rcu: Per-CPU operation cleanups to rcu_*_qs() functions
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba
MG
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
abaa93d9 36#include "../locking/rtmutex_common.h"
5b61b0ba
MG
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
3fbfbf7a
PM
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 45static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
26845c28
PM
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary. If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
efc151c3 57 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 60 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
61 CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 64 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 67 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
68#endif
69#ifdef CONFIG_PROVE_RCU
efc151c3 70 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 73 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 74#endif
81a294c4 75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
efc151c3 76 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
a858af28
PM
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 79 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
80#endif
81#if NUM_RCU_LVL_4 != 0
efc151c3 82 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 83#endif
f885b7f2 84 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 85 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 86 if (nr_cpu_ids != NR_CPUS)
efc151c3 87 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
3fbfbf7a 88#ifdef CONFIG_RCU_NOCB_CPU
911af505
PM
89#ifndef CONFIG_RCU_NOCB_CPU_NONE
90 if (!have_rcu_nocb_mask) {
615ee544 91 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
911af505
PM
92 have_rcu_nocb_mask = true;
93 }
94#ifdef CONFIG_RCU_NOCB_CPU_ZERO
9a5739d7 95 pr_info("\tOffload RCU callbacks from CPU 0\n");
911af505
PM
96 cpumask_set_cpu(0, rcu_nocb_mask);
97#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
98#ifdef CONFIG_RCU_NOCB_CPU_ALL
9a5739d7 99 pr_info("\tOffload RCU callbacks from all CPUs\n");
5d5a0800 100 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
911af505
PM
101#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
102#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
3fbfbf7a 103 if (have_rcu_nocb_mask) {
5d5a0800
KT
104 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
105 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
106 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
107 rcu_nocb_mask);
108 }
3fbfbf7a 109 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
9a5739d7 110 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
3fbfbf7a 111 if (rcu_nocb_poll)
9a5739d7 112 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
3fbfbf7a
PM
113 }
114#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
26845c28
PM
115}
116
f41d911f
PM
117#ifdef CONFIG_TREE_PREEMPT_RCU
118
a41bfeb2 119RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 120static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 121
d9a3da06
PM
122static int rcu_preempted_readers_exp(struct rcu_node *rnp);
123
f41d911f
PM
124/*
125 * Tell them what RCU they are running.
126 */
0e0fc1c2 127static void __init rcu_bootup_announce(void)
f41d911f 128{
efc151c3 129 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 130 rcu_bootup_announce_oddness();
f41d911f
PM
131}
132
133/*
134 * Return the number of RCU-preempt batches processed thus far
135 * for debug and statistics.
136 */
137long rcu_batches_completed_preempt(void)
138{
139 return rcu_preempt_state.completed;
140}
141EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
142
143/*
144 * Return the number of RCU batches processed thus far for debug & stats.
145 */
146long rcu_batches_completed(void)
147{
148 return rcu_batches_completed_preempt();
149}
150EXPORT_SYMBOL_GPL(rcu_batches_completed);
151
152/*
6cc68793 153 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
154 * that this just means that the task currently running on the CPU is
155 * not in a quiescent state. There might be any number of tasks blocked
156 * while in an RCU read-side critical section.
25502a6c 157 *
1d082fd0
PM
158 * As with the other rcu_*_qs() functions, callers to this function
159 * must disable preemption.
f41d911f 160 */
284a8c93 161static void rcu_preempt_qs(void)
f41d911f 162{
284a8c93
PM
163 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
164 trace_rcu_grace_period(TPS("rcu_preempt"),
165 __this_cpu_read(rcu_preempt_data.gpnum),
166 TPS("cpuqs"));
167 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
168 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
169 current->rcu_read_unlock_special.b.need_qs = false;
170 }
f41d911f
PM
171}
172
173/*
c3422bea
PM
174 * We have entered the scheduler, and the current task might soon be
175 * context-switched away from. If this task is in an RCU read-side
176 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
177 * record that fact, so we enqueue the task on the blkd_tasks list.
178 * The task will dequeue itself when it exits the outermost enclosing
179 * RCU read-side critical section. Therefore, the current grace period
180 * cannot be permitted to complete until the blkd_tasks list entries
181 * predating the current grace period drain, in other words, until
182 * rnp->gp_tasks becomes NULL.
c3422bea
PM
183 *
184 * Caller must disable preemption.
f41d911f 185 */
cba6d0d6 186static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
187{
188 struct task_struct *t = current;
c3422bea 189 unsigned long flags;
f41d911f
PM
190 struct rcu_data *rdp;
191 struct rcu_node *rnp;
192
10f39bb1 193 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 194 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
195
196 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 197 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 198 rnp = rdp->mynode;
1304afb2 199 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 200 smp_mb__after_unlock_lock();
1d082fd0 201 t->rcu_read_unlock_special.b.blocked = true;
86848966 202 t->rcu_blocked_node = rnp;
f41d911f
PM
203
204 /*
205 * If this CPU has already checked in, then this task
206 * will hold up the next grace period rather than the
207 * current grace period. Queue the task accordingly.
208 * If the task is queued for the current grace period
209 * (i.e., this CPU has not yet passed through a quiescent
210 * state for the current grace period), then as long
211 * as that task remains queued, the current grace period
12f5f524
PM
212 * cannot end. Note that there is some uncertainty as
213 * to exactly when the current grace period started.
214 * We take a conservative approach, which can result
215 * in unnecessarily waiting on tasks that started very
216 * slightly after the current grace period began. C'est
217 * la vie!!!
b0e165c0
PM
218 *
219 * But first, note that the current CPU must still be
220 * on line!
f41d911f 221 */
b0e165c0 222 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 223 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
224 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
225 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
226 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
227#ifdef CONFIG_RCU_BOOST
228 if (rnp->boost_tasks != NULL)
229 rnp->boost_tasks = rnp->gp_tasks;
230#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
231 } else {
232 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
233 if (rnp->qsmask & rdp->grpmask)
234 rnp->gp_tasks = &t->rcu_node_entry;
235 }
d4c08f2a
PM
236 trace_rcu_preempt_task(rdp->rsp->name,
237 t->pid,
238 (rnp->qsmask & rdp->grpmask)
239 ? rnp->gpnum
240 : rnp->gpnum + 1);
1304afb2 241 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1 242 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 243 t->rcu_read_unlock_special.s) {
10f39bb1
PM
244
245 /*
246 * Complete exit from RCU read-side critical section on
247 * behalf of preempted instance of __rcu_read_unlock().
248 */
249 rcu_read_unlock_special(t);
f41d911f
PM
250 }
251
252 /*
253 * Either we were not in an RCU read-side critical section to
254 * begin with, or we have now recorded that critical section
255 * globally. Either way, we can now note a quiescent state
256 * for this CPU. Again, if we were in an RCU read-side critical
257 * section, and if that critical section was blocking the current
258 * grace period, then the fact that the task has been enqueued
259 * means that we continue to block the current grace period.
260 */
284a8c93 261 rcu_preempt_qs();
f41d911f
PM
262}
263
fc2219d4
PM
264/*
265 * Check for preempted RCU readers blocking the current grace period
266 * for the specified rcu_node structure. If the caller needs a reliable
267 * answer, it must hold the rcu_node's ->lock.
268 */
27f4d280 269static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 270{
12f5f524 271 return rnp->gp_tasks != NULL;
fc2219d4
PM
272}
273
b668c9cf
PM
274/*
275 * Record a quiescent state for all tasks that were previously queued
276 * on the specified rcu_node structure and that were blocking the current
277 * RCU grace period. The caller must hold the specified rnp->lock with
278 * irqs disabled, and this lock is released upon return, but irqs remain
279 * disabled.
280 */
d3f6bad3 281static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
282 __releases(rnp->lock)
283{
284 unsigned long mask;
285 struct rcu_node *rnp_p;
286
27f4d280 287 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 288 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
289 return; /* Still need more quiescent states! */
290 }
291
292 rnp_p = rnp->parent;
293 if (rnp_p == NULL) {
294 /*
295 * Either there is only one rcu_node in the tree,
296 * or tasks were kicked up to root rcu_node due to
297 * CPUs going offline.
298 */
d3f6bad3 299 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
300 return;
301 }
302
303 /* Report up the rest of the hierarchy. */
304 mask = rnp->grpmask;
1304afb2
PM
305 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
306 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 307 smp_mb__after_unlock_lock();
d3f6bad3 308 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
309}
310
12f5f524
PM
311/*
312 * Advance a ->blkd_tasks-list pointer to the next entry, instead
313 * returning NULL if at the end of the list.
314 */
315static struct list_head *rcu_next_node_entry(struct task_struct *t,
316 struct rcu_node *rnp)
317{
318 struct list_head *np;
319
320 np = t->rcu_node_entry.next;
321 if (np == &rnp->blkd_tasks)
322 np = NULL;
323 return np;
324}
325
b668c9cf
PM
326/*
327 * Handle special cases during rcu_read_unlock(), such as needing to
328 * notify RCU core processing or task having blocked during the RCU
329 * read-side critical section.
330 */
2a3fa843 331void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
332{
333 int empty;
d9a3da06 334 int empty_exp;
389abd48 335 int empty_exp_now;
f41d911f 336 unsigned long flags;
12f5f524 337 struct list_head *np;
82e78d80 338#ifdef CONFIG_RCU_BOOST
abaa93d9 339 bool drop_boost_mutex = false;
82e78d80 340#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f 341 struct rcu_node *rnp;
1d082fd0 342 union rcu_special special;
f41d911f
PM
343
344 /* NMI handlers cannot block and cannot safely manipulate state. */
345 if (in_nmi())
346 return;
347
348 local_irq_save(flags);
349
350 /*
351 * If RCU core is waiting for this CPU to exit critical section,
1d082fd0
PM
352 * let it know that we have done so. Because irqs are disabled,
353 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
354 */
355 special = t->rcu_read_unlock_special;
1d082fd0 356 if (special.b.need_qs) {
284a8c93 357 rcu_preempt_qs();
1d082fd0 358 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
359 local_irq_restore(flags);
360 return;
361 }
f41d911f
PM
362 }
363
79a62f95
LJ
364 /* Hardware IRQ handlers cannot block, complain if they get here. */
365 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
f41d911f
PM
366 local_irq_restore(flags);
367 return;
368 }
369
370 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
371 if (special.b.blocked) {
372 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 373
dd5d19ba
PM
374 /*
375 * Remove this task from the list it blocked on. The
376 * task can migrate while we acquire the lock, but at
377 * most one time. So at most two passes through loop.
378 */
379 for (;;) {
86848966 380 rnp = t->rcu_blocked_node;
1304afb2 381 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 382 smp_mb__after_unlock_lock();
86848966 383 if (rnp == t->rcu_blocked_node)
dd5d19ba 384 break;
1304afb2 385 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 386 }
27f4d280 387 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
388 empty_exp = !rcu_preempted_readers_exp(rnp);
389 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 390 np = rcu_next_node_entry(t, rnp);
f41d911f 391 list_del_init(&t->rcu_node_entry);
82e78d80 392 t->rcu_blocked_node = NULL;
f7f7bac9 393 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 394 rnp->gpnum, t->pid);
12f5f524
PM
395 if (&t->rcu_node_entry == rnp->gp_tasks)
396 rnp->gp_tasks = np;
397 if (&t->rcu_node_entry == rnp->exp_tasks)
398 rnp->exp_tasks = np;
27f4d280
PM
399#ifdef CONFIG_RCU_BOOST
400 if (&t->rcu_node_entry == rnp->boost_tasks)
401 rnp->boost_tasks = np;
abaa93d9
PM
402 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
403 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
27f4d280 404#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
405
406 /*
407 * If this was the last task on the current list, and if
408 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
409 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
410 * so we must take a snapshot of the expedited state.
f41d911f 411 */
389abd48 412 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a 413 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 414 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
415 rnp->gpnum,
416 0, rnp->qsmask,
417 rnp->level,
418 rnp->grplo,
419 rnp->grphi,
420 !!rnp->gp_tasks);
d3f6bad3 421 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 422 } else {
d4c08f2a 423 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 424 }
d9a3da06 425
27f4d280
PM
426#ifdef CONFIG_RCU_BOOST
427 /* Unboost if we were boosted. */
abaa93d9
PM
428 if (drop_boost_mutex) {
429 rt_mutex_unlock(&rnp->boost_mtx);
dfeb9765
PM
430 complete(&rnp->boost_completion);
431 }
27f4d280
PM
432#endif /* #ifdef CONFIG_RCU_BOOST */
433
d9a3da06
PM
434 /*
435 * If this was the last task on the expedited lists,
436 * then we need to report up the rcu_node hierarchy.
