rcu: Move synchronize_sched_expedited() to combining tree
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba 33#ifdef CONFIG_RCU_BOOST
61cfd097 34
abaa93d9 35#include "../locking/rtmutex_common.h"
21871d7e 36
61cfd097
PM
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
727b705b
PM
46#else /* #ifdef CONFIG_RCU_BOOST */
47
48/*
49 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50 * all uses are in dead code. Provide a definition to keep the compiler
51 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52 * This probably needs to be excluded from -rt builds.
53 */
54#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 57
3fbfbf7a
PM
58#ifdef CONFIG_RCU_NOCB_CPU
59static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 61static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
62#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
26845c28
PM
64/*
65 * Check the RCU kernel configuration parameters and print informative
66 * messages about anything out of the ordinary. If you like #ifdef, you
67 * will love this function.
68 */
69static void __init rcu_bootup_announce_oddness(void)
70{
ab6f5bd6
PM
71 if (IS_ENABLED(CONFIG_RCU_TRACE))
72 pr_info("\tRCU debugfs-based tracing is enabled.\n");
05c5df31
PM
73 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
ab6f5bd6 75 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
05c5df31 76 RCU_FANOUT);
7fa27001 77 if (rcu_fanout_exact)
ab6f5bd6
PM
78 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81 if (IS_ENABLED(CONFIG_PROVE_RCU))
82 pr_info("\tRCU lockdep checking is enabled.\n");
83 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84 pr_info("\tRCU torture testing starts during boot.\n");
42621697
AG
85 if (RCU_NUM_LVLS >= 4)
86 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 87 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 88 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
89 RCU_FANOUT_LEAF);
90 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
9a5739d7 91 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 92 if (nr_cpu_ids != NR_CPUS)
efc151c3 93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
ab6f5bd6
PM
94 if (IS_ENABLED(CONFIG_RCU_BOOST))
95 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
26845c28
PM
96}
97
28f6569a 98#ifdef CONFIG_PREEMPT_RCU
f41d911f 99
a41bfeb2 100RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
b28a7c01 101static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
2927a689 102static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
f41d911f 103
d19fb8d1
PM
104static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
105 bool wake);
d9a3da06 106
f41d911f
PM
107/*
108 * Tell them what RCU they are running.
109 */
0e0fc1c2 110static void __init rcu_bootup_announce(void)
f41d911f 111{
efc151c3 112 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 113 rcu_bootup_announce_oddness();
f41d911f
PM
114}
115
8203d6d0
PM
116/* Flags for rcu_preempt_ctxt_queue() decision table. */
117#define RCU_GP_TASKS 0x8
118#define RCU_EXP_TASKS 0x4
119#define RCU_GP_BLKD 0x2
120#define RCU_EXP_BLKD 0x1
121
122/*
123 * Queues a task preempted within an RCU-preempt read-side critical
124 * section into the appropriate location within the ->blkd_tasks list,
125 * depending on the states of any ongoing normal and expedited grace
126 * periods. The ->gp_tasks pointer indicates which element the normal
127 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
128 * indicates which element the expedited grace period is waiting on (again,
129 * NULL if none). If a grace period is waiting on a given element in the
130 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
131 * adding a task to the tail of the list blocks any grace period that is
132 * already waiting on one of the elements. In contrast, adding a task
133 * to the head of the list won't block any grace period that is already
134 * waiting on one of the elements.
135 *
136 * This queuing is imprecise, and can sometimes make an ongoing grace
137 * period wait for a task that is not strictly speaking blocking it.
138 * Given the choice, we needlessly block a normal grace period rather than
139 * blocking an expedited grace period.
140 *
141 * Note that an endless sequence of expedited grace periods still cannot
142 * indefinitely postpone a normal grace period. Eventually, all of the
143 * fixed number of preempted tasks blocking the normal grace period that are
144 * not also blocking the expedited grace period will resume and complete
145 * their RCU read-side critical sections. At that point, the ->gp_tasks
146 * pointer will equal the ->exp_tasks pointer, at which point the end of
147 * the corresponding expedited grace period will also be the end of the
148 * normal grace period.
149 */
150static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp,
151 unsigned long flags) __releases(rnp->lock)
152{
153 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
154 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
155 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
156 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
157 struct task_struct *t = current;
158
159 /*
160 * Decide where to queue the newly blocked task. In theory,
161 * this could be an if-statement. In practice, when I tried
162 * that, it was quite messy.
163 */
164 switch (blkd_state) {
165 case 0:
166 case RCU_EXP_TASKS:
167 case RCU_EXP_TASKS + RCU_GP_BLKD:
168 case RCU_GP_TASKS:
169 case RCU_GP_TASKS + RCU_EXP_TASKS:
170
171 /*
172 * Blocking neither GP, or first task blocking the normal
173 * GP but not blocking the already-waiting expedited GP.
174 * Queue at the head of the list to avoid unnecessarily
175 * blocking the already-waiting GPs.
176 */
177 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
178 break;
179
180 case RCU_EXP_BLKD:
181 case RCU_GP_BLKD:
182 case RCU_GP_BLKD + RCU_EXP_BLKD:
183 case RCU_GP_TASKS + RCU_EXP_BLKD:
184 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
185 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
186
187 /*
188 * First task arriving that blocks either GP, or first task
189 * arriving that blocks the expedited GP (with the normal
190 * GP already waiting), or a task arriving that blocks
191 * both GPs with both GPs already waiting. Queue at the
192 * tail of the list to avoid any GP waiting on any of the
193 * already queued tasks that are not blocking it.
194 */
195 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
196 break;
197
198 case RCU_EXP_TASKS + RCU_EXP_BLKD:
199 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
200 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
201
202 /*
203 * Second or subsequent task blocking the expedited GP.
204 * The task either does not block the normal GP, or is the
205 * first task blocking the normal GP. Queue just after
206 * the first task blocking the expedited GP.
207 */
208 list_add(&t->rcu_node_entry, rnp->exp_tasks);
209 break;
210
211 case RCU_GP_TASKS + RCU_GP_BLKD:
212 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
213
214 /*
215 * Second or subsequent task blocking the normal GP.
216 * The task does not block the expedited GP. Queue just
217 * after the first task blocking the normal GP.
218 */
219 list_add(&t->rcu_node_entry, rnp->gp_tasks);
220 break;
221
222 default:
223
224 /* Yet another exercise in excessive paranoia. */
225 WARN_ON_ONCE(1);
226 break;
227 }
228
229 /*
230 * We have now queued the task. If it was the first one to
231 * block either grace period, update the ->gp_tasks and/or
232 * ->exp_tasks pointers, respectively, to reference the newly
233 * blocked tasks.
234 */
235 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
236 rnp->gp_tasks = &t->rcu_node_entry;
237 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
238 rnp->exp_tasks = &t->rcu_node_entry;
239 raw_spin_unlock(&rnp->lock);
240
241 /*
242 * Report the quiescent state for the expedited GP. This expedited
243 * GP should not be able to end until we report, so there should be
244 * no need to check for a subsequent expedited GP. (Though we are
245 * still in a quiescent state in any case.)
246 */
247 if (blkd_state & RCU_EXP_BLKD &&
248 t->rcu_read_unlock_special.b.exp_need_qs) {
249 t->rcu_read_unlock_special.b.exp_need_qs = false;
250 rcu_report_exp_rdp(rdp->rsp, rdp, true);
251 } else {
252 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
253 }
254 local_irq_restore(flags);
255}
256
f41d911f 257/*
6cc68793 258 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
259 * that this just means that the task currently running on the CPU is
260 * not in a quiescent state. There might be any number of tasks blocked
261 * while in an RCU read-side critical section.
25502a6c 262 *
1d082fd0
PM
263 * As with the other rcu_*_qs() functions, callers to this function
264 * must disable preemption.
f41d911f 265 */
284a8c93 266static void rcu_preempt_qs(void)
f41d911f 267{
2927a689 268 if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
284a8c93 269 trace_rcu_grace_period(TPS("rcu_preempt"),
2927a689 270 __this_cpu_read(rcu_data_p->gpnum),
284a8c93 271 TPS("cpuqs"));
2927a689 272 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
284a8c93
PM
273 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
274 current->rcu_read_unlock_special.b.need_qs = false;
275 }
f41d911f
PM
276}
277
278/*
c3422bea
PM
279 * We have entered the scheduler, and the current task might soon be
280 * context-switched away from. If this task is in an RCU read-side
281 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
282 * record that fact, so we enqueue the task on the blkd_tasks list.
283 * The task will dequeue itself when it exits the outermost enclosing
284 * RCU read-side critical section. Therefore, the current grace period
285 * cannot be permitted to complete until the blkd_tasks list entries
286 * predating the current grace period drain, in other words, until
287 * rnp->gp_tasks becomes NULL.
c3422bea
PM
288 *
289 * Caller must disable preemption.
f41d911f 290 */
38200cf2 291static void rcu_preempt_note_context_switch(void)
f41d911f
PM
292{
293 struct task_struct *t = current;
c3422bea 294 unsigned long flags;
f41d911f
PM
295 struct rcu_data *rdp;
296 struct rcu_node *rnp;
297
10f39bb1 298 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 299 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
300
301 /* Possibly blocking in an RCU read-side critical section. */
e63c887c 302 rdp = this_cpu_ptr(rcu_state_p->rda);
f41d911f 303 rnp = rdp->mynode;
1304afb2 304 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 305 smp_mb__after_unlock_lock();
1d082fd0 306 t->rcu_read_unlock_special.b.blocked = true;
86848966 307 t->rcu_blocked_node = rnp;
f41d911f
PM
308
309 /*
8203d6d0
PM
310 * Verify the CPU's sanity, trace the preemption, and
311 * then queue the task as required based on the states
312 * of any ongoing and expedited grace periods.
f41d911f 313 */
0aa04b05 314 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 315 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
d4c08f2a
PM
316 trace_rcu_preempt_task(rdp->rsp->name,
317 t->pid,
318 (rnp->qsmask & rdp->grpmask)
319 ? rnp->gpnum
320 : rnp->gpnum + 1);
8203d6d0 321 rcu_preempt_ctxt_queue(rnp, rdp, flags);
10f39bb1 322 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 323 t->rcu_read_unlock_special.s) {
10f39bb1
PM
324
325 /*
326 * Complete exit from RCU read-side critical section on
327 * behalf of preempted instance of __rcu_read_unlock().
328 */
329 rcu_read_unlock_special(t);
f41d911f
PM
330 }
331
332 /*
333 * Either we were not in an RCU read-side critical section to
334 * begin with, or we have now recorded that critical section
335 * globally. Either way, we can now note a quiescent state
336 * for this CPU. Again, if we were in an RCU read-side critical
337 * section, and if that critical section was blocking the current
338 * grace period, then the fact that the task has been enqueued
339 * means that we continue to block the current grace period.
340 */
284a8c93 341 rcu_preempt_qs();
f41d911f
PM
342}
343
fc2219d4
PM
344/*
345 * Check for preempted RCU readers blocking the current grace period
346 * for the specified rcu_node structure. If the caller needs a reliable
347 * answer, it must hold the rcu_node's ->lock.
348 */
27f4d280 349static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 350{
12f5f524 351 return rnp->gp_tasks != NULL;
fc2219d4
PM
352}
353
12f5f524
PM
354/*
355 * Advance a ->blkd_tasks-list pointer to the next entry, instead
356 * returning NULL if at the end of the list.
357 */
358static struct list_head *rcu_next_node_entry(struct task_struct *t,
359 struct rcu_node *rnp)
360{
361 struct list_head *np;
362
363 np = t->rcu_node_entry.next;
364 if (np == &rnp->blkd_tasks)
365 np = NULL;
366 return np;
367}
368
8af3a5e7
PM
369/*
370 * Return true if the specified rcu_node structure has tasks that were
371 * preempted within an RCU read-side critical section.
372 */
373static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
374{
375 return !list_empty(&rnp->blkd_tasks);
376}
377
b668c9cf
PM
378/*
379 * Handle special cases during rcu_read_unlock(), such as needing to
380 * notify RCU core processing or task having blocked during the RCU
381 * read-side critical section.
