rcu: Fix rcu_lock_map build failure on CONFIG_PROVE_LOCKING=y
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49
9f77da9f
PM
50#include "rcutree.h"
51
64db4cff
PM
52/* Data structures. */
53
54#define RCU_STATE_INITIALIZER(name) { \
55 .level = { &name.node[0] }, \
56 .levelcnt = { \
57 NUM_RCU_LVL_0, /* root of hierarchy. */ \
58 NUM_RCU_LVL_1, \
59 NUM_RCU_LVL_2, \
60 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
61 }, \
62 .signaled = RCU_SIGNAL_INIT, \
63 .gpnum = -300, \
64 .completed = -300, \
65 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
66 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
67 .n_force_qs = 0, \
68 .n_force_qs_ngp = 0, \
69}
70
d6714c22
PM
71struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
72DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 73
6258c4fb
IM
74struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
75DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 76
f41d911f 77
fc2219d4
PM
78/*
79 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
80 * permit this function to be invoked without holding the root rcu_node
81 * structure's ->lock, but of course results can be subject to change.
82 */
83static int rcu_gp_in_progress(struct rcu_state *rsp)
84{
85 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
86}
87
b1f77b05 88/*
d6714c22 89 * Note a quiescent state. Because we do not need to know
b1f77b05 90 * how many quiescent states passed, just if there was at least
d6714c22 91 * one since the start of the grace period, this just sets a flag.
b1f77b05 92 */
d6714c22 93void rcu_sched_qs(int cpu)
b1f77b05 94{
f41d911f
PM
95 struct rcu_data *rdp;
96
f41d911f 97 rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05 98 rdp->passed_quiesc_completed = rdp->completed;
c3422bea
PM
99 barrier();
100 rdp->passed_quiesc = 1;
101 rcu_preempt_note_context_switch(cpu);
b1f77b05
IM
102}
103
d6714c22 104void rcu_bh_qs(int cpu)
b1f77b05 105{
f41d911f
PM
106 struct rcu_data *rdp;
107
f41d911f 108 rdp = &per_cpu(rcu_bh_data, cpu);
b1f77b05 109 rdp->passed_quiesc_completed = rdp->completed;
c3422bea
PM
110 barrier();
111 rdp->passed_quiesc = 1;
b1f77b05 112}
64db4cff
PM
113
114#ifdef CONFIG_NO_HZ
90a4d2c0
PM
115DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
116 .dynticks_nesting = 1,
117 .dynticks = 1,
118};
64db4cff
PM
119#endif /* #ifdef CONFIG_NO_HZ */
120
121static int blimit = 10; /* Maximum callbacks per softirq. */
122static int qhimark = 10000; /* If this many pending, ignore blimit. */
123static int qlowmark = 100; /* Once only this many pending, use blimit. */
124
125static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 126static int rcu_pending(int cpu);
64db4cff
PM
127
128/*
d6714c22 129 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 130 */
d6714c22 131long rcu_batches_completed_sched(void)
64db4cff 132{
d6714c22 133 return rcu_sched_state.completed;
64db4cff 134}
d6714c22 135EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
136
137/*
138 * Return the number of RCU BH batches processed thus far for debug & stats.
139 */
140long rcu_batches_completed_bh(void)
141{
142 return rcu_bh_state.completed;
143}
144EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
145
146/*
147 * Does the CPU have callbacks ready to be invoked?
148 */
149static int
150cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
151{
152 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
153}
154
155/*
156 * Does the current CPU require a yet-as-unscheduled grace period?
157 */
158static int
159cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
160{
fc2219d4 161 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
162}
163
164/*
165 * Return the root node of the specified rcu_state structure.
166 */
167static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
168{
169 return &rsp->node[0];
170}
171
172#ifdef CONFIG_SMP
173
174/*
175 * If the specified CPU is offline, tell the caller that it is in
176 * a quiescent state. Otherwise, whack it with a reschedule IPI.
177 * Grace periods can end up waiting on an offline CPU when that
178 * CPU is in the process of coming online -- it will be added to the
179 * rcu_node bitmasks before it actually makes it online. The same thing
180 * can happen while a CPU is in the process of coming online. Because this
181 * race is quite rare, we check for it after detecting that the grace
182 * period has been delayed rather than checking each and every CPU
183 * each and every time we start a new grace period.
184 */
185static int rcu_implicit_offline_qs(struct rcu_data *rdp)
186{
187 /*
188 * If the CPU is offline, it is in a quiescent state. We can
189 * trust its state not to change because interrupts are disabled.
190 */
191 if (cpu_is_offline(rdp->cpu)) {
192 rdp->offline_fqs++;
193 return 1;
194 }
195
f41d911f
PM
196 /* If preemptable RCU, no point in sending reschedule IPI. */
197 if (rdp->preemptable)
198 return 0;
199
64db4cff
PM
200 /* The CPU is online, so send it a reschedule IPI. */
201 if (rdp->cpu != smp_processor_id())
202 smp_send_reschedule(rdp->cpu);
203 else
204 set_need_resched();
205 rdp->resched_ipi++;
206 return 0;
207}
208
209#endif /* #ifdef CONFIG_SMP */
210
211#ifdef CONFIG_NO_HZ
64db4cff
PM
212
213/**
214 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
215 *
216 * Enter nohz mode, in other words, -leave- the mode in which RCU
217 * read-side critical sections can occur. (Though RCU read-side
218 * critical sections can occur in irq handlers in nohz mode, a possibility
219 * handled by rcu_irq_enter() and rcu_irq_exit()).
220 */
221void rcu_enter_nohz(void)
222{
223 unsigned long flags;
224 struct rcu_dynticks *rdtp;
225
226 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
227 local_irq_save(flags);
228 rdtp = &__get_cpu_var(rcu_dynticks);
229 rdtp->dynticks++;
230 rdtp->dynticks_nesting--;
86848966 231 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
232 local_irq_restore(flags);
233}
234
235/*
236 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
237 *
238 * Exit nohz mode, in other words, -enter- the mode in which RCU
239 * read-side critical sections normally occur.
