the root rcu_node structure -- otherwise, a new grace
1098 * period might have started, but just not yet gotten around
1099 * to initializing the current non-root rcu_node structure.
1100 */
1101 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1102 return rnp->completed + 1;
1103
1104 /*
1105 * Otherwise, wait for a possible partial grace period and
1106 * then the subsequent full grace period.
1107 */
1108 return rnp->completed + 2;
1109}
1110
0446be48
PM
1111/*
1112 * Trace-event helper function for rcu_start_future_gp() and
1113 * rcu_nocb_wait_gp().
1114 */
1115static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1116 unsigned long c, const char *s)
0446be48
PM
1117{
1118 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1119 rnp->completed, c, rnp->level,
1120 rnp->grplo, rnp->grphi, s);
1121}
1122
1123/*
1124 * Start some future grace period, as needed to handle newly arrived
1125 * callbacks. The required future grace periods are recorded in each
1126 * rcu_node structure's ->need_future_gp field.
1127 *
1128 * The caller must hold the specified rcu_node structure's ->lock.
1129 */
1130static unsigned long __maybe_unused
1131rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1132{
1133 unsigned long c;
1134 int i;
1135 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1136
1137 /*
1138 * Pick up grace-period number for new callbacks. If this
1139 * grace period is already marked as needed, return to the caller.
1140 */
1141 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1142 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1143 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1144 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1145 return c;
1146 }
1147
1148 /*
1149 * If either this rcu_node structure or the root rcu_node structure
1150 * believe that a grace period is in progress, then we must wait
1151 * for the one following, which is in "c". Because our request
1152 * will be noticed at the end of the current grace period, we don't
1153 * need to explicitly start one.
1154 */
1155 if (rnp->gpnum != rnp->completed ||
1156 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1157 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1158 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1159 return c;
1160 }
1161
1162 /*
1163 * There might be no grace period in progress. If we don't already
1164 * hold it, acquire the root rcu_node structure's lock in order to
1165 * start one (if needed).
1166 */
6303b9c8 1167 if (rnp != rnp_root) {
0446be48 1168 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1169 smp_mb__after_unlock_lock();
1170 }
0446be48
PM
1171
1172 /*
1173 * Get a new grace-period number. If there really is no grace
1174 * period in progress, it will be smaller than the one we obtained
1175 * earlier. Adjust callbacks as needed. Note that even no-CBs
1176 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1177 */
1178 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1179 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1180 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1181 rdp->nxtcompleted[i] = c;
1182
1183 /*
1184 * If the needed for the required grace period is already
1185 * recorded, trace and leave.
1186 */
1187 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1188 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1189 goto unlock_out;
1190 }
1191
1192 /* Record the need for the future grace period. */
1193 rnp_root->need_future_gp[c & 0x1]++;
1194
1195 /* If a grace period is not already in progress, start one. */
1196 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1197 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1198 } else {
f7f7bac9 1199 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1200 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1201 }
1202unlock_out:
1203 if (rnp != rnp_root)
1204 raw_spin_unlock(&rnp_root->lock);
1205 return c;
1206}
1207
1208/*
1209 * Clean up any old requests for the just-ended grace period. Also return
1210 * whether any additional grace periods have been requested. Also invoke
1211 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1212 * waiting for this grace period to complete.
1213 */
1214static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1215{
1216 int c = rnp->completed;
1217 int needmore;
1218 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1219
1220 rcu_nocb_gp_cleanup(rsp, rnp);
1221 rnp->need_future_gp[c & 0x1] = 0;
1222 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1223 trace_rcu_future_gp(rnp, rdp, c,
1224 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1225 return needmore;
1226}
1227
dc35c893
PM
1228/*
1229 * If there is room, assign a ->completed number to any callbacks on
1230 * this CPU that have not already been assigned. Also accelerate any
1231 * callbacks that were previously assigned a ->completed number that has
1232 * since proven to be too conservative, which can happen if callbacks get
1233 * assigned a ->completed number while RCU is idle, but with reference to
1234 * a non-root rcu_node structure. This function is idempotent, so it does
1235 * not hurt to call it repeatedly.
1236 *
1237 * The caller must hold rnp->lock with interrupts disabled.
1238 */
1239static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1240 struct rcu_data *rdp)
1241{
1242 unsigned long c;
1243 int i;
1244
1245 /* If the CPU has no callbacks, nothing to do. */
1246 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1247 return;
1248
1249 /*
1250 * Starting from the sublist containing the callbacks most
1251 * recently assigned a ->completed number and working down, find the
1252 * first sublist that is not assignable to an upcoming grace period.
1253 * Such a sublist has something in it (first two tests) and has
1254 * a ->completed number assigned that will complete sooner than
1255 * the ->completed number for newly arrived callbacks (last test).
1256 *
1257 * The key point is that any later sublist can be assigned the
1258 * same ->completed number as the newly arrived callbacks, which
1259 * means that the callbacks in any of these later sublist can be
1260 * grouped into a single sublist, whether or not they have already
1261 * been assigned a ->completed number.
1262 */
1263 c = rcu_cbs_completed(rsp, rnp);
1264 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1265 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1266 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1267 break;
1268
1269 /*
1270 * If there are no sublist for unassigned callbacks, leave.
1271 * At the same time, advance "i" one sublist, so that "i" will
1272 * index into the sublist where all the remaining callbacks should
1273 * be grouped into.
1274 */
1275 if (++i >= RCU_NEXT_TAIL)
1276 return;
1277
1278 /*
1279 * Assign all subsequent callbacks' ->completed number to the next
1280 * full grace period and group them all in the sublist initially
1281 * indexed by "i".
1282 */
1283 for (; i <= RCU_NEXT_TAIL; i++) {
1284 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1285 rdp->nxtcompleted[i] = c;
1286 }
910ee45d
PM
1287 /* Record any needed additional grace periods. */
1288 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1289
1290 /* Trace depending on how much we were able to accelerate. */
1291 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1292 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1293 else
f7f7bac9 1294 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1295}
1296
1297/*
1298 * Move any callbacks whose grace period has completed to the
1299 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1300 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1301 * sublist. This function is idempotent, so it does not hurt to
1302 * invoke it repeatedly. As long as it is not invoked -too- often...
1303 *
1304 * The caller must hold rnp->lock with interrupts disabled.
1305 */
1306static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1307 struct rcu_data *rdp)
1308{
1309 int i, j;
1310
1311 /* If the CPU has no callbacks, nothing to do. */
1312 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1313 return;
1314
1315 /*
1316 * Find all callbacks whose ->completed numbers indicate that they
1317 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1318 */
1319 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1320 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1321 break;
1322 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1323 }
1324 /* Clean up any sublist tail pointers that were misordered above. */
1325 for (j = RCU_WAIT_TAIL; j < i; j++)
1326 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1327
1328 /* Copy down callbacks to fill in empty sublists. */
1329 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1330 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1331 break;
1332 rdp->nxttail[j] = rdp->nxttail[i];
1333 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1334 }
1335
1336 /* Classify any remaining callbacks. */
1337 rcu_accelerate_cbs(rsp, rnp, rdp);
1338}
1339
d09b62df 1340/*
ba9fbe95
PM
1341 * Update CPU-local rcu_data state to record the beginnings and ends of
1342 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1343 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1344 */
ba9fbe95 1345static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1346{
ba9fbe95 1347 /* Handle the ends of any preceding grace periods first. */
dc35c893 1348 if (rdp->completed == rnp->completed) {
d09b62df 1349
ba9fbe95 1350 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1351 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1352
dc35c893
PM
1353 } else {
1354
1355 /* Advance callbacks. */
1356 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1357
1358 /* Remember that we saw this grace-period completion. */
1359 rdp->completed = rnp->completed;
f7f7bac9 1360 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1361 }
398ebe60 1362
6eaef633
PM
1363 if (rdp->gpnum != rnp->gpnum) {
1364 /*
1365 * If the current grace period is waiting for this CPU,
1366 * set up to detect a quiescent state, otherwise don't
1367 * go looking for one.
1368 */
1369 rdp->gpnum = rnp->gpnum;
f7f7bac9 1370 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1371 rdp->passed_quiesce = 0;
1372 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1373 zero_cpu_stall_ticks(rdp);
1374 }
1375}
1376
d34ea322 1377static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1378{
1379 unsigned long flags;
1380 struct rcu_node *rnp;
1381
1382 local_irq_save(flags);
1383 rnp = rdp->mynode;
d34ea322
PM
1384 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1385 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1386 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1387 local_irq_restore(flags);
1388 return;
1389 }
6303b9c8 1390 smp_mb__after_unlock_lock();
d34ea322 1391 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1392 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1393}
1394
b3dbec76 1395/*
f7be8209 1396 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1397 */
7fdefc10 1398static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1399{
1400 struct rcu_data *rdp;
7fdefc10 1401 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1402
eb75767b 1403 rcu_bind_gp_kthread();
7fdefc10 1404 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1405 smp_mb__after_unlock_lock();
f7be8209
PM
1406 if (rsp->gp_flags == 0) {
1407 /* Spurious wakeup, tell caller to go back to sleep. */
1408 raw_spin_unlock_irq(&rnp->lock);
1409 return 0;
1410 }
4cdfc175 1411 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1412
f7be8209
PM
1413 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1414 /*
1415 * Grace period already in progress, don't start another.
1416 * Not supposed to be able to happen.