382 */
2a3fa843 383void rcu_read_unlock_special(struct task_struct *t)
f41d911f 384{
b6a932d1
PM
385 bool empty_exp;
386 bool empty_norm;
387 bool empty_exp_now;
f41d911f 388 unsigned long flags;
12f5f524 389 struct list_head *np;
abaa93d9 390 bool drop_boost_mutex = false;
8203d6d0 391 struct rcu_data *rdp;
f41d911f 392 struct rcu_node *rnp;
1d082fd0 393 union rcu_special special;
f41d911f
PM
394
395 /* NMI handlers cannot block and cannot safely manipulate state. */
396 if (in_nmi())
397 return;
398
399 local_irq_save(flags);
400
401 /*
8203d6d0
PM
402 * If RCU core is waiting for this CPU to exit its critical section,
403 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 404 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
405 */
406 special = t->rcu_read_unlock_special;
1d082fd0 407 if (special.b.need_qs) {
284a8c93 408 rcu_preempt_qs();
c0135d07 409 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 410 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
411 local_irq_restore(flags);
412 return;
413 }
f41d911f
PM
414 }
415
8203d6d0
PM
416 /*
417 * Respond to a request for an expedited grace period, but only if
418 * we were not preempted, meaning that we were running on the same
419 * CPU throughout. If we were preempted, the exp_need_qs flag
420 * would have been cleared at the time of the first preemption,
421 * and the quiescent state would be reported when we were dequeued.
422 */
423 if (special.b.exp_need_qs) {
424 WARN_ON_ONCE(special.b.blocked);
425 t->rcu_read_unlock_special.b.exp_need_qs = false;
426 rdp = this_cpu_ptr(rcu_state_p->rda);
427 rcu_report_exp_rdp(rcu_state_p, rdp, true);
428 if (!t->rcu_read_unlock_special.s) {
429 local_irq_restore(flags);
430 return;
431 }
432 }
433
79a62f95 434 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
435 if (in_irq() || in_serving_softirq()) {
436 lockdep_rcu_suspicious(__FILE__, __LINE__,
437 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
8203d6d0 438 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
d24209bb
PM
439 t->rcu_read_unlock_special.s,
440 t->rcu_read_unlock_special.b.blocked,
8203d6d0 441 t->rcu_read_unlock_special.b.exp_need_qs,
d24209bb 442 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
443 local_irq_restore(flags);
444 return;
445 }
446
447 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
448 if (special.b.blocked) {
449 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 450
dd5d19ba 451 /*
0a0ba1c9
PM
452 * Remove this task from the list it blocked on. The task
453 * now remains queued on the rcu_node corresponding to
454 * the CPU it first blocked on, so the first attempt to
455 * acquire the task's rcu_node's ->lock will succeed.
456 * Keep the loop and add a WARN_ON() out of sheer paranoia.
dd5d19ba
PM
457 */
458 for (;;) {
86848966 459 rnp = t->rcu_blocked_node;
1304afb2 460 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 461 smp_mb__after_unlock_lock();
86848966 462 if (rnp == t->rcu_blocked_node)
dd5d19ba 463 break;
0a0ba1c9 464 WARN_ON_ONCE(1);
1304afb2 465 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 466 }
74e871ac 467 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
8203d6d0 468 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 469 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 470 np = rcu_next_node_entry(t, rnp);
f41d911f 471 list_del_init(&t->rcu_node_entry);
82e78d80 472 t->rcu_blocked_node = NULL;
f7f7bac9 473 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 474 rnp->gpnum, t->pid);
12f5f524
PM
475 if (&t->rcu_node_entry == rnp->gp_tasks)
476 rnp->gp_tasks = np;
477 if (&t->rcu_node_entry == rnp->exp_tasks)
478 rnp->exp_tasks = np;
727b705b
PM
479 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
480 if (&t->rcu_node_entry == rnp->boost_tasks)
481 rnp->boost_tasks = np;
482 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
483 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
484 }
f41d911f
PM
485
486 /*
487 * If this was the last task on the current list, and if
488 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
489 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
490 * so we must take a snapshot of the expedited state.
f41d911f 491 */
8203d6d0 492 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 493 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 494 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
495 rnp->gpnum,
496 0, rnp->qsmask,
497 rnp->level,
498 rnp->grplo,
499 rnp->grphi,
500 !!rnp->gp_tasks);
e63c887c 501 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
c701d5d9 502 } else {
d4c08f2a 503 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 504 }
d9a3da06 505
27f4d280 506 /* Unboost if we were boosted. */
727b705b 507 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
abaa93d9 508 rt_mutex_unlock(&rnp->boost_mtx);
27f4d280 509
d9a3da06
PM
510 /*
511 * If this was the last task on the expedited lists,
512 * then we need to report up the rcu_node hierarchy.
513 */
389abd48 514 if (!empty_exp && empty_exp_now)
e63c887c 515 rcu_report_exp_rnp(rcu_state_p, rnp, true);
b668c9cf
PM
516 } else {
517 local_irq_restore(flags);
f41d911f 518 }
f41d911f
PM
519}
520
1ed509a2
PM
521/*
522 * Dump detailed information for all tasks blocking the current RCU
523 * grace period on the specified rcu_node structure.
524 */
525static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
526{
527 unsigned long flags;
1ed509a2
PM
528 struct task_struct *t;
529
12f5f524 530 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
531 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
532 raw_spin_unlock_irqrestore(&rnp->lock, flags);
533 return;
534 }
82efed06 535 t = list_entry(rnp->gp_tasks->prev,
12f5f524
PM
536 struct task_struct, rcu_node_entry);
537 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
538 sched_show_task(t);
539 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
540}
541
542/*
543 * Dump detailed information for all tasks blocking the current RCU
544 * grace period.
545 */
546static void rcu_print_detail_task_stall(struct rcu_state *rsp)
547{
548 struct rcu_node *rnp = rcu_get_root(rsp);
549
550 rcu_print_detail_task_stall_rnp(rnp);
551 rcu_for_each_leaf_node(rsp, rnp)
552 rcu_print_detail_task_stall_rnp(rnp);
553}
554
a858af28
PM
555static void rcu_print_task_stall_begin(struct rcu_node *rnp)
556{
efc151c3 557 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
558 rnp->level, rnp->grplo, rnp->grphi);
559}
560
561static void rcu_print_task_stall_end(void)
562{
efc151c3 563 pr_cont("\n");
a858af28
PM
564}
565
f41d911f
PM
566/*
567 * Scan the current list of tasks blocked within RCU read-side critical
568 * sections, printing out the tid of each.
569 */
9bc8b558 570static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 571{
f41d911f 572 struct task_struct *t;
9bc8b558 573 int ndetected = 0;
f41d911f 574
27f4d280 575 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 576 return 0;
a858af28 577 rcu_print_task_stall_begin(rnp);
82efed06 578 t = list_entry(rnp->gp_tasks->prev,
12f5f524 579 struct task_struct, rcu_node_entry);
9bc8b558 580 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 581 pr_cont(" P%d", t->pid);
9bc8b558
PM
582 ndetected++;
583 }
a858af28 584 rcu_print_task_stall_end();
9bc8b558 585 return ndetected;
f41d911f
PM
586}
587
b0e165c0
PM
588/*
589 * Check that the list of blocked tasks for the newly completed grace
590 * period is in fact empty. It is a serious bug to complete a grace
591 * period that still has RCU readers blocked! This function must be
592 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
593 * must be held by the caller.
12f5f524
PM
594 *
595 * Also, if there are blocked tasks on the list, they automatically
596 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
597 */
598static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
599{
27f4d280 600 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
96e92021 601 if (rcu_preempt_has_tasks(rnp))
12f5f524 602 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 603 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
604}
605
f41d911f
PM
606/*
607 * Check for a quiescent state from the current CPU. When a task blocks,
608 * the task is recorded in the corresponding CPU's rcu_node structure,
609 * which is checked elsewhere.
610 *
611 * Caller must disable hard irqs.
612 */
86aea0e6 613static void rcu_preempt_check_callbacks(void)
f41d911f
PM
614{
615 struct task_struct *t = current;
616
617 if (t->rcu_read_lock_nesting == 0) {
284a8c93 618 rcu_preempt_qs();
f41d911f
PM
619 return;
620 }
10f39bb1 621 if (t->rcu_read_lock_nesting > 0 &&
2927a689
PM
622 __this_cpu_read(rcu_data_p->qs_pending) &&
623 !__this_cpu_read(rcu_data_p->passed_quiesce))
1d082fd0 624 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
625}
626
a46e0899
PM
627#ifdef CONFIG_RCU_BOOST
628
09223371
SL
629static void rcu_preempt_do_callbacks(void)
630{
2927a689 631 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
09223371
SL
632}
633
a46e0899
PM
634#endif /* #ifdef CONFIG_RCU_BOOST */
635
f41d911f 636/*
6cc68793 637 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
638 */
639void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
640{
e63c887c 641 __call_rcu(head, func, rcu_state_p, -1, 0);
f41d911f
PM
642}
643EXPORT_SYMBOL_GPL(call_rcu);
644
6ebb237b
PM
645/**
646 * synchronize_rcu - wait until a grace period has elapsed.
647 *
648 * Control will return to the caller some time after a full grace
649 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
650 * read-side critical sections have completed. Note, however, that
651 * upon return from synchronize_rcu(), the caller might well be executing
652 * concurrently with new RCU read-side critical sections that began while
653 * synchronize_rcu() was waiting. RCU read-side critical sections are
654 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
655 *
656 * See the description of synchronize_sched() for more detailed information
657 * on memory ordering guarantees.
6ebb237b
PM
658 */
659void synchronize_rcu(void)
660{
f78f5b90
PM
661 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
662 lock_is_held(&rcu_lock_map) ||
663 lock_is_held(&rcu_sched_lock_map),
664 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
665 if (!rcu_scheduler_active)
666 return;
5afff48b 667 if (rcu_gp_is_expedited())
3705b88d
AM
668 synchronize_rcu_expedited();
669 else
670 wait_rcu_gp(call_rcu);
6ebb237b
PM
671}
672EXPORT_SYMBOL_GPL(synchronize_rcu);
673
8203d6d0
PM
674/*
675 * Remote handler for smp_call_function_single(). If there is an
676 * RCU read-side critical section in effect, request that the
677 * next rcu_read_unlock() record the quiescent state up the
678 * ->expmask fields in the rcu_node tree. Otherwise, immediately
679 * report the quiescent state.
680 */
681static void sync_rcu_exp_handler(void *info)
682{
683 struct rcu_data *rdp;
684 struct rcu_state *rsp = info;
685 struct task_struct *t = current;
686
687 /*
688 * Within an RCU read-side critical section, request that the next
689 * rcu_read_unlock() report. Unless this RCU read-side critical
690 * section has already blocked, in which case it is already set
691 * up for the expedited grace period to wait on it.
692 */
693 if (t->rcu_read_lock_nesting > 0 &&
694 !t->rcu_read_unlock_special.b.blocked) {
695 t->rcu_read_unlock_special.b.exp_need_qs = true;
696 return;
697 }
698
699 /*
700 * We are either exiting an RCU read-side critical section (negative
701 * values of t->rcu_read_lock_nesting) or are not in one at all
702 * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU
703 * read-side critical section that blocked before this expedited
704 * grace period started. Either way, we can immediately report
705 * the quiescent state.
706 */
707 rdp = this_cpu_ptr(rsp->rda);
708 rcu_report_exp_rdp(rsp, rdp, true);
709}
710
d9a3da06 711/*
b9585e94
PM
712 * Select the nodes that the upcoming expedited grace period needs
713 * to wait for.
d9a3da06 714 */
8203d6d0 715static void sync_rcu_exp_select_cpus(struct rcu_state *rsp)
d9a3da06 716{
8203d6d0 717 int cpu;
1217ed1b 718 unsigned long flags;
8203d6d0
PM
719 unsigned long mask;
720 unsigned long mask_ofl_test;
721 unsigned long mask_ofl_ipi;
722 int ret;
b9585e94 723 struct rcu_node *rnp;
d9a3da06 724
b9585e94
PM
725 sync_exp_reset_tree(rsp);
726 rcu_for_each_leaf_node(rsp, rnp) {
727 raw_spin_lock_irqsave(&rnp->lock, flags);
8eb74b2b 728 smp_mb__after_unlock_lock();
8203d6d0
PM
729
730 /* Each pass checks a CPU for identity, offline, and idle. */
731 mask_ofl_test = 0;
732 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
733 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
734 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
735
736 if (raw_smp_processor_id() == cpu ||
737 cpu_is_offline(cpu) ||
738 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
739 mask_ofl_test |= rdp->grpmask;
740 }
741 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
742
743 /*
744 * Need to wait for any blocked tasks as well. Note that
745 * additional blocking tasks will also block the expedited
746 * GP until such time as the ->expmask bits are cleared.
