rcu: Make RCU_CPU_STALL_INFO include number of fqs attempts
[deliverable/linux.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
a41bfeb2 94struct rcu_state sname##_state = { \
6c90cc7b 95 .level = { &sname##_state.node[0] }, \
037b64ed 96 .call = cr, \
af446b70 97 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
a8a29b3b 105 .name = RCU_STATE_NAME(sname), \
a4889858 106 .abbr = sabbr, \
a41bfeb2 107}; \
11bbb235 108DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
e534165b 113static struct rcu_state *rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
f885b7f2
PM
116/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 118module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
119int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126};
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
b0d30417
PM
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 133 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
bbad9379
PM
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
b0d30417
PM
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
5d01bbd1 155static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
156static void invoke_rcu_core(void);
157static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 158
4a298656
PM
159/*
160 * Track the rcutorture test sequence number and the update version
161 * number within a given test. The rcutorture_testseq is incremented
162 * on every rcutorture module load and unload, so has an odd value
163 * when a test is running. The rcutorture_vernum is set to zero
164 * when rcutorture starts and is incremented on each rcutorture update.
165 * These variables enable correlating rcutorture output with the
166 * RCU tracing information.
167 */
168unsigned long rcutorture_testseq;
169unsigned long rcutorture_vernum;
170
fc2219d4
PM
171/*
172 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
173 * permit this function to be invoked without holding the root rcu_node
174 * structure's ->lock, but of course results can be subject to change.
175 */
176static int rcu_gp_in_progress(struct rcu_state *rsp)
177{
178 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
179}
180
b1f77b05 181/*
d6714c22 182 * Note a quiescent state. Because we do not need to know
b1f77b05 183 * how many quiescent states passed, just if there was at least
d6714c22 184 * one since the start of the grace period, this just sets a flag.
e4cc1f22 185 * The caller must have disabled preemption.
b1f77b05 186 */
284a8c93 187void rcu_sched_qs(void)
b1f77b05 188{
284a8c93
PM
189 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
190 trace_rcu_grace_period(TPS("rcu_sched"),
191 __this_cpu_read(rcu_sched_data.gpnum),
192 TPS("cpuqs"));
193 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
194 }
b1f77b05
IM
195}
196
284a8c93 197void rcu_bh_qs(void)
b1f77b05 198{
284a8c93
PM
199 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
200 trace_rcu_grace_period(TPS("rcu_bh"),
201 __this_cpu_read(rcu_bh_data.gpnum),
202 TPS("cpuqs"));
203 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
204 }
b1f77b05 205}
64db4cff 206
4a81e832
PM
207static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
208
209static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
210 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
211 .dynticks = ATOMIC_INIT(1),
212#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
213 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
214 .dynticks_idle = ATOMIC_INIT(1),
215#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
216};
217
218/*
219 * Let the RCU core know that this CPU has gone through the scheduler,
220 * which is a quiescent state. This is called when the need for a
221 * quiescent state is urgent, so we burn an atomic operation and full
222 * memory barriers to let the RCU core know about it, regardless of what
223 * this CPU might (or might not) do in the near future.
224 *
225 * We inform the RCU core by emulating a zero-duration dyntick-idle
226 * period, which we in turn do by incrementing the ->dynticks counter
227 * by two.
228 */
229static void rcu_momentary_dyntick_idle(void)
230{
231 unsigned long flags;
232 struct rcu_data *rdp;
233 struct rcu_dynticks *rdtp;
234 int resched_mask;
235 struct rcu_state *rsp;
236
237 local_irq_save(flags);
238
239 /*
240 * Yes, we can lose flag-setting operations. This is OK, because
241 * the flag will be set again after some delay.
242 */
243 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
244 raw_cpu_write(rcu_sched_qs_mask, 0);
245
246 /* Find the flavor that needs a quiescent state. */
247 for_each_rcu_flavor(rsp) {
248 rdp = raw_cpu_ptr(rsp->rda);
249 if (!(resched_mask & rsp->flavor_mask))
250 continue;
251 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
252 if (ACCESS_ONCE(rdp->mynode->completed) !=
253 ACCESS_ONCE(rdp->cond_resched_completed))
254 continue;
255
256 /*
257 * Pretend to be momentarily idle for the quiescent state.
258 * This allows the grace-period kthread to record the
259 * quiescent state, with no need for this CPU to do anything
260 * further.
261 */
262 rdtp = this_cpu_ptr(&rcu_dynticks);
263 smp_mb__before_atomic(); /* Earlier stuff before QS. */
264 atomic_add(2, &rdtp->dynticks); /* QS. */
265 smp_mb__after_atomic(); /* Later stuff after QS. */
266 break;
267 }
268 local_irq_restore(flags);
269}
270
25502a6c
PM
271/*
272 * Note a context switch. This is a quiescent state for RCU-sched,
273 * and requires special handling for preemptible RCU.
e4cc1f22 274 * The caller must have disabled preemption.
25502a6c 275 */
38200cf2 276void rcu_note_context_switch(void)
25502a6c 277{
f7f7bac9 278 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 279 rcu_sched_qs();
38200cf2 280 rcu_preempt_note_context_switch();
4a81e832
PM
281 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
282 rcu_momentary_dyntick_idle();
f7f7bac9 283 trace_rcu_utilization(TPS("End context switch"));
25502a6c 284}
29ce8310 285EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 286
878d7439
ED
287static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
288static long qhimark = 10000; /* If this many pending, ignore blimit. */
289static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 290
878d7439
ED
291module_param(blimit, long, 0444);
292module_param(qhimark, long, 0444);
293module_param(qlowmark, long, 0444);
3d76c082 294
026ad283
PM
295static ulong jiffies_till_first_fqs = ULONG_MAX;
296static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
297
298module_param(jiffies_till_first_fqs, ulong, 0644);
299module_param(jiffies_till_next_fqs, ulong, 0644);
300
4a81e832
PM
301/*
302 * How long the grace period must be before we start recruiting
303 * quiescent-state help from rcu_note_context_switch().
304 */
305static ulong jiffies_till_sched_qs = HZ / 20;
306module_param(jiffies_till_sched_qs, ulong, 0644);
307
48a7639c 308static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 309 struct rcu_data *rdp);
217af2a2
PM
310static void force_qs_rnp(struct rcu_state *rsp,
311 int (*f)(struct rcu_data *rsp, bool *isidle,
312 unsigned long *maxj),
313 bool *isidle, unsigned long *maxj);
4cdfc175 314static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 315static int rcu_pending(void);
64db4cff
PM
316
317/*
d6714c22 318 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 319 */
d6714c22 320long rcu_batches_completed_sched(void)
64db4cff 321{
d6714c22 322 return rcu_sched_state.completed;
64db4cff 323}
d6714c22 324EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
325
326/*
327 * Return the number of RCU BH batches processed thus far for debug & stats.
328 */
329long rcu_batches_completed_bh(void)
330{
331 return rcu_bh_state.completed;
332}
333EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
334
a381d757
ACB
335/*
336 * Force a quiescent state.
337 */
338void rcu_force_quiescent_state(void)
339{
e534165b 340 force_quiescent_state(rcu_state_p);
a381d757
ACB
341}
342EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
343
bf66f18e
PM
344/*
345 * Force a quiescent state for RCU BH.
346 */
347void rcu_bh_force_quiescent_state(void)
348{
4cdfc175 349 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
350}
351EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
352
afea227f
PM
353/*
354 * Show the state of the grace-period kthreads.
355 */
356void show_rcu_gp_kthreads(void)
357{
358 struct rcu_state *rsp;
359
360 for_each_rcu_flavor(rsp) {
361 pr_info("%s: wait state: %d ->state: %#lx\n",
362 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
363 /* sched_show_task(rsp->gp_kthread); */
364 }
365}
366EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
367
4a298656
PM
368/*
369 * Record the number of times rcutorture tests have been initiated and
370 * terminated. This information allows the debugfs tracing stats to be
371 * correlated to the rcutorture messages, even when the rcutorture module
372 * is being repeatedly loaded and unloaded. In other words, we cannot
373 * store this state in rcutorture itself.
374 */
375void rcutorture_record_test_transition(void)
376{
377 rcutorture_testseq++;
378 rcutorture_vernum = 0;
379}
380EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
381
ad0dc7f9
PM
382/*
383 * Send along grace-period-related data for rcutorture diagnostics.
384 */
385void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
386 unsigned long *gpnum, unsigned long *completed)
387{
388 struct rcu_state *rsp = NULL;
389
390 switch (test_type) {
391 case RCU_FLAVOR:
e534165b 392 rsp = rcu_state_p;
ad0dc7f9
PM
393 break;
394 case RCU_BH_FLAVOR:
395 rsp = &rcu_bh_state;
396 break;
397 case RCU_SCHED_FLAVOR:
398 rsp = &rcu_sched_state;
399 break;
400 default:
401 break;
402 }
403 if (rsp != NULL) {
404 *flags = ACCESS_ONCE(rsp->gp_flags);
405 *gpnum = ACCESS_ONCE(rsp->gpnum);
406 *completed = ACCESS_ONCE(rsp->completed);
407 return;
408 }
409 *flags = 0;
410 *gpnum = 0;
411 *completed = 0;
412}
413EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
414
4a298656
PM
415/*
416 * Record the number of writer passes through the current rcutorture test.
417 * This is also used to correlate debugfs tracing stats with the rcutorture
418 * messages.
419 */
420void rcutorture_record_progress(unsigned long vernum)
421{
422 rcutorture_vernum++;
423}
424EXPORT_SYMBOL_GPL(rcutorture_record_progress);
425
bf66f18e
PM
426/*
427 * Force a quiescent state for RCU-sched.
428 */
429void rcu_sched_force_quiescent_state(void)
430{
4cdfc175 431 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
432}
433EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
434
64db4cff
PM
435/*
436 * Does the CPU have callbacks ready to be invoked?
437 */
438static int
439cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
440{
3fbfbf7a
PM
441 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
442 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
443}
444
365187fb
PM
445/*
446 * Return the root node of the specified rcu_state structure.
447 */
448static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
449{
450 return &rsp->node[0];
451}
452
453/*
454 * Is there any need for future grace periods?
455 * Interrupts must be disabled. If the caller does not hold the root
456 * rnp_node structure's ->lock, the results are advisory only.
457 */
458static int rcu_future_needs_gp(struct rcu_state *rsp)
459{
460 struct rcu_node *rnp = rcu_get_root(rsp);
461 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
462 int *fp = &rnp->need_future_gp[idx];
463
464 return ACCESS_ONCE(*fp);
465}
466
64db4cff 467/*
dc35c893
PM
468 * Does the current CPU require a not-yet-started grace period?
469 * The caller must have disabled interrupts to prevent races with
470 * normal callback registry.
64db4cff
PM
471 */
472static int
473cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
474{
dc35c893 475 int i;
3fbfbf7a 476
dc35c893
PM
477 if (rcu_gp_in_progress(rsp))
478 return 0; /* No, a grace period is already in progress. */
365187fb 479 if (rcu_future_needs_gp(rsp))
34ed6246 480 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
481 if (!rdp->nxttail[RCU_NEXT_TAIL])
482 return 0; /* No, this is a no-CBs (or offline) CPU. */
483 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
484 return 1; /* Yes, this CPU has newly registered callbacks. */
485 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
486 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
487 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
488 rdp->nxtcompleted[i]))
489 return 1; /* Yes, CBs for future grace period. */
490 return 0; /* No grace period needed. */
64db4cff
PM
491}
492
9b2e4f18 493/*
adf5091e 494 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
495 *
496 * If the new value of the ->dynticks_nesting counter now is zero,
497 * we really have entered idle, and must do the appropriate accounting.
498 * The caller must have disabled interrupts.
499 */
28ced795 500static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 501{
96d3fd0d
PM
502 struct rcu_state *rsp;
503 struct rcu_data *rdp;
28ced795 504 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 505
f7f7bac9 506 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 507 if (!user && !is_idle_task(current)) {
289828e6
PM
508 struct task_struct *idle __maybe_unused =
509 idle_task(smp_processor_id());
0989cb46 510
f7f7bac9 511 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 512 ftrace_dump(DUMP_ORIG);
0989cb46
PM
513 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
514 current->pid, current->comm,
515 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 516 }
96d3fd0d
PM
517 for_each_rcu_flavor(rsp) {
518 rdp = this_cpu_ptr(rsp->rda);
519 do_nocb_deferred_wakeup(rdp);
520 }
198bbf81 521 rcu_prepare_for_idle();
9b2e4f18 522 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 523 smp_mb__before_atomic(); /* See above. */
9b2e4f18 524 atomic_inc(&rdtp->dynticks);
4e857c58 525 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 526 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 527 rcu_dynticks_task_enter();
c44e2cdd
PM
528
529 /*
adf5091e 530 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
531 * in an RCU read-side critical section.
532 */
533 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
534 "Illegal idle entry in RCU read-side critical section.");
535 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
536 "Illegal idle entry in RCU-bh read-side critical section.");
537 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
538 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 539}
64db4cff 540
adf5091e
FW
541/*
542 * Enter an RCU extended quiescent state, which can be either the
543 * idle loop or adaptive-tickless usermode execution.
64db4cff 544 */
adf5091e 545static void rcu_eqs_enter(bool user)
64db4cff 546{
4145fa7f 547 long long oldval;
64db4cff
PM
548 struct rcu_dynticks *rdtp;
549
c9d4b0af 550 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 551 oldval = rdtp->dynticks_nesting;
29e37d81 552 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 553 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 554 rdtp->dynticks_nesting = 0;
28ced795 555 rcu_eqs_enter_common(oldval, user);
3a592405 556 } else {
29e37d81 557 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 558 }
64db4cff 559}
adf5091e
FW
560
561/**
562 * rcu_idle_enter - inform RCU that current CPU is entering idle
563 *
564 * Enter idle mode, in other words, -leave- the mode in which RCU
565 * read-side critical sections can occur. (Though RCU read-side
566 * critical sections can occur in irq handlers in idle, a possibility
567 * handled by irq_enter() and irq_exit().)
568 *
569 * We crowbar the ->dynticks_nesting field to zero to allow for
570 * the possibility of usermode upcalls having messed up our count
571 * of interrupt nesting level during the prior busy period.
572 */
573void rcu_idle_enter(void)
574{
c5d900bf
FW
575 unsigned long flags;
576
577 local_irq_save(flags);
cb349ca9 578 rcu_eqs_enter(false);
28ced795 579 rcu_sysidle_enter(0);
c5d900bf 580 local_irq_restore(flags);
adf5091e 581}
8a2ecf47 582EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 583
2b1d5024 584#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
585/**
586 * rcu_user_enter - inform RCU that we are resuming userspace.
587 *
588 * Enter RCU idle mode right before resuming userspace. No use of RCU
589 * is permitted between this call and rcu_user_exit(). This way the
590 * CPU doesn't need to maintain the tick for RCU maintenance purposes
591 * when the CPU runs in userspace.