1417 */
7fdefc10
PM
1418 raw_spin_unlock_irq(&rnp->lock);
1419 return 0;
1420 }
1421
7fdefc10 1422 /* Advance to a new grace period and initialize state. */
26cdfedf
PM
1423 record_gp_stall_check_time(rsp);
1424 smp_wmb(); /* Record GP times before starting GP. */
7fdefc10 1425 rsp->gpnum++;
f7f7bac9 1426 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1427 raw_spin_unlock_irq(&rnp->lock);
1428
1429 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1430 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1431
1432 /*
1433 * Set the quiescent-state-needed bits in all the rcu_node
1434 * structures for all currently online CPUs in breadth-first order,
1435 * starting from the root rcu_node structure, relying on the layout
1436 * of the tree within the rsp->node[] array. Note that other CPUs
1437 * will access only the leaves of the hierarchy, thus seeing that no
1438 * grace period is in progress, at least until the corresponding
1439 * leaf node has been initialized. In addition, we have excluded
1440 * CPU-hotplug operations.
1441 *
1442 * The grace period cannot complete until the initialization
1443 * process finishes, because this kthread handles both.
1444 */
1445 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1446 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1447 smp_mb__after_unlock_lock();
b3dbec76 1448 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1449 rcu_preempt_check_blocked_tasks(rnp);
1450 rnp->qsmask = rnp->qsmaskinit;
0446be48 1451 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1452 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1453 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1454 if (rnp == rdp->mynode)
ce3d9c03 1455 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1456 rcu_preempt_boost_start_gp(rnp);
1457 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1458 rnp->level, rnp->grplo,
1459 rnp->grphi, rnp->qsmask);
1460 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1461#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1462 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1463 system_state == SYSTEM_RUNNING)
971394f3 1464 udelay(200);
661a85dc 1465#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1466 cond_resched();
1467 }
b3dbec76 1468
a4fbe35a 1469 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1470 return 1;
1471}
b3dbec76 1472
4cdfc175
PM
1473/*
1474 * Do one round of quiescent-state forcing.
1475 */
01896f7e 1476static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1477{
1478 int fqs_state = fqs_state_in;
217af2a2
PM
1479 bool isidle = false;
1480 unsigned long maxj;
4cdfc175
PM
1481 struct rcu_node *rnp = rcu_get_root(rsp);
1482
1483 rsp->n_force_qs++;
1484 if (fqs_state == RCU_SAVE_DYNTICK) {
1485 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1486 if (is_sysidle_rcu_state(rsp)) {
1487 isidle = 1;
1488 maxj = jiffies - ULONG_MAX / 4;
1489 }
217af2a2
PM
1490 force_qs_rnp(rsp, dyntick_save_progress_counter,
1491 &isidle, &maxj);
0edd1b17 1492 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1493 fqs_state = RCU_FORCE_QS;
1494 } else {
1495 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1496 isidle = 0;
217af2a2 1497 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1498 }
1499 /* Clear flag to prevent immediate re-entry. */
1500 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1501 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1502 smp_mb__after_unlock_lock();
4cdfc175
PM
1503 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1504 raw_spin_unlock_irq(&rnp->lock);
1505 }
1506 return fqs_state;
1507}
1508
7fdefc10
PM
1509/*
1510 * Clean up after the old grace period.
1511 */
4cdfc175 1512static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1513{
1514 unsigned long gp_duration;
dae6e64d 1515 int nocb = 0;
7fdefc10
PM
1516 struct rcu_data *rdp;
1517 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1518
7fdefc10 1519 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1520 smp_mb__after_unlock_lock();
7fdefc10
PM
1521 gp_duration = jiffies - rsp->gp_start;
1522 if (gp_duration > rsp->gp_max)
1523 rsp->gp_max = gp_duration;
b3dbec76 1524
7fdefc10
PM
1525 /*
1526 * We know the grace period is complete, but to everyone else
1527 * it appears to still be ongoing. But it is also the case
1528 * that to everyone else it looks like there is nothing that
1529 * they can do to advance the grace period. It is therefore
1530 * safe for us to drop the lock in order to mark the grace
1531 * period as completed in all of the rcu_node structures.
7fdefc10 1532 */
5d4b8659 1533 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1534
5d4b8659
PM
1535 /*
1536 * Propagate new ->completed value to rcu_node structures so
1537 * that other CPUs don't have to wait until the start of the next
1538 * grace period to process their callbacks. This also avoids
1539 * some nasty RCU grace-period initialization races by forcing
1540 * the end of the current grace period to be completely recorded in
1541 * all of the rcu_node structures before the beginning of the next
1542 * grace period is recorded in any of the rcu_node structures.
1543 */
1544 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1545 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1546 smp_mb__after_unlock_lock();
0446be48 1547 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1548 rdp = this_cpu_ptr(rsp->rda);
1549 if (rnp == rdp->mynode)
470716fc 1550 __note_gp_changes(rsp, rnp, rdp);
78e4bc34 1551 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1552 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1553 raw_spin_unlock_irq(&rnp->lock);
1554 cond_resched();
7fdefc10 1555 }
5d4b8659
PM
1556 rnp = rcu_get_root(rsp);
1557 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1558 smp_mb__after_unlock_lock();
dae6e64d 1559 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1560
1561 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1562 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1563 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1564 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1565 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
bb311ecc 1566 if (cpu_needs_another_gp(rsp, rdp)) {
b3f2d025 1567 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1568 trace_rcu_grace_period(rsp->name,
1569 ACCESS_ONCE(rsp->gpnum),
1570 TPS("newreq"));
1571 }
7fdefc10 1572 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1573}
1574
1575/*
1576 * Body of kthread that handles grace periods.
1577 */
1578static int __noreturn rcu_gp_kthread(void *arg)
1579{
4cdfc175 1580 int fqs_state;
88d6df61 1581 int gf;
d40011f6 1582 unsigned long j;
4cdfc175 1583 int ret;
7fdefc10
PM
1584 struct rcu_state *rsp = arg;
1585 struct rcu_node *rnp = rcu_get_root(rsp);
1586
1587 for (;;) {
1588
1589 /* Handle grace-period start. */
1590 for (;;) {
63c4db78
PM
1591 trace_rcu_grace_period(rsp->name,
1592 ACCESS_ONCE(rsp->gpnum),
1593 TPS("reqwait"));
4cdfc175 1594 wait_event_interruptible(rsp->gp_wq,
591c6d17 1595 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1596 RCU_GP_FLAG_INIT);
78e4bc34 1597 /* Locking provides needed memory barrier. */
f7be8209 1598 if (rcu_gp_init(rsp))
7fdefc10
PM
1599 break;
1600 cond_resched();
1601 flush_signals(current);
63c4db78
PM
1602 trace_rcu_grace_period(rsp->name,
1603 ACCESS_ONCE(rsp->gpnum),
1604 TPS("reqwaitsig"));
7fdefc10 1605 }
cabc49c1 1606
4cdfc175
PM
1607 /* Handle quiescent-state forcing. */
1608 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1609 j = jiffies_till_first_fqs;
1610 if (j > HZ) {
1611 j = HZ;
1612 jiffies_till_first_fqs = HZ;
1613 }
88d6df61 1614 ret = 0;
cabc49c1 1615 for (;;) {
88d6df61
PM
1616 if (!ret)
1617 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1618 trace_rcu_grace_period(rsp->name,
1619 ACCESS_ONCE(rsp->gpnum),
1620 TPS("fqswait"));
4cdfc175 1621 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1622 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1623 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1624 (!ACCESS_ONCE(rnp->qsmask) &&
1625 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1626 j);
78e4bc34 1627 /* Locking provides needed memory barriers. */
4cdfc175 1628 /* If grace period done, leave loop. */
cabc49c1 1629 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1630 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1631 break;
4cdfc175 1632 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1633 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1634 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1635 trace_rcu_grace_period(rsp->name,
1636 ACCESS_ONCE(rsp->gpnum),
1637 TPS("fqsstart"));
4cdfc175 1638 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1639 trace_rcu_grace_period(rsp->name,
1640 ACCESS_ONCE(rsp->gpnum),
1641 TPS("fqsend"));
4cdfc175
PM
1642 cond_resched();
1643 } else {
1644 /* Deal with stray signal. */
1645 cond_resched();
1646 flush_signals(current);
63c4db78
PM
1647 trace_rcu_grace_period(rsp->name,
1648 ACCESS_ONCE(rsp->gpnum),
1649 TPS("fqswaitsig"));
4cdfc175 1650 }
d40011f6
PM
1651 j = jiffies_till_next_fqs;
1652 if (j > HZ) {
1653 j = HZ;
1654 jiffies_till_next_fqs = HZ;
1655 } else if (j < 1) {
1656 j = 1;
1657 jiffies_till_next_fqs = 1;
1658 }
cabc49c1 1659 }
4cdfc175
PM
1660
1661 /* Handle grace-period end. */
1662 rcu_gp_cleanup(rsp);
b3dbec76 1663 }
b3dbec76
PM
1664}
1665
016a8d5b
SR
1666static void rsp_wakeup(struct irq_work *work)
1667{
1668 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1669
1670 /* Wake up rcu_gp_kthread() to start the grace period. */
1671 wake_up(&rsp->gp_wq);
1672}
1673
64db4cff
PM
1674/*
1675 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1676 * in preparation for detecting the next grace period. The caller must hold
b8462084 1677 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1678 *
1679 * Note that it is legal for a dying CPU (which is marked as offline) to
1680 * invoke this function. This can happen when the dying CPU reports its
1681 * quiescent state.
64db4cff
PM
1682 */
1683static void
910ee45d
PM
1684rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1685 struct rcu_data *rdp)
64db4cff 1686{
b8462084 1687 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1688 /*
b3dbec76 1689 * Either we have not yet spawned the grace-period
62da1921
PM
1690 * task, this CPU does not need another grace period,
1691 * or a grace period is already in progress.
b3dbec76 1692 * Either way, don't start a new grace period.
afe24b12 1693 */
afe24b12
PM
1694 return;
1695 }
4cdfc175 1696 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1697 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1698 TPS("newreq"));
62da1921 1699
016a8d5b
SR
1700 /*
1701 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1702 * could cause possible deadlocks with the rq->lock. Defer
1703 * the wakeup to interrupt context. And don't bother waking
1704 * up the running kthread.
