nohz_full: Add full-system-idle arguments to API
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
64db4cff 57
9f77da9f 58#include "rcutree.h"
29c00b4a
PM
59#include <trace/events/rcu.h>
60
61#include "rcu.h"
9f77da9f 62
f7f7bac9
SRRH
63/*
64 * Strings used in tracepoints need to be exported via the
65 * tracing system such that tools like perf and trace-cmd can
66 * translate the string address pointers to actual text.
67 */
68#define TPS(x) tracepoint_string(x)
69
64db4cff
PM
70/* Data structures. */
71
f885b7f2 72static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 73static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 74
f7f7bac9
SRRH
75/*
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
82 */
a41bfeb2 83#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
84static char sname##_varname[] = #sname; \
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 86struct rcu_state sname##_state = { \
6c90cc7b 87 .level = { &sname##_state.node[0] }, \
037b64ed 88 .call = cr, \
af446b70 89 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
90 .gpnum = 0UL - 300UL, \
91 .completed = 0UL - 300UL, \
7b2e6011 92 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
93 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
94 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 95 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 96 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 97 .name = sname##_varname, \
a4889858 98 .abbr = sabbr, \
a41bfeb2
SRRH
99}; \
100DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 101
a41bfeb2
SRRH
102RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
103RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 104
27f4d280 105static struct rcu_state *rcu_state;
6ce75a23 106LIST_HEAD(rcu_struct_flavors);
27f4d280 107
f885b7f2
PM
108/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
109static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 110module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
113 NUM_RCU_LVL_0,
114 NUM_RCU_LVL_1,
115 NUM_RCU_LVL_2,
116 NUM_RCU_LVL_3,
117 NUM_RCU_LVL_4,
118};
119int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120
b0d30417
PM
121/*
122 * The rcu_scheduler_active variable transitions from zero to one just
123 * before the first task is spawned. So when this variable is zero, RCU
124 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 125 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
126 * is one, RCU must actually do all the hard work required to detect real
127 * grace periods. This variable is also used to suppress boot-time false
128 * positives from lockdep-RCU error checking.
129 */
bbad9379
PM
130int rcu_scheduler_active __read_mostly;
131EXPORT_SYMBOL_GPL(rcu_scheduler_active);
132
b0d30417
PM
133/*
134 * The rcu_scheduler_fully_active variable transitions from zero to one
135 * during the early_initcall() processing, which is after the scheduler
136 * is capable of creating new tasks. So RCU processing (for example,
137 * creating tasks for RCU priority boosting) must be delayed until after
138 * rcu_scheduler_fully_active transitions from zero to one. We also
139 * currently delay invocation of any RCU callbacks until after this point.
140 *
141 * It might later prove better for people registering RCU callbacks during
142 * early boot to take responsibility for these callbacks, but one step at
143 * a time.
144 */
145static int rcu_scheduler_fully_active __read_mostly;
146
a46e0899
PM
147#ifdef CONFIG_RCU_BOOST
148
a26ac245
PM
149/*
150 * Control variables for per-CPU and per-rcu_node kthreads. These
151 * handle all flavors of RCU.
152 */
153static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 156DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 157
a46e0899
PM
158#endif /* #ifdef CONFIG_RCU_BOOST */
159
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 163
4a298656
PM
164/*
165 * Track the rcutorture test sequence number and the update version
166 * number within a given test. The rcutorture_testseq is incremented
167 * on every rcutorture module load and unload, so has an odd value
168 * when a test is running. The rcutorture_vernum is set to zero
169 * when rcutorture starts and is incremented on each rcutorture update.
170 * These variables enable correlating rcutorture output with the
171 * RCU tracing information.
172 */
173unsigned long rcutorture_testseq;
174unsigned long rcutorture_vernum;
175
fc2219d4
PM
176/*
177 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
178 * permit this function to be invoked without holding the root rcu_node
179 * structure's ->lock, but of course results can be subject to change.
180 */
181static int rcu_gp_in_progress(struct rcu_state *rsp)
182{
183 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
184}
185
b1f77b05 186/*
d6714c22 187 * Note a quiescent state. Because we do not need to know
b1f77b05 188 * how many quiescent states passed, just if there was at least
d6714c22 189 * one since the start of the grace period, this just sets a flag.
e4cc1f22 190 * The caller must have disabled preemption.
b1f77b05 191 */
d6714c22 192void rcu_sched_qs(int cpu)
b1f77b05 193{
25502a6c 194 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 195
e4cc1f22 196 if (rdp->passed_quiesce == 0)
f7f7bac9 197 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 198 rdp->passed_quiesce = 1;
b1f77b05
IM
199}
200
d6714c22 201void rcu_bh_qs(int cpu)
b1f77b05 202{
25502a6c 203 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 204
e4cc1f22 205 if (rdp->passed_quiesce == 0)
f7f7bac9 206 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 207 rdp->passed_quiesce = 1;
b1f77b05 208}
64db4cff 209
25502a6c
PM
210/*
211 * Note a context switch. This is a quiescent state for RCU-sched,
212 * and requires special handling for preemptible RCU.
e4cc1f22 213 * The caller must have disabled preemption.
25502a6c
PM
214 */
215void rcu_note_context_switch(int cpu)
216{
f7f7bac9 217 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 218 rcu_sched_qs(cpu);
cba6d0d6 219 rcu_preempt_note_context_switch(cpu);
f7f7bac9 220 trace_rcu_utilization(TPS("End context switch"));
25502a6c 221}
29ce8310 222EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 223
90a4d2c0 224DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 225 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 226 .dynticks = ATOMIC_INIT(1),
2333210b
PM
227#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
228 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
229 .dynticks_idle = ATOMIC_INIT(1),
230#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 231};
64db4cff 232
878d7439
ED
233static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
234static long qhimark = 10000; /* If this many pending, ignore blimit. */
235static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 236
878d7439
ED
237module_param(blimit, long, 0444);
238module_param(qhimark, long, 0444);
239module_param(qlowmark, long, 0444);
3d76c082 240
026ad283
PM
241static ulong jiffies_till_first_fqs = ULONG_MAX;
242static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
243
244module_param(jiffies_till_first_fqs, ulong, 0644);
245module_param(jiffies_till_next_fqs, ulong, 0644);
246
910ee45d
PM
247static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
248 struct rcu_data *rdp);
217af2a2
PM
249static void force_qs_rnp(struct rcu_state *rsp,
250 int (*f)(struct rcu_data *rsp, bool *isidle,
251 unsigned long *maxj),
252 bool *isidle, unsigned long *maxj);
4cdfc175 253static void force_quiescent_state(struct rcu_state *rsp);
a157229c 254static int rcu_pending(int cpu);
64db4cff
PM
255
256/*
d6714c22 257 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 258 */
d6714c22 259long rcu_batches_completed_sched(void)
64db4cff 260{
d6714c22 261 return rcu_sched_state.completed;
64db4cff 262}
d6714c22 263EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
264
265/*
266 * Return the number of RCU BH batches processed thus far for debug & stats.
267 */
268long rcu_batches_completed_bh(void)
269{
270 return rcu_bh_state.completed;
271}
272EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
273
bf66f18e
PM
274/*
275 * Force a quiescent state for RCU BH.
276 */
277void rcu_bh_force_quiescent_state(void)
278{
4cdfc175 279 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
280}
281EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
282
4a298656
PM
283/*
284 * Record the number of times rcutorture tests have been initiated and
285 * terminated. This information allows the debugfs tracing stats to be
286 * correlated to the rcutorture messages, even when the rcutorture module
287 * is being repeatedly loaded and unloaded. In other words, we cannot
288 * store this state in rcutorture itself.
289 */
290void rcutorture_record_test_transition(void)
291{
292 rcutorture_testseq++;
293 rcutorture_vernum = 0;
294}
295EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
296
297/*
298 * Record the number of writer passes through the current rcutorture test.
299 * This is also used to correlate debugfs tracing stats with the rcutorture
300 * messages.
301 */
302void rcutorture_record_progress(unsigned long vernum)
303{
304 rcutorture_vernum++;
305}
306EXPORT_SYMBOL_GPL(rcutorture_record_progress);
307
bf66f18e
PM
308/*
309 * Force a quiescent state for RCU-sched.
310 */
311void rcu_sched_force_quiescent_state(void)
312{
4cdfc175 313 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
314}
315EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
316
64db4cff
PM
317/*
318 * Does the CPU have callbacks ready to be invoked?
319 */
320static int
321cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
322{
3fbfbf7a
PM
323 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
324 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
325}
326
327/*
dc35c893
PM
328 * Does the current CPU require a not-yet-started grace period?
329 * The caller must have disabled interrupts to prevent races with
330 * normal callback registry.