592 */
593void rcu_user_enter(void)
594{
91d1aa43 595 rcu_eqs_enter(1);
adf5091e 596}
2b1d5024 597#endif /* CONFIG_RCU_USER_QS */
19dd1591 598
9b2e4f18
PM
599/**
600 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
601 *
602 * Exit from an interrupt handler, which might possibly result in entering
603 * idle mode, in other words, leaving the mode in which read-side critical
604 * sections can occur.
64db4cff 605 *
9b2e4f18
PM
606 * This code assumes that the idle loop never does anything that might
607 * result in unbalanced calls to irq_enter() and irq_exit(). If your
608 * architecture violates this assumption, RCU will give you what you
609 * deserve, good and hard. But very infrequently and irreproducibly.
610 *
611 * Use things like work queues to work around this limitation.
612 *
613 * You have been warned.
64db4cff 614 */
9b2e4f18 615void rcu_irq_exit(void)
64db4cff
PM
616{
617 unsigned long flags;
4145fa7f 618 long long oldval;
64db4cff
PM
619 struct rcu_dynticks *rdtp;
620
621 local_irq_save(flags);
c9d4b0af 622 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 623 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
624 rdtp->dynticks_nesting--;
625 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 626 if (rdtp->dynticks_nesting)
f7f7bac9 627 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 628 else
28ced795
CL
629 rcu_eqs_enter_common(oldval, true);
630 rcu_sysidle_enter(1);
9b2e4f18
PM
631 local_irq_restore(flags);
632}
633
634/*
adf5091e 635 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
636 *
637 * If the new value of the ->dynticks_nesting counter was previously zero,
638 * we really have exited idle, and must do the appropriate accounting.
639 * The caller must have disabled interrupts.
640 */
28ced795 641static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 642{
28ced795
CL
643 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
644
176f8f7a 645 rcu_dynticks_task_exit();
4e857c58 646 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
647 atomic_inc(&rdtp->dynticks);
648 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 649 smp_mb__after_atomic(); /* See above. */
23b5c8fa 650 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 651 rcu_cleanup_after_idle();
f7f7bac9 652 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 653 if (!user && !is_idle_task(current)) {
289828e6
PM
654 struct task_struct *idle __maybe_unused =
655 idle_task(smp_processor_id());
0989cb46 656
f7f7bac9 657 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 658 oldval, rdtp->dynticks_nesting);
bf1304e9 659 ftrace_dump(DUMP_ORIG);
0989cb46
PM
660 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
661 current->pid, current->comm,
662 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
663 }
664}
665
adf5091e
FW
666/*
667 * Exit an RCU extended quiescent state, which can be either the
668 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 669 */
adf5091e 670static void rcu_eqs_exit(bool user)
9b2e4f18 671{
9b2e4f18
PM
672 struct rcu_dynticks *rdtp;
673 long long oldval;
674
c9d4b0af 675 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 676 oldval = rdtp->dynticks_nesting;
29e37d81 677 WARN_ON_ONCE(oldval < 0);
3a592405 678 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 679 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 680 } else {
29e37d81 681 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 682 rcu_eqs_exit_common(oldval, user);
3a592405 683 }
9b2e4f18 684}
adf5091e
FW
685
686/**
687 * rcu_idle_exit - inform RCU that current CPU is leaving idle
688 *
689 * Exit idle mode, in other words, -enter- the mode in which RCU
690 * read-side critical sections can occur.
691 *
692 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
693 * allow for the possibility of usermode upcalls messing up our count
694 * of interrupt nesting level during the busy period that is just
695 * now starting.
696 */
697void rcu_idle_exit(void)
698{
c5d900bf
FW
699 unsigned long flags;
700
701 local_irq_save(flags);
cb349ca9 702 rcu_eqs_exit(false);
28ced795 703 rcu_sysidle_exit(0);
c5d900bf 704 local_irq_restore(flags);
adf5091e 705}
8a2ecf47 706EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 707
2b1d5024 708#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
709/**
710 * rcu_user_exit - inform RCU that we are exiting userspace.
711 *
712 * Exit RCU idle mode while entering the kernel because it can
713 * run a RCU read side critical section anytime.
714 */
715void rcu_user_exit(void)
716{
91d1aa43 717 rcu_eqs_exit(1);
adf5091e 718}
2b1d5024 719#endif /* CONFIG_RCU_USER_QS */
19dd1591 720
9b2e4f18
PM
721/**
722 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
723 *
724 * Enter an interrupt handler, which might possibly result in exiting
725 * idle mode, in other words, entering the mode in which read-side critical
726 * sections can occur.
727 *
728 * Note that the Linux kernel is fully capable of entering an interrupt
729 * handler that it never exits, for example when doing upcalls to
730 * user mode! This code assumes that the idle loop never does upcalls to
731 * user mode. If your architecture does do upcalls from the idle loop (or
732 * does anything else that results in unbalanced calls to the irq_enter()
733 * and irq_exit() functions), RCU will give you what you deserve, good
734 * and hard. But very infrequently and irreproducibly.
735 *
736 * Use things like work queues to work around this limitation.
737 *
738 * You have been warned.
739 */
740void rcu_irq_enter(void)
741{
742 unsigned long flags;
743 struct rcu_dynticks *rdtp;
744 long long oldval;
745
746 local_irq_save(flags);
c9d4b0af 747 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
748 oldval = rdtp->dynticks_nesting;
749 rdtp->dynticks_nesting++;
750 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 751 if (oldval)
f7f7bac9 752 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 753 else
28ced795
CL
754 rcu_eqs_exit_common(oldval, true);
755 rcu_sysidle_exit(1);
64db4cff 756 local_irq_restore(flags);
64db4cff
PM
757}
758
759/**
760 * rcu_nmi_enter - inform RCU of entry to NMI context
761 *
734d1680
PM
762 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
763 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
764 * that the CPU is active. This implementation permits nested NMIs, as
765 * long as the nesting level does not overflow an int. (You will probably
766 * run out of stack space first.)
64db4cff
PM
767 */
768void rcu_nmi_enter(void)
769{
c9d4b0af 770 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 771 int incby = 2;
64db4cff 772
734d1680
PM
773 /* Complain about underflow. */
774 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
775
776 /*
777 * If idle from RCU viewpoint, atomically increment ->dynticks
778 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
779 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
780 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
781 * to be in the outermost NMI handler that interrupted an RCU-idle
782 * period (observation due to Andy Lutomirski).
783 */
784 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
785 smp_mb__before_atomic(); /* Force delay from prior write. */
786 atomic_inc(&rdtp->dynticks);
787 /* atomic_inc() before later RCU read-side crit sects */
788 smp_mb__after_atomic(); /* See above. */
789 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
790 incby = 1;
791 }
792 rdtp->dynticks_nmi_nesting += incby;
793 barrier();
64db4cff
PM
794}
795
796/**
797 * rcu_nmi_exit - inform RCU of exit from NMI context
798 *
734d1680
PM
799 * If we are returning from the outermost NMI handler that interrupted an
800 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
801 * to let the RCU grace-period handling know that the CPU is back to
802 * being RCU-idle.
64db4cff
PM
803 */
804void rcu_nmi_exit(void)
805{
c9d4b0af 806 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 807
734d1680
PM
808 /*
809 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
810 * (We are exiting an NMI handler, so RCU better be paying attention
811 * to us!)
812 */
813 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
814 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
815
816 /*
817 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
818 * leave it in non-RCU-idle state.
819 */
820 if (rdtp->dynticks_nmi_nesting != 1) {
821 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 822 return;
734d1680
PM
823 }
824
825 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
826 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 827 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 828 smp_mb__before_atomic(); /* See above. */
23b5c8fa 829 atomic_inc(&rdtp->dynticks);
4e857c58 830 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 831 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
832}
833
834/**
5c173eb8
PM
835 * __rcu_is_watching - are RCU read-side critical sections safe?
836 *
837 * Return true if RCU is watching the running CPU, which means that
838 * this CPU can safely enter RCU read-side critical sections. Unlike
839 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
840 * least disabled preemption.
841 */
9418fb20 842bool notrace __rcu_is_watching(void)
5c173eb8
PM
843{
844 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
845}
846
847/**
848 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 849 *
9b2e4f18 850 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 851 * or NMI handler, return true.
64db4cff 852 */
9418fb20 853bool notrace rcu_is_watching(void)
64db4cff 854{
f534ed1f 855 bool ret;
34240697
PM
856
857 preempt_disable();
5c173eb8 858 ret = __rcu_is_watching();
34240697
PM
859 preempt_enable();
860 return ret;
64db4cff 861}
5c173eb8 862EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 863
62fde6ed 864#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
865
866/*
867 * Is the current CPU online? Disable preemption to avoid false positives
868 * that could otherwise happen due to the current CPU number being sampled,
869 * this task being preempted, its old CPU being taken offline, resuming
870 * on some other CPU, then determining that its old CPU is now offline.
871 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
872 * the check for rcu_scheduler_fully_active. Note also that it is OK
873 * for a CPU coming online to use RCU for one jiffy prior to marking itself
874 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
875 * offline to continue to use RCU for one jiffy after marking itself
876 * offline in the cpu_online_mask. This leniency is necessary given the
877 * non-atomic nature of the online and offline processing, for example,
878 * the fact that a CPU enters the scheduler after completing the CPU_DYING
879 * notifiers.
880 *
881 * This is also why RCU internally marks CPUs online during the
882 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
883 *
884 * Disable checking if in an NMI handler because we cannot safely report
885 * errors from NMI handlers anyway.
886 */
887bool rcu_lockdep_current_cpu_online(void)
888{
2036d94a
PM
889 struct rcu_data *rdp;
890 struct rcu_node *rnp;
c0d6d01b
PM
891 bool ret;
892
893 if (in_nmi())
f6f7ee9a 894 return true;
c0d6d01b 895 preempt_disable();
c9d4b0af 896 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
897 rnp = rdp->mynode;
898 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
899 !rcu_scheduler_fully_active;
900 preempt_enable();
901 return ret;
902}
903EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
904
62fde6ed 905#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 906
64db4cff 907/**
9b2e4f18 908 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 909 *
9b2e4f18
PM
910 * If the current CPU is idle or running at a first-level (not nested)
911 * interrupt from idle, return true. The caller must have at least
912 * disabled preemption.
64db4cff 913 */
62e3cb14 914static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 915{
c9d4b0af 916 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
917}
918
64db4cff
PM
919/*
920 * Snapshot the specified CPU's dynticks counter so that we can later
921 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 922 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 923 */
217af2a2
PM
924static int dyntick_save_progress_counter(struct rcu_data *rdp,
925 bool *isidle, unsigned long *maxj)
64db4cff 926{
23b5c8fa 927 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 928 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
929 if ((rdp->dynticks_snap & 0x1) == 0) {
930 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
931 return 1;
932 } else {
933 return 0;
934 }
64db4cff
PM
935}
936
6193c76a
PM
937/*
938 * This function really isn't for public consumption, but RCU is special in
939 * that context switches can allow the state machine to make progress.
940 */
941extern void resched_cpu(int cpu);
942
64db4cff
PM
943/*
944 * Return true if the specified CPU has passed through a quiescent
945 * state by virtue of being in or having passed through an dynticks
946 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 947 * for this same CPU, or by virtue of having been offline.
64db4cff 948 */
217af2a2
PM
949static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
950 bool *isidle, unsigned long *maxj)
64db4cff 951{
7eb4f455 952 unsigned int curr;
4a81e832 953 int *rcrmp;
7eb4f455 954 unsigned int snap;
64db4cff 955
7eb4f455
PM
956 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
957 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
958
959 /*
960 * If the CPU passed through or entered a dynticks idle phase with
961 * no active irq/NMI handlers, then we can safely pretend that the CPU
962 * already acknowledged the request to pass through a quiescent
963 * state. Either way, that CPU cannot possibly be in an RCU
964 * read-side critical section that started before the beginning
965 * of the current RCU grace period.
966 */
7eb4f455 967 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 968 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
969 rdp->dynticks_fqs++;
970 return 1;
971 }
972
a82dcc76
PM
973 /*
974 * Check for the CPU being offline, but only if the grace period
975 * is old enough. We don't need to worry about the CPU changing
976 * state: If we see it offline even once, it has been through a
977 * quiescent state.
978 *
979 * The reason for insisting that the grace period be at least
980 * one jiffy old is that CPUs that are not quite online and that
981 * have just gone offline can still execute RCU read-side critical
982 * sections.
983 */
984 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
985 return 0; /* Grace period is not old enough. */
986 barrier();
987 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 988 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
989 rdp->offline_fqs++;
990 return 1;
991 }
65d798f0
PM
992
993 /*
4a81e832
PM
994 * A CPU running for an extended time within the kernel can
995 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
996 * even context-switching back and forth between a pair of
997 * in-kernel CPU-bound tasks cannot advance grace periods.
998 * So if the grace period is old enough, make the CPU pay attention.
999 * Note that the unsynchronized assignments to the per-CPU
1000 * rcu_sched_qs_mask variable are safe. Yes, setting of
1001 * bits can be lost, but they will be set again on the next
1002 * force-quiescent-state pass. So lost bit sets do not result
1003 * in incorrect behavior, merely in a grace period lasting
1004 * a few jiffies longer than it might otherwise. Because
1005 * there are at most four threads involved, and because the
1006 * updates are only once every few jiffies, the probability of
1007 * lossage (and thus of slight grace-period extension) is
1008 * quite low.
1009 *
1010 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1011 * is set too high, we override with half of the RCU CPU stall
1012 * warning delay.
6193c76a 1013 */
4a81e832
PM
1014 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1015 if (ULONG_CMP_GE(jiffies,
1016 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1017 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
1018 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1019 ACCESS_ONCE(rdp->cond_resched_completed) =
1020 ACCESS_ONCE(rdp->mynode->completed);
1021 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1022 ACCESS_ONCE(*rcrmp) =
1023 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1024 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1025 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1026 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1027 /* Time to beat on that CPU again! */
1028 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1029 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1030 }
6193c76a
PM
1031 }
1032
a82dcc76 1033 return 0;
64db4cff
PM
1034}
1035
64db4cff
PM
1036static void record_gp_stall_check_time(struct rcu_state *rsp)
1037{
cb1e78cf 1038 unsigned long j = jiffies;
6193c76a 1039 unsigned long j1;
26cdfedf
PM
1040
1041 rsp->gp_start = j;
1042 smp_wmb(); /* Record start time before stall time. */
6193c76a 1043 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1044 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1045 rsp->jiffies_resched = j + j1 / 2;
fc908ed3 1046 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
64db4cff
PM
1047}
1048
b637a328 1049/*
bc1dce51 1050 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1051 */
1052static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1053{
1054 int cpu;
1055 unsigned long flags;
1056 struct rcu_node *rnp;
1057
1058 rcu_for_each_leaf_node(rsp, rnp) {
1059 raw_spin_lock_irqsave(&rnp->lock, flags);
1060 if (rnp->qsmask != 0) {
1061 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1062 if (rnp->qsmask & (1UL << cpu))
1063 dump_cpu_task(rnp->grplo + cpu);
1064 }
1065 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1066 }
1067}
1068
64db4cff
PM
1069static void print_other_cpu_stall(struct rcu_state *rsp)
1070{
1071 int cpu;
1072 long delta;
1073 unsigned long flags;
285fe294 1074 int ndetected = 0;
64db4cff 1075 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1076 long totqlen = 0;
64db4cff
PM
1077
1078 /* Only let one CPU complain about others per time interval. */
1079
1304afb2 1080 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1081 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1082 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1083 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1084 return;
1085 }
4fc5b755 1086 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1087 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1088
8cdd32a9
PM
1089 /*
1090 * OK, time to rat on our buddy...