016a8d5b 1705 */
1eafd31c
PM
1706 if (current != rsp->gp_kthread)
1707 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1708}
1709
910ee45d
PM
1710/*
1711 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1712 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1713 * is invoked indirectly from rcu_advance_cbs(), which would result in
1714 * endless recursion -- or would do so if it wasn't for the self-deadlock
1715 * that is encountered beforehand.
1716 */
1717static void
1718rcu_start_gp(struct rcu_state *rsp)
1719{
1720 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1721 struct rcu_node *rnp = rcu_get_root(rsp);
1722
1723 /*
1724 * If there is no grace period in progress right now, any
1725 * callbacks we have up to this point will be satisfied by the
1726 * next grace period. Also, advancing the callbacks reduces the
1727 * probability of false positives from cpu_needs_another_gp()
1728 * resulting in pointless grace periods. So, advance callbacks
1729 * then start the grace period!
1730 */
1731 rcu_advance_cbs(rsp, rnp, rdp);
1732 rcu_start_gp_advanced(rsp, rnp, rdp);
1733}
1734
f41d911f 1735/*
d3f6bad3
PM
1736 * Report a full set of quiescent states to the specified rcu_state
1737 * data structure. This involves cleaning up after the prior grace
1738 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1739 * if one is needed. Note that the caller must hold rnp->lock, which
1740 * is released before return.
f41d911f 1741 */
d3f6bad3 1742static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1743 __releases(rcu_get_root(rsp)->lock)
f41d911f 1744{
fc2219d4 1745 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1746 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1747 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1748}
1749
64db4cff 1750/*
d3f6bad3
PM
1751 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1752 * Allows quiescent states for a group of CPUs to be reported at one go
1753 * to the specified rcu_node structure, though all the CPUs in the group
1754 * must be represented by the same rcu_node structure (which need not be
1755 * a leaf rcu_node structure, though it often will be). That structure's
1756 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1757 */
1758static void
d3f6bad3
PM
1759rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1760 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1761 __releases(rnp->lock)
1762{
28ecd580
PM
1763 struct rcu_node *rnp_c;
1764
64db4cff
PM
1765 /* Walk up the rcu_node hierarchy. */
1766 for (;;) {
1767 if (!(rnp->qsmask & mask)) {
1768
1769 /* Our bit has already been cleared, so done. */
1304afb2 1770 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1771 return;
1772 }
1773 rnp->qsmask &= ~mask;
d4c08f2a
PM
1774 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1775 mask, rnp->qsmask, rnp->level,
1776 rnp->grplo, rnp->grphi,
1777 !!rnp->gp_tasks);
27f4d280 1778 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1779
1780 /* Other bits still set at this level, so done. */
1304afb2 1781 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1782 return;
1783 }
1784 mask = rnp->grpmask;
1785 if (rnp->parent == NULL) {
1786
1787 /* No more levels. Exit loop holding root lock. */
1788
1789 break;
1790 }
1304afb2 1791 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1792 rnp_c = rnp;
64db4cff 1793 rnp = rnp->parent;
1304afb2 1794 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1795 smp_mb__after_unlock_lock();
28ecd580 1796 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1797 }
1798
1799 /*
1800 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1801 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1802 * to clean up and start the next grace period if one is needed.
64db4cff 1803 */
d3f6bad3 1804 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1805}
1806
1807/*
d3f6bad3
PM
1808 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1809 * structure. This must be either called from the specified CPU, or
1810 * called when the specified CPU is known to be offline (and when it is
1811 * also known that no other CPU is concurrently trying to help the offline
1812 * CPU). The lastcomp argument is used to make sure we are still in the
1813 * grace period of interest. We don't want to end the current grace period
1814 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1815 */
1816static void
d7d6a11e 1817rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1818{
1819 unsigned long flags;
1820 unsigned long mask;
1821 struct rcu_node *rnp;
1822
1823 rnp = rdp->mynode;
1304afb2 1824 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1825 smp_mb__after_unlock_lock();
d7d6a11e
PM
1826 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1827 rnp->completed == rnp->gpnum) {
64db4cff
PM
1828
1829 /*
e4cc1f22
PM
1830 * The grace period in which this quiescent state was
1831 * recorded has ended, so don't report it upwards.
1832 * We will instead need a new quiescent state that lies
1833 * within the current grace period.
64db4cff 1834 */
e4cc1f22 1835 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1836 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1837 return;
1838 }
1839 mask = rdp->grpmask;
1840 if ((rnp->qsmask & mask) == 0) {
1304afb2 1841 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1842 } else {
1843 rdp->qs_pending = 0;
1844
1845 /*
1846 * This GP can't end until cpu checks in, so all of our
1847 * callbacks can be processed during the next GP.
1848 */
dc35c893 1849 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1850
d3f6bad3 1851 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1852 }
1853}
1854
1855/*
1856 * Check to see if there is a new grace period of which this CPU
1857 * is not yet aware, and if so, set up local rcu_data state for it.
1858 * Otherwise, see if this CPU has just passed through its first
1859 * quiescent state for this grace period, and record that fact if so.
1860 */
1861static void
1862rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1863{
05eb552b
PM
1864 /* Check for grace-period ends and beginnings. */
1865 note_gp_changes(rsp, rdp);
64db4cff
PM
1866
1867 /*
1868 * Does this CPU still need to do its part for current grace period?
1869 * If no, return and let the other CPUs do their part as well.
1870 */
1871 if (!rdp->qs_pending)
1872 return;
1873
1874 /*
1875 * Was there a quiescent state since the beginning of the grace
1876 * period? If no, then exit and wait for the next call.
1877 */
e4cc1f22 1878 if (!rdp->passed_quiesce)
64db4cff
PM
1879 return;
1880
d3f6bad3
PM
1881 /*
1882 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1883 * judge of that).
1884 */
d7d6a11e 1885 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1886}
1887
1888#ifdef CONFIG_HOTPLUG_CPU
1889
e74f4c45 1890/*
b1420f1c
PM
1891 * Send the specified CPU's RCU callbacks to the orphanage. The
1892 * specified CPU must be offline, and the caller must hold the
7b2e6011 1893 * ->orphan_lock.
e74f4c45 1894 */
b1420f1c
PM
1895static void
1896rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1897 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1898{
3fbfbf7a 1899 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1900 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1901 return;
1902
b1420f1c
PM
1903 /*
1904 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1905 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1906 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1907 */
a50c3af9 1908 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1909 rsp->qlen_lazy += rdp->qlen_lazy;
1910 rsp->qlen += rdp->qlen;
1911 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1912 rdp->qlen_lazy = 0;
1d1fb395 1913 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1914 }
1915
1916 /*
b1420f1c
PM
1917 * Next, move those callbacks still needing a grace period to
1918 * the orphanage, where some other CPU will pick them up.
1919 * Some of the callbacks might have gone partway through a grace
1920 * period, but that is too bad. They get to start over because we
1921 * cannot assume that grace periods are synchronized across CPUs.
1922 * We don't bother updating the ->nxttail[] array yet, instead
1923 * we just reset the whole thing later on.
a50c3af9 1924 */
b1420f1c
PM
1925 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1926 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1927 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1928 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1929 }
1930
1931 /*
b1420f1c
PM
1932 * Then move the ready-to-invoke callbacks to the orphanage,
1933 * where some other CPU will pick them up. These will not be
1934 * required to pass though another grace period: They are done.
a50c3af9 1935 */
e5601400 1936 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1937 *rsp->orphan_donetail = rdp->nxtlist;
1938 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1939 }
e74f4c45 1940
b1420f1c 1941 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1942 init_callback_list(rdp);
b1420f1c
PM
1943}
1944
1945/*
1946 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1947 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 1948 */
96d3fd0d 1949static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
1950{
1951 int i;
1952 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1953
3fbfbf7a 1954 /* No-CBs CPUs are handled specially. */
96d3fd0d 1955 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
1956 return;
1957
b1420f1c
PM
1958 /* Do the accounting first. */
1959 rdp->qlen_lazy += rsp->qlen_lazy;
1960 rdp->qlen += rsp->qlen;
1961 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1962 if (rsp->qlen_lazy != rsp->qlen)
1963 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1964 rsp->qlen_lazy = 0;
1965 rsp->qlen = 0;
1966
1967 /*
1968 * We do not need a memory barrier here because the only way we
1969 * can get here if there is an rcu_barrier() in flight is if
1970 * we are the task doing the rcu_barrier().
1971 */
1972
1973 /* First adopt the ready-to-invoke callbacks. */
1974 if (rsp->orphan_donelist != NULL) {
1975 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1976 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1977 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1978 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1979 rdp->nxttail[i] = rsp->orphan_donetail;
1980 rsp->orphan_donelist = NULL;
1981 rsp->orphan_donetail = &rsp->orphan_donelist;
1982 }
1983
1984 /* And then adopt the callbacks that still need a grace period. */
1985 if (rsp->orphan_nxtlist != NULL) {
1986 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1987 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1988 rsp->orphan_nxtlist = NULL;
1989 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1990 }
1991}
1992
1993/*
1994 * Trace the fact that this CPU is going offline.
