rcu: Parallelize and economize NOCB kthread wakeups
[deliverable/linux.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba
MG
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37#else
38#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39#endif
40
3fbfbf7a
PM
41#ifdef CONFIG_RCU_NOCB_CPU
42static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 44static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
45static char __initdata nocb_buf[NR_CPUS * 5];
46#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
26845c28
PM
48/*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
52 */
53static void __init rcu_bootup_announce_oddness(void)
54{
55#ifdef CONFIG_RCU_TRACE
efc151c3 56 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
57#endif
58#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 59 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
60 CONFIG_RCU_FANOUT);
61#endif
62#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 63 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
64#endif
65#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 66 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
67#endif
68#ifdef CONFIG_PROVE_RCU
efc151c3 69 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
70#endif
71#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 72 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 73#endif
81a294c4 74#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
efc151c3 75 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
a858af28
PM
76#endif
77#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 78 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
79#endif
80#if NUM_RCU_LVL_4 != 0
efc151c3 81 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 82#endif
f885b7f2 83 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 84 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 85 if (nr_cpu_ids != NR_CPUS)
efc151c3 86 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
3fbfbf7a 87#ifdef CONFIG_RCU_NOCB_CPU
911af505
PM
88#ifndef CONFIG_RCU_NOCB_CPU_NONE
89 if (!have_rcu_nocb_mask) {
615ee544 90 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
911af505
PM
91 have_rcu_nocb_mask = true;
92 }
93#ifdef CONFIG_RCU_NOCB_CPU_ZERO
9a5739d7 94 pr_info("\tOffload RCU callbacks from CPU 0\n");
911af505
PM
95 cpumask_set_cpu(0, rcu_nocb_mask);
96#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97#ifdef CONFIG_RCU_NOCB_CPU_ALL
9a5739d7 98 pr_info("\tOffload RCU callbacks from all CPUs\n");
5d5a0800 99 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
911af505
PM
100#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
3fbfbf7a 102 if (have_rcu_nocb_mask) {
5d5a0800
KT
103 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 rcu_nocb_mask);
107 }
3fbfbf7a 108 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
9a5739d7 109 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
3fbfbf7a 110 if (rcu_nocb_poll)
9a5739d7 111 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
3fbfbf7a
PM
112 }
113#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
26845c28
PM
114}
115
f41d911f
PM
116#ifdef CONFIG_TREE_PREEMPT_RCU
117
a41bfeb2 118RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 119static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 120
d9a3da06
PM
121static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122
f41d911f
PM
123/*
124 * Tell them what RCU they are running.
125 */
0e0fc1c2 126static void __init rcu_bootup_announce(void)
f41d911f 127{
efc151c3 128 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 129 rcu_bootup_announce_oddness();
f41d911f
PM
130}
131
132/*
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
135 */
136long rcu_batches_completed_preempt(void)
137{
138 return rcu_preempt_state.completed;
139}
140EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141
142/*
143 * Return the number of RCU batches processed thus far for debug & stats.
144 */
145long rcu_batches_completed(void)
146{
147 return rcu_batches_completed_preempt();
148}
149EXPORT_SYMBOL_GPL(rcu_batches_completed);
150
151/*
6cc68793 152 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
153 * that this just means that the task currently running on the CPU is
154 * not in a quiescent state. There might be any number of tasks blocked
155 * while in an RCU read-side critical section.
25502a6c
PM
156 *
157 * Unlike the other rcu_*_qs() functions, callers to this function
158 * must disable irqs in order to protect the assignment to
159 * ->rcu_read_unlock_special.
f41d911f 160 */
c3422bea 161static void rcu_preempt_qs(int cpu)
f41d911f
PM
162{
163 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 164
e4cc1f22 165 if (rdp->passed_quiesce == 0)
f7f7bac9 166 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 167 rdp->passed_quiesce = 1;
25502a6c 168 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
169}
170
171/*
c3422bea
PM
172 * We have entered the scheduler, and the current task might soon be
173 * context-switched away from. If this task is in an RCU read-side
174 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
175 * record that fact, so we enqueue the task on the blkd_tasks list.
176 * The task will dequeue itself when it exits the outermost enclosing
177 * RCU read-side critical section. Therefore, the current grace period
178 * cannot be permitted to complete until the blkd_tasks list entries
179 * predating the current grace period drain, in other words, until
180 * rnp->gp_tasks becomes NULL.
c3422bea
PM
181 *
182 * Caller must disable preemption.
f41d911f 183 */
cba6d0d6 184static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
185{
186 struct task_struct *t = current;
c3422bea 187 unsigned long flags;
f41d911f
PM
188 struct rcu_data *rdp;
189 struct rcu_node *rnp;
190
10f39bb1 191 if (t->rcu_read_lock_nesting > 0 &&
f41d911f
PM
192 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
193
194 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 195 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 196 rnp = rdp->mynode;
1304afb2 197 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 198 smp_mb__after_unlock_lock();
f41d911f 199 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 200 t->rcu_blocked_node = rnp;
f41d911f
PM
201
202 /*
203 * If this CPU has already checked in, then this task
204 * will hold up the next grace period rather than the
205 * current grace period. Queue the task accordingly.
206 * If the task is queued for the current grace period
207 * (i.e., this CPU has not yet passed through a quiescent
208 * state for the current grace period), then as long
209 * as that task remains queued, the current grace period
12f5f524
PM
210 * cannot end. Note that there is some uncertainty as
211 * to exactly when the current grace period started.
212 * We take a conservative approach, which can result
213 * in unnecessarily waiting on tasks that started very
214 * slightly after the current grace period began. C'est
215 * la vie!!!
b0e165c0
PM
216 *
217 * But first, note that the current CPU must still be
218 * on line!
f41d911f 219 */
b0e165c0 220 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 221 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
222 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
223 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
224 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
225#ifdef CONFIG_RCU_BOOST
226 if (rnp->boost_tasks != NULL)
227 rnp->boost_tasks = rnp->gp_tasks;
228#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
229 } else {
230 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
231 if (rnp->qsmask & rdp->grpmask)
232 rnp->gp_tasks = &t->rcu_node_entry;
233 }
d4c08f2a
PM
234 trace_rcu_preempt_task(rdp->rsp->name,
235 t->pid,
236 (rnp->qsmask & rdp->grpmask)
237 ? rnp->gpnum
238 : rnp->gpnum + 1);
1304afb2 239 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1
PM
240 } else if (t->rcu_read_lock_nesting < 0 &&
241 t->rcu_read_unlock_special) {
242
243 /*
244 * Complete exit from RCU read-side critical section on
245 * behalf of preempted instance of __rcu_read_unlock().
246 */
247 rcu_read_unlock_special(t);
f41d911f
PM
248 }
249
250 /*
251 * Either we were not in an RCU read-side critical section to
252 * begin with, or we have now recorded that critical section
253 * globally. Either way, we can now note a quiescent state
254 * for this CPU. Again, if we were in an RCU read-side critical
255 * section, and if that critical section was blocking the current
256 * grace period, then the fact that the task has been enqueued
257 * means that we continue to block the current grace period.
258 */
e7d8842e 259 local_irq_save(flags);
cba6d0d6 260 rcu_preempt_qs(cpu);
e7d8842e 261 local_irq_restore(flags);
f41d911f
PM
262}
263
fc2219d4
PM
264/*
265 * Check for preempted RCU readers blocking the current grace period
266 * for the specified rcu_node structure. If the caller needs a reliable
267 * answer, it must hold the rcu_node's ->lock.
268 */
27f4d280 269static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 270{
12f5f524 271 return rnp->gp_tasks != NULL;
fc2219d4
PM
272}
273
b668c9cf
PM
274/*
275 * Record a quiescent state for all tasks that were previously queued
276 * on the specified rcu_node structure and that were blocking the current
277 * RCU grace period. The caller must hold the specified rnp->lock with
278 * irqs disabled, and this lock is released upon return, but irqs remain
279 * disabled.
280 */
d3f6bad3 281static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
282 __releases(rnp->lock)
283{
284 unsigned long mask;
285 struct rcu_node *rnp_p;
286
27f4d280 287 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 288 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
289 return; /* Still need more quiescent states! */
290 }
291
292 rnp_p = rnp->parent;
293 if (rnp_p == NULL) {
294 /*
295 * Either there is only one rcu_node in the tree,
296 * or tasks were kicked up to root rcu_node due to
297 * CPUs going offline.
298 */
d3f6bad3 299 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
300 return;
301 }
302
303 /* Report up the rest of the hierarchy. */
304 mask = rnp->grpmask;
1304afb2
PM
305 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
306 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 307 smp_mb__after_unlock_lock();
d3f6bad3 308 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
309}
310
12f5f524
PM
311/*
312 * Advance a ->blkd_tasks-list pointer to the next entry, instead
313 * returning NULL if at the end of the list.
314 */
315static struct list_head *rcu_next_node_entry(struct task_struct *t,
316 struct rcu_node *rnp)
317{
318 struct list_head *np;
319
320 np = t->rcu_node_entry.next;
321 if (np == &rnp->blkd_tasks)
322 np = NULL;
323 return np;
324}
325
b668c9cf
PM
326/*
327 * Handle special cases during rcu_read_unlock(), such as needing to
328 * notify RCU core processing or task having blocked during the RCU
329 * read-side critical section.
330 */
2a3fa843 331void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
332{
333 int empty;
d9a3da06 334 int empty_exp;
389abd48 335 int empty_exp_now;
f41d911f 336 unsigned long flags;
12f5f524 337 struct list_head *np;
82e78d80
PM
338#ifdef CONFIG_RCU_BOOST
339 struct rt_mutex *rbmp = NULL;
340#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
341 struct rcu_node *rnp;
342 int special;
343
344 /* NMI handlers cannot block and cannot safely manipulate state. */
345 if (in_nmi())
346 return;
347
348 local_irq_save(flags);
349
350 /*
351 * If RCU core is waiting for this CPU to exit critical section,
352 * let it know that we have done so.
353 */
354 special = t->rcu_read_unlock_special;
355 if (special & RCU_READ_UNLOCK_NEED_QS) {
c3422bea 356 rcu_preempt_qs(smp_processor_id());
79a62f95
LJ
357 if (!t->rcu_read_unlock_special) {
358 local_irq_restore(flags);
359 return;
360 }
f41d911f
PM
361 }
362
79a62f95
LJ
363 /* Hardware IRQ handlers cannot block, complain if they get here. */
364 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
f41d911f
PM
365 local_irq_restore(flags);
366 return;
367 }
368
369 /* Clean up if blocked during RCU read-side critical section. */
370 if (special & RCU_READ_UNLOCK_BLOCKED) {
371 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
372
dd5d19ba
PM
373 /*
374 * Remove this task from the list it blocked on. The
375 * task can migrate while we acquire the lock, but at
376 * most one time. So at most two passes through loop.