437 */
389abd48 438 if (!empty_exp && empty_exp_now)
b40d293e 439 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
440 } else {
441 local_irq_restore(flags);
f41d911f 442 }
f41d911f
PM
443}
444
1ed509a2
PM
445#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446
447/*
448 * Dump detailed information for all tasks blocking the current RCU
449 * grace period on the specified rcu_node structure.
450 */
451static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452{
453 unsigned long flags;
1ed509a2
PM
454 struct task_struct *t;
455
12f5f524 456 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
457 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458 raw_spin_unlock_irqrestore(&rnp->lock, flags);
459 return;
460 }
12f5f524
PM
461 t = list_entry(rnp->gp_tasks,
462 struct task_struct, rcu_node_entry);
463 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464 sched_show_task(t);
465 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
466}
467
468/*
469 * Dump detailed information for all tasks blocking the current RCU
470 * grace period.
471 */
472static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473{
474 struct rcu_node *rnp = rcu_get_root(rsp);
475
476 rcu_print_detail_task_stall_rnp(rnp);
477 rcu_for_each_leaf_node(rsp, rnp)
478 rcu_print_detail_task_stall_rnp(rnp);
479}
480
481#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482
483static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484{
485}
486
487#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
a858af28
PM
489#ifdef CONFIG_RCU_CPU_STALL_INFO
490
491static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492{
efc151c3 493 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
494 rnp->level, rnp->grplo, rnp->grphi);
495}
496
497static void rcu_print_task_stall_end(void)
498{
efc151c3 499 pr_cont("\n");
a858af28
PM
500}
501
502#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503
504static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505{
506}
507
508static void rcu_print_task_stall_end(void)
509{
510}
511
512#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513
f41d911f
PM
514/*
515 * Scan the current list of tasks blocked within RCU read-side critical
516 * sections, printing out the tid of each.
517 */
9bc8b558 518static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 519{
f41d911f 520 struct task_struct *t;
9bc8b558 521 int ndetected = 0;
f41d911f 522
27f4d280 523 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 524 return 0;
a858af28 525 rcu_print_task_stall_begin(rnp);
12f5f524
PM
526 t = list_entry(rnp->gp_tasks,
527 struct task_struct, rcu_node_entry);
9bc8b558 528 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 529 pr_cont(" P%d", t->pid);
9bc8b558
PM
530 ndetected++;
531 }
a858af28 532 rcu_print_task_stall_end();
9bc8b558 533 return ndetected;
f41d911f
PM
534}
535
b0e165c0
PM
536/*
537 * Check that the list of blocked tasks for the newly completed grace
538 * period is in fact empty. It is a serious bug to complete a grace
539 * period that still has RCU readers blocked! This function must be
540 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541 * must be held by the caller.
12f5f524
PM
542 *
543 * Also, if there are blocked tasks on the list, they automatically
544 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
545 */
546static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547{
27f4d280 548 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
549 if (!list_empty(&rnp->blkd_tasks))
550 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 551 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
552}
553
33f76148
PM
554#ifdef CONFIG_HOTPLUG_CPU
555
dd5d19ba
PM
556/*
557 * Handle tasklist migration for case in which all CPUs covered by the
558 * specified rcu_node have gone offline. Move them up to the root
559 * rcu_node. The reason for not just moving them to the immediate
560 * parent is to remove the need for rcu_read_unlock_special() to
561 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
562 * Returns true if there were tasks blocking the current RCU grace
563 * period.
dd5d19ba 564 *
237c80c5
PM
565 * Returns 1 if there was previously a task blocking the current grace
566 * period on the specified rcu_node structure.
567 *
dd5d19ba
PM
568 * The caller must hold rnp->lock with irqs disabled.
569 */
237c80c5
PM
570static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571 struct rcu_node *rnp,
572 struct rcu_data *rdp)
dd5d19ba 573{
dd5d19ba
PM
574 struct list_head *lp;
575 struct list_head *lp_root;
d9a3da06 576 int retval = 0;
dd5d19ba 577 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 578 struct task_struct *t;
dd5d19ba 579
86848966
PM
580 if (rnp == rnp_root) {
581 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 582 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 583 }
12f5f524
PM
584
585 /* If we are on an internal node, complain bitterly. */
586 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
587
588 /*
12f5f524
PM
589 * Move tasks up to root rcu_node. Don't try to get fancy for
590 * this corner-case operation -- just put this node's tasks
591 * at the head of the root node's list, and update the root node's
592 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593 * if non-NULL. This might result in waiting for more tasks than
594 * absolutely necessary, but this is a good performance/complexity
595 * tradeoff.
dd5d19ba 596 */
2036d94a 597 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
598 retval |= RCU_OFL_TASKS_NORM_GP;
599 if (rcu_preempted_readers_exp(rnp))
600 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
601 lp = &rnp->blkd_tasks;
602 lp_root = &rnp_root->blkd_tasks;
603 while (!list_empty(lp)) {
604 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 606 smp_mb__after_unlock_lock();
12f5f524
PM
607 list_del(&t->rcu_node_entry);
608 t->rcu_blocked_node = rnp_root;
609 list_add(&t->rcu_node_entry, lp_root);
610 if (&t->rcu_node_entry == rnp->gp_tasks)
611 rnp_root->gp_tasks = rnp->gp_tasks;
612 if (&t->rcu_node_entry == rnp->exp_tasks)
613 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
614#ifdef CONFIG_RCU_BOOST
615 if (&t->rcu_node_entry == rnp->boost_tasks)
616 rnp_root->boost_tasks = rnp->boost_tasks;
617#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 618 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 619 }
27f4d280 620
1e3fd2b3
PM
621 rnp->gp_tasks = NULL;
622 rnp->exp_tasks = NULL;
27f4d280 623#ifdef CONFIG_RCU_BOOST
1e3fd2b3 624 rnp->boost_tasks = NULL;
5cc900cf
PM
625 /*
626 * In case root is being boosted and leaf was not. Make sure
627 * that we boost the tasks blocking the current grace period
628 * in this case.
629 */
27f4d280 630 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 631 smp_mb__after_unlock_lock();
27f4d280 632 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
633 rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
635 rnp_root->boost_tasks = rnp_root->gp_tasks;
636 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637#endif /* #ifdef CONFIG_RCU_BOOST */
638
237c80c5 639 return retval;
dd5d19ba
PM
640}
641
e5601400
PM
642#endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
f41d911f
PM
644/*
645 * Check for a quiescent state from the current CPU. When a task blocks,
646 * the task is recorded in the corresponding CPU's rcu_node structure,
647 * which is checked elsewhere.
648 *
649 * Caller must disable hard irqs.
650 */
651static void rcu_preempt_check_callbacks(int cpu)
652{
653 struct task_struct *t = current;
654
655 if (t->rcu_read_lock_nesting == 0) {
284a8c93 656 rcu_preempt_qs();
f41d911f
PM
657 return;
658 }
10f39bb1 659 if (t->rcu_read_lock_nesting > 0 &&
284a8c93
PM
660 per_cpu(rcu_preempt_data, cpu).qs_pending &&
661 !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
1d082fd0 662 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
663}
664
a46e0899
PM
665#ifdef CONFIG_RCU_BOOST
666
09223371
SL
667static void rcu_preempt_do_callbacks(void)
668{
c9d4b0af 669 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
670}
671
a46e0899
PM
672#endif /* #ifdef CONFIG_RCU_BOOST */
673
f41d911f 674/*
6cc68793 675 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
676 */
677void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
678{
3fbfbf7a 679 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
680}
681EXPORT_SYMBOL_GPL(call_rcu);
682
6ebb237b
PM
683/**
684 * synchronize_rcu - wait until a grace period has elapsed.
685 *
686 * Control will return to the caller some time after a full grace
687 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
688 * read-side critical sections have completed. Note, however, that
689 * upon return from synchronize_rcu(), the caller might well be executing
690 * concurrently with new RCU read-side critical sections that began while
691 * synchronize_rcu() was waiting. RCU read-side critical sections are
692 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
693 *
694 * See the description of synchronize_sched() for more detailed information
695 * on memory ordering guarantees.
6ebb237b
PM
696 */
697void synchronize_rcu(void)
698{
fe15d706
PM
699 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
700 !lock_is_held(&rcu_lock_map) &&
701 !lock_is_held(&rcu_sched_lock_map),
702 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
703 if (!rcu_scheduler_active)
704 return;
3705b88d
AM
705 if (rcu_expedited)
706 synchronize_rcu_expedited();
707 else
708 wait_rcu_gp(call_rcu);
6ebb237b
PM
709}
710EXPORT_SYMBOL_GPL(synchronize_rcu);
711
d9a3da06 712static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 713static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
714static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
715
716/*
717 * Return non-zero if there are any tasks in RCU read-side critical
718 * sections blocking the current preemptible-RCU expedited grace period.
719 * If there is no preemptible-RCU expedited grace period currently in
720 * progress, returns zero unconditionally.
721 */
722static int rcu_preempted_readers_exp(struct rcu_node *rnp)
723{
12f5f524 724 return rnp->exp_tasks != NULL;
d9a3da06
PM
725}
726
727/*
728 * return non-zero if there is no RCU expedited grace period in progress
729 * for the specified rcu_node structure, in other words, if all CPUs and
730 * tasks covered by the specified rcu_node structure have done their bit
731 * for the current expedited grace period. Works only for preemptible
732 * RCU -- other RCU implementation use other means.
733 *
734 * Caller must hold sync_rcu_preempt_exp_mutex.
735 */
736static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
737{
738 return !rcu_preempted_readers_exp(rnp) &&
739 ACCESS_ONCE(rnp->expmask) == 0;
740}
741
742/*
743 * Report the exit from RCU read-side critical section for the last task
744 * that queued itself during or before the current expedited preemptible-RCU
745 * grace period. This event is reported either to the rcu_node structure on
746 * which the task was queued or to one of that rcu_node structure's ancestors,
747 * recursively up the tree. (Calm down, calm down, we do the recursion
748 * iteratively!)
749 *
b40d293e
TG
750 * Most callers will set the "wake" flag, but the task initiating the
751 * expedited grace period need not wake itself.
752 *
d9a3da06
PM
753 * Caller must hold sync_rcu_preempt_exp_mutex.
754 */
b40d293e
TG
755static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
756 bool wake)
d9a3da06
PM
757{
758 unsigned long flags;
759 unsigned long mask;
760
1304afb2 761 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 762 smp_mb__after_unlock_lock();
d9a3da06 763 for (;;) {
131906b0
PM
764 if (!sync_rcu_preempt_exp_done(rnp)) {
765 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 766 break;
131906b0 767 }
d9a3da06 768 if (rnp->parent == NULL) {
131906b0 769 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
770 if (wake) {
771 smp_mb(); /* EGP done before wake_up(). */
b40d293e 772 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 773 }
d9a3da06
PM
774 break;
775 }
776 mask = rnp->grpmask;
1304afb2 777 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 778 rnp = rnp->parent;
1304afb2 779 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 780 smp_mb__after_unlock_lock();
d9a3da06
PM
781 rnp->expmask &= ~mask;
782 }
d9a3da06
PM
783}
784
785/*
786 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
787 * grace period for the specified rcu_node structure. If there are no such
788 * tasks, report it up the rcu_node hierarchy.
