rcu: Remove _rcu_barrier() dependency on __stop_machine()
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
037b64ed 65#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 66 .level = { &sname##_state.node[0] }, \
037b64ed 67 .call = cr, \
af446b70 68 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
6c90cc7b
PM
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
6c90cc7b 75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
6c90cc7b 76 .name = #sname, \
64db4cff
PM
77}
78
037b64ed
PM
79struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 81DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 82
037b64ed 83struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 84DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 85
27f4d280 86static struct rcu_state *rcu_state;
6ce75a23 87LIST_HEAD(rcu_struct_flavors);
27f4d280 88
f885b7f2
PM
89/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91module_param(rcu_fanout_leaf, int, 0);
92int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99};
100int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
b0d30417
PM
102/*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
bbad9379
PM
111int rcu_scheduler_active __read_mostly;
112EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
b0d30417
PM
114/*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126static int rcu_scheduler_fully_active __read_mostly;
127
a46e0899
PM
128#ifdef CONFIG_RCU_BOOST
129
a26ac245
PM
130/*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 136DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 138DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 139
a46e0899
PM
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
0f962a5e 142static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 145
4a298656
PM
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
fc2219d4
PM
158/*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163static int rcu_gp_in_progress(struct rcu_state *rsp)
164{
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166}
167
b1f77b05 168/*
d6714c22 169 * Note a quiescent state. Because we do not need to know
b1f77b05 170 * how many quiescent states passed, just if there was at least
d6714c22 171 * one since the start of the grace period, this just sets a flag.
e4cc1f22 172 * The caller must have disabled preemption.
b1f77b05 173 */
d6714c22 174void rcu_sched_qs(int cpu)
b1f77b05 175{
25502a6c 176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 177
e4cc1f22 178 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 179 barrier();
e4cc1f22 180 if (rdp->passed_quiesce == 0)
d4c08f2a 181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 182 rdp->passed_quiesce = 1;
b1f77b05
IM
183}
184
d6714c22 185void rcu_bh_qs(int cpu)
b1f77b05 186{
25502a6c 187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 188
e4cc1f22 189 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 190 barrier();
e4cc1f22 191 if (rdp->passed_quiesce == 0)
d4c08f2a 192 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 193 rdp->passed_quiesce = 1;
b1f77b05 194}
64db4cff 195
25502a6c
PM
196/*
197 * Note a context switch. This is a quiescent state for RCU-sched,
198 * and requires special handling for preemptible RCU.
e4cc1f22 199 * The caller must have disabled preemption.
25502a6c
PM
200 */
201void rcu_note_context_switch(int cpu)
202{
300df91c 203 trace_rcu_utilization("Start context switch");
25502a6c 204 rcu_sched_qs(cpu);
cba6d0d6 205 rcu_preempt_note_context_switch(cpu);
300df91c 206 trace_rcu_utilization("End context switch");
25502a6c 207}
29ce8310 208EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 209
90a4d2c0 210DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 211 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 212 .dynticks = ATOMIC_INIT(1),
90a4d2c0 213};
64db4cff 214
e0f23060 215static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
216static int qhimark = 10000; /* If this many pending, ignore blimit. */
217static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
3d76c082
PM
219module_param(blimit, int, 0);
220module_param(qhimark, int, 0);
221module_param(qlowmark, int, 0);
222
13cfcca0
PM
223int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
f2e0dd70 226module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 227module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 228
64db4cff 229static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 230static int rcu_pending(int cpu);
64db4cff
PM
231
232/*
d6714c22 233 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 234 */
d6714c22 235long rcu_batches_completed_sched(void)
64db4cff 236{
d6714c22 237 return rcu_sched_state.completed;
64db4cff 238}
d6714c22 239EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
240
241/*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244long rcu_batches_completed_bh(void)
245{
246 return rcu_bh_state.completed;
247}
248EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
bf66f18e
PM
250/*
251 * Force a quiescent state for RCU BH.
252 */
253void rcu_bh_force_quiescent_state(void)
254{
255 force_quiescent_state(&rcu_bh_state, 0);
256}
257EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
4a298656
PM
259/*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266void rcutorture_record_test_transition(void)
267{
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270}
271EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273/*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278void rcutorture_record_progress(unsigned long vernum)
279{
280 rcutorture_vernum++;
281}
282EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
bf66f18e
PM
284/*
285 * Force a quiescent state for RCU-sched.
286 */
287void rcu_sched_force_quiescent_state(void)
288{
289 force_quiescent_state(&rcu_sched_state, 0);
290}
291EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
64db4cff
PM
293/*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296static int
297cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298{
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
300}
301
302/*
303 * Does the current CPU require a yet-as-unscheduled grace period?
304 */
305static int
306cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
307{
a10d206e
PM
308 return *rdp->nxttail[RCU_DONE_TAIL +
309 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
310 !rcu_gp_in_progress(rsp);
64db4cff
PM
311}
312
313/*
314 * Return the root node of the specified rcu_state structure.
315 */
316static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
317{
318 return &rsp->node[0];
319}
320
64db4cff
PM
321/*
322 * If the specified CPU is offline, tell the caller that it is in
323 * a quiescent state. Otherwise, whack it with a reschedule IPI.
324 * Grace periods can end up waiting on an offline CPU when that
325 * CPU is in the process of coming online -- it will be added to the
326 * rcu_node bitmasks before it actually makes it online. The same thing
327 * can happen while a CPU is in the process of coming online. Because this
328 * race is quite rare, we check for it after detecting that the grace
329 * period has been delayed rather than checking each and every CPU
330 * each and every time we start a new grace period.
331 */
332static int rcu_implicit_offline_qs(struct rcu_data *rdp)
333{
334 /*
2036d94a
PM
335 * If the CPU is offline for more than a jiffy, it is in a quiescent
336 * state. We can trust its state not to change because interrupts
337 * are disabled. The reason for the jiffy's worth of slack is to
338 * handle CPUs initializing on the way up and finding their way
339 * to the idle loop on the way down.
64db4cff 340 */
2036d94a
PM
341 if (cpu_is_offline(rdp->cpu) &&
342 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 343 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
344 rdp->offline_fqs++;
345 return 1;
346 }
64db4cff
PM
347 return 0;
348}
349
9b2e4f18
PM
350/*
351 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
352 *
353 * If the new value of the ->dynticks_nesting counter now is zero,
354 * we really have entered idle, and must do the appropriate accounting.
355 * The caller must have disabled interrupts.
356 */
4145fa7f 357static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 358{
facc4e15 359 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 360 if (!is_idle_task(current)) {
0989cb46
PM
361 struct task_struct *idle = idle_task(smp_processor_id());
362
facc4e15 363 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 364 ftrace_dump(DUMP_ORIG);
0989cb46
PM
365 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
366 current->pid, current->comm,
367 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 368 }
aea1b35e 369 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
370 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
371 smp_mb__before_atomic_inc(); /* See above. */
372 atomic_inc(&rdtp->dynticks);
373 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
374 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
375
376 /*
377 * The idle task is not permitted to enter the idle loop while
378 * in an RCU read-side critical section.
379 */
380 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
381 "Illegal idle entry in RCU read-side critical section.");
382 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
383 "Illegal idle entry in RCU-bh read-side critical section.");
384 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
385 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 386}
64db4cff
PM
387
388/**
9b2e4f18 389 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 390 *
9b2e4f18 391 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 392 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
393 * critical sections can occur in irq handlers in idle, a possibility
394 * handled by irq_enter() and irq_exit().)
395 *
396 * We crowbar the ->dynticks_nesting field to zero to allow for
397 * the possibility of usermode upcalls having messed up our count
398 * of interrupt nesting level during the prior busy period.
64db4cff 399 */
9b2e4f18 400void rcu_idle_enter(void)
64db4cff
PM
401{
402 unsigned long flags;
4145fa7f 403 long long oldval;
64db4cff
PM
404 struct rcu_dynticks *rdtp;
405
64db4cff
PM
406 local_irq_save(flags);
407 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 408 oldval = rdtp->dynticks_nesting;
29e37d81
PM
409 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
410 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
411 rdtp->dynticks_nesting = 0;
412 else
413 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 414 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
415 local_irq_restore(flags);
416}
8a2ecf47 417EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 418
9b2e4f18
PM
419/**
420 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
421 *
422 * Exit from an interrupt handler, which might possibly result in entering
423 * idle mode, in other words, leaving the mode in which read-side critical
424 * sections can occur.
64db4cff 425 *
9b2e4f18
PM
426 * This code assumes that the idle loop never does anything that might
427 * result in unbalanced calls to irq_enter() and irq_exit(). If your
428 * architecture violates this assumption, RCU will give you what you
429 * deserve, good and hard. But very infrequently and irreproducibly.
430 *
431 * Use things like work queues to work around this limitation.
432 *
433 * You have been warned.
64db4cff 434 */
9b2e4f18 435void rcu_irq_exit(void)
64db4cff
PM
436{
437 unsigned long flags;
4145fa7f 438 long long oldval;
64db4cff
PM
439 struct rcu_dynticks *rdtp;
440
441 local_irq_save(flags);
442 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 443 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
444 rdtp->dynticks_nesting--;
445 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
446 if (rdtp->dynticks_nesting)
447 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
448 else
449 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
450 local_irq_restore(flags);
451}
452
453/*
454 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
455 *
456 * If the new value of the ->dynticks_nesting counter was previously zero,
457 * we really have exited idle, and must do the appropriate accounting.
458 * The caller must have disabled interrupts.
459 */
460static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
461{
23b5c8fa
PM
462 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
463 atomic_inc(&rdtp->dynticks);
464 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
465 smp_mb__after_atomic_inc(); /* See above. */
466 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 467 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 468 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 469 if (!is_idle_task(current)) {
0989cb46
PM
470 struct task_struct *idle = idle_task(smp_processor_id());
471
4145fa7f
PM
472 trace_rcu_dyntick("Error on exit: not idle task",
473 oldval, rdtp->dynticks_nesting);
bf1304e9 474 ftrace_dump(DUMP_ORIG);
0989cb46
PM
475 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
476 current->pid, current->comm,
477 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
478 }
479}
480
481/**
482 * rcu_idle_exit - inform RCU that current CPU is leaving idle
483 *
484 * Exit idle mode, in other words, -enter- the mode in which RCU
485 * read-side critical sections can occur.