747 */
748 if (rcu_preempt_has_tasks(rnp))
b9585e94 749 rnp->exp_tasks = rnp->blkd_tasks.next;
8203d6d0
PM
750 raw_spin_unlock_irqrestore(&rnp->lock, flags);
751
752 /* IPI the remaining CPUs for expedited quiescent state. */
753 mask = 1;
754 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
755 if (!(mask_ofl_ipi & mask))
756 continue;
757 ret = smp_call_function_single(cpu,
758 sync_rcu_exp_handler,
759 rsp, 0);
760 if (!ret)
761 mask_ofl_ipi &= ~mask;
b9585e94 762 }
8203d6d0
PM
763 /* Report quiescent states for those that went offline. */
764 mask_ofl_test |= mask_ofl_ipi;
765 if (mask_ofl_test)
766 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
12f5f524 767 }
d9a3da06
PM
768}
769
236fefaf
PM
770/**
771 * synchronize_rcu_expedited - Brute-force RCU grace period
772 *
773 * Wait for an RCU-preempt grace period, but expedite it. The basic
774 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
775 * the ->blkd_tasks lists and wait for this list to drain. This consumes
776 * significant time on all CPUs and is unfriendly to real-time workloads,
777 * so is thus not recommended for any sort of common-case code.
778 * In fact, if you are using synchronize_rcu_expedited() in a loop,
779 * please restructure your code to batch your updates, and then Use a
780 * single synchronize_rcu() instead.
019129d5
PM
781 */
782void synchronize_rcu_expedited(void)
783{
d9a3da06 784 struct rcu_node *rnp;
29fd9309 785 struct rcu_node *rnp_unlock;
e63c887c 786 struct rcu_state *rsp = rcu_state_p;
543c6158 787 unsigned long s;
d9a3da06 788
543c6158 789 s = rcu_exp_gp_seq_snap(rsp);
d9a3da06 790
29fd9309
PM
791 rnp_unlock = exp_funnel_lock(rsp, s);
792 if (rnp_unlock == NULL)
793 return; /* Someone else did our work for us. */
1943c89d 794
543c6158 795 rcu_exp_gp_seq_start(rsp);
d9a3da06 796
b9585e94 797 /* Initialize the rcu_node tree in preparation for the wait. */
8203d6d0 798 sync_rcu_exp_select_cpus(rsp);
d9a3da06 799
12f5f524 800 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06 801 rnp = rcu_get_root(rsp);
f4ecea30 802 wait_event(rsp->expedited_wq,
d9a3da06
PM
803 sync_rcu_preempt_exp_done(rnp));
804
805 /* Clean up and exit. */
543c6158 806 rcu_exp_gp_seq_end(rsp);
29fd9309 807 mutex_unlock(&rnp_unlock->exp_funnel_mutex);
019129d5
PM
808}
809EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
810
e74f4c45
PM
811/**
812 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
813 *
814 * Note that this primitive does not necessarily wait for an RCU grace period
815 * to complete. For example, if there are no RCU callbacks queued anywhere
816 * in the system, then rcu_barrier() is within its rights to return
817 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
818 */
819void rcu_barrier(void)
820{
e63c887c 821 _rcu_barrier(rcu_state_p);
e74f4c45
PM
822}
823EXPORT_SYMBOL_GPL(rcu_barrier);
824
1eba8f84 825/*
6cc68793 826 * Initialize preemptible RCU's state structures.
1eba8f84
PM
827 */
828static void __init __rcu_init_preempt(void)
829{
2927a689 830 rcu_init_one(rcu_state_p, rcu_data_p);
1eba8f84
PM
831}
832
2439b696
PM
833/*
834 * Check for a task exiting while in a preemptible-RCU read-side
835 * critical section, clean up if so. No need to issue warnings,
836 * as debug_check_no_locks_held() already does this if lockdep
837 * is enabled.
838 */
839void exit_rcu(void)
840{
841 struct task_struct *t = current;
842
843 if (likely(list_empty(&current->rcu_node_entry)))
844 return;
845 t->rcu_read_lock_nesting = 1;
846 barrier();
1d082fd0 847 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
848 __rcu_read_unlock();
849}
850
28f6569a 851#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 852
b28a7c01 853static struct rcu_state *const rcu_state_p = &rcu_sched_state;
2927a689 854static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
27f4d280 855
f41d911f
PM
856/*
857 * Tell them what RCU they are running.
858 */
0e0fc1c2 859static void __init rcu_bootup_announce(void)
f41d911f 860{
efc151c3 861 pr_info("Hierarchical RCU implementation.\n");
26845c28 862 rcu_bootup_announce_oddness();
f41d911f
PM
863}
864
cba6d0d6
PM
865/*
866 * Because preemptible RCU does not exist, we never have to check for
867 * CPUs being in quiescent states.
868 */
38200cf2 869static void rcu_preempt_note_context_switch(void)
cba6d0d6
PM
870{
871}
872
fc2219d4 873/*
6cc68793 874 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
875 * RCU readers.
876 */
27f4d280 877static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
878{
879 return 0;
880}
881
8af3a5e7
PM
882/*
883 * Because there is no preemptible RCU, there can be no readers blocked.
884 */
885static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 886{
8af3a5e7 887 return false;
b668c9cf
PM
888}
889
1ed509a2 890/*
6cc68793 891 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
892 * tasks blocked within RCU read-side critical sections.
893 */
894static void rcu_print_detail_task_stall(struct rcu_state *rsp)
895{
896}
897
f41d911f 898/*
6cc68793 899 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
900 * tasks blocked within RCU read-side critical sections.
901 */
9bc8b558 902static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 903{
9bc8b558 904 return 0;
f41d911f
PM
905}
906
b0e165c0 907/*
6cc68793 908 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
909 * so there is no need to check for blocked tasks. So check only for
910 * bogus qsmask values.
b0e165c0
PM
911 */
912static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
913{
49e29126 914 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
915}
916
f41d911f 917/*
6cc68793 918 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
919 * to check.
920 */
86aea0e6 921static void rcu_preempt_check_callbacks(void)
f41d911f
PM
922{
923}
924
019129d5
PM
925/*
926 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 927 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
928 */
929void synchronize_rcu_expedited(void)
930{
931 synchronize_sched_expedited();
932}
933EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
934
e74f4c45 935/*
6cc68793 936 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
937 * another name for rcu_barrier_sched().
938 */
939void rcu_barrier(void)
940{
941 rcu_barrier_sched();
942}
943EXPORT_SYMBOL_GPL(rcu_barrier);
944
1eba8f84 945/*
6cc68793 946 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
947 */
948static void __init __rcu_init_preempt(void)
949{
950}
951
2439b696
PM
952/*
953 * Because preemptible RCU does not exist, tasks cannot possibly exit
954 * while in preemptible RCU read-side critical sections.
955 */
956void exit_rcu(void)
957{
958}
959
28f6569a 960#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 961
27f4d280
PM
962#ifdef CONFIG_RCU_BOOST
963
1696a8be 964#include "../locking/rtmutex_common.h"
27f4d280 965
0ea1f2eb
PM
966#ifdef CONFIG_RCU_TRACE
967
968static void rcu_initiate_boost_trace(struct rcu_node *rnp)
969{
96e92021 970 if (!rcu_preempt_has_tasks(rnp))
0ea1f2eb
PM
971 rnp->n_balk_blkd_tasks++;
972 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
973 rnp->n_balk_exp_gp_tasks++;
974 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
975 rnp->n_balk_boost_tasks++;
976 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
977 rnp->n_balk_notblocked++;
978 else if (rnp->gp_tasks != NULL &&
a9f4793d 979 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
980 rnp->n_balk_notyet++;
981 else
982 rnp->n_balk_nos++;
983}
984
985#else /* #ifdef CONFIG_RCU_TRACE */
986
987static void rcu_initiate_boost_trace(struct rcu_node *rnp)
988{
989}
990
991#endif /* #else #ifdef CONFIG_RCU_TRACE */
992
5d01bbd1
TG
993static void rcu_wake_cond(struct task_struct *t, int status)
994{
995 /*
996 * If the thread is yielding, only wake it when this
997 * is invoked from idle
998 */
999 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1000 wake_up_process(t);
1001}
1002
27f4d280
PM
1003/*
1004 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1005 * or ->boost_tasks, advancing the pointer to the next task in the
1006 * ->blkd_tasks list.
1007 *
1008 * Note that irqs must be enabled: boosting the task can block.
1009 * Returns 1 if there are more tasks needing to be boosted.
1010 */
1011static int rcu_boost(struct rcu_node *rnp)
1012{
1013 unsigned long flags;
27f4d280
PM
1014 struct task_struct *t;
1015 struct list_head *tb;
1016
7d0ae808
PM
1017 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1018 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
1019 return 0; /* Nothing left to boost. */
1020
1021 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1022 smp_mb__after_unlock_lock();
27f4d280
PM
1023
1024 /*
1025 * Recheck under the lock: all tasks in need of boosting
1026 * might exit their RCU read-side critical sections on their own.
1027 */
1028 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1029 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1030 return 0;
1031 }
1032
1033 /*
1034 * Preferentially boost tasks blocking expedited grace periods.
1035 * This cannot starve the normal grace periods because a second
1036 * expedited grace period must boost all blocked tasks, including
1037 * those blocking the pre-existing normal grace period.
1038 */
0ea1f2eb 1039 if (rnp->exp_tasks != NULL) {
27f4d280 1040 tb = rnp->exp_tasks;
0ea1f2eb
PM
1041 rnp->n_exp_boosts++;
1042 } else {
27f4d280 1043 tb = rnp->boost_tasks;
0ea1f2eb
PM
1044 rnp->n_normal_boosts++;
1045 }
1046 rnp->n_tasks_boosted++;
27f4d280
PM
1047
1048 /*
1049 * We boost task t by manufacturing an rt_mutex that appears to
1050 * be held by task t. We leave a pointer to that rt_mutex where
1051 * task t can find it, and task t will release the mutex when it
1052 * exits its outermost RCU read-side critical section. Then
1053 * simply acquiring this artificial rt_mutex will boost task
1054 * t's priority. (Thanks to tglx for suggesting this approach!)
1055 *
1056 * Note that task t must acquire rnp->lock to remove itself from
1057 * the ->blkd_tasks list, which it will do from exit() if from
1058 * nowhere else. We therefore are guaranteed that task t will
1059 * stay around at least until we drop rnp->lock. Note that
1060 * rnp->lock also resolves races between our priority boosting
1061 * and task t's exiting its outermost RCU read-side critical
1062 * section.
1063 */
1064 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1065 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
27f4d280 1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1067 /* Lock only for side effect: boosts task t's priority. */
1068 rt_mutex_lock(&rnp->boost_mtx);
1069 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1070
7d0ae808
PM
1071 return READ_ONCE(rnp->exp_tasks) != NULL ||
1072 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1073}
1074
27f4d280 1075/*
bc17ea10 1076 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1077 */
1078static int rcu_boost_kthread(void *arg)
1079{
1080 struct rcu_node *rnp = (struct rcu_node *)arg;
1081 int spincnt = 0;
1082 int more2boost;
1083
f7f7bac9 1084 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1085 for (;;) {
d71df90e 1086 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1087 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1088 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1089 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1090 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1091 more2boost = rcu_boost(rnp);
1092 if (more2boost)
1093 spincnt++;
1094 else
1095 spincnt = 0;
1096 if (spincnt > 10) {
5d01bbd1 1097 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1098 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1099 schedule_timeout_interruptible(2);
f7f7bac9 1100 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1101 spincnt = 0;
1102 }
1103 }
1217ed1b 1104 /* NOTREACHED */
f7f7bac9 1105 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1106 return 0;
1107}
1108
1109/*
1110 * Check to see if it is time to start boosting RCU readers that are
1111 * blocking the current grace period, and, if so, tell the per-rcu_node
1112 * kthread to start boosting them. If there is an expedited grace
1113 * period in progress, it is always time to boost.
1114 *
b065a853
PM
1115 * The caller must hold rnp->lock, which this function releases.
1116 * The ->boost_kthread_task is immortal, so we don't need to worry
1117 * about it going away.