377 */
378 for (;;) {
86848966 379 rnp = t->rcu_blocked_node;
1304afb2 380 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 381 smp_mb__after_unlock_lock();
86848966 382 if (rnp == t->rcu_blocked_node)
dd5d19ba 383 break;
1304afb2 384 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 385 }
27f4d280 386 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
387 empty_exp = !rcu_preempted_readers_exp(rnp);
388 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 389 np = rcu_next_node_entry(t, rnp);
f41d911f 390 list_del_init(&t->rcu_node_entry);
82e78d80 391 t->rcu_blocked_node = NULL;
f7f7bac9 392 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 393 rnp->gpnum, t->pid);
12f5f524
PM
394 if (&t->rcu_node_entry == rnp->gp_tasks)
395 rnp->gp_tasks = np;
396 if (&t->rcu_node_entry == rnp->exp_tasks)
397 rnp->exp_tasks = np;
27f4d280
PM
398#ifdef CONFIG_RCU_BOOST
399 if (&t->rcu_node_entry == rnp->boost_tasks)
400 rnp->boost_tasks = np;
82e78d80
PM
401 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
402 if (t->rcu_boost_mutex) {
403 rbmp = t->rcu_boost_mutex;
404 t->rcu_boost_mutex = NULL;
7765be2f 405 }
27f4d280 406#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
407
408 /*
409 * If this was the last task on the current list, and if
410 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
411 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
412 * so we must take a snapshot of the expedited state.
f41d911f 413 */
389abd48 414 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a 415 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 416 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
417 rnp->gpnum,
418 0, rnp->qsmask,
419 rnp->level,
420 rnp->grplo,
421 rnp->grphi,
422 !!rnp->gp_tasks);
d3f6bad3 423 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 424 } else {
d4c08f2a 425 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 426 }
d9a3da06 427
27f4d280
PM
428#ifdef CONFIG_RCU_BOOST
429 /* Unboost if we were boosted. */
82e78d80
PM
430 if (rbmp)
431 rt_mutex_unlock(rbmp);
27f4d280
PM
432#endif /* #ifdef CONFIG_RCU_BOOST */
433
d9a3da06
PM
434 /*
435 * If this was the last task on the expedited lists,
436 * then we need to report up the rcu_node hierarchy.
437 */
389abd48 438 if (!empty_exp && empty_exp_now)
b40d293e 439 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
440 } else {
441 local_irq_restore(flags);
f41d911f 442 }
f41d911f
PM
443}
444
1ed509a2
PM
445#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446
447/*
448 * Dump detailed information for all tasks blocking the current RCU
449 * grace period on the specified rcu_node structure.
450 */
451static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452{
453 unsigned long flags;
1ed509a2
PM
454 struct task_struct *t;
455
12f5f524 456 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
457 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458 raw_spin_unlock_irqrestore(&rnp->lock, flags);
459 return;
460 }
12f5f524
PM
461 t = list_entry(rnp->gp_tasks,
462 struct task_struct, rcu_node_entry);
463 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464 sched_show_task(t);
465 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
466}
467
468/*
469 * Dump detailed information for all tasks blocking the current RCU
470 * grace period.
471 */
472static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473{
474 struct rcu_node *rnp = rcu_get_root(rsp);
475
476 rcu_print_detail_task_stall_rnp(rnp);
477 rcu_for_each_leaf_node(rsp, rnp)
478 rcu_print_detail_task_stall_rnp(rnp);
479}
480
481#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482
483static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484{
485}
486
487#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
a858af28
PM
489#ifdef CONFIG_RCU_CPU_STALL_INFO
490
491static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492{
efc151c3 493 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
494 rnp->level, rnp->grplo, rnp->grphi);
495}
496
497static void rcu_print_task_stall_end(void)
498{
efc151c3 499 pr_cont("\n");
a858af28
PM
500}
501
502#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503
504static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505{
506}
507
508static void rcu_print_task_stall_end(void)
509{
510}
511
512#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513
f41d911f
PM
514/*
515 * Scan the current list of tasks blocked within RCU read-side critical
516 * sections, printing out the tid of each.
517 */
9bc8b558 518static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 519{
f41d911f 520 struct task_struct *t;
9bc8b558 521 int ndetected = 0;
f41d911f 522
27f4d280 523 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 524 return 0;
a858af28 525 rcu_print_task_stall_begin(rnp);
12f5f524
PM
526 t = list_entry(rnp->gp_tasks,
527 struct task_struct, rcu_node_entry);
9bc8b558 528 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 529 pr_cont(" P%d", t->pid);
9bc8b558
PM
530 ndetected++;
531 }
a858af28 532 rcu_print_task_stall_end();
9bc8b558 533 return ndetected;
f41d911f
PM
534}
535
b0e165c0
PM
536/*
537 * Check that the list of blocked tasks for the newly completed grace
538 * period is in fact empty. It is a serious bug to complete a grace
539 * period that still has RCU readers blocked! This function must be
540 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541 * must be held by the caller.
12f5f524
PM
542 *
543 * Also, if there are blocked tasks on the list, they automatically
544 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
545 */
546static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547{
27f4d280 548 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
549 if (!list_empty(&rnp->blkd_tasks))
550 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 551 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
552}
553
33f76148
PM
554#ifdef CONFIG_HOTPLUG_CPU
555
dd5d19ba
PM
556/*
557 * Handle tasklist migration for case in which all CPUs covered by the
558 * specified rcu_node have gone offline. Move them up to the root
559 * rcu_node. The reason for not just moving them to the immediate
560 * parent is to remove the need for rcu_read_unlock_special() to
561 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
562 * Returns true if there were tasks blocking the current RCU grace
563 * period.
dd5d19ba 564 *
237c80c5
PM
565 * Returns 1 if there was previously a task blocking the current grace
566 * period on the specified rcu_node structure.
567 *
dd5d19ba
PM
568 * The caller must hold rnp->lock with irqs disabled.
569 */
237c80c5
PM
570static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571 struct rcu_node *rnp,
572 struct rcu_data *rdp)
dd5d19ba 573{
dd5d19ba
PM
574 struct list_head *lp;
575 struct list_head *lp_root;
d9a3da06 576 int retval = 0;
dd5d19ba 577 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 578 struct task_struct *t;
dd5d19ba 579
86848966
PM
580 if (rnp == rnp_root) {
581 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 582 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 583 }
12f5f524
PM
584
585 /* If we are on an internal node, complain bitterly. */
586 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
587
588 /*
12f5f524
PM
589 * Move tasks up to root rcu_node. Don't try to get fancy for
590 * this corner-case operation -- just put this node's tasks
591 * at the head of the root node's list, and update the root node's
592 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593 * if non-NULL. This might result in waiting for more tasks than
594 * absolutely necessary, but this is a good performance/complexity
595 * tradeoff.
dd5d19ba 596 */
2036d94a 597 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
598 retval |= RCU_OFL_TASKS_NORM_GP;
599 if (rcu_preempted_readers_exp(rnp))
600 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
601 lp = &rnp->blkd_tasks;
602 lp_root = &rnp_root->blkd_tasks;
603 while (!list_empty(lp)) {
604 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 606 smp_mb__after_unlock_lock();
12f5f524
PM
607 list_del(&t->rcu_node_entry);
608 t->rcu_blocked_node = rnp_root;
609 list_add(&t->rcu_node_entry, lp_root);
610 if (&t->rcu_node_entry == rnp->gp_tasks)
611 rnp_root->gp_tasks = rnp->gp_tasks;
612 if (&t->rcu_node_entry == rnp->exp_tasks)
613 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
614#ifdef CONFIG_RCU_BOOST
615 if (&t->rcu_node_entry == rnp->boost_tasks)
616 rnp_root->boost_tasks = rnp->boost_tasks;
617#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 618 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 619 }
27f4d280 620
1e3fd2b3
PM
621 rnp->gp_tasks = NULL;
622 rnp->exp_tasks = NULL;
27f4d280 623#ifdef CONFIG_RCU_BOOST
1e3fd2b3 624 rnp->boost_tasks = NULL;
5cc900cf
PM
625 /*
626 * In case root is being boosted and leaf was not. Make sure
627 * that we boost the tasks blocking the current grace period
628 * in this case.
629 */
27f4d280 630 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 631 smp_mb__after_unlock_lock();
27f4d280 632 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
633 rnp_root->boost_tasks != rnp_root->gp_tasks &&
634 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
635 rnp_root->boost_tasks = rnp_root->gp_tasks;
636 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637#endif /* #ifdef CONFIG_RCU_BOOST */
638
237c80c5 639 return retval;
dd5d19ba
PM
640}
641
e5601400
PM
642#endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
f41d911f
PM
644/*
645 * Check for a quiescent state from the current CPU. When a task blocks,
646 * the task is recorded in the corresponding CPU's rcu_node structure,
647 * which is checked elsewhere.
648 *
649 * Caller must disable hard irqs.
650 */
651static void rcu_preempt_check_callbacks(int cpu)
652{
653 struct task_struct *t = current;
654
655 if (t->rcu_read_lock_nesting == 0) {
c3422bea 656 rcu_preempt_qs(cpu);
f41d911f
PM
657 return;
658 }
10f39bb1
PM
659 if (t->rcu_read_lock_nesting > 0 &&
660 per_cpu(rcu_preempt_data, cpu).qs_pending)
c3422bea 661 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
662}
663
a46e0899
PM
664#ifdef CONFIG_RCU_BOOST
665
09223371
SL
666static void rcu_preempt_do_callbacks(void)
667{
c9d4b0af 668 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
669}
670
a46e0899
PM
671#endif /* #ifdef CONFIG_RCU_BOOST */
672
f41d911f 673/*
6cc68793 674 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
675 */
676void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677{
3fbfbf7a 678 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
679}
680EXPORT_SYMBOL_GPL(call_rcu);
681
6ebb237b
PM
682/**
683 * synchronize_rcu - wait until a grace period has elapsed.
684 *
685 * Control will return to the caller some time after a full grace
686 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
687 * read-side critical sections have completed. Note, however, that
688 * upon return from synchronize_rcu(), the caller might well be executing
689 * concurrently with new RCU read-side critical sections that began while
690 * synchronize_rcu() was waiting. RCU read-side critical sections are
691 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
692 *
693 * See the description of synchronize_sched() for more detailed information
694 * on memory ordering guarantees.
6ebb237b
PM
695 */
696void synchronize_rcu(void)
697{
fe15d706
PM
698 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
699 !lock_is_held(&rcu_lock_map) &&
700 !lock_is_held(&rcu_sched_lock_map),
701 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
702 if (!rcu_scheduler_active)
703 return;
3705b88d
AM
704 if (rcu_expedited)
705 synchronize_rcu_expedited();
706 else
707 wait_rcu_gp(call_rcu);
6ebb237b
PM
708}
709EXPORT_SYMBOL_GPL(synchronize_rcu);
710
d9a3da06 711static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 712static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
713static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
714
715/*
716 * Return non-zero if there are any tasks in RCU read-side critical
717 * sections blocking the current preemptible-RCU expedited grace period.
718 * If there is no preemptible-RCU expedited grace period currently in
719 * progress, returns zero unconditionally.
720 */
721static int rcu_preempted_readers_exp(struct rcu_node *rnp)
722{
12f5f524 723 return rnp->exp_tasks != NULL;
d9a3da06
PM
724}
725
726/*
727 * return non-zero if there is no RCU expedited grace period in progress
728 * for the specified rcu_node structure, in other words, if all CPUs and
729 * tasks covered by the specified rcu_node structure have done their bit
730 * for the current expedited grace period. Works only for preemptible
731 * RCU -- other RCU implementation use other means.
732 *
733 * Caller must hold sync_rcu_preempt_exp_mutex.
734 */
735static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
736{
737 return !rcu_preempted_readers_exp(rnp) &&
738 ACCESS_ONCE(rnp->expmask) == 0;
739}
740
741/*
742 * Report the exit from RCU read-side critical section for the last task
743 * that queued itself during or before the current expedited preemptible-RCU
744 * grace period. This event is reported either to the rcu_node structure on
745 * which the task was queued or to one of that rcu_node structure's ancestors,
746 * recursively up the tree. (Calm down, calm down, we do the recursion
747 * iteratively!)
748 *
b40d293e
TG
749 * Most callers will set the "wake" flag, but the task initiating the
750 * expedited grace period need not wake itself.
751 *
d9a3da06
PM
752 * Caller must hold sync_rcu_preempt_exp_mutex.