64db4cff
PM
331 */
332static int
333cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
334{
dc35c893 335 int i;
3fbfbf7a 336
dc35c893
PM
337 if (rcu_gp_in_progress(rsp))
338 return 0; /* No, a grace period is already in progress. */
dae6e64d 339 if (rcu_nocb_needs_gp(rsp))
34ed6246 340 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
341 if (!rdp->nxttail[RCU_NEXT_TAIL])
342 return 0; /* No, this is a no-CBs (or offline) CPU. */
343 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
344 return 1; /* Yes, this CPU has newly registered callbacks. */
345 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
346 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
347 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
348 rdp->nxtcompleted[i]))
349 return 1; /* Yes, CBs for future grace period. */
350 return 0; /* No grace period needed. */
64db4cff
PM
351}
352
353/*
354 * Return the root node of the specified rcu_state structure.
355 */
356static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
357{
358 return &rsp->node[0];
359}
360
9b2e4f18 361/*
adf5091e 362 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
363 *
364 * If the new value of the ->dynticks_nesting counter now is zero,
365 * we really have entered idle, and must do the appropriate accounting.
366 * The caller must have disabled interrupts.
367 */
adf5091e
FW
368static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
369 bool user)
9b2e4f18 370{
f7f7bac9 371 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 372 if (!user && !is_idle_task(current)) {
0989cb46
PM
373 struct task_struct *idle = idle_task(smp_processor_id());
374
f7f7bac9 375 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 376 ftrace_dump(DUMP_ORIG);
0989cb46
PM
377 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
378 current->pid, current->comm,
379 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 380 }
aea1b35e 381 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
382 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
383 smp_mb__before_atomic_inc(); /* See above. */
384 atomic_inc(&rdtp->dynticks);
385 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
386 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
387
388 /*
adf5091e 389 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
390 * in an RCU read-side critical section.
391 */
392 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
393 "Illegal idle entry in RCU read-side critical section.");
394 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
395 "Illegal idle entry in RCU-bh read-side critical section.");
396 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
397 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 398}
64db4cff 399
adf5091e
FW
400/*
401 * Enter an RCU extended quiescent state, which can be either the
402 * idle loop or adaptive-tickless usermode execution.
64db4cff 403 */
adf5091e 404static void rcu_eqs_enter(bool user)
64db4cff 405{
4145fa7f 406 long long oldval;
64db4cff
PM
407 struct rcu_dynticks *rdtp;
408
64db4cff 409 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 410 oldval = rdtp->dynticks_nesting;
29e37d81
PM
411 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
412 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
413 rdtp->dynticks_nesting = 0;
414 else
415 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 416 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 417}
adf5091e
FW
418
419/**
420 * rcu_idle_enter - inform RCU that current CPU is entering idle
421 *
422 * Enter idle mode, in other words, -leave- the mode in which RCU
423 * read-side critical sections can occur. (Though RCU read-side
424 * critical sections can occur in irq handlers in idle, a possibility
425 * handled by irq_enter() and irq_exit().)
426 *
427 * We crowbar the ->dynticks_nesting field to zero to allow for
428 * the possibility of usermode upcalls having messed up our count
429 * of interrupt nesting level during the prior busy period.
430 */
431void rcu_idle_enter(void)
432{
c5d900bf
FW
433 unsigned long flags;
434
435 local_irq_save(flags);
cb349ca9 436 rcu_eqs_enter(false);
eb348b89 437 rcu_sysidle_enter(&__get_cpu_var(rcu_dynticks), 0);
c5d900bf 438 local_irq_restore(flags);
adf5091e 439}
8a2ecf47 440EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 441
2b1d5024 442#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
443/**
444 * rcu_user_enter - inform RCU that we are resuming userspace.
445 *
446 * Enter RCU idle mode right before resuming userspace. No use of RCU
447 * is permitted between this call and rcu_user_exit(). This way the
448 * CPU doesn't need to maintain the tick for RCU maintenance purposes
449 * when the CPU runs in userspace.
450 */
451void rcu_user_enter(void)
452{
91d1aa43 453 rcu_eqs_enter(1);
adf5091e 454}
2b1d5024 455#endif /* CONFIG_RCU_USER_QS */
19dd1591 456
9b2e4f18
PM
457/**
458 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
459 *
460 * Exit from an interrupt handler, which might possibly result in entering
461 * idle mode, in other words, leaving the mode in which read-side critical
462 * sections can occur.
64db4cff 463 *
9b2e4f18
PM
464 * This code assumes that the idle loop never does anything that might
465 * result in unbalanced calls to irq_enter() and irq_exit(). If your
466 * architecture violates this assumption, RCU will give you what you
467 * deserve, good and hard. But very infrequently and irreproducibly.
468 *
469 * Use things like work queues to work around this limitation.
470 *
471 * You have been warned.
64db4cff 472 */
9b2e4f18 473void rcu_irq_exit(void)
64db4cff
PM
474{
475 unsigned long flags;
4145fa7f 476 long long oldval;
64db4cff
PM
477 struct rcu_dynticks *rdtp;
478
479 local_irq_save(flags);
480 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 481 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
482 rdtp->dynticks_nesting--;
483 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 484 if (rdtp->dynticks_nesting)
f7f7bac9 485 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 486 else
cb349ca9 487 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 488 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
489 local_irq_restore(flags);
490}
491
492/*
adf5091e 493 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
494 *
495 * If the new value of the ->dynticks_nesting counter was previously zero,
496 * we really have exited idle, and must do the appropriate accounting.
497 * The caller must have disabled interrupts.
498 */
adf5091e
FW
499static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
500 int user)
9b2e4f18 501{
23b5c8fa
PM
502 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
503 atomic_inc(&rdtp->dynticks);
504 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
505 smp_mb__after_atomic_inc(); /* See above. */
506 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 507 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 508 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 509 if (!user && !is_idle_task(current)) {
0989cb46
PM
510 struct task_struct *idle = idle_task(smp_processor_id());
511
f7f7bac9 512 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 513 oldval, rdtp->dynticks_nesting);
bf1304e9 514 ftrace_dump(DUMP_ORIG);
0989cb46
PM
515 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
516 current->pid, current->comm,
517 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
518 }
519}
520
adf5091e
FW
521/*
522 * Exit an RCU extended quiescent state, which can be either the
523 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 524 */
adf5091e 525static void rcu_eqs_exit(bool user)
9b2e4f18 526{
9b2e4f18
PM
527 struct rcu_dynticks *rdtp;
528 long long oldval;
529
9b2e4f18
PM
530 rdtp = &__get_cpu_var(rcu_dynticks);
531 oldval = rdtp->dynticks_nesting;
29e37d81
PM
532 WARN_ON_ONCE(oldval < 0);
533 if (oldval & DYNTICK_TASK_NEST_MASK)
534 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
535 else
536 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 537 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 538}
adf5091e
FW
539
540/**
541 * rcu_idle_exit - inform RCU that current CPU is leaving idle
542 *
543 * Exit idle mode, in other words, -enter- the mode in which RCU
544 * read-side critical sections can occur.
545 *
546 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
547 * allow for the possibility of usermode upcalls messing up our count
548 * of interrupt nesting level during the busy period that is just
549 * now starting.
550 */
551void rcu_idle_exit(void)
552{
c5d900bf
FW
553 unsigned long flags;
554
555 local_irq_save(flags);
cb349ca9 556 rcu_eqs_exit(false);
eb348b89 557 rcu_sysidle_exit(&__get_cpu_var(rcu_dynticks), 0);
c5d900bf 558 local_irq_restore(flags);
adf5091e 559}
8a2ecf47 560EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 561
2b1d5024 562#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
563/**
564 * rcu_user_exit - inform RCU that we are exiting userspace.
565 *
566 * Exit RCU idle mode while entering the kernel because it can
567 * run a RCU read side critical section anytime.
568 */
569void rcu_user_exit(void)
570{
91d1aa43 571 rcu_eqs_exit(1);
adf5091e 572}
2b1d5024 573#endif /* CONFIG_RCU_USER_QS */
19dd1591 574
9b2e4f18
PM
575/**
576 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
577 *
578 * Enter an interrupt handler, which might possibly result in exiting
579 * idle mode, in other words, entering the mode in which read-side critical
580 * sections can occur.
581 *
582 * Note that the Linux kernel is fully capable of entering an interrupt
583 * handler that it never exits, for example when doing upcalls to
584 * user mode! This code assumes that the idle loop never does upcalls to
585 * user mode. If your architecture does do upcalls from the idle loop (or
586 * does anything else that results in unbalanced calls to the irq_enter()
587 * and irq_exit() functions), RCU will give you what you deserve, good
588 * and hard. But very infrequently and irreproducibly.