486 *
29e37d81 487 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 488 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
489 * of interrupt nesting level during the busy period that is just
490 * now starting.
491 */
492void rcu_idle_exit(void)
493{
494 unsigned long flags;
495 struct rcu_dynticks *rdtp;
496 long long oldval;
497
498 local_irq_save(flags);
499 rdtp = &__get_cpu_var(rcu_dynticks);
500 oldval = rdtp->dynticks_nesting;
29e37d81
PM
501 WARN_ON_ONCE(oldval < 0);
502 if (oldval & DYNTICK_TASK_NEST_MASK)
503 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
504 else
505 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
506 rcu_idle_exit_common(rdtp, oldval);
507 local_irq_restore(flags);
508}
8a2ecf47 509EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
510
511/**
512 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
513 *
514 * Enter an interrupt handler, which might possibly result in exiting
515 * idle mode, in other words, entering the mode in which read-side critical
516 * sections can occur.
517 *
518 * Note that the Linux kernel is fully capable of entering an interrupt
519 * handler that it never exits, for example when doing upcalls to
520 * user mode! This code assumes that the idle loop never does upcalls to
521 * user mode. If your architecture does do upcalls from the idle loop (or
522 * does anything else that results in unbalanced calls to the irq_enter()
523 * and irq_exit() functions), RCU will give you what you deserve, good
524 * and hard. But very infrequently and irreproducibly.
525 *
526 * Use things like work queues to work around this limitation.
527 *
528 * You have been warned.
529 */
530void rcu_irq_enter(void)
531{
532 unsigned long flags;
533 struct rcu_dynticks *rdtp;
534 long long oldval;
535
536 local_irq_save(flags);
537 rdtp = &__get_cpu_var(rcu_dynticks);
538 oldval = rdtp->dynticks_nesting;
539 rdtp->dynticks_nesting++;
540 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
541 if (oldval)
542 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
543 else
544 rcu_idle_exit_common(rdtp, oldval);
64db4cff 545 local_irq_restore(flags);
64db4cff
PM
546}
547
548/**
549 * rcu_nmi_enter - inform RCU of entry to NMI context
550 *
551 * If the CPU was idle with dynamic ticks active, and there is no
552 * irq handler running, this updates rdtp->dynticks_nmi to let the
553 * RCU grace-period handling know that the CPU is active.
554 */
555void rcu_nmi_enter(void)
556{
557 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
558
23b5c8fa
PM
559 if (rdtp->dynticks_nmi_nesting == 0 &&
560 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 561 return;
23b5c8fa
PM
562 rdtp->dynticks_nmi_nesting++;
563 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
564 atomic_inc(&rdtp->dynticks);
565 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
566 smp_mb__after_atomic_inc(); /* See above. */
567 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
568}
569
570/**
571 * rcu_nmi_exit - inform RCU of exit from NMI context
572 *
573 * If the CPU was idle with dynamic ticks active, and there is no
574 * irq handler running, this updates rdtp->dynticks_nmi to let the
575 * RCU grace-period handling know that the CPU is no longer active.
576 */
577void rcu_nmi_exit(void)
578{
579 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
580
23b5c8fa
PM
581 if (rdtp->dynticks_nmi_nesting == 0 ||
582 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 583 return;
23b5c8fa
PM
584 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
585 smp_mb__before_atomic_inc(); /* See above. */
586 atomic_inc(&rdtp->dynticks);
587 smp_mb__after_atomic_inc(); /* Force delay to next write. */
588 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
589}
590
591/**
9b2e4f18 592 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 593 *
9b2e4f18 594 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 595 * or NMI handler, return true.
64db4cff 596 */
9b2e4f18 597int rcu_is_cpu_idle(void)
64db4cff 598{
34240697
PM
599 int ret;
600
601 preempt_disable();
602 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
603 preempt_enable();
604 return ret;
64db4cff 605}
e6b80a3b 606EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 607
62fde6ed 608#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
609
610/*
611 * Is the current CPU online? Disable preemption to avoid false positives
612 * that could otherwise happen due to the current CPU number being sampled,
613 * this task being preempted, its old CPU being taken offline, resuming
614 * on some other CPU, then determining that its old CPU is now offline.
615 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
616 * the check for rcu_scheduler_fully_active. Note also that it is OK
617 * for a CPU coming online to use RCU for one jiffy prior to marking itself
618 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
619 * offline to continue to use RCU for one jiffy after marking itself
620 * offline in the cpu_online_mask. This leniency is necessary given the
621 * non-atomic nature of the online and offline processing, for example,
622 * the fact that a CPU enters the scheduler after completing the CPU_DYING
623 * notifiers.
624 *
625 * This is also why RCU internally marks CPUs online during the
626 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
627 *
628 * Disable checking if in an NMI handler because we cannot safely report
629 * errors from NMI handlers anyway.
630 */
631bool rcu_lockdep_current_cpu_online(void)
632{
2036d94a
PM
633 struct rcu_data *rdp;
634 struct rcu_node *rnp;
c0d6d01b
PM
635 bool ret;
636
637 if (in_nmi())
638 return 1;
639 preempt_disable();
2036d94a
PM
640 rdp = &__get_cpu_var(rcu_sched_data);
641 rnp = rdp->mynode;
642 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
643 !rcu_scheduler_fully_active;
644 preempt_enable();
645 return ret;
646}
647EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
648
62fde6ed 649#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 650
64db4cff 651/**
9b2e4f18 652 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 653 *
9b2e4f18
PM
654 * If the current CPU is idle or running at a first-level (not nested)
655 * interrupt from idle, return true. The caller must have at least
656 * disabled preemption.
64db4cff 657 */
9b2e4f18 658int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 659{
9b2e4f18 660 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
661}
662
64db4cff
PM
663/*
664 * Snapshot the specified CPU's dynticks counter so that we can later
665 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 666 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
667 */
668static int dyntick_save_progress_counter(struct rcu_data *rdp)
669{
23b5c8fa 670 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 671 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
672}
673
674/*
675 * Return true if the specified CPU has passed through a quiescent
676 * state by virtue of being in or having passed through an dynticks
677 * idle state since the last call to dyntick_save_progress_counter()
678 * for this same CPU.
679 */
680static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
681{
7eb4f455
PM
682 unsigned int curr;
683 unsigned int snap;
64db4cff 684
7eb4f455
PM
685 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
686 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
687
688 /*
689 * If the CPU passed through or entered a dynticks idle phase with
690 * no active irq/NMI handlers, then we can safely pretend that the CPU
691 * already acknowledged the request to pass through a quiescent
692 * state. Either way, that CPU cannot possibly be in an RCU
693 * read-side critical section that started before the beginning
694 * of the current RCU grace period.
695 */
7eb4f455 696 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 697 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
698 rdp->dynticks_fqs++;
699 return 1;
700 }
701
702 /* Go check for the CPU being offline. */
703 return rcu_implicit_offline_qs(rdp);
704}
705
13cfcca0
PM
706static int jiffies_till_stall_check(void)
707{
708 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
709
710 /*
711 * Limit check must be consistent with the Kconfig limits
712 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
713 */
714 if (till_stall_check < 3) {
715 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
716 till_stall_check = 3;
717 } else if (till_stall_check > 300) {
718 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
719 till_stall_check = 300;
720 }
721 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
722}
723
64db4cff
PM
724static void record_gp_stall_check_time(struct rcu_state *rsp)
725{
726 rsp->gp_start = jiffies;
13cfcca0 727 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
728}
729
730static void print_other_cpu_stall(struct rcu_state *rsp)
731{
732 int cpu;
733 long delta;
734 unsigned long flags;
285fe294 735 int ndetected = 0;
64db4cff 736 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
737
738 /* Only let one CPU complain about others per time interval. */
739
1304afb2 740 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 741 delta = jiffies - rsp->jiffies_stall;
fc2219d4 742 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 743 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
744 return;
745 }
13cfcca0 746 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 747 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 748
8cdd32a9
PM
749 /*
750 * OK, time to rat on our buddy...
751 * See Documentation/RCU/stallwarn.txt for info on how to debug
752 * RCU CPU stall warnings.
753 */
a858af28 754 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 755 rsp->name);
a858af28 756 print_cpu_stall_info_begin();
a0b6c9a7 757 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 758 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 759 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 761 if (rnp->qsmask == 0)
64db4cff 762 continue;
a0b6c9a7 763 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 764 if (rnp->qsmask & (1UL << cpu)) {
a858af28 765 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
766 ndetected++;
767 }
64db4cff 768 }
a858af28
PM
769
770 /*
771 * Now rat on any tasks that got kicked up to the root rcu_node
772 * due to CPU offlining.
773 */
774 rnp = rcu_get_root(rsp);
775 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 776 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
777 raw_spin_unlock_irqrestore(&rnp->lock, flags);
778
779 print_cpu_stall_info_end();
780 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 781 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
782 if (ndetected == 0)
783 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
784 else if (!trigger_all_cpu_backtrace())
4627e240 785 dump_stack();
c1dc0b9c 786
1ed509a2
PM
787 /* If so configured, complain about tasks blocking the grace period. */
788
789 rcu_print_detail_task_stall(rsp);
790
64db4cff
PM
791 force_quiescent_state(rsp, 0); /* Kick them all. */
792}
793
794static void print_cpu_stall(struct rcu_state *rsp)
795{
796 unsigned long flags;
797 struct rcu_node *rnp = rcu_get_root(rsp);
798
8cdd32a9
PM
799 /*
800 * OK, time to rat on ourselves...
801 * See Documentation/RCU/stallwarn.txt for info on how to debug
802 * RCU CPU stall warnings.
