sched: Export sched_setscheduler_nocheck
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba 33#ifdef CONFIG_RCU_BOOST
61cfd097 34
abaa93d9 35#include "../locking/rtmutex_common.h"
21871d7e 36
61cfd097
PM
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
727b705b
PM
46#else /* #ifdef CONFIG_RCU_BOOST */
47
48/*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 57
3fbfbf7a
PM
58#ifdef CONFIG_RCU_NOCB_CPU
59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 61static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
26845c28
PM
64/*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary. If you like #ifdef, you
67 * will love this function.
68 */
69static void __init rcu_bootup_announce_oddness(void)
70{
ab6f5bd6
PM
71 if (IS_ENABLED(CONFIG_RCU_TRACE))
72 pr_info("\tRCU debugfs-based tracing is enabled.\n");
05c5df31
PM
73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
ab6f5bd6 75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
05c5df31 76 RCU_FANOUT);
7fa27001 77 if (rcu_fanout_exact)
ab6f5bd6
PM
78 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 if (IS_ENABLED(CONFIG_PROVE_RCU))
82 pr_info("\tRCU lockdep checking is enabled.\n");
83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 pr_info("\tRCU torture testing starts during boot.\n");
42621697
AG
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 87 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
9a5739d7 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 92 if (nr_cpu_ids != NR_CPUS)
efc151c3 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
ab6f5bd6
PM
94 if (IS_ENABLED(CONFIG_RCU_BOOST))
95 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
26845c28
PM
96}
97
28f6569a 98#ifdef CONFIG_PREEMPT_RCU
f41d911f 99
a41bfeb2 100RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
b28a7c01 101static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
2927a689 102static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
f41d911f 103
d9a3da06 104static int rcu_preempted_readers_exp(struct rcu_node *rnp);
d19fb8d1
PM
105static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
106 bool wake);
d9a3da06 107
f41d911f
PM
108/*
109 * Tell them what RCU they are running.
110 */
0e0fc1c2 111static void __init rcu_bootup_announce(void)
f41d911f 112{
efc151c3 113 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 114 rcu_bootup_announce_oddness();
f41d911f
PM
115}
116
f41d911f 117/*
6cc68793 118 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
119 * that this just means that the task currently running on the CPU is
120 * not in a quiescent state. There might be any number of tasks blocked
121 * while in an RCU read-side critical section.
25502a6c 122 *
1d082fd0
PM
123 * As with the other rcu_*_qs() functions, callers to this function
124 * must disable preemption.
f41d911f 125 */
284a8c93 126static void rcu_preempt_qs(void)
f41d911f 127{
2927a689 128 if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
284a8c93 129 trace_rcu_grace_period(TPS("rcu_preempt"),
2927a689 130 __this_cpu_read(rcu_data_p->gpnum),
284a8c93 131 TPS("cpuqs"));
2927a689 132 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
284a8c93
PM
133 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
134 current->rcu_read_unlock_special.b.need_qs = false;
135 }
f41d911f
PM
136}
137
138/*
c3422bea
PM
139 * We have entered the scheduler, and the current task might soon be
140 * context-switched away from. If this task is in an RCU read-side
141 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
142 * record that fact, so we enqueue the task on the blkd_tasks list.
143 * The task will dequeue itself when it exits the outermost enclosing
144 * RCU read-side critical section. Therefore, the current grace period
145 * cannot be permitted to complete until the blkd_tasks list entries
146 * predating the current grace period drain, in other words, until
147 * rnp->gp_tasks becomes NULL.
c3422bea
PM
148 *
149 * Caller must disable preemption.
f41d911f 150 */
38200cf2 151static void rcu_preempt_note_context_switch(void)
f41d911f
PM
152{
153 struct task_struct *t = current;
c3422bea 154 unsigned long flags;
f41d911f
PM
155 struct rcu_data *rdp;
156 struct rcu_node *rnp;
157
10f39bb1 158 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 159 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
160
161 /* Possibly blocking in an RCU read-side critical section. */
e63c887c 162 rdp = this_cpu_ptr(rcu_state_p->rda);
f41d911f 163 rnp = rdp->mynode;
1304afb2 164 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 165 smp_mb__after_unlock_lock();
1d082fd0 166 t->rcu_read_unlock_special.b.blocked = true;
86848966 167 t->rcu_blocked_node = rnp;
f41d911f
PM
168
169 /*
170 * If this CPU has already checked in, then this task
171 * will hold up the next grace period rather than the
172 * current grace period. Queue the task accordingly.
173 * If the task is queued for the current grace period
174 * (i.e., this CPU has not yet passed through a quiescent
175 * state for the current grace period), then as long
176 * as that task remains queued, the current grace period
12f5f524
PM
177 * cannot end. Note that there is some uncertainty as
178 * to exactly when the current grace period started.
179 * We take a conservative approach, which can result
180 * in unnecessarily waiting on tasks that started very
181 * slightly after the current grace period began. C'est
182 * la vie!!!
b0e165c0
PM
183 *
184 * But first, note that the current CPU must still be
185 * on line!
f41d911f 186 */
0aa04b05 187 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 188 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
189 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
190 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
191 rnp->gp_tasks = &t->rcu_node_entry;
727b705b
PM
192 if (IS_ENABLED(CONFIG_RCU_BOOST) &&
193 rnp->boost_tasks != NULL)
27f4d280 194 rnp->boost_tasks = rnp->gp_tasks;
12f5f524
PM
195 } else {
196 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197 if (rnp->qsmask & rdp->grpmask)
198 rnp->gp_tasks = &t->rcu_node_entry;
199 }
d4c08f2a
PM
200 trace_rcu_preempt_task(rdp->rsp->name,
201 t->pid,
202 (rnp->qsmask & rdp->grpmask)
203 ? rnp->gpnum
204 : rnp->gpnum + 1);
1304afb2 205 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1 206 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 207 t->rcu_read_unlock_special.s) {
10f39bb1
PM
208
209 /*
210 * Complete exit from RCU read-side critical section on
211 * behalf of preempted instance of __rcu_read_unlock().
212 */
213 rcu_read_unlock_special(t);
f41d911f
PM
214 }
215
216 /*
217 * Either we were not in an RCU read-side critical section to
218 * begin with, or we have now recorded that critical section
219 * globally. Either way, we can now note a quiescent state
220 * for this CPU. Again, if we were in an RCU read-side critical
221 * section, and if that critical section was blocking the current
222 * grace period, then the fact that the task has been enqueued
223 * means that we continue to block the current grace period.
224 */
284a8c93 225 rcu_preempt_qs();
f41d911f
PM
226}
227
fc2219d4
PM
228/*
229 * Check for preempted RCU readers blocking the current grace period
230 * for the specified rcu_node structure. If the caller needs a reliable
231 * answer, it must hold the rcu_node's ->lock.
232 */
27f4d280 233static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 234{
12f5f524 235 return rnp->gp_tasks != NULL;
fc2219d4
PM
236}
237
12f5f524
PM
238/*
239 * Advance a ->blkd_tasks-list pointer to the next entry, instead
240 * returning NULL if at the end of the list.
241 */
242static struct list_head *rcu_next_node_entry(struct task_struct *t,
243 struct rcu_node *rnp)
244{
245 struct list_head *np;
246
247 np = t->rcu_node_entry.next;
248 if (np == &rnp->blkd_tasks)
249 np = NULL;
250 return np;
251}
252
8af3a5e7
PM
253/*
254 * Return true if the specified rcu_node structure has tasks that were
255 * preempted within an RCU read-side critical section.
256 */
257static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
258{
259 return !list_empty(&rnp->blkd_tasks);
260}
261
b668c9cf
PM
262/*
263 * Handle special cases during rcu_read_unlock(), such as needing to
264 * notify RCU core processing or task having blocked during the RCU
265 * read-side critical section.
266 */
2a3fa843 267void rcu_read_unlock_special(struct task_struct *t)
f41d911f 268{
b6a932d1
PM
269 bool empty_exp;
270 bool empty_norm;
271 bool empty_exp_now;
f41d911f 272 unsigned long flags;
12f5f524 273 struct list_head *np;
abaa93d9 274 bool drop_boost_mutex = false;
f41d911f 275 struct rcu_node *rnp;
1d082fd0 276 union rcu_special special;
f41d911f
PM
277
278 /* NMI handlers cannot block and cannot safely manipulate state. */
279 if (in_nmi())
280 return;
281
282 local_irq_save(flags);
283
284 /*
285 * If RCU core is waiting for this CPU to exit critical section,
1d082fd0
PM
286 * let it know that we have done so. Because irqs are disabled,
287 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
288 */
289 special = t->rcu_read_unlock_special;
1d082fd0 290 if (special.b.need_qs) {
284a8c93 291 rcu_preempt_qs();
c0135d07 292 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 293 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
294 local_irq_restore(flags);
295 return;
296 }
f41d911f
PM
297 }
298
79a62f95 299 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
300 if (in_irq() || in_serving_softirq()) {
301 lockdep_rcu_suspicious(__FILE__, __LINE__,
302 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
303 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
304 t->rcu_read_unlock_special.s,
305 t->rcu_read_unlock_special.b.blocked,
306 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
307 local_irq_restore(flags);
308 return;
309 }
310
311 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
312 if (special.b.blocked) {
313 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 314
dd5d19ba 315 /*
0a0ba1c9
PM
316 * Remove this task from the list it blocked on. The task
317 * now remains queued on the rcu_node corresponding to
318 * the CPU it first blocked on, so the first attempt to
319 * acquire the task's rcu_node's ->lock will succeed.
320 * Keep the loop and add a WARN_ON() out of sheer paranoia.
dd5d19ba
PM
321 */
322 for (;;) {
86848966 323 rnp = t->rcu_blocked_node;
1304afb2 324 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 325 smp_mb__after_unlock_lock();
86848966 326 if (rnp == t->rcu_blocked_node)
dd5d19ba 327 break;
0a0ba1c9 328 WARN_ON_ONCE(1);
1304afb2 329 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 330 }
74e871ac 331 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
332 empty_exp = !rcu_preempted_readers_exp(rnp);
333 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 334 np = rcu_next_node_entry(t, rnp);
f41d911f 335 list_del_init(&t->rcu_node_entry);
82e78d80 336 t->rcu_blocked_node = NULL;
f7f7bac9 337 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 338 rnp->gpnum, t->pid);
12f5f524
PM
339 if (&t->rcu_node_entry == rnp->gp_tasks)
340 rnp->gp_tasks = np;
341 if (&t->rcu_node_entry == rnp->exp_tasks)
342 rnp->exp_tasks = np;
727b705b
PM
343 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
344 if (&t->rcu_node_entry == rnp->boost_tasks)
345 rnp->boost_tasks = np;
346 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
347 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
348 }
f41d911f
PM
349
350 /*
351 * If this was the last task on the current list, and if
352 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
353 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
354 * so we must take a snapshot of the expedited state.
f41d911f 355 */
389abd48 356 empty_exp_now = !rcu_preempted_readers_exp(rnp);
74e871ac 357 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 358 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
359 rnp->gpnum,
360 0, rnp->qsmask,
361 rnp->level,
362 rnp->grplo,
363 rnp->grphi,
364 !!rnp->gp_tasks);
e63c887c 365 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
c701d5d9 366 } else {
d4c08f2a 367 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 368 }
d9a3da06 369
27f4d280 370 /* Unboost if we were boosted. */
727b705b 371 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
abaa93d9 372 rt_mutex_unlock(&rnp->boost_mtx);
27f4d280 373
d9a3da06
PM
374 /*
375 * If this was the last task on the expedited lists,
376 * then we need to report up the rcu_node hierarchy.
377 */
389abd48 378 if (!empty_exp && empty_exp_now)
e63c887c 379 rcu_report_exp_rnp(rcu_state_p, rnp, true);
b668c9cf
PM
380 } else {
381 local_irq_restore(flags);
f41d911f 382 }
f41d911f
PM
383}
384
1ed509a2
PM
385/*
386 * Dump detailed information for all tasks blocking the current RCU
387 * grace period on the specified rcu_node structure.