589 *
590 * Use things like work queues to work around this limitation.
591 *
592 * You have been warned.
593 */
594void rcu_irq_enter(void)
595{
596 unsigned long flags;
597 struct rcu_dynticks *rdtp;
598 long long oldval;
599
600 local_irq_save(flags);
601 rdtp = &__get_cpu_var(rcu_dynticks);
602 oldval = rdtp->dynticks_nesting;
603 rdtp->dynticks_nesting++;
604 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 605 if (oldval)
f7f7bac9 606 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 607 else
cb349ca9 608 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 609 rcu_sysidle_exit(rdtp, 1);
64db4cff 610 local_irq_restore(flags);
64db4cff
PM
611}
612
613/**
614 * rcu_nmi_enter - inform RCU of entry to NMI context
615 *
616 * If the CPU was idle with dynamic ticks active, and there is no
617 * irq handler running, this updates rdtp->dynticks_nmi to let the
618 * RCU grace-period handling know that the CPU is active.
619 */
620void rcu_nmi_enter(void)
621{
622 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
623
23b5c8fa
PM
624 if (rdtp->dynticks_nmi_nesting == 0 &&
625 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 626 return;
23b5c8fa
PM
627 rdtp->dynticks_nmi_nesting++;
628 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
629 atomic_inc(&rdtp->dynticks);
630 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
631 smp_mb__after_atomic_inc(); /* See above. */
632 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
633}
634
635/**
636 * rcu_nmi_exit - inform RCU of exit from NMI context
637 *
638 * If the CPU was idle with dynamic ticks active, and there is no
639 * irq handler running, this updates rdtp->dynticks_nmi to let the
640 * RCU grace-period handling know that the CPU is no longer active.
641 */
642void rcu_nmi_exit(void)
643{
644 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
645
23b5c8fa
PM
646 if (rdtp->dynticks_nmi_nesting == 0 ||
647 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 648 return;
23b5c8fa
PM
649 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
650 smp_mb__before_atomic_inc(); /* See above. */
651 atomic_inc(&rdtp->dynticks);
652 smp_mb__after_atomic_inc(); /* Force delay to next write. */
653 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
654}
655
656/**
9b2e4f18 657 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 658 *
9b2e4f18 659 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 660 * or NMI handler, return true.
64db4cff 661 */
9b2e4f18 662int rcu_is_cpu_idle(void)
64db4cff 663{
34240697
PM
664 int ret;
665
666 preempt_disable();
667 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
668 preempt_enable();
669 return ret;
64db4cff 670}
e6b80a3b 671EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 672
62fde6ed 673#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
674
675/*
676 * Is the current CPU online? Disable preemption to avoid false positives
677 * that could otherwise happen due to the current CPU number being sampled,
678 * this task being preempted, its old CPU being taken offline, resuming
679 * on some other CPU, then determining that its old CPU is now offline.
680 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
681 * the check for rcu_scheduler_fully_active. Note also that it is OK
682 * for a CPU coming online to use RCU for one jiffy prior to marking itself
683 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
684 * offline to continue to use RCU for one jiffy after marking itself
685 * offline in the cpu_online_mask. This leniency is necessary given the
686 * non-atomic nature of the online and offline processing, for example,
687 * the fact that a CPU enters the scheduler after completing the CPU_DYING
688 * notifiers.
689 *
690 * This is also why RCU internally marks CPUs online during the
691 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
692 *
693 * Disable checking if in an NMI handler because we cannot safely report
694 * errors from NMI handlers anyway.
695 */
696bool rcu_lockdep_current_cpu_online(void)
697{
2036d94a
PM
698 struct rcu_data *rdp;
699 struct rcu_node *rnp;
c0d6d01b
PM
700 bool ret;
701
702 if (in_nmi())
703 return 1;
704 preempt_disable();
2036d94a
PM
705 rdp = &__get_cpu_var(rcu_sched_data);
706 rnp = rdp->mynode;
707 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
708 !rcu_scheduler_fully_active;
709 preempt_enable();
710 return ret;
711}
712EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
713
62fde6ed 714#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 715
64db4cff 716/**
9b2e4f18 717 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 718 *
9b2e4f18
PM
719 * If the current CPU is idle or running at a first-level (not nested)
720 * interrupt from idle, return true. The caller must have at least
721 * disabled preemption.
64db4cff 722 */
62e3cb14 723static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 724{
9b2e4f18 725 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
726}
727
64db4cff
PM
728/*
729 * Snapshot the specified CPU's dynticks counter so that we can later
730 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 731 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 732 */
217af2a2
PM
733static int dyntick_save_progress_counter(struct rcu_data *rdp,
734 bool *isidle, unsigned long *maxj)
64db4cff 735{
23b5c8fa 736 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 737 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
738}
739
740/*
741 * Return true if the specified CPU has passed through a quiescent
742 * state by virtue of being in or having passed through an dynticks
743 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 744 * for this same CPU, or by virtue of having been offline.
64db4cff 745 */
217af2a2
PM
746static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
747 bool *isidle, unsigned long *maxj)
64db4cff 748{
7eb4f455
PM
749 unsigned int curr;
750 unsigned int snap;
64db4cff 751
7eb4f455
PM
752 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
753 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
754
755 /*
756 * If the CPU passed through or entered a dynticks idle phase with
757 * no active irq/NMI handlers, then we can safely pretend that the CPU
758 * already acknowledged the request to pass through a quiescent
759 * state. Either way, that CPU cannot possibly be in an RCU
760 * read-side critical section that started before the beginning
761 * of the current RCU grace period.
762 */
7eb4f455 763 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 764 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
765 rdp->dynticks_fqs++;
766 return 1;
767 }
768
a82dcc76
PM
769 /*
770 * Check for the CPU being offline, but only if the grace period
771 * is old enough. We don't need to worry about the CPU changing
772 * state: If we see it offline even once, it has been through a
773 * quiescent state.
774 *
775 * The reason for insisting that the grace period be at least
776 * one jiffy old is that CPUs that are not quite online and that
777 * have just gone offline can still execute RCU read-side critical
778 * sections.
779 */
780 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
781 return 0; /* Grace period is not old enough. */
782 barrier();
783 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 784 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
785 rdp->offline_fqs++;
786 return 1;
787 }
65d798f0
PM
788
789 /*
790 * There is a possibility that a CPU in adaptive-ticks state
791 * might run in the kernel with the scheduling-clock tick disabled
792 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
793 * force the CPU to restart the scheduling-clock tick in this
794 * CPU is in this state.
795 */
796 rcu_kick_nohz_cpu(rdp->cpu);
797
a82dcc76 798 return 0;
64db4cff
PM
799}
800
64db4cff
PM
801static void record_gp_stall_check_time(struct rcu_state *rsp)
802{
803 rsp->gp_start = jiffies;
6bfc09e2 804 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
805}
806
b637a328
PM
807/*
808 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
809 * for architectures that do not implement trigger_all_cpu_backtrace().
810 * The NMI-triggered stack traces are more accurate because they are
811 * printed by the target CPU.
812 */
813static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
814{
815 int cpu;
816 unsigned long flags;
817 struct rcu_node *rnp;
818
819 rcu_for_each_leaf_node(rsp, rnp) {
820 raw_spin_lock_irqsave(&rnp->lock, flags);
821 if (rnp->qsmask != 0) {
822 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
823 if (rnp->qsmask & (1UL << cpu))
824 dump_cpu_task(rnp->grplo + cpu);
825 }
826 raw_spin_unlock_irqrestore(&rnp->lock, flags);
827 }
828}
829
64db4cff
PM
830static void print_other_cpu_stall(struct rcu_state *rsp)
831{
832 int cpu;
833 long delta;
834 unsigned long flags;
285fe294 835 int ndetected = 0;
64db4cff 836 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 837 long totqlen = 0;
64db4cff
PM
838
839 /* Only let one CPU complain about others per time interval. */
840
1304afb2 841 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 842 delta = jiffies - rsp->jiffies_stall;
fc2219d4 843 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 844 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
845 return;
846 }
6bfc09e2 847 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 848 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 849
8cdd32a9
PM
850 /*
851 * OK, time to rat on our buddy...
852 * See Documentation/RCU/stallwarn.txt for info on how to debug
853 * RCU CPU stall warnings.
854 */
d7f3e207 855 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 856 rsp->name);
a858af28 857 print_cpu_stall_info_begin();
a0b6c9a7 858 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 859 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 860 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
861 if (rnp->qsmask != 0) {
862 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
863 if (rnp->qsmask & (1UL << cpu)) {
864 print_cpu_stall_info(rsp,
865 rnp->grplo + cpu);
866 ndetected++;
867 }
868 }
3acd9eb3 869 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 870 }
a858af28
PM
871
872 /*
873 * Now rat on any tasks that got kicked up to the root rcu_node
874 * due to CPU offlining.