1995 */
1996static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1997{
1998 RCU_TRACE(unsigned long mask);
1999 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2000 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2001
2002 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2003 trace_rcu_grace_period(rsp->name,
2004 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2005 TPS("cpuofl"));
64db4cff
PM
2006}
2007
2008/*
e5601400 2009 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2010 * this fact from process context. Do the remainder of the cleanup,
2011 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2012 * adopting them. There can only be one CPU hotplug operation at a time,
2013 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2014 */
e5601400 2015static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2016{
2036d94a
PM
2017 unsigned long flags;
2018 unsigned long mask;
2019 int need_report = 0;
e5601400 2020 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2021 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2022
2036d94a 2023 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2024 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2025
b1420f1c 2026 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2027
2028 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2029 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2030 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2031
b1420f1c
PM
2032 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2033 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2034 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2035
2036d94a
PM
2036 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2037 mask = rdp->grpmask; /* rnp->grplo is constant. */
2038 do {
2039 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2040 smp_mb__after_unlock_lock();
2036d94a
PM
2041 rnp->qsmaskinit &= ~mask;
2042 if (rnp->qsmaskinit != 0) {
2043 if (rnp != rdp->mynode)
2044 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2045 break;
2046 }
2047 if (rnp == rdp->mynode)
2048 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2049 else
2050 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2051 mask = rnp->grpmask;
2052 rnp = rnp->parent;
2053 } while (rnp != NULL);
2054
2055 /*
2056 * We still hold the leaf rcu_node structure lock here, and
2057 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2058 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2059 * held leads to deadlock.
2060 */
7b2e6011 2061 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2062 rnp = rdp->mynode;
2063 if (need_report & RCU_OFL_TASKS_NORM_GP)
2064 rcu_report_unblock_qs_rnp(rnp, flags);
2065 else
2066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2067 if (need_report & RCU_OFL_TASKS_EXP_GP)
2068 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2069 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2070 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2071 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2072 init_callback_list(rdp);
2073 /* Disallow further callbacks on this CPU. */
2074 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2075 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2076}
2077
2078#else /* #ifdef CONFIG_HOTPLUG_CPU */
2079
e5601400 2080static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2081{
2082}
2083
e5601400 2084static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2085{
2086}
2087
2088#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2089
2090/*
2091 * Invoke any RCU callbacks that have made it to the end of their grace
2092 * period. Thottle as specified by rdp->blimit.
2093 */
37c72e56 2094static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2095{
2096 unsigned long flags;
2097 struct rcu_head *next, *list, **tail;
878d7439
ED
2098 long bl, count, count_lazy;
2099 int i;
64db4cff 2100
dc35c893 2101 /* If no callbacks are ready, just return. */
29c00b4a 2102 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2103 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2104 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2105 need_resched(), is_idle_task(current),
2106 rcu_is_callbacks_kthread());
64db4cff 2107 return;
29c00b4a 2108 }
64db4cff
PM
2109
2110 /*
2111 * Extract the list of ready callbacks, disabling to prevent
2112 * races with call_rcu() from interrupt handlers.
2113 */
2114 local_irq_save(flags);
8146c4e2 2115 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2116 bl = rdp->blimit;
486e2593 2117 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2118 list = rdp->nxtlist;
2119 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2120 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2121 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2122 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2123 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2124 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2125 local_irq_restore(flags);
2126
2127 /* Invoke callbacks. */
486e2593 2128 count = count_lazy = 0;
64db4cff
PM
2129 while (list) {
2130 next = list->next;
2131 prefetch(next);
551d55a9 2132 debug_rcu_head_unqueue(list);
486e2593
PM
2133 if (__rcu_reclaim(rsp->name, list))
2134 count_lazy++;
64db4cff 2135 list = next;
dff1672d
PM
2136 /* Stop only if limit reached and CPU has something to do. */
2137 if (++count >= bl &&
2138 (need_resched() ||
2139 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2140 break;
2141 }
2142
2143 local_irq_save(flags);
4968c300
PM
2144 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2145 is_idle_task(current),
2146 rcu_is_callbacks_kthread());
64db4cff
PM
2147
2148 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2149 if (list != NULL) {
2150 *tail = rdp->nxtlist;
2151 rdp->nxtlist = list;
b41772ab
PM
2152 for (i = 0; i < RCU_NEXT_SIZE; i++)
2153 if (&rdp->nxtlist == rdp->nxttail[i])
2154 rdp->nxttail[i] = tail;
64db4cff
PM
2155 else
2156 break;
2157 }
b1420f1c
PM
2158 smp_mb(); /* List handling before counting for rcu_barrier(). */
2159 rdp->qlen_lazy -= count_lazy;
1d1fb395 2160 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2161 rdp->n_cbs_invoked += count;
64db4cff
PM
2162
2163 /* Reinstate batch limit if we have worked down the excess. */
2164 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2165 rdp->blimit = blimit;
2166
37c72e56
PM
2167 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2168 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2169 rdp->qlen_last_fqs_check = 0;
2170 rdp->n_force_qs_snap = rsp->n_force_qs;
2171 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2172 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2173 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2174
64db4cff
PM
2175 local_irq_restore(flags);
2176
e0f23060 2177 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2178 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2179 invoke_rcu_core();
64db4cff
PM
2180}
2181
2182/*
2183 * Check to see if this CPU is in a non-context-switch quiescent state
2184 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2185 * Also schedule RCU core processing.
64db4cff 2186 *
9b2e4f18 2187 * This function must be called from hardirq context. It is normally
64db4cff
PM
2188 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2189 * false, there is no point in invoking rcu_check_callbacks().
2190 */
2191void rcu_check_callbacks(int cpu, int user)
2192{
f7f7bac9 2193 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2194 increment_cpu_stall_ticks();
9b2e4f18 2195 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2196
2197 /*
2198 * Get here if this CPU took its interrupt from user
2199 * mode or from the idle loop, and if this is not a
2200 * nested interrupt. In this case, the CPU is in
d6714c22 2201 * a quiescent state, so note it.
64db4cff
PM
2202 *
2203 * No memory barrier is required here because both
d6714c22
PM
2204 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2205 * variables that other CPUs neither access nor modify,
2206 * at least not while the corresponding CPU is online.
64db4cff
PM
2207 */
2208
d6714c22
PM
2209 rcu_sched_qs(cpu);
2210 rcu_bh_qs(cpu);
64db4cff
PM
2211
2212 } else if (!in_softirq()) {
2213
2214 /*
2215 * Get here if this CPU did not take its interrupt from
2216 * softirq, in other words, if it is not interrupting
2217 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2218 * critical section, so note it.
64db4cff
PM
2219 */
2220
d6714c22 2221 rcu_bh_qs(cpu);
64db4cff 2222 }
f41d911f 2223 rcu_preempt_check_callbacks(cpu);
d21670ac 2224 if (rcu_pending(cpu))
a46e0899 2225 invoke_rcu_core();
f7f7bac9 2226 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2227}
2228
64db4cff
PM
2229/*
2230 * Scan the leaf rcu_node structures, processing dyntick state for any that
2231 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2232 * Also initiate boosting for any threads blocked on the root rcu_node.
2233 *
ee47eb9f 2234 * The caller must have suppressed start of new grace periods.
64db4cff 2235 */
217af2a2
PM
2236static void force_qs_rnp(struct rcu_state *rsp,
2237 int (*f)(struct rcu_data *rsp, bool *isidle,
2238 unsigned long *maxj),
2239 bool *isidle, unsigned long *maxj)
64db4cff
PM
2240{
2241 unsigned long bit;
2242 int cpu;
2243 unsigned long flags;
2244 unsigned long mask;
a0b6c9a7 2245 struct rcu_node *rnp;
64db4cff 2246
a0b6c9a7 2247 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2248 cond_resched();
64db4cff 2249 mask = 0;
1304afb2 2250 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2251 smp_mb__after_unlock_lock();
ee47eb9f 2252 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2253 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2254 return;
64db4cff 2255 }
a0b6c9a7 2256 if (rnp->qsmask == 0) {
1217ed1b 2257 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2258 continue;
2259 }
a0b6c9a7 2260 cpu = rnp->grplo;
64db4cff 2261 bit = 1;
a0b6c9a7 2262 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2263 if ((rnp->qsmask & bit) != 0) {
2264 if ((rnp->qsmaskinit & bit) != 0)
2265 *isidle = 0;
2266 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2267 mask |= bit;
2268 }
64db4cff 2269 }
45f014c5 2270 if (mask != 0) {
64db4cff 2271
d3f6bad3
PM
2272 /* rcu_report_qs_rnp() releases rnp->lock. */
2273 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2274 continue;
2275 }
1304afb2 2276 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2277 }
27f4d280 2278 rnp = rcu_get_root(rsp);
1217ed1b
PM
2279 if (rnp->qsmask == 0) {
2280 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2281 smp_mb__after_unlock_lock();
1217ed1b
PM
2282 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2283 }
64db4cff
PM
2284}
2285
2286/*
2287 * Force quiescent states on reluctant CPUs, and also detect which
2288 * CPUs are in dyntick-idle mode.
2289 */
4cdfc175 2290static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2291{
2292 unsigned long flags;
394f2769
PM
2293 bool ret;
2294 struct rcu_node *rnp;
2295 struct rcu_node *rnp_old = NULL;
2296
2297 /* Funnel through hierarchy to reduce memory contention. */
2298 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2299 for (; rnp != NULL; rnp = rnp->parent) {
2300 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2301 !raw_spin_trylock(&rnp->fqslock);
2302 if (rnp_old != NULL)
2303 raw_spin_unlock(&rnp_old->fqslock);
2304 if (ret) {
3660c281 2305 ACCESS_ONCE(rsp->n_force_qs_lh)++;
394f2769
PM
2306 return;
2307 }
2308 rnp_old = rnp;
2309 }
2310 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2311
394f2769
PM
2312 /* Reached the root of the rcu_node tree, acquire lock. */
2313 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2314 smp_mb__after_unlock_lock();
394f2769
PM
2315 raw_spin_unlock(&rnp_old->fqslock);
2316 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3660c281 2317 ACCESS_ONCE(rsp->n_force_qs_lh)++;
394f2769 2318 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2319 return; /* Someone beat us to it. */
46a1e34e 2320 }
4cdfc175 2321 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2322 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2323 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2324}
2325
64db4cff 2326/*
e0f23060
PM
2327 * This does the RCU core processing work for the specified rcu_state
2328 * and rcu_data structures. This may be called only from the CPU to
2329 * whom the rdp belongs.