753 */
b40d293e
TG
754static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
755 bool wake)
d9a3da06
PM
756{
757 unsigned long flags;
758 unsigned long mask;
759
1304afb2 760 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 761 smp_mb__after_unlock_lock();
d9a3da06 762 for (;;) {
131906b0
PM
763 if (!sync_rcu_preempt_exp_done(rnp)) {
764 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 765 break;
131906b0 766 }
d9a3da06 767 if (rnp->parent == NULL) {
131906b0 768 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
769 if (wake) {
770 smp_mb(); /* EGP done before wake_up(). */
b40d293e 771 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 772 }
d9a3da06
PM
773 break;
774 }
775 mask = rnp->grpmask;
1304afb2 776 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 777 rnp = rnp->parent;
1304afb2 778 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 779 smp_mb__after_unlock_lock();
d9a3da06
PM
780 rnp->expmask &= ~mask;
781 }
d9a3da06
PM
782}
783
784/*
785 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786 * grace period for the specified rcu_node structure. If there are no such
787 * tasks, report it up the rcu_node hierarchy.
788 *
7b2e6011
PM
789 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
790 * CPU hotplug operations.
d9a3da06
PM
791 */
792static void
793sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
794{
1217ed1b 795 unsigned long flags;
12f5f524 796 int must_wait = 0;
d9a3da06 797
1217ed1b 798 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 799 smp_mb__after_unlock_lock();
c701d5d9 800 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 801 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 802 } else {
12f5f524 803 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 804 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
805 must_wait = 1;
806 }
d9a3da06 807 if (!must_wait)
b40d293e 808 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
809}
810
236fefaf
PM
811/**
812 * synchronize_rcu_expedited - Brute-force RCU grace period
813 *
814 * Wait for an RCU-preempt grace period, but expedite it. The basic
815 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
816 * the ->blkd_tasks lists and wait for this list to drain. This consumes
817 * significant time on all CPUs and is unfriendly to real-time workloads,
818 * so is thus not recommended for any sort of common-case code.
819 * In fact, if you are using synchronize_rcu_expedited() in a loop,
820 * please restructure your code to batch your updates, and then Use a
821 * single synchronize_rcu() instead.
822 *
823 * Note that it is illegal to call this function while holding any lock
824 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
825 * to call this function from a CPU-hotplug notifier. Failing to observe
826 * these restriction will result in deadlock.
019129d5
PM
827 */
828void synchronize_rcu_expedited(void)
829{
d9a3da06
PM
830 unsigned long flags;
831 struct rcu_node *rnp;
832 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 833 unsigned long snap;
d9a3da06
PM
834 int trycount = 0;
835
836 smp_mb(); /* Caller's modifications seen first by other CPUs. */
837 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
838 smp_mb(); /* Above access cannot bleed into critical section. */
839
1943c89d
PM
840 /*
841 * Block CPU-hotplug operations. This means that any CPU-hotplug
842 * operation that finds an rcu_node structure with tasks in the
843 * process of being boosted will know that all tasks blocking
844 * this expedited grace period will already be in the process of
845 * being boosted. This simplifies the process of moving tasks
846 * from leaf to root rcu_node structures.
847 */
848 get_online_cpus();
849
d9a3da06
PM
850 /*
851 * Acquire lock, falling back to synchronize_rcu() if too many
852 * lock-acquisition failures. Of course, if someone does the
853 * expedited grace period for us, just leave.
854 */
855 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
856 if (ULONG_CMP_LT(snap,
857 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
858 put_online_cpus();
859 goto mb_ret; /* Others did our work for us. */
860 }
c701d5d9 861 if (trycount++ < 10) {
d9a3da06 862 udelay(trycount * num_online_cpus());
c701d5d9 863 } else {
1943c89d 864 put_online_cpus();
3705b88d 865 wait_rcu_gp(call_rcu);
d9a3da06
PM
866 return;
867 }
d9a3da06 868 }
1943c89d
PM
869 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
870 put_online_cpus();
d9a3da06 871 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 872 }
d9a3da06 873
12f5f524 874 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
875 synchronize_sched_expedited();
876
d9a3da06
PM
877 /* Initialize ->expmask for all non-leaf rcu_node structures. */
878 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 879 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 880 smp_mb__after_unlock_lock();
d9a3da06 881 rnp->expmask = rnp->qsmaskinit;
1943c89d 882 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
883 }
884
12f5f524 885 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
886 rcu_for_each_leaf_node(rsp, rnp)
887 sync_rcu_preempt_exp_init(rsp, rnp);
888 if (NUM_RCU_NODES > 1)
889 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
890
1943c89d 891 put_online_cpus();
d9a3da06 892
12f5f524 893 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
894 rnp = rcu_get_root(rsp);
895 wait_event(sync_rcu_preempt_exp_wq,
896 sync_rcu_preempt_exp_done(rnp));
897
898 /* Clean up and exit. */
899 smp_mb(); /* ensure expedited GP seen before counter increment. */
900 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
901unlock_mb_ret:
902 mutex_unlock(&sync_rcu_preempt_exp_mutex);
903mb_ret:
904 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
905}
906EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
907
e74f4c45
PM
908/**
909 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
910 *
911 * Note that this primitive does not necessarily wait for an RCU grace period
912 * to complete. For example, if there are no RCU callbacks queued anywhere
913 * in the system, then rcu_barrier() is within its rights to return
914 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
915 */
916void rcu_barrier(void)
917{
037b64ed 918 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
919}
920EXPORT_SYMBOL_GPL(rcu_barrier);
921
1eba8f84 922/*
6cc68793 923 * Initialize preemptible RCU's state structures.
1eba8f84
PM
924 */
925static void __init __rcu_init_preempt(void)
926{
394f99a9 927 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
928}
929
2439b696
PM
930/*
931 * Check for a task exiting while in a preemptible-RCU read-side
932 * critical section, clean up if so. No need to issue warnings,
933 * as debug_check_no_locks_held() already does this if lockdep
934 * is enabled.
935 */
936void exit_rcu(void)
937{
938 struct task_struct *t = current;
939
940 if (likely(list_empty(&current->rcu_node_entry)))
941 return;
942 t->rcu_read_lock_nesting = 1;
943 barrier();
944 t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
945 __rcu_read_unlock();
946}
947
f41d911f
PM
948#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
949
e534165b 950static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 951
f41d911f
PM
952/*
953 * Tell them what RCU they are running.
954 */
0e0fc1c2 955static void __init rcu_bootup_announce(void)
f41d911f 956{
efc151c3 957 pr_info("Hierarchical RCU implementation.\n");
26845c28 958 rcu_bootup_announce_oddness();
f41d911f
PM
959}
960
961/*
962 * Return the number of RCU batches processed thus far for debug & stats.
963 */
964long rcu_batches_completed(void)
965{
966 return rcu_batches_completed_sched();
967}
968EXPORT_SYMBOL_GPL(rcu_batches_completed);
969
cba6d0d6
PM
970/*
971 * Because preemptible RCU does not exist, we never have to check for
972 * CPUs being in quiescent states.
973 */
974static void rcu_preempt_note_context_switch(int cpu)
975{
976}
977
fc2219d4 978/*
6cc68793 979 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
980 * RCU readers.
981 */
27f4d280 982static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
983{
984 return 0;
985}
986
b668c9cf
PM
987#ifdef CONFIG_HOTPLUG_CPU
988
989/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 990static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf 991{
1304afb2 992 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
993}
994
995#endif /* #ifdef CONFIG_HOTPLUG_CPU */
996
1ed509a2 997/*
6cc68793 998 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
999 * tasks blocked within RCU read-side critical sections.
1000 */
1001static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1002{
1003}
1004
f41d911f 1005/*
6cc68793 1006 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1007 * tasks blocked within RCU read-side critical sections.
1008 */
9bc8b558 1009static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1010{
9bc8b558 1011 return 0;
f41d911f
PM
1012}
1013
b0e165c0 1014/*
6cc68793 1015 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1016 * so there is no need to check for blocked tasks. So check only for
1017 * bogus qsmask values.
b0e165c0
PM
1018 */
1019static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1020{
49e29126 1021 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1022}
1023
33f76148
PM
1024#ifdef CONFIG_HOTPLUG_CPU
1025
dd5d19ba 1026/*
6cc68793 1027 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1028 * tasks that were blocked within RCU read-side critical sections, and
1029 * such non-existent tasks cannot possibly have been blocking the current
1030 * grace period.
dd5d19ba 1031 */
237c80c5
PM
1032static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1033 struct rcu_node *rnp,
1034 struct rcu_data *rdp)
dd5d19ba 1035{
237c80c5 1036 return 0;
dd5d19ba
PM
1037}
1038
e5601400
PM
1039#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1040
f41d911f 1041/*
6cc68793 1042 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1043 * to check.
1044 */
1eba8f84 1045static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1046{
1047}
1048
019129d5
PM
1049/*
1050 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1051 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1052 */
1053void synchronize_rcu_expedited(void)
1054{
1055 synchronize_sched_expedited();
1056}
1057EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1058
d9a3da06
PM
1059#ifdef CONFIG_HOTPLUG_CPU
1060
1061/*
6cc68793 1062 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1063 * report on tasks preempted in RCU read-side critical sections during
1064 * expedited RCU grace periods.
1065 */
b40d293e
TG
1066static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1067 bool wake)
d9a3da06 1068{
d9a3da06
PM
1069}
1070
1071#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1072
e74f4c45 1073/*
6cc68793 1074 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1075 * another name for rcu_barrier_sched().
1076 */
1077void rcu_barrier(void)
1078{
1079 rcu_barrier_sched();
1080}
1081EXPORT_SYMBOL_GPL(rcu_barrier);
1082
1eba8f84 1083/*
6cc68793 1084 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1085 */
1086static void __init __rcu_init_preempt(void)
1087{
1088}
1089
2439b696
PM
1090/*
1091 * Because preemptible RCU does not exist, tasks cannot possibly exit
1092 * while in preemptible RCU read-side critical sections.
1093 */
1094void exit_rcu(void)
1095{
1096}
1097
f41d911f 1098#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1099
27f4d280
PM
1100#ifdef CONFIG_RCU_BOOST
1101
1696a8be 1102#include "../locking/rtmutex_common.h"
27f4d280 1103
0ea1f2eb
PM
1104#ifdef CONFIG_RCU_TRACE
1105
1106static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1107{
1108 if (list_empty(&rnp->blkd_tasks))
1109 rnp->n_balk_blkd_tasks++;
1110 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1111 rnp->n_balk_exp_gp_tasks++;
1112 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1113 rnp->n_balk_boost_tasks++;
1114 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1115 rnp->n_balk_notblocked++;
1116 else if (rnp->gp_tasks != NULL &&
a9f4793d 1117 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1118 rnp->n_balk_notyet++;
1119 else
1120 rnp->n_balk_nos++;
1121}
1122
1123#else /* #ifdef CONFIG_RCU_TRACE */
1124
1125static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1126{
1127}
1128
1129#endif /* #else #ifdef CONFIG_RCU_TRACE */
1130
5d01bbd1
TG
1131static void rcu_wake_cond(struct task_struct *t, int status)
1132{
1133 /*
1134 * If the thread is yielding, only wake it when this
1135 * is invoked from idle
1136 */
1137 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1138 wake_up_process(t);
1139}
1140
27f4d280
PM
1141/*
1142 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1143 * or ->boost_tasks, advancing the pointer to the next task in the
1144 * ->blkd_tasks list.
1145 *
1146 * Note that irqs must be enabled: boosting the task can block.
1147 * Returns 1 if there are more tasks needing to be boosted.
1148 */
1149static int rcu_boost(struct rcu_node *rnp)
1150{
1151 unsigned long flags;
1152 struct rt_mutex mtx;
1153 struct task_struct *t;
1154 struct list_head *tb;
1155
1156 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1157 return 0; /* Nothing left to boost. */
1158
1159 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1160 smp_mb__after_unlock_lock();
27f4d280
PM
1161
1162 /*
1163 * Recheck under the lock: all tasks in need of boosting
1164 * might exit their RCU read-side critical sections on their own.