240 */
241void rcu_exit_nohz(void)
242{
243 unsigned long flags;
244 struct rcu_dynticks *rdtp;
245
246 local_irq_save(flags);
247 rdtp = &__get_cpu_var(rcu_dynticks);
248 rdtp->dynticks++;
249 rdtp->dynticks_nesting++;
86848966 250 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
251 local_irq_restore(flags);
252 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
253}
254
255/**
256 * rcu_nmi_enter - inform RCU of entry to NMI context
257 *
258 * If the CPU was idle with dynamic ticks active, and there is no
259 * irq handler running, this updates rdtp->dynticks_nmi to let the
260 * RCU grace-period handling know that the CPU is active.
261 */
262void rcu_nmi_enter(void)
263{
264 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
265
266 if (rdtp->dynticks & 0x1)
267 return;
268 rdtp->dynticks_nmi++;
86848966 269 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
270 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
271}
272
273/**
274 * rcu_nmi_exit - inform RCU of exit from NMI context
275 *
276 * If the CPU was idle with dynamic ticks active, and there is no
277 * irq handler running, this updates rdtp->dynticks_nmi to let the
278 * RCU grace-period handling know that the CPU is no longer active.
279 */
280void rcu_nmi_exit(void)
281{
282 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
283
284 if (rdtp->dynticks & 0x1)
285 return;
286 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
287 rdtp->dynticks_nmi++;
86848966 288 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
289}
290
291/**
292 * rcu_irq_enter - inform RCU of entry to hard irq context
293 *
294 * If the CPU was idle with dynamic ticks active, this updates the
295 * rdtp->dynticks to let the RCU handling know that the CPU is active.
296 */
297void rcu_irq_enter(void)
298{
299 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
300
301 if (rdtp->dynticks_nesting++)
302 return;
303 rdtp->dynticks++;
86848966 304 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
305 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
306}
307
308/**
309 * rcu_irq_exit - inform RCU of exit from hard irq context
310 *
311 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
312 * to put let the RCU handling be aware that the CPU is going back to idle
313 * with no ticks.
314 */
315void rcu_irq_exit(void)
316{
317 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
318
319 if (--rdtp->dynticks_nesting)
320 return;
321 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
322 rdtp->dynticks++;
86848966 323 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
324
325 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 326 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
327 __get_cpu_var(rcu_bh_data).nxtlist)
328 set_need_resched();
329}
330
331/*
332 * Record the specified "completed" value, which is later used to validate
333 * dynticks counter manipulations. Specify "rsp->completed - 1" to
334 * unconditionally invalidate any future dynticks manipulations (which is
335 * useful at the beginning of a grace period).
336 */
337static void dyntick_record_completed(struct rcu_state *rsp, long comp)
338{
339 rsp->dynticks_completed = comp;
340}
341
342#ifdef CONFIG_SMP
343
344/*
345 * Recall the previously recorded value of the completion for dynticks.
346 */
347static long dyntick_recall_completed(struct rcu_state *rsp)
348{
349 return rsp->dynticks_completed;
350}
351
352/*
353 * Snapshot the specified CPU's dynticks counter so that we can later
354 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 355 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
356 */
357static int dyntick_save_progress_counter(struct rcu_data *rdp)
358{
359 int ret;
360 int snap;
361 int snap_nmi;
362
363 snap = rdp->dynticks->dynticks;
364 snap_nmi = rdp->dynticks->dynticks_nmi;
365 smp_mb(); /* Order sampling of snap with end of grace period. */
366 rdp->dynticks_snap = snap;
367 rdp->dynticks_nmi_snap = snap_nmi;
368 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
369 if (ret)
370 rdp->dynticks_fqs++;
371 return ret;
372}
373
374/*
375 * Return true if the specified CPU has passed through a quiescent
376 * state by virtue of being in or having passed through an dynticks
377 * idle state since the last call to dyntick_save_progress_counter()
378 * for this same CPU.
379 */
380static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
381{
382 long curr;
383 long curr_nmi;
384 long snap;
385 long snap_nmi;
386
387 curr = rdp->dynticks->dynticks;
388 snap = rdp->dynticks_snap;
389 curr_nmi = rdp->dynticks->dynticks_nmi;
390 snap_nmi = rdp->dynticks_nmi_snap;
391 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
392
393 /*
394 * If the CPU passed through or entered a dynticks idle phase with
395 * no active irq/NMI handlers, then we can safely pretend that the CPU
396 * already acknowledged the request to pass through a quiescent
397 * state. Either way, that CPU cannot possibly be in an RCU
398 * read-side critical section that started before the beginning
399 * of the current RCU grace period.
400 */
401 if ((curr != snap || (curr & 0x1) == 0) &&
402 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
403 rdp->dynticks_fqs++;
404 return 1;
405 }
406
407 /* Go check for the CPU being offline. */
408 return rcu_implicit_offline_qs(rdp);
409}
410
411#endif /* #ifdef CONFIG_SMP */
412
413#else /* #ifdef CONFIG_NO_HZ */
414
415static void dyntick_record_completed(struct rcu_state *rsp, long comp)
416{
417}
418
419#ifdef CONFIG_SMP
420
421/*
422 * If there are no dynticks, then the only way that a CPU can passively
423 * be in a quiescent state is to be offline. Unlike dynticks idle, which
424 * is a point in time during the prior (already finished) grace period,
425 * an offline CPU is always in a quiescent state, and thus can be
426 * unconditionally applied. So just return the current value of completed.