1091 * See Documentation/RCU/stallwarn.txt for info on how to debug
1092 * RCU CPU stall warnings.
1093 */
d7f3e207 1094 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1095 rsp->name);
a858af28 1096 print_cpu_stall_info_begin();
a0b6c9a7 1097 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1098 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1099 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1100 if (rnp->qsmask != 0) {
1101 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1102 if (rnp->qsmask & (1UL << cpu)) {
1103 print_cpu_stall_info(rsp,
1104 rnp->grplo + cpu);
1105 ndetected++;
1106 }
1107 }
3acd9eb3 1108 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1109 }
a858af28
PM
1110
1111 /*
1112 * Now rat on any tasks that got kicked up to the root rcu_node
1113 * due to CPU offlining.
1114 */
1115 rnp = rcu_get_root(rsp);
1116 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 1117 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
1118 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1119
1120 print_cpu_stall_info_end();
53bb857c
PM
1121 for_each_possible_cpu(cpu)
1122 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1123 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1124 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1125 (long)rsp->gpnum, (long)rsp->completed, totqlen);
9bc8b558 1126 if (ndetected == 0)
d7f3e207 1127 pr_err("INFO: Stall ended before state dump start\n");
bc1dce51 1128 else
b637a328 1129 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1130
4cdfc175 1131 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1132
1133 rcu_print_detail_task_stall(rsp);
1134
4cdfc175 1135 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1136}
1137
1138static void print_cpu_stall(struct rcu_state *rsp)
1139{
53bb857c 1140 int cpu;
64db4cff
PM
1141 unsigned long flags;
1142 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1143 long totqlen = 0;
64db4cff 1144
8cdd32a9
PM
1145 /*
1146 * OK, time to rat on ourselves...
1147 * See Documentation/RCU/stallwarn.txt for info on how to debug
1148 * RCU CPU stall warnings.
1149 */
d7f3e207 1150 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1151 print_cpu_stall_info_begin();
1152 print_cpu_stall_info(rsp, smp_processor_id());
1153 print_cpu_stall_info_end();
53bb857c
PM
1154 for_each_possible_cpu(cpu)
1155 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1156 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1157 jiffies - rsp->gp_start,
1158 (long)rsp->gpnum, (long)rsp->completed, totqlen);
bc1dce51 1159 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1160
1304afb2 1161 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1162 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1163 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1164 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1165 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1166
b021fe3e
PZ
1167 /*
1168 * Attempt to revive the RCU machinery by forcing a context switch.
1169 *
1170 * A context switch would normally allow the RCU state machine to make
1171 * progress and it could be we're stuck in kernel space without context
1172 * switches for an entirely unreasonable amount of time.
1173 */
1174 resched_cpu(smp_processor_id());
64db4cff
PM
1175}
1176
1177static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1178{
26cdfedf
PM
1179 unsigned long completed;
1180 unsigned long gpnum;
1181 unsigned long gps;
bad6e139
PM
1182 unsigned long j;
1183 unsigned long js;
64db4cff
PM
1184 struct rcu_node *rnp;
1185
26cdfedf 1186 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1187 return;
cb1e78cf 1188 j = jiffies;
26cdfedf
PM
1189
1190 /*
1191 * Lots of memory barriers to reject false positives.
1192 *
1193 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1194 * then rsp->gp_start, and finally rsp->completed. These values
1195 * are updated in the opposite order with memory barriers (or
1196 * equivalent) during grace-period initialization and cleanup.
1197 * Now, a false positive can occur if we get an new value of
1198 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1199 * the memory barriers, the only way that this can happen is if one
1200 * grace period ends and another starts between these two fetches.
1201 * Detect this by comparing rsp->completed with the previous fetch
1202 * from rsp->gpnum.
1203 *
1204 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1205 * and rsp->gp_start suffice to forestall false positives.
1206 */
1207 gpnum = ACCESS_ONCE(rsp->gpnum);
1208 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1209 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1210 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1211 gps = ACCESS_ONCE(rsp->gp_start);
1212 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1213 completed = ACCESS_ONCE(rsp->completed);
1214 if (ULONG_CMP_GE(completed, gpnum) ||
1215 ULONG_CMP_LT(j, js) ||
1216 ULONG_CMP_GE(gps, js))
1217 return; /* No stall or GP completed since entering function. */
64db4cff 1218 rnp = rdp->mynode;
c96ea7cf 1219 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1220 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1221
1222 /* We haven't checked in, so go dump stack. */
1223 print_cpu_stall(rsp);
1224
bad6e139
PM
1225 } else if (rcu_gp_in_progress(rsp) &&
1226 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1227
bad6e139 1228 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1229 print_other_cpu_stall(rsp);
1230 }
1231}
1232
53d84e00
PM
1233/**
1234 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1235 *
1236 * Set the stall-warning timeout way off into the future, thus preventing
1237 * any RCU CPU stall-warning messages from appearing in the current set of
1238 * RCU grace periods.
1239 *
1240 * The caller must disable hard irqs.
1241 */
1242void rcu_cpu_stall_reset(void)
1243{
6ce75a23
PM
1244 struct rcu_state *rsp;
1245
1246 for_each_rcu_flavor(rsp)
4fc5b755 1247 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1248}
1249
3f5d3ea6
PM
1250/*
1251 * Initialize the specified rcu_data structure's callback list to empty.
1252 */
1253static void init_callback_list(struct rcu_data *rdp)
1254{
1255 int i;
1256
34ed6246
PM
1257 if (init_nocb_callback_list(rdp))
1258 return;
3f5d3ea6
PM
1259 rdp->nxtlist = NULL;
1260 for (i = 0; i < RCU_NEXT_SIZE; i++)
1261 rdp->nxttail[i] = &rdp->nxtlist;
1262}
1263
dc35c893
PM
1264/*
1265 * Determine the value that ->completed will have at the end of the
1266 * next subsequent grace period. This is used to tag callbacks so that
1267 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1268 * been dyntick-idle for an extended period with callbacks under the
1269 * influence of RCU_FAST_NO_HZ.
1270 *
1271 * The caller must hold rnp->lock with interrupts disabled.
1272 */
1273static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1274 struct rcu_node *rnp)
1275{
1276 /*
1277 * If RCU is idle, we just wait for the next grace period.
1278 * But we can only be sure that RCU is idle if we are looking
1279 * at the root rcu_node structure -- otherwise, a new grace
1280 * period might have started, but just not yet gotten around
1281 * to initializing the current non-root rcu_node structure.
1282 */
1283 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1284 return rnp->completed + 1;
1285
1286 /*
1287 * Otherwise, wait for a possible partial grace period and
1288 * then the subsequent full grace period.
1289 */
1290 return rnp->completed + 2;
1291}
1292
0446be48
PM
1293/*
1294 * Trace-event helper function for rcu_start_future_gp() and
1295 * rcu_nocb_wait_gp().
1296 */
1297static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1298 unsigned long c, const char *s)
0446be48
PM
1299{
1300 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1301 rnp->completed, c, rnp->level,
1302 rnp->grplo, rnp->grphi, s);
1303}
1304
1305/*
1306 * Start some future grace period, as needed to handle newly arrived
1307 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1308 * rcu_node structure's ->need_future_gp field. Returns true if there
1309 * is reason to awaken the grace-period kthread.
0446be48
PM
1310 *
1311 * The caller must hold the specified rcu_node structure's ->lock.
1312 */
48a7639c
PM
1313static bool __maybe_unused
1314rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1315 unsigned long *c_out)
0446be48
PM
1316{
1317 unsigned long c;
1318 int i;
48a7639c 1319 bool ret = false;
0446be48
PM
1320 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1321
1322 /*
1323 * Pick up grace-period number for new callbacks. If this
1324 * grace period is already marked as needed, return to the caller.
1325 */
1326 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1327 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1328 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1329 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1330 goto out;
0446be48
PM
1331 }
1332
1333 /*
1334 * If either this rcu_node structure or the root rcu_node structure
1335 * believe that a grace period is in progress, then we must wait
1336 * for the one following, which is in "c". Because our request
1337 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1338 * need to explicitly start one. We only do the lockless check
1339 * of rnp_root's fields if the current rcu_node structure thinks
1340 * there is no grace period in flight, and because we hold rnp->lock,
1341 * the only possible change is when rnp_root's two fields are
1342 * equal, in which case rnp_root->gpnum might be concurrently
1343 * incremented. But that is OK, as it will just result in our
1344 * doing some extra useless work.
0446be48
PM
1345 */
1346 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1347 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1348 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1349 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1350 goto out;
0446be48
PM
1351 }
1352
1353 /*
1354 * There might be no grace period in progress. If we don't already
1355 * hold it, acquire the root rcu_node structure's lock in order to
1356 * start one (if needed).
1357 */
6303b9c8 1358 if (rnp != rnp_root) {
0446be48 1359 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1360 smp_mb__after_unlock_lock();
1361 }
0446be48
PM
1362
1363 /*
1364 * Get a new grace-period number. If there really is no grace
1365 * period in progress, it will be smaller than the one we obtained
1366 * earlier. Adjust callbacks as needed. Note that even no-CBs
1367 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1368 */
1369 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1370 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1371 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1372 rdp->nxtcompleted[i] = c;
1373
1374 /*
1375 * If the needed for the required grace period is already
1376 * recorded, trace and leave.
1377 */
1378 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1379 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1380 goto unlock_out;
1381 }
1382
1383 /* Record the need for the future grace period. */
1384 rnp_root->need_future_gp[c & 0x1]++;
1385
1386 /* If a grace period is not already in progress, start one. */
1387 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1388 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1389 } else {
f7f7bac9 1390 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1391 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1392 }
1393unlock_out:
1394 if (rnp != rnp_root)
1395 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1396out:
1397 if (c_out != NULL)
1398 *c_out = c;
1399 return ret;
0446be48
PM
1400}
1401
1402/*
1403 * Clean up any old requests for the just-ended grace period. Also return
1404 * whether any additional grace periods have been requested. Also invoke
1405 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1406 * waiting for this grace period to complete.
1407 */
1408static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1409{
1410 int c = rnp->completed;
1411 int needmore;
1412 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1413
1414 rcu_nocb_gp_cleanup(rsp, rnp);
1415 rnp->need_future_gp[c & 0x1] = 0;
1416 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1417 trace_rcu_future_gp(rnp, rdp, c,
1418 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1419 return needmore;
1420}
1421
48a7639c
PM
1422/*
1423 * Awaken the grace-period kthread for the specified flavor of RCU.
1424 * Don't do a self-awaken, and don't bother awakening when there is
1425 * nothing for the grace-period kthread to do (as in several CPUs
1426 * raced to awaken, and we lost), and finally don't try to awaken
1427 * a kthread that has not yet been created.
1428 */
1429static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1430{
1431 if (current == rsp->gp_kthread ||
1432 !ACCESS_ONCE(rsp->gp_flags) ||
1433 !rsp->gp_kthread)
1434 return;
1435 wake_up(&rsp->gp_wq);
1436}
1437
dc35c893
PM
1438/*
1439 * If there is room, assign a ->completed number to any callbacks on
1440 * this CPU that have not already been assigned. Also accelerate any
1441 * callbacks that were previously assigned a ->completed number that has
1442 * since proven to be too conservative, which can happen if callbacks get
1443 * assigned a ->completed number while RCU is idle, but with reference to
1444 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1445 * not hurt to call it repeatedly. Returns an flag saying that we should
1446 * awaken the RCU grace-period kthread.
dc35c893
PM
1447 *
1448 * The caller must hold rnp->lock with interrupts disabled.
1449 */
48a7639c 1450static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1451 struct rcu_data *rdp)
1452{
1453 unsigned long c;
1454 int i;
48a7639c 1455 bool ret;
dc35c893
PM
1456
1457 /* If the CPU has no callbacks, nothing to do. */
1458 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1459 return false;
dc35c893
PM
1460
1461 /*
1462 * Starting from the sublist containing the callbacks most
1463 * recently assigned a ->completed number and working down, find the
1464 * first sublist that is not assignable to an upcoming grace period.
1465 * Such a sublist has something in it (first two tests) and has
1466 * a ->completed number assigned that will complete sooner than
1467 * the ->completed number for newly arrived callbacks (last test).
1468 *
1469 * The key point is that any later sublist can be assigned the
1470 * same ->completed number as the newly arrived callbacks, which
1471 * means that the callbacks in any of these later sublist can be
1472 * grouped into a single sublist, whether or not they have already
1473 * been assigned a ->completed number.
1474 */
1475 c = rcu_cbs_completed(rsp, rnp);
1476 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1477 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1478 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1479 break;
1480
1481 /*
1482 * If there are no sublist for unassigned callbacks, leave.
1483 * At the same time, advance "i" one sublist, so that "i" will
1484 * index into the sublist where all the remaining callbacks should
1485 * be grouped into.
1486 */
1487 if (++i >= RCU_NEXT_TAIL)
48a7639c 1488 return false;
dc35c893
PM
1489
1490 /*
1491 * Assign all subsequent callbacks' ->completed number to the next
1492 * full grace period and group them all in the sublist initially
1493 * indexed by "i".
1494 */
1495 for (; i <= RCU_NEXT_TAIL; i++) {
1496 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1497 rdp->nxtcompleted[i] = c;
1498 }
910ee45d 1499 /* Record any needed additional grace periods. */
48a7639c 1500 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1501
1502 /* Trace depending on how much we were able to accelerate. */
1503 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1504 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1505 else
f7f7bac9 1506 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1507 return ret;
dc35c893
PM
1508}
1509
1510/*
1511 * Move any callbacks whose grace period has completed to the
1512 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1513 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1514 * sublist. This function is idempotent, so it does not hurt to
1515 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1516 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1517 *
1518 * The caller must hold rnp->lock with interrupts disabled.
