tty: serial: 8250_core: remove UART_IER_RDI in serial8250_stop_rx()
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba
MG
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
abaa93d9 36#include "../locking/rtmutex_common.h"
5b61b0ba
MG
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
3fbfbf7a
PM
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 45static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
26845c28
PM
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary. If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
efc151c3 57 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 60 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
61 CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 64 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 67 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
68#endif
69#ifdef CONFIG_PROVE_RCU
efc151c3 70 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 73 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 74#endif
81a294c4 75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
efc151c3 76 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
a858af28
PM
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 79 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
80#endif
81#if NUM_RCU_LVL_4 != 0
efc151c3 82 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 83#endif
f885b7f2 84 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 85 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 86 if (nr_cpu_ids != NR_CPUS)
efc151c3 87 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
3fbfbf7a 88#ifdef CONFIG_RCU_NOCB_CPU
911af505
PM
89#ifndef CONFIG_RCU_NOCB_CPU_NONE
90 if (!have_rcu_nocb_mask) {
615ee544 91 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
911af505
PM
92 have_rcu_nocb_mask = true;
93 }
94#ifdef CONFIG_RCU_NOCB_CPU_ZERO
9a5739d7 95 pr_info("\tOffload RCU callbacks from CPU 0\n");
911af505
PM
96 cpumask_set_cpu(0, rcu_nocb_mask);
97#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
98#ifdef CONFIG_RCU_NOCB_CPU_ALL
9a5739d7 99 pr_info("\tOffload RCU callbacks from all CPUs\n");
5d5a0800 100 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
911af505
PM
101#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
102#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
3fbfbf7a 103 if (have_rcu_nocb_mask) {
5d5a0800
KT
104 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
105 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
106 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
107 rcu_nocb_mask);
108 }
3fbfbf7a 109 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
9a5739d7 110 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
3fbfbf7a 111 if (rcu_nocb_poll)
9a5739d7 112 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
3fbfbf7a
PM
113 }
114#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
26845c28
PM
115}
116
f41d911f
PM
117#ifdef CONFIG_TREE_PREEMPT_RCU
118
a41bfeb2 119RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 120static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 121
d9a3da06
PM
122static int rcu_preempted_readers_exp(struct rcu_node *rnp);
123
f41d911f
PM
124/*
125 * Tell them what RCU they are running.
126 */
0e0fc1c2 127static void __init rcu_bootup_announce(void)
f41d911f 128{
efc151c3 129 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 130 rcu_bootup_announce_oddness();
f41d911f
PM
131}
132
133/*
134 * Return the number of RCU-preempt batches processed thus far
135 * for debug and statistics.
136 */
137long rcu_batches_completed_preempt(void)
138{
139 return rcu_preempt_state.completed;
140}
141EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
142
143/*
144 * Return the number of RCU batches processed thus far for debug & stats.
145 */
146long rcu_batches_completed(void)
147{
148 return rcu_batches_completed_preempt();
149}
150EXPORT_SYMBOL_GPL(rcu_batches_completed);
151
152/*
6cc68793 153 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
154 * that this just means that the task currently running on the CPU is
155 * not in a quiescent state. There might be any number of tasks blocked
156 * while in an RCU read-side critical section.
25502a6c
PM
157 *
158 * Unlike the other rcu_*_qs() functions, callers to this function
159 * must disable irqs in order to protect the assignment to
160 * ->rcu_read_unlock_special.
f41d911f 161 */
c3422bea 162static void rcu_preempt_qs(int cpu)
f41d911f
PM
163{
164 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 165
e4cc1f22 166 if (rdp->passed_quiesce == 0)
f7f7bac9 167 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 168 rdp->passed_quiesce = 1;
25502a6c 169 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
170}
171
172/*
c3422bea
PM
173 * We have entered the scheduler, and the current task might soon be
174 * context-switched away from. If this task is in an RCU read-side
175 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
176 * record that fact, so we enqueue the task on the blkd_tasks list.
177 * The task will dequeue itself when it exits the outermost enclosing
178 * RCU read-side critical section. Therefore, the current grace period
179 * cannot be permitted to complete until the blkd_tasks list entries
180 * predating the current grace period drain, in other words, until
181 * rnp->gp_tasks becomes NULL.
c3422bea
PM
182 *
183 * Caller must disable preemption.
f41d911f 184 */
cba6d0d6 185static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
186{
187 struct task_struct *t = current;
c3422bea 188 unsigned long flags;
f41d911f
PM
189 struct rcu_data *rdp;
190 struct rcu_node *rnp;
191
10f39bb1 192 if (t->rcu_read_lock_nesting > 0 &&
f41d911f
PM
193 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
194
195 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 196 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 197 rnp = rdp->mynode;
1304afb2 198 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 199 smp_mb__after_unlock_lock();
f41d911f 200 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 201 t->rcu_blocked_node = rnp;
f41d911f
PM
202
203 /*
204 * If this CPU has already checked in, then this task
205 * will hold up the next grace period rather than the
206 * current grace period. Queue the task accordingly.
207 * If the task is queued for the current grace period
208 * (i.e., this CPU has not yet passed through a quiescent
209 * state for the current grace period), then as long
210 * as that task remains queued, the current grace period
12f5f524
PM
211 * cannot end. Note that there is some uncertainty as
212 * to exactly when the current grace period started.
213 * We take a conservative approach, which can result
214 * in unnecessarily waiting on tasks that started very
215 * slightly after the current grace period began. C'est
216 * la vie!!!
b0e165c0
PM
217 *
218 * But first, note that the current CPU must still be
219 * on line!
f41d911f 220 */
b0e165c0 221 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 222 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
223 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
224 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
225 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
226#ifdef CONFIG_RCU_BOOST
227 if (rnp->boost_tasks != NULL)
228 rnp->boost_tasks = rnp->gp_tasks;
229#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
230 } else {
231 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
232 if (rnp->qsmask & rdp->grpmask)
233 rnp->gp_tasks = &t->rcu_node_entry;
234 }
d4c08f2a
PM
235 trace_rcu_preempt_task(rdp->rsp->name,
236 t->pid,
237 (rnp->qsmask & rdp->grpmask)
238 ? rnp->gpnum
239 : rnp->gpnum + 1);
1304afb2 240 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1
PM
241 } else if (t->rcu_read_lock_nesting < 0 &&
242 t->rcu_read_unlock_special) {
243
244 /*
245 * Complete exit from RCU read-side critical section on
246 * behalf of preempted instance of __rcu_read_unlock().
247 */
248 rcu_read_unlock_special(t);
f41d911f
PM
249 }
250
251 /*
252 * Either we were not in an RCU read-side critical section to
253 * begin with, or we have now recorded that critical section
254 * globally. Either way, we can now note a quiescent state
255 * for this CPU. Again, if we were in an RCU read-side critical
256 * section, and if that critical section was blocking the current
257 * grace period, then the fact that the task has been enqueued
258 * means that we continue to block the current grace period.
259 */
e7d8842e 260 local_irq_save(flags);
cba6d0d6 261 rcu_preempt_qs(cpu);
e7d8842e 262 local_irq_restore(flags);
f41d911f
PM
263}
264
fc2219d4
PM
265/*
266 * Check for preempted RCU readers blocking the current grace period
267 * for the specified rcu_node structure. If the caller needs a reliable
268 * answer, it must hold the rcu_node's ->lock.
269 */
27f4d280 270static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 271{
12f5f524 272 return rnp->gp_tasks != NULL;
fc2219d4
PM
273}
274
b668c9cf
PM
275/*
276 * Record a quiescent state for all tasks that were previously queued
277 * on the specified rcu_node structure and that were blocking the current
278 * RCU grace period. The caller must hold the specified rnp->lock with
279 * irqs disabled, and this lock is released upon return, but irqs remain
280 * disabled.
281 */
d3f6bad3 282static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
283 __releases(rnp->lock)
284{
285 unsigned long mask;
286 struct rcu_node *rnp_p;
287
27f4d280 288 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 289 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
290 return; /* Still need more quiescent states! */
291 }
292
293 rnp_p = rnp->parent;
294 if (rnp_p == NULL) {
295 /*
296 * Either there is only one rcu_node in the tree,
297 * or tasks were kicked up to root rcu_node due to
298 * CPUs going offline.
299 */
d3f6bad3 300 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
301 return;
302 }
303
304 /* Report up the rest of the hierarchy. */
305 mask = rnp->grpmask;
1304afb2
PM
306 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
307 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 308 smp_mb__after_unlock_lock();
d3f6bad3 309 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
310}
311
12f5f524
PM
312/*
313 * Advance a ->blkd_tasks-list pointer to the next entry, instead
314 * returning NULL if at the end of the list.
315 */
316static struct list_head *rcu_next_node_entry(struct task_struct *t,
317 struct rcu_node *rnp)
318{
319 struct list_head *np;
320
321 np = t->rcu_node_entry.next;
322 if (np == &rnp->blkd_tasks)
323 np = NULL;
324 return np;
325}
326
b668c9cf
PM
327/*
328 * Handle special cases during rcu_read_unlock(), such as needing to
329 * notify RCU core processing or task having blocked during the RCU
330 * read-side critical section.
331 */
2a3fa843 332void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
333{
334 int empty;
d9a3da06 335 int empty_exp;
389abd48 336 int empty_exp_now;
f41d911f 337 unsigned long flags;
12f5f524 338 struct list_head *np;
82e78d80 339#ifdef CONFIG_RCU_BOOST
abaa93d9 340 bool drop_boost_mutex = false;
82e78d80 341#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
342 struct rcu_node *rnp;
343 int special;
344
345 /* NMI handlers cannot block and cannot safely manipulate state. */
346 if (in_nmi())
347 return;
348
349 local_irq_save(flags);
350
351 /*
352 * If RCU core is waiting for this CPU to exit critical section,
353 * let it know that we have done so.
354 */
355 special = t->rcu_read_unlock_special;
356 if (special & RCU_READ_UNLOCK_NEED_QS) {
c3422bea 357 rcu_preempt_qs(smp_processor_id());
79a62f95
LJ
358 if (!t->rcu_read_unlock_special) {
359 local_irq_restore(flags);
360 return;
361 }
f41d911f
PM
362 }
363
79a62f95
LJ
364 /* Hardware IRQ handlers cannot block, complain if they get here. */
365 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
f41d911f
PM
366 local_irq_restore(flags);
367 return;
368 }
369
370 /* Clean up if blocked during RCU read-side critical section. */
371 if (special & RCU_READ_UNLOCK_BLOCKED) {
372 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
373
dd5d19ba
PM
374 /*
375 * Remove this task from the list it blocked on. The
376 * task can migrate while we acquire the lock, but at
377 * most one time. So at most two passes through loop.