789 *
7b2e6011
PM
790 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
791 * CPU hotplug operations.
d9a3da06
PM
792 */
793static void
794sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
795{
1217ed1b 796 unsigned long flags;
12f5f524 797 int must_wait = 0;
d9a3da06 798
1217ed1b 799 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 800 smp_mb__after_unlock_lock();
c701d5d9 801 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 802 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 803 } else {
12f5f524 804 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 805 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
806 must_wait = 1;
807 }
d9a3da06 808 if (!must_wait)
b40d293e 809 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
810}
811
236fefaf
PM
812/**
813 * synchronize_rcu_expedited - Brute-force RCU grace period
814 *
815 * Wait for an RCU-preempt grace period, but expedite it. The basic
816 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
817 * the ->blkd_tasks lists and wait for this list to drain. This consumes
818 * significant time on all CPUs and is unfriendly to real-time workloads,
819 * so is thus not recommended for any sort of common-case code.
820 * In fact, if you are using synchronize_rcu_expedited() in a loop,
821 * please restructure your code to batch your updates, and then Use a
822 * single synchronize_rcu() instead.
823 *
824 * Note that it is illegal to call this function while holding any lock
825 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
826 * to call this function from a CPU-hotplug notifier. Failing to observe
827 * these restriction will result in deadlock.
019129d5
PM
828 */
829void synchronize_rcu_expedited(void)
830{
d9a3da06
PM
831 unsigned long flags;
832 struct rcu_node *rnp;
833 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 834 unsigned long snap;
d9a3da06
PM
835 int trycount = 0;
836
837 smp_mb(); /* Caller's modifications seen first by other CPUs. */
838 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
839 smp_mb(); /* Above access cannot bleed into critical section. */
840
1943c89d
PM
841 /*
842 * Block CPU-hotplug operations. This means that any CPU-hotplug
843 * operation that finds an rcu_node structure with tasks in the
844 * process of being boosted will know that all tasks blocking
845 * this expedited grace period will already be in the process of
846 * being boosted. This simplifies the process of moving tasks
847 * from leaf to root rcu_node structures.
848 */
849 get_online_cpus();
850
d9a3da06
PM
851 /*
852 * Acquire lock, falling back to synchronize_rcu() if too many
853 * lock-acquisition failures. Of course, if someone does the
854 * expedited grace period for us, just leave.
855 */
856 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
857 if (ULONG_CMP_LT(snap,
858 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
859 put_online_cpus();
860 goto mb_ret; /* Others did our work for us. */
861 }
c701d5d9 862 if (trycount++ < 10) {
d9a3da06 863 udelay(trycount * num_online_cpus());
c701d5d9 864 } else {
1943c89d 865 put_online_cpus();
3705b88d 866 wait_rcu_gp(call_rcu);
d9a3da06
PM
867 return;
868 }
d9a3da06 869 }
1943c89d
PM
870 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
871 put_online_cpus();
d9a3da06 872 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 873 }
d9a3da06 874
12f5f524 875 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
876 synchronize_sched_expedited();
877
d9a3da06
PM
878 /* Initialize ->expmask for all non-leaf rcu_node structures. */
879 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 880 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 881 smp_mb__after_unlock_lock();
d9a3da06 882 rnp->expmask = rnp->qsmaskinit;
1943c89d 883 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
884 }
885
12f5f524 886 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
887 rcu_for_each_leaf_node(rsp, rnp)
888 sync_rcu_preempt_exp_init(rsp, rnp);
889 if (NUM_RCU_NODES > 1)
890 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
891
1943c89d 892 put_online_cpus();
d9a3da06 893
12f5f524 894 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
895 rnp = rcu_get_root(rsp);
896 wait_event(sync_rcu_preempt_exp_wq,
897 sync_rcu_preempt_exp_done(rnp));
898
899 /* Clean up and exit. */
900 smp_mb(); /* ensure expedited GP seen before counter increment. */
901 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
902unlock_mb_ret:
903 mutex_unlock(&sync_rcu_preempt_exp_mutex);
904mb_ret:
905 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
906}
907EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
908
e74f4c45
PM
909/**
910 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
911 *
912 * Note that this primitive does not necessarily wait for an RCU grace period
913 * to complete. For example, if there are no RCU callbacks queued anywhere
914 * in the system, then rcu_barrier() is within its rights to return
915 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
916 */
917void rcu_barrier(void)
918{
037b64ed 919 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
920}
921EXPORT_SYMBOL_GPL(rcu_barrier);
922
1eba8f84 923/*
6cc68793 924 * Initialize preemptible RCU's state structures.
1eba8f84
PM
925 */
926static void __init __rcu_init_preempt(void)
927{
394f99a9 928 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
929}
930
2439b696
PM
931/*
932 * Check for a task exiting while in a preemptible-RCU read-side
933 * critical section, clean up if so. No need to issue warnings,
934 * as debug_check_no_locks_held() already does this if lockdep
935 * is enabled.
936 */
937void exit_rcu(void)
938{
939 struct task_struct *t = current;
940
941 if (likely(list_empty(&current->rcu_node_entry)))
942 return;
943 t->rcu_read_lock_nesting = 1;
944 barrier();
1d082fd0 945 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
946 __rcu_read_unlock();
947}
948
f41d911f
PM
949#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
950
e534165b 951static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 952
f41d911f
PM
953/*
954 * Tell them what RCU they are running.
955 */
0e0fc1c2 956static void __init rcu_bootup_announce(void)
f41d911f 957{
efc151c3 958 pr_info("Hierarchical RCU implementation.\n");
26845c28 959 rcu_bootup_announce_oddness();
f41d911f
PM
960}
961
962/*
963 * Return the number of RCU batches processed thus far for debug & stats.
964 */
965long rcu_batches_completed(void)
966{
967 return rcu_batches_completed_sched();
968}
969EXPORT_SYMBOL_GPL(rcu_batches_completed);
970
cba6d0d6
PM
971/*
972 * Because preemptible RCU does not exist, we never have to check for
973 * CPUs being in quiescent states.
974 */
975static void rcu_preempt_note_context_switch(int cpu)
976{
977}
978
fc2219d4 979/*
6cc68793 980 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
981 * RCU readers.
982 */
27f4d280 983static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
984{
985 return 0;
986}
987
b668c9cf
PM
988#ifdef CONFIG_HOTPLUG_CPU
989
990/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 991static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b41d1b92 992 __releases(rnp->lock)
b668c9cf 993{
1304afb2 994 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
995}
996
997#endif /* #ifdef CONFIG_HOTPLUG_CPU */
998
1ed509a2 999/*
6cc68793 1000 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
1001 * tasks blocked within RCU read-side critical sections.
1002 */
1003static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1004{
1005}
1006
f41d911f 1007/*
6cc68793 1008 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1009 * tasks blocked within RCU read-side critical sections.
1010 */
9bc8b558 1011static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1012{
9bc8b558 1013 return 0;
f41d911f
PM
1014}
1015
b0e165c0 1016/*
6cc68793 1017 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1018 * so there is no need to check for blocked tasks. So check only for
1019 * bogus qsmask values.
b0e165c0
PM
1020 */
1021static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1022{
49e29126 1023 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1024}
1025
33f76148
PM
1026#ifdef CONFIG_HOTPLUG_CPU
1027
dd5d19ba 1028/*
6cc68793 1029 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1030 * tasks that were blocked within RCU read-side critical sections, and
1031 * such non-existent tasks cannot possibly have been blocking the current
1032 * grace period.
dd5d19ba 1033 */
237c80c5
PM
1034static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1035 struct rcu_node *rnp,
1036 struct rcu_data *rdp)
dd5d19ba 1037{
237c80c5 1038 return 0;
dd5d19ba
PM
1039}
1040
e5601400
PM
1041#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1042
f41d911f 1043/*
6cc68793 1044 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1045 * to check.
1046 */
1eba8f84 1047static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1048{
1049}
1050
019129d5
PM
1051/*
1052 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1053 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1054 */
1055void synchronize_rcu_expedited(void)
1056{
1057 synchronize_sched_expedited();
1058}
1059EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1060
d9a3da06
PM
1061#ifdef CONFIG_HOTPLUG_CPU
1062
1063/*
6cc68793 1064 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1065 * report on tasks preempted in RCU read-side critical sections during
1066 * expedited RCU grace periods.
1067 */
b40d293e
TG
1068static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1069 bool wake)
d9a3da06 1070{
d9a3da06
PM
1071}
1072
1073#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1074
e74f4c45 1075/*
6cc68793 1076 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1077 * another name for rcu_barrier_sched().
1078 */
1079void rcu_barrier(void)
1080{
1081 rcu_barrier_sched();
1082}
1083EXPORT_SYMBOL_GPL(rcu_barrier);
1084
1eba8f84 1085/*
6cc68793 1086 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1087 */
1088static void __init __rcu_init_preempt(void)
1089{
1090}
1091
2439b696
PM
1092/*
1093 * Because preemptible RCU does not exist, tasks cannot possibly exit
1094 * while in preemptible RCU read-side critical sections.
1095 */
1096void exit_rcu(void)
1097{
1098}
1099
f41d911f 1100#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1101
27f4d280
PM
1102#ifdef CONFIG_RCU_BOOST
1103
1696a8be 1104#include "../locking/rtmutex_common.h"
27f4d280 1105
0ea1f2eb
PM
1106#ifdef CONFIG_RCU_TRACE
1107
1108static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1109{
1110 if (list_empty(&rnp->blkd_tasks))
1111 rnp->n_balk_blkd_tasks++;
1112 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1113 rnp->n_balk_exp_gp_tasks++;
1114 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1115 rnp->n_balk_boost_tasks++;
1116 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1117 rnp->n_balk_notblocked++;
1118 else if (rnp->gp_tasks != NULL &&
a9f4793d 1119 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1120 rnp->n_balk_notyet++;
1121 else
1122 rnp->n_balk_nos++;
1123}
1124
1125#else /* #ifdef CONFIG_RCU_TRACE */
1126
1127static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1128{
1129}
1130
1131#endif /* #else #ifdef CONFIG_RCU_TRACE */
1132
5d01bbd1
TG
1133static void rcu_wake_cond(struct task_struct *t, int status)
1134{
1135 /*
1136 * If the thread is yielding, only wake it when this
1137 * is invoked from idle
1138 */
1139 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1140 wake_up_process(t);
1141}
1142
27f4d280
PM
1143/*
1144 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1145 * or ->boost_tasks, advancing the pointer to the next task in the
1146 * ->blkd_tasks list.
1147 *
1148 * Note that irqs must be enabled: boosting the task can block.
1149 * Returns 1 if there are more tasks needing to be boosted.
1150 */
1151static int rcu_boost(struct rcu_node *rnp)
1152{
1153 unsigned long flags;
27f4d280
PM
1154 struct task_struct *t;
1155 struct list_head *tb;
1156
1157 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1158 return 0; /* Nothing left to boost. */
1159
1160 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1161 smp_mb__after_unlock_lock();
27f4d280
PM
1162
1163 /*
1164 * Recheck under the lock: all tasks in need of boosting
1165 * might exit their RCU read-side critical sections on their own.
1166 */
1167 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1168 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1169 return 0;
1170 }
1171
1172 /*
1173 * Preferentially boost tasks blocking expedited grace periods.