64db4cff
PM
2330 */
2331static void
1bca8cf1 2332__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2333{
2334 unsigned long flags;
1bca8cf1 2335 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2336
2e597558
PM
2337 WARN_ON_ONCE(rdp->beenonline == 0);
2338
64db4cff
PM
2339 /* Update RCU state based on any recent quiescent states. */
2340 rcu_check_quiescent_state(rsp, rdp);
2341
2342 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2343 local_irq_save(flags);
64db4cff 2344 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2345 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2346 rcu_start_gp(rsp);
2347 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2348 } else {
2349 local_irq_restore(flags);
64db4cff
PM
2350 }
2351
2352 /* If there are callbacks ready, invoke them. */
09223371 2353 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2354 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2355
2356 /* Do any needed deferred wakeups of rcuo kthreads. */
2357 do_nocb_deferred_wakeup(rdp);
09223371
SL
2358}
2359
64db4cff 2360/*
e0f23060 2361 * Do RCU core processing for the current CPU.
64db4cff 2362 */
09223371 2363static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2364{
6ce75a23
PM
2365 struct rcu_state *rsp;
2366
bfa00b4c
PM
2367 if (cpu_is_offline(smp_processor_id()))
2368 return;
f7f7bac9 2369 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2370 for_each_rcu_flavor(rsp)
2371 __rcu_process_callbacks(rsp);
f7f7bac9 2372 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2373}
2374
a26ac245 2375/*
e0f23060
PM
2376 * Schedule RCU callback invocation. If the specified type of RCU
2377 * does not support RCU priority boosting, just do a direct call,
2378 * otherwise wake up the per-CPU kernel kthread. Note that because we
2379 * are running on the current CPU with interrupts disabled, the
2380 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2381 */
a46e0899 2382static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2383{
b0d30417
PM
2384 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2385 return;
a46e0899
PM
2386 if (likely(!rsp->boost)) {
2387 rcu_do_batch(rsp, rdp);
a26ac245
PM
2388 return;
2389 }
a46e0899 2390 invoke_rcu_callbacks_kthread();
a26ac245
PM
2391}
2392
a46e0899 2393static void invoke_rcu_core(void)
09223371 2394{
b0f74036
PM
2395 if (cpu_online(smp_processor_id()))
2396 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2397}
2398
29154c57
PM
2399/*
2400 * Handle any core-RCU processing required by a call_rcu() invocation.
2401 */
2402static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2403 struct rcu_head *head, unsigned long flags)
64db4cff 2404{
62fde6ed
PM
2405 /*
2406 * If called from an extended quiescent state, invoke the RCU
2407 * core in order to force a re-evaluation of RCU's idleness.
2408 */
5c173eb8 2409 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2410 invoke_rcu_core();
2411
a16b7a69 2412 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2413 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2414 return;
64db4cff 2415
37c72e56
PM
2416 /*
2417 * Force the grace period if too many callbacks or too long waiting.
2418 * Enforce hysteresis, and don't invoke force_quiescent_state()
2419 * if some other CPU has recently done so. Also, don't bother
2420 * invoking force_quiescent_state() if the newly enqueued callback
2421 * is the only one waiting for a grace period to complete.
2422 */
2655d57e 2423 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2424
2425 /* Are we ignoring a completed grace period? */
470716fc 2426 note_gp_changes(rsp, rdp);
b52573d2
PM
2427
2428 /* Start a new grace period if one not already started. */
2429 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2430 struct rcu_node *rnp_root = rcu_get_root(rsp);
2431
b8462084 2432 raw_spin_lock(&rnp_root->lock);
6303b9c8 2433 smp_mb__after_unlock_lock();
b8462084
PM
2434 rcu_start_gp(rsp);
2435 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2436 } else {
2437 /* Give the grace period a kick. */
2438 rdp->blimit = LONG_MAX;
2439 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2440 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2441 force_quiescent_state(rsp);
b52573d2
PM
2442 rdp->n_force_qs_snap = rsp->n_force_qs;
2443 rdp->qlen_last_fqs_check = rdp->qlen;
2444 }
4cdfc175 2445 }
29154c57
PM
2446}
2447
ae150184
PM
2448/*
2449 * RCU callback function to leak a callback.
2450 */
2451static void rcu_leak_callback(struct rcu_head *rhp)
2452{
2453}
2454
3fbfbf7a
PM
2455/*
2456 * Helper function for call_rcu() and friends. The cpu argument will
2457 * normally be -1, indicating "currently running CPU". It may specify
2458 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2459 * is expected to specify a CPU.
2460 */
64db4cff
PM
2461static void
2462__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2463 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2464{
2465 unsigned long flags;
2466 struct rcu_data *rdp;
2467
0bb7b59d 2468 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2469 if (debug_rcu_head_queue(head)) {
2470 /* Probable double call_rcu(), so leak the callback. */
2471 ACCESS_ONCE(head->func) = rcu_leak_callback;
2472 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2473 return;
2474 }
64db4cff
PM
2475 head->func = func;
2476 head->next = NULL;
2477
64db4cff
PM
2478 /*
2479 * Opportunistically note grace-period endings and beginnings.
2480 * Note that we might see a beginning right after we see an
2481 * end, but never vice versa, since this CPU has to pass through
2482 * a quiescent state betweentimes.
2483 */
2484 local_irq_save(flags);
394f99a9 2485 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2486
2487 /* Add the callback to our list. */
3fbfbf7a
PM
2488 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2489 int offline;
2490
2491 if (cpu != -1)
2492 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2493 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2494 WARN_ON_ONCE(offline);
0d8ee37e 2495 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2496 local_irq_restore(flags);
2497 return;
2498 }
29154c57 2499 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2500 if (lazy)
2501 rdp->qlen_lazy++;
c57afe80
PM
2502 else
2503 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2504 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2505 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2506 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2507
d4c08f2a
PM
2508 if (__is_kfree_rcu_offset((unsigned long)func))
2509 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2510 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2511 else
486e2593 2512 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2513
29154c57
PM
2514 /* Go handle any RCU core processing required. */
2515 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2516 local_irq_restore(flags);
2517}
2518
2519/*
d6714c22 2520 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2521 */
d6714c22 2522void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2523{
3fbfbf7a 2524 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2525}
d6714c22 2526EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2527
2528/*
486e2593 2529 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2530 */
2531void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2532{
3fbfbf7a 2533 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2534}
2535EXPORT_SYMBOL_GPL(call_rcu_bh);
2536
6d813391
PM
2537/*
2538 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2539 * any blocking grace-period wait automatically implies a grace period
2540 * if there is only one CPU online at any point time during execution
2541 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2542 * occasionally incorrectly indicate that there are multiple CPUs online
2543 * when there was in fact only one the whole time, as this just adds
2544 * some overhead: RCU still operates correctly.
6d813391
PM
2545 */
2546static inline int rcu_blocking_is_gp(void)
2547{
95f0c1de
PM
2548 int ret;
2549
6d813391 2550 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2551 preempt_disable();
2552 ret = num_online_cpus() <= 1;
2553 preempt_enable();
2554 return ret;
6d813391
PM
2555}
2556
6ebb237b
PM
2557/**
2558 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2559 *
2560 * Control will return to the caller some time after a full rcu-sched
2561 * grace period has elapsed, in other words after all currently executing
2562 * rcu-sched read-side critical sections have completed. These read-side
2563 * critical sections are delimited by rcu_read_lock_sched() and
2564 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2565 * local_irq_disable(), and so on may be used in place of
2566 * rcu_read_lock_sched().
2567 *
2568 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2569 * non-threaded hardware-interrupt handlers, in progress on entry will
2570 * have completed before this primitive returns. However, this does not
2571 * guarantee that softirq handlers will have completed, since in some
2572 * kernels, these handlers can run in process context, and can block.
2573 *
2574 * Note that this guarantee implies further memory-ordering guarantees.
2575 * On systems with more than one CPU, when synchronize_sched() returns,
2576 * each CPU is guaranteed to have executed a full memory barrier since the
2577 * end of its last RCU-sched read-side critical section whose beginning
2578 * preceded the call to synchronize_sched(). In addition, each CPU having
2579 * an RCU read-side critical section that extends beyond the return from
2580 * synchronize_sched() is guaranteed to have executed a full memory barrier
2581 * after the beginning of synchronize_sched() and before the beginning of
2582 * that RCU read-side critical section. Note that these guarantees include
2583 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2584 * that are executing in the kernel.
2585 *
2586 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2587 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2588 * to have executed a full memory barrier during the execution of
2589 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2590 * again only if the system has more than one CPU).
6ebb237b
PM
2591 *
2592 * This primitive provides the guarantees made by the (now removed)
2593 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2594 * guarantees that rcu_read_lock() sections will have completed.
2595 * In "classic RCU", these two guarantees happen to be one and
2596 * the same, but can differ in realtime RCU implementations.