388 */
389static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
390{
391 unsigned long flags;
1ed509a2
PM
392 struct task_struct *t;
393
12f5f524 394 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
395 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
396 raw_spin_unlock_irqrestore(&rnp->lock, flags);
397 return;
398 }
82efed06 399 t = list_entry(rnp->gp_tasks->prev,
12f5f524
PM
400 struct task_struct, rcu_node_entry);
401 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
402 sched_show_task(t);
403 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
404}
405
406/*
407 * Dump detailed information for all tasks blocking the current RCU
408 * grace period.
409 */
410static void rcu_print_detail_task_stall(struct rcu_state *rsp)
411{
412 struct rcu_node *rnp = rcu_get_root(rsp);
413
414 rcu_print_detail_task_stall_rnp(rnp);
415 rcu_for_each_leaf_node(rsp, rnp)
416 rcu_print_detail_task_stall_rnp(rnp);
417}
418
a858af28
PM
419static void rcu_print_task_stall_begin(struct rcu_node *rnp)
420{
efc151c3 421 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
422 rnp->level, rnp->grplo, rnp->grphi);
423}
424
425static void rcu_print_task_stall_end(void)
426{
efc151c3 427 pr_cont("\n");
a858af28
PM
428}
429
f41d911f
PM
430/*
431 * Scan the current list of tasks blocked within RCU read-side critical
432 * sections, printing out the tid of each.
433 */
9bc8b558 434static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 435{
f41d911f 436 struct task_struct *t;
9bc8b558 437 int ndetected = 0;
f41d911f 438
27f4d280 439 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 440 return 0;
a858af28 441 rcu_print_task_stall_begin(rnp);
82efed06 442 t = list_entry(rnp->gp_tasks->prev,
12f5f524 443 struct task_struct, rcu_node_entry);
9bc8b558 444 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 445 pr_cont(" P%d", t->pid);
9bc8b558
PM
446 ndetected++;
447 }
a858af28 448 rcu_print_task_stall_end();
9bc8b558 449 return ndetected;
f41d911f
PM
450}
451
b0e165c0
PM
452/*
453 * Check that the list of blocked tasks for the newly completed grace
454 * period is in fact empty. It is a serious bug to complete a grace
455 * period that still has RCU readers blocked! This function must be
456 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
457 * must be held by the caller.
12f5f524
PM
458 *
459 * Also, if there are blocked tasks on the list, they automatically
460 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
461 */
462static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
463{
27f4d280 464 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
96e92021 465 if (rcu_preempt_has_tasks(rnp))
12f5f524 466 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 467 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
468}
469
f41d911f
PM
470/*
471 * Check for a quiescent state from the current CPU. When a task blocks,
472 * the task is recorded in the corresponding CPU's rcu_node structure,
473 * which is checked elsewhere.
474 *
475 * Caller must disable hard irqs.
476 */
86aea0e6 477static void rcu_preempt_check_callbacks(void)
f41d911f
PM
478{
479 struct task_struct *t = current;
480
481 if (t->rcu_read_lock_nesting == 0) {
284a8c93 482 rcu_preempt_qs();
f41d911f
PM
483 return;
484 }
10f39bb1 485 if (t->rcu_read_lock_nesting > 0 &&
2927a689
PM
486 __this_cpu_read(rcu_data_p->qs_pending) &&
487 !__this_cpu_read(rcu_data_p->passed_quiesce))
1d082fd0 488 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
489}
490
a46e0899
PM
491#ifdef CONFIG_RCU_BOOST
492
09223371
SL
493static void rcu_preempt_do_callbacks(void)
494{
2927a689 495 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
09223371
SL
496}
497
a46e0899
PM
498#endif /* #ifdef CONFIG_RCU_BOOST */
499
f41d911f 500/*
6cc68793 501 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
502 */
503void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
504{
e63c887c 505 __call_rcu(head, func, rcu_state_p, -1, 0);
f41d911f
PM
506}
507EXPORT_SYMBOL_GPL(call_rcu);
508
6ebb237b
PM
509/**
510 * synchronize_rcu - wait until a grace period has elapsed.
511 *
512 * Control will return to the caller some time after a full grace
513 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
514 * read-side critical sections have completed. Note, however, that
515 * upon return from synchronize_rcu(), the caller might well be executing
516 * concurrently with new RCU read-side critical sections that began while
517 * synchronize_rcu() was waiting. RCU read-side critical sections are
518 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
519 *
520 * See the description of synchronize_sched() for more detailed information
521 * on memory ordering guarantees.
6ebb237b
PM
522 */
523void synchronize_rcu(void)
524{
f78f5b90
PM
525 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
526 lock_is_held(&rcu_lock_map) ||
527 lock_is_held(&rcu_sched_lock_map),
528 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
529 if (!rcu_scheduler_active)
530 return;
5afff48b 531 if (rcu_gp_is_expedited())
3705b88d
AM
532 synchronize_rcu_expedited();
533 else
534 wait_rcu_gp(call_rcu);
6ebb237b
PM
535}
536EXPORT_SYMBOL_GPL(synchronize_rcu);
537
d9a3da06 538static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
d9a3da06
PM
539
540/*
541 * Return non-zero if there are any tasks in RCU read-side critical
542 * sections blocking the current preemptible-RCU expedited grace period.
543 * If there is no preemptible-RCU expedited grace period currently in
544 * progress, returns zero unconditionally.
545 */
546static int rcu_preempted_readers_exp(struct rcu_node *rnp)
547{
12f5f524 548 return rnp->exp_tasks != NULL;
d9a3da06
PM
549}
550
551/*
552 * return non-zero if there is no RCU expedited grace period in progress
553 * for the specified rcu_node structure, in other words, if all CPUs and
554 * tasks covered by the specified rcu_node structure have done their bit
555 * for the current expedited grace period. Works only for preemptible
556 * RCU -- other RCU implementation use other means.
557 *
29fd9309 558 * Caller must hold the root rcu_node's exp_funnel_mutex.
d9a3da06
PM
559 */
560static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
561{
562 return !rcu_preempted_readers_exp(rnp) &&
7d0ae808 563 READ_ONCE(rnp->expmask) == 0;
d9a3da06
PM
564}
565
566/*
567 * Report the exit from RCU read-side critical section for the last task
568 * that queued itself during or before the current expedited preemptible-RCU
569 * grace period. This event is reported either to the rcu_node structure on
570 * which the task was queued or to one of that rcu_node structure's ancestors,
571 * recursively up the tree. (Calm down, calm down, we do the recursion
572 * iteratively!)
573 *
29fd9309 574 * Caller must hold the root rcu_node's exp_funnel_mutex.
d9a3da06 575 */
b40d293e
TG
576static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
577 bool wake)
d9a3da06
PM
578{
579 unsigned long flags;
580 unsigned long mask;
581
1304afb2 582 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 583 smp_mb__after_unlock_lock();
d9a3da06 584 for (;;) {
131906b0
PM
585 if (!sync_rcu_preempt_exp_done(rnp)) {
586 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 587 break;
131906b0 588 }
d9a3da06 589 if (rnp->parent == NULL) {
131906b0 590 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
591 if (wake) {
592 smp_mb(); /* EGP done before wake_up(). */
b40d293e 593 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 594 }
d9a3da06
PM
595 break;
596 }
597 mask = rnp->grpmask;
1304afb2 598 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 599 rnp = rnp->parent;
1304afb2 600 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 601 smp_mb__after_unlock_lock();
d9a3da06
PM
602 rnp->expmask &= ~mask;
603 }
d9a3da06
PM
604}
605
606/*
607 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
8eb74b2b
PM
608 * grace period for the specified rcu_node structure, phase 1. If there
609 * are such tasks, set the ->expmask bits up the rcu_node tree and also
610 * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
611 * that work is needed here.
d9a3da06 612 *
29fd9309 613 * Caller must hold the root rcu_node's exp_funnel_mutex.
d9a3da06
PM
614 */
615static void
8eb74b2b 616sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
d9a3da06 617{
1217ed1b 618 unsigned long flags;
8eb74b2b
PM
619 unsigned long mask;
620 struct rcu_node *rnp_up;
d9a3da06 621
1217ed1b 622 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 623 smp_mb__after_unlock_lock();
8eb74b2b
PM
624 WARN_ON_ONCE(rnp->expmask);
625 WARN_ON_ONCE(rnp->exp_tasks);
96e92021 626 if (!rcu_preempt_has_tasks(rnp)) {
8eb74b2b 627 /* No blocked tasks, nothing to do. */
1217ed1b 628 raw_spin_unlock_irqrestore(&rnp->lock, flags);
8eb74b2b
PM
629 return;
630 }
631 /* Call for Phase 2 and propagate ->expmask bits up the tree. */
632 rnp->expmask = 1;
633 rnp_up = rnp;
634 while (rnp_up->parent) {
635 mask = rnp_up->grpmask;
636 rnp_up = rnp_up->parent;
637 if (rnp_up->expmask & mask)
638 break;
639 raw_spin_lock(&rnp_up->lock); /* irqs already off */
640 smp_mb__after_unlock_lock();
641 rnp_up->expmask |= mask;
642 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
643 }
644 raw_spin_unlock_irqrestore(&rnp->lock, flags);
645}
646
647/*
648 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
649 * grace period for the specified rcu_node structure, phase 2. If the
650 * leaf rcu_node structure has its ->expmask field set, check for tasks.
651 * If there are some, clear ->expmask and set ->exp_tasks accordingly,
652 * then initiate RCU priority boosting. Otherwise, clear ->expmask and
653 * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
654 * enabling rcu_read_unlock_special() to do the bit-clearing.
655 *
29fd9309 656 * Caller must hold the root rcu_node's exp_funnel_mutex.
8eb74b2b
PM
657 */
658static void
659sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
660{
661 unsigned long flags;
662
663 raw_spin_lock_irqsave(&rnp->lock, flags);
664 smp_mb__after_unlock_lock();
665 if (!rnp->expmask) {
666 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
667 raw_spin_unlock_irqrestore(&rnp->lock, flags);
668 return;
669 }
670
671 /* Phase 1 is over. */
672 rnp->expmask = 0;
673
674 /*
675 * If there are still blocked tasks, set up ->exp_tasks so that
676 * rcu_read_unlock_special() will wake us and then boost them.
677 */
678 if (rcu_preempt_has_tasks(rnp)) {
12f5f524 679 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 680 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
8eb74b2b 681 return;
12f5f524 682 }
8eb74b2b
PM
683
684 /* No longer any blocked tasks, so undo bit setting. */
685 raw_spin_unlock_irqrestore(&rnp->lock, flags);
686 rcu_report_exp_rnp(rsp, rnp, false);
d9a3da06
PM
687}
688
236fefaf
PM
689/**
690 * synchronize_rcu_expedited - Brute-force RCU grace period
691 *
692 * Wait for an RCU-preempt grace period, but expedite it. The basic
693 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
694 * the ->blkd_tasks lists and wait for this list to drain. This consumes
695 * significant time on all CPUs and is unfriendly to real-time workloads,
696 * so is thus not recommended for any sort of common-case code.
697 * In fact, if you are using synchronize_rcu_expedited() in a loop,
698 * please restructure your code to batch your updates, and then Use a
699 * single synchronize_rcu() instead.
019129d5
PM
700 */
701void synchronize_rcu_expedited(void)
702{
d9a3da06 703 struct rcu_node *rnp;
29fd9309 704 struct rcu_node *rnp_unlock;
e63c887c 705 struct rcu_state *rsp = rcu_state_p;
543c6158 706 unsigned long s;
d9a3da06 707
543c6158 708 s = rcu_exp_gp_seq_snap(rsp);
d9a3da06 709
29fd9309
PM
710 rnp_unlock = exp_funnel_lock(rsp, s);
711 if (rnp_unlock == NULL)
712 return; /* Someone else did our work for us. */
1943c89d 713
543c6158 714 rcu_exp_gp_seq_start(rsp);
d9a3da06 715
12f5f524 716 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
717 synchronize_sched_expedited();
718
8eb74b2b
PM
719 /*
720 * Snapshot current state of ->blkd_tasks lists into ->expmask.
721 * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
722 * to start clearing them. Doing this in one phase leads to
723 * strange races between setting and clearing bits, so just say "no"!