1174 * This cannot starve the normal grace periods because a second
1175 * expedited grace period must boost all blocked tasks, including
1176 * those blocking the pre-existing normal grace period.
1177 */
0ea1f2eb 1178 if (rnp->exp_tasks != NULL) {
27f4d280 1179 tb = rnp->exp_tasks;
0ea1f2eb
PM
1180 rnp->n_exp_boosts++;
1181 } else {
27f4d280 1182 tb = rnp->boost_tasks;
0ea1f2eb
PM
1183 rnp->n_normal_boosts++;
1184 }
1185 rnp->n_tasks_boosted++;
27f4d280
PM
1186
1187 /*
1188 * We boost task t by manufacturing an rt_mutex that appears to
1189 * be held by task t. We leave a pointer to that rt_mutex where
1190 * task t can find it, and task t will release the mutex when it
1191 * exits its outermost RCU read-side critical section. Then
1192 * simply acquiring this artificial rt_mutex will boost task
1193 * t's priority. (Thanks to tglx for suggesting this approach!)
1194 *
1195 * Note that task t must acquire rnp->lock to remove itself from
1196 * the ->blkd_tasks list, which it will do from exit() if from
1197 * nowhere else. We therefore are guaranteed that task t will
1198 * stay around at least until we drop rnp->lock. Note that
1199 * rnp->lock also resolves races between our priority boosting
1200 * and task t's exiting its outermost RCU read-side critical
1201 * section.
1202 */
1203 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1204 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
dfeb9765 1205 init_completion(&rnp->boost_completion);
27f4d280 1206 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1207 /* Lock only for side effect: boosts task t's priority. */
1208 rt_mutex_lock(&rnp->boost_mtx);
1209 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1210
abaa93d9 1211 /* Wait for boostee to be done w/boost_mtx before reinitializing. */
dfeb9765 1212 wait_for_completion(&rnp->boost_completion);
27f4d280 1213
4f89b336
PM
1214 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1215 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1216}
1217
27f4d280
PM
1218/*
1219 * Priority-boosting kthread. One per leaf rcu_node and one for the
1220 * root rcu_node.
1221 */
1222static int rcu_boost_kthread(void *arg)
1223{
1224 struct rcu_node *rnp = (struct rcu_node *)arg;
1225 int spincnt = 0;
1226 int more2boost;
1227
f7f7bac9 1228 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1229 for (;;) {
d71df90e 1230 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1231 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1232 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1233 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1234 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1235 more2boost = rcu_boost(rnp);
1236 if (more2boost)
1237 spincnt++;
1238 else
1239 spincnt = 0;
1240 if (spincnt > 10) {
5d01bbd1 1241 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1242 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1243 schedule_timeout_interruptible(2);
f7f7bac9 1244 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1245 spincnt = 0;
1246 }
1247 }
1217ed1b 1248 /* NOTREACHED */
f7f7bac9 1249 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1250 return 0;
1251}
1252
1253/*
1254 * Check to see if it is time to start boosting RCU readers that are
1255 * blocking the current grace period, and, if so, tell the per-rcu_node
1256 * kthread to start boosting them. If there is an expedited grace
1257 * period in progress, it is always time to boost.
1258 *
b065a853
PM
1259 * The caller must hold rnp->lock, which this function releases.
1260 * The ->boost_kthread_task is immortal, so we don't need to worry
1261 * about it going away.
27f4d280 1262 */
1217ed1b 1263static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1264 __releases(rnp->lock)
27f4d280
PM
1265{
1266 struct task_struct *t;
1267
0ea1f2eb
PM
1268 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1269 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1270 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1271 return;
0ea1f2eb 1272 }
27f4d280
PM
1273 if (rnp->exp_tasks != NULL ||
1274 (rnp->gp_tasks != NULL &&
1275 rnp->boost_tasks == NULL &&
1276 rnp->qsmask == 0 &&
1277 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1278 if (rnp->exp_tasks == NULL)
1279 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1280 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1281 t = rnp->boost_kthread_task;
5d01bbd1
TG
1282 if (t)
1283 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1284 } else {
0ea1f2eb 1285 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1286 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1287 }
27f4d280
PM
1288}
1289
a46e0899
PM
1290/*
1291 * Wake up the per-CPU kthread to invoke RCU callbacks.
1292 */
1293static void invoke_rcu_callbacks_kthread(void)
1294{
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1299 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1300 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1301 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1302 __this_cpu_read(rcu_cpu_kthread_status));
1303 }
a46e0899
PM
1304 local_irq_restore(flags);
1305}
1306
dff1672d
PM
1307/*
1308 * Is the current CPU running the RCU-callbacks kthread?
1309 * Caller must have preemption disabled.
1310 */
1311static bool rcu_is_callbacks_kthread(void)
1312{
c9d4b0af 1313 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1314}
1315
27f4d280
PM
1316#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1317
1318/*
1319 * Do priority-boost accounting for the start of a new grace period.
1320 */
1321static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1322{
1323 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1324}
1325
27f4d280
PM
1326/*
1327 * Create an RCU-boost kthread for the specified node if one does not
1328 * already exist. We only create this kthread for preemptible RCU.
1329 * Returns zero if all is well, a negated errno otherwise.
1330 */
49fb4c62 1331static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1332 struct rcu_node *rnp)
27f4d280 1333{
5d01bbd1 1334 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1335 unsigned long flags;
1336 struct sched_param sp;
1337 struct task_struct *t;
1338
1339 if (&rcu_preempt_state != rsp)
1340 return 0;
5d01bbd1
TG
1341
1342 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1343 return 0;
1344
a46e0899 1345 rsp->boost = 1;
27f4d280
PM
1346 if (rnp->boost_kthread_task != NULL)
1347 return 0;
1348 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1349 "rcub/%d", rnp_index);
27f4d280
PM
1350 if (IS_ERR(t))
1351 return PTR_ERR(t);
1352 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1353 smp_mb__after_unlock_lock();
27f4d280
PM
1354 rnp->boost_kthread_task = t;
1355 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1356 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1357 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1358 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1359 return 0;
1360}
1361
f8b7fc6b
PM
1362static void rcu_kthread_do_work(void)
1363{
c9d4b0af
CL
1364 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1365 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1366 rcu_preempt_do_callbacks();
1367}
1368
62ab7072 1369static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1370{
f8b7fc6b 1371 struct sched_param sp;
f8b7fc6b 1372
62ab7072
PM
1373 sp.sched_priority = RCU_KTHREAD_PRIO;
1374 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1375}
1376
62ab7072 1377static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1378{
62ab7072 1379 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1380}
1381
62ab7072 1382static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1383{
c9d4b0af 1384 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1385}
1386
1387/*
1388 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1389 * RCU softirq used in flavors and configurations of RCU that do not
1390 * support RCU priority boosting.
f8b7fc6b 1391 */
62ab7072 1392static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1393{
c9d4b0af
CL
1394 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1395 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1396 int spincnt;
f8b7fc6b 1397
62ab7072 1398 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1399 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1400 local_bh_disable();
f8b7fc6b 1401 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1402 this_cpu_inc(rcu_cpu_kthread_loops);
1403 local_irq_disable();
f8b7fc6b
PM
1404 work = *workp;
1405 *workp = 0;
62ab7072 1406 local_irq_enable();
f8b7fc6b
PM
1407 if (work)
1408 rcu_kthread_do_work();
1409 local_bh_enable();
62ab7072 1410 if (*workp == 0) {
f7f7bac9 1411 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1412 *statusp = RCU_KTHREAD_WAITING;
1413 return;
f8b7fc6b
PM
1414 }
1415 }
62ab7072 1416 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1417 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1418 schedule_timeout_interruptible(2);
f7f7bac9 1419 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1420 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1421}
1422
1423/*
1424 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1425 * served by the rcu_node in question. The CPU hotplug lock is still
1426 * held, so the value of rnp->qsmaskinit will be stable.
1427 *
1428 * We don't include outgoingcpu in the affinity set, use -1 if there is
1429 * no outgoing CPU. If there are no CPUs left in the affinity set,
1430 * this function allows the kthread to execute on any CPU.
1431 */
5d01bbd1 1432static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1433{
5d01bbd1
TG
1434 struct task_struct *t = rnp->boost_kthread_task;
1435 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1436 cpumask_var_t cm;
1437 int cpu;
f8b7fc6b 1438
5d01bbd1 1439 if (!t)
f8b7fc6b 1440 return;
5d01bbd1 1441 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1442 return;
f8b7fc6b
PM
1443 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1444 if ((mask & 0x1) && cpu != outgoingcpu)
1445 cpumask_set_cpu(cpu, cm);
1446 if (cpumask_weight(cm) == 0) {
1447 cpumask_setall(cm);
1448 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1449 cpumask_clear_cpu(cpu, cm);
1450 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1451 }
5d01bbd1 1452 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1453 free_cpumask_var(cm);
1454}
1455
62ab7072
PM
1456static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1457 .store = &rcu_cpu_kthread_task,
1458 .thread_should_run = rcu_cpu_kthread_should_run,
1459 .thread_fn = rcu_cpu_kthread,
1460 .thread_comm = "rcuc/%u",
1461 .setup = rcu_cpu_kthread_setup,
1462 .park = rcu_cpu_kthread_park,
1463};
f8b7fc6b
PM
1464
1465/*
1466 * Spawn all kthreads -- called as soon as the scheduler is running.
1467 */
1468static int __init rcu_spawn_kthreads(void)
1469{
f8b7fc6b 1470 struct rcu_node *rnp;
5d01bbd1 1471 int cpu;
f8b7fc6b 1472
b0d30417 1473 rcu_scheduler_fully_active = 1;
62ab7072 1474 for_each_possible_cpu(cpu)
f8b7fc6b 1475 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1476 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
e534165b
US
1477 rnp = rcu_get_root(rcu_state_p);
1478 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1479 if (NUM_RCU_NODES > 1) {
e534165b
US
1480 rcu_for_each_leaf_node(rcu_state_p, rnp)
1481 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1482 }
1483 return 0;
1484}
1485early_initcall(rcu_spawn_kthreads);
1486
49fb4c62 1487static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1488{
e534165b 1489 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1490 struct rcu_node *rnp = rdp->mynode;
1491
1492 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1493 if (rcu_scheduler_fully_active)
e534165b 1494 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1495}
1496
27f4d280
PM
1497#else /* #ifdef CONFIG_RCU_BOOST */
1498
1217ed1b 1499static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1500 __releases(rnp->lock)
27f4d280 1501{
1217ed1b 1502 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1503}
1504
a46e0899 1505static void invoke_rcu_callbacks_kthread(void)
27f4d280 1506{
a46e0899 1507 WARN_ON_ONCE(1);
27f4d280
PM
1508}
1509
dff1672d
PM
1510static bool rcu_is_callbacks_kthread(void)
1511{
1512 return false;
1513}
1514
27f4d280
PM
1515static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1516{
1517}
1518
5d01bbd1 1519static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1520{
1521}
1522
b0d30417
PM
1523static int __init rcu_scheduler_really_started(void)
1524{
1525 rcu_scheduler_fully_active = 1;
1526 return 0;
1527}
1528early_initcall(rcu_scheduler_really_started);
1529
49fb4c62 1530static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1531{
1532}
1533
27f4d280
PM
1534#endif /* #else #ifdef CONFIG_RCU_BOOST */
1535
8bd93a2c
PM
1536#if !defined(CONFIG_RCU_FAST_NO_HZ)
1537
1538/*
1539 * Check to see if any future RCU-related work will need to be done
1540 * by the current CPU, even if none need be done immediately, returning
1541 * 1 if so. This function is part of the RCU implementation; it is -not-
1542 * an exported member of the RCU API.
1543 *
7cb92499
PM
1544 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1545 * any flavor of RCU.