2597 */
2598void synchronize_sched(void)
2599{
fe15d706
PM
2600 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2601 !lock_is_held(&rcu_lock_map) &&
2602 !lock_is_held(&rcu_sched_lock_map),
2603 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2604 if (rcu_blocking_is_gp())
2605 return;
3705b88d
AM
2606 if (rcu_expedited)
2607 synchronize_sched_expedited();
2608 else
2609 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2610}
2611EXPORT_SYMBOL_GPL(synchronize_sched);
2612
2613/**
2614 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2615 *
2616 * Control will return to the caller some time after a full rcu_bh grace
2617 * period has elapsed, in other words after all currently executing rcu_bh
2618 * read-side critical sections have completed. RCU read-side critical
2619 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2620 * and may be nested.
f0a0e6f2
PM
2621 *
2622 * See the description of synchronize_sched() for more detailed information
2623 * on memory ordering guarantees.
6ebb237b
PM
2624 */
2625void synchronize_rcu_bh(void)
2626{
fe15d706
PM
2627 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2628 !lock_is_held(&rcu_lock_map) &&
2629 !lock_is_held(&rcu_sched_lock_map),
2630 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2631 if (rcu_blocking_is_gp())
2632 return;
3705b88d
AM
2633 if (rcu_expedited)
2634 synchronize_rcu_bh_expedited();
2635 else
2636 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2637}
2638EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2639
3d3b7db0
PM
2640static int synchronize_sched_expedited_cpu_stop(void *data)
2641{
2642 /*
2643 * There must be a full memory barrier on each affected CPU
2644 * between the time that try_stop_cpus() is called and the
2645 * time that it returns.
2646 *
2647 * In the current initial implementation of cpu_stop, the
2648 * above condition is already met when the control reaches
2649 * this point and the following smp_mb() is not strictly
2650 * necessary. Do smp_mb() anyway for documentation and
2651 * robustness against future implementation changes.
2652 */
2653 smp_mb(); /* See above comment block. */
2654 return 0;
2655}
2656
236fefaf
PM
2657/**
2658 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2659 *
2660 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2661 * approach to force the grace period to end quickly. This consumes
2662 * significant time on all CPUs and is unfriendly to real-time workloads,
2663 * so is thus not recommended for any sort of common-case code. In fact,
2664 * if you are using synchronize_sched_expedited() in a loop, please
2665 * restructure your code to batch your updates, and then use a single
2666 * synchronize_sched() instead.
3d3b7db0 2667 *
236fefaf
PM
2668 * Note that it is illegal to call this function while holding any lock
2669 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2670 * to call this function from a CPU-hotplug notifier. Failing to observe
2671 * these restriction will result in deadlock.
3d3b7db0
PM
2672 *
2673 * This implementation can be thought of as an application of ticket
2674 * locking to RCU, with sync_sched_expedited_started and
2675 * sync_sched_expedited_done taking on the roles of the halves
2676 * of the ticket-lock word. Each task atomically increments
2677 * sync_sched_expedited_started upon entry, snapshotting the old value,
2678 * then attempts to stop all the CPUs. If this succeeds, then each
2679 * CPU will have executed a context switch, resulting in an RCU-sched
2680 * grace period. We are then done, so we use atomic_cmpxchg() to
2681 * update sync_sched_expedited_done to match our snapshot -- but
2682 * only if someone else has not already advanced past our snapshot.
2683 *
2684 * On the other hand, if try_stop_cpus() fails, we check the value
2685 * of sync_sched_expedited_done. If it has advanced past our
2686 * initial snapshot, then someone else must have forced a grace period
2687 * some time after we took our snapshot. In this case, our work is
2688 * done for us, and we can simply return. Otherwise, we try again,
2689 * but keep our initial snapshot for purposes of checking for someone
2690 * doing our work for us.
2691 *
2692 * If we fail too many times in a row, we fall back to synchronize_sched().
2693 */
2694void synchronize_sched_expedited(void)
2695{
1924bcb0
PM
2696 long firstsnap, s, snap;
2697 int trycount = 0;
40694d66 2698 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2699
1924bcb0
PM
2700 /*
2701 * If we are in danger of counter wrap, just do synchronize_sched().
2702 * By allowing sync_sched_expedited_started to advance no more than
2703 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2704 * that more than 3.5 billion CPUs would be required to force a
2705 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2706 * course be required on a 64-bit system.
2707 */
40694d66
PM
2708 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2709 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2710 ULONG_MAX / 8)) {
2711 synchronize_sched();
a30489c5 2712 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2713 return;
2714 }
3d3b7db0 2715
1924bcb0
PM
2716 /*
2717 * Take a ticket. Note that atomic_inc_return() implies a
2718 * full memory barrier.
2719 */
40694d66 2720 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2721 firstsnap = snap;
3d3b7db0 2722 get_online_cpus();
1cc85961 2723 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2724
2725 /*
2726 * Each pass through the following loop attempts to force a
2727 * context switch on each CPU.
2728 */
2729 while (try_stop_cpus(cpu_online_mask,
2730 synchronize_sched_expedited_cpu_stop,
2731 NULL) == -EAGAIN) {
2732 put_online_cpus();
a30489c5 2733 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2734
1924bcb0 2735 /* Check to see if someone else did our work for us. */
40694d66 2736 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2737 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2738 /* ensure test happens before caller kfree */
2739 smp_mb__before_atomic_inc(); /* ^^^ */
2740 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2741 return;
2742 }
3d3b7db0
PM
2743
2744 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2745 if (trycount++ < 10) {
3d3b7db0 2746 udelay(trycount * num_online_cpus());
c701d5d9 2747 } else {
3705b88d 2748 wait_rcu_gp(call_rcu_sched);
a30489c5 2749 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2750 return;
2751 }
2752
1924bcb0 2753 /* Recheck to see if someone else did our work for us. */
40694d66 2754 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2755 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2756 /* ensure test happens before caller kfree */
2757 smp_mb__before_atomic_inc(); /* ^^^ */
2758 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2759 return;
2760 }
2761
2762 /*
2763 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2764 * callers to piggyback on our grace period. We retry
2765 * after they started, so our grace period works for them,
2766 * and they started after our first try, so their grace
2767 * period works for us.
3d3b7db0
PM
2768 */
2769 get_online_cpus();
40694d66 2770 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2771 smp_mb(); /* ensure read is before try_stop_cpus(). */
2772 }
a30489c5 2773 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2774
2775 /*
2776 * Everyone up to our most recent fetch is covered by our grace
2777 * period. Update the counter, but only if our work is still
2778 * relevant -- which it won't be if someone who started later
1924bcb0 2779 * than we did already did their update.
3d3b7db0
PM
2780 */
2781 do {
a30489c5 2782 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2783 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2784 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2785 /* ensure test happens before caller kfree */
2786 smp_mb__before_atomic_inc(); /* ^^^ */
2787 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2788 break;
2789 }
40694d66 2790 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2791 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2792
2793 put_online_cpus();
2794}
2795EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2796
64db4cff
PM
2797/*
2798 * Check to see if there is any immediate RCU-related work to be done
2799 * by the current CPU, for the specified type of RCU, returning 1 if so.
2800 * The checks are in order of increasing expense: checks that can be
2801 * carried out against CPU-local state are performed first. However,
2802 * we must check for CPU stalls first, else we might not get a chance.
2803 */
2804static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2805{
2f51f988
PM
2806 struct rcu_node *rnp = rdp->mynode;
2807
64db4cff
PM
2808 rdp->n_rcu_pending++;
2809
2810 /* Check for CPU stalls, if enabled. */
2811 check_cpu_stall(rsp, rdp);
2812
a096932f
PM
2813 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2814 if (rcu_nohz_full_cpu(rsp))
2815 return 0;
2816
64db4cff 2817 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2818 if (rcu_scheduler_fully_active &&
2819 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2820 rdp->n_rp_qs_pending++;
e4cc1f22 2821 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2822 rdp->n_rp_report_qs++;
64db4cff 2823 return 1;
7ba5c840 2824 }
64db4cff
PM
2825
2826 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2827 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2828 rdp->n_rp_cb_ready++;
64db4cff 2829 return 1;
7ba5c840 2830 }
64db4cff
PM
2831
2832 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2833 if (cpu_needs_another_gp(rsp, rdp)) {
2834 rdp->n_rp_cpu_needs_gp++;
64db4cff 2835 return 1;
7ba5c840 2836 }
64db4cff
PM
2837
2838 /* Has another RCU grace period completed? */
2f51f988 2839 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2840 rdp->n_rp_gp_completed++;
64db4cff 2841 return 1;
7ba5c840 2842 }
64db4cff
PM
2843
2844 /* Has a new RCU grace period started? */
2f51f988 2845 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2846 rdp->n_rp_gp_started++;
64db4cff 2847 return 1;
7ba5c840 2848 }
64db4cff 2849
96d3fd0d
PM
2850 /* Does this CPU need a deferred NOCB wakeup? */
2851 if (rcu_nocb_need_deferred_wakeup(rdp)) {
2852 rdp->n_rp_nocb_defer_wakeup++;
2853 return 1;
2854 }
2855
64db4cff 2856 /* nothing to do */
7ba5c840 2857 rdp->n_rp_need_nothing++;
64db4cff
PM
2858 return 0;
2859}
2860
2861/*
2862 * Check to see if there is any immediate RCU-related work to be done
2863 * by the current CPU, returning 1 if so. This function is part of the
2864 * RCU implementation; it is -not- an exported member of the RCU API.
2865 */
a157229c 2866static int rcu_pending(int cpu)
64db4cff 2867{
6ce75a23
PM
2868 struct rcu_state *rsp;
2869
2870 for_each_rcu_flavor(rsp)
2871 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2872 return 1;
2873 return 0;
64db4cff
PM
2874}
2875
2876/*
c0f4dfd4
PM
2877 * Return true if the specified CPU has any callback. If all_lazy is
2878 * non-NULL, store an indication of whether all callbacks are lazy.