427 */
428static long dyntick_recall_completed(struct rcu_state *rsp)
429{
430 return rsp->completed;
431}
432
433static int dyntick_save_progress_counter(struct rcu_data *rdp)
434{
435 return 0;
436}
437
438static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
439{
440 return rcu_implicit_offline_qs(rdp);
441}
442
443#endif /* #ifdef CONFIG_SMP */
444
445#endif /* #else #ifdef CONFIG_NO_HZ */
446
447#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
448
449static void record_gp_stall_check_time(struct rcu_state *rsp)
450{
451 rsp->gp_start = jiffies;
452 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
453}
454
455static void print_other_cpu_stall(struct rcu_state *rsp)
456{
457 int cpu;
458 long delta;
459 unsigned long flags;
460 struct rcu_node *rnp = rcu_get_root(rsp);
461 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
462 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
463
464 /* Only let one CPU complain about others per time interval. */
465
466 spin_lock_irqsave(&rnp->lock, flags);
467 delta = jiffies - rsp->jiffies_stall;
fc2219d4 468 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
64db4cff
PM
469 spin_unlock_irqrestore(&rnp->lock, flags);
470 return;
471 }
472 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
473 spin_unlock_irqrestore(&rnp->lock, flags);
474
475 /* OK, time to rat on our buddy... */
476
477 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
478 for (; rnp_cur < rnp_end; rnp_cur++) {
f41d911f 479 rcu_print_task_stall(rnp);
64db4cff
PM
480 if (rnp_cur->qsmask == 0)
481 continue;
482 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
483 if (rnp_cur->qsmask & (1UL << cpu))
484 printk(" %d", rnp_cur->grplo + cpu);
485 }
486 printk(" (detected by %d, t=%ld jiffies)\n",
487 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
488 trigger_all_cpu_backtrace();
489
64db4cff
PM
490 force_quiescent_state(rsp, 0); /* Kick them all. */
491}
492
493static void print_cpu_stall(struct rcu_state *rsp)
494{
495 unsigned long flags;
496 struct rcu_node *rnp = rcu_get_root(rsp);
497
498 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
499 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
500 trigger_all_cpu_backtrace();
501
64db4cff
PM
502 spin_lock_irqsave(&rnp->lock, flags);
503 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
504 rsp->jiffies_stall =
505 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
506 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 507
64db4cff
PM
508 set_need_resched(); /* kick ourselves to get things going. */
509}
510
511static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
512{
513 long delta;
514 struct rcu_node *rnp;
515
516 delta = jiffies - rsp->jiffies_stall;
517 rnp = rdp->mynode;
518 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
519
520 /* We haven't checked in, so go dump stack. */
521 print_cpu_stall(rsp);
522
fc2219d4 523 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
524
525 /* They had two time units to dump stack, so complain. */
526 print_other_cpu_stall(rsp);
527 }
528}
529
530#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
531
532static void record_gp_stall_check_time(struct rcu_state *rsp)
533{
534}
535
536static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
537{
538}
539
540#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
541
542/*
543 * Update CPU-local rcu_data state to record the newly noticed grace period.
544 * This is used both when we started the grace period and when we notice
545 * that someone else started the grace period.
546 */
547static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
548{
549 rdp->qs_pending = 1;
550 rdp->passed_quiesc = 0;
551 rdp->gpnum = rsp->gpnum;
64db4cff
PM
552}
553
554/*
555 * Did someone else start a new RCU grace period start since we last
556 * checked? Update local state appropriately if so. Must be called
557 * on the CPU corresponding to rdp.
558 */
559static int
560check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
561{
562 unsigned long flags;
563 int ret = 0;
564
565 local_irq_save(flags);
566 if (rdp->gpnum != rsp->gpnum) {
567 note_new_gpnum(rsp, rdp);
568 ret = 1;
569 }
570 local_irq_restore(flags);
571 return ret;
572}
573
574/*
575 * Start a new RCU grace period if warranted, re-initializing the hierarchy
576 * in preparation for detecting the next grace period. The caller must hold
577 * the root node's ->lock, which is released before return. Hard irqs must
578 * be disabled.
579 */
580static void
581rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
582 __releases(rcu_get_root(rsp)->lock)
583{
584 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
585 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
586
587 if (!cpu_needs_another_gp(rsp, rdp)) {
588 spin_unlock_irqrestore(&rnp->lock, flags);
589 return;
590 }
591
592 /* Advance to a new grace period and initialize state. */
593 rsp->gpnum++;
c3422bea 594 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
595 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
596 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
597 record_gp_stall_check_time(rsp);
598 dyntick_record_completed(rsp, rsp->completed - 1);
599 note_new_gpnum(rsp, rdp);
600
601 /*
1eba8f84
PM
602 * Because this CPU just now started the new grace period, we know
603 * that all of its callbacks will be covered by this upcoming grace
604 * period, even the ones that were registered arbitrarily recently.
605 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
606 *
607 * Other CPUs cannot be sure exactly when the grace period started.
608 * Therefore, their recently registered callbacks must pass through
609 * an additional RCU_NEXT_READY stage, so that they will be handled
610 * by the next RCU grace period.
64db4cff
PM
611 */
612 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
613 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
614
615 /* Special-case the common single-level case. */
616 if (NUM_RCU_NODES == 1) {
b0e165c0 617 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 618 rnp->qsmask = rnp->qsmaskinit;
de078d87 619 rnp->gpnum = rsp->gpnum;
c12172c0 620 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
621 spin_unlock_irqrestore(&rnp->lock, flags);
622 return;
623 }
624
625 spin_unlock(&rnp->lock); /* leave irqs disabled. */
626
627
628 /* Exclude any concurrent CPU-hotplug operations. */
629 spin_lock(&rsp->onofflock); /* irqs already disabled. */
630
631 /*
b835db1f
PM
632 * Set the quiescent-state-needed bits in all the rcu_node
633 * structures for all currently online CPUs in breadth-first
634 * order, starting from the root rcu_node structure. This
635 * operation relies on the layout of the hierarchy within the
636 * rsp->node[] array. Note that other CPUs will access only
637 * the leaves of the hierarchy, which still indicate that no
638 * grace period is in progress, at least until the corresponding
639 * leaf node has been initialized. In addition, we have excluded
640 * CPU-hotplug operations.