8bd93a2c 1546 */
ffa83fb5 1547#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa9b1630 1548int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1549{
aa9b1630 1550 *delta_jiffies = ULONG_MAX;
c0f4dfd4 1551 return rcu_cpu_has_callbacks(cpu, NULL);
7cb92499 1552}
ffa83fb5 1553#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1554
1555/*
1556 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1557 * after it.
1558 */
1559static void rcu_cleanup_after_idle(int cpu)
1560{
1561}
1562
aea1b35e 1563/*
a858af28 1564 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1565 * is nothing.
1566 */
1567static void rcu_prepare_for_idle(int cpu)
1568{
1569}
1570
c57afe80
PM
1571/*
1572 * Don't bother keeping a running count of the number of RCU callbacks
1573 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1574 */
1575static void rcu_idle_count_callbacks_posted(void)
1576{
1577}
1578
8bd93a2c
PM
1579#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1580
f23f7fa1
PM
1581/*
1582 * This code is invoked when a CPU goes idle, at which point we want
1583 * to have the CPU do everything required for RCU so that it can enter
1584 * the energy-efficient dyntick-idle mode. This is handled by a
1585 * state machine implemented by rcu_prepare_for_idle() below.
1586 *
1587 * The following three proprocessor symbols control this state machine:
1588 *
f23f7fa1
PM
1589 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1590 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1591 * is sized to be roughly one RCU grace period. Those energy-efficiency
1592 * benchmarkers who might otherwise be tempted to set this to a large
1593 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1594 * system. And if you are -that- concerned about energy efficiency,
1595 * just power the system down and be done with it!
778d250a
PM
1596 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1597 * permitted to sleep in dyntick-idle mode with only lazy RCU
1598 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1599 *
1600 * The values below work well in practice. If future workloads require
1601 * adjustment, they can be converted into kernel config parameters, though
1602 * making the state machine smarter might be a better option.
1603 */
e84c48ae 1604#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1605#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1606
5e44ce35
PM
1607static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1608module_param(rcu_idle_gp_delay, int, 0644);
1609static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1610module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1611
d689fe22 1612extern int tick_nohz_active;
486e2593
PM
1613
1614/*
c229828c
PM
1615 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1616 * only if it has been awhile since the last time we did so. Afterwards,
1617 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1618 */
f1f399d1 1619static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1620{
c0f4dfd4
PM
1621 bool cbs_ready = false;
1622 struct rcu_data *rdp;
c229828c 1623 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1624 struct rcu_node *rnp;
1625 struct rcu_state *rsp;
486e2593 1626
c229828c
PM
1627 /* Exit early if we advanced recently. */
1628 if (jiffies == rdtp->last_advance_all)
1629 return 0;
1630 rdtp->last_advance_all = jiffies;
1631
c0f4dfd4
PM
1632 for_each_rcu_flavor(rsp) {
1633 rdp = this_cpu_ptr(rsp->rda);
1634 rnp = rdp->mynode;
486e2593 1635
c0f4dfd4
PM
1636 /*
1637 * Don't bother checking unless a grace period has
1638 * completed since we last checked and there are
1639 * callbacks not yet ready to invoke.
1640 */
1641 if (rdp->completed != rnp->completed &&
1642 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1643 note_gp_changes(rsp, rdp);
486e2593 1644
c0f4dfd4
PM
1645 if (cpu_has_callbacks_ready_to_invoke(rdp))
1646 cbs_ready = true;
1647 }
1648 return cbs_ready;
486e2593
PM
1649}
1650
aa9b1630 1651/*
c0f4dfd4
PM
1652 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1653 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1654 * caller to set the timeout based on whether or not there are non-lazy
1655 * callbacks.
aa9b1630 1656 *
c0f4dfd4 1657 * The caller must have disabled interrupts.
aa9b1630 1658 */
ffa83fb5 1659#ifndef CONFIG_RCU_NOCB_CPU_ALL
c0f4dfd4 1660int rcu_needs_cpu(int cpu, unsigned long *dj)
aa9b1630
PM
1661{
1662 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1663
c0f4dfd4
PM
1664 /* Snapshot to detect later posting of non-lazy callback. */
1665 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1666
aa9b1630 1667 /* If no callbacks, RCU doesn't need the CPU. */
c0f4dfd4
PM
1668 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1669 *dj = ULONG_MAX;
aa9b1630
PM
1670 return 0;
1671 }
c0f4dfd4
PM
1672
1673 /* Attempt to advance callbacks. */
1674 if (rcu_try_advance_all_cbs()) {
1675 /* Some ready to invoke, so initiate later invocation. */
1676 invoke_rcu_core();
aa9b1630
PM
1677 return 1;
1678 }
c0f4dfd4
PM
1679 rdtp->last_accelerate = jiffies;
1680
1681 /* Request timer delay depending on laziness, and round. */
6faf7283 1682 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1683 *dj = round_up(rcu_idle_gp_delay + jiffies,
1684 rcu_idle_gp_delay) - jiffies;
e84c48ae 1685 } else {
c0f4dfd4 1686 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1687 }
aa9b1630
PM
1688 return 0;
1689}
ffa83fb5 1690#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1691
21e52e15 1692/*
c0f4dfd4
PM
1693 * Prepare a CPU for idle from an RCU perspective. The first major task
1694 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1695 * The second major task is to check to see if a non-lazy callback has
1696 * arrived at a CPU that previously had only lazy callbacks. The third
1697 * major task is to accelerate (that is, assign grace-period numbers to)
1698 * any recently arrived callbacks.
aea1b35e
PM
1699 *
1700 * The caller must have disabled interrupts.
8bd93a2c 1701 */
aea1b35e 1702static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1703{
f1f399d1 1704#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1705 bool needwake;
c0f4dfd4 1706 struct rcu_data *rdp;
5955f7ee 1707 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4
PM
1708 struct rcu_node *rnp;
1709 struct rcu_state *rsp;
9d2ad243
PM
1710 int tne;
1711
1712 /* Handle nohz enablement switches conservatively. */
d689fe22 1713 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1714 if (tne != rdtp->tick_nohz_enabled_snap) {
c0f4dfd4 1715 if (rcu_cpu_has_callbacks(cpu, NULL))
9d2ad243
PM
1716 invoke_rcu_core(); /* force nohz to see update. */
1717 rdtp->tick_nohz_enabled_snap = tne;
1718 return;
1719 }
1720 if (!tne)
1721 return;
f511fc62 1722
c0f4dfd4 1723 /* If this is a no-CBs CPU, no callbacks, just return. */
534c97b0 1724 if (rcu_is_nocb_cpu(cpu))
9a0c6fef 1725 return;
9a0c6fef 1726
c57afe80 1727 /*
c0f4dfd4
PM
1728 * If a non-lazy callback arrived at a CPU having only lazy
1729 * callbacks, invoke RCU core for the side-effect of recalculating
1730 * idle duration on re-entry to idle.
c57afe80 1731 */
c0f4dfd4
PM
1732 if (rdtp->all_lazy &&
1733 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1734 rdtp->all_lazy = false;
1735 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1736 invoke_rcu_core();
c57afe80
PM
1737 return;
1738 }
c57afe80 1739
3084f2f8 1740 /*
c0f4dfd4
PM
1741 * If we have not yet accelerated this jiffy, accelerate all
1742 * callbacks on this CPU.
3084f2f8 1743 */
c0f4dfd4 1744 if (rdtp->last_accelerate == jiffies)
aea1b35e 1745 return;
c0f4dfd4
PM
1746 rdtp->last_accelerate = jiffies;
1747 for_each_rcu_flavor(rsp) {
1748 rdp = per_cpu_ptr(rsp->rda, cpu);
1749 if (!*rdp->nxttail[RCU_DONE_TAIL])
1750 continue;
1751 rnp = rdp->mynode;
1752 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1753 smp_mb__after_unlock_lock();
48a7639c 1754 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1755 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1756 if (needwake)
1757 rcu_gp_kthread_wake(rsp);
77e38ed3 1758 }
f1f399d1 1759#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1760}
3084f2f8 1761
c0f4dfd4
PM
1762/*
1763 * Clean up for exit from idle. Attempt to advance callbacks based on
1764 * any grace periods that elapsed while the CPU was idle, and if any
1765 * callbacks are now ready to invoke, initiate invocation.
1766 */
1767static void rcu_cleanup_after_idle(int cpu)
1768{
f1f399d1 1769#ifndef CONFIG_RCU_NOCB_CPU_ALL
534c97b0 1770 if (rcu_is_nocb_cpu(cpu))
aea1b35e 1771 return;
7a497c96
PM
1772 if (rcu_try_advance_all_cbs())
1773 invoke_rcu_core();
f1f399d1 1774#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1775}
1776
c57afe80 1777/*
98248a0e
PM
1778 * Keep a running count of the number of non-lazy callbacks posted
1779 * on this CPU. This running counter (which is never decremented) allows
1780 * rcu_prepare_for_idle() to detect when something out of the idle loop
1781 * posts a callback, even if an equal number of callbacks are invoked.
1782 * Of course, callbacks should only be posted from within a trace event
1783 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1784 */
1785static void rcu_idle_count_callbacks_posted(void)
1786{
5955f7ee 1787 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1788}
1789
b626c1b6
PM
1790/*
1791 * Data for flushing lazy RCU callbacks at OOM time.
1792 */
1793static atomic_t oom_callback_count;
1794static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1795
1796/*
1797 * RCU OOM callback -- decrement the outstanding count and deliver the
1798 * wake-up if we are the last one.
1799 */
1800static void rcu_oom_callback(struct rcu_head *rhp)
1801{
1802 if (atomic_dec_and_test(&oom_callback_count))
1803 wake_up(&oom_callback_wq);
1804}
1805
1806/*
1807 * Post an rcu_oom_notify callback on the current CPU if it has at
1808 * least one lazy callback. This will unnecessarily post callbacks
1809 * to CPUs that already have a non-lazy callback at the end of their
1810 * callback list, but this is an infrequent operation, so accept some
1811 * extra overhead to keep things simple.
1812 */
1813static void rcu_oom_notify_cpu(void *unused)
1814{
1815 struct rcu_state *rsp;
1816 struct rcu_data *rdp;
1817
1818 for_each_rcu_flavor(rsp) {
fa07a58f 1819 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1820 if (rdp->qlen_lazy != 0) {
1821 atomic_inc(&oom_callback_count);
1822 rsp->call(&rdp->oom_head, rcu_oom_callback);
1823 }
1824 }
1825}
1826
1827/*
1828 * If low on memory, ensure that each CPU has a non-lazy callback.
1829 * This will wake up CPUs that have only lazy callbacks, in turn
1830 * ensuring that they free up the corresponding memory in a timely manner.
1831 * Because an uncertain amount of memory will be freed in some uncertain
1832 * timeframe, we do not claim to have freed anything.
1833 */
1834static int rcu_oom_notify(struct notifier_block *self,
1835 unsigned long notused, void *nfreed)
1836{
1837 int cpu;
1838
1839 /* Wait for callbacks from earlier instance to complete. */
1840 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1841 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1842
1843 /*
1844 * Prevent premature wakeup: ensure that all increments happen
1845 * before there is a chance of the counter reaching zero.