1519 */
48a7639c 1520static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1521 struct rcu_data *rdp)
1522{
1523 int i, j;
1524
1525 /* If the CPU has no callbacks, nothing to do. */
1526 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1527 return false;
dc35c893
PM
1528
1529 /*
1530 * Find all callbacks whose ->completed numbers indicate that they
1531 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1532 */
1533 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1534 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1535 break;
1536 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1537 }
1538 /* Clean up any sublist tail pointers that were misordered above. */
1539 for (j = RCU_WAIT_TAIL; j < i; j++)
1540 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1541
1542 /* Copy down callbacks to fill in empty sublists. */
1543 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1544 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1545 break;
1546 rdp->nxttail[j] = rdp->nxttail[i];
1547 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1548 }
1549
1550 /* Classify any remaining callbacks. */
48a7639c 1551 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1552}
1553
d09b62df 1554/*
ba9fbe95
PM
1555 * Update CPU-local rcu_data state to record the beginnings and ends of
1556 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1557 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1558 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1559 */
48a7639c
PM
1560static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1561 struct rcu_data *rdp)
d09b62df 1562{
48a7639c
PM
1563 bool ret;
1564
ba9fbe95 1565 /* Handle the ends of any preceding grace periods first. */
dc35c893 1566 if (rdp->completed == rnp->completed) {
d09b62df 1567
ba9fbe95 1568 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1569 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1570
dc35c893
PM
1571 } else {
1572
1573 /* Advance callbacks. */
48a7639c 1574 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1575
1576 /* Remember that we saw this grace-period completion. */
1577 rdp->completed = rnp->completed;
f7f7bac9 1578 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1579 }
398ebe60 1580
6eaef633
PM
1581 if (rdp->gpnum != rnp->gpnum) {
1582 /*
1583 * If the current grace period is waiting for this CPU,
1584 * set up to detect a quiescent state, otherwise don't
1585 * go looking for one.
1586 */
1587 rdp->gpnum = rnp->gpnum;
f7f7bac9 1588 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1589 rdp->passed_quiesce = 0;
1590 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1591 zero_cpu_stall_ticks(rdp);
1592 }
48a7639c 1593 return ret;
6eaef633
PM
1594}
1595
d34ea322 1596static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1597{
1598 unsigned long flags;
48a7639c 1599 bool needwake;
6eaef633
PM
1600 struct rcu_node *rnp;
1601
1602 local_irq_save(flags);
1603 rnp = rdp->mynode;
d34ea322
PM
1604 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1605 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1606 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1607 local_irq_restore(flags);
1608 return;
1609 }
6303b9c8 1610 smp_mb__after_unlock_lock();
48a7639c 1611 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1612 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1613 if (needwake)
1614 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1615}
1616
b3dbec76 1617/*
f7be8209 1618 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1619 */
7fdefc10 1620static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1621{
1622 struct rcu_data *rdp;
7fdefc10 1623 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1624
eb75767b 1625 rcu_bind_gp_kthread();
7fdefc10 1626 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1627 smp_mb__after_unlock_lock();
91dc9542 1628 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1629 /* Spurious wakeup, tell caller to go back to sleep. */
1630 raw_spin_unlock_irq(&rnp->lock);
1631 return 0;
1632 }
91dc9542 1633 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1634
f7be8209
PM
1635 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1636 /*
1637 * Grace period already in progress, don't start another.
1638 * Not supposed to be able to happen.
1639 */
7fdefc10
PM
1640 raw_spin_unlock_irq(&rnp->lock);
1641 return 0;
1642 }
1643
7fdefc10 1644 /* Advance to a new grace period and initialize state. */
26cdfedf 1645 record_gp_stall_check_time(rsp);
765a3f4f
PM
1646 /* Record GP times before starting GP, hence smp_store_release(). */
1647 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1648 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1649 raw_spin_unlock_irq(&rnp->lock);
1650
1651 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1652 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1653 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1654
1655 /*
1656 * Set the quiescent-state-needed bits in all the rcu_node
1657 * structures for all currently online CPUs in breadth-first order,
1658 * starting from the root rcu_node structure, relying on the layout
1659 * of the tree within the rsp->node[] array. Note that other CPUs
1660 * will access only the leaves of the hierarchy, thus seeing that no
1661 * grace period is in progress, at least until the corresponding
1662 * leaf node has been initialized. In addition, we have excluded
1663 * CPU-hotplug operations.
1664 *
1665 * The grace period cannot complete until the initialization
1666 * process finishes, because this kthread handles both.
1667 */
1668 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1669 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1670 smp_mb__after_unlock_lock();
b3dbec76 1671 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1672 rcu_preempt_check_blocked_tasks(rnp);
1673 rnp->qsmask = rnp->qsmaskinit;
0446be48 1674 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1675 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1676 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1677 if (rnp == rdp->mynode)
48a7639c 1678 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1679 rcu_preempt_boost_start_gp(rnp);
1680 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1681 rnp->level, rnp->grplo,
1682 rnp->grphi, rnp->qsmask);
1683 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1684 cond_resched_rcu_qs();
7fdefc10 1685 }
b3dbec76 1686
a4fbe35a 1687 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1688 return 1;
1689}
b3dbec76 1690
4cdfc175
PM
1691/*
1692 * Do one round of quiescent-state forcing.
1693 */
01896f7e 1694static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1695{
1696 int fqs_state = fqs_state_in;
217af2a2
PM
1697 bool isidle = false;
1698 unsigned long maxj;
4cdfc175
PM
1699 struct rcu_node *rnp = rcu_get_root(rsp);
1700
1701 rsp->n_force_qs++;
1702 if (fqs_state == RCU_SAVE_DYNTICK) {
1703 /* Collect dyntick-idle snapshots. */
0edd1b17 1704 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1705 isidle = true;
0edd1b17
PM
1706 maxj = jiffies - ULONG_MAX / 4;
1707 }
217af2a2
PM
1708 force_qs_rnp(rsp, dyntick_save_progress_counter,
1709 &isidle, &maxj);
0edd1b17 1710 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1711 fqs_state = RCU_FORCE_QS;
1712 } else {
1713 /* Handle dyntick-idle and offline CPUs. */
e02b2edf 1714 isidle = false;
217af2a2 1715 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1716 }
1717 /* Clear flag to prevent immediate re-entry. */
1718 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1719 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1720 smp_mb__after_unlock_lock();
4de376a1
PK
1721 ACCESS_ONCE(rsp->gp_flags) =
1722 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1723 raw_spin_unlock_irq(&rnp->lock);
1724 }
1725 return fqs_state;
1726}
1727
7fdefc10
PM
1728/*
1729 * Clean up after the old grace period.
1730 */
4cdfc175 1731static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1732{
1733 unsigned long gp_duration;
48a7639c 1734 bool needgp = false;
dae6e64d 1735 int nocb = 0;
7fdefc10
PM
1736 struct rcu_data *rdp;
1737 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1738
7fdefc10 1739 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1740 smp_mb__after_unlock_lock();
7fdefc10
PM
1741 gp_duration = jiffies - rsp->gp_start;
1742 if (gp_duration > rsp->gp_max)
1743 rsp->gp_max = gp_duration;
b3dbec76 1744
7fdefc10
PM
1745 /*
1746 * We know the grace period is complete, but to everyone else
1747 * it appears to still be ongoing. But it is also the case
1748 * that to everyone else it looks like there is nothing that
1749 * they can do to advance the grace period. It is therefore
1750 * safe for us to drop the lock in order to mark the grace
1751 * period as completed in all of the rcu_node structures.
7fdefc10 1752 */
5d4b8659 1753 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1754
5d4b8659
PM
1755 /*
1756 * Propagate new ->completed value to rcu_node structures so
1757 * that other CPUs don't have to wait until the start of the next
1758 * grace period to process their callbacks. This also avoids
1759 * some nasty RCU grace-period initialization races by forcing
1760 * the end of the current grace period to be completely recorded in
1761 * all of the rcu_node structures before the beginning of the next
1762 * grace period is recorded in any of the rcu_node structures.
1763 */
1764 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1765 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1766 smp_mb__after_unlock_lock();
0446be48 1767 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1768 rdp = this_cpu_ptr(rsp->rda);
1769 if (rnp == rdp->mynode)
48a7639c 1770 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1771 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1772 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1773 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1774 cond_resched_rcu_qs();
7fdefc10 1775 }
5d4b8659
PM
1776 rnp = rcu_get_root(rsp);
1777 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1778 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1779 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1780
765a3f4f
PM
1781 /* Declare grace period done. */
1782 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1783 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1784 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1785 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1786 /* Advance CBs to reduce false positives below. */
1787 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1788 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1789 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1790 trace_rcu_grace_period(rsp->name,
1791 ACCESS_ONCE(rsp->gpnum),
1792 TPS("newreq"));
1793 }
7fdefc10 1794 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1795}
1796
1797/*
1798 * Body of kthread that handles grace periods.
1799 */
1800static int __noreturn rcu_gp_kthread(void *arg)
1801{
4cdfc175 1802 int fqs_state;
88d6df61 1803 int gf;
d40011f6 1804 unsigned long j;
4cdfc175 1805 int ret;
7fdefc10
PM
1806 struct rcu_state *rsp = arg;
1807 struct rcu_node *rnp = rcu_get_root(rsp);
1808
1809 for (;;) {
1810
1811 /* Handle grace-period start. */
1812 for (;;) {
63c4db78
PM
1813 trace_rcu_grace_period(rsp->name,
1814 ACCESS_ONCE(rsp->gpnum),
1815 TPS("reqwait"));
afea227f 1816 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1817 wait_event_interruptible(rsp->gp_wq,
591c6d17 1818 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1819 RCU_GP_FLAG_INIT);
78e4bc34 1820 /* Locking provides needed memory barrier. */
f7be8209 1821 if (rcu_gp_init(rsp))
7fdefc10 1822 break;
bde6c3aa 1823 cond_resched_rcu_qs();
73a860cd 1824 WARN_ON(signal_pending(current));
63c4db78
PM
1825 trace_rcu_grace_period(rsp->name,
1826 ACCESS_ONCE(rsp->gpnum),
1827 TPS("reqwaitsig"));
7fdefc10 1828 }
cabc49c1 1829
4cdfc175
PM
1830 /* Handle quiescent-state forcing. */
1831 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1832 j = jiffies_till_first_fqs;
1833 if (j > HZ) {
1834 j = HZ;
1835 jiffies_till_first_fqs = HZ;
1836 }
88d6df61 1837 ret = 0;
cabc49c1 1838 for (;;) {
88d6df61
PM
1839 if (!ret)
1840 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1841 trace_rcu_grace_period(rsp->name,
1842 ACCESS_ONCE(rsp->gpnum),
1843 TPS("fqswait"));
afea227f 1844 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1845 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1846 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1847 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1848 (!ACCESS_ONCE(rnp->qsmask) &&
1849 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1850 j);
78e4bc34 1851 /* Locking provides needed memory barriers. */
4cdfc175 1852 /* If grace period done, leave loop. */
cabc49c1 1853 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1854 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1855 break;
4cdfc175 1856 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1857 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1858 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1859 trace_rcu_grace_period(rsp->name,
1860 ACCESS_ONCE(rsp->gpnum),
1861 TPS("fqsstart"));
4cdfc175 1862 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1863 trace_rcu_grace_period(rsp->name,
1864 ACCESS_ONCE(rsp->gpnum),
1865 TPS("fqsend"));
bde6c3aa 1866 cond_resched_rcu_qs();
4cdfc175
PM
1867 } else {
1868 /* Deal with stray signal. */
bde6c3aa 1869 cond_resched_rcu_qs();
73a860cd 1870 WARN_ON(signal_pending(current));
63c4db78
PM
1871 trace_rcu_grace_period(rsp->name,
1872 ACCESS_ONCE(rsp->gpnum),
1873 TPS("fqswaitsig"));
4cdfc175 1874 }
d40011f6
PM
1875 j = jiffies_till_next_fqs;
1876 if (j > HZ) {
1877 j = HZ;
1878 jiffies_till_next_fqs = HZ;
1879 } else if (j < 1) {
1880 j = 1;
1881 jiffies_till_next_fqs = 1;
1882 }
cabc49c1 1883 }
4cdfc175
PM
1884
1885 /* Handle grace-period end. */
1886 rcu_gp_cleanup(rsp);
b3dbec76 1887 }
b3dbec76
PM
1888}
1889
64db4cff
PM
1890/*
1891 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1892 * in preparation for detecting the next grace period. The caller must hold
b8462084 1893 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1894 *
1895 * Note that it is legal for a dying CPU (which is marked as offline) to
1896 * invoke this function. This can happen when the dying CPU reports its
1897 * quiescent state.
48a7639c
PM
1898 *
1899 * Returns true if the grace-period kthread must be awakened.
64db4cff 1900 */
48a7639c 1901static bool
910ee45d
PM
1902rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1903 struct rcu_data *rdp)
64db4cff 1904{
b8462084 1905 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1906 /*
b3dbec76 1907 * Either we have not yet spawned the grace-period
62da1921
PM
1908 * task, this CPU does not need another grace period,
1909 * or a grace period is already in progress.
b3dbec76 1910 * Either way, don't start a new grace period.
afe24b12 1911 */
48a7639c 1912 return false;
afe24b12 1913 }
91dc9542 1914 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1915 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1916 TPS("newreq"));
62da1921 1917
016a8d5b
SR
1918 /*
1919 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 1920 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 1921 * the wakeup to our caller.
016a8d5b 1922 */
48a7639c 1923 return true;
64db4cff
PM
1924}
1925
910ee45d
PM
1926/*
1927 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1928 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1929 * is invoked indirectly from rcu_advance_cbs(), which would result in
1930 * endless recursion -- or would do so if it wasn't for the self-deadlock
1931 * that is encountered beforehand.
48a7639c
PM
1932 *
1933 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 1934 */
48a7639c 1935static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
1936{
1937 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1938 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 1939 bool ret = false;
910ee45d
PM
1940
1941 /*
1942 * If there is no grace period in progress right now, any
1943 * callbacks we have up to this point will be satisfied by the
1944 * next grace period. Also, advancing the callbacks reduces the
1945 * probability of false positives from cpu_needs_another_gp()
1946 * resulting in pointless grace periods. So, advance callbacks
1947 * then start the grace period!