64db4cff
PM
641 *
642 * Note that the grace period cannot complete until we finish
643 * the initialization process, as there will be at least one
644 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
645 * one corresponding to this CPU, due to the fact that we have
646 * irqs disabled.
64db4cff 647 */
49e29126
PM
648 for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) {
649 spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 650 rcu_preempt_check_blocked_tasks(rnp);
49e29126 651 rnp->qsmask = rnp->qsmaskinit;
de078d87 652 rnp->gpnum = rsp->gpnum;
49e29126 653 spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
654 }
655
656 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
657 spin_unlock_irqrestore(&rsp->onofflock, flags);
658}
659
660/*
661 * Advance this CPU's callbacks, but only if the current grace period
662 * has ended. This may be called only from the CPU to whom the rdp
663 * belongs.
664 */
665static void
666rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
667{
668 long completed_snap;
669 unsigned long flags;
670
671 local_irq_save(flags);
672 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
673
674 /* Did another grace period end? */
675 if (rdp->completed != completed_snap) {
676
677 /* Advance callbacks. No harm if list empty. */
678 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
679 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
680 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
681
682 /* Remember that we saw this grace-period completion. */
683 rdp->completed = completed_snap;
684 }
685 local_irq_restore(flags);
686}
687
f41d911f
PM
688/*
689 * Clean up after the prior grace period and let rcu_start_gp() start up
690 * the next grace period if one is needed. Note that the caller must
691 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
692 */
693static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
fc2219d4 694 __releases(rcu_get_root(rsp)->lock)
f41d911f 695{
fc2219d4 696 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f
PM
697 rsp->completed = rsp->gpnum;
698 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
699 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
700}
701
64db4cff
PM
702/*
703 * Similar to cpu_quiet(), for which it is a helper function. Allows
704 * a group of CPUs to be quieted at one go, though all the CPUs in the
705 * group must be represented by the same leaf rcu_node structure.
706 * That structure's lock must be held upon entry, and it is released
707 * before return.
708 */
709static void
710cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
711 unsigned long flags)
712 __releases(rnp->lock)
713{
28ecd580
PM
714 struct rcu_node *rnp_c;
715
64db4cff
PM
716 /* Walk up the rcu_node hierarchy. */
717 for (;;) {
718 if (!(rnp->qsmask & mask)) {
719
720 /* Our bit has already been cleared, so done. */
721 spin_unlock_irqrestore(&rnp->lock, flags);
722 return;
723 }
724 rnp->qsmask &= ~mask;
f41d911f 725 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
726
727 /* Other bits still set at this level, so done. */
728 spin_unlock_irqrestore(&rnp->lock, flags);
729 return;
730 }
731 mask = rnp->grpmask;
732 if (rnp->parent == NULL) {
733
734 /* No more levels. Exit loop holding root lock. */
735
736 break;
737 }
738 spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 739 rnp_c = rnp;
64db4cff
PM
740 rnp = rnp->parent;
741 spin_lock_irqsave(&rnp->lock, flags);
28ecd580 742 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
743 }
744
745 /*
746 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
747 * state for this grace period. Invoke cpu_quiet_msk_finish()
748 * to clean up and start the next grace period if one is needed.
64db4cff 749 */
f41d911f 750 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
751}
752
753/*
754 * Record a quiescent state for the specified CPU, which must either be
e7d8842e
PM
755 * the current CPU. The lastcomp argument is used to make sure we are
756 * still in the grace period of interest. We don't want to end the current
757 * grace period based on quiescent states detected in an earlier grace
758 * period!
64db4cff
PM
759 */
760static void
761cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
762{
763 unsigned long flags;
764 unsigned long mask;
765 struct rcu_node *rnp;
766
767 rnp = rdp->mynode;
768 spin_lock_irqsave(&rnp->lock, flags);
769 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
770
771 /*
772 * Someone beat us to it for this grace period, so leave.
773 * The race with GP start is resolved by the fact that we
774 * hold the leaf rcu_node lock, so that the per-CPU bits
775 * cannot yet be initialized -- so we would simply find our
776 * CPU's bit already cleared in cpu_quiet_msk() if this race
777 * occurred.
778 */
779 rdp->passed_quiesc = 0; /* try again later! */
780 spin_unlock_irqrestore(&rnp->lock, flags);
781 return;
782 }
783 mask = rdp->grpmask;
784 if ((rnp->qsmask & mask) == 0) {
785 spin_unlock_irqrestore(&rnp->lock, flags);
786 } else {
787 rdp->qs_pending = 0;
788
789 /*
790 * This GP can't end until cpu checks in, so all of our
791 * callbacks can be processed during the next GP.
792 */
64db4cff
PM
793 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
794
795 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
796 }
797}
798
799/*
800 * Check to see if there is a new grace period of which this CPU
801 * is not yet aware, and if so, set up local rcu_data state for it.
802 * Otherwise, see if this CPU has just passed through its first
803 * quiescent state for this grace period, and record that fact if so.
804 */
805static void
806rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
807{
808 /* If there is now a new grace period, record and return. */
809 if (check_for_new_grace_period(rsp, rdp))
810 return;
811
812 /*
813 * Does this CPU still need to do its part for current grace period?
814 * If no, return and let the other CPUs do their part as well.
815 */
816 if (!rdp->qs_pending)
817 return;
818
819 /*
820 * Was there a quiescent state since the beginning of the grace
821 * period? If no, then exit and wait for the next call.
822 */
823 if (!rdp->passed_quiesc)
824 return;
825
826 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
827 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
828}
829
830#ifdef CONFIG_HOTPLUG_CPU
831
832/*
833 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
834 * and move all callbacks from the outgoing CPU to the current one.