1846 */
1847 atomic_set(&oom_callback_count, 1);
1848
1849 get_online_cpus();
1850 for_each_online_cpu(cpu) {
1851 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1852 cond_resched_rcu_qs();
b626c1b6
PM
1853 }
1854 put_online_cpus();
1855
1856 /* Unconditionally decrement: no need to wake ourselves up. */
1857 atomic_dec(&oom_callback_count);
1858
1859 return NOTIFY_OK;
1860}
1861
1862static struct notifier_block rcu_oom_nb = {
1863 .notifier_call = rcu_oom_notify
1864};
1865
1866static int __init rcu_register_oom_notifier(void)
1867{
1868 register_oom_notifier(&rcu_oom_nb);
1869 return 0;
1870}
1871early_initcall(rcu_register_oom_notifier);
1872
8bd93a2c 1873#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1874
1875#ifdef CONFIG_RCU_CPU_STALL_INFO
1876
1877#ifdef CONFIG_RCU_FAST_NO_HZ
1878
1879static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1880{
5955f7ee 1881 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1882 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1883
c0f4dfd4
PM
1884 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1885 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1886 ulong2long(nlpd),
1887 rdtp->all_lazy ? 'L' : '.',
1888 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1889}
1890
1891#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1892
1893static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1894{
1c17e4d4 1895 *cp = '\0';
a858af28
PM
1896}
1897
1898#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1899
1900/* Initiate the stall-info list. */
1901static void print_cpu_stall_info_begin(void)
1902{
efc151c3 1903 pr_cont("\n");
a858af28
PM
1904}
1905
1906/*
1907 * Print out diagnostic information for the specified stalled CPU.
1908 *
1909 * If the specified CPU is aware of the current RCU grace period
1910 * (flavor specified by rsp), then print the number of scheduling
1911 * clock interrupts the CPU has taken during the time that it has
1912 * been aware. Otherwise, print the number of RCU grace periods
1913 * that this CPU is ignorant of, for example, "1" if the CPU was
1914 * aware of the previous grace period.
1915 *
1916 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1917 */
1918static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1919{
1920 char fast_no_hz[72];
1921 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1922 struct rcu_dynticks *rdtp = rdp->dynticks;
1923 char *ticks_title;
1924 unsigned long ticks_value;
1925
1926 if (rsp->gpnum == rdp->gpnum) {
1927 ticks_title = "ticks this GP";
1928 ticks_value = rdp->ticks_this_gp;
1929 } else {
1930 ticks_title = "GPs behind";
1931 ticks_value = rsp->gpnum - rdp->gpnum;
1932 }
1933 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
efc151c3 1934 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
a858af28
PM
1935 cpu, ticks_value, ticks_title,
1936 atomic_read(&rdtp->dynticks) & 0xfff,
1937 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1938 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
a858af28
PM
1939 fast_no_hz);
1940}
1941
1942/* Terminate the stall-info list. */
1943static void print_cpu_stall_info_end(void)
1944{
efc151c3 1945 pr_err("\t");
a858af28
PM
1946}
1947
1948/* Zero ->ticks_this_gp for all flavors of RCU. */
1949static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1950{
1951 rdp->ticks_this_gp = 0;
6231069b 1952 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1953}
1954
1955/* Increment ->ticks_this_gp for all flavors of RCU. */
1956static void increment_cpu_stall_ticks(void)
1957{
115f7a7c
PM
1958 struct rcu_state *rsp;
1959
1960 for_each_rcu_flavor(rsp)
fa07a58f 1961 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1962}
1963
1964#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1965
1966static void print_cpu_stall_info_begin(void)
1967{
efc151c3 1968 pr_cont(" {");
a858af28
PM
1969}
1970
1971static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1972{
efc151c3 1973 pr_cont(" %d", cpu);
a858af28
PM
1974}
1975
1976static void print_cpu_stall_info_end(void)
1977{
efc151c3 1978 pr_cont("} ");
a858af28
PM
1979}
1980
1981static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1982{
1983}
1984
1985static void increment_cpu_stall_ticks(void)
1986{
1987}
1988
1989#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1990
1991#ifdef CONFIG_RCU_NOCB_CPU
1992
1993/*
1994 * Offload callback processing from the boot-time-specified set of CPUs
1995 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1996 * kthread created that pulls the callbacks from the corresponding CPU,
1997 * waits for a grace period to elapse, and invokes the callbacks.
1998 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1999 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2000 * has been specified, in which case each kthread actively polls its
2001 * CPU. (Which isn't so great for energy efficiency, but which does
2002 * reduce RCU's overhead on that CPU.)
2003 *
2004 * This is intended to be used in conjunction with Frederic Weisbecker's
2005 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2006 * running CPU-bound user-mode computations.
2007 *
2008 * Offloading of callback processing could also in theory be used as
2009 * an energy-efficiency measure because CPUs with no RCU callbacks
2010 * queued are more aggressive about entering dyntick-idle mode.
2011 */
2012
2013
2014/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2015static int __init rcu_nocb_setup(char *str)
2016{
2017 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2018 have_rcu_nocb_mask = true;
2019 cpulist_parse(str, rcu_nocb_mask);
2020 return 1;
2021}
2022__setup("rcu_nocbs=", rcu_nocb_setup);
2023
1b0048a4
PG
2024static int __init parse_rcu_nocb_poll(char *arg)
2025{
2026 rcu_nocb_poll = 1;
2027 return 0;
2028}
2029early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2030
dae6e64d 2031/*
0446be48
PM
2032 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2033 * grace period.
dae6e64d 2034 */
0446be48 2035static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 2036{
0446be48 2037 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
2038}
2039
2040/*
8b425aa8 2041 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
2042 * based on the sum of those of all rcu_node structures. This does
2043 * double-count the root rcu_node structure's requests, but this
2044 * is necessary to handle the possibility of a rcu_nocb_kthread()
2045 * having awakened during the time that the rcu_node structures
2046 * were being updated for the end of the previous grace period.
34ed6246 2047 */
dae6e64d
PM
2048static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2049{
8b425aa8 2050 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
2051}
2052
2053static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 2054{
dae6e64d
PM
2055 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2056 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
2057}
2058
2f33b512 2059#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 2060/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 2061bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
2062{
2063 if (have_rcu_nocb_mask)
2064 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2065 return false;
2066}
2f33b512 2067#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 2068
fbce7497
PM
2069/*
2070 * Kick the leader kthread for this NOCB group.
2071 */
2072static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2073{
2074 struct rcu_data *rdp_leader = rdp->nocb_leader;
2075
2076 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2077 return;
11ed7f93 2078 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
fbce7497 2079 /* Prior xchg orders against prior callback enqueue. */
11ed7f93 2080 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
fbce7497
PM
2081 wake_up(&rdp_leader->nocb_wq);
2082 }
2083}
2084
3fbfbf7a
PM
2085/*
2086 * Enqueue the specified string of rcu_head structures onto the specified
2087 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2088 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2089 * counts are supplied by rhcount and rhcount_lazy.
2090 *
2091 * If warranted, also wake up the kthread servicing this CPUs queues.
2092 */
2093static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2094 struct rcu_head *rhp,
2095 struct rcu_head **rhtp,
96d3fd0d
PM
2096 int rhcount, int rhcount_lazy,
2097 unsigned long flags)
3fbfbf7a
PM
2098{
2099 int len;
2100 struct rcu_head **old_rhpp;
2101 struct task_struct *t;
2102
2103 /* Enqueue the callback on the nocb list and update counts. */
2104 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2105 ACCESS_ONCE(*old_rhpp) = rhp;
2106 atomic_long_add(rhcount, &rdp->nocb_q_count);
2107 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2108
2109 /* If we are not being polled and there is a kthread, awaken it ... */
2110 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 2111 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2112 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2113 TPS("WakeNotPoll"));
3fbfbf7a 2114 return;
9261dd0d 2115 }
3fbfbf7a
PM
2116 len = atomic_long_read(&rdp->nocb_q_count);
2117 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2118 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2119 /* ... if queue was empty ... */
2120 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2121 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2122 TPS("WakeEmpty"));
2123 } else {
2124 rdp->nocb_defer_wakeup = true;
2125 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2126 TPS("WakeEmptyIsDeferred"));
2127 }
3fbfbf7a
PM
2128 rdp->qlen_last_fqs_check = 0;
2129 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497
PM
2130 /* ... or if many callbacks queued. */
2131 wake_nocb_leader(rdp, true);
3fbfbf7a 2132 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2133 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2134 } else {
2135 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2136 }
2137 return;
2138}
2139
2140/*
2141 * This is a helper for __call_rcu(), which invokes this when the normal
2142 * callback queue is inoperable. If this is not a no-CBs CPU, this
2143 * function returns failure back to __call_rcu(), which can complain
2144 * appropriately.
2145 *
2146 * Otherwise, this function queues the callback where the corresponding
2147 * "rcuo" kthread can find it.
2148 */
2149static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2150 bool lazy, unsigned long flags)
3fbfbf7a
PM
2151{
2152
d1e43fa5 2153 if (!rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a 2154 return 0;
96d3fd0d 2155 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2156 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2157 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2158 (unsigned long)rhp->func,
756cbf6b
PM
2159 -atomic_long_read(&rdp->nocb_q_count_lazy),
2160 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2161 else
2162 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2163 -atomic_long_read(&rdp->nocb_q_count_lazy),
2164 -atomic_long_read(&rdp->nocb_q_count));
3fbfbf7a
PM
2165 return 1;
2166}
2167
2168/*
2169 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2170 * not a no-CBs CPU.
2171 */
2172static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2173 struct rcu_data *rdp,
2174 unsigned long flags)
3fbfbf7a
PM
2175{
2176 long ql = rsp->qlen;
2177 long qll = rsp->qlen_lazy;
2178
2179 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2180 if (!rcu_is_nocb_cpu(smp_processor_id()))
3fbfbf7a
PM
2181 return 0;
2182 rsp->qlen = 0;
2183 rsp->qlen_lazy = 0;
2184
2185 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2186 if (rsp->orphan_donelist != NULL) {
2187 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2188 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2189 ql = qll = 0;
2190 rsp->orphan_donelist = NULL;
2191 rsp->orphan_donetail = &rsp->orphan_donelist;
2192 }
2193 if (rsp->orphan_nxtlist != NULL) {
2194 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2195 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2196 ql = qll = 0;
2197 rsp->orphan_nxtlist = NULL;
2198 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2199 }
2200 return 1;
2201}
2202
2203/*
34ed6246
PM
2204 * If necessary, kick off a new grace period, and either way wait
2205 * for a subsequent grace period to complete.
3fbfbf7a 2206 */
34ed6246 2207static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2208{
34ed6246 2209 unsigned long c;
dae6e64d 2210 bool d;
34ed6246 2211 unsigned long flags;
48a7639c 2212 bool needwake;
34ed6246
PM
2213 struct rcu_node *rnp = rdp->mynode;
2214
2215 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2216 smp_mb__after_unlock_lock();
48a7639c 2217 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2218 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2219 if (needwake)
2220 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2221
2222 /*
34ed6246
PM
2223 * Wait for the grace period. Do so interruptibly to avoid messing
2224 * up the load average.
3fbfbf7a 2225 */
f7f7bac9 2226 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2227 for (;;) {
dae6e64d
PM
2228 wait_event_interruptible(
2229 rnp->nocb_gp_wq[c & 0x1],
2230 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2231 if (likely(d))
34ed6246 2232 break;
dae6e64d 2233 flush_signals(current);
f7f7bac9 2234 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2235 }
f7f7bac9 2236 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2237 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2238}
2239
fbce7497
PM
2240/*
2241 * Leaders come here to wait for additional callbacks to show up.
2242 * This function does not return until callbacks appear.
2243 */
2244static void nocb_leader_wait(struct rcu_data *my_rdp)
2245{
2246 bool firsttime = true;
2247 bool gotcbs;
2248 struct rcu_data *rdp;
2249 struct rcu_head **tail;
2250
2251wait_again:
2252
2253 /* Wait for callbacks to appear. */
2254 if (!rcu_nocb_poll) {
2255 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2256 wait_event_interruptible(my_rdp->nocb_wq,
11ed7f93 2257 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2258 /* Memory barrier handled by smp_mb() calls below and repoll. */
2259 } else if (firsttime) {
2260 firsttime = false; /* Don't drown trace log with "Poll"! */
2261 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2262 }
2263
2264 /*
2265 * Each pass through the following loop checks a follower for CBs.