1165 */
1166 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1167 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1168 return 0;
1169 }
1170
1171 /*
1172 * Preferentially boost tasks blocking expedited grace periods.
1173 * This cannot starve the normal grace periods because a second
1174 * expedited grace period must boost all blocked tasks, including
1175 * those blocking the pre-existing normal grace period.
1176 */
0ea1f2eb 1177 if (rnp->exp_tasks != NULL) {
27f4d280 1178 tb = rnp->exp_tasks;
0ea1f2eb
PM
1179 rnp->n_exp_boosts++;
1180 } else {
27f4d280 1181 tb = rnp->boost_tasks;
0ea1f2eb
PM
1182 rnp->n_normal_boosts++;
1183 }
1184 rnp->n_tasks_boosted++;
27f4d280
PM
1185
1186 /*
1187 * We boost task t by manufacturing an rt_mutex that appears to
1188 * be held by task t. We leave a pointer to that rt_mutex where
1189 * task t can find it, and task t will release the mutex when it
1190 * exits its outermost RCU read-side critical section. Then
1191 * simply acquiring this artificial rt_mutex will boost task
1192 * t's priority. (Thanks to tglx for suggesting this approach!)
1193 *
1194 * Note that task t must acquire rnp->lock to remove itself from
1195 * the ->blkd_tasks list, which it will do from exit() if from
1196 * nowhere else. We therefore are guaranteed that task t will
1197 * stay around at least until we drop rnp->lock. Note that
1198 * rnp->lock also resolves races between our priority boosting
1199 * and task t's exiting its outermost RCU read-side critical
1200 * section.
1201 */
1202 t = container_of(tb, struct task_struct, rcu_node_entry);
1203 rt_mutex_init_proxy_locked(&mtx, t);
1204 t->rcu_boost_mutex = &mtx;
27f4d280
PM
1205 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1206 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1207 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1208
4f89b336
PM
1209 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1210 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1211}
1212
27f4d280
PM
1213/*
1214 * Priority-boosting kthread. One per leaf rcu_node and one for the
1215 * root rcu_node.
1216 */
1217static int rcu_boost_kthread(void *arg)
1218{
1219 struct rcu_node *rnp = (struct rcu_node *)arg;
1220 int spincnt = 0;
1221 int more2boost;
1222
f7f7bac9 1223 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1224 for (;;) {
d71df90e 1225 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1226 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1227 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1228 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1229 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1230 more2boost = rcu_boost(rnp);
1231 if (more2boost)
1232 spincnt++;
1233 else
1234 spincnt = 0;
1235 if (spincnt > 10) {
5d01bbd1 1236 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1237 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1238 schedule_timeout_interruptible(2);
f7f7bac9 1239 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1240 spincnt = 0;
1241 }
1242 }
1217ed1b 1243 /* NOTREACHED */
f7f7bac9 1244 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1245 return 0;
1246}
1247
1248/*
1249 * Check to see if it is time to start boosting RCU readers that are
1250 * blocking the current grace period, and, if so, tell the per-rcu_node
1251 * kthread to start boosting them. If there is an expedited grace
1252 * period in progress, it is always time to boost.
1253 *
b065a853
PM
1254 * The caller must hold rnp->lock, which this function releases.
1255 * The ->boost_kthread_task is immortal, so we don't need to worry
1256 * about it going away.
27f4d280 1257 */
1217ed1b 1258static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280
PM
1259{
1260 struct task_struct *t;
1261
0ea1f2eb
PM
1262 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1263 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1264 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1265 return;
0ea1f2eb 1266 }
27f4d280
PM
1267 if (rnp->exp_tasks != NULL ||
1268 (rnp->gp_tasks != NULL &&
1269 rnp->boost_tasks == NULL &&
1270 rnp->qsmask == 0 &&
1271 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1272 if (rnp->exp_tasks == NULL)
1273 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1274 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1275 t = rnp->boost_kthread_task;
5d01bbd1
TG
1276 if (t)
1277 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1278 } else {
0ea1f2eb 1279 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1280 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1281 }
27f4d280
PM
1282}
1283
a46e0899
PM
1284/*
1285 * Wake up the per-CPU kthread to invoke RCU callbacks.
1286 */
1287static void invoke_rcu_callbacks_kthread(void)
1288{
1289 unsigned long flags;
1290
1291 local_irq_save(flags);
1292 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1293 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1294 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1295 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1296 __this_cpu_read(rcu_cpu_kthread_status));
1297 }
a46e0899
PM
1298 local_irq_restore(flags);
1299}
1300
dff1672d
PM
1301/*
1302 * Is the current CPU running the RCU-callbacks kthread?
1303 * Caller must have preemption disabled.
1304 */
1305static bool rcu_is_callbacks_kthread(void)
1306{
c9d4b0af 1307 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1308}
1309
27f4d280
PM
1310#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1311
1312/*
1313 * Do priority-boost accounting for the start of a new grace period.
1314 */
1315static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1316{
1317 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1318}
1319
27f4d280
PM
1320/*
1321 * Create an RCU-boost kthread for the specified node if one does not
1322 * already exist. We only create this kthread for preemptible RCU.
1323 * Returns zero if all is well, a negated errno otherwise.
1324 */
49fb4c62 1325static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1326 struct rcu_node *rnp)
27f4d280 1327{
5d01bbd1 1328 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1329 unsigned long flags;
1330 struct sched_param sp;
1331 struct task_struct *t;
1332
1333 if (&rcu_preempt_state != rsp)
1334 return 0;
5d01bbd1
TG
1335
1336 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1337 return 0;
1338
a46e0899 1339 rsp->boost = 1;
27f4d280
PM
1340 if (rnp->boost_kthread_task != NULL)
1341 return 0;
1342 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1343 "rcub/%d", rnp_index);
27f4d280
PM
1344 if (IS_ERR(t))
1345 return PTR_ERR(t);
1346 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1347 smp_mb__after_unlock_lock();
27f4d280
PM
1348 rnp->boost_kthread_task = t;
1349 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1350 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1351 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1352 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1353 return 0;
1354}
1355
f8b7fc6b
PM
1356static void rcu_kthread_do_work(void)
1357{
c9d4b0af
CL
1358 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1359 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1360 rcu_preempt_do_callbacks();
1361}
1362
62ab7072 1363static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1364{
f8b7fc6b 1365 struct sched_param sp;
f8b7fc6b 1366
62ab7072
PM
1367 sp.sched_priority = RCU_KTHREAD_PRIO;
1368 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1369}
1370
62ab7072 1371static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1372{
62ab7072 1373 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1374}
1375
62ab7072 1376static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1377{
c9d4b0af 1378 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1379}
1380
1381/*
1382 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1383 * RCU softirq used in flavors and configurations of RCU that do not
1384 * support RCU priority boosting.
f8b7fc6b 1385 */
62ab7072 1386static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1387{
c9d4b0af
CL
1388 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1389 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1390 int spincnt;
f8b7fc6b 1391
62ab7072 1392 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1393 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1394 local_bh_disable();
f8b7fc6b 1395 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1396 this_cpu_inc(rcu_cpu_kthread_loops);
1397 local_irq_disable();
f8b7fc6b
PM
1398 work = *workp;
1399 *workp = 0;
62ab7072 1400 local_irq_enable();
f8b7fc6b
PM
1401 if (work)
1402 rcu_kthread_do_work();
1403 local_bh_enable();
62ab7072 1404 if (*workp == 0) {
f7f7bac9 1405 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1406 *statusp = RCU_KTHREAD_WAITING;
1407 return;
f8b7fc6b
PM
1408 }
1409 }
62ab7072 1410 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1411 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1412 schedule_timeout_interruptible(2);
f7f7bac9 1413 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1414 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1415}
1416
1417/*
1418 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1419 * served by the rcu_node in question. The CPU hotplug lock is still
1420 * held, so the value of rnp->qsmaskinit will be stable.
1421 *
1422 * We don't include outgoingcpu in the affinity set, use -1 if there is
1423 * no outgoing CPU. If there are no CPUs left in the affinity set,
1424 * this function allows the kthread to execute on any CPU.
1425 */
5d01bbd1 1426static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1427{
5d01bbd1
TG
1428 struct task_struct *t = rnp->boost_kthread_task;
1429 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1430 cpumask_var_t cm;
1431 int cpu;
f8b7fc6b 1432
5d01bbd1 1433 if (!t)
f8b7fc6b 1434 return;
5d01bbd1 1435 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1436 return;
f8b7fc6b
PM
1437 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1438 if ((mask & 0x1) && cpu != outgoingcpu)
1439 cpumask_set_cpu(cpu, cm);
1440 if (cpumask_weight(cm) == 0) {
1441 cpumask_setall(cm);
1442 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1443 cpumask_clear_cpu(cpu, cm);
1444 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1445 }
5d01bbd1 1446 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1447 free_cpumask_var(cm);
1448}
1449
62ab7072
PM
1450static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1451 .store = &rcu_cpu_kthread_task,
1452 .thread_should_run = rcu_cpu_kthread_should_run,
1453 .thread_fn = rcu_cpu_kthread,
1454 .thread_comm = "rcuc/%u",
1455 .setup = rcu_cpu_kthread_setup,
1456 .park = rcu_cpu_kthread_park,
1457};
f8b7fc6b
PM
1458
1459/*
1460 * Spawn all kthreads -- called as soon as the scheduler is running.
1461 */
1462static int __init rcu_spawn_kthreads(void)
1463{
f8b7fc6b 1464 struct rcu_node *rnp;
5d01bbd1 1465 int cpu;
f8b7fc6b 1466
b0d30417 1467 rcu_scheduler_fully_active = 1;
62ab7072 1468 for_each_possible_cpu(cpu)
f8b7fc6b 1469 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1470 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
e534165b
US
1471 rnp = rcu_get_root(rcu_state_p);
1472 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1473 if (NUM_RCU_NODES > 1) {
e534165b
US
1474 rcu_for_each_leaf_node(rcu_state_p, rnp)
1475 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1476 }
1477 return 0;
1478}
1479early_initcall(rcu_spawn_kthreads);
1480
49fb4c62 1481static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1482{
e534165b 1483 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1484 struct rcu_node *rnp = rdp->mynode;
1485
1486 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1487 if (rcu_scheduler_fully_active)
e534165b 1488 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1489}
1490
27f4d280
PM
1491#else /* #ifdef CONFIG_RCU_BOOST */
1492
1217ed1b 1493static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280 1494{
1217ed1b 1495 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1496}
1497
a46e0899 1498static void invoke_rcu_callbacks_kthread(void)
27f4d280 1499{
a46e0899 1500 WARN_ON_ONCE(1);
27f4d280
PM
1501}
1502
dff1672d
PM
1503static bool rcu_is_callbacks_kthread(void)
1504{
1505 return false;
1506}
1507
27f4d280
PM
1508static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1509{
1510}
1511
5d01bbd1 1512static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1513{
1514}
1515
b0d30417
PM
1516static int __init rcu_scheduler_really_started(void)
1517{
1518 rcu_scheduler_fully_active = 1;
1519 return 0;
1520}
1521early_initcall(rcu_scheduler_really_started);
1522
49fb4c62 1523static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1524{
1525}
1526
27f4d280
PM
1527#endif /* #else #ifdef CONFIG_RCU_BOOST */
1528
8bd93a2c
PM
1529#if !defined(CONFIG_RCU_FAST_NO_HZ)
1530
1531/*
1532 * Check to see if any future RCU-related work will need to be done
1533 * by the current CPU, even if none need be done immediately, returning
1534 * 1 if so. This function is part of the RCU implementation; it is -not-
1535 * an exported member of the RCU API.
1536 *
7cb92499
PM
1537 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1538 * any flavor of RCU.