835 */
836static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
837{
838 int i;
839 unsigned long flags;
840 long lastcomp;
841 unsigned long mask;
842 struct rcu_data *rdp = rsp->rda[cpu];
843 struct rcu_data *rdp_me;
844 struct rcu_node *rnp;
845
846 /* Exclude any attempts to start a new grace period. */
847 spin_lock_irqsave(&rsp->onofflock, flags);
848
849 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 850 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
851 mask = rdp->grpmask; /* rnp->grplo is constant. */
852 do {
853 spin_lock(&rnp->lock); /* irqs already disabled. */
854 rnp->qsmaskinit &= ~mask;
855 if (rnp->qsmaskinit != 0) {
f41d911f 856 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
857 break;
858 }
28ecd580 859 rcu_preempt_offline_tasks(rsp, rnp, rdp);
64db4cff 860 mask = rnp->grpmask;
f41d911f 861 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
862 rnp = rnp->parent;
863 } while (rnp != NULL);
864 lastcomp = rsp->completed;
865
866 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
867
64db4cff
PM
868 /*
869 * Move callbacks from the outgoing CPU to the running CPU.
1eba8f84 870 * Note that the outgoing CPU is now quiescent, so it is now
d6714c22 871 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
872 * Note also that we must carefully retain the order of the
873 * outgoing CPU's callbacks in order for rcu_barrier() to work
874 * correctly. Finally, note that we start all the callbacks
875 * afresh, even those that have passed through a grace period
876 * and are therefore ready to invoke. The theory is that hotplug
877 * events are rare, and that if they are frequent enough to
878 * indefinitely delay callbacks, you have far worse things to
879 * be worrying about.
880 */
881 rdp_me = rsp->rda[smp_processor_id()];
882 if (rdp->nxtlist != NULL) {
883 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
884 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
885 rdp->nxtlist = NULL;
886 for (i = 0; i < RCU_NEXT_SIZE; i++)
887 rdp->nxttail[i] = &rdp->nxtlist;
888 rdp_me->qlen += rdp->qlen;
889 rdp->qlen = 0;
890 }
891 local_irq_restore(flags);
892}
893
894/*
895 * Remove the specified CPU from the RCU hierarchy and move any pending
896 * callbacks that it might have to the current CPU. This code assumes
897 * that at least one CPU in the system will remain running at all times.
898 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
899 */
900static void rcu_offline_cpu(int cpu)
901{
d6714c22 902 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 903 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 904 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
905}
906
907#else /* #ifdef CONFIG_HOTPLUG_CPU */
908
909static void rcu_offline_cpu(int cpu)
910{
911}
912
913#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
914
915/*
916 * Invoke any RCU callbacks that have made it to the end of their grace
917 * period. Thottle as specified by rdp->blimit.
918 */
919static void rcu_do_batch(struct rcu_data *rdp)
920{
921 unsigned long flags;
922 struct rcu_head *next, *list, **tail;
923 int count;
924
925 /* If no callbacks are ready, just return.*/
926 if (!cpu_has_callbacks_ready_to_invoke(rdp))
927 return;
928
929 /*
930 * Extract the list of ready callbacks, disabling to prevent
931 * races with call_rcu() from interrupt handlers.
932 */
933 local_irq_save(flags);
934 list = rdp->nxtlist;
935 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
936 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
937 tail = rdp->nxttail[RCU_DONE_TAIL];
938 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
939 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
940 rdp->nxttail[count] = &rdp->nxtlist;
941 local_irq_restore(flags);
942
943 /* Invoke callbacks. */
944 count = 0;
945 while (list) {
946 next = list->next;
947 prefetch(next);
948 list->func(list);
949 list = next;
950 if (++count >= rdp->blimit)
951 break;
952 }
953
954 local_irq_save(flags);
955
956 /* Update count, and requeue any remaining callbacks. */
957 rdp->qlen -= count;
958 if (list != NULL) {
959 *tail = rdp->nxtlist;
960 rdp->nxtlist = list;
961 for (count = 0; count < RCU_NEXT_SIZE; count++)
962 if (&rdp->nxtlist == rdp->nxttail[count])
963 rdp->nxttail[count] = tail;
964 else
965 break;
966 }
967
968 /* Reinstate batch limit if we have worked down the excess. */
969 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
970 rdp->blimit = blimit;
971
972 local_irq_restore(flags);
973
974 /* Re-raise the RCU softirq if there are callbacks remaining. */
975 if (cpu_has_callbacks_ready_to_invoke(rdp))
976 raise_softirq(RCU_SOFTIRQ);
977}
978
979/*
980 * Check to see if this CPU is in a non-context-switch quiescent state
981 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
982 * Also schedule the RCU softirq handler.
983 *
984 * This function must be called with hardirqs disabled. It is normally
985 * invoked from the scheduling-clock interrupt. If rcu_pending returns
986 * false, there is no point in invoking rcu_check_callbacks().
987 */
988void rcu_check_callbacks(int cpu, int user)
989{
a157229c
PM
990 if (!rcu_pending(cpu))
991 return; /* if nothing for RCU to do. */
64db4cff 992 if (user ||
a6826048
PM
993 (idle_cpu(cpu) && rcu_scheduler_active &&
994 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
995
996 /*
997 * Get here if this CPU took its interrupt from user
998 * mode or from the idle loop, and if this is not a
999 * nested interrupt. In this case, the CPU is in
d6714c22 1000 * a quiescent state, so note it.
64db4cff
PM
1001 *
1002 * No memory barrier is required here because both
d6714c22
PM
1003 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1004 * variables that other CPUs neither access nor modify,
1005 * at least not while the corresponding CPU is online.
64db4cff
PM
1006 */
1007
d6714c22
PM
1008 rcu_sched_qs(cpu);
1009 rcu_bh_qs(cpu);
64db4cff
PM
1010
1011 } else if (!in_softirq()) {
1012
1013 /*
1014 * Get here if this CPU did not take its interrupt from
1015 * softirq, in other words, if it is not interrupting
1016 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1017 * critical section, so note it.
64db4cff
PM
1018 */
1019
d6714c22 1020 rcu_bh_qs(cpu);
64db4cff 1021 }
f41d911f 1022 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1023 raise_softirq(RCU_SOFTIRQ);
1024}
1025
1026#ifdef CONFIG_SMP
1027
1028/*
1029 * Scan the leaf rcu_node structures, processing dyntick state for any that
1030 * have not yet encountered a quiescent state, using the function specified.