803 */
a858af28
PM
804 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
805 print_cpu_stall_info_begin();
806 print_cpu_stall_info(rsp, smp_processor_id());
807 print_cpu_stall_info_end();
808 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
809 if (!trigger_all_cpu_backtrace())
810 dump_stack();
c1dc0b9c 811
1304afb2 812 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 813 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
814 rsp->jiffies_stall = jiffies +
815 3 * jiffies_till_stall_check() + 3;
1304afb2 816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 817
64db4cff
PM
818 set_need_resched(); /* kick ourselves to get things going. */
819}
820
821static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
822{
bad6e139
PM
823 unsigned long j;
824 unsigned long js;
64db4cff
PM
825 struct rcu_node *rnp;
826
742734ee 827 if (rcu_cpu_stall_suppress)
c68de209 828 return;
bad6e139
PM
829 j = ACCESS_ONCE(jiffies);
830 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 831 rnp = rdp->mynode;
bad6e139 832 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
833
834 /* We haven't checked in, so go dump stack. */
835 print_cpu_stall(rsp);
836
bad6e139
PM
837 } else if (rcu_gp_in_progress(rsp) &&
838 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 839
bad6e139 840 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
841 print_other_cpu_stall(rsp);
842 }
843}
844
c68de209
PM
845static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
846{
742734ee 847 rcu_cpu_stall_suppress = 1;
c68de209
PM
848 return NOTIFY_DONE;
849}
850
53d84e00
PM
851/**
852 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
853 *
854 * Set the stall-warning timeout way off into the future, thus preventing
855 * any RCU CPU stall-warning messages from appearing in the current set of
856 * RCU grace periods.
857 *
858 * The caller must disable hard irqs.
859 */
860void rcu_cpu_stall_reset(void)
861{
6ce75a23
PM
862 struct rcu_state *rsp;
863
864 for_each_rcu_flavor(rsp)
865 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
866}
867
c68de209
PM
868static struct notifier_block rcu_panic_block = {
869 .notifier_call = rcu_panic,
870};
871
872static void __init check_cpu_stall_init(void)
873{
874 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
875}
876
64db4cff
PM
877/*
878 * Update CPU-local rcu_data state to record the newly noticed grace period.
879 * This is used both when we started the grace period and when we notice
9160306e
PM
880 * that someone else started the grace period. The caller must hold the
881 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
882 * and must have irqs disabled.
64db4cff 883 */
9160306e
PM
884static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
885{
886 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
887 /*
888 * If the current grace period is waiting for this CPU,
889 * set up to detect a quiescent state, otherwise don't
890 * go looking for one.
891 */
9160306e 892 rdp->gpnum = rnp->gpnum;
d4c08f2a 893 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
894 if (rnp->qsmask & rdp->grpmask) {
895 rdp->qs_pending = 1;
e4cc1f22 896 rdp->passed_quiesce = 0;
c701d5d9 897 } else {
121dfc4b 898 rdp->qs_pending = 0;
c701d5d9 899 }
a858af28 900 zero_cpu_stall_ticks(rdp);
9160306e
PM
901 }
902}
903
64db4cff
PM
904static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
905{
9160306e
PM
906 unsigned long flags;
907 struct rcu_node *rnp;
908
909 local_irq_save(flags);
910 rnp = rdp->mynode;
911 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 912 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
913 local_irq_restore(flags);
914 return;
915 }
916 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 917 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
918}
919
920/*
921 * Did someone else start a new RCU grace period start since we last
922 * checked? Update local state appropriately if so. Must be called
923 * on the CPU corresponding to rdp.
924 */
925static int
926check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
927{
928 unsigned long flags;
929 int ret = 0;
930
931 local_irq_save(flags);
932 if (rdp->gpnum != rsp->gpnum) {
933 note_new_gpnum(rsp, rdp);
934 ret = 1;
935 }
936 local_irq_restore(flags);
937 return ret;
938}
939
3f5d3ea6
PM
940/*
941 * Initialize the specified rcu_data structure's callback list to empty.
942 */
943static void init_callback_list(struct rcu_data *rdp)
944{
945 int i;
946
947 rdp->nxtlist = NULL;
948 for (i = 0; i < RCU_NEXT_SIZE; i++)
949 rdp->nxttail[i] = &rdp->nxtlist;
950}
951
d09b62df
PM
952/*
953 * Advance this CPU's callbacks, but only if the current grace period
954 * has ended. This may be called only from the CPU to whom the rdp
955 * belongs. In addition, the corresponding leaf rcu_node structure's
956 * ->lock must be held by the caller, with irqs disabled.
957 */
958static void
959__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
960{
961 /* Did another grace period end? */
962 if (rdp->completed != rnp->completed) {
963
964 /* Advance callbacks. No harm if list empty. */
965 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
966 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
967 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
968
969 /* Remember that we saw this grace-period completion. */
970 rdp->completed = rnp->completed;
d4c08f2a 971 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 972
5ff8e6f0
FW
973 /*
974 * If we were in an extended quiescent state, we may have
121dfc4b 975 * missed some grace periods that others CPUs handled on
5ff8e6f0 976 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
977 * spurious new grace periods. If another grace period
978 * has started, then rnp->gpnum will have advanced, so
979 * we will detect this later on.
5ff8e6f0 980 */
121dfc4b 981 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
982 rdp->gpnum = rdp->completed;
983
20377f32 984 /*
121dfc4b
PM
985 * If RCU does not need a quiescent state from this CPU,
986 * then make sure that this CPU doesn't go looking for one.
20377f32 987 */
121dfc4b 988 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 989 rdp->qs_pending = 0;
d09b62df
PM
990 }
991}
992
993/*
994 * Advance this CPU's callbacks, but only if the current grace period
995 * has ended. This may be called only from the CPU to whom the rdp
996 * belongs.
997 */
998static void
999rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1000{
1001 unsigned long flags;
1002 struct rcu_node *rnp;
1003
1004 local_irq_save(flags);
1005 rnp = rdp->mynode;
1006 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1007 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1008 local_irq_restore(flags);
1009 return;
1010 }
1011 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1012 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1013}
1014
1015/*
1016 * Do per-CPU grace-period initialization for running CPU. The caller
1017 * must hold the lock of the leaf rcu_node structure corresponding to
1018 * this CPU.
1019 */
1020static void
1021rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1022{
1023 /* Prior grace period ended, so advance callbacks for current CPU. */
1024 __rcu_process_gp_end(rsp, rnp, rdp);
1025
1026 /*
1027 * Because this CPU just now started the new grace period, we know
1028 * that all of its callbacks will be covered by this upcoming grace
1029 * period, even the ones that were registered arbitrarily recently.
1030 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1031 *
1032 * Other CPUs cannot be sure exactly when the grace period started.
1033 * Therefore, their recently registered callbacks must pass through
1034 * an additional RCU_NEXT_READY stage, so that they will be handled
1035 * by the next RCU grace period.
1036 */
1037 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1038 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1039
1040 /* Set state so that this CPU will detect the next quiescent state. */
1041 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1042}
1043
64db4cff
PM
1044/*
1045 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1046 * in preparation for detecting the next grace period. The caller must hold
1047 * the root node's ->lock, which is released before return. Hard irqs must
1048 * be disabled.
e5601400
PM
1049 *
1050 * Note that it is legal for a dying CPU (which is marked as offline) to
1051 * invoke this function. This can happen when the dying CPU reports its
1052 * quiescent state.
64db4cff
PM
1053 */
1054static void
1055rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1056 __releases(rcu_get_root(rsp)->lock)
1057{
394f99a9 1058 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1059 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1060
037067a1 1061 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1062 !cpu_needs_another_gp(rsp, rdp)) {
1063 /*
1064 * Either the scheduler hasn't yet spawned the first
1065 * non-idle task or this CPU does not need another
1066 * grace period. Either way, don't start a new grace
1067 * period.
1068 */
1069 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1070 return;
1071 }
b32e9eb6 1072
afe24b12 1073 if (rsp->fqs_active) {
b32e9eb6 1074 /*
afe24b12
PM
1075 * This CPU needs a grace period, but force_quiescent_state()
1076 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1077 */
afe24b12
PM
1078 rsp->fqs_need_gp = 1;
1079 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1080 return;
1081 }
1082
1083 /* Advance to a new grace period and initialize state. */
1084 rsp->gpnum++;
d4c08f2a 1085 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1086 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1087 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1088 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1089 record_gp_stall_check_time(rsp);
1304afb2 1090 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1091
64db4cff 1092 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1093 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1094
1095 /*
b835db1f
PM
1096 * Set the quiescent-state-needed bits in all the rcu_node
1097 * structures for all currently online CPUs in breadth-first
1098 * order, starting from the root rcu_node structure. This
1099 * operation relies on the layout of the hierarchy within the
1100 * rsp->node[] array. Note that other CPUs will access only
1101 * the leaves of the hierarchy, which still indicate that no
1102 * grace period is in progress, at least until the corresponding
1103 * leaf node has been initialized. In addition, we have excluded
1104 * CPU-hotplug operations.
64db4cff
PM
1105 *
1106 * Note that the grace period cannot complete until we finish
1107 * the initialization process, as there will be at least one
1108 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1109 * one corresponding to this CPU, due to the fact that we have
1110 * irqs disabled.
64db4cff 1111 */
a0b6c9a7 1112 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1113 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1114 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1115 rnp->qsmask = rnp->qsmaskinit;
de078d87 1116 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1117 rnp->completed = rsp->completed;
1118 if (rnp == rdp->mynode)
1119 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1120 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1121 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1122 rnp->level, rnp->grplo,
1123 rnp->grphi, rnp->qsmask);
1304afb2 1124 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1125 }
1126
83f5b01f 1127 rnp = rcu_get_root(rsp);
1304afb2 1128 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1129 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1130 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1131 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1132}
1133
f41d911f 1134/*
d3f6bad3
PM
1135 * Report a full set of quiescent states to the specified rcu_state
1136 * data structure. This involves cleaning up after the prior grace
1137 * period and letting rcu_start_gp() start up the next grace period
1138 * if one is needed. Note that the caller must hold rnp->lock, as
1139 * required by rcu_start_gp(), which will release it.
f41d911f 1140 */
d3f6bad3 1141static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1142 __releases(rcu_get_root(rsp)->lock)
f41d911f 1143{
15ba0ba8 1144 unsigned long gp_duration;
afe24b12
PM
1145 struct rcu_node *rnp = rcu_get_root(rsp);
1146 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1147
fc2219d4 1148 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1149
1150 /*
1151 * Ensure that all grace-period and pre-grace-period activity
1152 * is seen before the assignment to rsp->completed.