27f4d280 1118 */
1217ed1b 1119static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1120 __releases(rnp->lock)
27f4d280
PM
1121{
1122 struct task_struct *t;
1123
0ea1f2eb
PM
1124 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1125 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1126 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1127 return;
0ea1f2eb 1128 }
27f4d280
PM
1129 if (rnp->exp_tasks != NULL ||
1130 (rnp->gp_tasks != NULL &&
1131 rnp->boost_tasks == NULL &&
1132 rnp->qsmask == 0 &&
1133 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1134 if (rnp->exp_tasks == NULL)
1135 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1136 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1137 t = rnp->boost_kthread_task;
5d01bbd1
TG
1138 if (t)
1139 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1140 } else {
0ea1f2eb 1141 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1142 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1143 }
27f4d280
PM
1144}
1145
a46e0899
PM
1146/*
1147 * Wake up the per-CPU kthread to invoke RCU callbacks.
1148 */
1149static void invoke_rcu_callbacks_kthread(void)
1150{
1151 unsigned long flags;
1152
1153 local_irq_save(flags);
1154 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1155 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1156 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1157 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1158 __this_cpu_read(rcu_cpu_kthread_status));
1159 }
a46e0899
PM
1160 local_irq_restore(flags);
1161}
1162
dff1672d
PM
1163/*
1164 * Is the current CPU running the RCU-callbacks kthread?
1165 * Caller must have preemption disabled.
1166 */
1167static bool rcu_is_callbacks_kthread(void)
1168{
c9d4b0af 1169 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1170}
1171
27f4d280
PM
1172#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1173
1174/*
1175 * Do priority-boost accounting for the start of a new grace period.
1176 */
1177static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1178{
1179 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1180}
1181
27f4d280
PM
1182/*
1183 * Create an RCU-boost kthread for the specified node if one does not
1184 * already exist. We only create this kthread for preemptible RCU.
1185 * Returns zero if all is well, a negated errno otherwise.
1186 */
49fb4c62 1187static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
0aa04b05 1188 struct rcu_node *rnp)
27f4d280 1189{
5d01bbd1 1190 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1191 unsigned long flags;
1192 struct sched_param sp;
1193 struct task_struct *t;
1194
e63c887c 1195 if (rcu_state_p != rsp)
27f4d280 1196 return 0;
5d01bbd1 1197
0aa04b05 1198 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
5d01bbd1
TG
1199 return 0;
1200
a46e0899 1201 rsp->boost = 1;
27f4d280
PM
1202 if (rnp->boost_kthread_task != NULL)
1203 return 0;
1204 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1205 "rcub/%d", rnp_index);
27f4d280
PM
1206 if (IS_ERR(t))
1207 return PTR_ERR(t);
1208 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1209 smp_mb__after_unlock_lock();
27f4d280
PM
1210 rnp->boost_kthread_task = t;
1211 raw_spin_unlock_irqrestore(&rnp->lock, flags);
21871d7e 1212 sp.sched_priority = kthread_prio;
27f4d280 1213 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1214 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1215 return 0;
1216}
1217
f8b7fc6b
PM
1218static void rcu_kthread_do_work(void)
1219{
c9d4b0af
CL
1220 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1221 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1222 rcu_preempt_do_callbacks();
1223}
1224
62ab7072 1225static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1226{
f8b7fc6b 1227 struct sched_param sp;
f8b7fc6b 1228
21871d7e 1229 sp.sched_priority = kthread_prio;
62ab7072 1230 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1231}
1232
62ab7072 1233static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1234{
62ab7072 1235 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1236}
1237
62ab7072 1238static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1239{
c9d4b0af 1240 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1241}
1242
1243/*
1244 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1245 * RCU softirq used in flavors and configurations of RCU that do not
1246 * support RCU priority boosting.
f8b7fc6b 1247 */
62ab7072 1248static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1249{
c9d4b0af
CL
1250 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1251 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1252 int spincnt;
f8b7fc6b 1253
62ab7072 1254 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1255 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1256 local_bh_disable();
f8b7fc6b 1257 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1258 this_cpu_inc(rcu_cpu_kthread_loops);
1259 local_irq_disable();
f8b7fc6b
PM
1260 work = *workp;
1261 *workp = 0;
62ab7072 1262 local_irq_enable();
f8b7fc6b
PM
1263 if (work)
1264 rcu_kthread_do_work();
1265 local_bh_enable();
62ab7072 1266 if (*workp == 0) {
f7f7bac9 1267 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1268 *statusp = RCU_KTHREAD_WAITING;
1269 return;
f8b7fc6b
PM
1270 }
1271 }
62ab7072 1272 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1273 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1274 schedule_timeout_interruptible(2);
f7f7bac9 1275 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1276 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1277}
1278
1279/*
1280 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1281 * served by the rcu_node in question. The CPU hotplug lock is still
1282 * held, so the value of rnp->qsmaskinit will be stable.
1283 *
1284 * We don't include outgoingcpu in the affinity set, use -1 if there is
1285 * no outgoing CPU. If there are no CPUs left in the affinity set,
1286 * this function allows the kthread to execute on any CPU.
1287 */
5d01bbd1 1288static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1289{
5d01bbd1 1290 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1291 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1292 cpumask_var_t cm;
1293 int cpu;
f8b7fc6b 1294
5d01bbd1 1295 if (!t)
f8b7fc6b 1296 return;
5d01bbd1 1297 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1298 return;
f8b7fc6b
PM
1299 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1300 if ((mask & 0x1) && cpu != outgoingcpu)
1301 cpumask_set_cpu(cpu, cm);
5d0b0249 1302 if (cpumask_weight(cm) == 0)
f8b7fc6b 1303 cpumask_setall(cm);
5d01bbd1 1304 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1305 free_cpumask_var(cm);
1306}
1307
62ab7072
PM
1308static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1309 .store = &rcu_cpu_kthread_task,
1310 .thread_should_run = rcu_cpu_kthread_should_run,
1311 .thread_fn = rcu_cpu_kthread,
1312 .thread_comm = "rcuc/%u",
1313 .setup = rcu_cpu_kthread_setup,
1314 .park = rcu_cpu_kthread_park,
1315};
f8b7fc6b
PM
1316
1317/*
9386c0b7 1318 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1319 */
9386c0b7 1320static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1321{
f8b7fc6b 1322 struct rcu_node *rnp;
5d01bbd1 1323 int cpu;
f8b7fc6b 1324
62ab7072 1325 for_each_possible_cpu(cpu)
f8b7fc6b 1326 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1327 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1328 rcu_for_each_leaf_node(rcu_state_p, rnp)
1329 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1330}
f8b7fc6b 1331
49fb4c62 1332static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1333{
e534165b 1334 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1335 struct rcu_node *rnp = rdp->mynode;
1336
1337 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1338 if (rcu_scheduler_fully_active)
e534165b 1339 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1340}
1341
27f4d280
PM
1342#else /* #ifdef CONFIG_RCU_BOOST */
1343
1217ed1b 1344static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1345 __releases(rnp->lock)
27f4d280 1346{
1217ed1b 1347 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1348}
1349
a46e0899 1350static void invoke_rcu_callbacks_kthread(void)
27f4d280 1351{
a46e0899 1352 WARN_ON_ONCE(1);
27f4d280
PM
1353}
1354
dff1672d
PM
1355static bool rcu_is_callbacks_kthread(void)
1356{
1357 return false;
1358}
1359
27f4d280
PM
1360static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1361{
1362}
1363
5d01bbd1 1364static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1365{
1366}
1367
9386c0b7 1368static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1369{
b0d30417 1370}
b0d30417 1371
49fb4c62 1372static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1373{
1374}
1375
27f4d280
PM
1376#endif /* #else #ifdef CONFIG_RCU_BOOST */
1377
8bd93a2c
PM
1378#if !defined(CONFIG_RCU_FAST_NO_HZ)
1379
1380/*
1381 * Check to see if any future RCU-related work will need to be done
1382 * by the current CPU, even if none need be done immediately, returning
1383 * 1 if so. This function is part of the RCU implementation; it is -not-
1384 * an exported member of the RCU API.
1385 *
7cb92499
PM
1386 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1387 * any flavor of RCU.
8bd93a2c 1388 */
c1ad348b 1389int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1390{
c1ad348b 1391 *nextevt = KTIME_MAX;
3382adbc
PM
1392 return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1393 ? 0 : rcu_cpu_has_callbacks(NULL);
7cb92499
PM
1394}
1395
1396/*
1397 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1398 * after it.
1399 */
8fa7845d 1400static void rcu_cleanup_after_idle(void)
7cb92499
PM
1401{
1402}
1403
aea1b35e 1404/*
a858af28 1405 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1406 * is nothing.
1407 */
198bbf81 1408static void rcu_prepare_for_idle(void)
aea1b35e
PM
1409{
1410}
1411
c57afe80
PM
1412/*
1413 * Don't bother keeping a running count of the number of RCU callbacks
1414 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1415 */
1416static void rcu_idle_count_callbacks_posted(void)
1417{
1418}
1419
8bd93a2c
PM
1420#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1421
f23f7fa1
PM
1422/*
1423 * This code is invoked when a CPU goes idle, at which point we want
1424 * to have the CPU do everything required for RCU so that it can enter
1425 * the energy-efficient dyntick-idle mode. This is handled by a
1426 * state machine implemented by rcu_prepare_for_idle() below.
1427 *
1428 * The following three proprocessor symbols control this state machine:
1429 *
f23f7fa1
PM
1430 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1431 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1432 * is sized to be roughly one RCU grace period. Those energy-efficiency
1433 * benchmarkers who might otherwise be tempted to set this to a large
1434 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1435 * system. And if you are -that- concerned about energy efficiency,
1436 * just power the system down and be done with it!
778d250a
PM
1437 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1438 * permitted to sleep in dyntick-idle mode with only lazy RCU
1439 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1440 *
1441 * The values below work well in practice. If future workloads require
1442 * adjustment, they can be converted into kernel config parameters, though
1443 * making the state machine smarter might be a better option.
1444 */
e84c48ae 1445#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1446#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1447
5e44ce35
PM
1448static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1449module_param(rcu_idle_gp_delay, int, 0644);
1450static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1451module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1452
486e2593 1453/*
c229828c
PM
1454 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1455 * only if it has been awhile since the last time we did so. Afterwards,
1456 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1457 */
f1f399d1 1458static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1459{
c0f4dfd4
PM
1460 bool cbs_ready = false;
1461 struct rcu_data *rdp;
c229828c 1462 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1463 struct rcu_node *rnp;
1464 struct rcu_state *rsp;
486e2593 1465
c229828c
PM
1466 /* Exit early if we advanced recently. */
1467 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1468 return false;
c229828c
PM
1469 rdtp->last_advance_all = jiffies;
1470
c0f4dfd4
PM
1471 for_each_rcu_flavor(rsp) {
1472 rdp = this_cpu_ptr(rsp->rda);
1473 rnp = rdp->mynode;
486e2593 1474
c0f4dfd4
PM
1475 /*
1476 * Don't bother checking unless a grace period has
1477 * completed since we last checked and there are
1478 * callbacks not yet ready to invoke.
1479 */
e3663b10 1480 if ((rdp->completed != rnp->completed ||
7d0ae808 1481 unlikely(READ_ONCE(rdp->gpwrap))) &&
c0f4dfd4 1482 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1483 note_gp_changes(rsp, rdp);
486e2593 1484
c0f4dfd4
PM
1485 if (cpu_has_callbacks_ready_to_invoke(rdp))
1486 cbs_ready = true;
1487 }
1488 return cbs_ready;
486e2593
PM
1489}
1490
aa9b1630 1491/*
c0f4dfd4
PM
1492 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1493 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1494 * caller to set the timeout based on whether or not there are non-lazy
1495 * callbacks.
aa9b1630 1496 *
c0f4dfd4 1497 * The caller must have disabled interrupts.
aa9b1630 1498 */
c1ad348b 1499int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1500{
aa6da514 1501 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c1ad348b 1502 unsigned long dj;
aa9b1630 1503
3382adbc 1504 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
43224b96 1505 *nextevt = KTIME_MAX;
3382adbc
PM
1506 return 0;
1507 }
1508
c0f4dfd4
PM
1509 /* Snapshot to detect later posting of non-lazy callback. */
1510 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1511
aa9b1630 1512 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1513 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c1ad348b 1514 *nextevt = KTIME_MAX;
aa9b1630
PM
1515 return 0;
1516 }
c0f4dfd4
PM
1517
1518 /* Attempt to advance callbacks. */
1519 if (rcu_try_advance_all_cbs()) {
1520 /* Some ready to invoke, so initiate later invocation. */
1521 invoke_rcu_core();
aa9b1630
PM
1522 return 1;
1523 }
c0f4dfd4
PM
1524 rdtp->last_accelerate = jiffies;
1525
1526 /* Request timer delay depending on laziness, and round. */
6faf7283 1527 if (!rdtp->all_lazy) {
c1ad348b 1528 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1529 rcu_idle_gp_delay) - jiffies;
e84c48ae 1530 } else {
c1ad348b 1531 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1532 }
c1ad348b 1533 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1534 return 0;
1535}
1536
21e52e15 1537/*
c0f4dfd4
PM
1538 * Prepare a CPU for idle from an RCU perspective. The first major task
1539 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1540 * The second major task is to check to see if a non-lazy callback has
1541 * arrived at a CPU that previously had only lazy callbacks. The third
1542 * major task is to accelerate (that is, assign grace-period numbers to)
1543 * any recently arrived callbacks.
aea1b35e
PM
1544 *
1545 * The caller must have disabled interrupts.