875 */
876 rnp = rcu_get_root(rsp);
877 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 878 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
879 raw_spin_unlock_irqrestore(&rnp->lock, flags);
880
881 print_cpu_stall_info_end();
53bb857c
PM
882 for_each_possible_cpu(cpu)
883 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
884 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 885 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 886 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 887 if (ndetected == 0)
d7f3e207 888 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 889 else if (!trigger_all_cpu_backtrace())
b637a328 890 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 891
4cdfc175 892 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
893
894 rcu_print_detail_task_stall(rsp);
895
4cdfc175 896 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
897}
898
899static void print_cpu_stall(struct rcu_state *rsp)
900{
53bb857c 901 int cpu;
64db4cff
PM
902 unsigned long flags;
903 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 904 long totqlen = 0;
64db4cff 905
8cdd32a9
PM
906 /*
907 * OK, time to rat on ourselves...
908 * See Documentation/RCU/stallwarn.txt for info on how to debug
909 * RCU CPU stall warnings.
910 */
d7f3e207 911 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
912 print_cpu_stall_info_begin();
913 print_cpu_stall_info(rsp, smp_processor_id());
914 print_cpu_stall_info_end();
53bb857c
PM
915 for_each_possible_cpu(cpu)
916 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
917 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
918 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
919 if (!trigger_all_cpu_backtrace())
920 dump_stack();
c1dc0b9c 921
1304afb2 922 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 923 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 924 rsp->jiffies_stall = jiffies +
6bfc09e2 925 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 926 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 927
64db4cff
PM
928 set_need_resched(); /* kick ourselves to get things going. */
929}
930
931static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
932{
bad6e139
PM
933 unsigned long j;
934 unsigned long js;
64db4cff
PM
935 struct rcu_node *rnp;
936
742734ee 937 if (rcu_cpu_stall_suppress)
c68de209 938 return;
bad6e139
PM
939 j = ACCESS_ONCE(jiffies);
940 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 941 rnp = rdp->mynode;
c96ea7cf
PM
942 if (rcu_gp_in_progress(rsp) &&
943 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
944
945 /* We haven't checked in, so go dump stack. */
946 print_cpu_stall(rsp);
947
bad6e139
PM
948 } else if (rcu_gp_in_progress(rsp) &&
949 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 950
bad6e139 951 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
952 print_other_cpu_stall(rsp);
953 }
954}
955
53d84e00
PM
956/**
957 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
958 *
959 * Set the stall-warning timeout way off into the future, thus preventing
960 * any RCU CPU stall-warning messages from appearing in the current set of
961 * RCU grace periods.
962 *
963 * The caller must disable hard irqs.
964 */
965void rcu_cpu_stall_reset(void)
966{
6ce75a23
PM
967 struct rcu_state *rsp;
968
969 for_each_rcu_flavor(rsp)
970 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
971}
972
3f5d3ea6
PM
973/*
974 * Initialize the specified rcu_data structure's callback list to empty.
975 */
976static void init_callback_list(struct rcu_data *rdp)
977{
978 int i;
979
34ed6246
PM
980 if (init_nocb_callback_list(rdp))
981 return;
3f5d3ea6
PM
982 rdp->nxtlist = NULL;
983 for (i = 0; i < RCU_NEXT_SIZE; i++)
984 rdp->nxttail[i] = &rdp->nxtlist;
985}
986
dc35c893
PM
987/*
988 * Determine the value that ->completed will have at the end of the
989 * next subsequent grace period. This is used to tag callbacks so that
990 * a CPU can invoke callbacks in a timely fashion even if that CPU has
991 * been dyntick-idle for an extended period with callbacks under the
992 * influence of RCU_FAST_NO_HZ.
993 *
994 * The caller must hold rnp->lock with interrupts disabled.
995 */
996static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
997 struct rcu_node *rnp)
998{
999 /*
1000 * If RCU is idle, we just wait for the next grace period.
1001 * But we can only be sure that RCU is idle if we are looking
1002 * at the root rcu_node structure -- otherwise, a new grace
1003 * period might have started, but just not yet gotten around
1004 * to initializing the current non-root rcu_node structure.
1005 */
1006 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1007 return rnp->completed + 1;
1008
1009 /*
1010 * Otherwise, wait for a possible partial grace period and
1011 * then the subsequent full grace period.
1012 */
1013 return rnp->completed + 2;
1014}
1015
0446be48
PM
1016/*
1017 * Trace-event helper function for rcu_start_future_gp() and
1018 * rcu_nocb_wait_gp().
1019 */
1020static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1021 unsigned long c, const char *s)
0446be48
PM
1022{
1023 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1024 rnp->completed, c, rnp->level,
1025 rnp->grplo, rnp->grphi, s);
1026}
1027
1028/*
1029 * Start some future grace period, as needed to handle newly arrived
1030 * callbacks. The required future grace periods are recorded in each
1031 * rcu_node structure's ->need_future_gp field.
1032 *
1033 * The caller must hold the specified rcu_node structure's ->lock.
1034 */
1035static unsigned long __maybe_unused
1036rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1037{
1038 unsigned long c;
1039 int i;
1040 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1041
1042 /*
1043 * Pick up grace-period number for new callbacks. If this
1044 * grace period is already marked as needed, return to the caller.
1045 */
1046 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1047 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1048 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1049 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1050 return c;
1051 }
1052
1053 /*
1054 * If either this rcu_node structure or the root rcu_node structure
1055 * believe that a grace period is in progress, then we must wait
1056 * for the one following, which is in "c". Because our request
1057 * will be noticed at the end of the current grace period, we don't
1058 * need to explicitly start one.
1059 */
1060 if (rnp->gpnum != rnp->completed ||
1061 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1062 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1063 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1064 return c;
1065 }
1066
1067 /*
1068 * There might be no grace period in progress. If we don't already
1069 * hold it, acquire the root rcu_node structure's lock in order to
1070 * start one (if needed).
1071 */
1072 if (rnp != rnp_root)
1073 raw_spin_lock(&rnp_root->lock);
1074
1075 /*
1076 * Get a new grace-period number. If there really is no grace
1077 * period in progress, it will be smaller than the one we obtained
1078 * earlier. Adjust callbacks as needed. Note that even no-CBs
1079 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1080 */
1081 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1082 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1083 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1084 rdp->nxtcompleted[i] = c;
1085
1086 /*
1087 * If the needed for the required grace period is already
1088 * recorded, trace and leave.
1089 */
1090 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1091 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1092 goto unlock_out;
1093 }
1094
1095 /* Record the need for the future grace period. */
1096 rnp_root->need_future_gp[c & 0x1]++;
1097
1098 /* If a grace period is not already in progress, start one. */
1099 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1100 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1101 } else {
f7f7bac9 1102 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1103 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1104 }
1105unlock_out:
1106 if (rnp != rnp_root)
1107 raw_spin_unlock(&rnp_root->lock);
1108 return c;
1109}
1110
1111/*
1112 * Clean up any old requests for the just-ended grace period. Also return
1113 * whether any additional grace periods have been requested. Also invoke
1114 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1115 * waiting for this grace period to complete.
1116 */
1117static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1118{
1119 int c = rnp->completed;
1120 int needmore;
1121 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1122
1123 rcu_nocb_gp_cleanup(rsp, rnp);
1124 rnp->need_future_gp[c & 0x1] = 0;
1125 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1126 trace_rcu_future_gp(rnp, rdp, c,
1127 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1128 return needmore;
1129}
1130
dc35c893
PM
1131/*
1132 * If there is room, assign a ->completed number to any callbacks on
1133 * this CPU that have not already been assigned. Also accelerate any
1134 * callbacks that were previously assigned a ->completed number that has
1135 * since proven to be too conservative, which can happen if callbacks get
1136 * assigned a ->completed number while RCU is idle, but with reference to
1137 * a non-root rcu_node structure. This function is idempotent, so it does
1138 * not hurt to call it repeatedly.
1139 *
1140 * The caller must hold rnp->lock with interrupts disabled.
1141 */
1142static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1143 struct rcu_data *rdp)
1144{
1145 unsigned long c;
1146 int i;
1147
1148 /* If the CPU has no callbacks, nothing to do. */
1149 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1150 return;
1151
1152 /*
1153 * Starting from the sublist containing the callbacks most
1154 * recently assigned a ->completed number and working down, find the
1155 * first sublist that is not assignable to an upcoming grace period.