1153 */
1154 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1155 gp_duration = jiffies - rsp->gp_start;
1156 if (gp_duration > rsp->gp_max)
1157 rsp->gp_max = gp_duration;
afe24b12
PM
1158
1159 /*
1160 * We know the grace period is complete, but to everyone else
1161 * it appears to still be ongoing. But it is also the case
1162 * that to everyone else it looks like there is nothing that
1163 * they can do to advance the grace period. It is therefore
1164 * safe for us to drop the lock in order to mark the grace
1165 * period as completed in all of the rcu_node structures.
1166 *
1167 * But if this CPU needs another grace period, it will take
1168 * care of this while initializing the next grace period.
1169 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1170 * because the callbacks have not yet been advanced: Those
1171 * callbacks are waiting on the grace period that just now
1172 * completed.
1173 */
1174 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1175 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1176
1177 /*
1178 * Propagate new ->completed value to rcu_node structures
1179 * so that other CPUs don't have to wait until the start
1180 * of the next grace period to process their callbacks.
1181 */
1182 rcu_for_each_node_breadth_first(rsp, rnp) {
1183 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1184 rnp->completed = rsp->gpnum;
1185 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1186 }
1187 rnp = rcu_get_root(rsp);
1188 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1189 }
1190
1191 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1192 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1193 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1194 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1195}
1196
64db4cff 1197/*
d3f6bad3
PM
1198 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1199 * Allows quiescent states for a group of CPUs to be reported at one go
1200 * to the specified rcu_node structure, though all the CPUs in the group
1201 * must be represented by the same rcu_node structure (which need not be
1202 * a leaf rcu_node structure, though it often will be). That structure's
1203 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1204 */
1205static void
d3f6bad3
PM
1206rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1207 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1208 __releases(rnp->lock)
1209{
28ecd580
PM
1210 struct rcu_node *rnp_c;
1211
64db4cff
PM
1212 /* Walk up the rcu_node hierarchy. */
1213 for (;;) {
1214 if (!(rnp->qsmask & mask)) {
1215
1216 /* Our bit has already been cleared, so done. */
1304afb2 1217 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1218 return;
1219 }
1220 rnp->qsmask &= ~mask;
d4c08f2a
PM
1221 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1222 mask, rnp->qsmask, rnp->level,
1223 rnp->grplo, rnp->grphi,
1224 !!rnp->gp_tasks);
27f4d280 1225 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1226
1227 /* Other bits still set at this level, so done. */
1304afb2 1228 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1229 return;
1230 }
1231 mask = rnp->grpmask;
1232 if (rnp->parent == NULL) {
1233
1234 /* No more levels. Exit loop holding root lock. */
1235
1236 break;
1237 }
1304afb2 1238 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1239 rnp_c = rnp;
64db4cff 1240 rnp = rnp->parent;
1304afb2 1241 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1242 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1243 }
1244
1245 /*
1246 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1247 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1248 * to clean up and start the next grace period if one is needed.
64db4cff 1249 */
d3f6bad3 1250 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1251}
1252
1253/*
d3f6bad3
PM
1254 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1255 * structure. This must be either called from the specified CPU, or
1256 * called when the specified CPU is known to be offline (and when it is
1257 * also known that no other CPU is concurrently trying to help the offline
1258 * CPU). The lastcomp argument is used to make sure we are still in the
1259 * grace period of interest. We don't want to end the current grace period
1260 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1261 */
1262static void
e4cc1f22 1263rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1264{
1265 unsigned long flags;
1266 unsigned long mask;
1267 struct rcu_node *rnp;
1268
1269 rnp = rdp->mynode;
1304afb2 1270 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1271 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1272
1273 /*
e4cc1f22
PM
1274 * The grace period in which this quiescent state was
1275 * recorded has ended, so don't report it upwards.
1276 * We will instead need a new quiescent state that lies
1277 * within the current grace period.
64db4cff 1278 */
e4cc1f22 1279 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1280 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1281 return;
1282 }
1283 mask = rdp->grpmask;
1284 if ((rnp->qsmask & mask) == 0) {
1304afb2 1285 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1286 } else {
1287 rdp->qs_pending = 0;
1288
1289 /*
1290 * This GP can't end until cpu checks in, so all of our
1291 * callbacks can be processed during the next GP.
1292 */
64db4cff
PM
1293 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1294
d3f6bad3 1295 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1296 }
1297}
1298
1299/*
1300 * Check to see if there is a new grace period of which this CPU
1301 * is not yet aware, and if so, set up local rcu_data state for it.
1302 * Otherwise, see if this CPU has just passed through its first
1303 * quiescent state for this grace period, and record that fact if so.
1304 */
1305static void
1306rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1307{
1308 /* If there is now a new grace period, record and return. */
1309 if (check_for_new_grace_period(rsp, rdp))
1310 return;
1311
1312 /*
1313 * Does this CPU still need to do its part for current grace period?
1314 * If no, return and let the other CPUs do their part as well.
1315 */
1316 if (!rdp->qs_pending)
1317 return;
1318
1319 /*
1320 * Was there a quiescent state since the beginning of the grace
1321 * period? If no, then exit and wait for the next call.
1322 */
e4cc1f22 1323 if (!rdp->passed_quiesce)
64db4cff
PM
1324 return;
1325
d3f6bad3
PM
1326 /*
1327 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1328 * judge of that).
1329 */
e4cc1f22 1330 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1331}
1332
1333#ifdef CONFIG_HOTPLUG_CPU
1334
e74f4c45 1335/*
b1420f1c
PM
1336 * Send the specified CPU's RCU callbacks to the orphanage. The
1337 * specified CPU must be offline, and the caller must hold the
1338 * ->onofflock.
e74f4c45 1339 */
b1420f1c
PM
1340static void
1341rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1342 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1343{
b1420f1c
PM
1344 /*
1345 * Orphan the callbacks. First adjust the counts. This is safe
1346 * because ->onofflock excludes _rcu_barrier()'s adoption of
1347 * the callbacks, thus no memory barrier is required.
1348 */
a50c3af9 1349 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1350 rsp->qlen_lazy += rdp->qlen_lazy;
1351 rsp->qlen += rdp->qlen;
1352 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1353 rdp->qlen_lazy = 0;
1d1fb395 1354 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1355 }
1356
1357 /*
b1420f1c
PM
1358 * Next, move those callbacks still needing a grace period to
1359 * the orphanage, where some other CPU will pick them up.
1360 * Some of the callbacks might have gone partway through a grace
1361 * period, but that is too bad. They get to start over because we
1362 * cannot assume that grace periods are synchronized across CPUs.
1363 * We don't bother updating the ->nxttail[] array yet, instead
1364 * we just reset the whole thing later on.
a50c3af9 1365 */
b1420f1c
PM
1366 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1367 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1368 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1369 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1370 }
1371
1372 /*
b1420f1c
PM
1373 * Then move the ready-to-invoke callbacks to the orphanage,
1374 * where some other CPU will pick them up. These will not be
1375 * required to pass though another grace period: They are done.
a50c3af9 1376 */
e5601400 1377 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1378 *rsp->orphan_donetail = rdp->nxtlist;
1379 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1380 }
e74f4c45 1381
b1420f1c 1382 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1383 init_callback_list(rdp);
b1420f1c
PM
1384}
1385
1386/*
1387 * Adopt the RCU callbacks from the specified rcu_state structure's
1388 * orphanage. The caller must hold the ->onofflock.
1389 */
1390static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1391{
1392 int i;
1393 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1394
b1420f1c
PM
1395 /* Do the accounting first. */
1396 rdp->qlen_lazy += rsp->qlen_lazy;
1397 rdp->qlen += rsp->qlen;
1398 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1399 if (rsp->qlen_lazy != rsp->qlen)
1400 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1401 rsp->qlen_lazy = 0;
1402 rsp->qlen = 0;
1403
1404 /*
1405 * We do not need a memory barrier here because the only way we
1406 * can get here if there is an rcu_barrier() in flight is if
1407 * we are the task doing the rcu_barrier().
1408 */
1409
1410 /* First adopt the ready-to-invoke callbacks. */
1411 if (rsp->orphan_donelist != NULL) {
1412 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1413 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1414 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1415 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1416 rdp->nxttail[i] = rsp->orphan_donetail;
1417 rsp->orphan_donelist = NULL;
1418 rsp->orphan_donetail = &rsp->orphan_donelist;
1419 }
1420
1421 /* And then adopt the callbacks that still need a grace period. */
1422 if (rsp->orphan_nxtlist != NULL) {
1423 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1424 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1425 rsp->orphan_nxtlist = NULL;
1426 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1427 }
1428}
1429
1430/*
1431 * Trace the fact that this CPU is going offline.
1432 */
1433static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1434{
1435 RCU_TRACE(unsigned long mask);
1436 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1437 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1438
1439 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1440 trace_rcu_grace_period(rsp->name,
1441 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1442 "cpuofl");
64db4cff
PM
1443}
1444
1445/*
e5601400 1446 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1447 * this fact from process context. Do the remainder of the cleanup,
1448 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1449 * adopting them. There can only be one CPU hotplug operation at a time,
1450 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1451 */
e5601400 1452static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1453{
2036d94a
PM
1454 unsigned long flags;
1455 unsigned long mask;
1456 int need_report = 0;
e5601400 1457 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1458 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1459
2036d94a 1460 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1461 rcu_stop_cpu_kthread(cpu);
1462 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1463
b1420f1c 1464 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1465
1466 /* Exclude any attempts to start a new grace period. */
1467 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1468
b1420f1c
PM
1469 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1470 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1471 rcu_adopt_orphan_cbs(rsp);
1472
2036d94a
PM
1473 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1474 mask = rdp->grpmask; /* rnp->grplo is constant. */
1475 do {
1476 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1477 rnp->qsmaskinit &= ~mask;
1478 if (rnp->qsmaskinit != 0) {
1479 if (rnp != rdp->mynode)
1480 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1481 break;
1482 }
1483 if (rnp == rdp->mynode)
1484 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1485 else
1486 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1487 mask = rnp->grpmask;
1488 rnp = rnp->parent;
1489 } while (rnp != NULL);
1490
1491 /*
1492 * We still hold the leaf rcu_node structure lock here, and
1493 * irqs are still disabled. The reason for this subterfuge is
1494 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1495 * held leads to deadlock.