378 */
379 for (;;) {
86848966 380 rnp = t->rcu_blocked_node;
1304afb2 381 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 382 smp_mb__after_unlock_lock();
86848966 383 if (rnp == t->rcu_blocked_node)
dd5d19ba 384 break;
1304afb2 385 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 386 }
27f4d280 387 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
388 empty_exp = !rcu_preempted_readers_exp(rnp);
389 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 390 np = rcu_next_node_entry(t, rnp);
f41d911f 391 list_del_init(&t->rcu_node_entry);
82e78d80 392 t->rcu_blocked_node = NULL;
f7f7bac9 393 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 394 rnp->gpnum, t->pid);
12f5f524
PM
395 if (&t->rcu_node_entry == rnp->gp_tasks)
396 rnp->gp_tasks = np;
397 if (&t->rcu_node_entry == rnp->exp_tasks)
398 rnp->exp_tasks = np;
27f4d280
PM
399#ifdef CONFIG_RCU_BOOST
400 if (&t->rcu_node_entry == rnp->boost_tasks)
401 rnp->boost_tasks = np;
abaa93d9
PM
402 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
403 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
27f4d280 404#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
405
406 /*
407 * If this was the last task on the current list, and if
408 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
409 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
410 * so we must take a snapshot of the expedited state.
f41d911f 411 */
389abd48 412 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a 413 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 414 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
415 rnp->gpnum,
416 0, rnp->qsmask,
417 rnp->level,
418 rnp->grplo,
419 rnp->grphi,
420 !!rnp->gp_tasks);
d3f6bad3 421 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 422 } else {
d4c08f2a 423 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 424 }
d9a3da06 425
27f4d280
PM
426#ifdef CONFIG_RCU_BOOST
427 /* Unboost if we were boosted. */
abaa93d9
PM
428 if (drop_boost_mutex) {
429 rt_mutex_unlock(&rnp->boost_mtx);
dfeb9765
PM
430 complete(&rnp->boost_completion);
431 }
27f4d280
PM
432#endif /* #ifdef CONFIG_RCU_BOOST */
433
d9a3da06
PM
434 /*
435 * If this was the last task on the expedited lists,
436 * then we need to report up the rcu_node hierarchy.
437 */
389abd48 438 if (!empty_exp && empty_exp_now)
b40d293e 439 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
440 } else {
441 local_irq_restore(flags);
f41d911f 442 }
f41d911f
PM
443}
444
1ed509a2
PM
445#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446
447/*
448 * Dump detailed information for all tasks blocking the current RCU
449 * grace period on the specified rcu_node structure.
450 */
451static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452{
453 unsigned long flags;
1ed509a2
PM
454 struct task_struct *t;
455
12f5f524 456 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
457 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458 raw_spin_unlock_irqrestore(&rnp->lock, flags);
459 return;
460 }
12f5f524
PM
461 t = list_entry(rnp->gp_tasks,
462 struct task_struct, rcu_node_entry);
463 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464 sched_show_task(t);
465 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
466}
467
468/*
469 * Dump detailed information for all tasks blocking the current RCU
470 * grace period.
471 */
472static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473{
474 struct rcu_node *rnp = rcu_get_root(rsp);
475
476 rcu_print_detail_task_stall_rnp(rnp);
477 rcu_for_each_leaf_node(rsp, rnp)
478 rcu_print_detail_task_stall_rnp(rnp);
479}
480
481#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482
483static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484{
485}
486
487#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
a858af28
PM
489#ifdef CONFIG_RCU_CPU_STALL_INFO
490
491static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492{
efc151c3 493 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
494 rnp->level, rnp->grplo, rnp->grphi);
495}
496
497static void rcu_print_task_stall_end(void)
498{
efc151c3 499 pr_cont("\n");
a858af28
PM
500}
501
502#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503
504static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505{
506}
507
508static void rcu_print_task_stall_end(void)
509{
510}
511
512#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513
f41d911f
PM
514/*
515 * Scan the current list of tasks blocked within RCU read-side critical
516 * sections, printing out the tid of each.
517 */
9bc8b558 518static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 519{
f41d911f 520 struct task_struct *t;
9bc8b558 521 int ndetected = 0;
f41d911f 522
27f4d280 523 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 524 return 0;
a858af28 525 rcu_print_task_stall_begin(rnp);
12f5f524
PM
526 t = list_entry(rnp->gp_tasks,
527 struct task_struct, rcu_node_entry);
9bc8b558 528 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 529 pr_cont(" P%d", t->pid);
9bc8b558
PM
530 ndetected++;
531 }
a858af28 532 rcu_print_task_stall_end();
9bc8b558 533 return ndetected;
f41d911f
PM
534}
535
b0e165c0
PM
536/*
537 * Check that the list of blocked tasks for the newly completed grace
538 * period is in fact empty. It is a serious bug to complete a grace
539 * period that still has RCU readers blocked! This function must be
540 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541 * must be held by the caller.
12f5f524
PM
542 *
543 * Also, if there are blocked tasks on the list, they automatically
544 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
545 */
546static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547{
27f4d280 548 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
549 if (!list_empty(&rnp->blkd_tasks))
550 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 551 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
552}
553
33f76148
PM
554#ifdef CONFIG_HOTPLUG_CPU
555
dd5d19ba
PM
556/*
557 * Handle tasklist migration for case in which all CPUs covered by the
558 * specified rcu_node have gone offline. Move them up to the root
559 * rcu_node. The reason for not just moving them to the immediate
560 * parent is to remove the need for rcu_read_unlock_special() to
561 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
562 * Returns true if there were tasks blocking the current RCU grace
563 * period.
dd5d19ba 564 *
237c80c5
PM
565 * Returns 1 if there was previously a task blocking the current grace
566 * period on the specified rcu_node structure.
567 *
dd5d19ba
PM
568 * The caller must hold rnp->lock with irqs disabled.
569 */
237c80c5
PM
570static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571 struct rcu_node *rnp,
572 struct rcu_data *rdp)
dd5d19ba 573{
dd5d19ba
PM
574 struct list_head *lp;
575 struct list_head *lp_root;
d9a3da06 576 int retval = 0;
dd5d19ba 577 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 578 struct task_struct *t;
dd5d19ba 579
86848966
PM
580 if (rnp == rnp_root) {
581 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 582 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 583 }
12f5f524
PM
584
585 /* If we are on an internal node, complain bitterly. */
586 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
587
588 /*
12f5f524
PM
589 * Move tasks up to root rcu_node. Don't try to get fancy for
590 * this corner-case operation -- just put this node's tasks
591 * at the head of the root node's list, and update the root node's
592 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593 * if non-NULL. This might result in waiting for more tasks than
594 * absolutely necessary, but this is a good performance/complexity
595 * tradeoff.
dd5d19ba 596 */
2036d94a 597 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
598 retval |= RCU_OFL_TASKS_NORM_GP;
599 if (rcu_preempted_readers_exp(rnp))
600 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
601 lp = &rnp->blkd_tasks;
602 lp_root = &rnp_root->blkd_tasks;
603 while (!list_empty(lp)) {
604 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 606 smp_mb__after_unlock_lock();
12f5f524
PM
607 list_del(&t->rcu_node_entry);
608 t->rcu_blocked_node = rnp_root;
609 list_add(&t->rcu_node_entry, lp_root);
610 if (&t->rcu_node_entry == rnp->gp_tasks)
611 rnp_root->gp_tasks = rnp->gp_tasks;
612 if (&t->rcu_node_entry == rnp->exp_tasks)
613 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
614#ifdef CONFIG_RCU_BOOST
615 if (&t->rcu_node_entry == rnp->boost_tasks)
616 rnp_root->boost_tasks = rnp->boost_tasks;
617#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 618 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 619 }
27f4d280 620
1e3fd2b3
PM
621 rnp->gp_tasks = NULL;
622 rnp->exp_tasks = NULL;
27f4d280 623#ifdef CONFIG_RCU_BOOST
1e3fd2b3 624 rnp->boost_tasks = NULL;
5cc900cf
PM
625 /*
626 * In case root is being boosted and leaf was not. Make sure
627 * that we boost the tasks blocking the current grace period
628 * in this case.
629 */
27f4d280 630 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 631 smp_mb__after_unlock_lock();
27f4d280 632 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
633 rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
635 rnp_root->boost_tasks = rnp_root->gp_tasks;
636 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637#endif /* #ifdef CONFIG_RCU_BOOST */
638
237c80c5 639 return retval;
dd5d19ba
PM
640}
641
e5601400
PM
642#endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
f41d911f
PM
644/*
645 * Check for a quiescent state from the current CPU. When a task blocks,
646 * the task is recorded in the corresponding CPU's rcu_node structure,
647 * which is checked elsewhere.
648 *
649 * Caller must disable hard irqs.
650 */
651static void rcu_preempt_check_callbacks(int cpu)
652{
653 struct task_struct *t = current;
654
655 if (t->rcu_read_lock_nesting == 0) {
c3422bea 656 rcu_preempt_qs(cpu);
f41d911f
PM
657 return;
658 }
10f39bb1
PM
659 if (t->rcu_read_lock_nesting > 0 &&
660 per_cpu(rcu_preempt_data, cpu).qs_pending)
c3422bea 661 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
662}
663
a46e0899
PM
664#ifdef CONFIG_RCU_BOOST
665
09223371
SL
666static void rcu_preempt_do_callbacks(void)
667{
c9d4b0af 668 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
669}
670
a46e0899
PM
671#endif /* #ifdef CONFIG_RCU_BOOST */
672
f41d911f 673/*
6cc68793 674 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
675 */
676void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677{
3fbfbf7a 678 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
679}
680EXPORT_SYMBOL_GPL(call_rcu);
681
6ebb237b
PM
682/**
683 * synchronize_rcu - wait until a grace period has elapsed.
684 *
685 * Control will return to the caller some time after a full grace
686 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
687 * read-side critical sections have completed. Note, however, that
688 * upon return from synchronize_rcu(), the caller might well be executing
689 * concurrently with new RCU read-side critical sections that began while
690 * synchronize_rcu() was waiting. RCU read-side critical sections are
691 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
692 *
693 * See the description of synchronize_sched() for more detailed information
694 * on memory ordering guarantees.
6ebb237b
PM
695 */
696void synchronize_rcu(void)
697{
fe15d706
PM
698 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
699 !lock_is_held(&rcu_lock_map) &&
700 !lock_is_held(&rcu_sched_lock_map),
701 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
702 if (!rcu_scheduler_active)
703 return;
3705b88d
AM
704 if (rcu_expedited)
705 synchronize_rcu_expedited();
706 else
707 wait_rcu_gp(call_rcu);
6ebb237b
PM
708}
709EXPORT_SYMBOL_GPL(synchronize_rcu);
710
d9a3da06 711static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 712static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
713static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
714
715/*
716 * Return non-zero if there are any tasks in RCU read-side critical
717 * sections blocking the current preemptible-RCU expedited grace period.
718 * If there is no preemptible-RCU expedited grace period currently in
719 * progress, returns zero unconditionally.
720 */
721static int rcu_preempted_readers_exp(struct rcu_node *rnp)
722{
12f5f524 723 return rnp->exp_tasks != NULL;
d9a3da06
PM
724}
725
726/*
727 * return non-zero if there is no RCU expedited grace period in progress
728 * for the specified rcu_node structure, in other words, if all CPUs and
729 * tasks covered by the specified rcu_node structure have done their bit
730 * for the current expedited grace period. Works only for preemptible
731 * RCU -- other RCU implementation use other means.
732 *
733 * Caller must hold sync_rcu_preempt_exp_mutex.
734 */
735static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
736{
737 return !rcu_preempted_readers_exp(rnp) &&
738 ACCESS_ONCE(rnp->expmask) == 0;
739}
740
741/*
742 * Report the exit from RCU read-side critical section for the last task
743 * that queued itself during or before the current expedited preemptible-RCU
744 * grace period. This event is reported either to the rcu_node structure on
745 * which the task was queued or to one of that rcu_node structure's ancestors,
746 * recursively up the tree. (Calm down, calm down, we do the recursion
747 * iteratively!)
748 *
b40d293e
TG
749 * Most callers will set the "wake" flag, but the task initiating the
750 * expedited grace period need not wake itself.
751 *
d9a3da06
PM
752 * Caller must hold sync_rcu_preempt_exp_mutex.