8bd93a2c 1546 */
198bbf81 1547static void rcu_prepare_for_idle(void)
8bd93a2c 1548{
48a7639c 1549 bool needwake;
c0f4dfd4 1550 struct rcu_data *rdp;
198bbf81 1551 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1552 struct rcu_node *rnp;
1553 struct rcu_state *rsp;
9d2ad243
PM
1554 int tne;
1555
3382adbc
PM
1556 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1557 return;
1558
9d2ad243 1559 /* Handle nohz enablement switches conservatively. */
7d0ae808 1560 tne = READ_ONCE(tick_nohz_active);
9d2ad243 1561 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1562 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1563 invoke_rcu_core(); /* force nohz to see update. */
1564 rdtp->tick_nohz_enabled_snap = tne;
1565 return;
1566 }
1567 if (!tne)
1568 return;
f511fc62 1569
c0f4dfd4 1570 /* If this is a no-CBs CPU, no callbacks, just return. */
198bbf81 1571 if (rcu_is_nocb_cpu(smp_processor_id()))
9a0c6fef 1572 return;
9a0c6fef 1573
c57afe80 1574 /*
c0f4dfd4
PM
1575 * If a non-lazy callback arrived at a CPU having only lazy
1576 * callbacks, invoke RCU core for the side-effect of recalculating
1577 * idle duration on re-entry to idle.
c57afe80 1578 */
c0f4dfd4
PM
1579 if (rdtp->all_lazy &&
1580 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1581 rdtp->all_lazy = false;
1582 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1583 invoke_rcu_core();
c57afe80
PM
1584 return;
1585 }
c57afe80 1586
3084f2f8 1587 /*
c0f4dfd4
PM
1588 * If we have not yet accelerated this jiffy, accelerate all
1589 * callbacks on this CPU.
3084f2f8 1590 */
c0f4dfd4 1591 if (rdtp->last_accelerate == jiffies)
aea1b35e 1592 return;
c0f4dfd4
PM
1593 rdtp->last_accelerate = jiffies;
1594 for_each_rcu_flavor(rsp) {
198bbf81 1595 rdp = this_cpu_ptr(rsp->rda);
c0f4dfd4
PM
1596 if (!*rdp->nxttail[RCU_DONE_TAIL])
1597 continue;
1598 rnp = rdp->mynode;
1599 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1600 smp_mb__after_unlock_lock();
48a7639c 1601 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1602 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1603 if (needwake)
1604 rcu_gp_kthread_wake(rsp);
77e38ed3 1605 }
c0f4dfd4 1606}
3084f2f8 1607
c0f4dfd4
PM
1608/*
1609 * Clean up for exit from idle. Attempt to advance callbacks based on
1610 * any grace periods that elapsed while the CPU was idle, and if any
1611 * callbacks are now ready to invoke, initiate invocation.
1612 */
8fa7845d 1613static void rcu_cleanup_after_idle(void)
c0f4dfd4 1614{
3382adbc
PM
1615 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1616 rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1617 return;
7a497c96
PM
1618 if (rcu_try_advance_all_cbs())
1619 invoke_rcu_core();
8bd93a2c
PM
1620}
1621
c57afe80 1622/*
98248a0e
PM
1623 * Keep a running count of the number of non-lazy callbacks posted
1624 * on this CPU. This running counter (which is never decremented) allows
1625 * rcu_prepare_for_idle() to detect when something out of the idle loop
1626 * posts a callback, even if an equal number of callbacks are invoked.
1627 * Of course, callbacks should only be posted from within a trace event
1628 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1629 */
1630static void rcu_idle_count_callbacks_posted(void)
1631{
5955f7ee 1632 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1633}
1634
b626c1b6
PM
1635/*
1636 * Data for flushing lazy RCU callbacks at OOM time.
1637 */
1638static atomic_t oom_callback_count;
1639static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1640
1641/*
1642 * RCU OOM callback -- decrement the outstanding count and deliver the
1643 * wake-up if we are the last one.
1644 */
1645static void rcu_oom_callback(struct rcu_head *rhp)
1646{
1647 if (atomic_dec_and_test(&oom_callback_count))
1648 wake_up(&oom_callback_wq);
1649}
1650
1651/*
1652 * Post an rcu_oom_notify callback on the current CPU if it has at
1653 * least one lazy callback. This will unnecessarily post callbacks
1654 * to CPUs that already have a non-lazy callback at the end of their
1655 * callback list, but this is an infrequent operation, so accept some
1656 * extra overhead to keep things simple.
1657 */
1658static void rcu_oom_notify_cpu(void *unused)
1659{
1660 struct rcu_state *rsp;
1661 struct rcu_data *rdp;
1662
1663 for_each_rcu_flavor(rsp) {
fa07a58f 1664 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1665 if (rdp->qlen_lazy != 0) {
1666 atomic_inc(&oom_callback_count);
1667 rsp->call(&rdp->oom_head, rcu_oom_callback);
1668 }
1669 }
1670}
1671
1672/*
1673 * If low on memory, ensure that each CPU has a non-lazy callback.
1674 * This will wake up CPUs that have only lazy callbacks, in turn
1675 * ensuring that they free up the corresponding memory in a timely manner.
1676 * Because an uncertain amount of memory will be freed in some uncertain
1677 * timeframe, we do not claim to have freed anything.
1678 */
1679static int rcu_oom_notify(struct notifier_block *self,
1680 unsigned long notused, void *nfreed)
1681{
1682 int cpu;
1683
1684 /* Wait for callbacks from earlier instance to complete. */
1685 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1686 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1687
1688 /*
1689 * Prevent premature wakeup: ensure that all increments happen
1690 * before there is a chance of the counter reaching zero.
1691 */
1692 atomic_set(&oom_callback_count, 1);
1693
b626c1b6
PM
1694 for_each_online_cpu(cpu) {
1695 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1696 cond_resched_rcu_qs();
b626c1b6 1697 }
b626c1b6
PM
1698
1699 /* Unconditionally decrement: no need to wake ourselves up. */
1700 atomic_dec(&oom_callback_count);
1701
1702 return NOTIFY_OK;
1703}
1704
1705static struct notifier_block rcu_oom_nb = {
1706 .notifier_call = rcu_oom_notify
1707};
1708
1709static int __init rcu_register_oom_notifier(void)
1710{
1711 register_oom_notifier(&rcu_oom_nb);
1712 return 0;
1713}
1714early_initcall(rcu_register_oom_notifier);
1715
8bd93a2c 1716#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1717
a858af28
PM
1718#ifdef CONFIG_RCU_FAST_NO_HZ
1719
1720static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1721{
5955f7ee 1722 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1723 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1724
c0f4dfd4
PM
1725 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1726 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1727 ulong2long(nlpd),
1728 rdtp->all_lazy ? 'L' : '.',
1729 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1730}
1731
1732#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1733
1734static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1735{
1c17e4d4 1736 *cp = '\0';
a858af28
PM
1737}
1738
1739#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1740
1741/* Initiate the stall-info list. */
1742static void print_cpu_stall_info_begin(void)
1743{
efc151c3 1744 pr_cont("\n");
a858af28
PM
1745}
1746
1747/*
1748 * Print out diagnostic information for the specified stalled CPU.
1749 *
1750 * If the specified CPU is aware of the current RCU grace period
1751 * (flavor specified by rsp), then print the number of scheduling
1752 * clock interrupts the CPU has taken during the time that it has
1753 * been aware. Otherwise, print the number of RCU grace periods
1754 * that this CPU is ignorant of, for example, "1" if the CPU was
1755 * aware of the previous grace period.
1756 *
1757 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1758 */
1759static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1760{
1761 char fast_no_hz[72];
1762 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1763 struct rcu_dynticks *rdtp = rdp->dynticks;
1764 char *ticks_title;
1765 unsigned long ticks_value;
1766
1767 if (rsp->gpnum == rdp->gpnum) {
1768 ticks_title = "ticks this GP";
1769 ticks_value = rdp->ticks_this_gp;
1770 } else {
1771 ticks_title = "GPs behind";
1772 ticks_value = rsp->gpnum - rdp->gpnum;
1773 }
1774 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
fc908ed3 1775 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
a858af28
PM
1776 cpu, ticks_value, ticks_title,
1777 atomic_read(&rdtp->dynticks) & 0xfff,
1778 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1779 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
7d0ae808 1780 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1781 fast_no_hz);
1782}
1783
1784/* Terminate the stall-info list. */
1785static void print_cpu_stall_info_end(void)
1786{
efc151c3 1787 pr_err("\t");
a858af28
PM
1788}
1789
1790/* Zero ->ticks_this_gp for all flavors of RCU. */
1791static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1792{
1793 rdp->ticks_this_gp = 0;
6231069b 1794 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1795}
1796
1797/* Increment ->ticks_this_gp for all flavors of RCU. */
1798static void increment_cpu_stall_ticks(void)
1799{
115f7a7c
PM
1800 struct rcu_state *rsp;
1801
1802 for_each_rcu_flavor(rsp)
fa07a58f 1803 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1804}
1805
3fbfbf7a
PM
1806#ifdef CONFIG_RCU_NOCB_CPU
1807
1808/*
1809 * Offload callback processing from the boot-time-specified set of CPUs
1810 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1811 * kthread created that pulls the callbacks from the corresponding CPU,
1812 * waits for a grace period to elapse, and invokes the callbacks.
1813 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1814 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1815 * has been specified, in which case each kthread actively polls its
1816 * CPU. (Which isn't so great for energy efficiency, but which does
1817 * reduce RCU's overhead on that CPU.)
1818 *
1819 * This is intended to be used in conjunction with Frederic Weisbecker's
1820 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1821 * running CPU-bound user-mode computations.
1822 *
1823 * Offloading of callback processing could also in theory be used as
1824 * an energy-efficiency measure because CPUs with no RCU callbacks
1825 * queued are more aggressive about entering dyntick-idle mode.
1826 */
1827
1828
1829/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1830static int __init rcu_nocb_setup(char *str)
1831{
1832 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1833 have_rcu_nocb_mask = true;
1834 cpulist_parse(str, rcu_nocb_mask);
1835 return 1;
1836}
1837__setup("rcu_nocbs=", rcu_nocb_setup);
1838
1b0048a4
PG
1839static int __init parse_rcu_nocb_poll(char *arg)
1840{
1841 rcu_nocb_poll = 1;
1842 return 0;
1843}
1844early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1845
dae6e64d 1846/*
0446be48
PM
1847 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1848 * grace period.
dae6e64d 1849 */
0446be48 1850static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 1851{
0446be48 1852 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
1853}
1854
1855/*
8b425aa8 1856 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
1857 * based on the sum of those of all rcu_node structures. This does
1858 * double-count the root rcu_node structure's requests, but this
1859 * is necessary to handle the possibility of a rcu_nocb_kthread()
1860 * having awakened during the time that the rcu_node structures
1861 * were being updated for the end of the previous grace period.
34ed6246 1862 */
dae6e64d
PM
1863static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1864{
8b425aa8 1865 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
1866}
1867
1868static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1869{
dae6e64d
PM
1870 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1871 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1872}
1873
2f33b512 1874#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 1875/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1876bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
1877{
1878 if (have_rcu_nocb_mask)
1879 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1880 return false;
1881}
2f33b512 1882#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 1883
fbce7497
PM
1884/*
1885 * Kick the leader kthread for this NOCB group.