1496 */
1497 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1498 rnp = rdp->mynode;
1499 if (need_report & RCU_OFL_TASKS_NORM_GP)
1500 rcu_report_unblock_qs_rnp(rnp, flags);
1501 else
1502 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1503 if (need_report & RCU_OFL_TASKS_EXP_GP)
1504 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1505 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1506 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1507 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
1508}
1509
1510#else /* #ifdef CONFIG_HOTPLUG_CPU */
1511
e5601400 1512static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1513{
1514}
1515
e5601400 1516static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1517{
1518}
1519
1520#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1521
1522/*
1523 * Invoke any RCU callbacks that have made it to the end of their grace
1524 * period. Thottle as specified by rdp->blimit.
1525 */
37c72e56 1526static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1527{
1528 unsigned long flags;
1529 struct rcu_head *next, *list, **tail;
b41772ab 1530 int bl, count, count_lazy, i;
64db4cff
PM
1531
1532 /* If no callbacks are ready, just return.*/
29c00b4a 1533 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1534 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1535 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1536 need_resched(), is_idle_task(current),
1537 rcu_is_callbacks_kthread());
64db4cff 1538 return;
29c00b4a 1539 }
64db4cff
PM
1540
1541 /*
1542 * Extract the list of ready callbacks, disabling to prevent
1543 * races with call_rcu() from interrupt handlers.
1544 */
1545 local_irq_save(flags);
8146c4e2 1546 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1547 bl = rdp->blimit;
486e2593 1548 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1549 list = rdp->nxtlist;
1550 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1551 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1552 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1553 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1554 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1555 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1556 local_irq_restore(flags);
1557
1558 /* Invoke callbacks. */
486e2593 1559 count = count_lazy = 0;
64db4cff
PM
1560 while (list) {
1561 next = list->next;
1562 prefetch(next);
551d55a9 1563 debug_rcu_head_unqueue(list);
486e2593
PM
1564 if (__rcu_reclaim(rsp->name, list))
1565 count_lazy++;
64db4cff 1566 list = next;
dff1672d
PM
1567 /* Stop only if limit reached and CPU has something to do. */
1568 if (++count >= bl &&
1569 (need_resched() ||
1570 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1571 break;
1572 }
1573
1574 local_irq_save(flags);
4968c300
PM
1575 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1576 is_idle_task(current),
1577 rcu_is_callbacks_kthread());
64db4cff
PM
1578
1579 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1580 if (list != NULL) {
1581 *tail = rdp->nxtlist;
1582 rdp->nxtlist = list;
b41772ab
PM
1583 for (i = 0; i < RCU_NEXT_SIZE; i++)
1584 if (&rdp->nxtlist == rdp->nxttail[i])
1585 rdp->nxttail[i] = tail;
64db4cff
PM
1586 else
1587 break;
1588 }
b1420f1c
PM
1589 smp_mb(); /* List handling before counting for rcu_barrier(). */
1590 rdp->qlen_lazy -= count_lazy;
1d1fb395 1591 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1592 rdp->n_cbs_invoked += count;
64db4cff
PM
1593
1594 /* Reinstate batch limit if we have worked down the excess. */
1595 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1596 rdp->blimit = blimit;
1597
37c72e56
PM
1598 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1599 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1600 rdp->qlen_last_fqs_check = 0;
1601 rdp->n_force_qs_snap = rsp->n_force_qs;
1602 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1603 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1604 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1605
64db4cff
PM
1606 local_irq_restore(flags);
1607
e0f23060 1608 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1609 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1610 invoke_rcu_core();
64db4cff
PM
1611}
1612
1613/*
1614 * Check to see if this CPU is in a non-context-switch quiescent state
1615 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1616 * Also schedule RCU core processing.
64db4cff 1617 *
9b2e4f18 1618 * This function must be called from hardirq context. It is normally
64db4cff
PM
1619 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1620 * false, there is no point in invoking rcu_check_callbacks().
1621 */
1622void rcu_check_callbacks(int cpu, int user)
1623{
300df91c 1624 trace_rcu_utilization("Start scheduler-tick");
a858af28 1625 increment_cpu_stall_ticks();
9b2e4f18 1626 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1627
1628 /*
1629 * Get here if this CPU took its interrupt from user
1630 * mode or from the idle loop, and if this is not a
1631 * nested interrupt. In this case, the CPU is in
d6714c22 1632 * a quiescent state, so note it.
64db4cff
PM
1633 *
1634 * No memory barrier is required here because both
d6714c22
PM
1635 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1636 * variables that other CPUs neither access nor modify,
1637 * at least not while the corresponding CPU is online.
64db4cff
PM
1638 */
1639
d6714c22
PM
1640 rcu_sched_qs(cpu);
1641 rcu_bh_qs(cpu);
64db4cff
PM
1642
1643 } else if (!in_softirq()) {
1644
1645 /*
1646 * Get here if this CPU did not take its interrupt from
1647 * softirq, in other words, if it is not interrupting
1648 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1649 * critical section, so note it.
64db4cff
PM
1650 */
1651
d6714c22 1652 rcu_bh_qs(cpu);
64db4cff 1653 }
f41d911f 1654 rcu_preempt_check_callbacks(cpu);
d21670ac 1655 if (rcu_pending(cpu))
a46e0899 1656 invoke_rcu_core();
300df91c 1657 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1658}
1659
64db4cff
PM
1660/*
1661 * Scan the leaf rcu_node structures, processing dyntick state for any that
1662 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1663 * Also initiate boosting for any threads blocked on the root rcu_node.
1664 *
ee47eb9f 1665 * The caller must have suppressed start of new grace periods.
64db4cff 1666 */
45f014c5 1667static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1668{
1669 unsigned long bit;
1670 int cpu;
1671 unsigned long flags;
1672 unsigned long mask;
a0b6c9a7 1673 struct rcu_node *rnp;
64db4cff 1674
a0b6c9a7 1675 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1676 mask = 0;
1304afb2 1677 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1678 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1679 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1680 return;
64db4cff 1681 }
a0b6c9a7 1682 if (rnp->qsmask == 0) {
1217ed1b 1683 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1684 continue;
1685 }
a0b6c9a7 1686 cpu = rnp->grplo;
64db4cff 1687 bit = 1;
a0b6c9a7 1688 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1689 if ((rnp->qsmask & bit) != 0 &&
1690 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1691 mask |= bit;
1692 }
45f014c5 1693 if (mask != 0) {
64db4cff 1694
d3f6bad3
PM
1695 /* rcu_report_qs_rnp() releases rnp->lock. */
1696 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1697 continue;
1698 }
1304afb2 1699 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1700 }
27f4d280 1701 rnp = rcu_get_root(rsp);
1217ed1b
PM
1702 if (rnp->qsmask == 0) {
1703 raw_spin_lock_irqsave(&rnp->lock, flags);
1704 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1705 }
64db4cff
PM
1706}
1707
1708/*
1709 * Force quiescent states on reluctant CPUs, and also detect which
1710 * CPUs are in dyntick-idle mode.
1711 */
1712static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1713{
1714 unsigned long flags;
64db4cff 1715 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1716
300df91c
PM
1717 trace_rcu_utilization("Start fqs");
1718 if (!rcu_gp_in_progress(rsp)) {
1719 trace_rcu_utilization("End fqs");
64db4cff 1720 return; /* No grace period in progress, nothing to force. */
300df91c 1721 }
1304afb2 1722 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1723 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1724 trace_rcu_utilization("End fqs");
64db4cff
PM
1725 return; /* Someone else is already on the job. */
1726 }
20133cfc 1727 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1728 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1729 rsp->n_force_qs++;
1304afb2 1730 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1731 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1732 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1733 rsp->n_force_qs_ngp++;
1304afb2 1734 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1735 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1736 }
07079d53 1737 rsp->fqs_active = 1;
af446b70 1738 switch (rsp->fqs_state) {
83f5b01f 1739 case RCU_GP_IDLE:
64db4cff
PM
1740 case RCU_GP_INIT:
1741
83f5b01f 1742 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1743
1744 case RCU_SAVE_DYNTICK:
64db4cff 1745
f261414f
LJ
1746 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1747
64db4cff 1748 /* Record dyntick-idle state. */
45f014c5 1749 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1750 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1751 if (rcu_gp_in_progress(rsp))
af446b70 1752 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1753 break;
64db4cff
PM
1754
1755 case RCU_FORCE_QS:
1756
1757 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1758 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1759 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1760
1761 /* Leave state in case more forcing is required. */
1762
1304afb2 1763 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1764 break;
64db4cff 1765 }
07079d53 1766 rsp->fqs_active = 0;
46a1e34e 1767 if (rsp->fqs_need_gp) {
1304afb2 1768 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1769 rsp->fqs_need_gp = 0;
1770 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1771 trace_rcu_utilization("End fqs");
46a1e34e
PM
1772 return;
1773 }
1304afb2 1774 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1775unlock_fqs_ret:
1304afb2 1776 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1777 trace_rcu_utilization("End fqs");
64db4cff
PM
1778}
1779
64db4cff 1780/*
e0f23060
PM
1781 * This does the RCU core processing work for the specified rcu_state
1782 * and rcu_data structures. This may be called only from the CPU to
1783 * whom the rdp belongs.
64db4cff
PM
1784 */
1785static void
1bca8cf1 1786__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
1787{
1788 unsigned long flags;
1bca8cf1 1789 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 1790
2e597558
PM
1791 WARN_ON_ONCE(rdp->beenonline == 0);
1792
64db4cff
PM
1793 /*
1794 * If an RCU GP has gone long enough, go check for dyntick
1795 * idle CPUs and, if needed, send resched IPIs.
1796 */
20133cfc 1797 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1798 force_quiescent_state(rsp, 1);
1799
1800 /*
1801 * Advance callbacks in response to end of earlier grace
1802 * period that some other CPU ended.
1803 */
1804 rcu_process_gp_end(rsp, rdp);
1805
1806 /* Update RCU state based on any recent quiescent states. */
1807 rcu_check_quiescent_state(rsp, rdp);
1808
1809 /* Does this CPU require a not-yet-started grace period? */
1810 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1811 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1812 rcu_start_gp(rsp, flags); /* releases above lock */
1813 }
1814
1815 /* If there are callbacks ready, invoke them. */
09223371 1816 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1817 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1818}
1819
64db4cff 1820/*
e0f23060 1821 * Do RCU core processing for the current CPU.