753 */
b40d293e
TG
754static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
755 bool wake)
d9a3da06
PM
756{
757 unsigned long flags;
758 unsigned long mask;
759
1304afb2 760 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 761 smp_mb__after_unlock_lock();
d9a3da06 762 for (;;) {
131906b0
PM
763 if (!sync_rcu_preempt_exp_done(rnp)) {
764 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 765 break;
131906b0 766 }
d9a3da06 767 if (rnp->parent == NULL) {
131906b0 768 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
769 if (wake) {
770 smp_mb(); /* EGP done before wake_up(). */
b40d293e 771 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 772 }
d9a3da06
PM
773 break;
774 }
775 mask = rnp->grpmask;
1304afb2 776 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 777 rnp = rnp->parent;
1304afb2 778 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 779 smp_mb__after_unlock_lock();
d9a3da06
PM
780 rnp->expmask &= ~mask;
781 }
d9a3da06
PM
782}
783
784/*
785 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786 * grace period for the specified rcu_node structure. If there are no such
787 * tasks, report it up the rcu_node hierarchy.
788 *
7b2e6011
PM
789 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
790 * CPU hotplug operations.
d9a3da06
PM
791 */
792static void
793sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
794{
1217ed1b 795 unsigned long flags;
12f5f524 796 int must_wait = 0;
d9a3da06 797
1217ed1b 798 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 799 smp_mb__after_unlock_lock();
c701d5d9 800 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 801 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 802 } else {
12f5f524 803 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 804 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
805 must_wait = 1;
806 }
d9a3da06 807 if (!must_wait)
b40d293e 808 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
809}
810
236fefaf
PM
811/**
812 * synchronize_rcu_expedited - Brute-force RCU grace period
813 *
814 * Wait for an RCU-preempt grace period, but expedite it. The basic
815 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
816 * the ->blkd_tasks lists and wait for this list to drain. This consumes
817 * significant time on all CPUs and is unfriendly to real-time workloads,
818 * so is thus not recommended for any sort of common-case code.
819 * In fact, if you are using synchronize_rcu_expedited() in a loop,
820 * please restructure your code to batch your updates, and then Use a
821 * single synchronize_rcu() instead.
822 *
823 * Note that it is illegal to call this function while holding any lock
824 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
825 * to call this function from a CPU-hotplug notifier. Failing to observe
826 * these restriction will result in deadlock.
019129d5
PM
827 */
828void synchronize_rcu_expedited(void)
829{
d9a3da06
PM
830 unsigned long flags;
831 struct rcu_node *rnp;
832 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 833 unsigned long snap;
d9a3da06
PM
834 int trycount = 0;
835
836 smp_mb(); /* Caller's modifications seen first by other CPUs. */
837 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
838 smp_mb(); /* Above access cannot bleed into critical section. */
839
1943c89d
PM
840 /*
841 * Block CPU-hotplug operations. This means that any CPU-hotplug
842 * operation that finds an rcu_node structure with tasks in the
843 * process of being boosted will know that all tasks blocking
844 * this expedited grace period will already be in the process of
845 * being boosted. This simplifies the process of moving tasks
846 * from leaf to root rcu_node structures.
847 */
848 get_online_cpus();
849
d9a3da06
PM
850 /*
851 * Acquire lock, falling back to synchronize_rcu() if too many
852 * lock-acquisition failures. Of course, if someone does the
853 * expedited grace period for us, just leave.
854 */
855 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
856 if (ULONG_CMP_LT(snap,
857 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
858 put_online_cpus();
859 goto mb_ret; /* Others did our work for us. */
860 }
c701d5d9 861 if (trycount++ < 10) {
d9a3da06 862 udelay(trycount * num_online_cpus());
c701d5d9 863 } else {
1943c89d 864 put_online_cpus();
3705b88d 865 wait_rcu_gp(call_rcu);
d9a3da06
PM
866 return;
867 }
d9a3da06 868 }
1943c89d
PM
869 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
870 put_online_cpus();
d9a3da06 871 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 872 }
d9a3da06 873
12f5f524 874 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
875 synchronize_sched_expedited();
876
d9a3da06
PM
877 /* Initialize ->expmask for all non-leaf rcu_node structures. */
878 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 879 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 880 smp_mb__after_unlock_lock();
d9a3da06 881 rnp->expmask = rnp->qsmaskinit;
1943c89d 882 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
883 }
884
12f5f524 885 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
886 rcu_for_each_leaf_node(rsp, rnp)
887 sync_rcu_preempt_exp_init(rsp, rnp);
888 if (NUM_RCU_NODES > 1)
889 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
890
1943c89d 891 put_online_cpus();
d9a3da06 892
12f5f524 893 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
894 rnp = rcu_get_root(rsp);
895 wait_event(sync_rcu_preempt_exp_wq,
896 sync_rcu_preempt_exp_done(rnp));
897
898 /* Clean up and exit. */
899 smp_mb(); /* ensure expedited GP seen before counter increment. */
900 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
901unlock_mb_ret:
902 mutex_unlock(&sync_rcu_preempt_exp_mutex);
903mb_ret:
904 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
905}
906EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
907
e74f4c45
PM
908/**
909 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
910 *
911 * Note that this primitive does not necessarily wait for an RCU grace period
912 * to complete. For example, if there are no RCU callbacks queued anywhere
913 * in the system, then rcu_barrier() is within its rights to return
914 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
915 */
916void rcu_barrier(void)
917{
037b64ed 918 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
919}
920EXPORT_SYMBOL_GPL(rcu_barrier);
921
1eba8f84 922/*
6cc68793 923 * Initialize preemptible RCU's state structures.
1eba8f84
PM
924 */
925static void __init __rcu_init_preempt(void)
926{
394f99a9 927 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
928}
929
2439b696
PM
930/*
931 * Check for a task exiting while in a preemptible-RCU read-side
932 * critical section, clean up if so. No need to issue warnings,
933 * as debug_check_no_locks_held() already does this if lockdep
934 * is enabled.
935 */
936void exit_rcu(void)
937{
938 struct task_struct *t = current;
939
940 if (likely(list_empty(&current->rcu_node_entry)))
941 return;
942 t->rcu_read_lock_nesting = 1;
943 barrier();
944 t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
945 __rcu_read_unlock();
946}
947
f41d911f
PM
948#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
949
e534165b 950static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 951
f41d911f
PM
952/*
953 * Tell them what RCU they are running.
954 */
0e0fc1c2 955static void __init rcu_bootup_announce(void)
f41d911f 956{
efc151c3 957 pr_info("Hierarchical RCU implementation.\n");
26845c28 958 rcu_bootup_announce_oddness();
f41d911f
PM
959}
960
961/*
962 * Return the number of RCU batches processed thus far for debug & stats.
963 */
964long rcu_batches_completed(void)
965{
966 return rcu_batches_completed_sched();
967}
968EXPORT_SYMBOL_GPL(rcu_batches_completed);
969
cba6d0d6
PM
970/*
971 * Because preemptible RCU does not exist, we never have to check for
972 * CPUs being in quiescent states.
973 */
974static void rcu_preempt_note_context_switch(int cpu)
975{
976}
977
fc2219d4 978/*
6cc68793 979 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
980 * RCU readers.
981 */
27f4d280 982static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
983{
984 return 0;
985}
986
b668c9cf
PM
987#ifdef CONFIG_HOTPLUG_CPU
988
989/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 990static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b41d1b92 991 __releases(rnp->lock)
b668c9cf 992{
1304afb2 993 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
994}
995
996#endif /* #ifdef CONFIG_HOTPLUG_CPU */
997
1ed509a2 998/*
6cc68793 999 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
1000 * tasks blocked within RCU read-side critical sections.
1001 */
1002static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1003{
1004}
1005
f41d911f 1006/*
6cc68793 1007 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1008 * tasks blocked within RCU read-side critical sections.
1009 */
9bc8b558 1010static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1011{
9bc8b558 1012 return 0;
f41d911f
PM
1013}
1014
b0e165c0 1015/*
6cc68793 1016 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1017 * so there is no need to check for blocked tasks. So check only for
1018 * bogus qsmask values.
b0e165c0
PM
1019 */
1020static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1021{
49e29126 1022 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1023}
1024
33f76148
PM
1025#ifdef CONFIG_HOTPLUG_CPU
1026
dd5d19ba 1027/*
6cc68793 1028 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1029 * tasks that were blocked within RCU read-side critical sections, and
1030 * such non-existent tasks cannot possibly have been blocking the current
1031 * grace period.
dd5d19ba 1032 */
237c80c5
PM
1033static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1034 struct rcu_node *rnp,
1035 struct rcu_data *rdp)
dd5d19ba 1036{
237c80c5 1037 return 0;
dd5d19ba
PM
1038}
1039
e5601400
PM
1040#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1041
f41d911f 1042/*
6cc68793 1043 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1044 * to check.
1045 */
1eba8f84 1046static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1047{
1048}
1049
019129d5
PM
1050/*
1051 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1052 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1053 */
1054void synchronize_rcu_expedited(void)
1055{
1056 synchronize_sched_expedited();
1057}
1058EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1059
d9a3da06
PM
1060#ifdef CONFIG_HOTPLUG_CPU
1061
1062/*
6cc68793 1063 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1064 * report on tasks preempted in RCU read-side critical sections during
1065 * expedited RCU grace periods.
1066 */
b40d293e
TG
1067static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1068 bool wake)
d9a3da06 1069{
d9a3da06
PM
1070}
1071
1072#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1073
e74f4c45 1074/*
6cc68793 1075 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1076 * another name for rcu_barrier_sched().
1077 */
1078void rcu_barrier(void)
1079{
1080 rcu_barrier_sched();
1081}
1082EXPORT_SYMBOL_GPL(rcu_barrier);
1083
1eba8f84 1084/*
6cc68793 1085 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1086 */
1087static void __init __rcu_init_preempt(void)
1088{
1089}
1090
2439b696
PM
1091/*
1092 * Because preemptible RCU does not exist, tasks cannot possibly exit
1093 * while in preemptible RCU read-side critical sections.
1094 */
1095void exit_rcu(void)
1096{
1097}
1098
f41d911f 1099#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1100
27f4d280
PM
1101#ifdef CONFIG_RCU_BOOST
1102
1696a8be 1103#include "../locking/rtmutex_common.h"
27f4d280 1104
0ea1f2eb
PM
1105#ifdef CONFIG_RCU_TRACE
1106
1107static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1108{
1109 if (list_empty(&rnp->blkd_tasks))
1110 rnp->n_balk_blkd_tasks++;
1111 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1112 rnp->n_balk_exp_gp_tasks++;
1113 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1114 rnp->n_balk_boost_tasks++;
1115 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1116 rnp->n_balk_notblocked++;
1117 else if (rnp->gp_tasks != NULL &&
a9f4793d 1118 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1119 rnp->n_balk_notyet++;
1120 else
1121 rnp->n_balk_nos++;
1122}
1123
1124#else /* #ifdef CONFIG_RCU_TRACE */
1125
1126static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1127{
1128}
1129
1130#endif /* #else #ifdef CONFIG_RCU_TRACE */
1131
5d01bbd1
TG
1132static void rcu_wake_cond(struct task_struct *t, int status)
1133{
1134 /*
1135 * If the thread is yielding, only wake it when this
1136 * is invoked from idle
1137 */
1138 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1139 wake_up_process(t);
1140}
1141
27f4d280
PM
1142/*
1143 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1144 * or ->boost_tasks, advancing the pointer to the next task in the
1145 * ->blkd_tasks list.
1146 *
1147 * Note that irqs must be enabled: boosting the task can block.
1148 * Returns 1 if there are more tasks needing to be boosted.
1149 */
1150static int rcu_boost(struct rcu_node *rnp)
1151{
1152 unsigned long flags;
27f4d280
PM
1153 struct task_struct *t;
1154 struct list_head *tb;
1155
1156 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1157 return 0; /* Nothing left to boost. */
1158
1159 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1160 smp_mb__after_unlock_lock();
27f4d280
PM
1161
1162 /*
1163 * Recheck under the lock: all tasks in need of boosting
1164 * might exit their RCU read-side critical sections on their own.