724 */
d9a3da06 725 rcu_for_each_leaf_node(rsp, rnp)
8eb74b2b 726 sync_rcu_preempt_exp_init1(rsp, rnp);
d9a3da06 727 rcu_for_each_leaf_node(rsp, rnp)
8eb74b2b 728 sync_rcu_preempt_exp_init2(rsp, rnp);
d9a3da06 729
12f5f524 730 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
731 rnp = rcu_get_root(rsp);
732 wait_event(sync_rcu_preempt_exp_wq,
733 sync_rcu_preempt_exp_done(rnp));
734
735 /* Clean up and exit. */
543c6158 736 rcu_exp_gp_seq_end(rsp);
29fd9309 737 mutex_unlock(&rnp_unlock->exp_funnel_mutex);
019129d5
PM
738}
739EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
740
e74f4c45
PM
741/**
742 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
743 *
744 * Note that this primitive does not necessarily wait for an RCU grace period
745 * to complete. For example, if there are no RCU callbacks queued anywhere
746 * in the system, then rcu_barrier() is within its rights to return
747 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
748 */
749void rcu_barrier(void)
750{
e63c887c 751 _rcu_barrier(rcu_state_p);
e74f4c45
PM
752}
753EXPORT_SYMBOL_GPL(rcu_barrier);
754
1eba8f84 755/*
6cc68793 756 * Initialize preemptible RCU's state structures.
1eba8f84
PM
757 */
758static void __init __rcu_init_preempt(void)
759{
2927a689 760 rcu_init_one(rcu_state_p, rcu_data_p);
1eba8f84
PM
761}
762
2439b696
PM
763/*
764 * Check for a task exiting while in a preemptible-RCU read-side
765 * critical section, clean up if so. No need to issue warnings,
766 * as debug_check_no_locks_held() already does this if lockdep
767 * is enabled.
768 */
769void exit_rcu(void)
770{
771 struct task_struct *t = current;
772
773 if (likely(list_empty(&current->rcu_node_entry)))
774 return;
775 t->rcu_read_lock_nesting = 1;
776 barrier();
1d082fd0 777 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
778 __rcu_read_unlock();
779}
780
28f6569a 781#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 782
b28a7c01 783static struct rcu_state *const rcu_state_p = &rcu_sched_state;
2927a689 784static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
27f4d280 785
f41d911f
PM
786/*
787 * Tell them what RCU they are running.
788 */
0e0fc1c2 789static void __init rcu_bootup_announce(void)
f41d911f 790{
efc151c3 791 pr_info("Hierarchical RCU implementation.\n");
26845c28 792 rcu_bootup_announce_oddness();
f41d911f
PM
793}
794
cba6d0d6
PM
795/*
796 * Because preemptible RCU does not exist, we never have to check for
797 * CPUs being in quiescent states.
798 */
38200cf2 799static void rcu_preempt_note_context_switch(void)
cba6d0d6
PM
800{
801}
802
fc2219d4 803/*
6cc68793 804 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
805 * RCU readers.
806 */
27f4d280 807static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
808{
809 return 0;
810}
811
8af3a5e7
PM
812/*
813 * Because there is no preemptible RCU, there can be no readers blocked.
814 */
815static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 816{
8af3a5e7 817 return false;
b668c9cf
PM
818}
819
1ed509a2 820/*
6cc68793 821 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
822 * tasks blocked within RCU read-side critical sections.
823 */
824static void rcu_print_detail_task_stall(struct rcu_state *rsp)
825{
826}
827
f41d911f 828/*
6cc68793 829 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
830 * tasks blocked within RCU read-side critical sections.
831 */
9bc8b558 832static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 833{
9bc8b558 834 return 0;
f41d911f
PM
835}
836
b0e165c0 837/*
6cc68793 838 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
839 * so there is no need to check for blocked tasks. So check only for
840 * bogus qsmask values.
b0e165c0
PM
841 */
842static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
843{
49e29126 844 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
845}
846
f41d911f 847/*
6cc68793 848 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
849 * to check.
850 */
86aea0e6 851static void rcu_preempt_check_callbacks(void)
f41d911f
PM
852{
853}
854
019129d5
PM
855/*
856 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 857 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
858 */
859void synchronize_rcu_expedited(void)
860{
861 synchronize_sched_expedited();
862}
863EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
864
e74f4c45 865/*
6cc68793 866 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
867 * another name for rcu_barrier_sched().
868 */
869void rcu_barrier(void)
870{
871 rcu_barrier_sched();
872}
873EXPORT_SYMBOL_GPL(rcu_barrier);
874
1eba8f84 875/*
6cc68793 876 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
877 */
878static void __init __rcu_init_preempt(void)
879{
880}
881
2439b696
PM
882/*
883 * Because preemptible RCU does not exist, tasks cannot possibly exit
884 * while in preemptible RCU read-side critical sections.
885 */
886void exit_rcu(void)
887{
888}
889
28f6569a 890#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 891
27f4d280
PM
892#ifdef CONFIG_RCU_BOOST
893
1696a8be 894#include "../locking/rtmutex_common.h"
27f4d280 895
0ea1f2eb
PM
896#ifdef CONFIG_RCU_TRACE
897
898static void rcu_initiate_boost_trace(struct rcu_node *rnp)
899{
96e92021 900 if (!rcu_preempt_has_tasks(rnp))
0ea1f2eb
PM
901 rnp->n_balk_blkd_tasks++;
902 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
903 rnp->n_balk_exp_gp_tasks++;
904 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
905 rnp->n_balk_boost_tasks++;
906 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
907 rnp->n_balk_notblocked++;
908 else if (rnp->gp_tasks != NULL &&
a9f4793d 909 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
910 rnp->n_balk_notyet++;
911 else
912 rnp->n_balk_nos++;
913}
914
915#else /* #ifdef CONFIG_RCU_TRACE */
916
917static void rcu_initiate_boost_trace(struct rcu_node *rnp)
918{
919}
920
921#endif /* #else #ifdef CONFIG_RCU_TRACE */
922
5d01bbd1
TG
923static void rcu_wake_cond(struct task_struct *t, int status)
924{
925 /*
926 * If the thread is yielding, only wake it when this
927 * is invoked from idle
928 */
929 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
930 wake_up_process(t);
931}
932
27f4d280
PM
933/*
934 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
935 * or ->boost_tasks, advancing the pointer to the next task in the
936 * ->blkd_tasks list.
937 *
938 * Note that irqs must be enabled: boosting the task can block.
939 * Returns 1 if there are more tasks needing to be boosted.
940 */
941static int rcu_boost(struct rcu_node *rnp)
942{
943 unsigned long flags;
27f4d280
PM
944 struct task_struct *t;
945 struct list_head *tb;
946
7d0ae808
PM
947 if (READ_ONCE(rnp->exp_tasks) == NULL &&
948 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
949 return 0; /* Nothing left to boost. */
950
951 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 952 smp_mb__after_unlock_lock();
27f4d280
PM
953
954 /*
955 * Recheck under the lock: all tasks in need of boosting
956 * might exit their RCU read-side critical sections on their own.
957 */
958 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
959 raw_spin_unlock_irqrestore(&rnp->lock, flags);
960 return 0;
961 }
962
963 /*
964 * Preferentially boost tasks blocking expedited grace periods.
965 * This cannot starve the normal grace periods because a second
966 * expedited grace period must boost all blocked tasks, including
967 * those blocking the pre-existing normal grace period.
968 */
0ea1f2eb 969 if (rnp->exp_tasks != NULL) {
27f4d280 970 tb = rnp->exp_tasks;
0ea1f2eb
PM
971 rnp->n_exp_boosts++;
972 } else {
27f4d280 973 tb = rnp->boost_tasks;
0ea1f2eb
PM
974 rnp->n_normal_boosts++;
975 }
976 rnp->n_tasks_boosted++;
27f4d280
PM
977
978 /*
979 * We boost task t by manufacturing an rt_mutex that appears to
980 * be held by task t. We leave a pointer to that rt_mutex where
981 * task t can find it, and task t will release the mutex when it
982 * exits its outermost RCU read-side critical section. Then
983 * simply acquiring this artificial rt_mutex will boost task
984 * t's priority. (Thanks to tglx for suggesting this approach!)
985 *
986 * Note that task t must acquire rnp->lock to remove itself from
987 * the ->blkd_tasks list, which it will do from exit() if from
988 * nowhere else. We therefore are guaranteed that task t will
989 * stay around at least until we drop rnp->lock. Note that
990 * rnp->lock also resolves races between our priority boosting
991 * and task t's exiting its outermost RCU read-side critical
992 * section.
993 */
994 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 995 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
27f4d280 996 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
997 /* Lock only for side effect: boosts task t's priority. */
998 rt_mutex_lock(&rnp->boost_mtx);
999 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1000
7d0ae808
PM
1001 return READ_ONCE(rnp->exp_tasks) != NULL ||
1002 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1003}
1004
27f4d280 1005/*
bc17ea10 1006 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1007 */
1008static int rcu_boost_kthread(void *arg)
1009{
1010 struct rcu_node *rnp = (struct rcu_node *)arg;
1011 int spincnt = 0;
1012 int more2boost;
1013
f7f7bac9 1014 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1015 for (;;) {
d71df90e 1016 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1017 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1018 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1019 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1020 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1021 more2boost = rcu_boost(rnp);
1022 if (more2boost)
1023 spincnt++;
1024 else
1025 spincnt = 0;
1026 if (spincnt > 10) {
5d01bbd1 1027 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1028 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1029 schedule_timeout_interruptible(2);
f7f7bac9 1030 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1031 spincnt = 0;
1032 }
1033 }
1217ed1b 1034 /* NOTREACHED */
f7f7bac9 1035 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1036 return 0;
1037}
1038
1039/*
1040 * Check to see if it is time to start boosting RCU readers that are
1041 * blocking the current grace period, and, if so, tell the per-rcu_node
1042 * kthread to start boosting them. If there is an expedited grace
1043 * period in progress, it is always time to boost.
1044 *
b065a853
PM
1045 * The caller must hold rnp->lock, which this function releases.
1046 * The ->boost_kthread_task is immortal, so we don't need to worry
1047 * about it going away.
27f4d280 1048 */
1217ed1b 1049static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1050 __releases(rnp->lock)
27f4d280
PM
1051{
1052 struct task_struct *t;
1053
0ea1f2eb
PM
1054 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1055 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1057 return;
0ea1f2eb 1058 }
27f4d280
PM
1059 if (rnp->exp_tasks != NULL ||
1060 (rnp->gp_tasks != NULL &&
1061 rnp->boost_tasks == NULL &&
1062 rnp->qsmask == 0 &&
1063 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1064 if (rnp->exp_tasks == NULL)
1065 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1067 t = rnp->boost_kthread_task;
5d01bbd1
TG
1068 if (t)
1069 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1070 } else {
0ea1f2eb 1071 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1072 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1073 }
27f4d280
PM
1074}
1075
a46e0899
PM
1076/*
1077 * Wake up the per-CPU kthread to invoke RCU callbacks.
1078 */
1079static void invoke_rcu_callbacks_kthread(void)
1080{
1081 unsigned long flags;
1082
1083 local_irq_save(flags);
1084 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1085 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1086 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1087 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1088 __this_cpu_read(rcu_cpu_kthread_status));
1089 }
a46e0899
PM
1090 local_irq_restore(flags);
1091}
1092
dff1672d
PM
1093/*
1094 * Is the current CPU running the RCU-callbacks kthread?
1095 * Caller must have preemption disabled.
1096 */
1097static bool rcu_is_callbacks_kthread(void)
1098{
c9d4b0af 1099 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1100}
1101
27f4d280
PM
1102#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1103
1104/*
1105 * Do priority-boost accounting for the start of a new grace period.
1106 */
1107static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1108{
1109 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1110}
1111
27f4d280
PM
1112/*
1113 * Create an RCU-boost kthread for the specified node if one does not
1114 * already exist. We only create this kthread for preemptible RCU.
1115 * Returns zero if all is well, a negated errno otherwise.