64db4cff 1822 */
09223371 1823static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1824{
6ce75a23
PM
1825 struct rcu_state *rsp;
1826
300df91c 1827 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
1828 for_each_rcu_flavor(rsp)
1829 __rcu_process_callbacks(rsp);
300df91c 1830 trace_rcu_utilization("End RCU core");
64db4cff
PM
1831}
1832
a26ac245 1833/*
e0f23060
PM
1834 * Schedule RCU callback invocation. If the specified type of RCU
1835 * does not support RCU priority boosting, just do a direct call,
1836 * otherwise wake up the per-CPU kernel kthread. Note that because we
1837 * are running on the current CPU with interrupts disabled, the
1838 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1839 */
a46e0899 1840static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1841{
b0d30417
PM
1842 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1843 return;
a46e0899
PM
1844 if (likely(!rsp->boost)) {
1845 rcu_do_batch(rsp, rdp);
a26ac245
PM
1846 return;
1847 }
a46e0899 1848 invoke_rcu_callbacks_kthread();
a26ac245
PM
1849}
1850
a46e0899 1851static void invoke_rcu_core(void)
09223371
SL
1852{
1853 raise_softirq(RCU_SOFTIRQ);
1854}
1855
29154c57
PM
1856/*
1857 * Handle any core-RCU processing required by a call_rcu() invocation.
1858 */
1859static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1860 struct rcu_head *head, unsigned long flags)
64db4cff 1861{
62fde6ed
PM
1862 /*
1863 * If called from an extended quiescent state, invoke the RCU
1864 * core in order to force a re-evaluation of RCU's idleness.
1865 */
a16b7a69 1866 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
1867 invoke_rcu_core();
1868
a16b7a69 1869 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 1870 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 1871 return;
64db4cff 1872
37c72e56
PM
1873 /*
1874 * Force the grace period if too many callbacks or too long waiting.
1875 * Enforce hysteresis, and don't invoke force_quiescent_state()
1876 * if some other CPU has recently done so. Also, don't bother
1877 * invoking force_quiescent_state() if the newly enqueued callback
1878 * is the only one waiting for a grace period to complete.
1879 */
2655d57e 1880 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1881
1882 /* Are we ignoring a completed grace period? */
1883 rcu_process_gp_end(rsp, rdp);
1884 check_for_new_grace_period(rsp, rdp);
1885
1886 /* Start a new grace period if one not already started. */
1887 if (!rcu_gp_in_progress(rsp)) {
1888 unsigned long nestflag;
1889 struct rcu_node *rnp_root = rcu_get_root(rsp);
1890
1891 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1892 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1893 } else {
1894 /* Give the grace period a kick. */
1895 rdp->blimit = LONG_MAX;
1896 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1897 *rdp->nxttail[RCU_DONE_TAIL] != head)
1898 force_quiescent_state(rsp, 0);
1899 rdp->n_force_qs_snap = rsp->n_force_qs;
1900 rdp->qlen_last_fqs_check = rdp->qlen;
1901 }
20133cfc 1902 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff 1903 force_quiescent_state(rsp, 1);
29154c57
PM
1904}
1905
64db4cff
PM
1906static void
1907__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1908 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1909{
1910 unsigned long flags;
1911 struct rcu_data *rdp;
1912
0bb7b59d 1913 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1914 debug_rcu_head_queue(head);
64db4cff
PM
1915 head->func = func;
1916 head->next = NULL;
1917
1918 smp_mb(); /* Ensure RCU update seen before callback registry. */
1919
1920 /*
1921 * Opportunistically note grace-period endings and beginnings.
1922 * Note that we might see a beginning right after we see an
1923 * end, but never vice versa, since this CPU has to pass through
1924 * a quiescent state betweentimes.
1925 */
1926 local_irq_save(flags);
394f99a9 1927 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1928
1929 /* Add the callback to our list. */
29154c57 1930 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
1931 if (lazy)
1932 rdp->qlen_lazy++;
c57afe80
PM
1933 else
1934 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1935 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1936 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1937 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1938
d4c08f2a
PM
1939 if (__is_kfree_rcu_offset((unsigned long)func))
1940 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1941 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1942 else
486e2593 1943 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1944
29154c57
PM
1945 /* Go handle any RCU core processing required. */
1946 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
1947 local_irq_restore(flags);
1948}
1949
1950/*
d6714c22 1951 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1952 */
d6714c22 1953void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1954{
486e2593 1955 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1956}
d6714c22 1957EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1958
1959/*
486e2593 1960 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1961 */
1962void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1963{
486e2593 1964 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1965}
1966EXPORT_SYMBOL_GPL(call_rcu_bh);
1967
6d813391
PM
1968/*
1969 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1970 * any blocking grace-period wait automatically implies a grace period
1971 * if there is only one CPU online at any point time during execution
1972 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1973 * occasionally incorrectly indicate that there are multiple CPUs online
1974 * when there was in fact only one the whole time, as this just adds
1975 * some overhead: RCU still operates correctly.
6d813391
PM
1976 */
1977static inline int rcu_blocking_is_gp(void)
1978{
95f0c1de
PM
1979 int ret;
1980
6d813391 1981 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
1982 preempt_disable();
1983 ret = num_online_cpus() <= 1;
1984 preempt_enable();
1985 return ret;
6d813391
PM
1986}
1987
6ebb237b
PM
1988/**
1989 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1990 *
1991 * Control will return to the caller some time after a full rcu-sched
1992 * grace period has elapsed, in other words after all currently executing
1993 * rcu-sched read-side critical sections have completed. These read-side
1994 * critical sections are delimited by rcu_read_lock_sched() and
1995 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1996 * local_irq_disable(), and so on may be used in place of
1997 * rcu_read_lock_sched().
1998 *
1999 * This means that all preempt_disable code sequences, including NMI and
2000 * hardware-interrupt handlers, in progress on entry will have completed
2001 * before this primitive returns. However, this does not guarantee that
2002 * softirq handlers will have completed, since in some kernels, these
2003 * handlers can run in process context, and can block.
2004 *
2005 * This primitive provides the guarantees made by the (now removed)
2006 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2007 * guarantees that rcu_read_lock() sections will have completed.
2008 * In "classic RCU", these two guarantees happen to be one and
2009 * the same, but can differ in realtime RCU implementations.
2010 */
2011void synchronize_sched(void)
2012{
fe15d706
PM
2013 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2014 !lock_is_held(&rcu_lock_map) &&
2015 !lock_is_held(&rcu_sched_lock_map),
2016 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2017 if (rcu_blocking_is_gp())
2018 return;
2c42818e 2019 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2020}
2021EXPORT_SYMBOL_GPL(synchronize_sched);
2022
2023/**
2024 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2025 *
2026 * Control will return to the caller some time after a full rcu_bh grace
2027 * period has elapsed, in other words after all currently executing rcu_bh
2028 * read-side critical sections have completed. RCU read-side critical
2029 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2030 * and may be nested.
2031 */
2032void synchronize_rcu_bh(void)
2033{
fe15d706
PM
2034 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2035 !lock_is_held(&rcu_lock_map) &&
2036 !lock_is_held(&rcu_sched_lock_map),
2037 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2038 if (rcu_blocking_is_gp())
2039 return;
2c42818e 2040 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2041}
2042EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2043
3d3b7db0
PM
2044static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2045static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2046
2047static int synchronize_sched_expedited_cpu_stop(void *data)
2048{
2049 /*
2050 * There must be a full memory barrier on each affected CPU
2051 * between the time that try_stop_cpus() is called and the
2052 * time that it returns.
2053 *
2054 * In the current initial implementation of cpu_stop, the
2055 * above condition is already met when the control reaches
2056 * this point and the following smp_mb() is not strictly
2057 * necessary. Do smp_mb() anyway for documentation and
2058 * robustness against future implementation changes.
2059 */
2060 smp_mb(); /* See above comment block. */
2061 return 0;
2062}
2063
236fefaf
PM
2064/**
2065 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2066 *
2067 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2068 * approach to force the grace period to end quickly. This consumes
2069 * significant time on all CPUs and is unfriendly to real-time workloads,
2070 * so is thus not recommended for any sort of common-case code. In fact,
2071 * if you are using synchronize_sched_expedited() in a loop, please
2072 * restructure your code to batch your updates, and then use a single
2073 * synchronize_sched() instead.
3d3b7db0 2074 *
236fefaf
PM
2075 * Note that it is illegal to call this function while holding any lock
2076 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2077 * to call this function from a CPU-hotplug notifier. Failing to observe
2078 * these restriction will result in deadlock.
3d3b7db0
PM
2079 *
2080 * This implementation can be thought of as an application of ticket
2081 * locking to RCU, with sync_sched_expedited_started and
2082 * sync_sched_expedited_done taking on the roles of the halves
2083 * of the ticket-lock word. Each task atomically increments
2084 * sync_sched_expedited_started upon entry, snapshotting the old value,
2085 * then attempts to stop all the CPUs. If this succeeds, then each
2086 * CPU will have executed a context switch, resulting in an RCU-sched
2087 * grace period. We are then done, so we use atomic_cmpxchg() to
2088 * update sync_sched_expedited_done to match our snapshot -- but
2089 * only if someone else has not already advanced past our snapshot.
2090 *
2091 * On the other hand, if try_stop_cpus() fails, we check the value
2092 * of sync_sched_expedited_done. If it has advanced past our
2093 * initial snapshot, then someone else must have forced a grace period
2094 * some time after we took our snapshot. In this case, our work is
2095 * done for us, and we can simply return. Otherwise, we try again,
2096 * but keep our initial snapshot for purposes of checking for someone
2097 * doing our work for us.
2098 *
2099 * If we fail too many times in a row, we fall back to synchronize_sched().
2100 */
2101void synchronize_sched_expedited(void)
2102{
2103 int firstsnap, s, snap, trycount = 0;
2104
2105 /* Note that atomic_inc_return() implies full memory barrier. */
2106 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2107 get_online_cpus();
1cc85961 2108 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2109
2110 /*
2111 * Each pass through the following loop attempts to force a
2112 * context switch on each CPU.