1165 */
1166 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1167 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1168 return 0;
1169 }
1170
1171 /*
1172 * Preferentially boost tasks blocking expedited grace periods.
1173 * This cannot starve the normal grace periods because a second
1174 * expedited grace period must boost all blocked tasks, including
1175 * those blocking the pre-existing normal grace period.
1176 */
0ea1f2eb 1177 if (rnp->exp_tasks != NULL) {
27f4d280 1178 tb = rnp->exp_tasks;
0ea1f2eb
PM
1179 rnp->n_exp_boosts++;
1180 } else {
27f4d280 1181 tb = rnp->boost_tasks;
0ea1f2eb
PM
1182 rnp->n_normal_boosts++;
1183 }
1184 rnp->n_tasks_boosted++;
27f4d280
PM
1185
1186 /*
1187 * We boost task t by manufacturing an rt_mutex that appears to
1188 * be held by task t. We leave a pointer to that rt_mutex where
1189 * task t can find it, and task t will release the mutex when it
1190 * exits its outermost RCU read-side critical section. Then
1191 * simply acquiring this artificial rt_mutex will boost task
1192 * t's priority. (Thanks to tglx for suggesting this approach!)
1193 *
1194 * Note that task t must acquire rnp->lock to remove itself from
1195 * the ->blkd_tasks list, which it will do from exit() if from
1196 * nowhere else. We therefore are guaranteed that task t will
1197 * stay around at least until we drop rnp->lock. Note that
1198 * rnp->lock also resolves races between our priority boosting
1199 * and task t's exiting its outermost RCU read-side critical
1200 * section.
1201 */
1202 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1203 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
dfeb9765 1204 init_completion(&rnp->boost_completion);
27f4d280 1205 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1206 /* Lock only for side effect: boosts task t's priority. */
1207 rt_mutex_lock(&rnp->boost_mtx);
1208 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1209
abaa93d9 1210 /* Wait for boostee to be done w/boost_mtx before reinitializing. */
dfeb9765 1211 wait_for_completion(&rnp->boost_completion);
27f4d280 1212
4f89b336
PM
1213 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1214 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1215}
1216
27f4d280
PM
1217/*
1218 * Priority-boosting kthread. One per leaf rcu_node and one for the
1219 * root rcu_node.
1220 */
1221static int rcu_boost_kthread(void *arg)
1222{
1223 struct rcu_node *rnp = (struct rcu_node *)arg;
1224 int spincnt = 0;
1225 int more2boost;
1226
f7f7bac9 1227 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1228 for (;;) {
d71df90e 1229 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1230 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1231 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1232 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1233 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1234 more2boost = rcu_boost(rnp);
1235 if (more2boost)
1236 spincnt++;
1237 else
1238 spincnt = 0;
1239 if (spincnt > 10) {
5d01bbd1 1240 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1241 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1242 schedule_timeout_interruptible(2);
f7f7bac9 1243 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1244 spincnt = 0;
1245 }
1246 }
1217ed1b 1247 /* NOTREACHED */
f7f7bac9 1248 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1249 return 0;
1250}
1251
1252/*
1253 * Check to see if it is time to start boosting RCU readers that are
1254 * blocking the current grace period, and, if so, tell the per-rcu_node
1255 * kthread to start boosting them. If there is an expedited grace
1256 * period in progress, it is always time to boost.
1257 *
b065a853
PM
1258 * The caller must hold rnp->lock, which this function releases.
1259 * The ->boost_kthread_task is immortal, so we don't need to worry
1260 * about it going away.
27f4d280 1261 */
1217ed1b 1262static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1263 __releases(rnp->lock)
27f4d280
PM
1264{
1265 struct task_struct *t;
1266
0ea1f2eb
PM
1267 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1268 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1270 return;
0ea1f2eb 1271 }
27f4d280
PM
1272 if (rnp->exp_tasks != NULL ||
1273 (rnp->gp_tasks != NULL &&
1274 rnp->boost_tasks == NULL &&
1275 rnp->qsmask == 0 &&
1276 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1277 if (rnp->exp_tasks == NULL)
1278 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1279 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1280 t = rnp->boost_kthread_task;
5d01bbd1
TG
1281 if (t)
1282 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1283 } else {
0ea1f2eb 1284 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1285 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1286 }
27f4d280
PM
1287}
1288
a46e0899
PM
1289/*
1290 * Wake up the per-CPU kthread to invoke RCU callbacks.
1291 */
1292static void invoke_rcu_callbacks_kthread(void)
1293{
1294 unsigned long flags;
1295
1296 local_irq_save(flags);
1297 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1298 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1299 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1300 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1301 __this_cpu_read(rcu_cpu_kthread_status));
1302 }
a46e0899
PM
1303 local_irq_restore(flags);
1304}
1305
dff1672d
PM
1306/*
1307 * Is the current CPU running the RCU-callbacks kthread?
1308 * Caller must have preemption disabled.
1309 */
1310static bool rcu_is_callbacks_kthread(void)
1311{
c9d4b0af 1312 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1313}
1314
27f4d280
PM
1315#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1316
1317/*
1318 * Do priority-boost accounting for the start of a new grace period.
1319 */
1320static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1321{
1322 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1323}
1324
27f4d280
PM
1325/*
1326 * Create an RCU-boost kthread for the specified node if one does not
1327 * already exist. We only create this kthread for preemptible RCU.
1328 * Returns zero if all is well, a negated errno otherwise.
1329 */
49fb4c62 1330static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1331 struct rcu_node *rnp)
27f4d280 1332{
5d01bbd1 1333 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1334 unsigned long flags;
1335 struct sched_param sp;
1336 struct task_struct *t;
1337
1338 if (&rcu_preempt_state != rsp)
1339 return 0;
5d01bbd1
TG
1340
1341 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1342 return 0;
1343
a46e0899 1344 rsp->boost = 1;
27f4d280
PM
1345 if (rnp->boost_kthread_task != NULL)
1346 return 0;
1347 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1348 "rcub/%d", rnp_index);
27f4d280
PM
1349 if (IS_ERR(t))
1350 return PTR_ERR(t);
1351 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1352 smp_mb__after_unlock_lock();
27f4d280
PM
1353 rnp->boost_kthread_task = t;
1354 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1355 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1356 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1357 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1358 return 0;
1359}
1360
f8b7fc6b
PM
1361static void rcu_kthread_do_work(void)
1362{
c9d4b0af
CL
1363 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1364 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1365 rcu_preempt_do_callbacks();
1366}
1367
62ab7072 1368static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1369{
f8b7fc6b 1370 struct sched_param sp;
f8b7fc6b 1371
62ab7072
PM
1372 sp.sched_priority = RCU_KTHREAD_PRIO;
1373 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1374}
1375
62ab7072 1376static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1377{
62ab7072 1378 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1379}
1380
62ab7072 1381static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1382{
c9d4b0af 1383 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1384}
1385
1386/*
1387 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1388 * RCU softirq used in flavors and configurations of RCU that do not
1389 * support RCU priority boosting.
f8b7fc6b 1390 */
62ab7072 1391static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1392{
c9d4b0af
CL
1393 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1394 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1395 int spincnt;
f8b7fc6b 1396
62ab7072 1397 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1398 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1399 local_bh_disable();
f8b7fc6b 1400 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1401 this_cpu_inc(rcu_cpu_kthread_loops);
1402 local_irq_disable();
f8b7fc6b
PM
1403 work = *workp;
1404 *workp = 0;
62ab7072 1405 local_irq_enable();
f8b7fc6b
PM
1406 if (work)
1407 rcu_kthread_do_work();
1408 local_bh_enable();
62ab7072 1409 if (*workp == 0) {
f7f7bac9 1410 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1411 *statusp = RCU_KTHREAD_WAITING;
1412 return;
f8b7fc6b
PM
1413 }
1414 }
62ab7072 1415 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1416 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1417 schedule_timeout_interruptible(2);
f7f7bac9 1418 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1419 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1420}
1421
1422/*
1423 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1424 * served by the rcu_node in question. The CPU hotplug lock is still
1425 * held, so the value of rnp->qsmaskinit will be stable.
1426 *
1427 * We don't include outgoingcpu in the affinity set, use -1 if there is
1428 * no outgoing CPU. If there are no CPUs left in the affinity set,
1429 * this function allows the kthread to execute on any CPU.
1430 */
5d01bbd1 1431static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1432{
5d01bbd1
TG
1433 struct task_struct *t = rnp->boost_kthread_task;
1434 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1435 cpumask_var_t cm;
1436 int cpu;
f8b7fc6b 1437
5d01bbd1 1438 if (!t)
f8b7fc6b 1439 return;
5d01bbd1 1440 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1441 return;
f8b7fc6b
PM
1442 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1443 if ((mask & 0x1) && cpu != outgoingcpu)
1444 cpumask_set_cpu(cpu, cm);
1445 if (cpumask_weight(cm) == 0) {
1446 cpumask_setall(cm);
1447 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1448 cpumask_clear_cpu(cpu, cm);
1449 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1450 }
5d01bbd1 1451 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1452 free_cpumask_var(cm);
1453}
1454
62ab7072
PM
1455static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1456 .store = &rcu_cpu_kthread_task,
1457 .thread_should_run = rcu_cpu_kthread_should_run,
1458 .thread_fn = rcu_cpu_kthread,
1459 .thread_comm = "rcuc/%u",
1460 .setup = rcu_cpu_kthread_setup,
1461 .park = rcu_cpu_kthread_park,
1462};
f8b7fc6b
PM
1463
1464/*
1465 * Spawn all kthreads -- called as soon as the scheduler is running.
1466 */
1467static int __init rcu_spawn_kthreads(void)
1468{
f8b7fc6b 1469 struct rcu_node *rnp;
5d01bbd1 1470 int cpu;
f8b7fc6b 1471
b0d30417 1472 rcu_scheduler_fully_active = 1;
62ab7072 1473 for_each_possible_cpu(cpu)
f8b7fc6b 1474 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1475 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
e534165b
US
1476 rnp = rcu_get_root(rcu_state_p);
1477 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1478 if (NUM_RCU_NODES > 1) {
e534165b
US
1479 rcu_for_each_leaf_node(rcu_state_p, rnp)
1480 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1481 }
1482 return 0;
1483}
1484early_initcall(rcu_spawn_kthreads);
1485
49fb4c62 1486static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1487{
e534165b 1488 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1489 struct rcu_node *rnp = rdp->mynode;
1490
1491 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1492 if (rcu_scheduler_fully_active)
e534165b 1493 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1494}
1495
27f4d280
PM
1496#else /* #ifdef CONFIG_RCU_BOOST */
1497
1217ed1b 1498static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1499 __releases(rnp->lock)
27f4d280 1500{
1217ed1b 1501 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1502}
1503
a46e0899 1504static void invoke_rcu_callbacks_kthread(void)
27f4d280 1505{
a46e0899 1506 WARN_ON_ONCE(1);
27f4d280
PM
1507}
1508
dff1672d
PM
1509static bool rcu_is_callbacks_kthread(void)
1510{
1511 return false;
1512}
1513
27f4d280
PM
1514static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1515{
1516}
1517
5d01bbd1 1518static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1519{
1520}
1521
b0d30417
PM
1522static int __init rcu_scheduler_really_started(void)
1523{
1524 rcu_scheduler_fully_active = 1;
1525 return 0;
1526}
1527early_initcall(rcu_scheduler_really_started);
1528
49fb4c62 1529static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1530{
1531}
1532
27f4d280
PM
1533#endif /* #else #ifdef CONFIG_RCU_BOOST */
1534
8bd93a2c
PM
1535#if !defined(CONFIG_RCU_FAST_NO_HZ)
1536
1537/*
1538 * Check to see if any future RCU-related work will need to be done
1539 * by the current CPU, even if none need be done immediately, returning
1540 * 1 if so. This function is part of the RCU implementation; it is -not-
1541 * an exported member of the RCU API.