1116 */
49fb4c62 1117static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
0aa04b05 1118 struct rcu_node *rnp)
27f4d280 1119{
5d01bbd1 1120 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1121 unsigned long flags;
1122 struct sched_param sp;
1123 struct task_struct *t;
1124
e63c887c 1125 if (rcu_state_p != rsp)
27f4d280 1126 return 0;
5d01bbd1 1127
0aa04b05 1128 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
5d01bbd1
TG
1129 return 0;
1130
a46e0899 1131 rsp->boost = 1;
27f4d280
PM
1132 if (rnp->boost_kthread_task != NULL)
1133 return 0;
1134 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1135 "rcub/%d", rnp_index);
27f4d280
PM
1136 if (IS_ERR(t))
1137 return PTR_ERR(t);
1138 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1139 smp_mb__after_unlock_lock();
27f4d280
PM
1140 rnp->boost_kthread_task = t;
1141 raw_spin_unlock_irqrestore(&rnp->lock, flags);
21871d7e 1142 sp.sched_priority = kthread_prio;
27f4d280 1143 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1144 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1145 return 0;
1146}
1147
f8b7fc6b
PM
1148static void rcu_kthread_do_work(void)
1149{
c9d4b0af
CL
1150 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1151 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1152 rcu_preempt_do_callbacks();
1153}
1154
62ab7072 1155static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1156{
f8b7fc6b 1157 struct sched_param sp;
f8b7fc6b 1158
21871d7e 1159 sp.sched_priority = kthread_prio;
62ab7072 1160 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1161}
1162
62ab7072 1163static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1164{
62ab7072 1165 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1166}
1167
62ab7072 1168static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1169{
c9d4b0af 1170 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1171}
1172
1173/*
1174 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1175 * RCU softirq used in flavors and configurations of RCU that do not
1176 * support RCU priority boosting.
f8b7fc6b 1177 */
62ab7072 1178static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1179{
c9d4b0af
CL
1180 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1181 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1182 int spincnt;
f8b7fc6b 1183
62ab7072 1184 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1185 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1186 local_bh_disable();
f8b7fc6b 1187 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1188 this_cpu_inc(rcu_cpu_kthread_loops);
1189 local_irq_disable();
f8b7fc6b
PM
1190 work = *workp;
1191 *workp = 0;
62ab7072 1192 local_irq_enable();
f8b7fc6b
PM
1193 if (work)
1194 rcu_kthread_do_work();
1195 local_bh_enable();
62ab7072 1196 if (*workp == 0) {
f7f7bac9 1197 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1198 *statusp = RCU_KTHREAD_WAITING;
1199 return;
f8b7fc6b
PM
1200 }
1201 }
62ab7072 1202 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1203 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1204 schedule_timeout_interruptible(2);
f7f7bac9 1205 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1206 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1207}
1208
1209/*
1210 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1211 * served by the rcu_node in question. The CPU hotplug lock is still
1212 * held, so the value of rnp->qsmaskinit will be stable.
1213 *
1214 * We don't include outgoingcpu in the affinity set, use -1 if there is
1215 * no outgoing CPU. If there are no CPUs left in the affinity set,
1216 * this function allows the kthread to execute on any CPU.
1217 */
5d01bbd1 1218static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1219{
5d01bbd1 1220 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1221 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1222 cpumask_var_t cm;
1223 int cpu;
f8b7fc6b 1224
5d01bbd1 1225 if (!t)
f8b7fc6b 1226 return;
5d01bbd1 1227 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1228 return;
f8b7fc6b
PM
1229 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1230 if ((mask & 0x1) && cpu != outgoingcpu)
1231 cpumask_set_cpu(cpu, cm);
5d0b0249 1232 if (cpumask_weight(cm) == 0)
f8b7fc6b 1233 cpumask_setall(cm);
5d01bbd1 1234 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1235 free_cpumask_var(cm);
1236}
1237
62ab7072
PM
1238static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1239 .store = &rcu_cpu_kthread_task,
1240 .thread_should_run = rcu_cpu_kthread_should_run,
1241 .thread_fn = rcu_cpu_kthread,
1242 .thread_comm = "rcuc/%u",
1243 .setup = rcu_cpu_kthread_setup,
1244 .park = rcu_cpu_kthread_park,
1245};
f8b7fc6b
PM
1246
1247/*
9386c0b7 1248 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1249 */
9386c0b7 1250static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1251{
f8b7fc6b 1252 struct rcu_node *rnp;
5d01bbd1 1253 int cpu;
f8b7fc6b 1254
62ab7072 1255 for_each_possible_cpu(cpu)
f8b7fc6b 1256 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1257 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1258 rcu_for_each_leaf_node(rcu_state_p, rnp)
1259 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1260}
f8b7fc6b 1261
49fb4c62 1262static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1263{
e534165b 1264 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1265 struct rcu_node *rnp = rdp->mynode;
1266
1267 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1268 if (rcu_scheduler_fully_active)
e534165b 1269 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1270}
1271
27f4d280
PM
1272#else /* #ifdef CONFIG_RCU_BOOST */
1273
1217ed1b 1274static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1275 __releases(rnp->lock)
27f4d280 1276{
1217ed1b 1277 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1278}
1279
a46e0899 1280static void invoke_rcu_callbacks_kthread(void)
27f4d280 1281{
a46e0899 1282 WARN_ON_ONCE(1);
27f4d280
PM
1283}
1284
dff1672d
PM
1285static bool rcu_is_callbacks_kthread(void)
1286{
1287 return false;
1288}
1289
27f4d280
PM
1290static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1291{
1292}
1293
5d01bbd1 1294static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1295{
1296}
1297
9386c0b7 1298static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1299{
b0d30417 1300}
b0d30417 1301
49fb4c62 1302static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1303{
1304}
1305
27f4d280
PM
1306#endif /* #else #ifdef CONFIG_RCU_BOOST */
1307
8bd93a2c
PM
1308#if !defined(CONFIG_RCU_FAST_NO_HZ)
1309
1310/*
1311 * Check to see if any future RCU-related work will need to be done
1312 * by the current CPU, even if none need be done immediately, returning
1313 * 1 if so. This function is part of the RCU implementation; it is -not-
1314 * an exported member of the RCU API.
1315 *
7cb92499
PM
1316 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1317 * any flavor of RCU.
8bd93a2c 1318 */
c1ad348b 1319int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1320{
c1ad348b 1321 *nextevt = KTIME_MAX;
3382adbc
PM
1322 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1323 ? 0 : rcu_cpu_has_callbacks(NULL);
7cb92499
PM
1324}
1325
1326/*
1327 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1328 * after it.
1329 */
8fa7845d 1330static void rcu_cleanup_after_idle(void)
7cb92499
PM
1331{
1332}
1333
aea1b35e 1334/*
a858af28 1335 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1336 * is nothing.
1337 */
198bbf81 1338static void rcu_prepare_for_idle(void)
aea1b35e
PM
1339{
1340}
1341
c57afe80
PM
1342/*
1343 * Don't bother keeping a running count of the number of RCU callbacks
1344 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1345 */
1346static void rcu_idle_count_callbacks_posted(void)
1347{
1348}
1349
8bd93a2c
PM
1350#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1351
f23f7fa1
PM
1352/*
1353 * This code is invoked when a CPU goes idle, at which point we want
1354 * to have the CPU do everything required for RCU so that it can enter
1355 * the energy-efficient dyntick-idle mode. This is handled by a
1356 * state machine implemented by rcu_prepare_for_idle() below.
1357 *
1358 * The following three proprocessor symbols control this state machine:
1359 *
f23f7fa1
PM
1360 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1361 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1362 * is sized to be roughly one RCU grace period. Those energy-efficiency
1363 * benchmarkers who might otherwise be tempted to set this to a large
1364 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1365 * system. And if you are -that- concerned about energy efficiency,
1366 * just power the system down and be done with it!
778d250a
PM
1367 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1368 * permitted to sleep in dyntick-idle mode with only lazy RCU
1369 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1370 *
1371 * The values below work well in practice. If future workloads require
1372 * adjustment, they can be converted into kernel config parameters, though
1373 * making the state machine smarter might be a better option.
1374 */
e84c48ae 1375#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1376#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1377
5e44ce35
PM
1378static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1379module_param(rcu_idle_gp_delay, int, 0644);
1380static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1381module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1382
486e2593 1383/*
c229828c
PM
1384 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1385 * only if it has been awhile since the last time we did so. Afterwards,
1386 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1387 */
f1f399d1 1388static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1389{
c0f4dfd4
PM
1390 bool cbs_ready = false;
1391 struct rcu_data *rdp;
c229828c 1392 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1393 struct rcu_node *rnp;
1394 struct rcu_state *rsp;
486e2593 1395
c229828c
PM
1396 /* Exit early if we advanced recently. */
1397 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1398 return false;
c229828c
PM
1399 rdtp->last_advance_all = jiffies;
1400
c0f4dfd4
PM
1401 for_each_rcu_flavor(rsp) {
1402 rdp = this_cpu_ptr(rsp->rda);
1403 rnp = rdp->mynode;
486e2593 1404
c0f4dfd4
PM
1405 /*
1406 * Don't bother checking unless a grace period has
1407 * completed since we last checked and there are
1408 * callbacks not yet ready to invoke.
1409 */
e3663b10 1410 if ((rdp->completed != rnp->completed ||
7d0ae808 1411 unlikely(READ_ONCE(rdp->gpwrap))) &&
c0f4dfd4 1412 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1413 note_gp_changes(rsp, rdp);
486e2593 1414
c0f4dfd4
PM
1415 if (cpu_has_callbacks_ready_to_invoke(rdp))
1416 cbs_ready = true;
1417 }
1418 return cbs_ready;
486e2593
PM
1419}
1420
aa9b1630 1421/*
c0f4dfd4
PM
1422 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1423 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1424 * caller to set the timeout based on whether or not there are non-lazy
1425 * callbacks.
aa9b1630 1426 *
c0f4dfd4 1427 * The caller must have disabled interrupts.
aa9b1630 1428 */
c1ad348b 1429int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1430{
aa6da514 1431 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c1ad348b 1432 unsigned long dj;
aa9b1630 1433
3382adbc 1434 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
43224b96 1435 *nextevt = KTIME_MAX;
3382adbc
PM
1436 return 0;
1437 }
1438
c0f4dfd4
PM
1439 /* Snapshot to detect later posting of non-lazy callback. */
1440 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1441
aa9b1630 1442 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1443 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c1ad348b 1444 *nextevt = KTIME_MAX;
aa9b1630
PM
1445 return 0;
1446 }
c0f4dfd4
PM
1447
1448 /* Attempt to advance callbacks. */
1449 if (rcu_try_advance_all_cbs()) {
1450 /* Some ready to invoke, so initiate later invocation. */
1451 invoke_rcu_core();
aa9b1630
PM
1452 return 1;
1453 }
c0f4dfd4
PM
1454 rdtp->last_accelerate = jiffies;
1455
1456 /* Request timer delay depending on laziness, and round. */
6faf7283 1457 if (!rdtp->all_lazy) {
c1ad348b 1458 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1459 rcu_idle_gp_delay) - jiffies;
e84c48ae 1460 } else {
c1ad348b 1461 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1462 }
c1ad348b 1463 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1464 return 0;
1465}
1466
21e52e15 1467/*
c0f4dfd4
PM
1468 * Prepare a CPU for idle from an RCU perspective. The first major task
1469 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1470 * The second major task is to check to see if a non-lazy callback has
1471 * arrived at a CPU that previously had only lazy callbacks. The third
1472 * major task is to accelerate (that is, assign grace-period numbers to)
1473 * any recently arrived callbacks.
aea1b35e
PM
1474 *
1475 * The caller must have disabled interrupts.