2113 */
2114 while (try_stop_cpus(cpu_online_mask,
2115 synchronize_sched_expedited_cpu_stop,
2116 NULL) == -EAGAIN) {
2117 put_online_cpus();
2118
2119 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2120 if (trycount++ < 10) {
3d3b7db0 2121 udelay(trycount * num_online_cpus());
c701d5d9 2122 } else {
3d3b7db0
PM
2123 synchronize_sched();
2124 return;
2125 }
2126
2127 /* Check to see if someone else did our work for us. */
2128 s = atomic_read(&sync_sched_expedited_done);
2129 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2130 smp_mb(); /* ensure test happens before caller kfree */
2131 return;
2132 }
2133
2134 /*
2135 * Refetching sync_sched_expedited_started allows later
2136 * callers to piggyback on our grace period. We subtract
2137 * 1 to get the same token that the last incrementer got.
2138 * We retry after they started, so our grace period works
2139 * for them, and they started after our first try, so their
2140 * grace period works for us.
2141 */
2142 get_online_cpus();
2143 snap = atomic_read(&sync_sched_expedited_started);
2144 smp_mb(); /* ensure read is before try_stop_cpus(). */
2145 }
2146
2147 /*
2148 * Everyone up to our most recent fetch is covered by our grace
2149 * period. Update the counter, but only if our work is still
2150 * relevant -- which it won't be if someone who started later
2151 * than we did beat us to the punch.
2152 */
2153 do {
2154 s = atomic_read(&sync_sched_expedited_done);
2155 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2156 smp_mb(); /* ensure test happens before caller kfree */
2157 break;
2158 }
2159 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2160
2161 put_online_cpus();
2162}
2163EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2164
64db4cff
PM
2165/*
2166 * Check to see if there is any immediate RCU-related work to be done
2167 * by the current CPU, for the specified type of RCU, returning 1 if so.
2168 * The checks are in order of increasing expense: checks that can be
2169 * carried out against CPU-local state are performed first. However,
2170 * we must check for CPU stalls first, else we might not get a chance.
2171 */
2172static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2173{
2f51f988
PM
2174 struct rcu_node *rnp = rdp->mynode;
2175
64db4cff
PM
2176 rdp->n_rcu_pending++;
2177
2178 /* Check for CPU stalls, if enabled. */
2179 check_cpu_stall(rsp, rdp);
2180
2181 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2182 if (rcu_scheduler_fully_active &&
2183 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2184
2185 /*
2186 * If force_quiescent_state() coming soon and this CPU
2187 * needs a quiescent state, and this is either RCU-sched
2188 * or RCU-bh, force a local reschedule.
2189 */
d21670ac 2190 rdp->n_rp_qs_pending++;
6cc68793 2191 if (!rdp->preemptible &&
d25eb944
PM
2192 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2193 jiffies))
2194 set_need_resched();
e4cc1f22 2195 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2196 rdp->n_rp_report_qs++;
64db4cff 2197 return 1;
7ba5c840 2198 }
64db4cff
PM
2199
2200 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2201 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2202 rdp->n_rp_cb_ready++;
64db4cff 2203 return 1;
7ba5c840 2204 }
64db4cff
PM
2205
2206 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2207 if (cpu_needs_another_gp(rsp, rdp)) {
2208 rdp->n_rp_cpu_needs_gp++;
64db4cff 2209 return 1;
7ba5c840 2210 }
64db4cff
PM
2211
2212 /* Has another RCU grace period completed? */
2f51f988 2213 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2214 rdp->n_rp_gp_completed++;
64db4cff 2215 return 1;
7ba5c840 2216 }
64db4cff
PM
2217
2218 /* Has a new RCU grace period started? */
2f51f988 2219 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2220 rdp->n_rp_gp_started++;
64db4cff 2221 return 1;
7ba5c840 2222 }
64db4cff
PM
2223
2224 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2225 if (rcu_gp_in_progress(rsp) &&
20133cfc 2226 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2227 rdp->n_rp_need_fqs++;
64db4cff 2228 return 1;
7ba5c840 2229 }
64db4cff
PM
2230
2231 /* nothing to do */
7ba5c840 2232 rdp->n_rp_need_nothing++;
64db4cff
PM
2233 return 0;
2234}
2235
2236/*
2237 * Check to see if there is any immediate RCU-related work to be done
2238 * by the current CPU, returning 1 if so. This function is part of the
2239 * RCU implementation; it is -not- an exported member of the RCU API.
2240 */
a157229c 2241static int rcu_pending(int cpu)
64db4cff 2242{
6ce75a23
PM
2243 struct rcu_state *rsp;
2244
2245 for_each_rcu_flavor(rsp)
2246 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2247 return 1;
2248 return 0;
64db4cff
PM
2249}
2250
2251/*
2252 * Check to see if any future RCU-related work will need to be done
2253 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2254 * 1 if so.
64db4cff 2255 */
aea1b35e 2256static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2257{
6ce75a23
PM
2258 struct rcu_state *rsp;
2259
64db4cff 2260 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2261 for_each_rcu_flavor(rsp)
2262 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2263 return 1;
2264 return 0;
64db4cff
PM
2265}
2266
a83eff0a
PM
2267/*
2268 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2269 * the compiler is expected to optimize this away.
2270 */
2271static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2272 int cpu, unsigned long done)
2273{
2274 trace_rcu_barrier(rsp->name, s, cpu,
2275 atomic_read(&rsp->barrier_cpu_count), done);
2276}
2277
b1420f1c
PM
2278/*
2279 * RCU callback function for _rcu_barrier(). If we are last, wake
2280 * up the task executing _rcu_barrier().
2281 */
24ebbca8 2282static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2283{
24ebbca8
PM
2284 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2285 struct rcu_state *rsp = rdp->rsp;
2286
a83eff0a
PM
2287 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2288 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2289 complete(&rsp->barrier_completion);
a83eff0a
PM
2290 } else {
2291 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2292 }
d0ec774c
PM
2293}
2294
2295/*
2296 * Called with preemption disabled, and from cross-cpu IRQ context.
2297 */
2298static void rcu_barrier_func(void *type)
2299{
037b64ed 2300 struct rcu_state *rsp = type;
06668efa 2301 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2302
a83eff0a 2303 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2304 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2305 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2306}
2307
d0ec774c
PM
2308/*
2309 * Orchestrate the specified type of RCU barrier, waiting for all
2310 * RCU callbacks of the specified type to complete.
2311 */
037b64ed 2312static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2313{
b1420f1c 2314 int cpu;
b1420f1c 2315 struct rcu_data *rdp;
cf3a9c48
PM
2316 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2317 unsigned long snap_done;
b1420f1c 2318
a83eff0a 2319 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2320
e74f4c45 2321 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2322 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2323
cf3a9c48
PM
2324 /*
2325 * Ensure that all prior references, including to ->n_barrier_done,
2326 * are ordered before the _rcu_barrier() machinery.
2327 */
2328 smp_mb(); /* See above block comment. */
2329
2330 /*
2331 * Recheck ->n_barrier_done to see if others did our work for us.
2332 * This means checking ->n_barrier_done for an even-to-odd-to-even
2333 * transition. The "if" expression below therefore rounds the old
2334 * value up to the next even number and adds two before comparing.
2335 */
2336 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2337 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2338 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2339 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2340 smp_mb(); /* caller's subsequent code after above check. */
2341 mutex_unlock(&rsp->barrier_mutex);
2342 return;
2343 }
2344
2345 /*
2346 * Increment ->n_barrier_done to avoid duplicate work. Use
2347 * ACCESS_ONCE() to prevent the compiler from speculating
2348 * the increment to precede the early-exit check.
2349 */
2350 ACCESS_ONCE(rsp->n_barrier_done)++;
2351 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2352 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2353 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2354
d0ec774c 2355 /*
b1420f1c
PM
2356 * Initialize the count to one rather than to zero in order to
2357 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2358 * (or preemption of this task). Exclude CPU-hotplug operations
2359 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2360 */
7db74df8 2361 init_completion(&rsp->barrier_completion);
24ebbca8 2362 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2363 get_online_cpus();
b1420f1c
PM
2364
2365 /*
1331e7a1
PM
2366 * Force each CPU with callbacks to register a new callback.
2367 * When that callback is invoked, we will know that all of the
2368 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2369 */
1331e7a1 2370 for_each_online_cpu(cpu) {
b1420f1c 2371 rdp = per_cpu_ptr(rsp->rda, cpu);
1331e7a1 2372 if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2373 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2374 rsp->n_barrier_done);
037b64ed 2375 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2376 } else {
a83eff0a
PM
2377 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2378 rsp->n_barrier_done);
b1420f1c
PM
2379 }
2380 }
1331e7a1 2381 put_online_cpus();
b1420f1c
PM
2382
2383 /*
2384 * Now that we have an rcu_barrier_callback() callback on each
2385 * CPU, and thus each counted, remove the initial count.
2386 */
24ebbca8 2387 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2388 complete(&rsp->barrier_completion);
b1420f1c 2389
cf3a9c48
PM
2390 /* Increment ->n_barrier_done to prevent duplicate work. */
2391 smp_mb(); /* Keep increment after above mechanism. */
2392 ACCESS_ONCE(rsp->n_barrier_done)++;
2393 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2394 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2395 smp_mb(); /* Keep increment before caller's subsequent code. */
2396
b1420f1c 2397 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2398 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2399
2400 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2401 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2402}
d0ec774c
PM
2403
2404/**
2405 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2406 */
2407void rcu_barrier_bh(void)
2408{
037b64ed 2409 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2410}
2411EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2412
2413/**
2414 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2415 */
2416void rcu_barrier_sched(void)
2417{
037b64ed 2418 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2419}
2420EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2421
64db4cff 2422/*
27569620 2423 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2424 */
27569620
PM
2425static void __init
2426rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2427{
2428 unsigned long flags;
394f99a9 2429 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2430 struct rcu_node *rnp = rcu_get_root(rsp);
2431
2432 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2433 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2434 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2435 init_callback_list(rdp);
486e2593 2436 rdp->qlen_lazy = 0;
1d1fb395 2437 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2438 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2439 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2440 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2441 rdp->cpu = cpu;
d4c08f2a 2442 rdp->rsp = rsp;
1304afb2 2443 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2444}
2445
2446/*
2447 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2448 * offline event can be happening at a given time. Note also that we
2449 * can accept some slop in the rsp->completed access due to the fact
2450 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2451 */
e4fa4c97 2452static void __cpuinit
6cc68793 2453rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2454{
2455 unsigned long flags;
64db4cff 2456 unsigned long mask;
394f99a9 2457 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2458 struct rcu_node *rnp = rcu_get_root(rsp);
2459
2460 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2461 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2462 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2463 rdp->preemptible = preemptible;
37c72e56
PM
2464 rdp->qlen_last_fqs_check = 0;
2465 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2466 rdp->blimit = blimit;
29e37d81 2467 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2468 atomic_set(&rdp->dynticks->dynticks,
2469 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2470 rcu_prepare_for_idle_init(cpu);
1304afb2 2471 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2472
2473 /*
2474 * A new grace period might start here. If so, we won't be part
2475 * of it, but that is OK, as we are currently in a quiescent state.