8bd93a2c 1539 */
ffa83fb5 1540#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa9b1630 1541int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1542{
aa9b1630 1543 *delta_jiffies = ULONG_MAX;
c0f4dfd4 1544 return rcu_cpu_has_callbacks(cpu, NULL);
7cb92499 1545}
ffa83fb5 1546#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1547
1548/*
1549 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1550 * after it.
1551 */
1552static void rcu_cleanup_after_idle(int cpu)
1553{
1554}
1555
aea1b35e 1556/*
a858af28 1557 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1558 * is nothing.
1559 */
1560static void rcu_prepare_for_idle(int cpu)
1561{
1562}
1563
c57afe80
PM
1564/*
1565 * Don't bother keeping a running count of the number of RCU callbacks
1566 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1567 */
1568static void rcu_idle_count_callbacks_posted(void)
1569{
1570}
1571
8bd93a2c
PM
1572#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1573
f23f7fa1
PM
1574/*
1575 * This code is invoked when a CPU goes idle, at which point we want
1576 * to have the CPU do everything required for RCU so that it can enter
1577 * the energy-efficient dyntick-idle mode. This is handled by a
1578 * state machine implemented by rcu_prepare_for_idle() below.
1579 *
1580 * The following three proprocessor symbols control this state machine:
1581 *
f23f7fa1
PM
1582 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1583 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1584 * is sized to be roughly one RCU grace period. Those energy-efficiency
1585 * benchmarkers who might otherwise be tempted to set this to a large
1586 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1587 * system. And if you are -that- concerned about energy efficiency,
1588 * just power the system down and be done with it!
778d250a
PM
1589 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1590 * permitted to sleep in dyntick-idle mode with only lazy RCU
1591 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1592 *
1593 * The values below work well in practice. If future workloads require
1594 * adjustment, they can be converted into kernel config parameters, though
1595 * making the state machine smarter might be a better option.
1596 */
e84c48ae 1597#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1598#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1599
5e44ce35
PM
1600static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1601module_param(rcu_idle_gp_delay, int, 0644);
1602static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1603module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1604
d689fe22 1605extern int tick_nohz_active;
486e2593
PM
1606
1607/*
c229828c
PM
1608 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1609 * only if it has been awhile since the last time we did so. Afterwards,
1610 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1611 */
f1f399d1 1612static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1613{
c0f4dfd4
PM
1614 bool cbs_ready = false;
1615 struct rcu_data *rdp;
c229828c 1616 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1617 struct rcu_node *rnp;
1618 struct rcu_state *rsp;
486e2593 1619
c229828c
PM
1620 /* Exit early if we advanced recently. */
1621 if (jiffies == rdtp->last_advance_all)
1622 return 0;
1623 rdtp->last_advance_all = jiffies;
1624
c0f4dfd4
PM
1625 for_each_rcu_flavor(rsp) {
1626 rdp = this_cpu_ptr(rsp->rda);
1627 rnp = rdp->mynode;
486e2593 1628
c0f4dfd4
PM
1629 /*
1630 * Don't bother checking unless a grace period has
1631 * completed since we last checked and there are
1632 * callbacks not yet ready to invoke.
1633 */
1634 if (rdp->completed != rnp->completed &&
1635 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1636 note_gp_changes(rsp, rdp);
486e2593 1637
c0f4dfd4
PM
1638 if (cpu_has_callbacks_ready_to_invoke(rdp))
1639 cbs_ready = true;
1640 }
1641 return cbs_ready;
486e2593
PM
1642}
1643
aa9b1630 1644/*
c0f4dfd4
PM
1645 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1646 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1647 * caller to set the timeout based on whether or not there are non-lazy
1648 * callbacks.
aa9b1630 1649 *
c0f4dfd4 1650 * The caller must have disabled interrupts.
aa9b1630 1651 */
ffa83fb5 1652#ifndef CONFIG_RCU_NOCB_CPU_ALL
c0f4dfd4 1653int rcu_needs_cpu(int cpu, unsigned long *dj)
aa9b1630
PM
1654{
1655 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1656
c0f4dfd4
PM
1657 /* Snapshot to detect later posting of non-lazy callback. */
1658 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1659
aa9b1630 1660 /* If no callbacks, RCU doesn't need the CPU. */
c0f4dfd4
PM
1661 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1662 *dj = ULONG_MAX;
aa9b1630
PM
1663 return 0;
1664 }
c0f4dfd4
PM
1665
1666 /* Attempt to advance callbacks. */
1667 if (rcu_try_advance_all_cbs()) {
1668 /* Some ready to invoke, so initiate later invocation. */
1669 invoke_rcu_core();
aa9b1630
PM
1670 return 1;
1671 }
c0f4dfd4
PM
1672 rdtp->last_accelerate = jiffies;
1673
1674 /* Request timer delay depending on laziness, and round. */
6faf7283 1675 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1676 *dj = round_up(rcu_idle_gp_delay + jiffies,
1677 rcu_idle_gp_delay) - jiffies;
e84c48ae 1678 } else {
c0f4dfd4 1679 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1680 }
aa9b1630
PM
1681 return 0;
1682}
ffa83fb5 1683#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1684
21e52e15 1685/*
c0f4dfd4
PM
1686 * Prepare a CPU for idle from an RCU perspective. The first major task
1687 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1688 * The second major task is to check to see if a non-lazy callback has
1689 * arrived at a CPU that previously had only lazy callbacks. The third
1690 * major task is to accelerate (that is, assign grace-period numbers to)
1691 * any recently arrived callbacks.
aea1b35e
PM
1692 *
1693 * The caller must have disabled interrupts.
8bd93a2c 1694 */
aea1b35e 1695static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1696{
f1f399d1 1697#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1698 bool needwake;
c0f4dfd4 1699 struct rcu_data *rdp;
5955f7ee 1700 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4
PM
1701 struct rcu_node *rnp;
1702 struct rcu_state *rsp;
9d2ad243
PM
1703 int tne;
1704
1705 /* Handle nohz enablement switches conservatively. */
d689fe22 1706 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1707 if (tne != rdtp->tick_nohz_enabled_snap) {
c0f4dfd4 1708 if (rcu_cpu_has_callbacks(cpu, NULL))
9d2ad243
PM
1709 invoke_rcu_core(); /* force nohz to see update. */
1710 rdtp->tick_nohz_enabled_snap = tne;
1711 return;
1712 }
1713 if (!tne)
1714 return;
f511fc62 1715
c0f4dfd4 1716 /* If this is a no-CBs CPU, no callbacks, just return. */
534c97b0 1717 if (rcu_is_nocb_cpu(cpu))
9a0c6fef 1718 return;
9a0c6fef 1719
c57afe80 1720 /*
c0f4dfd4
PM
1721 * If a non-lazy callback arrived at a CPU having only lazy
1722 * callbacks, invoke RCU core for the side-effect of recalculating
1723 * idle duration on re-entry to idle.
c57afe80 1724 */
c0f4dfd4
PM
1725 if (rdtp->all_lazy &&
1726 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1727 rdtp->all_lazy = false;
1728 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1729 invoke_rcu_core();
c57afe80
PM
1730 return;
1731 }
c57afe80 1732
3084f2f8 1733 /*
c0f4dfd4
PM
1734 * If we have not yet accelerated this jiffy, accelerate all
1735 * callbacks on this CPU.
3084f2f8 1736 */
c0f4dfd4 1737 if (rdtp->last_accelerate == jiffies)
aea1b35e 1738 return;
c0f4dfd4
PM
1739 rdtp->last_accelerate = jiffies;
1740 for_each_rcu_flavor(rsp) {
1741 rdp = per_cpu_ptr(rsp->rda, cpu);
1742 if (!*rdp->nxttail[RCU_DONE_TAIL])
1743 continue;
1744 rnp = rdp->mynode;
1745 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1746 smp_mb__after_unlock_lock();
48a7639c 1747 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1748 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1749 if (needwake)
1750 rcu_gp_kthread_wake(rsp);
77e38ed3 1751 }
f1f399d1 1752#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1753}
3084f2f8 1754
c0f4dfd4
PM
1755/*
1756 * Clean up for exit from idle. Attempt to advance callbacks based on
1757 * any grace periods that elapsed while the CPU was idle, and if any
1758 * callbacks are now ready to invoke, initiate invocation.
1759 */
1760static void rcu_cleanup_after_idle(int cpu)
1761{
f1f399d1 1762#ifndef CONFIG_RCU_NOCB_CPU_ALL
534c97b0 1763 if (rcu_is_nocb_cpu(cpu))
aea1b35e 1764 return;
7a497c96
PM
1765 if (rcu_try_advance_all_cbs())
1766 invoke_rcu_core();
f1f399d1 1767#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1768}
1769
c57afe80 1770/*
98248a0e
PM
1771 * Keep a running count of the number of non-lazy callbacks posted
1772 * on this CPU. This running counter (which is never decremented) allows
1773 * rcu_prepare_for_idle() to detect when something out of the idle loop
1774 * posts a callback, even if an equal number of callbacks are invoked.
1775 * Of course, callbacks should only be posted from within a trace event
1776 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1777 */
1778static void rcu_idle_count_callbacks_posted(void)
1779{
5955f7ee 1780 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1781}
1782
b626c1b6
PM
1783/*
1784 * Data for flushing lazy RCU callbacks at OOM time.
1785 */
1786static atomic_t oom_callback_count;
1787static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1788
1789/*
1790 * RCU OOM callback -- decrement the outstanding count and deliver the
1791 * wake-up if we are the last one.
1792 */
1793static void rcu_oom_callback(struct rcu_head *rhp)
1794{
1795 if (atomic_dec_and_test(&oom_callback_count))
1796 wake_up(&oom_callback_wq);
1797}
1798
1799/*
1800 * Post an rcu_oom_notify callback on the current CPU if it has at
1801 * least one lazy callback. This will unnecessarily post callbacks
1802 * to CPUs that already have a non-lazy callback at the end of their
1803 * callback list, but this is an infrequent operation, so accept some
1804 * extra overhead to keep things simple.
1805 */
1806static void rcu_oom_notify_cpu(void *unused)
1807{
1808 struct rcu_state *rsp;
1809 struct rcu_data *rdp;
1810
1811 for_each_rcu_flavor(rsp) {
fa07a58f 1812 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1813 if (rdp->qlen_lazy != 0) {
1814 atomic_inc(&oom_callback_count);
1815 rsp->call(&rdp->oom_head, rcu_oom_callback);
1816 }
1817 }
1818}
1819
1820/*
1821 * If low on memory, ensure that each CPU has a non-lazy callback.
1822 * This will wake up CPUs that have only lazy callbacks, in turn
1823 * ensuring that they free up the corresponding memory in a timely manner.
1824 * Because an uncertain amount of memory will be freed in some uncertain
1825 * timeframe, we do not claim to have freed anything.
1826 */
1827static int rcu_oom_notify(struct notifier_block *self,
1828 unsigned long notused, void *nfreed)
1829{
1830 int cpu;
1831
1832 /* Wait for callbacks from earlier instance to complete. */
1833 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1834 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1835
1836 /*
1837 * Prevent premature wakeup: ensure that all increments happen
1838 * before there is a chance of the counter reaching zero.