8bd93a2c 1476 */
198bbf81 1477static void rcu_prepare_for_idle(void)
8bd93a2c 1478{
48a7639c 1479 bool needwake;
c0f4dfd4 1480 struct rcu_data *rdp;
198bbf81 1481 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1482 struct rcu_node *rnp;
1483 struct rcu_state *rsp;
9d2ad243
PM
1484 int tne;
1485
3382adbc
PM
1486 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1487 return;
1488
9d2ad243 1489 /* Handle nohz enablement switches conservatively. */
7d0ae808 1490 tne = READ_ONCE(tick_nohz_active);
9d2ad243 1491 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1492 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1493 invoke_rcu_core(); /* force nohz to see update. */
1494 rdtp->tick_nohz_enabled_snap = tne;
1495 return;
1496 }
1497 if (!tne)
1498 return;
f511fc62 1499
c0f4dfd4 1500 /* If this is a no-CBs CPU, no callbacks, just return. */
198bbf81 1501 if (rcu_is_nocb_cpu(smp_processor_id()))
9a0c6fef 1502 return;
9a0c6fef 1503
c57afe80 1504 /*
c0f4dfd4
PM
1505 * If a non-lazy callback arrived at a CPU having only lazy
1506 * callbacks, invoke RCU core for the side-effect of recalculating
1507 * idle duration on re-entry to idle.
c57afe80 1508 */
c0f4dfd4
PM
1509 if (rdtp->all_lazy &&
1510 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1511 rdtp->all_lazy = false;
1512 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1513 invoke_rcu_core();
c57afe80
PM
1514 return;
1515 }
c57afe80 1516
3084f2f8 1517 /*
c0f4dfd4
PM
1518 * If we have not yet accelerated this jiffy, accelerate all
1519 * callbacks on this CPU.
3084f2f8 1520 */
c0f4dfd4 1521 if (rdtp->last_accelerate == jiffies)
aea1b35e 1522 return;
c0f4dfd4
PM
1523 rdtp->last_accelerate = jiffies;
1524 for_each_rcu_flavor(rsp) {
198bbf81 1525 rdp = this_cpu_ptr(rsp->rda);
c0f4dfd4
PM
1526 if (!*rdp->nxttail[RCU_DONE_TAIL])
1527 continue;
1528 rnp = rdp->mynode;
1529 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1530 smp_mb__after_unlock_lock();
48a7639c 1531 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1532 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1533 if (needwake)
1534 rcu_gp_kthread_wake(rsp);
77e38ed3 1535 }
c0f4dfd4 1536}
3084f2f8 1537
c0f4dfd4
PM
1538/*
1539 * Clean up for exit from idle. Attempt to advance callbacks based on
1540 * any grace periods that elapsed while the CPU was idle, and if any
1541 * callbacks are now ready to invoke, initiate invocation.
1542 */
8fa7845d 1543static void rcu_cleanup_after_idle(void)
c0f4dfd4 1544{
3382adbc
PM
1545 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1546 rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1547 return;
7a497c96
PM
1548 if (rcu_try_advance_all_cbs())
1549 invoke_rcu_core();
8bd93a2c
PM
1550}
1551
c57afe80 1552/*
98248a0e
PM
1553 * Keep a running count of the number of non-lazy callbacks posted
1554 * on this CPU. This running counter (which is never decremented) allows
1555 * rcu_prepare_for_idle() to detect when something out of the idle loop
1556 * posts a callback, even if an equal number of callbacks are invoked.
1557 * Of course, callbacks should only be posted from within a trace event
1558 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1559 */
1560static void rcu_idle_count_callbacks_posted(void)
1561{
5955f7ee 1562 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1563}
1564
b626c1b6
PM
1565/*
1566 * Data for flushing lazy RCU callbacks at OOM time.
1567 */
1568static atomic_t oom_callback_count;
1569static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1570
1571/*
1572 * RCU OOM callback -- decrement the outstanding count and deliver the
1573 * wake-up if we are the last one.
1574 */
1575static void rcu_oom_callback(struct rcu_head *rhp)
1576{
1577 if (atomic_dec_and_test(&oom_callback_count))
1578 wake_up(&oom_callback_wq);
1579}
1580
1581/*
1582 * Post an rcu_oom_notify callback on the current CPU if it has at
1583 * least one lazy callback. This will unnecessarily post callbacks
1584 * to CPUs that already have a non-lazy callback at the end of their
1585 * callback list, but this is an infrequent operation, so accept some
1586 * extra overhead to keep things simple.
1587 */
1588static void rcu_oom_notify_cpu(void *unused)
1589{
1590 struct rcu_state *rsp;
1591 struct rcu_data *rdp;
1592
1593 for_each_rcu_flavor(rsp) {
fa07a58f 1594 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1595 if (rdp->qlen_lazy != 0) {
1596 atomic_inc(&oom_callback_count);
1597 rsp->call(&rdp->oom_head, rcu_oom_callback);
1598 }
1599 }
1600}
1601
1602/*
1603 * If low on memory, ensure that each CPU has a non-lazy callback.
1604 * This will wake up CPUs that have only lazy callbacks, in turn
1605 * ensuring that they free up the corresponding memory in a timely manner.
1606 * Because an uncertain amount of memory will be freed in some uncertain
1607 * timeframe, we do not claim to have freed anything.
1608 */
1609static int rcu_oom_notify(struct notifier_block *self,
1610 unsigned long notused, void *nfreed)
1611{
1612 int cpu;
1613
1614 /* Wait for callbacks from earlier instance to complete. */
1615 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1616 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1617
1618 /*
1619 * Prevent premature wakeup: ensure that all increments happen
1620 * before there is a chance of the counter reaching zero.
1621 */
1622 atomic_set(&oom_callback_count, 1);
1623
b626c1b6
PM
1624 for_each_online_cpu(cpu) {
1625 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1626 cond_resched_rcu_qs();
b626c1b6 1627 }
b626c1b6
PM
1628
1629 /* Unconditionally decrement: no need to wake ourselves up. */
1630 atomic_dec(&oom_callback_count);
1631
1632 return NOTIFY_OK;
1633}
1634
1635static struct notifier_block rcu_oom_nb = {
1636 .notifier_call = rcu_oom_notify
1637};
1638
1639static int __init rcu_register_oom_notifier(void)
1640{
1641 register_oom_notifier(&rcu_oom_nb);
1642 return 0;
1643}
1644early_initcall(rcu_register_oom_notifier);
1645
8bd93a2c 1646#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1647
a858af28
PM
1648#ifdef CONFIG_RCU_FAST_NO_HZ
1649
1650static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1651{
5955f7ee 1652 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1653 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1654
c0f4dfd4
PM
1655 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1656 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1657 ulong2long(nlpd),
1658 rdtp->all_lazy ? 'L' : '.',
1659 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1660}
1661
1662#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1663
1664static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1665{
1c17e4d4 1666 *cp = '\0';
a858af28
PM
1667}
1668
1669#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1670
1671/* Initiate the stall-info list. */
1672static void print_cpu_stall_info_begin(void)
1673{
efc151c3 1674 pr_cont("\n");
a858af28
PM
1675}
1676
1677/*
1678 * Print out diagnostic information for the specified stalled CPU.
1679 *
1680 * If the specified CPU is aware of the current RCU grace period
1681 * (flavor specified by rsp), then print the number of scheduling
1682 * clock interrupts the CPU has taken during the time that it has
1683 * been aware. Otherwise, print the number of RCU grace periods
1684 * that this CPU is ignorant of, for example, "1" if the CPU was
1685 * aware of the previous grace period.
1686 *
1687 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1688 */
1689static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1690{
1691 char fast_no_hz[72];
1692 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1693 struct rcu_dynticks *rdtp = rdp->dynticks;
1694 char *ticks_title;
1695 unsigned long ticks_value;
1696
1697 if (rsp->gpnum == rdp->gpnum) {
1698 ticks_title = "ticks this GP";
1699 ticks_value = rdp->ticks_this_gp;
1700 } else {
1701 ticks_title = "GPs behind";
1702 ticks_value = rsp->gpnum - rdp->gpnum;
1703 }
1704 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
fc908ed3 1705 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
a858af28
PM
1706 cpu, ticks_value, ticks_title,
1707 atomic_read(&rdtp->dynticks) & 0xfff,
1708 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1709 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
7d0ae808 1710 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1711 fast_no_hz);
1712}
1713
1714/* Terminate the stall-info list. */
1715static void print_cpu_stall_info_end(void)
1716{
efc151c3 1717 pr_err("\t");
a858af28
PM
1718}
1719
1720/* Zero ->ticks_this_gp for all flavors of RCU. */
1721static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1722{
1723 rdp->ticks_this_gp = 0;
6231069b 1724 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1725}
1726
1727/* Increment ->ticks_this_gp for all flavors of RCU. */
1728static void increment_cpu_stall_ticks(void)
1729{
115f7a7c
PM
1730 struct rcu_state *rsp;
1731
1732 for_each_rcu_flavor(rsp)
fa07a58f 1733 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1734}
1735
3fbfbf7a
PM
1736#ifdef CONFIG_RCU_NOCB_CPU
1737
1738/*
1739 * Offload callback processing from the boot-time-specified set of CPUs
1740 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1741 * kthread created that pulls the callbacks from the corresponding CPU,
1742 * waits for a grace period to elapse, and invokes the callbacks.
1743 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1744 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1745 * has been specified, in which case each kthread actively polls its
1746 * CPU. (Which isn't so great for energy efficiency, but which does
1747 * reduce RCU's overhead on that CPU.)
1748 *
1749 * This is intended to be used in conjunction with Frederic Weisbecker's
1750 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1751 * running CPU-bound user-mode computations.
1752 *
1753 * Offloading of callback processing could also in theory be used as
1754 * an energy-efficiency measure because CPUs with no RCU callbacks
1755 * queued are more aggressive about entering dyntick-idle mode.
1756 */
1757
1758
1759/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1760static int __init rcu_nocb_setup(char *str)
1761{
1762 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1763 have_rcu_nocb_mask = true;
1764 cpulist_parse(str, rcu_nocb_mask);
1765 return 1;
1766}
1767__setup("rcu_nocbs=", rcu_nocb_setup);
1768
1b0048a4
PG
1769static int __init parse_rcu_nocb_poll(char *arg)
1770{
1771 rcu_nocb_poll = 1;
1772 return 0;
1773}
1774early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1775
dae6e64d 1776/*
0446be48
PM
1777 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1778 * grace period.
dae6e64d 1779 */
0446be48 1780static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 1781{
0446be48 1782 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
1783}
1784
1785/*
8b425aa8 1786 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
1787 * based on the sum of those of all rcu_node structures. This does
1788 * double-count the root rcu_node structure's requests, but this
1789 * is necessary to handle the possibility of a rcu_nocb_kthread()
1790 * having awakened during the time that the rcu_node structures
1791 * were being updated for the end of the previous grace period.
34ed6246 1792 */
dae6e64d
PM
1793static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1794{
8b425aa8 1795 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
1796}
1797
1798static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1799{
dae6e64d
PM
1800 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1801 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1802}
1803
2f33b512 1804#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 1805/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1806bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
1807{
1808 if (have_rcu_nocb_mask)
1809 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1810 return false;
1811}
2f33b512 1812#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 1813
fbce7497
PM
1814/*
1815 * Kick the leader kthread for this NOCB group.
1816 */
1817static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1818{
1819 struct rcu_data *rdp_leader = rdp->nocb_leader;
1820
7d0ae808 1821 if (!READ_ONCE(rdp_leader->nocb_kthread))
fbce7497 1822 return;
7d0ae808 1823 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 1824 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
7d0ae808 1825 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
fbce7497
PM
1826 wake_up(&rdp_leader->nocb_wq);
1827 }
1828}
1829
d7e29933
PM
1830/*
1831 * Does the specified CPU need an RCU callback for the specified flavor
1832 * of rcu_barrier()?
1833 */
1834static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1835{
1836 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1837 unsigned long ret;
1838#ifdef CONFIG_PROVE_RCU
d7e29933 1839 struct rcu_head *rhp;
41050a00 1840#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1841
41050a00
PM
1842 /*
1843 * Check count of all no-CBs callbacks awaiting invocation.
1844 * There needs to be a barrier before this function is called,
1845 * but associated with a prior determination that no more
1846 * callbacks would be posted. In the worst case, the first
1847 * barrier in _rcu_barrier() suffices (but the caller cannot
1848 * necessarily rely on this, not a substitute for the caller
1849 * getting the concurrency design right!). There must also be
1850 * a barrier between the following load an posting of a callback
1851 * (if a callback is in fact needed). This is associated with an
1852 * atomic_inc() in the caller.