1948 */
48a7639c
PM
1949 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1950 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1951 return ret;
910ee45d
PM
1952}
1953
f41d911f 1954/*
d3f6bad3
PM
1955 * Report a full set of quiescent states to the specified rcu_state
1956 * data structure. This involves cleaning up after the prior grace
1957 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1958 * if one is needed. Note that the caller must hold rnp->lock, which
1959 * is released before return.
f41d911f 1960 */
d3f6bad3 1961static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1962 __releases(rcu_get_root(rsp)->lock)
f41d911f 1963{
fc2219d4 1964 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1 1965 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 1966 rcu_gp_kthread_wake(rsp);
f41d911f
PM
1967}
1968
64db4cff 1969/*
d3f6bad3
PM
1970 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1971 * Allows quiescent states for a group of CPUs to be reported at one go
1972 * to the specified rcu_node structure, though all the CPUs in the group
1973 * must be represented by the same rcu_node structure (which need not be
1974 * a leaf rcu_node structure, though it often will be). That structure's
1975 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1976 */
1977static void
d3f6bad3
PM
1978rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1979 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1980 __releases(rnp->lock)
1981{
28ecd580
PM
1982 struct rcu_node *rnp_c;
1983
64db4cff
PM
1984 /* Walk up the rcu_node hierarchy. */
1985 for (;;) {
1986 if (!(rnp->qsmask & mask)) {
1987
1988 /* Our bit has already been cleared, so done. */
1304afb2 1989 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1990 return;
1991 }
1992 rnp->qsmask &= ~mask;
d4c08f2a
PM
1993 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1994 mask, rnp->qsmask, rnp->level,
1995 rnp->grplo, rnp->grphi,
1996 !!rnp->gp_tasks);
27f4d280 1997 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1998
1999 /* Other bits still set at this level, so done. */
1304afb2 2000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2001 return;
2002 }
2003 mask = rnp->grpmask;
2004 if (rnp->parent == NULL) {
2005
2006 /* No more levels. Exit loop holding root lock. */
2007
2008 break;
2009 }
1304afb2 2010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2011 rnp_c = rnp;
64db4cff 2012 rnp = rnp->parent;
1304afb2 2013 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2014 smp_mb__after_unlock_lock();
28ecd580 2015 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
2016 }
2017
2018 /*
2019 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2020 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2021 * to clean up and start the next grace period if one is needed.
64db4cff 2022 */
d3f6bad3 2023 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2024}
2025
2026/*
d3f6bad3
PM
2027 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2028 * structure. This must be either called from the specified CPU, or
2029 * called when the specified CPU is known to be offline (and when it is
2030 * also known that no other CPU is concurrently trying to help the offline
2031 * CPU). The lastcomp argument is used to make sure we are still in the
2032 * grace period of interest. We don't want to end the current grace period
2033 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2034 */
2035static void
d7d6a11e 2036rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2037{
2038 unsigned long flags;
2039 unsigned long mask;
48a7639c 2040 bool needwake;
64db4cff
PM
2041 struct rcu_node *rnp;
2042
2043 rnp = rdp->mynode;
1304afb2 2044 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2045 smp_mb__after_unlock_lock();
d7d6a11e
PM
2046 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
2047 rnp->completed == rnp->gpnum) {
64db4cff
PM
2048
2049 /*
e4cc1f22
PM
2050 * The grace period in which this quiescent state was
2051 * recorded has ended, so don't report it upwards.
2052 * We will instead need a new quiescent state that lies
2053 * within the current grace period.
64db4cff 2054 */
e4cc1f22 2055 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 2056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2057 return;
2058 }
2059 mask = rdp->grpmask;
2060 if ((rnp->qsmask & mask) == 0) {
1304afb2 2061 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2062 } else {
2063 rdp->qs_pending = 0;
2064
2065 /*
2066 * This GP can't end until cpu checks in, so all of our
2067 * callbacks can be processed during the next GP.
2068 */
48a7639c 2069 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2070
d3f6bad3 2071 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2072 if (needwake)
2073 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2074 }
2075}
2076
2077/*
2078 * Check to see if there is a new grace period of which this CPU
2079 * is not yet aware, and if so, set up local rcu_data state for it.
2080 * Otherwise, see if this CPU has just passed through its first
2081 * quiescent state for this grace period, and record that fact if so.
2082 */
2083static void
2084rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2085{
05eb552b
PM
2086 /* Check for grace-period ends and beginnings. */
2087 note_gp_changes(rsp, rdp);
64db4cff
PM
2088
2089 /*
2090 * Does this CPU still need to do its part for current grace period?
2091 * If no, return and let the other CPUs do their part as well.
2092 */
2093 if (!rdp->qs_pending)
2094 return;
2095
2096 /*
2097 * Was there a quiescent state since the beginning of the grace
2098 * period? If no, then exit and wait for the next call.
2099 */
e4cc1f22 2100 if (!rdp->passed_quiesce)
64db4cff
PM
2101 return;
2102
d3f6bad3
PM
2103 /*
2104 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2105 * judge of that).
2106 */
d7d6a11e 2107 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2108}
2109
2110#ifdef CONFIG_HOTPLUG_CPU
2111
e74f4c45 2112/*
b1420f1c
PM
2113 * Send the specified CPU's RCU callbacks to the orphanage. The
2114 * specified CPU must be offline, and the caller must hold the
7b2e6011 2115 * ->orphan_lock.
e74f4c45 2116 */
b1420f1c
PM
2117static void
2118rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2119 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2120{
3fbfbf7a 2121 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2122 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2123 return;
2124
b1420f1c
PM
2125 /*
2126 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2127 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2128 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2129 */
a50c3af9 2130 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2131 rsp->qlen_lazy += rdp->qlen_lazy;
2132 rsp->qlen += rdp->qlen;
2133 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2134 rdp->qlen_lazy = 0;
1d1fb395 2135 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2136 }
2137
2138 /*
b1420f1c
PM
2139 * Next, move those callbacks still needing a grace period to
2140 * the orphanage, where some other CPU will pick them up.
2141 * Some of the callbacks might have gone partway through a grace
2142 * period, but that is too bad. They get to start over because we
2143 * cannot assume that grace periods are synchronized across CPUs.
2144 * We don't bother updating the ->nxttail[] array yet, instead
2145 * we just reset the whole thing later on.
a50c3af9 2146 */
b1420f1c
PM
2147 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2148 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2149 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2150 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2151 }
2152
2153 /*
b1420f1c
PM
2154 * Then move the ready-to-invoke callbacks to the orphanage,
2155 * where some other CPU will pick them up. These will not be
2156 * required to pass though another grace period: They are done.
a50c3af9 2157 */
e5601400 2158 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2159 *rsp->orphan_donetail = rdp->nxtlist;
2160 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2161 }
e74f4c45 2162
b1420f1c 2163 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2164 init_callback_list(rdp);
b1420f1c
PM
2165}
2166
2167/*
2168 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2169 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2170 */
96d3fd0d 2171static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2172{
2173 int i;
fa07a58f 2174 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2175
3fbfbf7a 2176 /* No-CBs CPUs are handled specially. */
96d3fd0d 2177 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2178 return;
2179
b1420f1c
PM
2180 /* Do the accounting first. */
2181 rdp->qlen_lazy += rsp->qlen_lazy;
2182 rdp->qlen += rsp->qlen;
2183 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2184 if (rsp->qlen_lazy != rsp->qlen)
2185 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2186 rsp->qlen_lazy = 0;
2187 rsp->qlen = 0;
2188
2189 /*
2190 * We do not need a memory barrier here because the only way we
2191 * can get here if there is an rcu_barrier() in flight is if
2192 * we are the task doing the rcu_barrier().
2193 */
2194
2195 /* First adopt the ready-to-invoke callbacks. */
2196 if (rsp->orphan_donelist != NULL) {
2197 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2198 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2199 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2200 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2201 rdp->nxttail[i] = rsp->orphan_donetail;
2202 rsp->orphan_donelist = NULL;
2203 rsp->orphan_donetail = &rsp->orphan_donelist;
2204 }
2205
2206 /* And then adopt the callbacks that still need a grace period. */
2207 if (rsp->orphan_nxtlist != NULL) {
2208 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2209 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2210 rsp->orphan_nxtlist = NULL;
2211 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2212 }
2213}
2214
2215/*
2216 * Trace the fact that this CPU is going offline.
2217 */
2218static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2219{
2220 RCU_TRACE(unsigned long mask);
2221 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2222 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2223
2224 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2225 trace_rcu_grace_period(rsp->name,
2226 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2227 TPS("cpuofl"));
64db4cff
PM
2228}
2229
2230/*
e5601400 2231 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2232 * this fact from process context. Do the remainder of the cleanup,
2233 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2234 * adopting them. There can only be one CPU hotplug operation at a time,
2235 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2236 */
e5601400 2237static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2238{
2036d94a
PM
2239 unsigned long flags;
2240 unsigned long mask;
2241 int need_report = 0;
e5601400 2242 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2243 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2244
2036d94a 2245 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2246 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2247
2036d94a 2248 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2249 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2250 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2251
b1420f1c
PM
2252 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2253 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2254 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2255
2036d94a
PM
2256 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2257 mask = rdp->grpmask; /* rnp->grplo is constant. */
2258 do {
2259 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2260 smp_mb__after_unlock_lock();
2036d94a
PM
2261 rnp->qsmaskinit &= ~mask;
2262 if (rnp->qsmaskinit != 0) {
2263 if (rnp != rdp->mynode)
2264 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2265 break;
2266 }
2267 if (rnp == rdp->mynode)
2268 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2269 else
2270 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2271 mask = rnp->grpmask;
2272 rnp = rnp->parent;
2273 } while (rnp != NULL);
2274
2275 /*
2276 * We still hold the leaf rcu_node structure lock here, and
2277 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2278 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2279 * held leads to deadlock.
2280 */
7b2e6011 2281 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2282 rnp = rdp->mynode;
2283 if (need_report & RCU_OFL_TASKS_NORM_GP)
2284 rcu_report_unblock_qs_rnp(rnp, flags);
2285 else
2286 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2287 if (need_report & RCU_OFL_TASKS_EXP_GP)
2288 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2289 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2290 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2291 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2292 init_callback_list(rdp);
2293 /* Disallow further callbacks on this CPU. */
2294 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2295 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2296}
2297
2298#else /* #ifdef CONFIG_HOTPLUG_CPU */
2299
e5601400 2300static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2301{
2302}
2303
e5601400 2304static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2305{
2306}
2307
2308#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2309
2310/*
2311 * Invoke any RCU callbacks that have made it to the end of their grace
2312 * period. Thottle as specified by rdp->blimit.
2313 */
37c72e56 2314static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2315{
2316 unsigned long flags;
2317 struct rcu_head *next, *list, **tail;
878d7439
ED
2318 long bl, count, count_lazy;
2319 int i;
64db4cff 2320
dc35c893 2321 /* If no callbacks are ready, just return. */
29c00b4a 2322 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2323 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2324 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2325 need_resched(), is_idle_task(current),
2326 rcu_is_callbacks_kthread());
64db4cff 2327 return;
29c00b4a 2328 }
64db4cff
PM
2329
2330 /*
2331 * Extract the list of ready callbacks, disabling to prevent
2332 * races with call_rcu() from interrupt handlers.
2333 */
2334 local_irq_save(flags);
8146c4e2 2335 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2336 bl = rdp->blimit;
486e2593 2337 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2338 list = rdp->nxtlist;
2339 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2340 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2341 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2342 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2343 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2344 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2345 local_irq_restore(flags);
2346
2347 /* Invoke callbacks. */
486e2593 2348 count = count_lazy = 0;
64db4cff
PM
2349 while (list) {
2350 next = list->next;
2351 prefetch(next);
551d55a9 2352 debug_rcu_head_unqueue(list);
486e2593
PM
2353 if (__rcu_reclaim(rsp->name, list))
2354 count_lazy++;
64db4cff 2355 list = next;
dff1672d
PM
2356 /* Stop only if limit reached and CPU has something to do. */
2357 if (++count >= bl &&
2358 (need_resched() ||
2359 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2360 break;
2361 }
2362
2363 local_irq_save(flags);
4968c300
PM
2364 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2365 is_idle_task(current),
2366 rcu_is_callbacks_kthread());
64db4cff
PM
2367
2368 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2369 if (list != NULL) {
2370 *tail = rdp->nxtlist;
2371 rdp->nxtlist = list;
b41772ab
PM
2372 for (i = 0; i < RCU_NEXT_SIZE; i++)
2373 if (&rdp->nxtlist == rdp->nxttail[i])
2374 rdp->nxttail[i] = tail;
64db4cff
PM
2375 else
2376 break;
2377 }
b1420f1c
PM
2378 smp_mb(); /* List handling before counting for rcu_barrier(). */
2379 rdp->qlen_lazy -= count_lazy;
a792563b 2380 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2381 rdp->n_cbs_invoked += count;
64db4cff
PM
2382
2383 /* Reinstate batch limit if we have worked down the excess. */
2384 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2385 rdp->blimit = blimit;
2386
37c72e56
PM
2387 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2388 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2389 rdp->qlen_last_fqs_check = 0;
2390 rdp->n_force_qs_snap = rsp->n_force_qs;
2391 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2392 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2393 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2394
64db4cff
PM
2395 local_irq_restore(flags);
2396
e0f23060 2397 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2398 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2399 invoke_rcu_core();
64db4cff
PM
2400}
2401
2402/*
2403 * Check to see if this CPU is in a non-context-switch quiescent state
2404 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2405 * Also schedule RCU core processing.
64db4cff 2406 *
9b2e4f18 2407 * This function must be called from hardirq context. It is normally
64db4cff
PM
2408 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2409 * false, there is no point in invoking rcu_check_callbacks().
2410 */
c3377c2d 2411void rcu_check_callbacks(int user)
64db4cff 2412{
f7f7bac9 2413 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2414 increment_cpu_stall_ticks();
9b2e4f18 2415 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2416
2417 /*
2418 * Get here if this CPU took its interrupt from user
2419 * mode or from the idle loop, and if this is not a
2420 * nested interrupt. In this case, the CPU is in
d6714c22 2421 * a quiescent state, so note it.
64db4cff
PM
2422 *
2423 * No memory barrier is required here because both
d6714c22
PM
2424 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2425 * variables that other CPUs neither access nor modify,
2426 * at least not while the corresponding CPU is online.
64db4cff
PM
2427 */
2428
284a8c93
PM
2429 rcu_sched_qs();
2430 rcu_bh_qs();
64db4cff
PM
2431
2432 } else if (!in_softirq()) {
2433
2434 /*
2435 * Get here if this CPU did not take its interrupt from
2436 * softirq, in other words, if it is not interrupting
2437 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2438 * critical section, so note it.
64db4cff
PM
2439 */
2440
284a8c93 2441 rcu_bh_qs();
64db4cff 2442 }
86aea0e6 2443 rcu_preempt_check_callbacks();
e3950ecd 2444 if (rcu_pending())
a46e0899 2445 invoke_rcu_core();
8315f422
PM
2446 if (user)
2447 rcu_note_voluntary_context_switch(current);
f7f7bac9 2448 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2449}
2450
64db4cff
PM
2451/*
2452 * Scan the leaf rcu_node structures, processing dyntick state for any that
2453 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2454 * Also initiate boosting for any threads blocked on the root rcu_node.
2455 *
ee47eb9f 2456 * The caller must have suppressed start of new grace periods.