2476 */
2477
2478 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2479 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2480
2481 /* Add CPU to rcu_node bitmasks. */
2482 rnp = rdp->mynode;
2483 mask = rdp->grpmask;
2484 do {
2485 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2486 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2487 rnp->qsmaskinit |= mask;
2488 mask = rnp->grpmask;
d09b62df 2489 if (rnp == rdp->mynode) {
06ae115a
PM
2490 /*
2491 * If there is a grace period in progress, we will
2492 * set up to wait for it next time we run the
2493 * RCU core code.
2494 */
2495 rdp->gpnum = rnp->completed;
d09b62df 2496 rdp->completed = rnp->completed;
06ae115a
PM
2497 rdp->passed_quiesce = 0;
2498 rdp->qs_pending = 0;
e4cc1f22 2499 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2500 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2501 }
1304afb2 2502 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2503 rnp = rnp->parent;
2504 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2505
1304afb2 2506 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2507}
2508
d72bce0e 2509static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2510{
6ce75a23
PM
2511 struct rcu_state *rsp;
2512
2513 for_each_rcu_flavor(rsp)
2514 rcu_init_percpu_data(cpu, rsp,
2515 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2516}
2517
2518/*
f41d911f 2519 * Handle CPU online/offline notification events.
64db4cff 2520 */
9f680ab4
PM
2521static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2522 unsigned long action, void *hcpu)
64db4cff
PM
2523{
2524 long cpu = (long)hcpu;
27f4d280 2525 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2526 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2527 struct rcu_state *rsp;
64db4cff 2528
300df91c 2529 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2530 switch (action) {
2531 case CPU_UP_PREPARE:
2532 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2533 rcu_prepare_cpu(cpu);
2534 rcu_prepare_kthreads(cpu);
a26ac245
PM
2535 break;
2536 case CPU_ONLINE:
0f962a5e
PM
2537 case CPU_DOWN_FAILED:
2538 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2539 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2540 break;
2541 case CPU_DOWN_PREPARE:
2542 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2543 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2544 break;
d0ec774c
PM
2545 case CPU_DYING:
2546 case CPU_DYING_FROZEN:
2547 /*
2d999e03
PM
2548 * The whole machine is "stopped" except this CPU, so we can
2549 * touch any data without introducing corruption. We send the
2550 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2551 */
6ce75a23
PM
2552 for_each_rcu_flavor(rsp)
2553 rcu_cleanup_dying_cpu(rsp);
7cb92499 2554 rcu_cleanup_after_idle(cpu);
d0ec774c 2555 break;
64db4cff
PM
2556 case CPU_DEAD:
2557 case CPU_DEAD_FROZEN:
2558 case CPU_UP_CANCELED:
2559 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2560 for_each_rcu_flavor(rsp)
2561 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2562 break;
2563 default:
2564 break;
2565 }
300df91c 2566 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2567 return NOTIFY_OK;
2568}
2569
bbad9379
PM
2570/*
2571 * This function is invoked towards the end of the scheduler's initialization
2572 * process. Before this is called, the idle task might contain
2573 * RCU read-side critical sections (during which time, this idle
2574 * task is booting the system). After this function is called, the
2575 * idle tasks are prohibited from containing RCU read-side critical
2576 * sections. This function also enables RCU lockdep checking.
2577 */
2578void rcu_scheduler_starting(void)
2579{
2580 WARN_ON(num_online_cpus() != 1);
2581 WARN_ON(nr_context_switches() > 0);
2582 rcu_scheduler_active = 1;
2583}
2584
64db4cff
PM
2585/*
2586 * Compute the per-level fanout, either using the exact fanout specified
2587 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2588 */
2589#ifdef CONFIG_RCU_FANOUT_EXACT
2590static void __init rcu_init_levelspread(struct rcu_state *rsp)
2591{
2592 int i;
2593
f885b7f2 2594 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2595 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2596 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2597}
2598#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2599static void __init rcu_init_levelspread(struct rcu_state *rsp)
2600{
2601 int ccur;
2602 int cprv;
2603 int i;
2604
2605 cprv = NR_CPUS;
f885b7f2 2606 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2607 ccur = rsp->levelcnt[i];
2608 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2609 cprv = ccur;
2610 }
2611}
2612#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2613
2614/*
2615 * Helper function for rcu_init() that initializes one rcu_state structure.
2616 */
394f99a9
LJ
2617static void __init rcu_init_one(struct rcu_state *rsp,
2618 struct rcu_data __percpu *rda)
64db4cff 2619{
b6407e86
PM
2620 static char *buf[] = { "rcu_node_level_0",
2621 "rcu_node_level_1",
2622 "rcu_node_level_2",
2623 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2624 int cpustride = 1;
2625 int i;
2626 int j;
2627 struct rcu_node *rnp;
2628
b6407e86
PM
2629 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2630
64db4cff
PM
2631 /* Initialize the level-tracking arrays. */
2632
f885b7f2
PM
2633 for (i = 0; i < rcu_num_lvls; i++)
2634 rsp->levelcnt[i] = num_rcu_lvl[i];
2635 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2636 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2637 rcu_init_levelspread(rsp);
2638
2639 /* Initialize the elements themselves, starting from the leaves. */
2640
f885b7f2 2641 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2642 cpustride *= rsp->levelspread[i];
2643 rnp = rsp->level[i];
2644 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2645 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2646 lockdep_set_class_and_name(&rnp->lock,
2647 &rcu_node_class[i], buf[i]);
f41d911f 2648 rnp->gpnum = 0;
64db4cff
PM
2649 rnp->qsmask = 0;
2650 rnp->qsmaskinit = 0;
2651 rnp->grplo = j * cpustride;
2652 rnp->grphi = (j + 1) * cpustride - 1;
2653 if (rnp->grphi >= NR_CPUS)
2654 rnp->grphi = NR_CPUS - 1;
2655 if (i == 0) {
2656 rnp->grpnum = 0;
2657 rnp->grpmask = 0;
2658 rnp->parent = NULL;
2659 } else {
2660 rnp->grpnum = j % rsp->levelspread[i - 1];
2661 rnp->grpmask = 1UL << rnp->grpnum;
2662 rnp->parent = rsp->level[i - 1] +
2663 j / rsp->levelspread[i - 1];
2664 }
2665 rnp->level = i;
12f5f524 2666 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2667 }
2668 }
0c34029a 2669
394f99a9 2670 rsp->rda = rda;
f885b7f2 2671 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2672 for_each_possible_cpu(i) {
4a90a068 2673 while (i > rnp->grphi)
0c34029a 2674 rnp++;
394f99a9 2675 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2676 rcu_boot_init_percpu_data(i, rsp);
2677 }
6ce75a23 2678 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2679}
2680
f885b7f2
PM
2681/*
2682 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2683 * replace the definitions in rcutree.h because those are needed to size
2684 * the ->node array in the rcu_state structure.
2685 */
2686static void __init rcu_init_geometry(void)
2687{
2688 int i;
2689 int j;
cca6f393 2690 int n = nr_cpu_ids;
f885b7f2
PM
2691 int rcu_capacity[MAX_RCU_LVLS + 1];
2692
2693 /* If the compile-time values are accurate, just leave. */
2694 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2695 return;
2696
2697 /*
2698 * Compute number of nodes that can be handled an rcu_node tree
2699 * with the given number of levels. Setting rcu_capacity[0] makes
2700 * some of the arithmetic easier.
2701 */
2702 rcu_capacity[0] = 1;
2703 rcu_capacity[1] = rcu_fanout_leaf;
2704 for (i = 2; i <= MAX_RCU_LVLS; i++)
2705 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2706
2707 /*
2708 * The boot-time rcu_fanout_leaf parameter is only permitted
2709 * to increase the leaf-level fanout, not decrease it. Of course,
2710 * the leaf-level fanout cannot exceed the number of bits in
2711 * the rcu_node masks. Finally, the tree must be able to accommodate
2712 * the configured number of CPUs. Complain and fall back to the
2713 * compile-time values if these limits are exceeded.
2714 */
2715 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2716 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2717 n > rcu_capacity[MAX_RCU_LVLS]) {
2718 WARN_ON(1);
2719 return;
2720 }
2721
2722 /* Calculate the number of rcu_nodes at each level of the tree. */
2723 for (i = 1; i <= MAX_RCU_LVLS; i++)
2724 if (n <= rcu_capacity[i]) {
2725 for (j = 0; j <= i; j++)
2726 num_rcu_lvl[j] =
2727 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2728 rcu_num_lvls = i;
2729 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2730 num_rcu_lvl[j] = 0;
2731 break;
2732 }
2733
2734 /* Calculate the total number of rcu_node structures. */
2735 rcu_num_nodes = 0;
2736 for (i = 0; i <= MAX_RCU_LVLS; i++)
2737 rcu_num_nodes += num_rcu_lvl[i];
2738 rcu_num_nodes -= n;
2739}
2740
9f680ab4 2741void __init rcu_init(void)
64db4cff 2742{
017c4261 2743 int cpu;
9f680ab4 2744
f41d911f 2745 rcu_bootup_announce();
f885b7f2 2746 rcu_init_geometry();
394f99a9
LJ
2747 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2748 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2749 __rcu_init_preempt();
09223371 2750 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2751
2752 /*
2753 * We don't need protection against CPU-hotplug here because
2754 * this is called early in boot, before either interrupts
2755 * or the scheduler are operational.
2756 */
2757 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2758 for_each_online_cpu(cpu)
2759 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2760 check_cpu_stall_init();
64db4cff
PM
2761}
2762
1eba8f84 2763#include "rcutree_plugin.h"
This page took 0.393625 seconds and 5 git commands to generate.