1853 */
1854 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1855
41050a00 1856#ifdef CONFIG_PROVE_RCU
7d0ae808 1857 rhp = READ_ONCE(rdp->nocb_head);
d7e29933 1858 if (!rhp)
7d0ae808 1859 rhp = READ_ONCE(rdp->nocb_gp_head);
d7e29933 1860 if (!rhp)
7d0ae808 1861 rhp = READ_ONCE(rdp->nocb_follower_head);
d7e29933
PM
1862
1863 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
7d0ae808 1864 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
59f792d1 1865 rcu_scheduler_fully_active) {
d7e29933
PM
1866 /* RCU callback enqueued before CPU first came online??? */
1867 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1868 cpu, rhp->func);
1869 WARN_ON_ONCE(1);
1870 }
41050a00 1871#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1872
41050a00 1873 return !!ret;
d7e29933
PM
1874}
1875
3fbfbf7a
PM
1876/*
1877 * Enqueue the specified string of rcu_head structures onto the specified
1878 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1879 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1880 * counts are supplied by rhcount and rhcount_lazy.
1881 *
1882 * If warranted, also wake up the kthread servicing this CPUs queues.
1883 */
1884static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1885 struct rcu_head *rhp,
1886 struct rcu_head **rhtp,
96d3fd0d
PM
1887 int rhcount, int rhcount_lazy,
1888 unsigned long flags)
3fbfbf7a
PM
1889{
1890 int len;
1891 struct rcu_head **old_rhpp;
1892 struct task_struct *t;
1893
1894 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
1895 atomic_long_add(rhcount, &rdp->nocb_q_count);
1896 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a 1897 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
7d0ae808 1898 WRITE_ONCE(*old_rhpp, rhp);
3fbfbf7a 1899 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 1900 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
1901
1902 /* If we are not being polled and there is a kthread, awaken it ... */
7d0ae808 1903 t = READ_ONCE(rdp->nocb_kthread);
25e03a74 1904 if (rcu_nocb_poll || !t) {
9261dd0d
PM
1905 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1906 TPS("WakeNotPoll"));
3fbfbf7a 1907 return;
9261dd0d 1908 }
3fbfbf7a
PM
1909 len = atomic_long_read(&rdp->nocb_q_count);
1910 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 1911 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
1912 /* ... if queue was empty ... */
1913 wake_nocb_leader(rdp, false);
96d3fd0d
PM
1914 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1915 TPS("WakeEmpty"));
1916 } else {
9fdd3bc9 1917 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
1918 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1919 TPS("WakeEmptyIsDeferred"));
1920 }
3fbfbf7a
PM
1921 rdp->qlen_last_fqs_check = 0;
1922 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1923 /* ... or if many callbacks queued. */
9fdd3bc9
PM
1924 if (!irqs_disabled_flags(flags)) {
1925 wake_nocb_leader(rdp, true);
1926 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1927 TPS("WakeOvf"));
1928 } else {
1929 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1930 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1931 TPS("WakeOvfIsDeferred"));
1932 }
3fbfbf7a 1933 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
1934 } else {
1935 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
1936 }
1937 return;
1938}
1939
1940/*
1941 * This is a helper for __call_rcu(), which invokes this when the normal
1942 * callback queue is inoperable. If this is not a no-CBs CPU, this
1943 * function returns failure back to __call_rcu(), which can complain
1944 * appropriately.
1945 *
1946 * Otherwise, this function queues the callback where the corresponding
1947 * "rcuo" kthread can find it.
1948 */
1949static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 1950 bool lazy, unsigned long flags)
3fbfbf7a
PM
1951{
1952
d1e43fa5 1953 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 1954 return false;
96d3fd0d 1955 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
1956 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1957 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1958 (unsigned long)rhp->func,
756cbf6b
PM
1959 -atomic_long_read(&rdp->nocb_q_count_lazy),
1960 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
1961 else
1962 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
1963 -atomic_long_read(&rdp->nocb_q_count_lazy),
1964 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
1965
1966 /*
1967 * If called from an extended quiescent state with interrupts
1968 * disabled, invoke the RCU core in order to allow the idle-entry
1969 * deferred-wakeup check to function.
1970 */
1971 if (irqs_disabled_flags(flags) &&
1972 !rcu_is_watching() &&
1973 cpu_online(smp_processor_id()))
1974 invoke_rcu_core();
1975
c271d3a9 1976 return true;
3fbfbf7a
PM
1977}
1978
1979/*
1980 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1981 * not a no-CBs CPU.
1982 */
1983static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
1984 struct rcu_data *rdp,
1985 unsigned long flags)
3fbfbf7a
PM
1986{
1987 long ql = rsp->qlen;
1988 long qll = rsp->qlen_lazy;
1989
1990 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 1991 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 1992 return false;
3fbfbf7a
PM
1993 rsp->qlen = 0;
1994 rsp->qlen_lazy = 0;
1995
1996 /* First, enqueue the donelist, if any. This preserves CB ordering. */
1997 if (rsp->orphan_donelist != NULL) {
1998 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 1999 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2000 ql = qll = 0;
2001 rsp->orphan_donelist = NULL;
2002 rsp->orphan_donetail = &rsp->orphan_donelist;
2003 }
2004 if (rsp->orphan_nxtlist != NULL) {
2005 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2006 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2007 ql = qll = 0;
2008 rsp->orphan_nxtlist = NULL;
2009 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2010 }
0a9e1e11 2011 return true;
3fbfbf7a
PM
2012}
2013
2014/*
34ed6246
PM
2015 * If necessary, kick off a new grace period, and either way wait
2016 * for a subsequent grace period to complete.
3fbfbf7a 2017 */
34ed6246 2018static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2019{
34ed6246 2020 unsigned long c;
dae6e64d 2021 bool d;
34ed6246 2022 unsigned long flags;
48a7639c 2023 bool needwake;
34ed6246
PM
2024 struct rcu_node *rnp = rdp->mynode;
2025
2026 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2027 smp_mb__after_unlock_lock();
48a7639c 2028 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2029 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2030 if (needwake)
2031 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2032
2033 /*
34ed6246
PM
2034 * Wait for the grace period. Do so interruptibly to avoid messing
2035 * up the load average.
3fbfbf7a 2036 */
f7f7bac9 2037 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2038 for (;;) {
dae6e64d
PM
2039 wait_event_interruptible(
2040 rnp->nocb_gp_wq[c & 0x1],
7d0ae808 2041 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
dae6e64d 2042 if (likely(d))
34ed6246 2043 break;
73a860cd 2044 WARN_ON(signal_pending(current));
f7f7bac9 2045 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2046 }
f7f7bac9 2047 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2048 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2049}
2050
fbce7497
PM
2051/*
2052 * Leaders come here to wait for additional callbacks to show up.
2053 * This function does not return until callbacks appear.
2054 */
2055static void nocb_leader_wait(struct rcu_data *my_rdp)
2056{
2057 bool firsttime = true;
2058 bool gotcbs;
2059 struct rcu_data *rdp;
2060 struct rcu_head **tail;
2061
2062wait_again:
2063
2064 /* Wait for callbacks to appear. */
2065 if (!rcu_nocb_poll) {
2066 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2067 wait_event_interruptible(my_rdp->nocb_wq,
7d0ae808 2068 !READ_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2069 /* Memory barrier handled by smp_mb() calls below and repoll. */
2070 } else if (firsttime) {
2071 firsttime = false; /* Don't drown trace log with "Poll"! */
2072 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2073 }
2074
2075 /*
2076 * Each pass through the following loop checks a follower for CBs.
2077 * We are our own first follower. Any CBs found are moved to
2078 * nocb_gp_head, where they await a grace period.
2079 */
2080 gotcbs = false;
2081 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2082 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
fbce7497
PM
2083 if (!rdp->nocb_gp_head)
2084 continue; /* No CBs here, try next follower. */
2085
2086 /* Move callbacks to wait-for-GP list, which is empty. */
7d0ae808 2087 WRITE_ONCE(rdp->nocb_head, NULL);
fbce7497 2088 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2089 gotcbs = true;
2090 }
2091
2092 /*
2093 * If there were no callbacks, sleep a bit, rescan after a
2094 * memory barrier, and go retry.
2095 */
2096 if (unlikely(!gotcbs)) {
2097 if (!rcu_nocb_poll)
2098 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2099 "WokeEmpty");
73a860cd 2100 WARN_ON(signal_pending(current));
fbce7497
PM
2101 schedule_timeout_interruptible(1);
2102
2103 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2104 my_rdp->nocb_leader_sleep = true;
2105 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497 2106 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
7d0ae808 2107 if (READ_ONCE(rdp->nocb_head)) {
fbce7497 2108 /* Found CB, so short-circuit next wait. */
11ed7f93 2109 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2110 break;
2111 }
2112 goto wait_again;
2113 }
2114
2115 /* Wait for one grace period. */
2116 rcu_nocb_wait_gp(my_rdp);
2117
2118 /*
11ed7f93
PK
2119 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2120 * We set it now, but recheck for new callbacks while
fbce7497
PM
2121 * traversing our follower list.
2122 */
11ed7f93
PK
2123 my_rdp->nocb_leader_sleep = true;
2124 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2125
2126 /* Each pass through the following loop wakes a follower, if needed. */
2127 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2128 if (READ_ONCE(rdp->nocb_head))
11ed7f93 2129 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2130 if (!rdp->nocb_gp_head)
2131 continue; /* No CBs, so no need to wake follower. */
2132
2133 /* Append callbacks to follower's "done" list. */
2134 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2135 *tail = rdp->nocb_gp_head;
c847f142 2136 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2137 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2138 /*
2139 * List was empty, wake up the follower.
2140 * Memory barriers supplied by atomic_long_add().
2141 */
2142 wake_up(&rdp->nocb_wq);
2143 }
2144 }
2145
2146 /* If we (the leader) don't have CBs, go wait some more. */
2147 if (!my_rdp->nocb_follower_head)
2148 goto wait_again;
2149}
2150
2151/*
2152 * Followers come here to wait for additional callbacks to show up.
2153 * This function does not return until callbacks appear.