2879 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2880 */
ffa83fb5 2881static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2882{
c0f4dfd4
PM
2883 bool al = true;
2884 bool hc = false;
2885 struct rcu_data *rdp;
6ce75a23
PM
2886 struct rcu_state *rsp;
2887
c0f4dfd4
PM
2888 for_each_rcu_flavor(rsp) {
2889 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
2890 if (!rdp->nxtlist)
2891 continue;
2892 hc = true;
2893 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 2894 al = false;
69c8d28c
PM
2895 break;
2896 }
c0f4dfd4
PM
2897 }
2898 if (all_lazy)
2899 *all_lazy = al;
2900 return hc;
64db4cff
PM
2901}
2902
a83eff0a
PM
2903/*
2904 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2905 * the compiler is expected to optimize this away.
2906 */
e66c33d5 2907static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2908 int cpu, unsigned long done)
2909{
2910 trace_rcu_barrier(rsp->name, s, cpu,
2911 atomic_read(&rsp->barrier_cpu_count), done);
2912}
2913
b1420f1c
PM
2914/*
2915 * RCU callback function for _rcu_barrier(). If we are last, wake
2916 * up the task executing _rcu_barrier().
2917 */
24ebbca8 2918static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2919{
24ebbca8
PM
2920 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2921 struct rcu_state *rsp = rdp->rsp;
2922
a83eff0a
PM
2923 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2924 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2925 complete(&rsp->barrier_completion);
a83eff0a
PM
2926 } else {
2927 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2928 }
d0ec774c
PM
2929}
2930
2931/*
2932 * Called with preemption disabled, and from cross-cpu IRQ context.
2933 */
2934static void rcu_barrier_func(void *type)
2935{
037b64ed 2936 struct rcu_state *rsp = type;
06668efa 2937 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2938
a83eff0a 2939 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2940 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2941 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2942}
2943
d0ec774c
PM
2944/*
2945 * Orchestrate the specified type of RCU barrier, waiting for all
2946 * RCU callbacks of the specified type to complete.
2947 */
037b64ed 2948static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2949{
b1420f1c 2950 int cpu;
b1420f1c 2951 struct rcu_data *rdp;
cf3a9c48
PM
2952 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2953 unsigned long snap_done;
b1420f1c 2954
a83eff0a 2955 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2956
e74f4c45 2957 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2958 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2959
cf3a9c48
PM
2960 /*
2961 * Ensure that all prior references, including to ->n_barrier_done,
2962 * are ordered before the _rcu_barrier() machinery.
2963 */
2964 smp_mb(); /* See above block comment. */
2965
2966 /*
2967 * Recheck ->n_barrier_done to see if others did our work for us.
2968 * This means checking ->n_barrier_done for an even-to-odd-to-even
2969 * transition. The "if" expression below therefore rounds the old
2970 * value up to the next even number and adds two before comparing.
2971 */
458fb381 2972 snap_done = rsp->n_barrier_done;
a83eff0a 2973 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
2974
2975 /*
2976 * If the value in snap is odd, we needed to wait for the current
2977 * rcu_barrier() to complete, then wait for the next one, in other
2978 * words, we need the value of snap_done to be three larger than
2979 * the value of snap. On the other hand, if the value in snap is
2980 * even, we only had to wait for the next rcu_barrier() to complete,
2981 * in other words, we need the value of snap_done to be only two
2982 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2983 * this for us (thank you, Linus!).
2984 */
2985 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 2986 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2987 smp_mb(); /* caller's subsequent code after above check. */
2988 mutex_unlock(&rsp->barrier_mutex);
2989 return;
2990 }
2991
2992 /*
2993 * Increment ->n_barrier_done to avoid duplicate work. Use
2994 * ACCESS_ONCE() to prevent the compiler from speculating
2995 * the increment to precede the early-exit check.
2996 */
2997 ACCESS_ONCE(rsp->n_barrier_done)++;
2998 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2999 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3000 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3001
d0ec774c 3002 /*
b1420f1c
PM
3003 * Initialize the count to one rather than to zero in order to
3004 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3005 * (or preemption of this task). Exclude CPU-hotplug operations
3006 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3007 */
7db74df8 3008 init_completion(&rsp->barrier_completion);
24ebbca8 3009 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3010 get_online_cpus();
b1420f1c
PM
3011
3012 /*
1331e7a1
PM
3013 * Force each CPU with callbacks to register a new callback.
3014 * When that callback is invoked, we will know that all of the
3015 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3016 */
3fbfbf7a 3017 for_each_possible_cpu(cpu) {
d1e43fa5 3018 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3019 continue;
b1420f1c 3020 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3021 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3022 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3023 rsp->n_barrier_done);
3024 atomic_inc(&rsp->barrier_cpu_count);
3025 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3026 rsp, cpu, 0);
3027 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3028 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3029 rsp->n_barrier_done);
037b64ed 3030 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3031 } else {
a83eff0a
PM
3032 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3033 rsp->n_barrier_done);
b1420f1c
PM
3034 }
3035 }
1331e7a1 3036 put_online_cpus();
b1420f1c
PM
3037
3038 /*
3039 * Now that we have an rcu_barrier_callback() callback on each
3040 * CPU, and thus each counted, remove the initial count.
3041 */
24ebbca8 3042 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3043 complete(&rsp->barrier_completion);
b1420f1c 3044
cf3a9c48
PM
3045 /* Increment ->n_barrier_done to prevent duplicate work. */
3046 smp_mb(); /* Keep increment after above mechanism. */
3047 ACCESS_ONCE(rsp->n_barrier_done)++;
3048 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3049 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3050 smp_mb(); /* Keep increment before caller's subsequent code. */
3051
b1420f1c 3052 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3053 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3054
3055 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3056 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3057}
d0ec774c
PM
3058
3059/**
3060 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3061 */
3062void rcu_barrier_bh(void)
3063{
037b64ed 3064 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3065}
3066EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3067
3068/**
3069 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3070 */
3071void rcu_barrier_sched(void)
3072{
037b64ed 3073 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3074}
3075EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3076
64db4cff 3077/*
27569620 3078 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3079 */
27569620
PM
3080static void __init
3081rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3082{
3083 unsigned long flags;
394f99a9 3084 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3085 struct rcu_node *rnp = rcu_get_root(rsp);
3086
3087 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3088 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3089 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3090 init_callback_list(rdp);
486e2593 3091 rdp->qlen_lazy = 0;
1d1fb395 3092 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3093 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3094 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3095 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3096 rdp->cpu = cpu;
d4c08f2a 3097 rdp->rsp = rsp;
3fbfbf7a 3098 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3099 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3100}
3101
3102/*
3103 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3104 * offline event can be happening at a given time. Note also that we
3105 * can accept some slop in the rsp->completed access due to the fact
3106 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3107 */
49fb4c62 3108static void
6cc68793 3109rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
3110{
3111 unsigned long flags;
64db4cff 3112 unsigned long mask;
394f99a9 3113 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3114 struct rcu_node *rnp = rcu_get_root(rsp);
3115
a4fbe35a
PM
3116 /* Exclude new grace periods. */
3117 mutex_lock(&rsp->onoff_mutex);
3118
64db4cff 3119 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3120 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3121 rdp->beenonline = 1; /* We have now been online. */
6cc68793 3122 rdp->preemptible = preemptible;
37c72e56
PM
3123 rdp->qlen_last_fqs_check = 0;
3124 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3125 rdp->blimit = blimit;
0d8ee37e 3126 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3127 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3128 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3129 atomic_set(&rdp->dynticks->dynticks,
3130 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3131 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3132
64db4cff
PM
3133 /* Add CPU to rcu_node bitmasks. */
3134 rnp = rdp->mynode;
3135 mask = rdp->grpmask;
3136 do {
3137 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3138 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3139 rnp->qsmaskinit |= mask;
3140 mask = rnp->grpmask;
d09b62df 3141 if (rnp == rdp->mynode) {
06ae115a
PM
3142 /*
3143 * If there is a grace period in progress, we will
3144 * set up to wait for it next time we run the
3145 * RCU core code.
3146 */
3147 rdp->gpnum = rnp->completed;
d09b62df 3148 rdp->completed = rnp->completed;
06ae115a
PM
3149 rdp->passed_quiesce = 0;
3150 rdp->qs_pending = 0;
f7f7bac9 3151 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3152 }
1304afb2 3153 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3154 rnp = rnp->parent;
3155 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3156 local_irq_restore(flags);
64db4cff 3157
a4fbe35a 3158 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3159}
3160
49fb4c62 3161static void rcu_prepare_cpu(int cpu)
64db4cff 3162{
6ce75a23
PM
3163 struct rcu_state *rsp;
3164
3165 for_each_rcu_flavor(rsp)
3166 rcu_init_percpu_data(cpu, rsp,
3167 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3168}
3169
3170/*
f41d911f 3171 * Handle CPU online/offline notification events.