1886 */
1887static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1888{
1889 struct rcu_data *rdp_leader = rdp->nocb_leader;
1890
7d0ae808 1891 if (!READ_ONCE(rdp_leader->nocb_kthread))
fbce7497 1892 return;
7d0ae808 1893 if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 1894 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
7d0ae808 1895 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
fbce7497
PM
1896 wake_up(&rdp_leader->nocb_wq);
1897 }
1898}
1899
d7e29933
PM
1900/*
1901 * Does the specified CPU need an RCU callback for the specified flavor
1902 * of rcu_barrier()?
1903 */
1904static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1905{
1906 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1907 unsigned long ret;
1908#ifdef CONFIG_PROVE_RCU
d7e29933 1909 struct rcu_head *rhp;
41050a00 1910#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1911
41050a00
PM
1912 /*
1913 * Check count of all no-CBs callbacks awaiting invocation.
1914 * There needs to be a barrier before this function is called,
1915 * but associated with a prior determination that no more
1916 * callbacks would be posted. In the worst case, the first
1917 * barrier in _rcu_barrier() suffices (but the caller cannot
1918 * necessarily rely on this, not a substitute for the caller
1919 * getting the concurrency design right!). There must also be
1920 * a barrier between the following load an posting of a callback
1921 * (if a callback is in fact needed). This is associated with an
1922 * atomic_inc() in the caller.
1923 */
1924 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1925
41050a00 1926#ifdef CONFIG_PROVE_RCU
7d0ae808 1927 rhp = READ_ONCE(rdp->nocb_head);
d7e29933 1928 if (!rhp)
7d0ae808 1929 rhp = READ_ONCE(rdp->nocb_gp_head);
d7e29933 1930 if (!rhp)
7d0ae808 1931 rhp = READ_ONCE(rdp->nocb_follower_head);
d7e29933
PM
1932
1933 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
7d0ae808 1934 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
59f792d1 1935 rcu_scheduler_fully_active) {
d7e29933
PM
1936 /* RCU callback enqueued before CPU first came online??? */
1937 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1938 cpu, rhp->func);
1939 WARN_ON_ONCE(1);
1940 }
41050a00 1941#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1942
41050a00 1943 return !!ret;
d7e29933
PM
1944}
1945
3fbfbf7a
PM
1946/*
1947 * Enqueue the specified string of rcu_head structures onto the specified
1948 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1949 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1950 * counts are supplied by rhcount and rhcount_lazy.
1951 *
1952 * If warranted, also wake up the kthread servicing this CPUs queues.
1953 */
1954static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1955 struct rcu_head *rhp,
1956 struct rcu_head **rhtp,
96d3fd0d
PM
1957 int rhcount, int rhcount_lazy,
1958 unsigned long flags)
3fbfbf7a
PM
1959{
1960 int len;
1961 struct rcu_head **old_rhpp;
1962 struct task_struct *t;
1963
1964 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
1965 atomic_long_add(rhcount, &rdp->nocb_q_count);
1966 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a 1967 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
7d0ae808 1968 WRITE_ONCE(*old_rhpp, rhp);
3fbfbf7a 1969 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 1970 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
1971
1972 /* If we are not being polled and there is a kthread, awaken it ... */
7d0ae808 1973 t = READ_ONCE(rdp->nocb_kthread);
25e03a74 1974 if (rcu_nocb_poll || !t) {
9261dd0d
PM
1975 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1976 TPS("WakeNotPoll"));
3fbfbf7a 1977 return;
9261dd0d 1978 }
3fbfbf7a
PM
1979 len = atomic_long_read(&rdp->nocb_q_count);
1980 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 1981 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
1982 /* ... if queue was empty ... */
1983 wake_nocb_leader(rdp, false);
96d3fd0d
PM
1984 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1985 TPS("WakeEmpty"));
1986 } else {
9fdd3bc9 1987 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
1988 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1989 TPS("WakeEmptyIsDeferred"));
1990 }
3fbfbf7a
PM
1991 rdp->qlen_last_fqs_check = 0;
1992 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1993 /* ... or if many callbacks queued. */
9fdd3bc9
PM
1994 if (!irqs_disabled_flags(flags)) {
1995 wake_nocb_leader(rdp, true);
1996 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1997 TPS("WakeOvf"));
1998 } else {
1999 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2000 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2001 TPS("WakeOvfIsDeferred"));
2002 }
3fbfbf7a 2003 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2004 } else {
2005 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2006 }
2007 return;
2008}
2009
2010/*
2011 * This is a helper for __call_rcu(), which invokes this when the normal
2012 * callback queue is inoperable. If this is not a no-CBs CPU, this
2013 * function returns failure back to __call_rcu(), which can complain
2014 * appropriately.
2015 *
2016 * Otherwise, this function queues the callback where the corresponding
2017 * "rcuo" kthread can find it.
2018 */
2019static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2020 bool lazy, unsigned long flags)
3fbfbf7a
PM
2021{
2022
d1e43fa5 2023 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2024 return false;
96d3fd0d 2025 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2026 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2027 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2028 (unsigned long)rhp->func,
756cbf6b
PM
2029 -atomic_long_read(&rdp->nocb_q_count_lazy),
2030 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2031 else
2032 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2033 -atomic_long_read(&rdp->nocb_q_count_lazy),
2034 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2035
2036 /*
2037 * If called from an extended quiescent state with interrupts
2038 * disabled, invoke the RCU core in order to allow the idle-entry
2039 * deferred-wakeup check to function.
2040 */
2041 if (irqs_disabled_flags(flags) &&
2042 !rcu_is_watching() &&
2043 cpu_online(smp_processor_id()))
2044 invoke_rcu_core();
2045
c271d3a9 2046 return true;
3fbfbf7a
PM
2047}
2048
2049/*
2050 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2051 * not a no-CBs CPU.
2052 */
2053static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2054 struct rcu_data *rdp,
2055 unsigned long flags)
3fbfbf7a
PM
2056{
2057 long ql = rsp->qlen;
2058 long qll = rsp->qlen_lazy;
2059
2060 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2061 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 2062 return false;
3fbfbf7a
PM
2063 rsp->qlen = 0;
2064 rsp->qlen_lazy = 0;
2065
2066 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2067 if (rsp->orphan_donelist != NULL) {
2068 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2069 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2070 ql = qll = 0;
2071 rsp->orphan_donelist = NULL;
2072 rsp->orphan_donetail = &rsp->orphan_donelist;
2073 }
2074 if (rsp->orphan_nxtlist != NULL) {
2075 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2076 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2077 ql = qll = 0;
2078 rsp->orphan_nxtlist = NULL;
2079 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2080 }
0a9e1e11 2081 return true;
3fbfbf7a
PM
2082}
2083
2084/*
34ed6246
PM
2085 * If necessary, kick off a new grace period, and either way wait
2086 * for a subsequent grace period to complete.
3fbfbf7a 2087 */
34ed6246 2088static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2089{
34ed6246 2090 unsigned long c;
dae6e64d 2091 bool d;
34ed6246 2092 unsigned long flags;
48a7639c 2093 bool needwake;
34ed6246
PM
2094 struct rcu_node *rnp = rdp->mynode;
2095
2096 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2097 smp_mb__after_unlock_lock();
48a7639c 2098 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2099 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2100 if (needwake)
2101 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2102
2103 /*
34ed6246
PM
2104 * Wait for the grace period. Do so interruptibly to avoid messing
2105 * up the load average.
3fbfbf7a 2106 */
f7f7bac9 2107 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2108 for (;;) {
dae6e64d
PM
2109 wait_event_interruptible(
2110 rnp->nocb_gp_wq[c & 0x1],
7d0ae808 2111 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
dae6e64d 2112 if (likely(d))
34ed6246 2113 break;
73a860cd 2114 WARN_ON(signal_pending(current));
f7f7bac9 2115 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2116 }
f7f7bac9 2117 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2118 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2119}
2120
fbce7497
PM
2121/*
2122 * Leaders come here to wait for additional callbacks to show up.
2123 * This function does not return until callbacks appear.
2124 */
2125static void nocb_leader_wait(struct rcu_data *my_rdp)
2126{
2127 bool firsttime = true;
2128 bool gotcbs;
2129 struct rcu_data *rdp;
2130 struct rcu_head **tail;
2131
2132wait_again:
2133
2134 /* Wait for callbacks to appear. */
2135 if (!rcu_nocb_poll) {
2136 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2137 wait_event_interruptible(my_rdp->nocb_wq,
7d0ae808 2138 !READ_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2139 /* Memory barrier handled by smp_mb() calls below and repoll. */
2140 } else if (firsttime) {
2141 firsttime = false; /* Don't drown trace log with "Poll"! */
2142 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2143 }
2144
2145 /*
2146 * Each pass through the following loop checks a follower for CBs.
2147 * We are our own first follower. Any CBs found are moved to
2148 * nocb_gp_head, where they await a grace period.
2149 */
2150 gotcbs = false;
2151 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2152 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
fbce7497
PM
2153 if (!rdp->nocb_gp_head)
2154 continue; /* No CBs here, try next follower. */
2155
2156 /* Move callbacks to wait-for-GP list, which is empty. */
7d0ae808 2157 WRITE_ONCE(rdp->nocb_head, NULL);
fbce7497 2158 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2159 gotcbs = true;
2160 }
2161
2162 /*
2163 * If there were no callbacks, sleep a bit, rescan after a
2164 * memory barrier, and go retry.
2165 */
2166 if (unlikely(!gotcbs)) {
2167 if (!rcu_nocb_poll)
2168 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2169 "WokeEmpty");
73a860cd 2170 WARN_ON(signal_pending(current));
fbce7497
PM
2171 schedule_timeout_interruptible(1);
2172
2173 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2174 my_rdp->nocb_leader_sleep = true;
2175 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497 2176 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
7d0ae808 2177 if (READ_ONCE(rdp->nocb_head)) {
fbce7497 2178 /* Found CB, so short-circuit next wait. */
11ed7f93 2179 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2180 break;
2181 }
2182 goto wait_again;
2183 }
2184
2185 /* Wait for one grace period. */
2186 rcu_nocb_wait_gp(my_rdp);
2187
2188 /*
11ed7f93
PK
2189 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2190 * We set it now, but recheck for new callbacks while
fbce7497
PM
2191 * traversing our follower list.
2192 */
11ed7f93
PK
2193 my_rdp->nocb_leader_sleep = true;
2194 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2195
2196 /* Each pass through the following loop wakes a follower, if needed. */
2197 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2198 if (READ_ONCE(rdp->nocb_head))
11ed7f93 2199 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2200 if (!rdp->nocb_gp_head)
2201 continue; /* No CBs, so no need to wake follower. */
2202
2203 /* Append callbacks to follower's "done" list. */
2204 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2205 *tail = rdp->nocb_gp_head;
c847f142 2206 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2207 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2208 /*
2209 * List was empty, wake up the follower.
2210 * Memory barriers supplied by atomic_long_add().
2211 */
2212 wake_up(&rdp->nocb_wq);
2213 }
2214 }
2215
2216 /* If we (the leader) don't have CBs, go wait some more. */
2217 if (!my_rdp->nocb_follower_head)
2218 goto wait_again;
2219}
2220
2221/*
2222 * Followers come here to wait for additional callbacks to show up.
2223 * This function does not return until callbacks appear.