1839 */
1840 atomic_set(&oom_callback_count, 1);
1841
1842 get_online_cpus();
1843 for_each_online_cpu(cpu) {
1844 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1845 cond_resched();
1846 }
1847 put_online_cpus();
1848
1849 /* Unconditionally decrement: no need to wake ourselves up. */
1850 atomic_dec(&oom_callback_count);
1851
1852 return NOTIFY_OK;
1853}
1854
1855static struct notifier_block rcu_oom_nb = {
1856 .notifier_call = rcu_oom_notify
1857};
1858
1859static int __init rcu_register_oom_notifier(void)
1860{
1861 register_oom_notifier(&rcu_oom_nb);
1862 return 0;
1863}
1864early_initcall(rcu_register_oom_notifier);
1865
8bd93a2c 1866#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1867
1868#ifdef CONFIG_RCU_CPU_STALL_INFO
1869
1870#ifdef CONFIG_RCU_FAST_NO_HZ
1871
1872static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1873{
5955f7ee 1874 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1875 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1876
c0f4dfd4
PM
1877 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1878 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1879 ulong2long(nlpd),
1880 rdtp->all_lazy ? 'L' : '.',
1881 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1882}
1883
1884#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1885
1886static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1887{
1c17e4d4 1888 *cp = '\0';
a858af28
PM
1889}
1890
1891#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1892
1893/* Initiate the stall-info list. */
1894static void print_cpu_stall_info_begin(void)
1895{
efc151c3 1896 pr_cont("\n");
a858af28
PM
1897}
1898
1899/*
1900 * Print out diagnostic information for the specified stalled CPU.
1901 *
1902 * If the specified CPU is aware of the current RCU grace period
1903 * (flavor specified by rsp), then print the number of scheduling
1904 * clock interrupts the CPU has taken during the time that it has
1905 * been aware. Otherwise, print the number of RCU grace periods
1906 * that this CPU is ignorant of, for example, "1" if the CPU was
1907 * aware of the previous grace period.
1908 *
1909 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1910 */
1911static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1912{
1913 char fast_no_hz[72];
1914 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1915 struct rcu_dynticks *rdtp = rdp->dynticks;
1916 char *ticks_title;
1917 unsigned long ticks_value;
1918
1919 if (rsp->gpnum == rdp->gpnum) {
1920 ticks_title = "ticks this GP";
1921 ticks_value = rdp->ticks_this_gp;
1922 } else {
1923 ticks_title = "GPs behind";
1924 ticks_value = rsp->gpnum - rdp->gpnum;
1925 }
1926 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
efc151c3 1927 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
a858af28
PM
1928 cpu, ticks_value, ticks_title,
1929 atomic_read(&rdtp->dynticks) & 0xfff,
1930 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1931 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
a858af28
PM
1932 fast_no_hz);
1933}
1934
1935/* Terminate the stall-info list. */
1936static void print_cpu_stall_info_end(void)
1937{
efc151c3 1938 pr_err("\t");
a858af28
PM
1939}
1940
1941/* Zero ->ticks_this_gp for all flavors of RCU. */
1942static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1943{
1944 rdp->ticks_this_gp = 0;
6231069b 1945 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1946}
1947
1948/* Increment ->ticks_this_gp for all flavors of RCU. */
1949static void increment_cpu_stall_ticks(void)
1950{
115f7a7c
PM
1951 struct rcu_state *rsp;
1952
1953 for_each_rcu_flavor(rsp)
fa07a58f 1954 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1955}
1956
1957#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1958
1959static void print_cpu_stall_info_begin(void)
1960{
efc151c3 1961 pr_cont(" {");
a858af28
PM
1962}
1963
1964static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1965{
efc151c3 1966 pr_cont(" %d", cpu);
a858af28
PM
1967}
1968
1969static void print_cpu_stall_info_end(void)
1970{
efc151c3 1971 pr_cont("} ");
a858af28
PM
1972}
1973
1974static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1975{
1976}
1977
1978static void increment_cpu_stall_ticks(void)
1979{
1980}
1981
1982#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1983
1984#ifdef CONFIG_RCU_NOCB_CPU
1985
1986/*
1987 * Offload callback processing from the boot-time-specified set of CPUs
1988 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1989 * kthread created that pulls the callbacks from the corresponding CPU,
1990 * waits for a grace period to elapse, and invokes the callbacks.
1991 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1992 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1993 * has been specified, in which case each kthread actively polls its
1994 * CPU. (Which isn't so great for energy efficiency, but which does
1995 * reduce RCU's overhead on that CPU.)
1996 *
1997 * This is intended to be used in conjunction with Frederic Weisbecker's
1998 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1999 * running CPU-bound user-mode computations.
2000 *
2001 * Offloading of callback processing could also in theory be used as
2002 * an energy-efficiency measure because CPUs with no RCU callbacks
2003 * queued are more aggressive about entering dyntick-idle mode.
2004 */
2005
2006
2007/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2008static int __init rcu_nocb_setup(char *str)
2009{
2010 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2011 have_rcu_nocb_mask = true;
2012 cpulist_parse(str, rcu_nocb_mask);
2013 return 1;
2014}
2015__setup("rcu_nocbs=", rcu_nocb_setup);
2016
1b0048a4
PG
2017static int __init parse_rcu_nocb_poll(char *arg)
2018{
2019 rcu_nocb_poll = 1;
2020 return 0;
2021}
2022early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2023
dae6e64d 2024/*
0446be48
PM
2025 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2026 * grace period.
dae6e64d 2027 */
0446be48 2028static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 2029{
0446be48 2030 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
2031}
2032
2033/*
8b425aa8 2034 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
2035 * based on the sum of those of all rcu_node structures. This does
2036 * double-count the root rcu_node structure's requests, but this
2037 * is necessary to handle the possibility of a rcu_nocb_kthread()
2038 * having awakened during the time that the rcu_node structures
2039 * were being updated for the end of the previous grace period.
34ed6246 2040 */
dae6e64d
PM
2041static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2042{
8b425aa8 2043 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
2044}
2045
2046static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 2047{
dae6e64d
PM
2048 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2049 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
2050}
2051
2f33b512 2052#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 2053/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 2054bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
2055{
2056 if (have_rcu_nocb_mask)
2057 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2058 return false;
2059}
2f33b512 2060#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 2061
fbce7497
PM
2062/*
2063 * Kick the leader kthread for this NOCB group.
2064 */
2065static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2066{
2067 struct rcu_data *rdp_leader = rdp->nocb_leader;
2068
2069 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2070 return;
2071 if (!ACCESS_ONCE(rdp_leader->nocb_leader_wake) || force) {
2072 /* Prior xchg orders against prior callback enqueue. */
2073 ACCESS_ONCE(rdp_leader->nocb_leader_wake) = true;
2074 wake_up(&rdp_leader->nocb_wq);
2075 }
2076}
2077
3fbfbf7a
PM
2078/*
2079 * Enqueue the specified string of rcu_head structures onto the specified
2080 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2081 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2082 * counts are supplied by rhcount and rhcount_lazy.
2083 *
2084 * If warranted, also wake up the kthread servicing this CPUs queues.
2085 */
2086static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2087 struct rcu_head *rhp,
2088 struct rcu_head **rhtp,
96d3fd0d
PM
2089 int rhcount, int rhcount_lazy,
2090 unsigned long flags)
3fbfbf7a
PM
2091{
2092 int len;
2093 struct rcu_head **old_rhpp;
2094 struct task_struct *t;
2095
2096 /* Enqueue the callback on the nocb list and update counts. */
2097 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2098 ACCESS_ONCE(*old_rhpp) = rhp;
2099 atomic_long_add(rhcount, &rdp->nocb_q_count);
2100 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2101
2102 /* If we are not being polled and there is a kthread, awaken it ... */
2103 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 2104 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2105 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2106 TPS("WakeNotPoll"));
3fbfbf7a 2107 return;
9261dd0d 2108 }
3fbfbf7a
PM
2109 len = atomic_long_read(&rdp->nocb_q_count);
2110 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2111 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2112 /* ... if queue was empty ... */
2113 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2114 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2115 TPS("WakeEmpty"));
2116 } else {
2117 rdp->nocb_defer_wakeup = true;
2118 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2119 TPS("WakeEmptyIsDeferred"));
2120 }
3fbfbf7a
PM
2121 rdp->qlen_last_fqs_check = 0;
2122 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497
PM
2123 /* ... or if many callbacks queued. */
2124 wake_nocb_leader(rdp, true);
3fbfbf7a 2125 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2126 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2127 } else {
2128 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2129 }
2130 return;
2131}
2132
2133/*
2134 * This is a helper for __call_rcu(), which invokes this when the normal
2135 * callback queue is inoperable. If this is not a no-CBs CPU, this
2136 * function returns failure back to __call_rcu(), which can complain
2137 * appropriately.
2138 *
2139 * Otherwise, this function queues the callback where the corresponding
2140 * "rcuo" kthread can find it.
2141 */
2142static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2143 bool lazy, unsigned long flags)
3fbfbf7a
PM
2144{
2145
d1e43fa5 2146 if (!rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a 2147 return 0;
96d3fd0d 2148 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2149 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2150 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2151 (unsigned long)rhp->func,
756cbf6b
PM
2152 -atomic_long_read(&rdp->nocb_q_count_lazy),
2153 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2154 else
2155 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2156 -atomic_long_read(&rdp->nocb_q_count_lazy),
2157 -atomic_long_read(&rdp->nocb_q_count));
3fbfbf7a
PM
2158 return 1;
2159}
2160
2161/*
2162 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2163 * not a no-CBs CPU.
2164 */
2165static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2166 struct rcu_data *rdp,
2167 unsigned long flags)
3fbfbf7a
PM
2168{
2169 long ql = rsp->qlen;
2170 long qll = rsp->qlen_lazy;
2171
2172 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2173 if (!rcu_is_nocb_cpu(smp_processor_id()))
3fbfbf7a
PM
2174 return 0;
2175 rsp->qlen = 0;
2176 rsp->qlen_lazy = 0;
2177
2178 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2179 if (rsp->orphan_donelist != NULL) {
2180 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2181 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2182 ql = qll = 0;
2183 rsp->orphan_donelist = NULL;
2184 rsp->orphan_donetail = &rsp->orphan_donelist;
2185 }
2186 if (rsp->orphan_nxtlist != NULL) {
2187 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2188 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2189 ql = qll = 0;
2190 rsp->orphan_nxtlist = NULL;
2191 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2192 }
2193 return 1;
2194}
2195
2196/*
34ed6246
PM
2197 * If necessary, kick off a new grace period, and either way wait
2198 * for a subsequent grace period to complete.
3fbfbf7a 2199 */
34ed6246 2200static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2201{
34ed6246 2202 unsigned long c;
dae6e64d 2203 bool d;
34ed6246 2204 unsigned long flags;
48a7639c 2205 bool needwake;
34ed6246
PM
2206 struct rcu_node *rnp = rdp->mynode;
2207
2208 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2209 smp_mb__after_unlock_lock();
48a7639c 2210 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2211 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2212 if (needwake)
2213 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2214
2215 /*
34ed6246
PM
2216 * Wait for the grace period. Do so interruptibly to avoid messing
2217 * up the load average.
3fbfbf7a 2218 */
f7f7bac9 2219 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2220 for (;;) {
dae6e64d
PM
2221 wait_event_interruptible(
2222 rnp->nocb_gp_wq[c & 0x1],
2223 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2224 if (likely(d))
34ed6246 2225 break;
dae6e64d 2226 flush_signals(current);
f7f7bac9 2227 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2228 }
f7f7bac9 2229 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2230 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2231}
2232
fbce7497
PM
2233/*
2234 * Leaders come here to wait for additional callbacks to show up.
2235 * This function does not return until callbacks appear.
2236 */
2237static void nocb_leader_wait(struct rcu_data *my_rdp)
2238{
2239 bool firsttime = true;
2240 bool gotcbs;
2241 struct rcu_data *rdp;
2242 struct rcu_head **tail;
2243
2244wait_again:
2245
2246 /* Wait for callbacks to appear. */
2247 if (!rcu_nocb_poll) {
2248 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2249 wait_event_interruptible(my_rdp->nocb_wq,
2250 ACCESS_ONCE(my_rdp->nocb_leader_wake));
2251 /* Memory barrier handled by smp_mb() calls below and repoll. */
2252 } else if (firsttime) {
2253 firsttime = false; /* Don't drown trace log with "Poll"! */
2254 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2255 }
2256
2257 /*
2258 * Each pass through the following loop checks a follower for CBs.