1156 * Such a sublist has something in it (first two tests) and has
1157 * a ->completed number assigned that will complete sooner than
1158 * the ->completed number for newly arrived callbacks (last test).
1159 *
1160 * The key point is that any later sublist can be assigned the
1161 * same ->completed number as the newly arrived callbacks, which
1162 * means that the callbacks in any of these later sublist can be
1163 * grouped into a single sublist, whether or not they have already
1164 * been assigned a ->completed number.
1165 */
1166 c = rcu_cbs_completed(rsp, rnp);
1167 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1168 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1169 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1170 break;
1171
1172 /*
1173 * If there are no sublist for unassigned callbacks, leave.
1174 * At the same time, advance "i" one sublist, so that "i" will
1175 * index into the sublist where all the remaining callbacks should
1176 * be grouped into.
1177 */
1178 if (++i >= RCU_NEXT_TAIL)
1179 return;
1180
1181 /*
1182 * Assign all subsequent callbacks' ->completed number to the next
1183 * full grace period and group them all in the sublist initially
1184 * indexed by "i".
1185 */
1186 for (; i <= RCU_NEXT_TAIL; i++) {
1187 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1188 rdp->nxtcompleted[i] = c;
1189 }
910ee45d
PM
1190 /* Record any needed additional grace periods. */
1191 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1192
1193 /* Trace depending on how much we were able to accelerate. */
1194 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1195 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1196 else
f7f7bac9 1197 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1198}
1199
1200/*
1201 * Move any callbacks whose grace period has completed to the
1202 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1203 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1204 * sublist. This function is idempotent, so it does not hurt to
1205 * invoke it repeatedly. As long as it is not invoked -too- often...
1206 *
1207 * The caller must hold rnp->lock with interrupts disabled.
1208 */
1209static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1210 struct rcu_data *rdp)
1211{
1212 int i, j;
1213
1214 /* If the CPU has no callbacks, nothing to do. */
1215 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1216 return;
1217
1218 /*
1219 * Find all callbacks whose ->completed numbers indicate that they
1220 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1221 */
1222 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1223 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1224 break;
1225 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1226 }
1227 /* Clean up any sublist tail pointers that were misordered above. */
1228 for (j = RCU_WAIT_TAIL; j < i; j++)
1229 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1230
1231 /* Copy down callbacks to fill in empty sublists. */
1232 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1233 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1234 break;
1235 rdp->nxttail[j] = rdp->nxttail[i];
1236 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1237 }
1238
1239 /* Classify any remaining callbacks. */
1240 rcu_accelerate_cbs(rsp, rnp, rdp);
1241}
1242
d09b62df 1243/*
ba9fbe95
PM
1244 * Update CPU-local rcu_data state to record the beginnings and ends of
1245 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1246 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1247 */
ba9fbe95 1248static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1249{
ba9fbe95 1250 /* Handle the ends of any preceding grace periods first. */
dc35c893 1251 if (rdp->completed == rnp->completed) {
d09b62df 1252
ba9fbe95 1253 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1254 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1255
dc35c893
PM
1256 } else {
1257
1258 /* Advance callbacks. */
1259 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1260
1261 /* Remember that we saw this grace-period completion. */
1262 rdp->completed = rnp->completed;
f7f7bac9 1263 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1264 }
398ebe60 1265
6eaef633
PM
1266 if (rdp->gpnum != rnp->gpnum) {
1267 /*
1268 * If the current grace period is waiting for this CPU,
1269 * set up to detect a quiescent state, otherwise don't
1270 * go looking for one.
1271 */
1272 rdp->gpnum = rnp->gpnum;
f7f7bac9 1273 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1274 rdp->passed_quiesce = 0;
1275 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1276 zero_cpu_stall_ticks(rdp);
1277 }
1278}
1279
d34ea322 1280static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1281{
1282 unsigned long flags;
1283 struct rcu_node *rnp;
1284
1285 local_irq_save(flags);
1286 rnp = rdp->mynode;
d34ea322
PM
1287 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1288 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1289 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1290 local_irq_restore(flags);
1291 return;
1292 }
d34ea322 1293 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1294 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1295}
1296
b3dbec76 1297/*
7fdefc10 1298 * Initialize a new grace period.
b3dbec76 1299 */
7fdefc10 1300static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1301{
1302 struct rcu_data *rdp;
7fdefc10 1303 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1304
7fdefc10 1305 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1306 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1307
7fdefc10
PM
1308 if (rcu_gp_in_progress(rsp)) {
1309 /* Grace period already in progress, don't start another. */
1310 raw_spin_unlock_irq(&rnp->lock);
1311 return 0;
1312 }
1313
7fdefc10
PM
1314 /* Advance to a new grace period and initialize state. */
1315 rsp->gpnum++;
f7f7bac9 1316 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1317 record_gp_stall_check_time(rsp);
1318 raw_spin_unlock_irq(&rnp->lock);
1319
1320 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1321 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1322
1323 /*
1324 * Set the quiescent-state-needed bits in all the rcu_node
1325 * structures for all currently online CPUs in breadth-first order,
1326 * starting from the root rcu_node structure, relying on the layout
1327 * of the tree within the rsp->node[] array. Note that other CPUs
1328 * will access only the leaves of the hierarchy, thus seeing that no
1329 * grace period is in progress, at least until the corresponding
1330 * leaf node has been initialized. In addition, we have excluded
1331 * CPU-hotplug operations.
1332 *
1333 * The grace period cannot complete until the initialization
1334 * process finishes, because this kthread handles both.
1335 */
1336 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1337 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1338 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1339 rcu_preempt_check_blocked_tasks(rnp);
1340 rnp->qsmask = rnp->qsmaskinit;
0446be48 1341 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1342 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1343 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1344 if (rnp == rdp->mynode)
ce3d9c03 1345 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1346 rcu_preempt_boost_start_gp(rnp);
1347 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1348 rnp->level, rnp->grplo,
1349 rnp->grphi, rnp->qsmask);
1350 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1351#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1352 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1353 system_state == SYSTEM_RUNNING)
971394f3 1354 udelay(200);
661a85dc 1355#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1356 cond_resched();
1357 }
b3dbec76 1358
a4fbe35a 1359 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1360 return 1;
1361}
b3dbec76 1362
4cdfc175
PM
1363/*
1364 * Do one round of quiescent-state forcing.
1365 */
1366int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1367{
1368 int fqs_state = fqs_state_in;
217af2a2
PM
1369 bool isidle = false;
1370 unsigned long maxj;
4cdfc175
PM
1371 struct rcu_node *rnp = rcu_get_root(rsp);
1372
1373 rsp->n_force_qs++;
1374 if (fqs_state == RCU_SAVE_DYNTICK) {
1375 /* Collect dyntick-idle snapshots. */
217af2a2
PM
1376 force_qs_rnp(rsp, dyntick_save_progress_counter,
1377 &isidle, &maxj);
4cdfc175
PM
1378 fqs_state = RCU_FORCE_QS;
1379 } else {
1380 /* Handle dyntick-idle and offline CPUs. */
217af2a2 1381 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1382 }
1383 /* Clear flag to prevent immediate re-entry. */
1384 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1385 raw_spin_lock_irq(&rnp->lock);
1386 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1387 raw_spin_unlock_irq(&rnp->lock);
1388 }
1389 return fqs_state;
1390}
1391
7fdefc10
PM
1392/*
1393 * Clean up after the old grace period.
1394 */
4cdfc175 1395static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1396{
1397 unsigned long gp_duration;
dae6e64d 1398 int nocb = 0;
7fdefc10
PM
1399 struct rcu_data *rdp;
1400 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1401
7fdefc10
PM
1402 raw_spin_lock_irq(&rnp->lock);
1403 gp_duration = jiffies - rsp->gp_start;
1404 if (gp_duration > rsp->gp_max)
1405 rsp->gp_max = gp_duration;
b3dbec76 1406
7fdefc10
PM
1407 /*
1408 * We know the grace period is complete, but to everyone else
1409 * it appears to still be ongoing. But it is also the case
1410 * that to everyone else it looks like there is nothing that
1411 * they can do to advance the grace period. It is therefore
1412 * safe for us to drop the lock in order to mark the grace
1413 * period as completed in all of the rcu_node structures.
7fdefc10 1414 */
5d4b8659 1415 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1416
5d4b8659
PM
1417 /*
1418 * Propagate new ->completed value to rcu_node structures so
1419 * that other CPUs don't have to wait until the start of the next
1420 * grace period to process their callbacks. This also avoids
1421 * some nasty RCU grace-period initialization races by forcing
1422 * the end of the current grace period to be completely recorded in
1423 * all of the rcu_node structures before the beginning of the next
1424 * grace period is recorded in any of the rcu_node structures.