64db4cff 2457 */
217af2a2
PM
2458static void force_qs_rnp(struct rcu_state *rsp,
2459 int (*f)(struct rcu_data *rsp, bool *isidle,
2460 unsigned long *maxj),
2461 bool *isidle, unsigned long *maxj)
64db4cff
PM
2462{
2463 unsigned long bit;
2464 int cpu;
2465 unsigned long flags;
2466 unsigned long mask;
a0b6c9a7 2467 struct rcu_node *rnp;
64db4cff 2468
a0b6c9a7 2469 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2470 cond_resched_rcu_qs();
64db4cff 2471 mask = 0;
1304afb2 2472 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2473 smp_mb__after_unlock_lock();
ee47eb9f 2474 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2475 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2476 return;
64db4cff 2477 }
a0b6c9a7 2478 if (rnp->qsmask == 0) {
1217ed1b 2479 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2480 continue;
2481 }
a0b6c9a7 2482 cpu = rnp->grplo;
64db4cff 2483 bit = 1;
a0b6c9a7 2484 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2485 if ((rnp->qsmask & bit) != 0) {
2486 if ((rnp->qsmaskinit & bit) != 0)
e02b2edf 2487 *isidle = false;
0edd1b17
PM
2488 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2489 mask |= bit;
2490 }
64db4cff 2491 }
45f014c5 2492 if (mask != 0) {
64db4cff 2493
d3f6bad3
PM
2494 /* rcu_report_qs_rnp() releases rnp->lock. */
2495 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2496 continue;
2497 }
1304afb2 2498 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2499 }
27f4d280 2500 rnp = rcu_get_root(rsp);
1217ed1b
PM
2501 if (rnp->qsmask == 0) {
2502 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2503 smp_mb__after_unlock_lock();
1217ed1b
PM
2504 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2505 }
64db4cff
PM
2506}
2507
2508/*
2509 * Force quiescent states on reluctant CPUs, and also detect which
2510 * CPUs are in dyntick-idle mode.
2511 */
4cdfc175 2512static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2513{
2514 unsigned long flags;
394f2769
PM
2515 bool ret;
2516 struct rcu_node *rnp;
2517 struct rcu_node *rnp_old = NULL;
2518
2519 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2520 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2521 for (; rnp != NULL; rnp = rnp->parent) {
2522 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2523 !raw_spin_trylock(&rnp->fqslock);
2524 if (rnp_old != NULL)
2525 raw_spin_unlock(&rnp_old->fqslock);
2526 if (ret) {
a792563b 2527 rsp->n_force_qs_lh++;
394f2769
PM
2528 return;
2529 }
2530 rnp_old = rnp;
2531 }
2532 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2533
394f2769
PM
2534 /* Reached the root of the rcu_node tree, acquire lock. */
2535 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2536 smp_mb__after_unlock_lock();
394f2769
PM
2537 raw_spin_unlock(&rnp_old->fqslock);
2538 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2539 rsp->n_force_qs_lh++;
394f2769 2540 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2541 return; /* Someone beat us to it. */
46a1e34e 2542 }
4de376a1
PK
2543 ACCESS_ONCE(rsp->gp_flags) =
2544 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
394f2769 2545 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2546 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2547}
2548
64db4cff 2549/*
e0f23060
PM
2550 * This does the RCU core processing work for the specified rcu_state
2551 * and rcu_data structures. This may be called only from the CPU to
2552 * whom the rdp belongs.
64db4cff
PM
2553 */
2554static void
1bca8cf1 2555__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2556{
2557 unsigned long flags;
48a7639c 2558 bool needwake;
fa07a58f 2559 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2560
2e597558
PM
2561 WARN_ON_ONCE(rdp->beenonline == 0);
2562
64db4cff
PM
2563 /* Update RCU state based on any recent quiescent states. */
2564 rcu_check_quiescent_state(rsp, rdp);
2565
2566 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2567 local_irq_save(flags);
64db4cff 2568 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2569 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2570 needwake = rcu_start_gp(rsp);
b8462084 2571 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2572 if (needwake)
2573 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2574 } else {
2575 local_irq_restore(flags);
64db4cff
PM
2576 }
2577
2578 /* If there are callbacks ready, invoke them. */
09223371 2579 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2580 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2581
2582 /* Do any needed deferred wakeups of rcuo kthreads. */
2583 do_nocb_deferred_wakeup(rdp);
09223371
SL
2584}
2585
64db4cff 2586/*
e0f23060 2587 * Do RCU core processing for the current CPU.
64db4cff 2588 */
09223371 2589static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2590{
6ce75a23
PM
2591 struct rcu_state *rsp;
2592
bfa00b4c
PM
2593 if (cpu_is_offline(smp_processor_id()))
2594 return;
f7f7bac9 2595 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2596 for_each_rcu_flavor(rsp)
2597 __rcu_process_callbacks(rsp);
f7f7bac9 2598 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2599}
2600
a26ac245 2601/*
e0f23060
PM
2602 * Schedule RCU callback invocation. If the specified type of RCU
2603 * does not support RCU priority boosting, just do a direct call,
2604 * otherwise wake up the per-CPU kernel kthread. Note that because we
2605 * are running on the current CPU with interrupts disabled, the
2606 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2607 */
a46e0899 2608static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2609{
b0d30417
PM
2610 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2611 return;
a46e0899
PM
2612 if (likely(!rsp->boost)) {
2613 rcu_do_batch(rsp, rdp);
a26ac245
PM
2614 return;
2615 }
a46e0899 2616 invoke_rcu_callbacks_kthread();
a26ac245
PM
2617}
2618
a46e0899 2619static void invoke_rcu_core(void)
09223371 2620{
b0f74036
PM
2621 if (cpu_online(smp_processor_id()))
2622 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2623}
2624
29154c57
PM
2625/*
2626 * Handle any core-RCU processing required by a call_rcu() invocation.
2627 */
2628static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2629 struct rcu_head *head, unsigned long flags)
64db4cff 2630{
48a7639c
PM
2631 bool needwake;
2632
62fde6ed
PM
2633 /*
2634 * If called from an extended quiescent state, invoke the RCU
2635 * core in order to force a re-evaluation of RCU's idleness.
2636 */
5c173eb8 2637 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2638 invoke_rcu_core();
2639
a16b7a69 2640 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2641 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2642 return;
64db4cff 2643
37c72e56
PM
2644 /*
2645 * Force the grace period if too many callbacks or too long waiting.
2646 * Enforce hysteresis, and don't invoke force_quiescent_state()
2647 * if some other CPU has recently done so. Also, don't bother
2648 * invoking force_quiescent_state() if the newly enqueued callback
2649 * is the only one waiting for a grace period to complete.
2650 */
2655d57e 2651 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2652
2653 /* Are we ignoring a completed grace period? */
470716fc 2654 note_gp_changes(rsp, rdp);
b52573d2
PM
2655
2656 /* Start a new grace period if one not already started. */
2657 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2658 struct rcu_node *rnp_root = rcu_get_root(rsp);
2659
b8462084 2660 raw_spin_lock(&rnp_root->lock);
6303b9c8 2661 smp_mb__after_unlock_lock();
48a7639c 2662 needwake = rcu_start_gp(rsp);
b8462084 2663 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2664 if (needwake)
2665 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2666 } else {
2667 /* Give the grace period a kick. */
2668 rdp->blimit = LONG_MAX;
2669 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2670 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2671 force_quiescent_state(rsp);
b52573d2
PM
2672 rdp->n_force_qs_snap = rsp->n_force_qs;
2673 rdp->qlen_last_fqs_check = rdp->qlen;
2674 }
4cdfc175 2675 }
29154c57
PM
2676}
2677
ae150184
PM
2678/*
2679 * RCU callback function to leak a callback.
2680 */
2681static void rcu_leak_callback(struct rcu_head *rhp)
2682{
2683}
2684
3fbfbf7a
PM
2685/*
2686 * Helper function for call_rcu() and friends. The cpu argument will
2687 * normally be -1, indicating "currently running CPU". It may specify
2688 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2689 * is expected to specify a CPU.
2690 */
64db4cff
PM
2691static void
2692__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2693 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2694{
2695 unsigned long flags;
2696 struct rcu_data *rdp;
2697
1146edcb 2698 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2699 if (debug_rcu_head_queue(head)) {
2700 /* Probable double call_rcu(), so leak the callback. */
2701 ACCESS_ONCE(head->func) = rcu_leak_callback;
2702 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2703 return;
2704 }
64db4cff
PM
2705 head->func = func;
2706 head->next = NULL;
2707
64db4cff
PM
2708 /*
2709 * Opportunistically note grace-period endings and beginnings.
2710 * Note that we might see a beginning right after we see an
2711 * end, but never vice versa, since this CPU has to pass through
2712 * a quiescent state betweentimes.
2713 */
2714 local_irq_save(flags);
394f99a9 2715 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2716
2717 /* Add the callback to our list. */
3fbfbf7a
PM
2718 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2719 int offline;
2720
2721 if (cpu != -1)
2722 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2723 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2724 WARN_ON_ONCE(offline);
0d8ee37e 2725 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2726 local_irq_restore(flags);
2727 return;
2728 }
a792563b 2729 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2730 if (lazy)
2731 rdp->qlen_lazy++;
c57afe80
PM
2732 else
2733 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2734 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2735 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2736 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2737
d4c08f2a
PM
2738 if (__is_kfree_rcu_offset((unsigned long)func))
2739 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2740 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2741 else
486e2593 2742 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2743
29154c57
PM
2744 /* Go handle any RCU core processing required. */
2745 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2746 local_irq_restore(flags);
2747}
2748
2749/*
d6714c22 2750 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2751 */
d6714c22 2752void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2753{
3fbfbf7a 2754 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2755}
d6714c22 2756EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2757
2758/*
486e2593 2759 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2760 */
2761void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2762{
3fbfbf7a 2763 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2764}
2765EXPORT_SYMBOL_GPL(call_rcu_bh);
2766
495aa969
ACB
2767/*
2768 * Queue an RCU callback for lazy invocation after a grace period.
2769 * This will likely be later named something like "call_rcu_lazy()",
2770 * but this change will require some way of tagging the lazy RCU
2771 * callbacks in the list of pending callbacks. Until then, this
2772 * function may only be called from __kfree_rcu().
2773 */
2774void kfree_call_rcu(struct rcu_head *head,
2775 void (*func)(struct rcu_head *rcu))
2776{
e534165b 2777 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2778}
2779EXPORT_SYMBOL_GPL(kfree_call_rcu);
2780
6d813391
PM
2781/*
2782 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2783 * any blocking grace-period wait automatically implies a grace period
2784 * if there is only one CPU online at any point time during execution
2785 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2786 * occasionally incorrectly indicate that there are multiple CPUs online
2787 * when there was in fact only one the whole time, as this just adds
2788 * some overhead: RCU still operates correctly.
6d813391
PM
2789 */
2790static inline int rcu_blocking_is_gp(void)
2791{
95f0c1de
PM
2792 int ret;
2793
6d813391 2794 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2795 preempt_disable();
2796 ret = num_online_cpus() <= 1;
2797 preempt_enable();
2798 return ret;
6d813391
PM
2799}
2800
6ebb237b
PM
2801/**
2802 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2803 *
2804 * Control will return to the caller some time after a full rcu-sched
2805 * grace period has elapsed, in other words after all currently executing
2806 * rcu-sched read-side critical sections have completed. These read-side
2807 * critical sections are delimited by rcu_read_lock_sched() and
2808 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2809 * local_irq_disable(), and so on may be used in place of
2810 * rcu_read_lock_sched().
2811 *
2812 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2813 * non-threaded hardware-interrupt handlers, in progress on entry will
2814 * have completed before this primitive returns. However, this does not
2815 * guarantee that softirq handlers will have completed, since in some
2816 * kernels, these handlers can run in process context, and can block.
2817 *
2818 * Note that this guarantee implies further memory-ordering guarantees.
2819 * On systems with more than one CPU, when synchronize_sched() returns,
2820 * each CPU is guaranteed to have executed a full memory barrier since the
2821 * end of its last RCU-sched read-side critical section whose beginning
2822 * preceded the call to synchronize_sched(). In addition, each CPU having
2823 * an RCU read-side critical section that extends beyond the return from
2824 * synchronize_sched() is guaranteed to have executed a full memory barrier
2825 * after the beginning of synchronize_sched() and before the beginning of
2826 * that RCU read-side critical section. Note that these guarantees include
2827 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2828 * that are executing in the kernel.
2829 *
2830 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2831 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2832 * to have executed a full memory barrier during the execution of
2833 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2834 * again only if the system has more than one CPU).
6ebb237b
PM
2835 *
2836 * This primitive provides the guarantees made by the (now removed)
2837 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2838 * guarantees that rcu_read_lock() sections will have completed.
2839 * In "classic RCU", these two guarantees happen to be one and
2840 * the same, but can differ in realtime RCU implementations.
2841 */
2842void synchronize_sched(void)
2843{
fe15d706
PM
2844 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2845 !lock_is_held(&rcu_lock_map) &&
2846 !lock_is_held(&rcu_sched_lock_map),
2847 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2848 if (rcu_blocking_is_gp())
2849 return;
3705b88d
AM
2850 if (rcu_expedited)
2851 synchronize_sched_expedited();
2852 else
2853 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2854}
2855EXPORT_SYMBOL_GPL(synchronize_sched);
2856
2857/**
2858 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2859 *
2860 * Control will return to the caller some time after a full rcu_bh grace
2861 * period has elapsed, in other words after all currently executing rcu_bh
2862 * read-side critical sections have completed. RCU read-side critical
2863 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2864 * and may be nested.
f0a0e6f2
PM
2865 *
2866 * See the description of synchronize_sched() for more detailed information
2867 * on memory ordering guarantees.
6ebb237b
PM
2868 */
2869void synchronize_rcu_bh(void)
2870{
fe15d706
PM
2871 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2872 !lock_is_held(&rcu_lock_map) &&
2873 !lock_is_held(&rcu_sched_lock_map),
2874 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2875 if (rcu_blocking_is_gp())
2876 return;
3705b88d
AM
2877 if (rcu_expedited)
2878 synchronize_rcu_bh_expedited();
2879 else
2880 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2881}
2882EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2883
765a3f4f
PM
2884/**
2885 * get_state_synchronize_rcu - Snapshot current RCU state
2886 *
2887 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2888 * to determine whether or not a full grace period has elapsed in the
2889 * meantime.
2890 */
2891unsigned long get_state_synchronize_rcu(void)
2892{
2893 /*
2894 * Any prior manipulation of RCU-protected data must happen
2895 * before the load from ->gpnum.
2896 */
2897 smp_mb(); /* ^^^ */
2898
2899 /*
2900 * Make sure this load happens before the purportedly
2901 * time-consuming work between get_state_synchronize_rcu()
2902 * and cond_synchronize_rcu().
2903 */
e534165b 2904 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
2905}
2906EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2907
2908/**
2909 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2910 *
2911 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2912 *
2913 * If a full RCU grace period has elapsed since the earlier call to
2914 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2915 * synchronize_rcu() to wait for a full grace period.
2916 *
2917 * Yes, this function does not take counter wrap into account. But
2918 * counter wrap is harmless. If the counter wraps, we have waited for
2919 * more than 2 billion grace periods (and way more on a 64-bit system!),
2920 * so waiting for one additional grace period should be just fine.