1542 *
7cb92499
PM
1543 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1544 * any flavor of RCU.
8bd93a2c 1545 */
ffa83fb5 1546#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa9b1630 1547int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1548{
aa9b1630 1549 *delta_jiffies = ULONG_MAX;
c0f4dfd4 1550 return rcu_cpu_has_callbacks(cpu, NULL);
7cb92499 1551}
ffa83fb5 1552#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1553
1554/*
1555 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1556 * after it.
1557 */
1558static void rcu_cleanup_after_idle(int cpu)
1559{
1560}
1561
aea1b35e 1562/*
a858af28 1563 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1564 * is nothing.
1565 */
1566static void rcu_prepare_for_idle(int cpu)
1567{
1568}
1569
c57afe80
PM
1570/*
1571 * Don't bother keeping a running count of the number of RCU callbacks
1572 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1573 */
1574static void rcu_idle_count_callbacks_posted(void)
1575{
1576}
1577
8bd93a2c
PM
1578#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1579
f23f7fa1
PM
1580/*
1581 * This code is invoked when a CPU goes idle, at which point we want
1582 * to have the CPU do everything required for RCU so that it can enter
1583 * the energy-efficient dyntick-idle mode. This is handled by a
1584 * state machine implemented by rcu_prepare_for_idle() below.
1585 *
1586 * The following three proprocessor symbols control this state machine:
1587 *
f23f7fa1
PM
1588 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1589 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1590 * is sized to be roughly one RCU grace period. Those energy-efficiency
1591 * benchmarkers who might otherwise be tempted to set this to a large
1592 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1593 * system. And if you are -that- concerned about energy efficiency,
1594 * just power the system down and be done with it!
778d250a
PM
1595 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1596 * permitted to sleep in dyntick-idle mode with only lazy RCU
1597 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1598 *
1599 * The values below work well in practice. If future workloads require
1600 * adjustment, they can be converted into kernel config parameters, though
1601 * making the state machine smarter might be a better option.
1602 */
e84c48ae 1603#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1604#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1605
5e44ce35
PM
1606static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1607module_param(rcu_idle_gp_delay, int, 0644);
1608static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1609module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1610
d689fe22 1611extern int tick_nohz_active;
486e2593
PM
1612
1613/*
c229828c
PM
1614 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1615 * only if it has been awhile since the last time we did so. Afterwards,
1616 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1617 */
f1f399d1 1618static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1619{
c0f4dfd4
PM
1620 bool cbs_ready = false;
1621 struct rcu_data *rdp;
c229828c 1622 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1623 struct rcu_node *rnp;
1624 struct rcu_state *rsp;
486e2593 1625
c229828c
PM
1626 /* Exit early if we advanced recently. */
1627 if (jiffies == rdtp->last_advance_all)
1628 return 0;
1629 rdtp->last_advance_all = jiffies;
1630
c0f4dfd4
PM
1631 for_each_rcu_flavor(rsp) {
1632 rdp = this_cpu_ptr(rsp->rda);
1633 rnp = rdp->mynode;
486e2593 1634
c0f4dfd4
PM
1635 /*
1636 * Don't bother checking unless a grace period has
1637 * completed since we last checked and there are
1638 * callbacks not yet ready to invoke.
1639 */
1640 if (rdp->completed != rnp->completed &&
1641 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1642 note_gp_changes(rsp, rdp);
486e2593 1643
c0f4dfd4
PM
1644 if (cpu_has_callbacks_ready_to_invoke(rdp))
1645 cbs_ready = true;
1646 }
1647 return cbs_ready;
486e2593
PM
1648}
1649
aa9b1630 1650/*
c0f4dfd4
PM
1651 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1652 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1653 * caller to set the timeout based on whether or not there are non-lazy
1654 * callbacks.
aa9b1630 1655 *
c0f4dfd4 1656 * The caller must have disabled interrupts.
aa9b1630 1657 */
ffa83fb5 1658#ifndef CONFIG_RCU_NOCB_CPU_ALL
c0f4dfd4 1659int rcu_needs_cpu(int cpu, unsigned long *dj)
aa9b1630
PM
1660{
1661 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1662
c0f4dfd4
PM
1663 /* Snapshot to detect later posting of non-lazy callback. */
1664 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1665
aa9b1630 1666 /* If no callbacks, RCU doesn't need the CPU. */
c0f4dfd4
PM
1667 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1668 *dj = ULONG_MAX;
aa9b1630
PM
1669 return 0;
1670 }
c0f4dfd4
PM
1671
1672 /* Attempt to advance callbacks. */
1673 if (rcu_try_advance_all_cbs()) {
1674 /* Some ready to invoke, so initiate later invocation. */
1675 invoke_rcu_core();
aa9b1630
PM
1676 return 1;
1677 }
c0f4dfd4
PM
1678 rdtp->last_accelerate = jiffies;
1679
1680 /* Request timer delay depending on laziness, and round. */
6faf7283 1681 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1682 *dj = round_up(rcu_idle_gp_delay + jiffies,
1683 rcu_idle_gp_delay) - jiffies;
e84c48ae 1684 } else {
c0f4dfd4 1685 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1686 }
aa9b1630
PM
1687 return 0;
1688}
ffa83fb5 1689#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1690
21e52e15 1691/*
c0f4dfd4
PM
1692 * Prepare a CPU for idle from an RCU perspective. The first major task
1693 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1694 * The second major task is to check to see if a non-lazy callback has
1695 * arrived at a CPU that previously had only lazy callbacks. The third
1696 * major task is to accelerate (that is, assign grace-period numbers to)
1697 * any recently arrived callbacks.
aea1b35e
PM
1698 *
1699 * The caller must have disabled interrupts.
8bd93a2c 1700 */
aea1b35e 1701static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1702{
f1f399d1 1703#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1704 bool needwake;
c0f4dfd4 1705 struct rcu_data *rdp;
5955f7ee 1706 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4
PM
1707 struct rcu_node *rnp;
1708 struct rcu_state *rsp;
9d2ad243
PM
1709 int tne;
1710
1711 /* Handle nohz enablement switches conservatively. */
d689fe22 1712 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1713 if (tne != rdtp->tick_nohz_enabled_snap) {
c0f4dfd4 1714 if (rcu_cpu_has_callbacks(cpu, NULL))
9d2ad243
PM
1715 invoke_rcu_core(); /* force nohz to see update. */
1716 rdtp->tick_nohz_enabled_snap = tne;
1717 return;
1718 }
1719 if (!tne)
1720 return;
f511fc62 1721
c0f4dfd4 1722 /* If this is a no-CBs CPU, no callbacks, just return. */
534c97b0 1723 if (rcu_is_nocb_cpu(cpu))
9a0c6fef 1724 return;
9a0c6fef 1725
c57afe80 1726 /*
c0f4dfd4
PM
1727 * If a non-lazy callback arrived at a CPU having only lazy
1728 * callbacks, invoke RCU core for the side-effect of recalculating
1729 * idle duration on re-entry to idle.
c57afe80 1730 */
c0f4dfd4
PM
1731 if (rdtp->all_lazy &&
1732 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1733 rdtp->all_lazy = false;
1734 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1735 invoke_rcu_core();
c57afe80
PM
1736 return;
1737 }
c57afe80 1738
3084f2f8 1739 /*
c0f4dfd4
PM
1740 * If we have not yet accelerated this jiffy, accelerate all
1741 * callbacks on this CPU.
3084f2f8 1742 */
c0f4dfd4 1743 if (rdtp->last_accelerate == jiffies)
aea1b35e 1744 return;
c0f4dfd4
PM
1745 rdtp->last_accelerate = jiffies;
1746 for_each_rcu_flavor(rsp) {
1747 rdp = per_cpu_ptr(rsp->rda, cpu);
1748 if (!*rdp->nxttail[RCU_DONE_TAIL])
1749 continue;
1750 rnp = rdp->mynode;
1751 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1752 smp_mb__after_unlock_lock();
48a7639c 1753 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1754 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1755 if (needwake)
1756 rcu_gp_kthread_wake(rsp);
77e38ed3 1757 }
f1f399d1 1758#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1759}
3084f2f8 1760
c0f4dfd4
PM
1761/*
1762 * Clean up for exit from idle. Attempt to advance callbacks based on
1763 * any grace periods that elapsed while the CPU was idle, and if any
1764 * callbacks are now ready to invoke, initiate invocation.
1765 */
1766static void rcu_cleanup_after_idle(int cpu)
1767{
f1f399d1 1768#ifndef CONFIG_RCU_NOCB_CPU_ALL
534c97b0 1769 if (rcu_is_nocb_cpu(cpu))
aea1b35e 1770 return;
7a497c96
PM
1771 if (rcu_try_advance_all_cbs())
1772 invoke_rcu_core();
f1f399d1 1773#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1774}
1775
c57afe80 1776/*
98248a0e
PM
1777 * Keep a running count of the number of non-lazy callbacks posted
1778 * on this CPU. This running counter (which is never decremented) allows
1779 * rcu_prepare_for_idle() to detect when something out of the idle loop
1780 * posts a callback, even if an equal number of callbacks are invoked.
1781 * Of course, callbacks should only be posted from within a trace event
1782 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1783 */
1784static void rcu_idle_count_callbacks_posted(void)
1785{
5955f7ee 1786 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1787}
1788
b626c1b6
PM
1789/*
1790 * Data for flushing lazy RCU callbacks at OOM time.
1791 */
1792static atomic_t oom_callback_count;
1793static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1794
1795/*
1796 * RCU OOM callback -- decrement the outstanding count and deliver the
1797 * wake-up if we are the last one.
1798 */
1799static void rcu_oom_callback(struct rcu_head *rhp)
1800{
1801 if (atomic_dec_and_test(&oom_callback_count))
1802 wake_up(&oom_callback_wq);
1803}
1804
1805/*
1806 * Post an rcu_oom_notify callback on the current CPU if it has at
1807 * least one lazy callback. This will unnecessarily post callbacks
1808 * to CPUs that already have a non-lazy callback at the end of their
1809 * callback list, but this is an infrequent operation, so accept some
1810 * extra overhead to keep things simple.
1811 */
1812static void rcu_oom_notify_cpu(void *unused)
1813{
1814 struct rcu_state *rsp;
1815 struct rcu_data *rdp;
1816
1817 for_each_rcu_flavor(rsp) {
fa07a58f 1818 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1819 if (rdp->qlen_lazy != 0) {
1820 atomic_inc(&oom_callback_count);
1821 rsp->call(&rdp->oom_head, rcu_oom_callback);
1822 }
1823 }
1824}
1825
1826/*
1827 * If low on memory, ensure that each CPU has a non-lazy callback.
1828 * This will wake up CPUs that have only lazy callbacks, in turn
1829 * ensuring that they free up the corresponding memory in a timely manner.
1830 * Because an uncertain amount of memory will be freed in some uncertain
1831 * timeframe, we do not claim to have freed anything.
1832 */
1833static int rcu_oom_notify(struct notifier_block *self,
1834 unsigned long notused, void *nfreed)
1835{
1836 int cpu;
1837
1838 /* Wait for callbacks from earlier instance to complete. */
1839 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1840 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1841
1842 /*
1843 * Prevent premature wakeup: ensure that all increments happen
1844 * before there is a chance of the counter reaching zero.