1425 */
1426 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1427 raw_spin_lock_irq(&rnp->lock);
0446be48 1428 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1429 rdp = this_cpu_ptr(rsp->rda);
1430 if (rnp == rdp->mynode)
470716fc 1431 __note_gp_changes(rsp, rnp, rdp);
0446be48 1432 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1433 raw_spin_unlock_irq(&rnp->lock);
1434 cond_resched();
7fdefc10 1435 }
5d4b8659
PM
1436 rnp = rcu_get_root(rsp);
1437 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1438 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1439
1440 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1441 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1442 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1443 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1444 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10
PM
1445 if (cpu_needs_another_gp(rsp, rdp))
1446 rsp->gp_flags = 1;
1447 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1448}
1449
1450/*
1451 * Body of kthread that handles grace periods.
1452 */
1453static int __noreturn rcu_gp_kthread(void *arg)
1454{
4cdfc175 1455 int fqs_state;
d40011f6 1456 unsigned long j;
4cdfc175 1457 int ret;
7fdefc10
PM
1458 struct rcu_state *rsp = arg;
1459 struct rcu_node *rnp = rcu_get_root(rsp);
1460
1461 for (;;) {
1462
1463 /* Handle grace-period start. */
1464 for (;;) {
4cdfc175
PM
1465 wait_event_interruptible(rsp->gp_wq,
1466 rsp->gp_flags &
1467 RCU_GP_FLAG_INIT);
1468 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1469 rcu_gp_init(rsp))
7fdefc10
PM
1470 break;
1471 cond_resched();
1472 flush_signals(current);
1473 }
cabc49c1 1474
4cdfc175
PM
1475 /* Handle quiescent-state forcing. */
1476 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1477 j = jiffies_till_first_fqs;
1478 if (j > HZ) {
1479 j = HZ;
1480 jiffies_till_first_fqs = HZ;
1481 }
cabc49c1 1482 for (;;) {
d40011f6 1483 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1484 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1485 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1486 (!ACCESS_ONCE(rnp->qsmask) &&
1487 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1488 j);
4cdfc175 1489 /* If grace period done, leave loop. */
cabc49c1 1490 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1491 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1492 break;
4cdfc175
PM
1493 /* If time for quiescent-state forcing, do it. */
1494 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1495 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1496 cond_resched();
1497 } else {
1498 /* Deal with stray signal. */
1499 cond_resched();
1500 flush_signals(current);
1501 }
d40011f6
PM
1502 j = jiffies_till_next_fqs;
1503 if (j > HZ) {
1504 j = HZ;
1505 jiffies_till_next_fqs = HZ;
1506 } else if (j < 1) {
1507 j = 1;
1508 jiffies_till_next_fqs = 1;
1509 }
cabc49c1 1510 }
4cdfc175
PM
1511
1512 /* Handle grace-period end. */
1513 rcu_gp_cleanup(rsp);
b3dbec76 1514 }
b3dbec76
PM
1515}
1516
016a8d5b
SR
1517static void rsp_wakeup(struct irq_work *work)
1518{
1519 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1520
1521 /* Wake up rcu_gp_kthread() to start the grace period. */
1522 wake_up(&rsp->gp_wq);
1523}
1524
64db4cff
PM
1525/*
1526 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1527 * in preparation for detecting the next grace period. The caller must hold
b8462084 1528 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1529 *
1530 * Note that it is legal for a dying CPU (which is marked as offline) to
1531 * invoke this function. This can happen when the dying CPU reports its
1532 * quiescent state.
64db4cff
PM
1533 */
1534static void
910ee45d
PM
1535rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1536 struct rcu_data *rdp)
64db4cff 1537{
b8462084 1538 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1539 /*
b3dbec76 1540 * Either we have not yet spawned the grace-period
62da1921
PM
1541 * task, this CPU does not need another grace period,
1542 * or a grace period is already in progress.
b3dbec76 1543 * Either way, don't start a new grace period.
afe24b12 1544 */
afe24b12
PM
1545 return;
1546 }
4cdfc175 1547 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921 1548
016a8d5b
SR
1549 /*
1550 * We can't do wakeups while holding the rnp->lock, as that
1551 * could cause possible deadlocks with the rq->lock. Deter
1552 * the wakeup to interrupt context.
1553 */
1554 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1555}
1556
910ee45d
PM
1557/*
1558 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1559 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1560 * is invoked indirectly from rcu_advance_cbs(), which would result in
1561 * endless recursion -- or would do so if it wasn't for the self-deadlock
1562 * that is encountered beforehand.
1563 */
1564static void
1565rcu_start_gp(struct rcu_state *rsp)
1566{
1567 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1568 struct rcu_node *rnp = rcu_get_root(rsp);
1569
1570 /*
1571 * If there is no grace period in progress right now, any
1572 * callbacks we have up to this point will be satisfied by the
1573 * next grace period. Also, advancing the callbacks reduces the
1574 * probability of false positives from cpu_needs_another_gp()
1575 * resulting in pointless grace periods. So, advance callbacks
1576 * then start the grace period!
1577 */
1578 rcu_advance_cbs(rsp, rnp, rdp);
1579 rcu_start_gp_advanced(rsp, rnp, rdp);
1580}
1581
f41d911f 1582/*
d3f6bad3
PM
1583 * Report a full set of quiescent states to the specified rcu_state
1584 * data structure. This involves cleaning up after the prior grace
1585 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1586 * if one is needed. Note that the caller must hold rnp->lock, which
1587 * is released before return.
f41d911f 1588 */
d3f6bad3 1589static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1590 __releases(rcu_get_root(rsp)->lock)
f41d911f 1591{
fc2219d4 1592 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1593 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1594 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1595}
1596
64db4cff 1597/*
d3f6bad3
PM
1598 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1599 * Allows quiescent states for a group of CPUs to be reported at one go
1600 * to the specified rcu_node structure, though all the CPUs in the group
1601 * must be represented by the same rcu_node structure (which need not be
1602 * a leaf rcu_node structure, though it often will be). That structure's
1603 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1604 */
1605static void
d3f6bad3
PM
1606rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1607 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1608 __releases(rnp->lock)
1609{
28ecd580
PM
1610 struct rcu_node *rnp_c;
1611
64db4cff
PM
1612 /* Walk up the rcu_node hierarchy. */
1613 for (;;) {
1614 if (!(rnp->qsmask & mask)) {
1615
1616 /* Our bit has already been cleared, so done. */
1304afb2 1617 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1618 return;
1619 }
1620 rnp->qsmask &= ~mask;
d4c08f2a
PM
1621 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1622 mask, rnp->qsmask, rnp->level,
1623 rnp->grplo, rnp->grphi,
1624 !!rnp->gp_tasks);
27f4d280 1625 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1626
1627 /* Other bits still set at this level, so done. */
1304afb2 1628 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1629 return;
1630 }
1631 mask = rnp->grpmask;
1632 if (rnp->parent == NULL) {
1633
1634 /* No more levels. Exit loop holding root lock. */
1635
1636 break;
1637 }
1304afb2 1638 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1639 rnp_c = rnp;
64db4cff 1640 rnp = rnp->parent;
1304afb2 1641 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1642 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1643 }
1644
1645 /*
1646 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1647 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1648 * to clean up and start the next grace period if one is needed.
64db4cff 1649 */
d3f6bad3 1650 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1651}
1652
1653/*
d3f6bad3
PM
1654 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1655 * structure. This must be either called from the specified CPU, or
1656 * called when the specified CPU is known to be offline (and when it is
1657 * also known that no other CPU is concurrently trying to help the offline
1658 * CPU). The lastcomp argument is used to make sure we are still in the
1659 * grace period of interest. We don't want to end the current grace period
1660 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1661 */
1662static void
d7d6a11e 1663rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1664{
1665 unsigned long flags;
1666 unsigned long mask;
1667 struct rcu_node *rnp;
1668
1669 rnp = rdp->mynode;
1304afb2 1670 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1671 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1672 rnp->completed == rnp->gpnum) {
64db4cff
PM
1673
1674 /*
e4cc1f22
PM
1675 * The grace period in which this quiescent state was
1676 * recorded has ended, so don't report it upwards.
1677 * We will instead need a new quiescent state that lies
1678 * within the current grace period.
64db4cff 1679 */
e4cc1f22 1680 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1681 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1682 return;
1683 }
1684 mask = rdp->grpmask;
1685 if ((rnp->qsmask & mask) == 0) {
1304afb2 1686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1687 } else {
1688 rdp->qs_pending = 0;
1689
1690 /*
1691 * This GP can't end until cpu checks in, so all of our
1692 * callbacks can be processed during the next GP.