2266 * We are our own first follower. Any CBs found are moved to
2267 * nocb_gp_head, where they await a grace period.
2268 */
2269 gotcbs = false;
2270 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2271 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2272 if (!rdp->nocb_gp_head)
2273 continue; /* No CBs here, try next follower. */
2274
2275 /* Move callbacks to wait-for-GP list, which is empty. */
2276 ACCESS_ONCE(rdp->nocb_head) = NULL;
2277 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2278 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2279 rdp->nocb_gp_count_lazy =
2280 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2281 gotcbs = true;
2282 }
2283
2284 /*
2285 * If there were no callbacks, sleep a bit, rescan after a
2286 * memory barrier, and go retry.
2287 */
2288 if (unlikely(!gotcbs)) {
2289 if (!rcu_nocb_poll)
2290 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2291 "WokeEmpty");
2292 flush_signals(current);
2293 schedule_timeout_interruptible(1);
2294
2295 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2296 my_rdp->nocb_leader_sleep = true;
2297 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497
PM
2298 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2299 if (ACCESS_ONCE(rdp->nocb_head)) {
2300 /* Found CB, so short-circuit next wait. */
11ed7f93 2301 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2302 break;
2303 }
2304 goto wait_again;
2305 }
2306
2307 /* Wait for one grace period. */
2308 rcu_nocb_wait_gp(my_rdp);
2309
2310 /*
11ed7f93
PK
2311 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2312 * We set it now, but recheck for new callbacks while
fbce7497
PM
2313 * traversing our follower list.
2314 */
11ed7f93
PK
2315 my_rdp->nocb_leader_sleep = true;
2316 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2317
2318 /* Each pass through the following loop wakes a follower, if needed. */
2319 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2320 if (ACCESS_ONCE(rdp->nocb_head))
11ed7f93 2321 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2322 if (!rdp->nocb_gp_head)
2323 continue; /* No CBs, so no need to wake follower. */
2324
2325 /* Append callbacks to follower's "done" list. */
2326 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2327 *tail = rdp->nocb_gp_head;
2328 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2329 atomic_long_add(rdp->nocb_gp_count_lazy,
2330 &rdp->nocb_follower_count_lazy);
2331 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2332 /*
2333 * List was empty, wake up the follower.
2334 * Memory barriers supplied by atomic_long_add().
2335 */
2336 wake_up(&rdp->nocb_wq);
2337 }
2338 }
2339
2340 /* If we (the leader) don't have CBs, go wait some more. */
2341 if (!my_rdp->nocb_follower_head)
2342 goto wait_again;
2343}
2344
2345/*
2346 * Followers come here to wait for additional callbacks to show up.
2347 * This function does not return until callbacks appear.
2348 */
2349static void nocb_follower_wait(struct rcu_data *rdp)
2350{
2351 bool firsttime = true;
2352
2353 for (;;) {
2354 if (!rcu_nocb_poll) {
2355 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2356 "FollowerSleep");
2357 wait_event_interruptible(rdp->nocb_wq,
2358 ACCESS_ONCE(rdp->nocb_follower_head));
2359 } else if (firsttime) {
2360 /* Don't drown trace log with "Poll"! */
2361 firsttime = false;
2362 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2363 }
2364 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2365 /* ^^^ Ensure CB invocation follows _head test. */
2366 return;
2367 }
2368 if (!rcu_nocb_poll)
2369 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2370 "WokeEmpty");
2371 flush_signals(current);
2372 schedule_timeout_interruptible(1);
2373 }
2374}
2375
3fbfbf7a
PM
2376/*
2377 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2378 * callbacks queued by the corresponding no-CBs CPU, however, there is
2379 * an optional leader-follower relationship so that the grace-period
2380 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2381 */
2382static int rcu_nocb_kthread(void *arg)
2383{
2384 int c, cl;
2385 struct rcu_head *list;
2386 struct rcu_head *next;
2387 struct rcu_head **tail;
2388 struct rcu_data *rdp = arg;
2389
2390 /* Each pass through this loop invokes one batch of callbacks */
2391 for (;;) {
fbce7497
PM
2392 /* Wait for callbacks. */
2393 if (rdp->nocb_leader == rdp)
2394 nocb_leader_wait(rdp);
2395 else
2396 nocb_follower_wait(rdp);
2397
2398 /* Pull the ready-to-invoke callbacks onto local list. */
2399 list = ACCESS_ONCE(rdp->nocb_follower_head);
2400 BUG_ON(!list);
2401 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2402 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2403 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2404 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2405 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2406 rdp->nocb_p_count += c;
2407 rdp->nocb_p_count_lazy += cl;
3fbfbf7a
PM
2408
2409 /* Each pass through the following loop invokes a callback. */
2410 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2411 c = cl = 0;
2412 while (list) {
2413 next = list->next;
2414 /* Wait for enqueuing to complete, if needed. */
2415 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2416 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2417 TPS("WaitQueue"));
3fbfbf7a 2418 schedule_timeout_interruptible(1);
69a79bb1
PM
2419 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2420 TPS("WokeQueue"));
3fbfbf7a
PM
2421 next = list->next;
2422 }
2423 debug_rcu_head_unqueue(list);
2424 local_bh_disable();
2425 if (__rcu_reclaim(rdp->rsp->name, list))
2426 cl++;
2427 c++;
2428 local_bh_enable();
2429 list = next;
2430 }
2431 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2432 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2433 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
c635a4e1 2434 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2435 }
2436 return 0;
2437}
2438
96d3fd0d
PM
2439/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2440static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2441{
2442 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2443}
2444
2445/* Do a deferred wakeup of rcu_nocb_kthread(). */
2446static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2447{
2448 if (!rcu_nocb_need_deferred_wakeup(rdp))
2449 return;
2450 ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
fbce7497 2451 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2452 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2453}
2454
3fbfbf7a
PM
2455/* Initialize per-rcu_data variables for no-CBs CPUs. */
2456static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2457{
2458 rdp->nocb_tail = &rdp->nocb_head;
2459 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2460 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2461}
2462
fbce7497
PM
2463/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2464static int rcu_nocb_leader_stride = -1;
2465module_param(rcu_nocb_leader_stride, int, 0444);
2466
2467/*
2468 * Create a kthread for each RCU flavor for each no-CBs CPU.
2469 * Also initialize leader-follower relationships.
2470 */
3fbfbf7a
PM
2471static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2472{
2473 int cpu;
fbce7497
PM
2474 int ls = rcu_nocb_leader_stride;
2475 int nl = 0; /* Next leader. */
3fbfbf7a 2476 struct rcu_data *rdp;
fbce7497
PM
2477 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2478 struct rcu_data *rdp_prev = NULL;
3fbfbf7a
PM
2479 struct task_struct *t;
2480
2481 if (rcu_nocb_mask == NULL)
2482 return;
187497fa
PM
2483#if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL)
2484 if (tick_nohz_full_running)
2485 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2486#endif /* #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL) */
fbce7497
PM
2487 if (ls == -1) {
2488 ls = int_sqrt(nr_cpu_ids);
2489 rcu_nocb_leader_stride = ls;
2490 }
2491
2492 /*
2493 * Each pass through this loop sets up one rcu_data structure and
2494 * spawns one rcu_nocb_kthread().
2495 */
3fbfbf7a
PM
2496 for_each_cpu(cpu, rcu_nocb_mask) {
2497 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2498 if (rdp->cpu >= nl) {
2499 /* New leader, set up for followers & next leader. */
2500 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2501 rdp->nocb_leader = rdp;
2502 rdp_leader = rdp;
2503 } else {
2504 /* Another follower, link to previous leader. */
2505 rdp->nocb_leader = rdp_leader;
2506 rdp_prev->nocb_next_follower = rdp;
2507 }
2508 rdp_prev = rdp;
2509
2510 /* Spawn the kthread for this CPU. */
a4889858
PM
2511 t = kthread_run(rcu_nocb_kthread, rdp,
2512 "rcuo%c/%d", rsp->abbr, cpu);
3fbfbf7a
PM
2513 BUG_ON(IS_ERR(t));
2514 ACCESS_ONCE(rdp->nocb_kthread) = t;
2515 }
2516}
2517
2518/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2519static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a
PM
2520{
2521 if (rcu_nocb_mask == NULL ||
2522 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
34ed6246 2523 return false;
3fbfbf7a 2524 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2525 return true;
3fbfbf7a
PM
2526}
2527
34ed6246
PM
2528#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2529
0446be48 2530static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2531{
3fbfbf7a
PM
2532}
2533
dae6e64d
PM
2534static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2535{
2536}
2537
2538static void rcu_init_one_nocb(struct rcu_node *rnp)
2539{
2540}
3fbfbf7a 2541
3fbfbf7a 2542static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2543 bool lazy, unsigned long flags)
3fbfbf7a
PM
2544{
2545 return 0;
2546}
2547
2548static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2549 struct rcu_data *rdp,
2550 unsigned long flags)
3fbfbf7a
PM
2551{
2552 return 0;
2553}
2554
3fbfbf7a
PM
2555static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2556{
2557}
2558
96d3fd0d
PM
2559static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2560{
2561 return false;
2562}
2563
2564static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2565{
2566}
2567
3fbfbf7a
PM
2568static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2569{
2570}
2571
34ed6246 2572static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2573{
34ed6246 2574 return false;
3fbfbf7a
PM
2575}
2576
2577#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2578
2579/*
2580 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2581 * arbitrarily long period of time with the scheduling-clock tick turned
2582 * off. RCU will be paying attention to this CPU because it is in the
2583 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2584 * machine because the scheduling-clock tick has been disabled. Therefore,
2585 * if an adaptive-ticks CPU is failing to respond to the current grace
2586 * period and has not be idle from an RCU perspective, kick it.
2587 */
4a81e832 2588static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2589{
2590#ifdef CONFIG_NO_HZ_FULL
2591 if (tick_nohz_full_cpu(cpu))
2592 smp_send_reschedule(cpu);
2593#endif /* #ifdef CONFIG_NO_HZ_FULL */
2594}
2333210b
PM
2595
2596
2597#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2598
d4bd54fb
PM
2599/*
2600 * Define RCU flavor that holds sysidle state. This needs to be the
2601 * most active flavor of RCU.
2602 */
2603#ifdef CONFIG_PREEMPT_RCU
0edd1b17 2604static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
d4bd54fb 2605#else /* #ifdef CONFIG_PREEMPT_RCU */
0edd1b17 2606static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
d4bd54fb
PM
2607#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2608
0edd1b17 2609static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2610#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2611#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2612#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2613#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2614#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2615
eb348b89
PM
2616/*
2617 * Invoked to note exit from irq or task transition to idle. Note that
2618 * usermode execution does -not- count as idle here! After all, we want
2619 * to detect full-system idle states, not RCU quiescent states and grace
2620 * periods. The caller must have disabled interrupts.
2621 */
2622static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2623{
2624 unsigned long j;
2625
2626 /* Adjust nesting, check for fully idle. */
2627 if (irq) {
2628 rdtp->dynticks_idle_nesting--;
2629 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2630 if (rdtp->dynticks_idle_nesting != 0)
2631 return; /* Still not fully idle. */
2632 } else {
2633 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2634 DYNTICK_TASK_NEST_VALUE) {
2635 rdtp->dynticks_idle_nesting = 0;
2636 } else {
2637 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2638 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2639 return; /* Still not fully idle. */
2640 }
2641 }
2642
2643 /* Record start of fully idle period. */
2644 j = jiffies;
2645 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2646 smp_mb__before_atomic();
eb348b89 2647 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2648 smp_mb__after_atomic();
eb348b89
PM
2649 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2650}
2651
0edd1b17
PM
2652/*
2653 * Unconditionally force exit from full system-idle state. This is
2654 * invoked when a normal CPU exits idle, but must be called separately
2655 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2656 * is that the timekeeping CPU is permitted to take scheduling-clock
2657 * interrupts while the system is in system-idle state, and of course
2658 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2659 * interrupt from any other type of interrupt.