2154 */
2155static void nocb_follower_wait(struct rcu_data *rdp)
2156{
2157 bool firsttime = true;
2158
2159 for (;;) {
2160 if (!rcu_nocb_poll) {
2161 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2162 "FollowerSleep");
2163 wait_event_interruptible(rdp->nocb_wq,
7d0ae808 2164 READ_ONCE(rdp->nocb_follower_head));
fbce7497
PM
2165 } else if (firsttime) {
2166 /* Don't drown trace log with "Poll"! */
2167 firsttime = false;
2168 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2169 }
2170 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2171 /* ^^^ Ensure CB invocation follows _head test. */
2172 return;
2173 }
2174 if (!rcu_nocb_poll)
2175 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2176 "WokeEmpty");
73a860cd 2177 WARN_ON(signal_pending(current));
fbce7497
PM
2178 schedule_timeout_interruptible(1);
2179 }
2180}
2181
3fbfbf7a
PM
2182/*
2183 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2184 * callbacks queued by the corresponding no-CBs CPU, however, there is
2185 * an optional leader-follower relationship so that the grace-period
2186 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2187 */
2188static int rcu_nocb_kthread(void *arg)
2189{
2190 int c, cl;
2191 struct rcu_head *list;
2192 struct rcu_head *next;
2193 struct rcu_head **tail;
2194 struct rcu_data *rdp = arg;
2195
2196 /* Each pass through this loop invokes one batch of callbacks */
2197 for (;;) {
fbce7497
PM
2198 /* Wait for callbacks. */
2199 if (rdp->nocb_leader == rdp)
2200 nocb_leader_wait(rdp);
2201 else
2202 nocb_follower_wait(rdp);
2203
2204 /* Pull the ready-to-invoke callbacks onto local list. */
7d0ae808 2205 list = READ_ONCE(rdp->nocb_follower_head);
fbce7497
PM
2206 BUG_ON(!list);
2207 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
7d0ae808 2208 WRITE_ONCE(rdp->nocb_follower_head, NULL);
fbce7497 2209 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
3fbfbf7a
PM
2210
2211 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2212 trace_rcu_batch_start(rdp->rsp->name,
2213 atomic_long_read(&rdp->nocb_q_count_lazy),
2214 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2215 c = cl = 0;
2216 while (list) {
2217 next = list->next;
2218 /* Wait for enqueuing to complete, if needed. */
2219 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2220 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2221 TPS("WaitQueue"));
3fbfbf7a 2222 schedule_timeout_interruptible(1);
69a79bb1
PM
2223 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2224 TPS("WokeQueue"));
3fbfbf7a
PM
2225 next = list->next;
2226 }
2227 debug_rcu_head_unqueue(list);
2228 local_bh_disable();
2229 if (__rcu_reclaim(rdp->rsp->name, list))
2230 cl++;
2231 c++;
2232 local_bh_enable();
2233 list = next;
2234 }
2235 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2236 smp_mb__before_atomic(); /* _add after CB invocation. */
2237 atomic_long_add(-c, &rdp->nocb_q_count);
2238 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
c635a4e1 2239 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2240 }
2241 return 0;
2242}
2243
96d3fd0d 2244/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2245static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2246{
7d0ae808 2247 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2248}
2249
2250/* Do a deferred wakeup of rcu_nocb_kthread(). */
2251static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2252{
9fdd3bc9
PM
2253 int ndw;
2254
96d3fd0d
PM
2255 if (!rcu_nocb_need_deferred_wakeup(rdp))
2256 return;
7d0ae808
PM
2257 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2258 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
9fdd3bc9
PM
2259 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2260 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2261}
2262
f4579fc5
PM
2263void __init rcu_init_nohz(void)
2264{
2265 int cpu;
2266 bool need_rcu_nocb_mask = true;
2267 struct rcu_state *rsp;
2268
2269#ifdef CONFIG_RCU_NOCB_CPU_NONE
2270 need_rcu_nocb_mask = false;
2271#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2272
2273#if defined(CONFIG_NO_HZ_FULL)
2274 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2275 need_rcu_nocb_mask = true;
2276#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2277
2278 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2279 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2280 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2281 return;
2282 }
f4579fc5
PM
2283 have_rcu_nocb_mask = true;
2284 }
2285 if (!have_rcu_nocb_mask)
2286 return;
2287
2288#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2289 pr_info("\tOffload RCU callbacks from CPU 0\n");
2290 cpumask_set_cpu(0, rcu_nocb_mask);
2291#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2292#ifdef CONFIG_RCU_NOCB_CPU_ALL
2293 pr_info("\tOffload RCU callbacks from all CPUs\n");
2294 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2295#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2296#if defined(CONFIG_NO_HZ_FULL)
2297 if (tick_nohz_full_running)
2298 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2299#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2300
2301 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2302 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2303 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2304 rcu_nocb_mask);
2305 }
ad853b48
TH
2306 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2307 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2308 if (rcu_nocb_poll)
2309 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2310
2311 for_each_rcu_flavor(rsp) {
34404ca8
PM
2312 for_each_cpu(cpu, rcu_nocb_mask)
2313 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
35ce7f29 2314 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2315 }
96d3fd0d
PM
2316}
2317
3fbfbf7a
PM
2318/* Initialize per-rcu_data variables for no-CBs CPUs. */
2319static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2320{
2321 rdp->nocb_tail = &rdp->nocb_head;
2322 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2323 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2324}
2325
35ce7f29
PM
2326/*
2327 * If the specified CPU is a no-CBs CPU that does not already have its
2328 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2329 * brought online out of order, this can require re-organizing the
2330 * leader-follower relationships.
2331 */
2332static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2333{
2334 struct rcu_data *rdp;
2335 struct rcu_data *rdp_last;
2336 struct rcu_data *rdp_old_leader;
2337 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2338 struct task_struct *t;
2339
2340 /*
2341 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2342 * then nothing to do.
2343 */
2344 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2345 return;
2346
2347 /* If we didn't spawn the leader first, reorganize! */
2348 rdp_old_leader = rdp_spawn->nocb_leader;
2349 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2350 rdp_last = NULL;
2351 rdp = rdp_old_leader;
2352 do {
2353 rdp->nocb_leader = rdp_spawn;
2354 if (rdp_last && rdp != rdp_spawn)
2355 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2356 if (rdp == rdp_spawn) {
2357 rdp = rdp->nocb_next_follower;
2358 } else {
2359 rdp_last = rdp;
2360 rdp = rdp->nocb_next_follower;
2361 rdp_last->nocb_next_follower = NULL;
2362 }
35ce7f29
PM
2363 } while (rdp);
2364 rdp_spawn->nocb_next_follower = rdp_old_leader;
2365 }
2366
2367 /* Spawn the kthread for this CPU and RCU flavor. */
2368 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2369 "rcuo%c/%d", rsp->abbr, cpu);
2370 BUG_ON(IS_ERR(t));
7d0ae808 2371 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
35ce7f29
PM
2372}
2373
2374/*
2375 * If the specified CPU is a no-CBs CPU that does not already have its
2376 * rcuo kthreads, spawn them.
2377 */
2378static void rcu_spawn_all_nocb_kthreads(int cpu)
2379{
2380 struct rcu_state *rsp;
2381
2382 if (rcu_scheduler_fully_active)
2383 for_each_rcu_flavor(rsp)
2384 rcu_spawn_one_nocb_kthread(rsp, cpu);
2385}
2386
2387/*
2388 * Once the scheduler is running, spawn rcuo kthreads for all online
2389 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2390 * non-boot CPUs come online -- if this changes, we will need to add
2391 * some mutual exclusion.
2392 */
2393static void __init rcu_spawn_nocb_kthreads(void)
2394{
2395 int cpu;
2396
2397 for_each_online_cpu(cpu)
2398 rcu_spawn_all_nocb_kthreads(cpu);
2399}
2400
fbce7497
PM
2401/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2402static int rcu_nocb_leader_stride = -1;
2403module_param(rcu_nocb_leader_stride, int, 0444);
2404
2405/*
35ce7f29 2406 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2407 */
35ce7f29 2408static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2409{
2410 int cpu;
fbce7497
PM
2411 int ls = rcu_nocb_leader_stride;
2412 int nl = 0; /* Next leader. */
3fbfbf7a 2413 struct rcu_data *rdp;
fbce7497
PM
2414 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2415 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2416
22c2f669 2417 if (!have_rcu_nocb_mask)
3fbfbf7a 2418 return;
fbce7497
PM
2419 if (ls == -1) {
2420 ls = int_sqrt(nr_cpu_ids);
2421 rcu_nocb_leader_stride = ls;
2422 }
2423
2424 /*
2425 * Each pass through this loop sets up one rcu_data structure and
2426 * spawns one rcu_nocb_kthread().
2427 */
3fbfbf7a
PM
2428 for_each_cpu(cpu, rcu_nocb_mask) {
2429 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2430 if (rdp->cpu >= nl) {
2431 /* New leader, set up for followers & next leader. */
2432 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2433 rdp->nocb_leader = rdp;
2434 rdp_leader = rdp;
2435 } else {
2436 /* Another follower, link to previous leader. */
2437 rdp->nocb_leader = rdp_leader;
2438 rdp_prev->nocb_next_follower = rdp;
2439 }
2440 rdp_prev = rdp;
3fbfbf7a
PM
2441 }
2442}
2443
2444/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2445static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2446{
22c2f669 2447 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2448 return false;
22c2f669 2449
34404ca8
PM
2450 /* If there are early-boot callbacks, move them to nocb lists. */
2451 if (rdp->nxtlist) {
2452 rdp->nocb_head = rdp->nxtlist;
2453 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2454 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2455 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2456 rdp->nxtlist = NULL;
2457 rdp->qlen = 0;
2458 rdp->qlen_lazy = 0;
2459 }
3fbfbf7a 2460 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2461 return true;
3fbfbf7a
PM
2462}
2463
34ed6246
PM
2464#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2465
d7e29933
PM
2466static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2467{
2468 WARN_ON_ONCE(1); /* Should be dead code. */
2469 return false;
2470}
2471
0446be48 2472static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2473{
3fbfbf7a
PM
2474}
2475
dae6e64d
PM
2476static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2477{
2478}
2479
2480static void rcu_init_one_nocb(struct rcu_node *rnp)
2481{
2482}
3fbfbf7a 2483
3fbfbf7a 2484static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2485 bool lazy, unsigned long flags)
3fbfbf7a 2486{
4afc7e26 2487 return false;
3fbfbf7a
PM
2488}
2489
2490static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2491 struct rcu_data *rdp,
2492 unsigned long flags)
3fbfbf7a 2493{
f4aa84ba 2494 return false;
3fbfbf7a
PM
2495}
2496
3fbfbf7a
PM
2497static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2498{
2499}
2500
9fdd3bc9 2501static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2502{
2503 return false;
2504}
2505
2506static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2507{
2508}
2509
35ce7f29
PM
2510static void rcu_spawn_all_nocb_kthreads(int cpu)
2511{
2512}
2513
2514static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2515{
2516}
2517
34ed6246 2518static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2519{
34ed6246 2520 return false;
3fbfbf7a
PM
2521}
2522
2523#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2524
2525/*
2526 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2527 * arbitrarily long period of time with the scheduling-clock tick turned
2528 * off. RCU will be paying attention to this CPU because it is in the
2529 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2530 * machine because the scheduling-clock tick has been disabled. Therefore,
2531 * if an adaptive-ticks CPU is failing to respond to the current grace
2532 * period and has not be idle from an RCU perspective, kick it.
2533 */
4a81e832 2534static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2535{
2536#ifdef CONFIG_NO_HZ_FULL
2537 if (tick_nohz_full_cpu(cpu))
2538 smp_send_reschedule(cpu);
2539#endif /* #ifdef CONFIG_NO_HZ_FULL */
2540}
2333210b
PM
2541
2542
2543#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2544
0edd1b17 2545static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2546#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2547#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2548#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2549#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2550#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2551
eb348b89
PM
2552/*
2553 * Invoked to note exit from irq or task transition to idle. Note that
2554 * usermode execution does -not- count as idle here! After all, we want
2555 * to detect full-system idle states, not RCU quiescent states and grace
2556 * periods. The caller must have disabled interrupts.
2557 */
28ced795 2558static void rcu_sysidle_enter(int irq)
eb348b89
PM
2559{
2560 unsigned long j;
28ced795 2561 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
eb348b89 2562
663e1310
PM
2563 /* If there are no nohz_full= CPUs, no need to track this. */
2564 if (!tick_nohz_full_enabled())
2565 return;
2566
eb348b89
PM
2567 /* Adjust nesting, check for fully idle. */
2568 if (irq) {
2569 rdtp->dynticks_idle_nesting--;
2570 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2571 if (rdtp->dynticks_idle_nesting != 0)
2572 return; /* Still not fully idle. */
2573 } else {
2574 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2575 DYNTICK_TASK_NEST_VALUE) {
2576 rdtp->dynticks_idle_nesting = 0;
2577 } else {
2578 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2579 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2580 return; /* Still not fully idle. */
2581 }
2582 }
2583
2584 /* Record start of fully idle period. */
2585 j = jiffies;
7d0ae808 2586 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
4e857c58 2587 smp_mb__before_atomic();
eb348b89 2588 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2589 smp_mb__after_atomic();
eb348b89
PM
2590 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2591}
2592
0edd1b17
PM
2593/*
2594 * Unconditionally force exit from full system-idle state. This is
2595 * invoked when a normal CPU exits idle, but must be called separately
2596 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2597 * is that the timekeeping CPU is permitted to take scheduling-clock
2598 * interrupts while the system is in system-idle state, and of course
2599 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2600 * interrupt from any other type of interrupt.
2601 */
2602void rcu_sysidle_force_exit(void)
2603{
7d0ae808 2604 int oldstate = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2605 int newoldstate;
2606
2607 /*
2608 * Each pass through the following loop attempts to exit full
2609 * system-idle state. If contention proves to be a problem,
2610 * a trylock-based contention tree could be used here.