2224 */
2225static void nocb_follower_wait(struct rcu_data *rdp)
2226{
2227 bool firsttime = true;
2228
2229 for (;;) {
2230 if (!rcu_nocb_poll) {
2231 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2232 "FollowerSleep");
2233 wait_event_interruptible(rdp->nocb_wq,
7d0ae808 2234 READ_ONCE(rdp->nocb_follower_head));
fbce7497
PM
2235 } else if (firsttime) {
2236 /* Don't drown trace log with "Poll"! */
2237 firsttime = false;
2238 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2239 }
2240 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2241 /* ^^^ Ensure CB invocation follows _head test. */
2242 return;
2243 }
2244 if (!rcu_nocb_poll)
2245 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2246 "WokeEmpty");
73a860cd 2247 WARN_ON(signal_pending(current));
fbce7497
PM
2248 schedule_timeout_interruptible(1);
2249 }
2250}
2251
3fbfbf7a
PM
2252/*
2253 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2254 * callbacks queued by the corresponding no-CBs CPU, however, there is
2255 * an optional leader-follower relationship so that the grace-period
2256 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2257 */
2258static int rcu_nocb_kthread(void *arg)
2259{
2260 int c, cl;
2261 struct rcu_head *list;
2262 struct rcu_head *next;
2263 struct rcu_head **tail;
2264 struct rcu_data *rdp = arg;
2265
2266 /* Each pass through this loop invokes one batch of callbacks */
2267 for (;;) {
fbce7497
PM
2268 /* Wait for callbacks. */
2269 if (rdp->nocb_leader == rdp)
2270 nocb_leader_wait(rdp);
2271 else
2272 nocb_follower_wait(rdp);
2273
2274 /* Pull the ready-to-invoke callbacks onto local list. */
7d0ae808 2275 list = READ_ONCE(rdp->nocb_follower_head);
fbce7497
PM
2276 BUG_ON(!list);
2277 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
7d0ae808 2278 WRITE_ONCE(rdp->nocb_follower_head, NULL);
fbce7497 2279 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
3fbfbf7a
PM
2280
2281 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2282 trace_rcu_batch_start(rdp->rsp->name,
2283 atomic_long_read(&rdp->nocb_q_count_lazy),
2284 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2285 c = cl = 0;
2286 while (list) {
2287 next = list->next;
2288 /* Wait for enqueuing to complete, if needed. */
2289 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2290 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2291 TPS("WaitQueue"));
3fbfbf7a 2292 schedule_timeout_interruptible(1);
69a79bb1
PM
2293 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2294 TPS("WokeQueue"));
3fbfbf7a
PM
2295 next = list->next;
2296 }
2297 debug_rcu_head_unqueue(list);
2298 local_bh_disable();
2299 if (__rcu_reclaim(rdp->rsp->name, list))
2300 cl++;
2301 c++;
2302 local_bh_enable();
2303 list = next;
2304 }
2305 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2306 smp_mb__before_atomic(); /* _add after CB invocation. */
2307 atomic_long_add(-c, &rdp->nocb_q_count);
2308 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
c635a4e1 2309 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2310 }
2311 return 0;
2312}
2313
96d3fd0d 2314/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2315static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2316{
7d0ae808 2317 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2318}
2319
2320/* Do a deferred wakeup of rcu_nocb_kthread(). */
2321static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2322{
9fdd3bc9
PM
2323 int ndw;
2324
96d3fd0d
PM
2325 if (!rcu_nocb_need_deferred_wakeup(rdp))
2326 return;
7d0ae808
PM
2327 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2328 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
9fdd3bc9
PM
2329 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2330 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2331}
2332
f4579fc5
PM
2333void __init rcu_init_nohz(void)
2334{
2335 int cpu;
2336 bool need_rcu_nocb_mask = true;
2337 struct rcu_state *rsp;
2338
2339#ifdef CONFIG_RCU_NOCB_CPU_NONE
2340 need_rcu_nocb_mask = false;
2341#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2342
2343#if defined(CONFIG_NO_HZ_FULL)
2344 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2345 need_rcu_nocb_mask = true;
2346#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2347
2348 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2349 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2350 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2351 return;
2352 }
f4579fc5
PM
2353 have_rcu_nocb_mask = true;
2354 }
2355 if (!have_rcu_nocb_mask)
2356 return;
2357
2358#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2359 pr_info("\tOffload RCU callbacks from CPU 0\n");
2360 cpumask_set_cpu(0, rcu_nocb_mask);
2361#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2362#ifdef CONFIG_RCU_NOCB_CPU_ALL
2363 pr_info("\tOffload RCU callbacks from all CPUs\n");
2364 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2365#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2366#if defined(CONFIG_NO_HZ_FULL)
2367 if (tick_nohz_full_running)
2368 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2369#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2370
2371 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2372 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2373 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2374 rcu_nocb_mask);
2375 }
ad853b48
TH
2376 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2377 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2378 if (rcu_nocb_poll)
2379 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2380
2381 for_each_rcu_flavor(rsp) {
34404ca8
PM
2382 for_each_cpu(cpu, rcu_nocb_mask)
2383 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
35ce7f29 2384 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2385 }
96d3fd0d
PM
2386}
2387
3fbfbf7a
PM
2388/* Initialize per-rcu_data variables for no-CBs CPUs. */
2389static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2390{
2391 rdp->nocb_tail = &rdp->nocb_head;
2392 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2393 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2394}
2395
35ce7f29
PM
2396/*
2397 * If the specified CPU is a no-CBs CPU that does not already have its
2398 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2399 * brought online out of order, this can require re-organizing the
2400 * leader-follower relationships.
2401 */
2402static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2403{
2404 struct rcu_data *rdp;
2405 struct rcu_data *rdp_last;
2406 struct rcu_data *rdp_old_leader;
2407 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2408 struct task_struct *t;
2409
2410 /*
2411 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2412 * then nothing to do.
2413 */
2414 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2415 return;
2416
2417 /* If we didn't spawn the leader first, reorganize! */
2418 rdp_old_leader = rdp_spawn->nocb_leader;
2419 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2420 rdp_last = NULL;
2421 rdp = rdp_old_leader;
2422 do {
2423 rdp->nocb_leader = rdp_spawn;
2424 if (rdp_last && rdp != rdp_spawn)
2425 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2426 if (rdp == rdp_spawn) {
2427 rdp = rdp->nocb_next_follower;
2428 } else {
2429 rdp_last = rdp;
2430 rdp = rdp->nocb_next_follower;
2431 rdp_last->nocb_next_follower = NULL;
2432 }
35ce7f29
PM
2433 } while (rdp);
2434 rdp_spawn->nocb_next_follower = rdp_old_leader;
2435 }
2436
2437 /* Spawn the kthread for this CPU and RCU flavor. */
2438 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2439 "rcuo%c/%d", rsp->abbr, cpu);
2440 BUG_ON(IS_ERR(t));
7d0ae808 2441 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
35ce7f29
PM
2442}
2443
2444/*
2445 * If the specified CPU is a no-CBs CPU that does not already have its
2446 * rcuo kthreads, spawn them.
2447 */
2448static void rcu_spawn_all_nocb_kthreads(int cpu)
2449{
2450 struct rcu_state *rsp;
2451
2452 if (rcu_scheduler_fully_active)
2453 for_each_rcu_flavor(rsp)
2454 rcu_spawn_one_nocb_kthread(rsp, cpu);
2455}
2456
2457/*
2458 * Once the scheduler is running, spawn rcuo kthreads for all online
2459 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2460 * non-boot CPUs come online -- if this changes, we will need to add
2461 * some mutual exclusion.
2462 */
2463static void __init rcu_spawn_nocb_kthreads(void)
2464{
2465 int cpu;
2466
2467 for_each_online_cpu(cpu)
2468 rcu_spawn_all_nocb_kthreads(cpu);
2469}
2470
fbce7497
PM
2471/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2472static int rcu_nocb_leader_stride = -1;
2473module_param(rcu_nocb_leader_stride, int, 0444);
2474
2475/*
35ce7f29 2476 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2477 */
35ce7f29 2478static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2479{
2480 int cpu;
fbce7497
PM
2481 int ls = rcu_nocb_leader_stride;
2482 int nl = 0; /* Next leader. */
3fbfbf7a 2483 struct rcu_data *rdp;
fbce7497
PM
2484 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2485 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2486
22c2f669 2487 if (!have_rcu_nocb_mask)
3fbfbf7a 2488 return;
fbce7497
PM
2489 if (ls == -1) {
2490 ls = int_sqrt(nr_cpu_ids);
2491 rcu_nocb_leader_stride = ls;
2492 }
2493
2494 /*
2495 * Each pass through this loop sets up one rcu_data structure and
2496 * spawns one rcu_nocb_kthread().
2497 */
3fbfbf7a
PM
2498 for_each_cpu(cpu, rcu_nocb_mask) {
2499 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2500 if (rdp->cpu >= nl) {
2501 /* New leader, set up for followers & next leader. */
2502 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2503 rdp->nocb_leader = rdp;
2504 rdp_leader = rdp;
2505 } else {
2506 /* Another follower, link to previous leader. */
2507 rdp->nocb_leader = rdp_leader;
2508 rdp_prev->nocb_next_follower = rdp;
2509 }
2510 rdp_prev = rdp;
3fbfbf7a
PM
2511 }
2512}
2513
2514/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2515static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2516{
22c2f669 2517 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2518 return false;
22c2f669 2519
34404ca8
PM
2520 /* If there are early-boot callbacks, move them to nocb lists. */
2521 if (rdp->nxtlist) {
2522 rdp->nocb_head = rdp->nxtlist;
2523 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2524 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2525 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2526 rdp->nxtlist = NULL;
2527 rdp->qlen = 0;
2528 rdp->qlen_lazy = 0;
2529 }
3fbfbf7a 2530 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2531 return true;
3fbfbf7a
PM
2532}
2533
34ed6246
PM
2534#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2535
d7e29933
PM
2536static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2537{
2538 WARN_ON_ONCE(1); /* Should be dead code. */
2539 return false;
2540}
2541
0446be48 2542static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2543{
3fbfbf7a
PM
2544}
2545
dae6e64d
PM
2546static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2547{
2548}
2549
2550static void rcu_init_one_nocb(struct rcu_node *rnp)
2551{
2552}
3fbfbf7a 2553
3fbfbf7a 2554static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2555 bool lazy, unsigned long flags)
3fbfbf7a 2556{
4afc7e26 2557 return false;
3fbfbf7a
PM
2558}
2559
2560static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2561 struct rcu_data *rdp,
2562 unsigned long flags)
3fbfbf7a 2563{
f4aa84ba 2564 return false;
3fbfbf7a
PM
2565}
2566
3fbfbf7a
PM
2567static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2568{
2569}
2570
9fdd3bc9 2571static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2572{
2573 return false;
2574}
2575
2576static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2577{
2578}
2579
35ce7f29
PM
2580static void rcu_spawn_all_nocb_kthreads(int cpu)
2581{
2582}
2583
2584static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2585{
2586}
2587
34ed6246 2588static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2589{
34ed6246 2590 return false;
3fbfbf7a
PM
2591}
2592
2593#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2594
2595/*
2596 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2597 * arbitrarily long period of time with the scheduling-clock tick turned
2598 * off. RCU will be paying attention to this CPU because it is in the
2599 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2600 * machine because the scheduling-clock tick has been disabled. Therefore,
2601 * if an adaptive-ticks CPU is failing to respond to the current grace
2602 * period and has not be idle from an RCU perspective, kick it.
2603 */
4a81e832 2604static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2605{
2606#ifdef CONFIG_NO_HZ_FULL
2607 if (tick_nohz_full_cpu(cpu))
2608 smp_send_reschedule(cpu);
2609#endif /* #ifdef CONFIG_NO_HZ_FULL */
2610}
2333210b
PM
2611
2612
2613#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2614
0edd1b17 2615static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2616#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2617#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2618#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2619#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2620#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2621
eb348b89
PM
2622/*
2623 * Invoked to note exit from irq or task transition to idle. Note that
2624 * usermode execution does -not- count as idle here! After all, we want
2625 * to detect full-system idle states, not RCU quiescent states and grace
2626 * periods. The caller must have disabled interrupts.
2627 */
28ced795 2628static void rcu_sysidle_enter(int irq)
eb348b89
PM
2629{
2630 unsigned long j;
28ced795 2631 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
eb348b89 2632
663e1310
PM
2633 /* If there are no nohz_full= CPUs, no need to track this. */
2634 if (!tick_nohz_full_enabled())
2635 return;
2636
eb348b89
PM
2637 /* Adjust nesting, check for fully idle. */
2638 if (irq) {
2639 rdtp->dynticks_idle_nesting--;
2640 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2641 if (rdtp->dynticks_idle_nesting != 0)
2642 return; /* Still not fully idle. */
2643 } else {
2644 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2645 DYNTICK_TASK_NEST_VALUE) {
2646 rdtp->dynticks_idle_nesting = 0;
2647 } else {
2648 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2649 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2650 return; /* Still not fully idle. */
2651 }
2652 }
2653
2654 /* Record start of fully idle period. */
2655 j = jiffies;
7d0ae808 2656 WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
4e857c58 2657 smp_mb__before_atomic();
eb348b89 2658 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2659 smp_mb__after_atomic();
eb348b89
PM
2660 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2661}
2662
0edd1b17
PM
2663/*
2664 * Unconditionally force exit from full system-idle state. This is
2665 * invoked when a normal CPU exits idle, but must be called separately
2666 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2667 * is that the timekeeping CPU is permitted to take scheduling-clock
2668 * interrupts while the system is in system-idle state, and of course
2669 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2670 * interrupt from any other type of interrupt.