1845 */
1846 atomic_set(&oom_callback_count, 1);
1847
1848 get_online_cpus();
1849 for_each_online_cpu(cpu) {
1850 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1851 cond_resched();
1852 }
1853 put_online_cpus();
1854
1855 /* Unconditionally decrement: no need to wake ourselves up. */
1856 atomic_dec(&oom_callback_count);
1857
1858 return NOTIFY_OK;
1859}
1860
1861static struct notifier_block rcu_oom_nb = {
1862 .notifier_call = rcu_oom_notify
1863};
1864
1865static int __init rcu_register_oom_notifier(void)
1866{
1867 register_oom_notifier(&rcu_oom_nb);
1868 return 0;
1869}
1870early_initcall(rcu_register_oom_notifier);
1871
8bd93a2c 1872#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1873
1874#ifdef CONFIG_RCU_CPU_STALL_INFO
1875
1876#ifdef CONFIG_RCU_FAST_NO_HZ
1877
1878static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1879{
5955f7ee 1880 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1881 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1882
c0f4dfd4
PM
1883 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1884 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1885 ulong2long(nlpd),
1886 rdtp->all_lazy ? 'L' : '.',
1887 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1888}
1889
1890#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1891
1892static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1893{
1c17e4d4 1894 *cp = '\0';
a858af28
PM
1895}
1896
1897#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1898
1899/* Initiate the stall-info list. */
1900static void print_cpu_stall_info_begin(void)
1901{
efc151c3 1902 pr_cont("\n");
a858af28
PM
1903}
1904
1905/*
1906 * Print out diagnostic information for the specified stalled CPU.
1907 *
1908 * If the specified CPU is aware of the current RCU grace period
1909 * (flavor specified by rsp), then print the number of scheduling
1910 * clock interrupts the CPU has taken during the time that it has
1911 * been aware. Otherwise, print the number of RCU grace periods
1912 * that this CPU is ignorant of, for example, "1" if the CPU was
1913 * aware of the previous grace period.
1914 *
1915 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1916 */
1917static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1918{
1919 char fast_no_hz[72];
1920 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1921 struct rcu_dynticks *rdtp = rdp->dynticks;
1922 char *ticks_title;
1923 unsigned long ticks_value;
1924
1925 if (rsp->gpnum == rdp->gpnum) {
1926 ticks_title = "ticks this GP";
1927 ticks_value = rdp->ticks_this_gp;
1928 } else {
1929 ticks_title = "GPs behind";
1930 ticks_value = rsp->gpnum - rdp->gpnum;
1931 }
1932 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
efc151c3 1933 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
a858af28
PM
1934 cpu, ticks_value, ticks_title,
1935 atomic_read(&rdtp->dynticks) & 0xfff,
1936 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1937 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
a858af28
PM
1938 fast_no_hz);
1939}
1940
1941/* Terminate the stall-info list. */
1942static void print_cpu_stall_info_end(void)
1943{
efc151c3 1944 pr_err("\t");
a858af28
PM
1945}
1946
1947/* Zero ->ticks_this_gp for all flavors of RCU. */
1948static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949{
1950 rdp->ticks_this_gp = 0;
6231069b 1951 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1952}
1953
1954/* Increment ->ticks_this_gp for all flavors of RCU. */
1955static void increment_cpu_stall_ticks(void)
1956{
115f7a7c
PM
1957 struct rcu_state *rsp;
1958
1959 for_each_rcu_flavor(rsp)
fa07a58f 1960 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1961}
1962
1963#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1964
1965static void print_cpu_stall_info_begin(void)
1966{
efc151c3 1967 pr_cont(" {");
a858af28
PM
1968}
1969
1970static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1971{
efc151c3 1972 pr_cont(" %d", cpu);
a858af28
PM
1973}
1974
1975static void print_cpu_stall_info_end(void)
1976{
efc151c3 1977 pr_cont("} ");
a858af28
PM
1978}
1979
1980static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1981{
1982}
1983
1984static void increment_cpu_stall_ticks(void)
1985{
1986}
1987
1988#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1989
1990#ifdef CONFIG_RCU_NOCB_CPU
1991
1992/*
1993 * Offload callback processing from the boot-time-specified set of CPUs
1994 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1995 * kthread created that pulls the callbacks from the corresponding CPU,
1996 * waits for a grace period to elapse, and invokes the callbacks.
1997 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1998 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1999 * has been specified, in which case each kthread actively polls its
2000 * CPU. (Which isn't so great for energy efficiency, but which does
2001 * reduce RCU's overhead on that CPU.)
2002 *
2003 * This is intended to be used in conjunction with Frederic Weisbecker's
2004 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2005 * running CPU-bound user-mode computations.
2006 *
2007 * Offloading of callback processing could also in theory be used as
2008 * an energy-efficiency measure because CPUs with no RCU callbacks
2009 * queued are more aggressive about entering dyntick-idle mode.
2010 */
2011
2012
2013/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2014static int __init rcu_nocb_setup(char *str)
2015{
2016 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2017 have_rcu_nocb_mask = true;
2018 cpulist_parse(str, rcu_nocb_mask);
2019 return 1;
2020}
2021__setup("rcu_nocbs=", rcu_nocb_setup);
2022
1b0048a4
PG
2023static int __init parse_rcu_nocb_poll(char *arg)
2024{
2025 rcu_nocb_poll = 1;
2026 return 0;
2027}
2028early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2029
dae6e64d 2030/*
0446be48
PM
2031 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2032 * grace period.
dae6e64d 2033 */
0446be48 2034static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 2035{
0446be48 2036 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
2037}
2038
2039/*
8b425aa8 2040 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
2041 * based on the sum of those of all rcu_node structures. This does
2042 * double-count the root rcu_node structure's requests, but this
2043 * is necessary to handle the possibility of a rcu_nocb_kthread()
2044 * having awakened during the time that the rcu_node structures
2045 * were being updated for the end of the previous grace period.
34ed6246 2046 */
dae6e64d
PM
2047static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2048{
8b425aa8 2049 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
2050}
2051
2052static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 2053{
dae6e64d
PM
2054 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2055 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
2056}
2057
2f33b512 2058#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 2059/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 2060bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
2061{
2062 if (have_rcu_nocb_mask)
2063 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2064 return false;
2065}
2f33b512 2066#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 2067
fbce7497
PM
2068/*
2069 * Kick the leader kthread for this NOCB group.
2070 */
2071static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2072{
2073 struct rcu_data *rdp_leader = rdp->nocb_leader;
2074
2075 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2076 return;
11ed7f93 2077 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
fbce7497 2078 /* Prior xchg orders against prior callback enqueue. */
11ed7f93 2079 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
fbce7497
PM
2080 wake_up(&rdp_leader->nocb_wq);
2081 }
2082}
2083
3fbfbf7a
PM
2084/*
2085 * Enqueue the specified string of rcu_head structures onto the specified
2086 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2087 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2088 * counts are supplied by rhcount and rhcount_lazy.
2089 *
2090 * If warranted, also wake up the kthread servicing this CPUs queues.
2091 */
2092static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2093 struct rcu_head *rhp,
2094 struct rcu_head **rhtp,
96d3fd0d
PM
2095 int rhcount, int rhcount_lazy,
2096 unsigned long flags)
3fbfbf7a
PM
2097{
2098 int len;
2099 struct rcu_head **old_rhpp;
2100 struct task_struct *t;
2101
2102 /* Enqueue the callback on the nocb list and update counts. */
2103 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2104 ACCESS_ONCE(*old_rhpp) = rhp;
2105 atomic_long_add(rhcount, &rdp->nocb_q_count);
2106 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2107
2108 /* If we are not being polled and there is a kthread, awaken it ... */
2109 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 2110 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2111 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2112 TPS("WakeNotPoll"));
3fbfbf7a 2113 return;
9261dd0d 2114 }
3fbfbf7a
PM
2115 len = atomic_long_read(&rdp->nocb_q_count);
2116 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2117 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2118 /* ... if queue was empty ... */
2119 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2120 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121 TPS("WakeEmpty"));
2122 } else {
2123 rdp->nocb_defer_wakeup = true;
2124 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2125 TPS("WakeEmptyIsDeferred"));
2126 }
3fbfbf7a
PM
2127 rdp->qlen_last_fqs_check = 0;
2128 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497
PM
2129 /* ... or if many callbacks queued. */
2130 wake_nocb_leader(rdp, true);
3fbfbf7a 2131 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2132 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2133 } else {
2134 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2135 }
2136 return;
2137}
2138
2139/*
2140 * This is a helper for __call_rcu(), which invokes this when the normal
2141 * callback queue is inoperable. If this is not a no-CBs CPU, this
2142 * function returns failure back to __call_rcu(), which can complain
2143 * appropriately.
2144 *
2145 * Otherwise, this function queues the callback where the corresponding
2146 * "rcuo" kthread can find it.
2147 */
2148static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2149 bool lazy, unsigned long flags)
3fbfbf7a
PM
2150{
2151
d1e43fa5 2152 if (!rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a 2153 return 0;
96d3fd0d 2154 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2155 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2156 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2157 (unsigned long)rhp->func,
756cbf6b
PM
2158 -atomic_long_read(&rdp->nocb_q_count_lazy),
2159 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2160 else
2161 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2162 -atomic_long_read(&rdp->nocb_q_count_lazy),
2163 -atomic_long_read(&rdp->nocb_q_count));
3fbfbf7a
PM
2164 return 1;
2165}
2166
2167/*
2168 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2169 * not a no-CBs CPU.
2170 */
2171static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2172 struct rcu_data *rdp,
2173 unsigned long flags)
3fbfbf7a
PM
2174{
2175 long ql = rsp->qlen;
2176 long qll = rsp->qlen_lazy;
2177
2178 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2179 if (!rcu_is_nocb_cpu(smp_processor_id()))
3fbfbf7a
PM
2180 return 0;
2181 rsp->qlen = 0;
2182 rsp->qlen_lazy = 0;
2183
2184 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2185 if (rsp->orphan_donelist != NULL) {
2186 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2187 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2188 ql = qll = 0;
2189 rsp->orphan_donelist = NULL;
2190 rsp->orphan_donetail = &rsp->orphan_donelist;
2191 }
2192 if (rsp->orphan_nxtlist != NULL) {
2193 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2194 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2195 ql = qll = 0;
2196 rsp->orphan_nxtlist = NULL;
2197 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2198 }
2199 return 1;
2200}
2201
2202/*
34ed6246
PM
2203 * If necessary, kick off a new grace period, and either way wait
2204 * for a subsequent grace period to complete.
3fbfbf7a 2205 */
34ed6246 2206static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2207{
34ed6246 2208 unsigned long c;
dae6e64d 2209 bool d;
34ed6246 2210 unsigned long flags;
48a7639c 2211 bool needwake;
34ed6246
PM
2212 struct rcu_node *rnp = rdp->mynode;
2213
2214 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2215 smp_mb__after_unlock_lock();
48a7639c 2216 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2217 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2218 if (needwake)
2219 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2220
2221 /*
34ed6246
PM
2222 * Wait for the grace period. Do so interruptibly to avoid messing
2223 * up the load average.
3fbfbf7a 2224 */
f7f7bac9 2225 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2226 for (;;) {
dae6e64d
PM
2227 wait_event_interruptible(
2228 rnp->nocb_gp_wq[c & 0x1],
2229 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2230 if (likely(d))
34ed6246 2231 break;
dae6e64d 2232 flush_signals(current);
f7f7bac9 2233 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2234 }
f7f7bac9 2235 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2236 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2237}
2238
fbce7497
PM
2239/*
2240 * Leaders come here to wait for additional callbacks to show up.
2241 * This function does not return until callbacks appear.
2242 */
2243static void nocb_leader_wait(struct rcu_data *my_rdp)
2244{
2245 bool firsttime = true;
2246 bool gotcbs;
2247 struct rcu_data *rdp;
2248 struct rcu_head **tail;
2249
2250wait_again:
2251
2252 /* Wait for callbacks to appear. */
2253 if (!rcu_nocb_poll) {
2254 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2255 wait_event_interruptible(my_rdp->nocb_wq,
11ed7f93 2256 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2257 /* Memory barrier handled by smp_mb() calls below and repoll. */
2258 } else if (firsttime) {
2259 firsttime = false; /* Don't drown trace log with "Poll"! */
2260 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2261 }
2262
2263 /*
2264 * Each pass through the following loop checks a follower for CBs.