2921 */
2922void cond_synchronize_rcu(unsigned long oldstate)
2923{
2924 unsigned long newstate;
2925
2926 /*
2927 * Ensure that this load happens before any RCU-destructive
2928 * actions the caller might carry out after we return.
2929 */
e534165b 2930 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
2931 if (ULONG_CMP_GE(oldstate, newstate))
2932 synchronize_rcu();
2933}
2934EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2935
3d3b7db0
PM
2936static int synchronize_sched_expedited_cpu_stop(void *data)
2937{
2938 /*
2939 * There must be a full memory barrier on each affected CPU
2940 * between the time that try_stop_cpus() is called and the
2941 * time that it returns.
2942 *
2943 * In the current initial implementation of cpu_stop, the
2944 * above condition is already met when the control reaches
2945 * this point and the following smp_mb() is not strictly
2946 * necessary. Do smp_mb() anyway for documentation and
2947 * robustness against future implementation changes.
2948 */
2949 smp_mb(); /* See above comment block. */
2950 return 0;
2951}
2952
236fefaf
PM
2953/**
2954 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2955 *
2956 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2957 * approach to force the grace period to end quickly. This consumes
2958 * significant time on all CPUs and is unfriendly to real-time workloads,
2959 * so is thus not recommended for any sort of common-case code. In fact,
2960 * if you are using synchronize_sched_expedited() in a loop, please
2961 * restructure your code to batch your updates, and then use a single
2962 * synchronize_sched() instead.
3d3b7db0 2963 *
3d3b7db0
PM
2964 * This implementation can be thought of as an application of ticket
2965 * locking to RCU, with sync_sched_expedited_started and
2966 * sync_sched_expedited_done taking on the roles of the halves
2967 * of the ticket-lock word. Each task atomically increments
2968 * sync_sched_expedited_started upon entry, snapshotting the old value,
2969 * then attempts to stop all the CPUs. If this succeeds, then each
2970 * CPU will have executed a context switch, resulting in an RCU-sched
2971 * grace period. We are then done, so we use atomic_cmpxchg() to
2972 * update sync_sched_expedited_done to match our snapshot -- but
2973 * only if someone else has not already advanced past our snapshot.
2974 *
2975 * On the other hand, if try_stop_cpus() fails, we check the value
2976 * of sync_sched_expedited_done. If it has advanced past our
2977 * initial snapshot, then someone else must have forced a grace period
2978 * some time after we took our snapshot. In this case, our work is
2979 * done for us, and we can simply return. Otherwise, we try again,
2980 * but keep our initial snapshot for purposes of checking for someone
2981 * doing our work for us.
2982 *
2983 * If we fail too many times in a row, we fall back to synchronize_sched().
2984 */
2985void synchronize_sched_expedited(void)
2986{
e0775cef
PM
2987 cpumask_var_t cm;
2988 bool cma = false;
2989 int cpu;
1924bcb0
PM
2990 long firstsnap, s, snap;
2991 int trycount = 0;
40694d66 2992 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2993
1924bcb0
PM
2994 /*
2995 * If we are in danger of counter wrap, just do synchronize_sched().
2996 * By allowing sync_sched_expedited_started to advance no more than
2997 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2998 * that more than 3.5 billion CPUs would be required to force a
2999 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3000 * course be required on a 64-bit system.
3001 */
40694d66
PM
3002 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3003 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
3004 ULONG_MAX / 8)) {
3005 synchronize_sched();
a30489c5 3006 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
3007 return;
3008 }
3d3b7db0 3009
1924bcb0
PM
3010 /*
3011 * Take a ticket. Note that atomic_inc_return() implies a
3012 * full memory barrier.
3013 */
40694d66 3014 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 3015 firstsnap = snap;
dd56af42
PM
3016 if (!try_get_online_cpus()) {
3017 /* CPU hotplug operation in flight, fall back to normal GP. */
3018 wait_rcu_gp(call_rcu_sched);
3019 atomic_long_inc(&rsp->expedited_normal);
3020 return;
3021 }
1cc85961 3022 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0 3023
e0775cef
PM
3024 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3025 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3026 if (cma) {
3027 cpumask_copy(cm, cpu_online_mask);
3028 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3029 for_each_cpu(cpu, cm) {
3030 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3031
3032 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3033 cpumask_clear_cpu(cpu, cm);
3034 }
3035 if (cpumask_weight(cm) == 0)
3036 goto all_cpus_idle;
3037 }
3038
3d3b7db0
PM
3039 /*
3040 * Each pass through the following loop attempts to force a
3041 * context switch on each CPU.
3042 */
e0775cef 3043 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3d3b7db0
PM
3044 synchronize_sched_expedited_cpu_stop,
3045 NULL) == -EAGAIN) {
3046 put_online_cpus();
a30489c5 3047 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3048
1924bcb0 3049 /* Check to see if someone else did our work for us. */
40694d66 3050 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3051 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3052 /* ensure test happens before caller kfree */
4e857c58 3053 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3054 atomic_long_inc(&rsp->expedited_workdone1);
e0775cef 3055 free_cpumask_var(cm);
1924bcb0
PM
3056 return;
3057 }
3d3b7db0
PM
3058
3059 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3060 if (trycount++ < 10) {
3d3b7db0 3061 udelay(trycount * num_online_cpus());
c701d5d9 3062 } else {
3705b88d 3063 wait_rcu_gp(call_rcu_sched);
a30489c5 3064 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3065 free_cpumask_var(cm);
3d3b7db0
PM
3066 return;
3067 }
3068
1924bcb0 3069 /* Recheck to see if someone else did our work for us. */
40694d66 3070 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3071 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3072 /* ensure test happens before caller kfree */
4e857c58 3073 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3074 atomic_long_inc(&rsp->expedited_workdone2);
e0775cef 3075 free_cpumask_var(cm);
3d3b7db0
PM
3076 return;
3077 }
3078
3079 /*
3080 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3081 * callers to piggyback on our grace period. We retry
3082 * after they started, so our grace period works for them,
3083 * and they started after our first try, so their grace
3084 * period works for us.
3d3b7db0 3085 */
dd56af42
PM
3086 if (!try_get_online_cpus()) {
3087 /* CPU hotplug operation in flight, use normal GP. */
3088 wait_rcu_gp(call_rcu_sched);
3089 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3090 free_cpumask_var(cm);
dd56af42
PM
3091 return;
3092 }
40694d66 3093 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3094 smp_mb(); /* ensure read is before try_stop_cpus(). */
3095 }
a30489c5 3096 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0 3097
e0775cef
PM
3098all_cpus_idle:
3099 free_cpumask_var(cm);
3100
3d3b7db0
PM
3101 /*
3102 * Everyone up to our most recent fetch is covered by our grace
3103 * period. Update the counter, but only if our work is still
3104 * relevant -- which it won't be if someone who started later
1924bcb0 3105 * than we did already did their update.
3d3b7db0
PM
3106 */
3107 do {
a30489c5 3108 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3109 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3110 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3111 /* ensure test happens before caller kfree */
4e857c58 3112 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3113 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3114 break;
3115 }
40694d66 3116 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3117 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3118
3119 put_online_cpus();
3120}
3121EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3122
64db4cff
PM
3123/*
3124 * Check to see if there is any immediate RCU-related work to be done
3125 * by the current CPU, for the specified type of RCU, returning 1 if so.
3126 * The checks are in order of increasing expense: checks that can be
3127 * carried out against CPU-local state are performed first. However,
3128 * we must check for CPU stalls first, else we might not get a chance.
3129 */
3130static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3131{
2f51f988
PM
3132 struct rcu_node *rnp = rdp->mynode;
3133
64db4cff
PM
3134 rdp->n_rcu_pending++;
3135
3136 /* Check for CPU stalls, if enabled. */
3137 check_cpu_stall(rsp, rdp);
3138
a096932f
PM
3139 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3140 if (rcu_nohz_full_cpu(rsp))
3141 return 0;
3142
64db4cff 3143 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
3144 if (rcu_scheduler_fully_active &&
3145 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 3146 rdp->n_rp_qs_pending++;
e4cc1f22 3147 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 3148 rdp->n_rp_report_qs++;
64db4cff 3149 return 1;
7ba5c840 3150 }
64db4cff
PM
3151
3152 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3153 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3154 rdp->n_rp_cb_ready++;
64db4cff 3155 return 1;
7ba5c840 3156 }
64db4cff
PM
3157
3158 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3159 if (cpu_needs_another_gp(rsp, rdp)) {
3160 rdp->n_rp_cpu_needs_gp++;
64db4cff 3161 return 1;
7ba5c840 3162 }
64db4cff
PM
3163
3164 /* Has another RCU grace period completed? */
2f51f988 3165 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3166 rdp->n_rp_gp_completed++;
64db4cff 3167 return 1;
7ba5c840 3168 }
64db4cff
PM
3169
3170 /* Has a new RCU grace period started? */
2f51f988 3171 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 3172 rdp->n_rp_gp_started++;
64db4cff 3173 return 1;
7ba5c840 3174 }
64db4cff 3175
96d3fd0d
PM
3176 /* Does this CPU need a deferred NOCB wakeup? */
3177 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3178 rdp->n_rp_nocb_defer_wakeup++;
3179 return 1;
3180 }
3181
64db4cff 3182 /* nothing to do */
7ba5c840 3183 rdp->n_rp_need_nothing++;
64db4cff
PM
3184 return 0;
3185}
3186
3187/*
3188 * Check to see if there is any immediate RCU-related work to be done
3189 * by the current CPU, returning 1 if so. This function is part of the
3190 * RCU implementation; it is -not- an exported member of the RCU API.
3191 */
e3950ecd 3192static int rcu_pending(void)
64db4cff 3193{
6ce75a23
PM
3194 struct rcu_state *rsp;
3195
3196 for_each_rcu_flavor(rsp)
e3950ecd 3197 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3198 return 1;
3199 return 0;
64db4cff
PM
3200}
3201
3202/*
c0f4dfd4
PM
3203 * Return true if the specified CPU has any callback. If all_lazy is
3204 * non-NULL, store an indication of whether all callbacks are lazy.
3205 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3206 */
aa6da514 3207static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3208{
c0f4dfd4
PM
3209 bool al = true;
3210 bool hc = false;
3211 struct rcu_data *rdp;
6ce75a23
PM
3212 struct rcu_state *rsp;
3213
c0f4dfd4 3214 for_each_rcu_flavor(rsp) {
aa6da514 3215 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3216 if (!rdp->nxtlist)
3217 continue;
3218 hc = true;
3219 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3220 al = false;
69c8d28c
PM
3221 break;
3222 }
c0f4dfd4
PM
3223 }
3224 if (all_lazy)
3225 *all_lazy = al;
3226 return hc;
64db4cff
PM
3227}
3228
a83eff0a
PM
3229/*
3230 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3231 * the compiler is expected to optimize this away.
3232 */
e66c33d5 3233static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3234 int cpu, unsigned long done)
3235{
3236 trace_rcu_barrier(rsp->name, s, cpu,
3237 atomic_read(&rsp->barrier_cpu_count), done);
3238}
3239
b1420f1c
PM
3240/*
3241 * RCU callback function for _rcu_barrier(). If we are last, wake
3242 * up the task executing _rcu_barrier().
3243 */
24ebbca8 3244static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3245{
24ebbca8
PM
3246 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3247 struct rcu_state *rsp = rdp->rsp;
3248
a83eff0a
PM
3249 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3250 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3251 complete(&rsp->barrier_completion);
a83eff0a
PM
3252 } else {
3253 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3254 }
d0ec774c
PM
3255}
3256
3257/*
3258 * Called with preemption disabled, and from cross-cpu IRQ context.
3259 */
3260static void rcu_barrier_func(void *type)
3261{
037b64ed 3262 struct rcu_state *rsp = type;
fa07a58f 3263 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3264
a83eff0a 3265 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3266 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3267 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3268}
3269
d0ec774c
PM
3270/*
3271 * Orchestrate the specified type of RCU barrier, waiting for all
3272 * RCU callbacks of the specified type to complete.
3273 */
037b64ed 3274static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3275{
b1420f1c 3276 int cpu;
b1420f1c 3277 struct rcu_data *rdp;
cf3a9c48
PM
3278 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3279 unsigned long snap_done;
b1420f1c 3280
a83eff0a 3281 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3282
e74f4c45 3283 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3284 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3285
cf3a9c48
PM
3286 /*
3287 * Ensure that all prior references, including to ->n_barrier_done,
3288 * are ordered before the _rcu_barrier() machinery.
3289 */
3290 smp_mb(); /* See above block comment. */
3291
3292 /*
3293 * Recheck ->n_barrier_done to see if others did our work for us.
3294 * This means checking ->n_barrier_done for an even-to-odd-to-even
3295 * transition. The "if" expression below therefore rounds the old
3296 * value up to the next even number and adds two before comparing.
3297 */
458fb381 3298 snap_done = rsp->n_barrier_done;
a83eff0a 3299 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3300
3301 /*
3302 * If the value in snap is odd, we needed to wait for the current
3303 * rcu_barrier() to complete, then wait for the next one, in other
3304 * words, we need the value of snap_done to be three larger than
3305 * the value of snap. On the other hand, if the value in snap is
3306 * even, we only had to wait for the next rcu_barrier() to complete,
3307 * in other words, we need the value of snap_done to be only two
3308 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3309 * this for us (thank you, Linus!).
3310 */
3311 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3312 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3313 smp_mb(); /* caller's subsequent code after above check. */
3314 mutex_unlock(&rsp->barrier_mutex);
3315 return;
3316 }
3317
3318 /*
3319 * Increment ->n_barrier_done to avoid duplicate work. Use
3320 * ACCESS_ONCE() to prevent the compiler from speculating
3321 * the increment to precede the early-exit check.
3322 */
a792563b 3323 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3324 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3325 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3326 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3327
d0ec774c 3328 /*
b1420f1c
PM
3329 * Initialize the count to one rather than to zero in order to
3330 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3331 * (or preemption of this task). Exclude CPU-hotplug operations
3332 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3333 */
7db74df8 3334 init_completion(&rsp->barrier_completion);
24ebbca8 3335 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3336 get_online_cpus();
b1420f1c
PM
3337
3338 /*
1331e7a1
PM
3339 * Force each CPU with callbacks to register a new callback.
3340 * When that callback is invoked, we will know that all of the
3341 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3342 */
3fbfbf7a 3343 for_each_possible_cpu(cpu) {
d1e43fa5 3344 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3345 continue;
b1420f1c 3346 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3347 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3348 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3349 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3350 rsp->n_barrier_done);
3351 } else {
3352 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3353 rsp->n_barrier_done);
3354 atomic_inc(&rsp->barrier_cpu_count);
3355 __call_rcu(&rdp->barrier_head,
3356 rcu_barrier_callback, rsp, cpu, 0);
3357 }
3fbfbf7a 3358 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3359 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3360 rsp->n_barrier_done);
037b64ed 3361 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3362 } else {
a83eff0a
PM
3363 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3364 rsp->n_barrier_done);
b1420f1c
PM
3365 }
3366 }
1331e7a1 3367 put_online_cpus();
b1420f1c
PM
3368
3369 /*
3370 * Now that we have an rcu_barrier_callback() callback on each
3371 * CPU, and thus each counted, remove the initial count.