1693 */
dc35c893 1694 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1695
d3f6bad3 1696 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1697 }
1698}
1699
1700/*
1701 * Check to see if there is a new grace period of which this CPU
1702 * is not yet aware, and if so, set up local rcu_data state for it.
1703 * Otherwise, see if this CPU has just passed through its first
1704 * quiescent state for this grace period, and record that fact if so.
1705 */
1706static void
1707rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1708{
05eb552b
PM
1709 /* Check for grace-period ends and beginnings. */
1710 note_gp_changes(rsp, rdp);
64db4cff
PM
1711
1712 /*
1713 * Does this CPU still need to do its part for current grace period?
1714 * If no, return and let the other CPUs do their part as well.
1715 */
1716 if (!rdp->qs_pending)
1717 return;
1718
1719 /*
1720 * Was there a quiescent state since the beginning of the grace
1721 * period? If no, then exit and wait for the next call.
1722 */
e4cc1f22 1723 if (!rdp->passed_quiesce)
64db4cff
PM
1724 return;
1725
d3f6bad3
PM
1726 /*
1727 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1728 * judge of that).
1729 */
d7d6a11e 1730 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1731}
1732
1733#ifdef CONFIG_HOTPLUG_CPU
1734
e74f4c45 1735/*
b1420f1c
PM
1736 * Send the specified CPU's RCU callbacks to the orphanage. The
1737 * specified CPU must be offline, and the caller must hold the
7b2e6011 1738 * ->orphan_lock.
e74f4c45 1739 */
b1420f1c
PM
1740static void
1741rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1742 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1743{
3fbfbf7a 1744 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1745 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1746 return;
1747
b1420f1c
PM
1748 /*
1749 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1750 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1751 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1752 */
a50c3af9 1753 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1754 rsp->qlen_lazy += rdp->qlen_lazy;
1755 rsp->qlen += rdp->qlen;
1756 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1757 rdp->qlen_lazy = 0;
1d1fb395 1758 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1759 }
1760
1761 /*
b1420f1c
PM
1762 * Next, move those callbacks still needing a grace period to
1763 * the orphanage, where some other CPU will pick them up.
1764 * Some of the callbacks might have gone partway through a grace
1765 * period, but that is too bad. They get to start over because we
1766 * cannot assume that grace periods are synchronized across CPUs.
1767 * We don't bother updating the ->nxttail[] array yet, instead
1768 * we just reset the whole thing later on.
a50c3af9 1769 */
b1420f1c
PM
1770 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1771 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1772 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1773 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1774 }
1775
1776 /*
b1420f1c
PM
1777 * Then move the ready-to-invoke callbacks to the orphanage,
1778 * where some other CPU will pick them up. These will not be
1779 * required to pass though another grace period: They are done.
a50c3af9 1780 */
e5601400 1781 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1782 *rsp->orphan_donetail = rdp->nxtlist;
1783 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1784 }
e74f4c45 1785
b1420f1c 1786 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1787 init_callback_list(rdp);
b1420f1c
PM
1788}
1789
1790/*
1791 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1792 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1793 */
1794static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1795{
1796 int i;
1797 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1798
3fbfbf7a
PM
1799 /* No-CBs CPUs are handled specially. */
1800 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1801 return;
1802
b1420f1c
PM
1803 /* Do the accounting first. */
1804 rdp->qlen_lazy += rsp->qlen_lazy;
1805 rdp->qlen += rsp->qlen;
1806 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1807 if (rsp->qlen_lazy != rsp->qlen)
1808 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1809 rsp->qlen_lazy = 0;
1810 rsp->qlen = 0;
1811
1812 /*
1813 * We do not need a memory barrier here because the only way we
1814 * can get here if there is an rcu_barrier() in flight is if
1815 * we are the task doing the rcu_barrier().
1816 */
1817
1818 /* First adopt the ready-to-invoke callbacks. */
1819 if (rsp->orphan_donelist != NULL) {
1820 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1821 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1822 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1823 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1824 rdp->nxttail[i] = rsp->orphan_donetail;
1825 rsp->orphan_donelist = NULL;
1826 rsp->orphan_donetail = &rsp->orphan_donelist;
1827 }
1828
1829 /* And then adopt the callbacks that still need a grace period. */
1830 if (rsp->orphan_nxtlist != NULL) {
1831 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1832 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1833 rsp->orphan_nxtlist = NULL;
1834 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1835 }
1836}
1837
1838/*
1839 * Trace the fact that this CPU is going offline.
1840 */
1841static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1842{
1843 RCU_TRACE(unsigned long mask);
1844 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1845 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1846
1847 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1848 trace_rcu_grace_period(rsp->name,
1849 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1850 TPS("cpuofl"));
64db4cff
PM
1851}
1852
1853/*
e5601400 1854 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1855 * this fact from process context. Do the remainder of the cleanup,
1856 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1857 * adopting them. There can only be one CPU hotplug operation at a time,
1858 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1859 */
e5601400 1860static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1861{
2036d94a
PM
1862 unsigned long flags;
1863 unsigned long mask;
1864 int need_report = 0;
e5601400 1865 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1866 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1867
2036d94a 1868 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1869 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1870
b1420f1c 1871 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1872
1873 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1874 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1875 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1876
b1420f1c
PM
1877 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1878 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1879 rcu_adopt_orphan_cbs(rsp);
1880
2036d94a
PM
1881 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1882 mask = rdp->grpmask; /* rnp->grplo is constant. */
1883 do {
1884 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1885 rnp->qsmaskinit &= ~mask;
1886 if (rnp->qsmaskinit != 0) {
1887 if (rnp != rdp->mynode)
1888 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1889 break;
1890 }
1891 if (rnp == rdp->mynode)
1892 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1893 else
1894 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1895 mask = rnp->grpmask;
1896 rnp = rnp->parent;
1897 } while (rnp != NULL);
1898
1899 /*
1900 * We still hold the leaf rcu_node structure lock here, and
1901 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1902 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1903 * held leads to deadlock.
1904 */
7b2e6011 1905 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1906 rnp = rdp->mynode;
1907 if (need_report & RCU_OFL_TASKS_NORM_GP)
1908 rcu_report_unblock_qs_rnp(rnp, flags);
1909 else
1910 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1911 if (need_report & RCU_OFL_TASKS_EXP_GP)
1912 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1913 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1914 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1915 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1916 init_callback_list(rdp);
1917 /* Disallow further callbacks on this CPU. */
1918 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1919 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1920}
1921
1922#else /* #ifdef CONFIG_HOTPLUG_CPU */
1923
e5601400 1924static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1925{
1926}
1927
e5601400 1928static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1929{
1930}
1931
1932#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1933
1934/*
1935 * Invoke any RCU callbacks that have made it to the end of their grace
1936 * period. Thottle as specified by rdp->blimit.
1937 */
37c72e56 1938static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1939{
1940 unsigned long flags;
1941 struct rcu_head *next, *list, **tail;
878d7439
ED
1942 long bl, count, count_lazy;
1943 int i;
64db4cff 1944
dc35c893 1945 /* If no callbacks are ready, just return. */
29c00b4a 1946 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1947 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1948 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1949 need_resched(), is_idle_task(current),
1950 rcu_is_callbacks_kthread());
64db4cff 1951 return;
29c00b4a 1952 }
64db4cff
PM
1953
1954 /*
1955 * Extract the list of ready callbacks, disabling to prevent
1956 * races with call_rcu() from interrupt handlers.
1957 */
1958 local_irq_save(flags);
8146c4e2 1959 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1960 bl = rdp->blimit;
486e2593 1961 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1962 list = rdp->nxtlist;
1963 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1964 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1965 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1966 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1967 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1968 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1969 local_irq_restore(flags);
1970
1971 /* Invoke callbacks. */
486e2593 1972 count = count_lazy = 0;
64db4cff
PM
1973 while (list) {
1974 next = list->next;
1975 prefetch(next);
551d55a9 1976 debug_rcu_head_unqueue(list);
486e2593
PM
1977 if (__rcu_reclaim(rsp->name, list))
1978 count_lazy++;
64db4cff 1979 list = next;
dff1672d
PM
1980 /* Stop only if limit reached and CPU has something to do. */
1981 if (++count >= bl &&
1982 (need_resched() ||
1983 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1984 break;
1985 }
1986
1987 local_irq_save(flags);
4968c300
PM
1988 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1989 is_idle_task(current),
1990 rcu_is_callbacks_kthread());
64db4cff
PM
1991
1992 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1993 if (list != NULL) {
1994 *tail = rdp->nxtlist;
1995 rdp->nxtlist = list;
b41772ab
PM
1996 for (i = 0; i < RCU_NEXT_SIZE; i++)
1997 if (&rdp->nxtlist == rdp->nxttail[i])
1998 rdp->nxttail[i] = tail;
64db4cff
PM
1999 else
2000 break;
2001 }
b1420f1c
PM
2002 smp_mb(); /* List handling before counting for rcu_barrier(). */
2003 rdp->qlen_lazy -= count_lazy;
1d1fb395 2004 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2005 rdp->n_cbs_invoked += count;
64db4cff
PM
2006
2007 /* Reinstate batch limit if we have worked down the excess. */
2008 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2009 rdp->blimit = blimit;
2010
37c72e56
PM
2011 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2012 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2013 rdp->qlen_last_fqs_check = 0;
2014 rdp->n_force_qs_snap = rsp->n_force_qs;
2015 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2016 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2017 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2018
64db4cff
PM
2019 local_irq_restore(flags);
2020
e0f23060 2021 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2022 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2023 invoke_rcu_core();
64db4cff
PM
2024}
2025
2026/*
2027 * Check to see if this CPU is in a non-context-switch quiescent state
2028 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2029 * Also schedule RCU core processing.