1031 * Returns 1 if the current grace period ends while scanning (possibly
1032 * because we made it end).
1033 */
1034static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1035 int (*f)(struct rcu_data *))
1036{
1037 unsigned long bit;
1038 int cpu;
1039 unsigned long flags;
1040 unsigned long mask;
1041 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1042 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1043
1044 for (; rnp_cur < rnp_end; rnp_cur++) {
1045 mask = 0;
1046 spin_lock_irqsave(&rnp_cur->lock, flags);
1047 if (rsp->completed != lastcomp) {
1048 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1049 return 1;
1050 }
1051 if (rnp_cur->qsmask == 0) {
1052 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1053 continue;
1054 }
1055 cpu = rnp_cur->grplo;
1056 bit = 1;
1057 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1058 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1059 mask |= bit;
1060 }
1061 if (mask != 0 && rsp->completed == lastcomp) {
1062
1063 /* cpu_quiet_msk() releases rnp_cur->lock. */
1064 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1065 continue;
1066 }
1067 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1068 }
1069 return 0;
1070}
1071
1072/*
1073 * Force quiescent states on reluctant CPUs, and also detect which
1074 * CPUs are in dyntick-idle mode.
1075 */
1076static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1077{
1078 unsigned long flags;
1079 long lastcomp;
64db4cff
PM
1080 struct rcu_node *rnp = rcu_get_root(rsp);
1081 u8 signaled;
1082
fc2219d4 1083 if (!rcu_gp_in_progress(rsp))
64db4cff
PM
1084 return; /* No grace period in progress, nothing to force. */
1085 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1086 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1087 return; /* Someone else is already on the job. */
1088 }
1089 if (relaxed &&
ef631b0c 1090 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1091 goto unlock_ret; /* no emergency and done recently. */
1092 rsp->n_force_qs++;
1093 spin_lock(&rnp->lock);
1094 lastcomp = rsp->completed;
1095 signaled = rsp->signaled;
1096 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1097 if (lastcomp == rsp->gpnum) {
1098 rsp->n_force_qs_ngp++;
1099 spin_unlock(&rnp->lock);
1100 goto unlock_ret; /* no GP in progress, time updated. */
1101 }
1102 spin_unlock(&rnp->lock);
1103 switch (signaled) {
1104 case RCU_GP_INIT:
1105
1106 break; /* grace period still initializing, ignore. */
1107
1108 case RCU_SAVE_DYNTICK:
1109
1110 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1111 break; /* So gcc recognizes the dead code. */
1112
1113 /* Record dyntick-idle state. */
1114 if (rcu_process_dyntick(rsp, lastcomp,
1115 dyntick_save_progress_counter))
1116 goto unlock_ret;
1117
1118 /* Update state, record completion counter. */
1119 spin_lock(&rnp->lock);
1120 if (lastcomp == rsp->completed) {
1121 rsp->signaled = RCU_FORCE_QS;
1122 dyntick_record_completed(rsp, lastcomp);
1123 }
1124 spin_unlock(&rnp->lock);
1125 break;
1126
1127 case RCU_FORCE_QS:
1128
1129 /* Check dyntick-idle state, send IPI to laggarts. */
1130 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1131 rcu_implicit_dynticks_qs))
1132 goto unlock_ret;
1133
1134 /* Leave state in case more forcing is required. */
1135
1136 break;
1137 }
1138unlock_ret:
1139 spin_unlock_irqrestore(&rsp->fqslock, flags);
1140}
1141
1142#else /* #ifdef CONFIG_SMP */
1143
1144static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1145{
1146 set_need_resched();
1147}
1148
1149#endif /* #else #ifdef CONFIG_SMP */
1150
1151/*
1152 * This does the RCU processing work from softirq context for the
1153 * specified rcu_state and rcu_data structures. This may be called
1154 * only from the CPU to whom the rdp belongs.
1155 */
1156static void
1157__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1158{
1159 unsigned long flags;
1160
2e597558
PM
1161 WARN_ON_ONCE(rdp->beenonline == 0);
1162
64db4cff
PM
1163 /*
1164 * If an RCU GP has gone long enough, go check for dyntick
1165 * idle CPUs and, if needed, send resched IPIs.
1166 */
ef631b0c 1167 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1168 force_quiescent_state(rsp, 1);
1169
1170 /*
1171 * Advance callbacks in response to end of earlier grace
1172 * period that some other CPU ended.
1173 */
1174 rcu_process_gp_end(rsp, rdp);
1175
1176 /* Update RCU state based on any recent quiescent states. */
1177 rcu_check_quiescent_state(rsp, rdp);
1178
1179 /* Does this CPU require a not-yet-started grace period? */
1180 if (cpu_needs_another_gp(rsp, rdp)) {
1181 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1182 rcu_start_gp(rsp, flags); /* releases above lock */
1183 }
1184
1185 /* If there are callbacks ready, invoke them. */
1186 rcu_do_batch(rdp);
1187}
1188
1189/*
1190 * Do softirq processing for the current CPU.
1191 */
1192static void rcu_process_callbacks(struct softirq_action *unused)
1193{
1194 /*
1195 * Memory references from any prior RCU read-side critical sections
1196 * executed by the interrupted code must be seen before any RCU
1197 * grace-period manipulations below.
1198 */
1199 smp_mb(); /* See above block comment. */
1200
d6714c22
PM
1201 __rcu_process_callbacks(&rcu_sched_state,
1202 &__get_cpu_var(rcu_sched_data));
64db4cff 1203 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1204 rcu_preempt_process_callbacks();
64db4cff
PM
1205
1206 /*
1207 * Memory references from any later RCU read-side critical sections
1208 * executed by the interrupted code must be seen after any RCU
1209 * grace-period manipulations above.