64db4cff 3172 */
49fb4c62 3173static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3174 unsigned long action, void *hcpu)
64db4cff
PM
3175{
3176 long cpu = (long)hcpu;
27f4d280 3177 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3178 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3179 struct rcu_state *rsp;
64db4cff 3180
f7f7bac9 3181 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3182 switch (action) {
3183 case CPU_UP_PREPARE:
3184 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3185 rcu_prepare_cpu(cpu);
3186 rcu_prepare_kthreads(cpu);
a26ac245
PM
3187 break;
3188 case CPU_ONLINE:
0f962a5e 3189 case CPU_DOWN_FAILED:
5d01bbd1 3190 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3191 break;
3192 case CPU_DOWN_PREPARE:
34ed6246 3193 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3194 break;
d0ec774c
PM
3195 case CPU_DYING:
3196 case CPU_DYING_FROZEN:
6ce75a23
PM
3197 for_each_rcu_flavor(rsp)
3198 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3199 break;
64db4cff
PM
3200 case CPU_DEAD:
3201 case CPU_DEAD_FROZEN:
3202 case CPU_UP_CANCELED:
3203 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3204 for_each_rcu_flavor(rsp)
3205 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3206 break;
3207 default:
3208 break;
3209 }
f7f7bac9 3210 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3211 return NOTIFY_OK;
64db4cff
PM
3212}
3213
d1d74d14
BP
3214static int rcu_pm_notify(struct notifier_block *self,
3215 unsigned long action, void *hcpu)
3216{
3217 switch (action) {
3218 case PM_HIBERNATION_PREPARE:
3219 case PM_SUSPEND_PREPARE:
3220 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3221 rcu_expedited = 1;
3222 break;
3223 case PM_POST_HIBERNATION:
3224 case PM_POST_SUSPEND:
3225 rcu_expedited = 0;
3226 break;
3227 default:
3228 break;
3229 }
3230 return NOTIFY_OK;
3231}
3232
b3dbec76
PM
3233/*
3234 * Spawn the kthread that handles this RCU flavor's grace periods.
3235 */
3236static int __init rcu_spawn_gp_kthread(void)
3237{
3238 unsigned long flags;
3239 struct rcu_node *rnp;
3240 struct rcu_state *rsp;
3241 struct task_struct *t;
3242
3243 for_each_rcu_flavor(rsp) {
f170168b 3244 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3245 BUG_ON(IS_ERR(t));
3246 rnp = rcu_get_root(rsp);
3247 raw_spin_lock_irqsave(&rnp->lock, flags);
3248 rsp->gp_kthread = t;
3249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3250 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3251 }
3252 return 0;
3253}
3254early_initcall(rcu_spawn_gp_kthread);
3255
bbad9379
PM
3256/*
3257 * This function is invoked towards the end of the scheduler's initialization
3258 * process. Before this is called, the idle task might contain
3259 * RCU read-side critical sections (during which time, this idle
3260 * task is booting the system). After this function is called, the
3261 * idle tasks are prohibited from containing RCU read-side critical
3262 * sections. This function also enables RCU lockdep checking.
3263 */
3264void rcu_scheduler_starting(void)
3265{
3266 WARN_ON(num_online_cpus() != 1);
3267 WARN_ON(nr_context_switches() > 0);
3268 rcu_scheduler_active = 1;
3269}
3270
64db4cff
PM
3271/*
3272 * Compute the per-level fanout, either using the exact fanout specified
3273 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3274 */
3275#ifdef CONFIG_RCU_FANOUT_EXACT
3276static void __init rcu_init_levelspread(struct rcu_state *rsp)
3277{
3278 int i;
3279
04f34650
PM
3280 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3281 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3282 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3283}
3284#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3285static void __init rcu_init_levelspread(struct rcu_state *rsp)
3286{
3287 int ccur;
3288 int cprv;
3289 int i;
3290
4dbd6bb3 3291 cprv = nr_cpu_ids;
f885b7f2 3292 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3293 ccur = rsp->levelcnt[i];
3294 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3295 cprv = ccur;
3296 }
3297}
3298#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3299
3300/*
3301 * Helper function for rcu_init() that initializes one rcu_state structure.
3302 */
394f99a9
LJ
3303static void __init rcu_init_one(struct rcu_state *rsp,
3304 struct rcu_data __percpu *rda)
64db4cff 3305{
394f2769
PM
3306 static char *buf[] = { "rcu_node_0",
3307 "rcu_node_1",
3308 "rcu_node_2",
3309 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3310 static char *fqs[] = { "rcu_node_fqs_0",
3311 "rcu_node_fqs_1",
3312 "rcu_node_fqs_2",
3313 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3314 int cpustride = 1;
3315 int i;
3316 int j;
3317 struct rcu_node *rnp;
3318
b6407e86
PM
3319 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3320
4930521a
PM
3321 /* Silence gcc 4.8 warning about array index out of range. */
3322 if (rcu_num_lvls > RCU_NUM_LVLS)
3323 panic("rcu_init_one: rcu_num_lvls overflow");
3324
64db4cff
PM
3325 /* Initialize the level-tracking arrays. */
3326
f885b7f2
PM
3327 for (i = 0; i < rcu_num_lvls; i++)
3328 rsp->levelcnt[i] = num_rcu_lvl[i];
3329 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3330 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3331 rcu_init_levelspread(rsp);
3332
3333 /* Initialize the elements themselves, starting from the leaves. */
3334
f885b7f2 3335 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3336 cpustride *= rsp->levelspread[i];
3337 rnp = rsp->level[i];
3338 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3339 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3340 lockdep_set_class_and_name(&rnp->lock,
3341 &rcu_node_class[i], buf[i]);
394f2769
PM
3342 raw_spin_lock_init(&rnp->fqslock);
3343 lockdep_set_class_and_name(&rnp->fqslock,
3344 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3345 rnp->gpnum = rsp->gpnum;
3346 rnp->completed = rsp->completed;
64db4cff
PM
3347 rnp->qsmask = 0;
3348 rnp->qsmaskinit = 0;
3349 rnp->grplo = j * cpustride;
3350 rnp->grphi = (j + 1) * cpustride - 1;
3351 if (rnp->grphi >= NR_CPUS)
3352 rnp->grphi = NR_CPUS - 1;
3353 if (i == 0) {
3354 rnp->grpnum = 0;
3355 rnp->grpmask = 0;
3356 rnp->parent = NULL;
3357 } else {
3358 rnp->grpnum = j % rsp->levelspread[i - 1];
3359 rnp->grpmask = 1UL << rnp->grpnum;
3360 rnp->parent = rsp->level[i - 1] +
3361 j / rsp->levelspread[i - 1];
3362 }
3363 rnp->level = i;
12f5f524 3364 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3365 rcu_init_one_nocb(rnp);
64db4cff
PM
3366 }
3367 }
0c34029a 3368
394f99a9 3369 rsp->rda = rda;
b3dbec76 3370 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3371 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3372 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3373 for_each_possible_cpu(i) {
4a90a068 3374 while (i > rnp->grphi)
0c34029a 3375 rnp++;
394f99a9 3376 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3377 rcu_boot_init_percpu_data(i, rsp);
3378 }
6ce75a23 3379 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3380}
3381
f885b7f2
PM
3382/*
3383 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3384 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3385 * the ->node array in the rcu_state structure.
3386 */
3387static void __init rcu_init_geometry(void)
3388{
026ad283 3389 ulong d;
f885b7f2
PM
3390 int i;
3391 int j;
cca6f393 3392 int n = nr_cpu_ids;
f885b7f2
PM
3393 int rcu_capacity[MAX_RCU_LVLS + 1];
3394
026ad283
PM
3395 /*
3396 * Initialize any unspecified boot parameters.
3397 * The default values of jiffies_till_first_fqs and
3398 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3399 * value, which is a function of HZ, then adding one for each
3400 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3401 */
3402 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3403 if (jiffies_till_first_fqs == ULONG_MAX)
3404 jiffies_till_first_fqs = d;
3405 if (jiffies_till_next_fqs == ULONG_MAX)
3406 jiffies_till_next_fqs = d;
3407
f885b7f2 3408 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3409 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3410 nr_cpu_ids == NR_CPUS)
f885b7f2 3411 return;
39479098
PM
3412 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3413 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3414
3415 /*
3416 * Compute number of nodes that can be handled an rcu_node tree
3417 * with the given number of levels. Setting rcu_capacity[0] makes
3418 * some of the arithmetic easier.
3419 */
3420 rcu_capacity[0] = 1;
3421 rcu_capacity[1] = rcu_fanout_leaf;
3422 for (i = 2; i <= MAX_RCU_LVLS; i++)
3423 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3424
3425 /*
3426 * The boot-time rcu_fanout_leaf parameter is only permitted
3427 * to increase the leaf-level fanout, not decrease it. Of course,
3428 * the leaf-level fanout cannot exceed the number of bits in
3429 * the rcu_node masks. Finally, the tree must be able to accommodate
3430 * the configured number of CPUs. Complain and fall back to the
3431 * compile-time values if these limits are exceeded.
3432 */
3433 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3434 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3435 n > rcu_capacity[MAX_RCU_LVLS]) {
3436 WARN_ON(1);
3437 return;
3438 }
3439
3440 /* Calculate the number of rcu_nodes at each level of the tree. */
3441 for (i = 1; i <= MAX_RCU_LVLS; i++)
3442 if (n <= rcu_capacity[i]) {
3443 for (j = 0; j <= i; j++)
3444 num_rcu_lvl[j] =
3445 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3446 rcu_num_lvls = i;
3447 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3448 num_rcu_lvl[j] = 0;
3449 break;
3450 }
3451
3452 /* Calculate the total number of rcu_node structures. */
3453 rcu_num_nodes = 0;
3454 for (i = 0; i <= MAX_RCU_LVLS; i++)
3455 rcu_num_nodes += num_rcu_lvl[i];
3456 rcu_num_nodes -= n;
3457}
3458
9f680ab4 3459void __init rcu_init(void)
64db4cff 3460{
017c4261 3461 int cpu;
9f680ab4 3462
f41d911f 3463 rcu_bootup_announce();
f885b7f2 3464 rcu_init_geometry();
394f99a9 3465 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3466 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3467 __rcu_init_preempt();
b5b39360 3468 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3469
3470 /*
3471 * We don't need protection against CPU-hotplug here because
3472 * this is called early in boot, before either interrupts
3473 * or the scheduler are operational.
3474 */
3475 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3476 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3477 for_each_online_cpu(cpu)
3478 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3479}
3480
4102adab 3481#include "tree_plugin.h"
This page took 0.580748 seconds and 5 git commands to generate.