2265 * We are our own first follower. Any CBs found are moved to
2266 * nocb_gp_head, where they await a grace period.
2267 */
2268 gotcbs = false;
2269 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2270 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2271 if (!rdp->nocb_gp_head)
2272 continue; /* No CBs here, try next follower. */
2273
2274 /* Move callbacks to wait-for-GP list, which is empty. */
2275 ACCESS_ONCE(rdp->nocb_head) = NULL;
2276 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2277 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2278 rdp->nocb_gp_count_lazy =
2279 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2280 gotcbs = true;
2281 }
2282
2283 /*
2284 * If there were no callbacks, sleep a bit, rescan after a
2285 * memory barrier, and go retry.
2286 */
2287 if (unlikely(!gotcbs)) {
2288 if (!rcu_nocb_poll)
2289 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2290 "WokeEmpty");
2291 flush_signals(current);
2292 schedule_timeout_interruptible(1);
2293
2294 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2295 my_rdp->nocb_leader_sleep = true;
2296 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497
PM
2297 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2298 if (ACCESS_ONCE(rdp->nocb_head)) {
2299 /* Found CB, so short-circuit next wait. */
11ed7f93 2300 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2301 break;
2302 }
2303 goto wait_again;
2304 }
2305
2306 /* Wait for one grace period. */
2307 rcu_nocb_wait_gp(my_rdp);
2308
2309 /*
11ed7f93
PK
2310 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2311 * We set it now, but recheck for new callbacks while
fbce7497
PM
2312 * traversing our follower list.
2313 */
11ed7f93
PK
2314 my_rdp->nocb_leader_sleep = true;
2315 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2316
2317 /* Each pass through the following loop wakes a follower, if needed. */
2318 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2319 if (ACCESS_ONCE(rdp->nocb_head))
11ed7f93 2320 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2321 if (!rdp->nocb_gp_head)
2322 continue; /* No CBs, so no need to wake follower. */
2323
2324 /* Append callbacks to follower's "done" list. */
2325 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2326 *tail = rdp->nocb_gp_head;
2327 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2328 atomic_long_add(rdp->nocb_gp_count_lazy,
2329 &rdp->nocb_follower_count_lazy);
2330 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2331 /*
2332 * List was empty, wake up the follower.
2333 * Memory barriers supplied by atomic_long_add().
2334 */
2335 wake_up(&rdp->nocb_wq);
2336 }
2337 }
2338
2339 /* If we (the leader) don't have CBs, go wait some more. */
2340 if (!my_rdp->nocb_follower_head)
2341 goto wait_again;
2342}
2343
2344/*
2345 * Followers come here to wait for additional callbacks to show up.
2346 * This function does not return until callbacks appear.
2347 */
2348static void nocb_follower_wait(struct rcu_data *rdp)
2349{
2350 bool firsttime = true;
2351
2352 for (;;) {
2353 if (!rcu_nocb_poll) {
2354 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2355 "FollowerSleep");
2356 wait_event_interruptible(rdp->nocb_wq,
2357 ACCESS_ONCE(rdp->nocb_follower_head));
2358 } else if (firsttime) {
2359 /* Don't drown trace log with "Poll"! */
2360 firsttime = false;
2361 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2362 }
2363 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2364 /* ^^^ Ensure CB invocation follows _head test. */
2365 return;
2366 }
2367 if (!rcu_nocb_poll)
2368 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2369 "WokeEmpty");
2370 flush_signals(current);
2371 schedule_timeout_interruptible(1);
2372 }
2373}
2374
3fbfbf7a
PM
2375/*
2376 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2377 * callbacks queued by the corresponding no-CBs CPU, however, there is
2378 * an optional leader-follower relationship so that the grace-period
2379 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2380 */
2381static int rcu_nocb_kthread(void *arg)
2382{
2383 int c, cl;
2384 struct rcu_head *list;
2385 struct rcu_head *next;
2386 struct rcu_head **tail;
2387 struct rcu_data *rdp = arg;
2388
2389 /* Each pass through this loop invokes one batch of callbacks */
2390 for (;;) {
fbce7497
PM
2391 /* Wait for callbacks. */
2392 if (rdp->nocb_leader == rdp)
2393 nocb_leader_wait(rdp);
2394 else
2395 nocb_follower_wait(rdp);
2396
2397 /* Pull the ready-to-invoke callbacks onto local list. */
2398 list = ACCESS_ONCE(rdp->nocb_follower_head);
2399 BUG_ON(!list);
2400 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2401 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2402 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2403 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2404 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2405 rdp->nocb_p_count += c;
2406 rdp->nocb_p_count_lazy += cl;
3fbfbf7a
PM
2407
2408 /* Each pass through the following loop invokes a callback. */
2409 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2410 c = cl = 0;
2411 while (list) {
2412 next = list->next;
2413 /* Wait for enqueuing to complete, if needed. */
2414 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2415 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2416 TPS("WaitQueue"));
3fbfbf7a 2417 schedule_timeout_interruptible(1);
69a79bb1
PM
2418 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2419 TPS("WokeQueue"));
3fbfbf7a
PM
2420 next = list->next;
2421 }
2422 debug_rcu_head_unqueue(list);
2423 local_bh_disable();
2424 if (__rcu_reclaim(rdp->rsp->name, list))
2425 cl++;
2426 c++;
2427 local_bh_enable();
2428 list = next;
2429 }
2430 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2431 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2432 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
c635a4e1 2433 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2434 }
2435 return 0;
2436}
2437
96d3fd0d
PM
2438/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2439static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2440{
2441 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2442}
2443
2444/* Do a deferred wakeup of rcu_nocb_kthread(). */
2445static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2446{
2447 if (!rcu_nocb_need_deferred_wakeup(rdp))
2448 return;
2449 ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
fbce7497 2450 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2451 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2452}
2453
3fbfbf7a
PM
2454/* Initialize per-rcu_data variables for no-CBs CPUs. */
2455static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2456{
2457 rdp->nocb_tail = &rdp->nocb_head;
2458 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2459 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2460}
2461
fbce7497
PM
2462/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2463static int rcu_nocb_leader_stride = -1;
2464module_param(rcu_nocb_leader_stride, int, 0444);
2465
2466/*
2467 * Create a kthread for each RCU flavor for each no-CBs CPU.
2468 * Also initialize leader-follower relationships.
2469 */
3fbfbf7a
PM
2470static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2471{
2472 int cpu;
fbce7497
PM
2473 int ls = rcu_nocb_leader_stride;
2474 int nl = 0; /* Next leader. */
3fbfbf7a 2475 struct rcu_data *rdp;
fbce7497
PM
2476 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2477 struct rcu_data *rdp_prev = NULL;
3fbfbf7a
PM
2478 struct task_struct *t;
2479
2480 if (rcu_nocb_mask == NULL)
2481 return;
187497fa
PM
2482#if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL)
2483 if (tick_nohz_full_running)
2484 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2485#endif /* #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL) */
fbce7497
PM
2486 if (ls == -1) {
2487 ls = int_sqrt(nr_cpu_ids);
2488 rcu_nocb_leader_stride = ls;
2489 }
2490
2491 /*
2492 * Each pass through this loop sets up one rcu_data structure and
2493 * spawns one rcu_nocb_kthread().
2494 */
3fbfbf7a
PM
2495 for_each_cpu(cpu, rcu_nocb_mask) {
2496 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2497 if (rdp->cpu >= nl) {
2498 /* New leader, set up for followers & next leader. */
2499 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2500 rdp->nocb_leader = rdp;
2501 rdp_leader = rdp;
2502 } else {
2503 /* Another follower, link to previous leader. */
2504 rdp->nocb_leader = rdp_leader;
2505 rdp_prev->nocb_next_follower = rdp;
2506 }
2507 rdp_prev = rdp;
2508
2509 /* Spawn the kthread for this CPU. */
a4889858
PM
2510 t = kthread_run(rcu_nocb_kthread, rdp,
2511 "rcuo%c/%d", rsp->abbr, cpu);
3fbfbf7a
PM
2512 BUG_ON(IS_ERR(t));
2513 ACCESS_ONCE(rdp->nocb_kthread) = t;
2514 }
2515}
2516
2517/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2518static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a
PM
2519{
2520 if (rcu_nocb_mask == NULL ||
2521 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
34ed6246 2522 return false;
3fbfbf7a 2523 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2524 return true;
3fbfbf7a
PM
2525}
2526
34ed6246
PM
2527#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2528
0446be48 2529static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2530{
3fbfbf7a
PM
2531}
2532
dae6e64d
PM
2533static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2534{
2535}
2536
2537static void rcu_init_one_nocb(struct rcu_node *rnp)
2538{
2539}
3fbfbf7a 2540
3fbfbf7a 2541static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2542 bool lazy, unsigned long flags)
3fbfbf7a
PM
2543{
2544 return 0;
2545}
2546
2547static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2548 struct rcu_data *rdp,
2549 unsigned long flags)
3fbfbf7a
PM
2550{
2551 return 0;
2552}
2553
3fbfbf7a
PM
2554static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2555{
2556}
2557
96d3fd0d
PM
2558static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2559{
2560 return false;
2561}
2562
2563static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2564{
2565}
2566
3fbfbf7a
PM
2567static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2568{
2569}
2570
34ed6246 2571static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2572{
34ed6246 2573 return false;
3fbfbf7a
PM
2574}
2575
2576#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2577
2578/*
2579 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2580 * arbitrarily long period of time with the scheduling-clock tick turned
2581 * off. RCU will be paying attention to this CPU because it is in the
2582 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2583 * machine because the scheduling-clock tick has been disabled. Therefore,
2584 * if an adaptive-ticks CPU is failing to respond to the current grace
2585 * period and has not be idle from an RCU perspective, kick it.
2586 */
4a81e832 2587static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2588{
2589#ifdef CONFIG_NO_HZ_FULL
2590 if (tick_nohz_full_cpu(cpu))
2591 smp_send_reschedule(cpu);
2592#endif /* #ifdef CONFIG_NO_HZ_FULL */
2593}
2333210b
PM
2594
2595
2596#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2597
d4bd54fb
PM
2598/*
2599 * Define RCU flavor that holds sysidle state. This needs to be the
2600 * most active flavor of RCU.
2601 */
2602#ifdef CONFIG_PREEMPT_RCU
0edd1b17 2603static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
d4bd54fb 2604#else /* #ifdef CONFIG_PREEMPT_RCU */
0edd1b17 2605static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
d4bd54fb
PM
2606#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2607
0edd1b17 2608static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2609#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2610#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2611#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2612#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2613#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2614
eb348b89
PM
2615/*
2616 * Invoked to note exit from irq or task transition to idle. Note that
2617 * usermode execution does -not- count as idle here! After all, we want
2618 * to detect full-system idle states, not RCU quiescent states and grace
2619 * periods. The caller must have disabled interrupts.