1210 */
1211 smp_mb(); /* See above block comment. */
1212}
1213
1214static void
1215__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1216 struct rcu_state *rsp)
1217{
1218 unsigned long flags;
1219 struct rcu_data *rdp;
1220
1221 head->func = func;
1222 head->next = NULL;
1223
1224 smp_mb(); /* Ensure RCU update seen before callback registry. */
1225
1226 /*
1227 * Opportunistically note grace-period endings and beginnings.
1228 * Note that we might see a beginning right after we see an
1229 * end, but never vice versa, since this CPU has to pass through
1230 * a quiescent state betweentimes.
1231 */
1232 local_irq_save(flags);
1233 rdp = rsp->rda[smp_processor_id()];
1234 rcu_process_gp_end(rsp, rdp);
1235 check_for_new_grace_period(rsp, rdp);
1236
1237 /* Add the callback to our list. */
1238 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1239 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1240
1241 /* Start a new grace period if one not already started. */
fc2219d4 1242 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1243 unsigned long nestflag;
1244 struct rcu_node *rnp_root = rcu_get_root(rsp);
1245
1246 spin_lock_irqsave(&rnp_root->lock, nestflag);
1247 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1248 }
1249
1250 /* Force the grace period if too many callbacks or too long waiting. */
1251 if (unlikely(++rdp->qlen > qhimark)) {
1252 rdp->blimit = LONG_MAX;
1253 force_quiescent_state(rsp, 0);
ef631b0c 1254 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1255 force_quiescent_state(rsp, 1);
1256 local_irq_restore(flags);
1257}
1258
1259/*
d6714c22 1260 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1261 */
d6714c22 1262void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1263{
d6714c22 1264 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1265}
d6714c22 1266EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1267
1268/*
1269 * Queue an RCU for invocation after a quicker grace period.
1270 */
1271void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1272{
1273 __call_rcu(head, func, &rcu_bh_state);
1274}
1275EXPORT_SYMBOL_GPL(call_rcu_bh);
1276
1277/*
1278 * Check to see if there is any immediate RCU-related work to be done
1279 * by the current CPU, for the specified type of RCU, returning 1 if so.
1280 * The checks are in order of increasing expense: checks that can be
1281 * carried out against CPU-local state are performed first. However,
1282 * we must check for CPU stalls first, else we might not get a chance.
1283 */
1284static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1285{
1286 rdp->n_rcu_pending++;
1287
1288 /* Check for CPU stalls, if enabled. */
1289 check_cpu_stall(rsp, rdp);
1290
1291 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1292 if (rdp->qs_pending) {
1293 rdp->n_rp_qs_pending++;
64db4cff 1294 return 1;
7ba5c840 1295 }
64db4cff
PM
1296
1297 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1298 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1299 rdp->n_rp_cb_ready++;
64db4cff 1300 return 1;
7ba5c840 1301 }
64db4cff
PM
1302
1303 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1304 if (cpu_needs_another_gp(rsp, rdp)) {
1305 rdp->n_rp_cpu_needs_gp++;
64db4cff 1306 return 1;
7ba5c840 1307 }
64db4cff
PM
1308
1309 /* Has another RCU grace period completed? */
7ba5c840
PM
1310 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1311 rdp->n_rp_gp_completed++;
64db4cff 1312 return 1;
7ba5c840 1313 }
64db4cff
PM
1314
1315 /* Has a new RCU grace period started? */
7ba5c840
PM
1316 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1317 rdp->n_rp_gp_started++;
64db4cff 1318 return 1;
7ba5c840 1319 }
64db4cff
PM
1320
1321 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1322 if (rcu_gp_in_progress(rsp) &&
7ba5c840
PM
1323 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1324 rdp->n_rp_need_fqs++;
64db4cff 1325 return 1;
7ba5c840 1326 }
64db4cff
PM
1327
1328 /* nothing to do */
7ba5c840 1329 rdp->n_rp_need_nothing++;
64db4cff
PM
1330 return 0;
1331}
1332
1333/*
1334 * Check to see if there is any immediate RCU-related work to be done
1335 * by the current CPU, returning 1 if so. This function is part of the
1336 * RCU implementation; it is -not- an exported member of the RCU API.
1337 */
a157229c 1338static int rcu_pending(int cpu)
64db4cff 1339{
d6714c22 1340 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1341 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1342 rcu_preempt_pending(cpu);
64db4cff
PM
1343}
1344
1345/*
1346 * Check to see if any future RCU-related work will need to be done
1347 * by the current CPU, even if none need be done immediately, returning
1348 * 1 if so. This function is part of the RCU implementation; it is -not-
1349 * an exported member of the RCU API.
1350 */
1351int rcu_needs_cpu(int cpu)
1352{
1353 /* RCU callbacks either ready or pending? */
d6714c22 1354 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1355 per_cpu(rcu_bh_data, cpu).nxtlist ||
1356 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1357}
1358
1359/*
27569620 1360 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1361 */
27569620
PM
1362static void __init
1363rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1364{
1365 unsigned long flags;
1366 int i;
27569620
PM
1367 struct rcu_data *rdp = rsp->rda[cpu];
1368 struct rcu_node *rnp = rcu_get_root(rsp);
1369
1370 /* Set up local state, ensuring consistent view of global state. */
1371 spin_lock_irqsave(&rnp->lock, flags);
1372 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1373 rdp->nxtlist = NULL;
1374 for (i = 0; i < RCU_NEXT_SIZE; i++)
1375 rdp->nxttail[i] = &rdp->nxtlist;
1376 rdp->qlen = 0;
1377#ifdef CONFIG_NO_HZ
1378 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1379#endif /* #ifdef CONFIG_NO_HZ */
1380 rdp->cpu = cpu;
1381 spin_unlock_irqrestore(&rnp->lock, flags);
1382}
1383
1384/*
1385 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1386 * offline event can be happening at a given time. Note also that we
1387 * can accept some slop in the rsp->completed access due to the fact
1388 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1389 */
e4fa4c97 1390static void __cpuinit
f41d911f 1391rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1392{
1393 unsigned long flags;
64db4cff
PM
1394 long lastcomp;
1395 unsigned long mask;
1396 struct rcu_data *rdp = rsp->rda[cpu];
1397 struct rcu_node *rnp = rcu_get_root(rsp);
1398
1399 /* Set up local state, ensuring consistent view of global state. */
1400 spin_lock_irqsave(&rnp->lock, flags);
1401 lastcomp = rsp->completed;
1402 rdp->completed = lastcomp;
1403 rdp->gpnum = lastcomp;
1404 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1405 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1406 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1407 rdp->preemptable = preemptable;
64db4cff 1408 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1409 rdp->blimit = blimit;
64db4cff
PM
1410 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1411
1412 /*
1413 * A new grace period might start here. If so, we won't be part
1414 * of it, but that is OK, as we are currently in a quiescent state.