2611 */
2612 while (oldstate > RCU_SYSIDLE_SHORT) {
2613 newoldstate = cmpxchg(&full_sysidle_state,
2614 oldstate, RCU_SYSIDLE_NOT);
2615 if (oldstate == newoldstate &&
2616 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2617 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2618 return; /* We cleared it, done! */
2619 }
2620 oldstate = newoldstate;
2621 }
2622 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2623}
2624
eb348b89
PM
2625/*
2626 * Invoked to note entry to irq or task transition from idle. Note that
2627 * usermode execution does -not- count as idle here! The caller must
2628 * have disabled interrupts.
2629 */
28ced795 2630static void rcu_sysidle_exit(int irq)
eb348b89 2631{
28ced795
CL
2632 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2633
663e1310
PM
2634 /* If there are no nohz_full= CPUs, no need to track this. */
2635 if (!tick_nohz_full_enabled())
2636 return;
2637
eb348b89
PM
2638 /* Adjust nesting, check for already non-idle. */
2639 if (irq) {
2640 rdtp->dynticks_idle_nesting++;
2641 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2642 if (rdtp->dynticks_idle_nesting != 1)
2643 return; /* Already non-idle. */
2644 } else {
2645 /*
2646 * Allow for irq misnesting. Yes, it really is possible
2647 * to enter an irq handler then never leave it, and maybe
2648 * also vice versa. Handle both possibilities.
2649 */
2650 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2651 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2652 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2653 return; /* Already non-idle. */
2654 } else {
2655 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2656 }
2657 }
2658
2659 /* Record end of idle period. */
4e857c58 2660 smp_mb__before_atomic();
eb348b89 2661 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2662 smp_mb__after_atomic();
eb348b89 2663 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2664
2665 /*
2666 * If we are the timekeeping CPU, we are permitted to be non-idle
2667 * during a system-idle state. This must be the case, because
2668 * the timekeeping CPU has to take scheduling-clock interrupts
2669 * during the time that the system is transitioning to full
2670 * system-idle state. This means that the timekeeping CPU must
2671 * invoke rcu_sysidle_force_exit() directly if it does anything
2672 * more than take a scheduling-clock interrupt.
2673 */
2674 if (smp_processor_id() == tick_do_timer_cpu)
2675 return;
2676
2677 /* Update system-idle state: We are clearly no longer fully idle! */
2678 rcu_sysidle_force_exit();
2679}
2680
2681/*
2682 * Check to see if the current CPU is idle. Note that usermode execution
5871968d
PM
2683 * does not count as idle. The caller must have disabled interrupts,
2684 * and must be running on tick_do_timer_cpu.
0edd1b17
PM
2685 */
2686static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2687 unsigned long *maxj)
2688{
2689 int cur;
2690 unsigned long j;
2691 struct rcu_dynticks *rdtp = rdp->dynticks;
2692
663e1310
PM
2693 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2694 if (!tick_nohz_full_enabled())
2695 return;
2696
0edd1b17
PM
2697 /*
2698 * If some other CPU has already reported non-idle, if this is
2699 * not the flavor of RCU that tracks sysidle state, or if this
2700 * is an offline or the timekeeping CPU, nothing to do.
2701 */
417e8d26 2702 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2703 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2704 return;
5871968d
PM
2705 /* Verify affinity of current kthread. */
2706 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2707
2708 /* Pick up current idle and NMI-nesting counter and check. */
2709 cur = atomic_read(&rdtp->dynticks_idle);
2710 if (cur & 0x1) {
2711 *isidle = false; /* We are not idle! */
2712 return;
2713 }
2714 smp_mb(); /* Read counters before timestamps. */
2715
2716 /* Pick up timestamps. */
7d0ae808 2717 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
0edd1b17
PM
2718 /* If this CPU entered idle more recently, update maxj timestamp. */
2719 if (ULONG_CMP_LT(*maxj, j))
2720 *maxj = j;
2721}
2722
2723/*
2724 * Is this the flavor of RCU that is handling full-system idle?
2725 */
2726static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2727{
417e8d26 2728 return rsp == rcu_state_p;
0edd1b17
PM
2729}
2730
2731/*
2732 * Return a delay in jiffies based on the number of CPUs, rcu_node
2733 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2734 * systems more time to transition to full-idle state in order to
2735 * avoid the cache thrashing that otherwise occur on the state variable.
2736 * Really small systems (less than a couple of tens of CPUs) should
2737 * instead use a single global atomically incremented counter, and later
2738 * versions of this will automatically reconfigure themselves accordingly.
2739 */
2740static unsigned long rcu_sysidle_delay(void)
2741{
2742 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2743 return 0;
2744 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2745}
2746
2747/*
2748 * Advance the full-system-idle state. This is invoked when all of
2749 * the non-timekeeping CPUs are idle.
2750 */
2751static void rcu_sysidle(unsigned long j)
2752{
2753 /* Check the current state. */
7d0ae808 2754 switch (READ_ONCE(full_sysidle_state)) {
0edd1b17
PM
2755 case RCU_SYSIDLE_NOT:
2756
2757 /* First time all are idle, so note a short idle period. */
7d0ae808 2758 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
0edd1b17
PM
2759 break;
2760
2761 case RCU_SYSIDLE_SHORT:
2762
2763 /*
2764 * Idle for a bit, time to advance to next state?
2765 * cmpxchg failure means race with non-idle, let them win.
2766 */
2767 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2768 (void)cmpxchg(&full_sysidle_state,
2769 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2770 break;
2771
2772 case RCU_SYSIDLE_LONG:
2773
2774 /*
2775 * Do an additional check pass before advancing to full.
2776 * cmpxchg failure means race with non-idle, let them win.
2777 */
2778 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2779 (void)cmpxchg(&full_sysidle_state,
2780 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2781 break;
2782
2783 default:
2784 break;
2785 }
2786}
2787
2788/*
2789 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2790 * back to the beginning.
2791 */
2792static void rcu_sysidle_cancel(void)
2793{
2794 smp_mb();
becb41bf 2795 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
7d0ae808 2796 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
0edd1b17
PM
2797}
2798
2799/*
2800 * Update the sysidle state based on the results of a force-quiescent-state
2801 * scan of the CPUs' dyntick-idle state.
2802 */
2803static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2804 unsigned long maxj, bool gpkt)
2805{
417e8d26 2806 if (rsp != rcu_state_p)
0edd1b17
PM
2807 return; /* Wrong flavor, ignore. */
2808 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2809 return; /* Running state machine from timekeeping CPU. */
2810 if (isidle)
2811 rcu_sysidle(maxj); /* More idle! */
2812 else
2813 rcu_sysidle_cancel(); /* Idle is over. */
2814}
2815
2816/*
2817 * Wrapper for rcu_sysidle_report() when called from the grace-period
2818 * kthread's context.
2819 */
2820static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2821 unsigned long maxj)
2822{
663e1310
PM
2823 /* If there are no nohz_full= CPUs, no need to track this. */
2824 if (!tick_nohz_full_enabled())
2825 return;
2826
0edd1b17
PM
2827 rcu_sysidle_report(rsp, isidle, maxj, true);
2828}
2829
2830/* Callback and function for forcing an RCU grace period. */
2831struct rcu_sysidle_head {
2832 struct rcu_head rh;
2833 int inuse;
2834};
2835
2836static void rcu_sysidle_cb(struct rcu_head *rhp)
2837{
2838 struct rcu_sysidle_head *rshp;
2839
2840 /*
2841 * The following memory barrier is needed to replace the
2842 * memory barriers that would normally be in the memory
2843 * allocator.
2844 */
2845 smp_mb(); /* grace period precedes setting inuse. */
2846
2847 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
7d0ae808 2848 WRITE_ONCE(rshp->inuse, 0);
0edd1b17
PM
2849}
2850
2851/*
2852 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
2853 * The caller must have disabled interrupts. This is not intended to be
2854 * called unless tick_nohz_full_enabled().
0edd1b17
PM
2855 */
2856bool rcu_sys_is_idle(void)
2857{
2858 static struct rcu_sysidle_head rsh;
7d0ae808 2859 int rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2860
2861 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2862 return false;
2863
2864 /* Handle small-system case by doing a full scan of CPUs. */
2865 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2866 int oldrss = rss - 1;
2867
2868 /*
2869 * One pass to advance to each state up to _FULL.
2870 * Give up if any pass fails to advance the state.
2871 */
2872 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2873 int cpu;
2874 bool isidle = true;
2875 unsigned long maxj = jiffies - ULONG_MAX / 4;
2876 struct rcu_data *rdp;
2877
2878 /* Scan all the CPUs looking for nonidle CPUs. */
2879 for_each_possible_cpu(cpu) {
417e8d26 2880 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
2881 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2882 if (!isidle)
2883 break;
2884 }
417e8d26 2885 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17 2886 oldrss = rss;
7d0ae808 2887 rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2888 }
2889 }
2890
2891 /* If this is the first observation of an idle period, record it. */
2892 if (rss == RCU_SYSIDLE_FULL) {
2893 rss = cmpxchg(&full_sysidle_state,
2894 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2895 return rss == RCU_SYSIDLE_FULL;
2896 }
2897
2898 smp_mb(); /* ensure rss load happens before later caller actions. */
2899
2900 /* If already fully idle, tell the caller (in case of races). */
2901 if (rss == RCU_SYSIDLE_FULL_NOTED)
2902 return true;
2903
2904 /*
2905 * If we aren't there yet, and a grace period is not in flight,
2906 * initiate a grace period. Either way, tell the caller that
2907 * we are not there yet. We use an xchg() rather than an assignment
2908 * to make up for the memory barriers that would otherwise be
2909 * provided by the memory allocator.
2910 */
2911 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 2912 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
2913 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2914 call_rcu(&rsh.rh, rcu_sysidle_cb);
2915 return false;
eb348b89
PM
2916}
2917
2333210b
PM
2918/*
2919 * Initialize dynticks sysidle state for CPUs coming online.
2920 */
2921static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2922{
2923 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2924}
2925
2926#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2927
28ced795 2928static void rcu_sysidle_enter(int irq)
eb348b89
PM
2929{
2930}
2931
28ced795 2932static void rcu_sysidle_exit(int irq)
eb348b89
PM
2933{
2934}
2935
0edd1b17
PM
2936static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2937 unsigned long *maxj)
2938{
2939}
2940
2941static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2942{
2943 return false;
2944}
2945
2946static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2947 unsigned long maxj)
2948{
2949}
2950
2333210b
PM
2951static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2952{
2953}
2954
2955#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
2956
2957/*
2958 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2959 * grace-period kthread will do force_quiescent_state() processing?
2960 * The idea is to avoid waking up RCU core processing on such a
2961 * CPU unless the grace period has extended for too long.
2962 *
2963 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2964 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
2965 */
2966static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2967{
2968#ifdef CONFIG_NO_HZ_FULL
2969 if (tick_nohz_full_cpu(smp_processor_id()) &&
2970 (!rcu_gp_in_progress(rsp) ||
7d0ae808 2971 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
5ce035fb 2972 return true;
a096932f 2973#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2974 return false;
a096932f 2975}
5057f55e
PM
2976
2977/*
2978 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2979 * timekeeping CPU.
2980 */
2981static void rcu_bind_gp_kthread(void)
2982{
c0f489d2 2983 int __maybe_unused cpu;
5057f55e 2984
c0f489d2 2985 if (!tick_nohz_full_enabled())
5057f55e 2986 return;
c0f489d2
PM
2987#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2988 cpu = tick_do_timer_cpu;
5871968d 2989 if (cpu >= 0 && cpu < nr_cpu_ids)
5057f55e 2990 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2 2991#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5871968d 2992 housekeeping_affine(current);
c0f489d2 2993#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 2994}
176f8f7a
PM
2995
2996/* Record the current task on dyntick-idle entry. */
2997static void rcu_dynticks_task_enter(void)
2998{
2999#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3000 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
3001#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3002}
3003
3004/* Record no current task on dyntick-idle exit. */
3005static void rcu_dynticks_task_exit(void)
3006{
3007#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3008 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
3009#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3010}
This page took 0.57909 seconds and 5 git commands to generate.