2620 */
2621static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2622{
2623 unsigned long j;
2624
2625 /* Adjust nesting, check for fully idle. */
2626 if (irq) {
2627 rdtp->dynticks_idle_nesting--;
2628 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2629 if (rdtp->dynticks_idle_nesting != 0)
2630 return; /* Still not fully idle. */
2631 } else {
2632 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2633 DYNTICK_TASK_NEST_VALUE) {
2634 rdtp->dynticks_idle_nesting = 0;
2635 } else {
2636 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2637 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2638 return; /* Still not fully idle. */
2639 }
2640 }
2641
2642 /* Record start of fully idle period. */
2643 j = jiffies;
2644 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2645 smp_mb__before_atomic();
eb348b89 2646 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2647 smp_mb__after_atomic();
eb348b89
PM
2648 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2649}
2650
0edd1b17
PM
2651/*
2652 * Unconditionally force exit from full system-idle state. This is
2653 * invoked when a normal CPU exits idle, but must be called separately
2654 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2655 * is that the timekeeping CPU is permitted to take scheduling-clock
2656 * interrupts while the system is in system-idle state, and of course
2657 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2658 * interrupt from any other type of interrupt.
2659 */
2660void rcu_sysidle_force_exit(void)
2661{
2662 int oldstate = ACCESS_ONCE(full_sysidle_state);
2663 int newoldstate;
2664
2665 /*
2666 * Each pass through the following loop attempts to exit full
2667 * system-idle state. If contention proves to be a problem,
2668 * a trylock-based contention tree could be used here.
2669 */
2670 while (oldstate > RCU_SYSIDLE_SHORT) {
2671 newoldstate = cmpxchg(&full_sysidle_state,
2672 oldstate, RCU_SYSIDLE_NOT);
2673 if (oldstate == newoldstate &&
2674 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2675 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2676 return; /* We cleared it, done! */
2677 }
2678 oldstate = newoldstate;
2679 }
2680 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2681}
2682
eb348b89
PM
2683/*
2684 * Invoked to note entry to irq or task transition from idle. Note that
2685 * usermode execution does -not- count as idle here! The caller must
2686 * have disabled interrupts.
2687 */
2688static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2689{
2690 /* Adjust nesting, check for already non-idle. */
2691 if (irq) {
2692 rdtp->dynticks_idle_nesting++;
2693 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2694 if (rdtp->dynticks_idle_nesting != 1)
2695 return; /* Already non-idle. */
2696 } else {
2697 /*
2698 * Allow for irq misnesting. Yes, it really is possible
2699 * to enter an irq handler then never leave it, and maybe
2700 * also vice versa. Handle both possibilities.
2701 */
2702 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2703 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2704 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2705 return; /* Already non-idle. */
2706 } else {
2707 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2708 }
2709 }
2710
2711 /* Record end of idle period. */
4e857c58 2712 smp_mb__before_atomic();
eb348b89 2713 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2714 smp_mb__after_atomic();
eb348b89 2715 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2716
2717 /*
2718 * If we are the timekeeping CPU, we are permitted to be non-idle
2719 * during a system-idle state. This must be the case, because
2720 * the timekeeping CPU has to take scheduling-clock interrupts
2721 * during the time that the system is transitioning to full
2722 * system-idle state. This means that the timekeeping CPU must
2723 * invoke rcu_sysidle_force_exit() directly if it does anything
2724 * more than take a scheduling-clock interrupt.
2725 */
2726 if (smp_processor_id() == tick_do_timer_cpu)
2727 return;
2728
2729 /* Update system-idle state: We are clearly no longer fully idle! */
2730 rcu_sysidle_force_exit();
2731}
2732
2733/*
2734 * Check to see if the current CPU is idle. Note that usermode execution
2735 * does not count as idle. The caller must have disabled interrupts.
2736 */
2737static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2738 unsigned long *maxj)
2739{
2740 int cur;
2741 unsigned long j;
2742 struct rcu_dynticks *rdtp = rdp->dynticks;
2743
2744 /*
2745 * If some other CPU has already reported non-idle, if this is
2746 * not the flavor of RCU that tracks sysidle state, or if this
2747 * is an offline or the timekeeping CPU, nothing to do.
2748 */
2749 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2750 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2751 return;
eb75767b
PM
2752 if (rcu_gp_in_progress(rdp->rsp))
2753 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2754
2755 /* Pick up current idle and NMI-nesting counter and check. */
2756 cur = atomic_read(&rdtp->dynticks_idle);
2757 if (cur & 0x1) {
2758 *isidle = false; /* We are not idle! */
2759 return;
2760 }
2761 smp_mb(); /* Read counters before timestamps. */
2762
2763 /* Pick up timestamps. */
2764 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2765 /* If this CPU entered idle more recently, update maxj timestamp. */
2766 if (ULONG_CMP_LT(*maxj, j))
2767 *maxj = j;
2768}
2769
2770/*
2771 * Is this the flavor of RCU that is handling full-system idle?
2772 */
2773static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2774{
2775 return rsp == rcu_sysidle_state;
2776}
2777
2778/*
2779 * Return a delay in jiffies based on the number of CPUs, rcu_node
2780 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2781 * systems more time to transition to full-idle state in order to
2782 * avoid the cache thrashing that otherwise occur on the state variable.
2783 * Really small systems (less than a couple of tens of CPUs) should
2784 * instead use a single global atomically incremented counter, and later
2785 * versions of this will automatically reconfigure themselves accordingly.
2786 */
2787static unsigned long rcu_sysidle_delay(void)
2788{
2789 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2790 return 0;
2791 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2792}
2793
2794/*
2795 * Advance the full-system-idle state. This is invoked when all of
2796 * the non-timekeeping CPUs are idle.
2797 */
2798static void rcu_sysidle(unsigned long j)
2799{
2800 /* Check the current state. */
2801 switch (ACCESS_ONCE(full_sysidle_state)) {
2802 case RCU_SYSIDLE_NOT:
2803
2804 /* First time all are idle, so note a short idle period. */
2805 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2806 break;
2807
2808 case RCU_SYSIDLE_SHORT:
2809
2810 /*
2811 * Idle for a bit, time to advance to next state?
2812 * cmpxchg failure means race with non-idle, let them win.
2813 */
2814 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2815 (void)cmpxchg(&full_sysidle_state,
2816 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2817 break;
2818
2819 case RCU_SYSIDLE_LONG:
2820
2821 /*
2822 * Do an additional check pass before advancing to full.
2823 * cmpxchg failure means race with non-idle, let them win.
2824 */
2825 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2826 (void)cmpxchg(&full_sysidle_state,
2827 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2828 break;
2829
2830 default:
2831 break;
2832 }
2833}
2834
2835/*
2836 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2837 * back to the beginning.
2838 */
2839static void rcu_sysidle_cancel(void)
2840{
2841 smp_mb();
becb41bf
PM
2842 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2843 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
2844}
2845
2846/*
2847 * Update the sysidle state based on the results of a force-quiescent-state
2848 * scan of the CPUs' dyntick-idle state.
2849 */
2850static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2851 unsigned long maxj, bool gpkt)
2852{
2853 if (rsp != rcu_sysidle_state)
2854 return; /* Wrong flavor, ignore. */
2855 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2856 return; /* Running state machine from timekeeping CPU. */
2857 if (isidle)
2858 rcu_sysidle(maxj); /* More idle! */
2859 else
2860 rcu_sysidle_cancel(); /* Idle is over. */
2861}
2862
2863/*
2864 * Wrapper for rcu_sysidle_report() when called from the grace-period
2865 * kthread's context.
2866 */
2867static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2868 unsigned long maxj)
2869{
2870 rcu_sysidle_report(rsp, isidle, maxj, true);
2871}
2872
2873/* Callback and function for forcing an RCU grace period. */
2874struct rcu_sysidle_head {
2875 struct rcu_head rh;
2876 int inuse;
2877};
2878
2879static void rcu_sysidle_cb(struct rcu_head *rhp)
2880{
2881 struct rcu_sysidle_head *rshp;
2882
2883 /*
2884 * The following memory barrier is needed to replace the
2885 * memory barriers that would normally be in the memory
2886 * allocator.
2887 */
2888 smp_mb(); /* grace period precedes setting inuse. */
2889
2890 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2891 ACCESS_ONCE(rshp->inuse) = 0;
2892}
2893
2894/*
2895 * Check to see if the system is fully idle, other than the timekeeping CPU.
2896 * The caller must have disabled interrupts.
2897 */
2898bool rcu_sys_is_idle(void)
2899{
2900 static struct rcu_sysidle_head rsh;
2901 int rss = ACCESS_ONCE(full_sysidle_state);
2902
2903 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2904 return false;
2905
2906 /* Handle small-system case by doing a full scan of CPUs. */
2907 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2908 int oldrss = rss - 1;
2909
2910 /*
2911 * One pass to advance to each state up to _FULL.
2912 * Give up if any pass fails to advance the state.
2913 */
2914 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2915 int cpu;
2916 bool isidle = true;
2917 unsigned long maxj = jiffies - ULONG_MAX / 4;
2918 struct rcu_data *rdp;
2919
2920 /* Scan all the CPUs looking for nonidle CPUs. */
2921 for_each_possible_cpu(cpu) {
2922 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2923 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2924 if (!isidle)
2925 break;
2926 }
2927 rcu_sysidle_report(rcu_sysidle_state,
2928 isidle, maxj, false);
2929 oldrss = rss;
2930 rss = ACCESS_ONCE(full_sysidle_state);
2931 }
2932 }
2933
2934 /* If this is the first observation of an idle period, record it. */
2935 if (rss == RCU_SYSIDLE_FULL) {
2936 rss = cmpxchg(&full_sysidle_state,
2937 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2938 return rss == RCU_SYSIDLE_FULL;
2939 }
2940
2941 smp_mb(); /* ensure rss load happens before later caller actions. */
2942
2943 /* If already fully idle, tell the caller (in case of races). */
2944 if (rss == RCU_SYSIDLE_FULL_NOTED)
2945 return true;
2946
2947 /*
2948 * If we aren't there yet, and a grace period is not in flight,
2949 * initiate a grace period. Either way, tell the caller that
2950 * we are not there yet. We use an xchg() rather than an assignment
2951 * to make up for the memory barriers that would otherwise be
2952 * provided by the memory allocator.
2953 */
2954 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2955 !rcu_gp_in_progress(rcu_sysidle_state) &&
2956 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2957 call_rcu(&rsh.rh, rcu_sysidle_cb);
2958 return false;
eb348b89
PM
2959}
2960
2333210b
PM
2961/*
2962 * Initialize dynticks sysidle state for CPUs coming online.
2963 */
2964static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2965{
2966 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2967}
2968
2969#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2970
eb348b89
PM
2971static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2972{
2973}
2974
2975static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2976{
2977}
2978
0edd1b17
PM
2979static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2980 unsigned long *maxj)
2981{
2982}
2983
2984static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2985{
2986 return false;
2987}
2988
2989static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2990 unsigned long maxj)
2991{
2992}
2993
2333210b
PM
2994static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2995{
2996}
2997
2998#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
2999
3000/*
3001 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3002 * grace-period kthread will do force_quiescent_state() processing?
3003 * The idea is to avoid waking up RCU core processing on such a
3004 * CPU unless the grace period has extended for too long.
3005 *
3006 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3007 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3008 */
3009static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3010{
3011#ifdef CONFIG_NO_HZ_FULL
3012 if (tick_nohz_full_cpu(smp_processor_id()) &&
3013 (!rcu_gp_in_progress(rsp) ||
3014 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3015 return 1;
3016#endif /* #ifdef CONFIG_NO_HZ_FULL */
3017 return 0;
3018}
5057f55e
PM
3019
3020/*
3021 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3022 * timekeeping CPU.
3023 */
3024static void rcu_bind_gp_kthread(void)
3025{
c0f489d2 3026 int __maybe_unused cpu;
5057f55e 3027
c0f489d2 3028 if (!tick_nohz_full_enabled())
5057f55e 3029 return;
c0f489d2
PM
3030#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3031 cpu = tick_do_timer_cpu;
3032 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
5057f55e 3033 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2
PM
3034#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3035 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3036 housekeeping_affine(current);
3037#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3038}
This page took 0.537546 seconds and 5 git commands to generate.