2259 * We are our own first follower. Any CBs found are moved to
2260 * nocb_gp_head, where they await a grace period.
2261 */
2262 gotcbs = false;
2263 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2264 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2265 if (!rdp->nocb_gp_head)
2266 continue; /* No CBs here, try next follower. */
2267
2268 /* Move callbacks to wait-for-GP list, which is empty. */
2269 ACCESS_ONCE(rdp->nocb_head) = NULL;
2270 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2271 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2272 rdp->nocb_gp_count_lazy =
2273 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2274 gotcbs = true;
2275 }
2276
2277 /*
2278 * If there were no callbacks, sleep a bit, rescan after a
2279 * memory barrier, and go retry.
2280 */
2281 if (unlikely(!gotcbs)) {
2282 if (!rcu_nocb_poll)
2283 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2284 "WokeEmpty");
2285 flush_signals(current);
2286 schedule_timeout_interruptible(1);
2287
2288 /* Rescan in case we were a victim of memory ordering. */
2289 my_rdp->nocb_leader_wake = false;
2290 smp_mb(); /* Ensure _wake false before scan. */
2291 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2292 if (ACCESS_ONCE(rdp->nocb_head)) {
2293 /* Found CB, so short-circuit next wait. */
2294 my_rdp->nocb_leader_wake = true;
2295 break;
2296 }
2297 goto wait_again;
2298 }
2299
2300 /* Wait for one grace period. */
2301 rcu_nocb_wait_gp(my_rdp);
2302
2303 /*
2304 * We left ->nocb_leader_wake set to reduce cache thrashing.
2305 * We clear it now, but recheck for new callbacks while
2306 * traversing our follower list.
2307 */
2308 my_rdp->nocb_leader_wake = false;
2309 smp_mb(); /* Ensure _wake false before scan of ->nocb_head. */
2310
2311 /* Each pass through the following loop wakes a follower, if needed. */
2312 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2313 if (ACCESS_ONCE(rdp->nocb_head))
2314 my_rdp->nocb_leader_wake = true; /* No need to wait. */
2315 if (!rdp->nocb_gp_head)
2316 continue; /* No CBs, so no need to wake follower. */
2317
2318 /* Append callbacks to follower's "done" list. */
2319 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2320 *tail = rdp->nocb_gp_head;
2321 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2322 atomic_long_add(rdp->nocb_gp_count_lazy,
2323 &rdp->nocb_follower_count_lazy);
2324 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2325 /*
2326 * List was empty, wake up the follower.
2327 * Memory barriers supplied by atomic_long_add().
2328 */
2329 wake_up(&rdp->nocb_wq);
2330 }
2331 }
2332
2333 /* If we (the leader) don't have CBs, go wait some more. */
2334 if (!my_rdp->nocb_follower_head)
2335 goto wait_again;
2336}
2337
2338/*
2339 * Followers come here to wait for additional callbacks to show up.
2340 * This function does not return until callbacks appear.
2341 */
2342static void nocb_follower_wait(struct rcu_data *rdp)
2343{
2344 bool firsttime = true;
2345
2346 for (;;) {
2347 if (!rcu_nocb_poll) {
2348 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2349 "FollowerSleep");
2350 wait_event_interruptible(rdp->nocb_wq,
2351 ACCESS_ONCE(rdp->nocb_follower_head));
2352 } else if (firsttime) {
2353 /* Don't drown trace log with "Poll"! */
2354 firsttime = false;
2355 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2356 }
2357 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2358 /* ^^^ Ensure CB invocation follows _head test. */
2359 return;
2360 }
2361 if (!rcu_nocb_poll)
2362 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2363 "WokeEmpty");
2364 flush_signals(current);
2365 schedule_timeout_interruptible(1);
2366 }
2367}
2368
3fbfbf7a
PM
2369/*
2370 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2371 * callbacks queued by the corresponding no-CBs CPU, however, there is
2372 * an optional leader-follower relationship so that the grace-period
2373 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2374 */
2375static int rcu_nocb_kthread(void *arg)
2376{
2377 int c, cl;
2378 struct rcu_head *list;
2379 struct rcu_head *next;
2380 struct rcu_head **tail;
2381 struct rcu_data *rdp = arg;
2382
2383 /* Each pass through this loop invokes one batch of callbacks */
2384 for (;;) {
fbce7497
PM
2385 /* Wait for callbacks. */
2386 if (rdp->nocb_leader == rdp)
2387 nocb_leader_wait(rdp);
2388 else
2389 nocb_follower_wait(rdp);
2390
2391 /* Pull the ready-to-invoke callbacks onto local list. */
2392 list = ACCESS_ONCE(rdp->nocb_follower_head);
2393 BUG_ON(!list);
2394 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2395 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2396 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2397 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2398 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2399 rdp->nocb_p_count += c;
2400 rdp->nocb_p_count_lazy += cl;
3fbfbf7a
PM
2401
2402 /* Each pass through the following loop invokes a callback. */
2403 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2404 c = cl = 0;
2405 while (list) {
2406 next = list->next;
2407 /* Wait for enqueuing to complete, if needed. */
2408 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2409 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2410 TPS("WaitQueue"));
3fbfbf7a 2411 schedule_timeout_interruptible(1);
69a79bb1
PM
2412 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2413 TPS("WokeQueue"));
3fbfbf7a
PM
2414 next = list->next;
2415 }
2416 debug_rcu_head_unqueue(list);
2417 local_bh_disable();
2418 if (__rcu_reclaim(rdp->rsp->name, list))
2419 cl++;
2420 c++;
2421 local_bh_enable();
2422 list = next;
2423 }
2424 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2425 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2426 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
c635a4e1 2427 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2428 }
2429 return 0;
2430}
2431
96d3fd0d
PM
2432/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2433static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2434{
2435 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2436}
2437
2438/* Do a deferred wakeup of rcu_nocb_kthread(). */
2439static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2440{
2441 if (!rcu_nocb_need_deferred_wakeup(rdp))
2442 return;
2443 ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
fbce7497 2444 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2445 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2446}
2447
3fbfbf7a
PM
2448/* Initialize per-rcu_data variables for no-CBs CPUs. */
2449static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2450{
2451 rdp->nocb_tail = &rdp->nocb_head;
2452 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2453 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2454}
2455
fbce7497
PM
2456/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2457static int rcu_nocb_leader_stride = -1;
2458module_param(rcu_nocb_leader_stride, int, 0444);
2459
2460/*
2461 * Create a kthread for each RCU flavor for each no-CBs CPU.
2462 * Also initialize leader-follower relationships.
2463 */
3fbfbf7a
PM
2464static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2465{
2466 int cpu;
fbce7497
PM
2467 int ls = rcu_nocb_leader_stride;
2468 int nl = 0; /* Next leader. */
3fbfbf7a 2469 struct rcu_data *rdp;
fbce7497
PM
2470 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2471 struct rcu_data *rdp_prev = NULL;
3fbfbf7a
PM
2472 struct task_struct *t;
2473
2474 if (rcu_nocb_mask == NULL)
2475 return;
fbce7497
PM
2476 if (ls == -1) {
2477 ls = int_sqrt(nr_cpu_ids);
2478 rcu_nocb_leader_stride = ls;
2479 }
2480
2481 /*
2482 * Each pass through this loop sets up one rcu_data structure and
2483 * spawns one rcu_nocb_kthread().
2484 */
3fbfbf7a
PM
2485 for_each_cpu(cpu, rcu_nocb_mask) {
2486 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2487 if (rdp->cpu >= nl) {
2488 /* New leader, set up for followers & next leader. */
2489 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2490 rdp->nocb_leader = rdp;
2491 rdp_leader = rdp;
2492 } else {
2493 /* Another follower, link to previous leader. */
2494 rdp->nocb_leader = rdp_leader;
2495 rdp_prev->nocb_next_follower = rdp;
2496 }
2497 rdp_prev = rdp;
2498
2499 /* Spawn the kthread for this CPU. */
a4889858
PM
2500 t = kthread_run(rcu_nocb_kthread, rdp,
2501 "rcuo%c/%d", rsp->abbr, cpu);
3fbfbf7a
PM
2502 BUG_ON(IS_ERR(t));
2503 ACCESS_ONCE(rdp->nocb_kthread) = t;
2504 }
2505}
2506
2507/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2508static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a
PM
2509{
2510 if (rcu_nocb_mask == NULL ||
2511 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
34ed6246 2512 return false;
3fbfbf7a 2513 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2514 return true;
3fbfbf7a
PM
2515}
2516
34ed6246
PM
2517#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2518
0446be48 2519static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2520{
3fbfbf7a
PM
2521}
2522
dae6e64d
PM
2523static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2524{
2525}
2526
2527static void rcu_init_one_nocb(struct rcu_node *rnp)
2528{
2529}
3fbfbf7a 2530
3fbfbf7a 2531static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2532 bool lazy, unsigned long flags)
3fbfbf7a
PM
2533{
2534 return 0;
2535}
2536
2537static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2538 struct rcu_data *rdp,
2539 unsigned long flags)
3fbfbf7a
PM
2540{
2541 return 0;
2542}
2543
3fbfbf7a
PM
2544static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2545{
2546}
2547
96d3fd0d
PM
2548static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2549{
2550 return false;
2551}
2552
2553static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2554{
2555}
2556
3fbfbf7a
PM
2557static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2558{
2559}
2560
34ed6246 2561static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2562{
34ed6246 2563 return false;
3fbfbf7a
PM
2564}
2565
2566#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2567
2568/*
2569 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2570 * arbitrarily long period of time with the scheduling-clock tick turned
2571 * off. RCU will be paying attention to this CPU because it is in the
2572 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2573 * machine because the scheduling-clock tick has been disabled. Therefore,
2574 * if an adaptive-ticks CPU is failing to respond to the current grace
2575 * period and has not be idle from an RCU perspective, kick it.
2576 */
4a81e832 2577static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2578{
2579#ifdef CONFIG_NO_HZ_FULL
2580 if (tick_nohz_full_cpu(cpu))
2581 smp_send_reschedule(cpu);
2582#endif /* #ifdef CONFIG_NO_HZ_FULL */
2583}
2333210b
PM
2584
2585
2586#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2587
d4bd54fb
PM
2588/*
2589 * Define RCU flavor that holds sysidle state. This needs to be the
2590 * most active flavor of RCU.
2591 */
2592#ifdef CONFIG_PREEMPT_RCU
0edd1b17 2593static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
d4bd54fb 2594#else /* #ifdef CONFIG_PREEMPT_RCU */
0edd1b17 2595static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
d4bd54fb
PM
2596#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2597
0edd1b17 2598static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2599#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2600#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2601#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2602#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2603#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2604
eb348b89
PM
2605/*
2606 * Invoked to note exit from irq or task transition to idle. Note that
2607 * usermode execution does -not- count as idle here! After all, we want
2608 * to detect full-system idle states, not RCU quiescent states and grace
2609 * periods. The caller must have disabled interrupts.
2610 */
2611static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2612{
2613 unsigned long j;
2614
2615 /* Adjust nesting, check for fully idle. */
2616 if (irq) {
2617 rdtp->dynticks_idle_nesting--;
2618 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2619 if (rdtp->dynticks_idle_nesting != 0)
2620 return; /* Still not fully idle. */
2621 } else {
2622 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2623 DYNTICK_TASK_NEST_VALUE) {
2624 rdtp->dynticks_idle_nesting = 0;
2625 } else {
2626 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2627 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2628 return; /* Still not fully idle. */
2629 }
2630 }
2631
2632 /* Record start of fully idle period. */
2633 j = jiffies;
2634 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2635 smp_mb__before_atomic();
eb348b89 2636 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2637 smp_mb__after_atomic();
eb348b89
PM
2638 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2639}
2640
0edd1b17
PM
2641/*
2642 * Unconditionally force exit from full system-idle state. This is
2643 * invoked when a normal CPU exits idle, but must be called separately
2644 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2645 * is that the timekeeping CPU is permitted to take scheduling-clock
2646 * interrupts while the system is in system-idle state, and of course
2647 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2648 * interrupt from any other type of interrupt.