2660 */
2661void rcu_sysidle_force_exit(void)
2662{
2663 int oldstate = ACCESS_ONCE(full_sysidle_state);
2664 int newoldstate;
2665
2666 /*
2667 * Each pass through the following loop attempts to exit full
2668 * system-idle state. If contention proves to be a problem,
2669 * a trylock-based contention tree could be used here.
2670 */
2671 while (oldstate > RCU_SYSIDLE_SHORT) {
2672 newoldstate = cmpxchg(&full_sysidle_state,
2673 oldstate, RCU_SYSIDLE_NOT);
2674 if (oldstate == newoldstate &&
2675 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2676 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2677 return; /* We cleared it, done! */
2678 }
2679 oldstate = newoldstate;
2680 }
2681 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2682}
2683
eb348b89
PM
2684/*
2685 * Invoked to note entry to irq or task transition from idle. Note that
2686 * usermode execution does -not- count as idle here! The caller must
2687 * have disabled interrupts.
2688 */
2689static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2690{
2691 /* Adjust nesting, check for already non-idle. */
2692 if (irq) {
2693 rdtp->dynticks_idle_nesting++;
2694 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2695 if (rdtp->dynticks_idle_nesting != 1)
2696 return; /* Already non-idle. */
2697 } else {
2698 /*
2699 * Allow for irq misnesting. Yes, it really is possible
2700 * to enter an irq handler then never leave it, and maybe
2701 * also vice versa. Handle both possibilities.
2702 */
2703 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2704 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2705 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2706 return; /* Already non-idle. */
2707 } else {
2708 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2709 }
2710 }
2711
2712 /* Record end of idle period. */
4e857c58 2713 smp_mb__before_atomic();
eb348b89 2714 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2715 smp_mb__after_atomic();
eb348b89 2716 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2717
2718 /*
2719 * If we are the timekeeping CPU, we are permitted to be non-idle
2720 * during a system-idle state. This must be the case, because
2721 * the timekeeping CPU has to take scheduling-clock interrupts
2722 * during the time that the system is transitioning to full
2723 * system-idle state. This means that the timekeeping CPU must
2724 * invoke rcu_sysidle_force_exit() directly if it does anything
2725 * more than take a scheduling-clock interrupt.
2726 */
2727 if (smp_processor_id() == tick_do_timer_cpu)
2728 return;
2729
2730 /* Update system-idle state: We are clearly no longer fully idle! */
2731 rcu_sysidle_force_exit();
2732}
2733
2734/*
2735 * Check to see if the current CPU is idle. Note that usermode execution
2736 * does not count as idle. The caller must have disabled interrupts.
2737 */
2738static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2739 unsigned long *maxj)
2740{
2741 int cur;
2742 unsigned long j;
2743 struct rcu_dynticks *rdtp = rdp->dynticks;
2744
2745 /*
2746 * If some other CPU has already reported non-idle, if this is
2747 * not the flavor of RCU that tracks sysidle state, or if this
2748 * is an offline or the timekeeping CPU, nothing to do.
2749 */
2750 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2751 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2752 return;
eb75767b
PM
2753 if (rcu_gp_in_progress(rdp->rsp))
2754 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2755
2756 /* Pick up current idle and NMI-nesting counter and check. */
2757 cur = atomic_read(&rdtp->dynticks_idle);
2758 if (cur & 0x1) {
2759 *isidle = false; /* We are not idle! */
2760 return;
2761 }
2762 smp_mb(); /* Read counters before timestamps. */
2763
2764 /* Pick up timestamps. */
2765 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2766 /* If this CPU entered idle more recently, update maxj timestamp. */
2767 if (ULONG_CMP_LT(*maxj, j))
2768 *maxj = j;
2769}
2770
2771/*
2772 * Is this the flavor of RCU that is handling full-system idle?
2773 */
2774static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2775{
2776 return rsp == rcu_sysidle_state;
2777}
2778
2779/*
2780 * Return a delay in jiffies based on the number of CPUs, rcu_node
2781 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2782 * systems more time to transition to full-idle state in order to
2783 * avoid the cache thrashing that otherwise occur on the state variable.
2784 * Really small systems (less than a couple of tens of CPUs) should
2785 * instead use a single global atomically incremented counter, and later
2786 * versions of this will automatically reconfigure themselves accordingly.
2787 */
2788static unsigned long rcu_sysidle_delay(void)
2789{
2790 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2791 return 0;
2792 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2793}
2794
2795/*
2796 * Advance the full-system-idle state. This is invoked when all of
2797 * the non-timekeeping CPUs are idle.
2798 */
2799static void rcu_sysidle(unsigned long j)
2800{
2801 /* Check the current state. */
2802 switch (ACCESS_ONCE(full_sysidle_state)) {
2803 case RCU_SYSIDLE_NOT:
2804
2805 /* First time all are idle, so note a short idle period. */
2806 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2807 break;
2808
2809 case RCU_SYSIDLE_SHORT:
2810
2811 /*
2812 * Idle for a bit, time to advance to next state?
2813 * cmpxchg failure means race with non-idle, let them win.
2814 */
2815 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2816 (void)cmpxchg(&full_sysidle_state,
2817 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2818 break;
2819
2820 case RCU_SYSIDLE_LONG:
2821
2822 /*
2823 * Do an additional check pass before advancing to full.
2824 * cmpxchg failure means race with non-idle, let them win.
2825 */
2826 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2827 (void)cmpxchg(&full_sysidle_state,
2828 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2829 break;
2830
2831 default:
2832 break;
2833 }
2834}
2835
2836/*
2837 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2838 * back to the beginning.
2839 */
2840static void rcu_sysidle_cancel(void)
2841{
2842 smp_mb();
becb41bf
PM
2843 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2844 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
2845}
2846
2847/*
2848 * Update the sysidle state based on the results of a force-quiescent-state
2849 * scan of the CPUs' dyntick-idle state.
2850 */
2851static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2852 unsigned long maxj, bool gpkt)
2853{
2854 if (rsp != rcu_sysidle_state)
2855 return; /* Wrong flavor, ignore. */
2856 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2857 return; /* Running state machine from timekeeping CPU. */
2858 if (isidle)
2859 rcu_sysidle(maxj); /* More idle! */
2860 else
2861 rcu_sysidle_cancel(); /* Idle is over. */
2862}
2863
2864/*
2865 * Wrapper for rcu_sysidle_report() when called from the grace-period
2866 * kthread's context.
2867 */
2868static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2869 unsigned long maxj)
2870{
2871 rcu_sysidle_report(rsp, isidle, maxj, true);
2872}
2873
2874/* Callback and function for forcing an RCU grace period. */
2875struct rcu_sysidle_head {
2876 struct rcu_head rh;
2877 int inuse;
2878};
2879
2880static void rcu_sysidle_cb(struct rcu_head *rhp)
2881{
2882 struct rcu_sysidle_head *rshp;
2883
2884 /*
2885 * The following memory barrier is needed to replace the
2886 * memory barriers that would normally be in the memory
2887 * allocator.
2888 */
2889 smp_mb(); /* grace period precedes setting inuse. */
2890
2891 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2892 ACCESS_ONCE(rshp->inuse) = 0;
2893}
2894
2895/*
2896 * Check to see if the system is fully idle, other than the timekeeping CPU.
2897 * The caller must have disabled interrupts.
2898 */
2899bool rcu_sys_is_idle(void)
2900{
2901 static struct rcu_sysidle_head rsh;
2902 int rss = ACCESS_ONCE(full_sysidle_state);
2903
2904 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2905 return false;
2906
2907 /* Handle small-system case by doing a full scan of CPUs. */
2908 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2909 int oldrss = rss - 1;
2910
2911 /*
2912 * One pass to advance to each state up to _FULL.
2913 * Give up if any pass fails to advance the state.
2914 */
2915 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2916 int cpu;
2917 bool isidle = true;
2918 unsigned long maxj = jiffies - ULONG_MAX / 4;
2919 struct rcu_data *rdp;
2920
2921 /* Scan all the CPUs looking for nonidle CPUs. */
2922 for_each_possible_cpu(cpu) {
2923 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2924 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2925 if (!isidle)
2926 break;
2927 }
2928 rcu_sysidle_report(rcu_sysidle_state,
2929 isidle, maxj, false);
2930 oldrss = rss;
2931 rss = ACCESS_ONCE(full_sysidle_state);
2932 }
2933 }
2934
2935 /* If this is the first observation of an idle period, record it. */
2936 if (rss == RCU_SYSIDLE_FULL) {
2937 rss = cmpxchg(&full_sysidle_state,
2938 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2939 return rss == RCU_SYSIDLE_FULL;
2940 }
2941
2942 smp_mb(); /* ensure rss load happens before later caller actions. */
2943
2944 /* If already fully idle, tell the caller (in case of races). */
2945 if (rss == RCU_SYSIDLE_FULL_NOTED)
2946 return true;
2947
2948 /*
2949 * If we aren't there yet, and a grace period is not in flight,
2950 * initiate a grace period. Either way, tell the caller that
2951 * we are not there yet. We use an xchg() rather than an assignment
2952 * to make up for the memory barriers that would otherwise be
2953 * provided by the memory allocator.
2954 */
2955 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2956 !rcu_gp_in_progress(rcu_sysidle_state) &&
2957 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2958 call_rcu(&rsh.rh, rcu_sysidle_cb);
2959 return false;
eb348b89
PM
2960}
2961
2333210b
PM
2962/*
2963 * Initialize dynticks sysidle state for CPUs coming online.
2964 */
2965static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2966{
2967 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2968}
2969
2970#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2971
eb348b89
PM
2972static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2973{
2974}
2975
2976static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2977{
2978}
2979
0edd1b17
PM
2980static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2981 unsigned long *maxj)
2982{
2983}
2984
2985static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2986{
2987 return false;
2988}
2989
2990static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2991 unsigned long maxj)
2992{
2993}
2994
2333210b
PM
2995static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2996{
2997}
2998
2999#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
3000
3001/*
3002 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3003 * grace-period kthread will do force_quiescent_state() processing?
3004 * The idea is to avoid waking up RCU core processing on such a
3005 * CPU unless the grace period has extended for too long.
3006 *
3007 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3008 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3009 */
3010static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3011{
3012#ifdef CONFIG_NO_HZ_FULL
3013 if (tick_nohz_full_cpu(smp_processor_id()) &&
3014 (!rcu_gp_in_progress(rsp) ||
3015 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3016 return 1;
3017#endif /* #ifdef CONFIG_NO_HZ_FULL */
3018 return 0;
3019}
5057f55e
PM
3020
3021/*
3022 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3023 * timekeeping CPU.
3024 */
3025static void rcu_bind_gp_kthread(void)
3026{
c0f489d2 3027 int __maybe_unused cpu;
5057f55e 3028
c0f489d2 3029 if (!tick_nohz_full_enabled())
5057f55e 3030 return;
c0f489d2
PM
3031#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3032 cpu = tick_do_timer_cpu;
3033 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
5057f55e 3034 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2
PM
3035#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3036 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3037 housekeeping_affine(current);
3038#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3039}
176f8f7a
PM
3040
3041/* Record the current task on dyntick-idle entry. */
3042static void rcu_dynticks_task_enter(void)
3043{
3044#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3045 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3046#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3047}
3048
3049/* Record no current task on dyntick-idle exit. */
3050static void rcu_dynticks_task_exit(void)
3051{
3052#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3053 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3054#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3055}
This page took 0.651282 seconds and 5 git commands to generate.