2671 */
2672void rcu_sysidle_force_exit(void)
2673{
7d0ae808 2674 int oldstate = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2675 int newoldstate;
2676
2677 /*
2678 * Each pass through the following loop attempts to exit full
2679 * system-idle state. If contention proves to be a problem,
2680 * a trylock-based contention tree could be used here.
2681 */
2682 while (oldstate > RCU_SYSIDLE_SHORT) {
2683 newoldstate = cmpxchg(&full_sysidle_state,
2684 oldstate, RCU_SYSIDLE_NOT);
2685 if (oldstate == newoldstate &&
2686 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2687 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2688 return; /* We cleared it, done! */
2689 }
2690 oldstate = newoldstate;
2691 }
2692 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2693}
2694
eb348b89
PM
2695/*
2696 * Invoked to note entry to irq or task transition from idle. Note that
2697 * usermode execution does -not- count as idle here! The caller must
2698 * have disabled interrupts.
2699 */
28ced795 2700static void rcu_sysidle_exit(int irq)
eb348b89 2701{
28ced795
CL
2702 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2703
663e1310
PM
2704 /* If there are no nohz_full= CPUs, no need to track this. */
2705 if (!tick_nohz_full_enabled())
2706 return;
2707
eb348b89
PM
2708 /* Adjust nesting, check for already non-idle. */
2709 if (irq) {
2710 rdtp->dynticks_idle_nesting++;
2711 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2712 if (rdtp->dynticks_idle_nesting != 1)
2713 return; /* Already non-idle. */
2714 } else {
2715 /*
2716 * Allow for irq misnesting. Yes, it really is possible
2717 * to enter an irq handler then never leave it, and maybe
2718 * also vice versa. Handle both possibilities.
2719 */
2720 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2721 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2722 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2723 return; /* Already non-idle. */
2724 } else {
2725 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2726 }
2727 }
2728
2729 /* Record end of idle period. */
4e857c58 2730 smp_mb__before_atomic();
eb348b89 2731 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2732 smp_mb__after_atomic();
eb348b89 2733 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2734
2735 /*
2736 * If we are the timekeeping CPU, we are permitted to be non-idle
2737 * during a system-idle state. This must be the case, because
2738 * the timekeeping CPU has to take scheduling-clock interrupts
2739 * during the time that the system is transitioning to full
2740 * system-idle state. This means that the timekeeping CPU must
2741 * invoke rcu_sysidle_force_exit() directly if it does anything
2742 * more than take a scheduling-clock interrupt.
2743 */
2744 if (smp_processor_id() == tick_do_timer_cpu)
2745 return;
2746
2747 /* Update system-idle state: We are clearly no longer fully idle! */
2748 rcu_sysidle_force_exit();
2749}
2750
2751/*
2752 * Check to see if the current CPU is idle. Note that usermode execution
5871968d
PM
2753 * does not count as idle. The caller must have disabled interrupts,
2754 * and must be running on tick_do_timer_cpu.
0edd1b17
PM
2755 */
2756static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2757 unsigned long *maxj)
2758{
2759 int cur;
2760 unsigned long j;
2761 struct rcu_dynticks *rdtp = rdp->dynticks;
2762
663e1310
PM
2763 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2764 if (!tick_nohz_full_enabled())
2765 return;
2766
0edd1b17
PM
2767 /*
2768 * If some other CPU has already reported non-idle, if this is
2769 * not the flavor of RCU that tracks sysidle state, or if this
2770 * is an offline or the timekeeping CPU, nothing to do.
2771 */
417e8d26 2772 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2773 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2774 return;
5871968d
PM
2775 /* Verify affinity of current kthread. */
2776 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2777
2778 /* Pick up current idle and NMI-nesting counter and check. */
2779 cur = atomic_read(&rdtp->dynticks_idle);
2780 if (cur & 0x1) {
2781 *isidle = false; /* We are not idle! */
2782 return;
2783 }
2784 smp_mb(); /* Read counters before timestamps. */
2785
2786 /* Pick up timestamps. */
7d0ae808 2787 j = READ_ONCE(rdtp->dynticks_idle_jiffies);
0edd1b17
PM
2788 /* If this CPU entered idle more recently, update maxj timestamp. */
2789 if (ULONG_CMP_LT(*maxj, j))
2790 *maxj = j;
2791}
2792
2793/*
2794 * Is this the flavor of RCU that is handling full-system idle?
2795 */
2796static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2797{
417e8d26 2798 return rsp == rcu_state_p;
0edd1b17
PM
2799}
2800
2801/*
2802 * Return a delay in jiffies based on the number of CPUs, rcu_node
2803 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2804 * systems more time to transition to full-idle state in order to
2805 * avoid the cache thrashing that otherwise occur on the state variable.
2806 * Really small systems (less than a couple of tens of CPUs) should
2807 * instead use a single global atomically incremented counter, and later
2808 * versions of this will automatically reconfigure themselves accordingly.
2809 */
2810static unsigned long rcu_sysidle_delay(void)
2811{
2812 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2813 return 0;
2814 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2815}
2816
2817/*
2818 * Advance the full-system-idle state. This is invoked when all of
2819 * the non-timekeeping CPUs are idle.
2820 */
2821static void rcu_sysidle(unsigned long j)
2822{
2823 /* Check the current state. */
7d0ae808 2824 switch (READ_ONCE(full_sysidle_state)) {
0edd1b17
PM
2825 case RCU_SYSIDLE_NOT:
2826
2827 /* First time all are idle, so note a short idle period. */
7d0ae808 2828 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
0edd1b17
PM
2829 break;
2830
2831 case RCU_SYSIDLE_SHORT:
2832
2833 /*
2834 * Idle for a bit, time to advance to next state?
2835 * cmpxchg failure means race with non-idle, let them win.
2836 */
2837 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2838 (void)cmpxchg(&full_sysidle_state,
2839 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2840 break;
2841
2842 case RCU_SYSIDLE_LONG:
2843
2844 /*
2845 * Do an additional check pass before advancing to full.
2846 * cmpxchg failure means race with non-idle, let them win.
2847 */
2848 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2849 (void)cmpxchg(&full_sysidle_state,
2850 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2851 break;
2852
2853 default:
2854 break;
2855 }
2856}
2857
2858/*
2859 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2860 * back to the beginning.
2861 */
2862static void rcu_sysidle_cancel(void)
2863{
2864 smp_mb();
becb41bf 2865 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
7d0ae808 2866 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
0edd1b17
PM
2867}
2868
2869/*
2870 * Update the sysidle state based on the results of a force-quiescent-state
2871 * scan of the CPUs' dyntick-idle state.
2872 */
2873static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2874 unsigned long maxj, bool gpkt)
2875{
417e8d26 2876 if (rsp != rcu_state_p)
0edd1b17
PM
2877 return; /* Wrong flavor, ignore. */
2878 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2879 return; /* Running state machine from timekeeping CPU. */
2880 if (isidle)
2881 rcu_sysidle(maxj); /* More idle! */
2882 else
2883 rcu_sysidle_cancel(); /* Idle is over. */
2884}
2885
2886/*
2887 * Wrapper for rcu_sysidle_report() when called from the grace-period
2888 * kthread's context.
2889 */
2890static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2891 unsigned long maxj)
2892{
663e1310
PM
2893 /* If there are no nohz_full= CPUs, no need to track this. */
2894 if (!tick_nohz_full_enabled())
2895 return;
2896
0edd1b17
PM
2897 rcu_sysidle_report(rsp, isidle, maxj, true);
2898}
2899
2900/* Callback and function for forcing an RCU grace period. */
2901struct rcu_sysidle_head {
2902 struct rcu_head rh;
2903 int inuse;
2904};
2905
2906static void rcu_sysidle_cb(struct rcu_head *rhp)
2907{
2908 struct rcu_sysidle_head *rshp;
2909
2910 /*
2911 * The following memory barrier is needed to replace the
2912 * memory barriers that would normally be in the memory
2913 * allocator.
2914 */
2915 smp_mb(); /* grace period precedes setting inuse. */
2916
2917 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
7d0ae808 2918 WRITE_ONCE(rshp->inuse, 0);
0edd1b17
PM
2919}
2920
2921/*
2922 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
2923 * The caller must have disabled interrupts. This is not intended to be
2924 * called unless tick_nohz_full_enabled().
0edd1b17
PM
2925 */
2926bool rcu_sys_is_idle(void)
2927{
2928 static struct rcu_sysidle_head rsh;
7d0ae808 2929 int rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2930
2931 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2932 return false;
2933
2934 /* Handle small-system case by doing a full scan of CPUs. */
2935 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2936 int oldrss = rss - 1;
2937
2938 /*
2939 * One pass to advance to each state up to _FULL.
2940 * Give up if any pass fails to advance the state.
2941 */
2942 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2943 int cpu;
2944 bool isidle = true;
2945 unsigned long maxj = jiffies - ULONG_MAX / 4;
2946 struct rcu_data *rdp;
2947
2948 /* Scan all the CPUs looking for nonidle CPUs. */
2949 for_each_possible_cpu(cpu) {
417e8d26 2950 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
2951 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2952 if (!isidle)
2953 break;
2954 }
417e8d26 2955 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17 2956 oldrss = rss;
7d0ae808 2957 rss = READ_ONCE(full_sysidle_state);
0edd1b17
PM
2958 }
2959 }
2960
2961 /* If this is the first observation of an idle period, record it. */
2962 if (rss == RCU_SYSIDLE_FULL) {
2963 rss = cmpxchg(&full_sysidle_state,
2964 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2965 return rss == RCU_SYSIDLE_FULL;
2966 }
2967
2968 smp_mb(); /* ensure rss load happens before later caller actions. */
2969
2970 /* If already fully idle, tell the caller (in case of races). */
2971 if (rss == RCU_SYSIDLE_FULL_NOTED)
2972 return true;
2973
2974 /*
2975 * If we aren't there yet, and a grace period is not in flight,
2976 * initiate a grace period. Either way, tell the caller that
2977 * we are not there yet. We use an xchg() rather than an assignment
2978 * to make up for the memory barriers that would otherwise be
2979 * provided by the memory allocator.
2980 */
2981 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 2982 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
2983 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2984 call_rcu(&rsh.rh, rcu_sysidle_cb);
2985 return false;
eb348b89
PM
2986}
2987
2333210b
PM
2988/*
2989 * Initialize dynticks sysidle state for CPUs coming online.
2990 */
2991static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2992{
2993 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2994}
2995
2996#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2997
28ced795 2998static void rcu_sysidle_enter(int irq)
eb348b89
PM
2999{
3000}
3001
28ced795 3002static void rcu_sysidle_exit(int irq)
eb348b89
PM
3003{
3004}
3005
0edd1b17
PM
3006static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3007 unsigned long *maxj)
3008{
3009}
3010
3011static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3012{
3013 return false;
3014}
3015
3016static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3017 unsigned long maxj)
3018{
3019}
3020
2333210b
PM
3021static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3022{
3023}
3024
3025#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
3026
3027/*
3028 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3029 * grace-period kthread will do force_quiescent_state() processing?
3030 * The idea is to avoid waking up RCU core processing on such a
3031 * CPU unless the grace period has extended for too long.
3032 *
3033 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3034 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3035 */
3036static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3037{
3038#ifdef CONFIG_NO_HZ_FULL
3039 if (tick_nohz_full_cpu(smp_processor_id()) &&
3040 (!rcu_gp_in_progress(rsp) ||
7d0ae808 3041 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
5ce035fb 3042 return true;
a096932f 3043#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 3044 return false;
a096932f 3045}
5057f55e
PM
3046
3047/*
3048 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3049 * timekeeping CPU.
3050 */
3051static void rcu_bind_gp_kthread(void)
3052{
c0f489d2 3053 int __maybe_unused cpu;
5057f55e 3054
c0f489d2 3055 if (!tick_nohz_full_enabled())
5057f55e 3056 return;
c0f489d2
PM
3057#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3058 cpu = tick_do_timer_cpu;
5871968d 3059 if (cpu >= 0 && cpu < nr_cpu_ids)
5057f55e 3060 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2 3061#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5871968d 3062 housekeeping_affine(current);
c0f489d2 3063#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3064}
176f8f7a
PM
3065
3066/* Record the current task on dyntick-idle entry. */
3067static void rcu_dynticks_task_enter(void)
3068{
3069#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3070 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
3071#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3072}
3073
3074/* Record no current task on dyntick-idle exit. */
3075static void rcu_dynticks_task_exit(void)
3076{
3077#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 3078 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
3079#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3080}
This page took 0.512781 seconds and 5 git commands to generate.