2649 */
2650void rcu_sysidle_force_exit(void)
2651{
2652 int oldstate = ACCESS_ONCE(full_sysidle_state);
2653 int newoldstate;
2654
2655 /*
2656 * Each pass through the following loop attempts to exit full
2657 * system-idle state. If contention proves to be a problem,
2658 * a trylock-based contention tree could be used here.
2659 */
2660 while (oldstate > RCU_SYSIDLE_SHORT) {
2661 newoldstate = cmpxchg(&full_sysidle_state,
2662 oldstate, RCU_SYSIDLE_NOT);
2663 if (oldstate == newoldstate &&
2664 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2665 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2666 return; /* We cleared it, done! */
2667 }
2668 oldstate = newoldstate;
2669 }
2670 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2671}
2672
eb348b89
PM
2673/*
2674 * Invoked to note entry to irq or task transition from idle. Note that
2675 * usermode execution does -not- count as idle here! The caller must
2676 * have disabled interrupts.
2677 */
2678static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2679{
2680 /* Adjust nesting, check for already non-idle. */
2681 if (irq) {
2682 rdtp->dynticks_idle_nesting++;
2683 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2684 if (rdtp->dynticks_idle_nesting != 1)
2685 return; /* Already non-idle. */
2686 } else {
2687 /*
2688 * Allow for irq misnesting. Yes, it really is possible
2689 * to enter an irq handler then never leave it, and maybe
2690 * also vice versa. Handle both possibilities.
2691 */
2692 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2693 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2694 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2695 return; /* Already non-idle. */
2696 } else {
2697 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2698 }
2699 }
2700
2701 /* Record end of idle period. */
4e857c58 2702 smp_mb__before_atomic();
eb348b89 2703 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2704 smp_mb__after_atomic();
eb348b89 2705 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2706
2707 /*
2708 * If we are the timekeeping CPU, we are permitted to be non-idle
2709 * during a system-idle state. This must be the case, because
2710 * the timekeeping CPU has to take scheduling-clock interrupts
2711 * during the time that the system is transitioning to full
2712 * system-idle state. This means that the timekeeping CPU must
2713 * invoke rcu_sysidle_force_exit() directly if it does anything
2714 * more than take a scheduling-clock interrupt.
2715 */
2716 if (smp_processor_id() == tick_do_timer_cpu)
2717 return;
2718
2719 /* Update system-idle state: We are clearly no longer fully idle! */
2720 rcu_sysidle_force_exit();
2721}
2722
2723/*
2724 * Check to see if the current CPU is idle. Note that usermode execution
2725 * does not count as idle. The caller must have disabled interrupts.
2726 */
2727static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2728 unsigned long *maxj)
2729{
2730 int cur;
2731 unsigned long j;
2732 struct rcu_dynticks *rdtp = rdp->dynticks;
2733
2734 /*
2735 * If some other CPU has already reported non-idle, if this is
2736 * not the flavor of RCU that tracks sysidle state, or if this
2737 * is an offline or the timekeeping CPU, nothing to do.
2738 */
2739 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2740 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2741 return;
eb75767b
PM
2742 if (rcu_gp_in_progress(rdp->rsp))
2743 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2744
2745 /* Pick up current idle and NMI-nesting counter and check. */
2746 cur = atomic_read(&rdtp->dynticks_idle);
2747 if (cur & 0x1) {
2748 *isidle = false; /* We are not idle! */
2749 return;
2750 }
2751 smp_mb(); /* Read counters before timestamps. */
2752
2753 /* Pick up timestamps. */
2754 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2755 /* If this CPU entered idle more recently, update maxj timestamp. */
2756 if (ULONG_CMP_LT(*maxj, j))
2757 *maxj = j;
2758}
2759
2760/*
2761 * Is this the flavor of RCU that is handling full-system idle?
2762 */
2763static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2764{
2765 return rsp == rcu_sysidle_state;
2766}
2767
2768/*
2769 * Return a delay in jiffies based on the number of CPUs, rcu_node
2770 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2771 * systems more time to transition to full-idle state in order to
2772 * avoid the cache thrashing that otherwise occur on the state variable.
2773 * Really small systems (less than a couple of tens of CPUs) should
2774 * instead use a single global atomically incremented counter, and later
2775 * versions of this will automatically reconfigure themselves accordingly.
2776 */
2777static unsigned long rcu_sysidle_delay(void)
2778{
2779 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2780 return 0;
2781 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2782}
2783
2784/*
2785 * Advance the full-system-idle state. This is invoked when all of
2786 * the non-timekeeping CPUs are idle.
2787 */
2788static void rcu_sysidle(unsigned long j)
2789{
2790 /* Check the current state. */
2791 switch (ACCESS_ONCE(full_sysidle_state)) {
2792 case RCU_SYSIDLE_NOT:
2793
2794 /* First time all are idle, so note a short idle period. */
2795 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2796 break;
2797
2798 case RCU_SYSIDLE_SHORT:
2799
2800 /*
2801 * Idle for a bit, time to advance to next state?
2802 * cmpxchg failure means race with non-idle, let them win.
2803 */
2804 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2805 (void)cmpxchg(&full_sysidle_state,
2806 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2807 break;
2808
2809 case RCU_SYSIDLE_LONG:
2810
2811 /*
2812 * Do an additional check pass before advancing to full.
2813 * cmpxchg failure means race with non-idle, let them win.
2814 */
2815 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2816 (void)cmpxchg(&full_sysidle_state,
2817 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2818 break;
2819
2820 default:
2821 break;
2822 }
2823}
2824
2825/*
2826 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2827 * back to the beginning.
2828 */
2829static void rcu_sysidle_cancel(void)
2830{
2831 smp_mb();
becb41bf
PM
2832 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2833 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
2834}
2835
2836/*
2837 * Update the sysidle state based on the results of a force-quiescent-state
2838 * scan of the CPUs' dyntick-idle state.
2839 */
2840static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2841 unsigned long maxj, bool gpkt)
2842{
2843 if (rsp != rcu_sysidle_state)
2844 return; /* Wrong flavor, ignore. */
2845 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2846 return; /* Running state machine from timekeeping CPU. */
2847 if (isidle)
2848 rcu_sysidle(maxj); /* More idle! */
2849 else
2850 rcu_sysidle_cancel(); /* Idle is over. */
2851}
2852
2853/*
2854 * Wrapper for rcu_sysidle_report() when called from the grace-period
2855 * kthread's context.
2856 */
2857static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2858 unsigned long maxj)
2859{
2860 rcu_sysidle_report(rsp, isidle, maxj, true);
2861}
2862
2863/* Callback and function for forcing an RCU grace period. */
2864struct rcu_sysidle_head {
2865 struct rcu_head rh;
2866 int inuse;
2867};
2868
2869static void rcu_sysidle_cb(struct rcu_head *rhp)
2870{
2871 struct rcu_sysidle_head *rshp;
2872
2873 /*
2874 * The following memory barrier is needed to replace the
2875 * memory barriers that would normally be in the memory
2876 * allocator.
2877 */
2878 smp_mb(); /* grace period precedes setting inuse. */
2879
2880 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2881 ACCESS_ONCE(rshp->inuse) = 0;
2882}
2883
2884/*
2885 * Check to see if the system is fully idle, other than the timekeeping CPU.
2886 * The caller must have disabled interrupts.
2887 */
2888bool rcu_sys_is_idle(void)
2889{
2890 static struct rcu_sysidle_head rsh;
2891 int rss = ACCESS_ONCE(full_sysidle_state);
2892
2893 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2894 return false;
2895
2896 /* Handle small-system case by doing a full scan of CPUs. */
2897 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2898 int oldrss = rss - 1;
2899
2900 /*
2901 * One pass to advance to each state up to _FULL.
2902 * Give up if any pass fails to advance the state.
2903 */
2904 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2905 int cpu;
2906 bool isidle = true;
2907 unsigned long maxj = jiffies - ULONG_MAX / 4;
2908 struct rcu_data *rdp;
2909
2910 /* Scan all the CPUs looking for nonidle CPUs. */
2911 for_each_possible_cpu(cpu) {
2912 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2913 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2914 if (!isidle)
2915 break;
2916 }
2917 rcu_sysidle_report(rcu_sysidle_state,
2918 isidle, maxj, false);
2919 oldrss = rss;
2920 rss = ACCESS_ONCE(full_sysidle_state);
2921 }
2922 }
2923
2924 /* If this is the first observation of an idle period, record it. */
2925 if (rss == RCU_SYSIDLE_FULL) {
2926 rss = cmpxchg(&full_sysidle_state,
2927 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2928 return rss == RCU_SYSIDLE_FULL;
2929 }
2930
2931 smp_mb(); /* ensure rss load happens before later caller actions. */
2932
2933 /* If already fully idle, tell the caller (in case of races). */
2934 if (rss == RCU_SYSIDLE_FULL_NOTED)
2935 return true;
2936
2937 /*
2938 * If we aren't there yet, and a grace period is not in flight,
2939 * initiate a grace period. Either way, tell the caller that
2940 * we are not there yet. We use an xchg() rather than an assignment
2941 * to make up for the memory barriers that would otherwise be
2942 * provided by the memory allocator.
2943 */
2944 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2945 !rcu_gp_in_progress(rcu_sysidle_state) &&
2946 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2947 call_rcu(&rsh.rh, rcu_sysidle_cb);
2948 return false;
eb348b89
PM
2949}
2950
2333210b
PM
2951/*
2952 * Initialize dynticks sysidle state for CPUs coming online.
2953 */
2954static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2955{
2956 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2957}
2958
2959#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2960
eb348b89
PM
2961static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2962{
2963}
2964
2965static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2966{
2967}
2968
0edd1b17
PM
2969static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2970 unsigned long *maxj)
2971{
2972}
2973
2974static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2975{
2976 return false;
2977}
2978
2979static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2980 unsigned long maxj)
2981{
2982}
2983
2333210b
PM
2984static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2985{
2986}
2987
2988#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
2989
2990/*
2991 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2992 * grace-period kthread will do force_quiescent_state() processing?
2993 * The idea is to avoid waking up RCU core processing on such a
2994 * CPU unless the grace period has extended for too long.
2995 *
2996 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2997 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
2998 */
2999static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3000{
3001#ifdef CONFIG_NO_HZ_FULL
3002 if (tick_nohz_full_cpu(smp_processor_id()) &&
3003 (!rcu_gp_in_progress(rsp) ||
3004 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3005 return 1;
3006#endif /* #ifdef CONFIG_NO_HZ_FULL */
3007 return 0;
3008}
5057f55e
PM
3009
3010/*
3011 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3012 * timekeeping CPU.
3013 */
3014static void rcu_bind_gp_kthread(void)
3015{
3016#ifdef CONFIG_NO_HZ_FULL
3017 int cpu = ACCESS_ONCE(tick_do_timer_cpu);
3018
3019 if (cpu < 0 || cpu >= nr_cpu_ids)
3020 return;
3021 if (raw_smp_processor_id() != cpu)
3022 set_cpus_allowed_ptr(current, cpumask_of(cpu));
3023#endif /* #ifdef CONFIG_NO_HZ_FULL */
3024}
This page took 0.387602 seconds and 5 git commands to generate.