3372 */
24ebbca8 3373 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3374 complete(&rsp->barrier_completion);
b1420f1c 3375
cf3a9c48
PM
3376 /* Increment ->n_barrier_done to prevent duplicate work. */
3377 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3378 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3379 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3380 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3381 smp_mb(); /* Keep increment before caller's subsequent code. */
3382
b1420f1c 3383 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3384 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3385
3386 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3387 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3388}
d0ec774c
PM
3389
3390/**
3391 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3392 */
3393void rcu_barrier_bh(void)
3394{
037b64ed 3395 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3396}
3397EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3398
3399/**
3400 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3401 */
3402void rcu_barrier_sched(void)
3403{
037b64ed 3404 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3405}
3406EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3407
64db4cff 3408/*
27569620 3409 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3410 */
27569620
PM
3411static void __init
3412rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3413{
3414 unsigned long flags;
394f99a9 3415 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3416 struct rcu_node *rnp = rcu_get_root(rsp);
3417
3418 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3419 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3420 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3421 init_callback_list(rdp);
486e2593 3422 rdp->qlen_lazy = 0;
1d1fb395 3423 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3424 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3425 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3426 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3427 rdp->cpu = cpu;
d4c08f2a 3428 rdp->rsp = rsp;
3fbfbf7a 3429 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3430 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3431}
3432
3433/*
3434 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3435 * offline event can be happening at a given time. Note also that we
3436 * can accept some slop in the rsp->completed access due to the fact
3437 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3438 */
49fb4c62 3439static void
9b67122a 3440rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3441{
3442 unsigned long flags;
64db4cff 3443 unsigned long mask;
394f99a9 3444 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3445 struct rcu_node *rnp = rcu_get_root(rsp);
3446
a4fbe35a
PM
3447 /* Exclude new grace periods. */
3448 mutex_lock(&rsp->onoff_mutex);
3449
64db4cff 3450 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3451 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3452 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3453 rdp->qlen_last_fqs_check = 0;
3454 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3455 rdp->blimit = blimit;
0d8ee37e 3456 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3457 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3458 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3459 atomic_set(&rdp->dynticks->dynticks,
3460 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3461 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3462
64db4cff
PM
3463 /* Add CPU to rcu_node bitmasks. */
3464 rnp = rdp->mynode;
3465 mask = rdp->grpmask;
3466 do {
3467 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3468 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3469 rnp->qsmaskinit |= mask;
3470 mask = rnp->grpmask;
d09b62df 3471 if (rnp == rdp->mynode) {
06ae115a
PM
3472 /*
3473 * If there is a grace period in progress, we will
3474 * set up to wait for it next time we run the
3475 * RCU core code.
3476 */
3477 rdp->gpnum = rnp->completed;
d09b62df 3478 rdp->completed = rnp->completed;
06ae115a
PM
3479 rdp->passed_quiesce = 0;
3480 rdp->qs_pending = 0;
f7f7bac9 3481 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3482 }
1304afb2 3483 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3484 rnp = rnp->parent;
3485 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3486 local_irq_restore(flags);
64db4cff 3487
a4fbe35a 3488 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3489}
3490
49fb4c62 3491static void rcu_prepare_cpu(int cpu)
64db4cff 3492{
6ce75a23
PM
3493 struct rcu_state *rsp;
3494
3495 for_each_rcu_flavor(rsp)
9b67122a 3496 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3497}
3498
3499/*
f41d911f 3500 * Handle CPU online/offline notification events.
64db4cff 3501 */
49fb4c62 3502static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3503 unsigned long action, void *hcpu)
64db4cff
PM
3504{
3505 long cpu = (long)hcpu;
e534165b 3506 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3507 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3508 struct rcu_state *rsp;
64db4cff 3509
f7f7bac9 3510 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3511 switch (action) {
3512 case CPU_UP_PREPARE:
3513 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3514 rcu_prepare_cpu(cpu);
3515 rcu_prepare_kthreads(cpu);
35ce7f29 3516 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3517 break;
3518 case CPU_ONLINE:
0f962a5e 3519 case CPU_DOWN_FAILED:
5d01bbd1 3520 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3521 break;
3522 case CPU_DOWN_PREPARE:
34ed6246 3523 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3524 break;
d0ec774c
PM
3525 case CPU_DYING:
3526 case CPU_DYING_FROZEN:
6ce75a23
PM
3527 for_each_rcu_flavor(rsp)
3528 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3529 break;
64db4cff
PM
3530 case CPU_DEAD:
3531 case CPU_DEAD_FROZEN:
3532 case CPU_UP_CANCELED:
3533 case CPU_UP_CANCELED_FROZEN:
776d6807 3534 for_each_rcu_flavor(rsp) {
6ce75a23 3535 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3536 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3537 }
64db4cff
PM
3538 break;
3539 default:
3540 break;
3541 }
f7f7bac9 3542 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3543 return NOTIFY_OK;
64db4cff
PM
3544}
3545
d1d74d14
BP
3546static int rcu_pm_notify(struct notifier_block *self,
3547 unsigned long action, void *hcpu)
3548{
3549 switch (action) {
3550 case PM_HIBERNATION_PREPARE:
3551 case PM_SUSPEND_PREPARE:
3552 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3553 rcu_expedited = 1;
3554 break;
3555 case PM_POST_HIBERNATION:
3556 case PM_POST_SUSPEND:
3557 rcu_expedited = 0;
3558 break;
3559 default:
3560 break;
3561 }
3562 return NOTIFY_OK;
3563}
3564
b3dbec76 3565/*
9386c0b7 3566 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3567 */
3568static int __init rcu_spawn_gp_kthread(void)
3569{
3570 unsigned long flags;
3571 struct rcu_node *rnp;
3572 struct rcu_state *rsp;
3573 struct task_struct *t;
3574
9386c0b7 3575 rcu_scheduler_fully_active = 1;
b3dbec76 3576 for_each_rcu_flavor(rsp) {
f170168b 3577 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3578 BUG_ON(IS_ERR(t));
3579 rnp = rcu_get_root(rsp);
3580 raw_spin_lock_irqsave(&rnp->lock, flags);
3581 rsp->gp_kthread = t;
3582 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3583 }
35ce7f29 3584 rcu_spawn_nocb_kthreads();
9386c0b7 3585 rcu_spawn_boost_kthreads();
b3dbec76
PM
3586 return 0;
3587}
3588early_initcall(rcu_spawn_gp_kthread);
3589
bbad9379
PM
3590/*
3591 * This function is invoked towards the end of the scheduler's initialization
3592 * process. Before this is called, the idle task might contain
3593 * RCU read-side critical sections (during which time, this idle
3594 * task is booting the system). After this function is called, the
3595 * idle tasks are prohibited from containing RCU read-side critical
3596 * sections. This function also enables RCU lockdep checking.
3597 */
3598void rcu_scheduler_starting(void)
3599{
3600 WARN_ON(num_online_cpus() != 1);
3601 WARN_ON(nr_context_switches() > 0);
3602 rcu_scheduler_active = 1;
3603}
3604
64db4cff
PM
3605/*
3606 * Compute the per-level fanout, either using the exact fanout specified
3607 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3608 */
3609#ifdef CONFIG_RCU_FANOUT_EXACT
3610static void __init rcu_init_levelspread(struct rcu_state *rsp)
3611{
3612 int i;
3613
04f34650
PM
3614 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3615 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3616 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3617}
3618#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3619static void __init rcu_init_levelspread(struct rcu_state *rsp)
3620{
3621 int ccur;
3622 int cprv;
3623 int i;
3624
4dbd6bb3 3625 cprv = nr_cpu_ids;
f885b7f2 3626 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3627 ccur = rsp->levelcnt[i];
3628 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3629 cprv = ccur;
3630 }
3631}
3632#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3633
3634/*
3635 * Helper function for rcu_init() that initializes one rcu_state structure.
3636 */
394f99a9
LJ
3637static void __init rcu_init_one(struct rcu_state *rsp,
3638 struct rcu_data __percpu *rda)
64db4cff 3639{
b4426b49
FF
3640 static const char * const buf[] = {
3641 "rcu_node_0",
3642 "rcu_node_1",
3643 "rcu_node_2",
3644 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3645 static const char * const fqs[] = {
3646 "rcu_node_fqs_0",
3647 "rcu_node_fqs_1",
3648 "rcu_node_fqs_2",
3649 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3650 static u8 fl_mask = 0x1;
64db4cff
PM
3651 int cpustride = 1;
3652 int i;
3653 int j;
3654 struct rcu_node *rnp;
3655
b6407e86
PM
3656 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3657
4930521a
PM
3658 /* Silence gcc 4.8 warning about array index out of range. */
3659 if (rcu_num_lvls > RCU_NUM_LVLS)
3660 panic("rcu_init_one: rcu_num_lvls overflow");
3661
64db4cff
PM
3662 /* Initialize the level-tracking arrays. */
3663
f885b7f2
PM
3664 for (i = 0; i < rcu_num_lvls; i++)
3665 rsp->levelcnt[i] = num_rcu_lvl[i];
3666 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3667 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3668 rcu_init_levelspread(rsp);
4a81e832
PM
3669 rsp->flavor_mask = fl_mask;
3670 fl_mask <<= 1;
64db4cff
PM
3671
3672 /* Initialize the elements themselves, starting from the leaves. */
3673
f885b7f2 3674 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3675 cpustride *= rsp->levelspread[i];
3676 rnp = rsp->level[i];
3677 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3678 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3679 lockdep_set_class_and_name(&rnp->lock,
3680 &rcu_node_class[i], buf[i]);
394f2769
PM
3681 raw_spin_lock_init(&rnp->fqslock);
3682 lockdep_set_class_and_name(&rnp->fqslock,
3683 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3684 rnp->gpnum = rsp->gpnum;
3685 rnp->completed = rsp->completed;
64db4cff
PM
3686 rnp->qsmask = 0;
3687 rnp->qsmaskinit = 0;
3688 rnp->grplo = j * cpustride;
3689 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3690 if (rnp->grphi >= nr_cpu_ids)
3691 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3692 if (i == 0) {
3693 rnp->grpnum = 0;
3694 rnp->grpmask = 0;
3695 rnp->parent = NULL;
3696 } else {
3697 rnp->grpnum = j % rsp->levelspread[i - 1];
3698 rnp->grpmask = 1UL << rnp->grpnum;
3699 rnp->parent = rsp->level[i - 1] +
3700 j / rsp->levelspread[i - 1];
3701 }
3702 rnp->level = i;
12f5f524 3703 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3704 rcu_init_one_nocb(rnp);
64db4cff
PM
3705 }
3706 }
0c34029a 3707
394f99a9 3708 rsp->rda = rda;
b3dbec76 3709 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3710 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3711 for_each_possible_cpu(i) {
4a90a068 3712 while (i > rnp->grphi)
0c34029a 3713 rnp++;
394f99a9 3714 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3715 rcu_boot_init_percpu_data(i, rsp);
3716 }
6ce75a23 3717 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3718}
3719
f885b7f2
PM
3720/*
3721 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3722 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3723 * the ->node array in the rcu_state structure.
3724 */
3725static void __init rcu_init_geometry(void)
3726{
026ad283 3727 ulong d;
f885b7f2
PM
3728 int i;
3729 int j;
cca6f393 3730 int n = nr_cpu_ids;
f885b7f2
PM
3731 int rcu_capacity[MAX_RCU_LVLS + 1];
3732
026ad283
PM
3733 /*
3734 * Initialize any unspecified boot parameters.
3735 * The default values of jiffies_till_first_fqs and
3736 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3737 * value, which is a function of HZ, then adding one for each
3738 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3739 */
3740 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3741 if (jiffies_till_first_fqs == ULONG_MAX)
3742 jiffies_till_first_fqs = d;
3743 if (jiffies_till_next_fqs == ULONG_MAX)
3744 jiffies_till_next_fqs = d;
3745
f885b7f2 3746 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3747 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3748 nr_cpu_ids == NR_CPUS)
f885b7f2 3749 return;
39479098
PM
3750 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3751 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3752
3753 /*
3754 * Compute number of nodes that can be handled an rcu_node tree
3755 * with the given number of levels. Setting rcu_capacity[0] makes
3756 * some of the arithmetic easier.
3757 */
3758 rcu_capacity[0] = 1;
3759 rcu_capacity[1] = rcu_fanout_leaf;
3760 for (i = 2; i <= MAX_RCU_LVLS; i++)
3761 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3762
3763 /*
3764 * The boot-time rcu_fanout_leaf parameter is only permitted
3765 * to increase the leaf-level fanout, not decrease it. Of course,
3766 * the leaf-level fanout cannot exceed the number of bits in
3767 * the rcu_node masks. Finally, the tree must be able to accommodate
3768 * the configured number of CPUs. Complain and fall back to the
3769 * compile-time values if these limits are exceeded.
3770 */
3771 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3772 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3773 n > rcu_capacity[MAX_RCU_LVLS]) {
3774 WARN_ON(1);
3775 return;
3776 }
3777
3778 /* Calculate the number of rcu_nodes at each level of the tree. */
3779 for (i = 1; i <= MAX_RCU_LVLS; i++)
3780 if (n <= rcu_capacity[i]) {
3781 for (j = 0; j <= i; j++)
3782 num_rcu_lvl[j] =
3783 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3784 rcu_num_lvls = i;
3785 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3786 num_rcu_lvl[j] = 0;
3787 break;
3788 }
3789
3790 /* Calculate the total number of rcu_node structures. */
3791 rcu_num_nodes = 0;
3792 for (i = 0; i <= MAX_RCU_LVLS; i++)
3793 rcu_num_nodes += num_rcu_lvl[i];
3794 rcu_num_nodes -= n;
3795}
3796
9f680ab4 3797void __init rcu_init(void)
64db4cff 3798{
017c4261 3799 int cpu;
9f680ab4 3800
f41d911f 3801 rcu_bootup_announce();
f885b7f2 3802 rcu_init_geometry();
394f99a9 3803 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3804 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3805 __rcu_init_preempt();
b5b39360 3806 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3807
3808 /*
3809 * We don't need protection against CPU-hotplug here because
3810 * this is called early in boot, before either interrupts
3811 * or the scheduler are operational.
3812 */
3813 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3814 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3815 for_each_online_cpu(cpu)
3816 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
aa23c6fb
PK
3817
3818 rcu_early_boot_tests();
64db4cff
PM
3819}
3820
4102adab 3821#include "tree_plugin.h"
This page took 0.643853 seconds and 5 git commands to generate.