1415 */
1416
1417 /* Exclude any attempts to start a new GP on large systems. */
1418 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1419
1420 /* Add CPU to rcu_node bitmasks. */
1421 rnp = rdp->mynode;
1422 mask = rdp->grpmask;
1423 do {
1424 /* Exclude any attempts to start a new GP on small systems. */
1425 spin_lock(&rnp->lock); /* irqs already disabled. */
1426 rnp->qsmaskinit |= mask;
1427 mask = rnp->grpmask;
1428 spin_unlock(&rnp->lock); /* irqs already disabled. */
1429 rnp = rnp->parent;
1430 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1431
e7d8842e 1432 spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1433}
1434
1435static void __cpuinit rcu_online_cpu(int cpu)
1436{
f41d911f
PM
1437 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1438 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1439 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1440}
1441
1442/*
f41d911f 1443 * Handle CPU online/offline notification events.
64db4cff 1444 */
2e597558
PM
1445int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1446 unsigned long action, void *hcpu)
64db4cff
PM
1447{
1448 long cpu = (long)hcpu;
1449
1450 switch (action) {
1451 case CPU_UP_PREPARE:
1452 case CPU_UP_PREPARE_FROZEN:
1453 rcu_online_cpu(cpu);
1454 break;
1455 case CPU_DEAD:
1456 case CPU_DEAD_FROZEN:
1457 case CPU_UP_CANCELED:
1458 case CPU_UP_CANCELED_FROZEN:
1459 rcu_offline_cpu(cpu);
1460 break;
1461 default:
1462 break;
1463 }
1464 return NOTIFY_OK;
1465}
1466
1467/*
1468 * Compute the per-level fanout, either using the exact fanout specified
1469 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1470 */
1471#ifdef CONFIG_RCU_FANOUT_EXACT
1472static void __init rcu_init_levelspread(struct rcu_state *rsp)
1473{
1474 int i;
1475
1476 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1477 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1478}
1479#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1480static void __init rcu_init_levelspread(struct rcu_state *rsp)
1481{
1482 int ccur;
1483 int cprv;
1484 int i;
1485
1486 cprv = NR_CPUS;
1487 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1488 ccur = rsp->levelcnt[i];
1489 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1490 cprv = ccur;
1491 }
1492}
1493#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1494
1495/*
1496 * Helper function for rcu_init() that initializes one rcu_state structure.
1497 */
1498static void __init rcu_init_one(struct rcu_state *rsp)
1499{
1500 int cpustride = 1;
1501 int i;
1502 int j;
1503 struct rcu_node *rnp;
1504
1505 /* Initialize the level-tracking arrays. */
1506
1507 for (i = 1; i < NUM_RCU_LVLS; i++)
1508 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1509 rcu_init_levelspread(rsp);
1510
1511 /* Initialize the elements themselves, starting from the leaves. */
1512
1513 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1514 cpustride *= rsp->levelspread[i];
1515 rnp = rsp->level[i];
1516 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1517 spin_lock_init(&rnp->lock);
f41d911f 1518 rnp->gpnum = 0;
64db4cff
PM
1519 rnp->qsmask = 0;
1520 rnp->qsmaskinit = 0;
1521 rnp->grplo = j * cpustride;
1522 rnp->grphi = (j + 1) * cpustride - 1;
1523 if (rnp->grphi >= NR_CPUS)
1524 rnp->grphi = NR_CPUS - 1;
1525 if (i == 0) {
1526 rnp->grpnum = 0;
1527 rnp->grpmask = 0;
1528 rnp->parent = NULL;
1529 } else {
1530 rnp->grpnum = j % rsp->levelspread[i - 1];
1531 rnp->grpmask = 1UL << rnp->grpnum;
1532 rnp->parent = rsp->level[i - 1] +
1533 j / rsp->levelspread[i - 1];
1534 }
1535 rnp->level = i;
f41d911f
PM
1536 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1537 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1538 }
1539 }
1540}
1541
1542/*
f41d911f
PM
1543 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1544 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1545 * structure.
64db4cff 1546 */
65cf8f86 1547#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1548do { \
65cf8f86 1549 rcu_init_one(rsp); \
64db4cff
PM
1550 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1551 j = 0; \
1552 for_each_possible_cpu(i) { \
1553 if (i > rnp[j].grphi) \
1554 j++; \
1555 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1556 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1557 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1558 } \
1559} while (0)
1560
64db4cff
PM
1561void __init __rcu_init(void)
1562{
f41d911f 1563 int i; /* All used by RCU_INIT_FLAVOR(). */
64db4cff
PM
1564 int j;
1565 struct rcu_node *rnp;
1566
f41d911f 1567 rcu_bootup_announce();
64db4cff
PM
1568#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1569 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1570#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1571 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1572 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1573 __rcu_init_preempt();
2e597558 1574 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1575}
1576
1eba8f84
PM
1577#include "rcutree_plugin.h"
1578
64db4cff
PM
1579module_param(blimit, int, 0);
1580module_param(qhimark, int, 0);
1581module_param(qlowmark, int, 0);
This page took 0.140858 seconds and 5 git commands to generate.