64db4cff 2030 *
9b2e4f18 2031 * This function must be called from hardirq context. It is normally
64db4cff
PM
2032 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2033 * false, there is no point in invoking rcu_check_callbacks().
2034 */
2035void rcu_check_callbacks(int cpu, int user)
2036{
f7f7bac9 2037 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2038 increment_cpu_stall_ticks();
9b2e4f18 2039 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2040
2041 /*
2042 * Get here if this CPU took its interrupt from user
2043 * mode or from the idle loop, and if this is not a
2044 * nested interrupt. In this case, the CPU is in
d6714c22 2045 * a quiescent state, so note it.
64db4cff
PM
2046 *
2047 * No memory barrier is required here because both
d6714c22
PM
2048 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2049 * variables that other CPUs neither access nor modify,
2050 * at least not while the corresponding CPU is online.
64db4cff
PM
2051 */
2052
d6714c22
PM
2053 rcu_sched_qs(cpu);
2054 rcu_bh_qs(cpu);
64db4cff
PM
2055
2056 } else if (!in_softirq()) {
2057
2058 /*
2059 * Get here if this CPU did not take its interrupt from
2060 * softirq, in other words, if it is not interrupting
2061 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2062 * critical section, so note it.
64db4cff
PM
2063 */
2064
d6714c22 2065 rcu_bh_qs(cpu);
64db4cff 2066 }
f41d911f 2067 rcu_preempt_check_callbacks(cpu);
d21670ac 2068 if (rcu_pending(cpu))
a46e0899 2069 invoke_rcu_core();
f7f7bac9 2070 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2071}
2072
64db4cff
PM
2073/*
2074 * Scan the leaf rcu_node structures, processing dyntick state for any that
2075 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2076 * Also initiate boosting for any threads blocked on the root rcu_node.
2077 *
ee47eb9f 2078 * The caller must have suppressed start of new grace periods.
64db4cff 2079 */
217af2a2
PM
2080static void force_qs_rnp(struct rcu_state *rsp,
2081 int (*f)(struct rcu_data *rsp, bool *isidle,
2082 unsigned long *maxj),
2083 bool *isidle, unsigned long *maxj)
64db4cff
PM
2084{
2085 unsigned long bit;
2086 int cpu;
2087 unsigned long flags;
2088 unsigned long mask;
a0b6c9a7 2089 struct rcu_node *rnp;
64db4cff 2090
a0b6c9a7 2091 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2092 cond_resched();
64db4cff 2093 mask = 0;
1304afb2 2094 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2095 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2096 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2097 return;
64db4cff 2098 }
a0b6c9a7 2099 if (rnp->qsmask == 0) {
1217ed1b 2100 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2101 continue;
2102 }
a0b6c9a7 2103 cpu = rnp->grplo;
64db4cff 2104 bit = 1;
a0b6c9a7 2105 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9 2106 if ((rnp->qsmask & bit) != 0 &&
217af2a2 2107 f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
64db4cff
PM
2108 mask |= bit;
2109 }
45f014c5 2110 if (mask != 0) {
64db4cff 2111
d3f6bad3
PM
2112 /* rcu_report_qs_rnp() releases rnp->lock. */
2113 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2114 continue;
2115 }
1304afb2 2116 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2117 }
27f4d280 2118 rnp = rcu_get_root(rsp);
1217ed1b
PM
2119 if (rnp->qsmask == 0) {
2120 raw_spin_lock_irqsave(&rnp->lock, flags);
2121 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2122 }
64db4cff
PM
2123}
2124
2125/*
2126 * Force quiescent states on reluctant CPUs, and also detect which
2127 * CPUs are in dyntick-idle mode.
2128 */
4cdfc175 2129static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2130{
2131 unsigned long flags;
394f2769
PM
2132 bool ret;
2133 struct rcu_node *rnp;
2134 struct rcu_node *rnp_old = NULL;
2135
2136 /* Funnel through hierarchy to reduce memory contention. */
2137 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2138 for (; rnp != NULL; rnp = rnp->parent) {
2139 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2140 !raw_spin_trylock(&rnp->fqslock);
2141 if (rnp_old != NULL)
2142 raw_spin_unlock(&rnp_old->fqslock);
2143 if (ret) {
2144 rsp->n_force_qs_lh++;
2145 return;
2146 }
2147 rnp_old = rnp;
2148 }
2149 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2150
394f2769
PM
2151 /* Reached the root of the rcu_node tree, acquire lock. */
2152 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2153 raw_spin_unlock(&rnp_old->fqslock);
2154 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2155 rsp->n_force_qs_lh++;
2156 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2157 return; /* Someone beat us to it. */
46a1e34e 2158 }
4cdfc175 2159 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2160 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2161 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2162}
2163
64db4cff 2164/*
e0f23060
PM
2165 * This does the RCU core processing work for the specified rcu_state
2166 * and rcu_data structures. This may be called only from the CPU to
2167 * whom the rdp belongs.
64db4cff
PM
2168 */
2169static void
1bca8cf1 2170__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2171{
2172 unsigned long flags;
1bca8cf1 2173 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2174
2e597558
PM
2175 WARN_ON_ONCE(rdp->beenonline == 0);
2176
64db4cff
PM
2177 /* Update RCU state based on any recent quiescent states. */
2178 rcu_check_quiescent_state(rsp, rdp);
2179
2180 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2181 local_irq_save(flags);
64db4cff 2182 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2183 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2184 rcu_start_gp(rsp);
2185 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2186 } else {
2187 local_irq_restore(flags);
64db4cff
PM
2188 }
2189
2190 /* If there are callbacks ready, invoke them. */
09223371 2191 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2192 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2193}
2194
64db4cff 2195/*
e0f23060 2196 * Do RCU core processing for the current CPU.
64db4cff 2197 */
09223371 2198static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2199{
6ce75a23
PM
2200 struct rcu_state *rsp;
2201
bfa00b4c
PM
2202 if (cpu_is_offline(smp_processor_id()))
2203 return;
f7f7bac9 2204 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2205 for_each_rcu_flavor(rsp)
2206 __rcu_process_callbacks(rsp);
f7f7bac9 2207 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2208}
2209
a26ac245 2210/*
e0f23060
PM
2211 * Schedule RCU callback invocation. If the specified type of RCU
2212 * does not support RCU priority boosting, just do a direct call,
2213 * otherwise wake up the per-CPU kernel kthread. Note that because we
2214 * are running on the current CPU with interrupts disabled, the
2215 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2216 */
a46e0899 2217static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2218{
b0d30417
PM
2219 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2220 return;
a46e0899
PM
2221 if (likely(!rsp->boost)) {
2222 rcu_do_batch(rsp, rdp);
a26ac245
PM
2223 return;
2224 }
a46e0899 2225 invoke_rcu_callbacks_kthread();
a26ac245
PM
2226}
2227
a46e0899 2228static void invoke_rcu_core(void)
09223371 2229{
b0f74036
PM
2230 if (cpu_online(smp_processor_id()))
2231 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2232}
2233
29154c57
PM
2234/*
2235 * Handle any core-RCU processing required by a call_rcu() invocation.
2236 */
2237static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2238 struct rcu_head *head, unsigned long flags)
64db4cff 2239{
62fde6ed
PM
2240 /*
2241 * If called from an extended quiescent state, invoke the RCU
2242 * core in order to force a re-evaluation of RCU's idleness.
2243 */
a16b7a69 2244 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2245 invoke_rcu_core();
2246
a16b7a69 2247 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2248 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2249 return;
64db4cff 2250
37c72e56
PM
2251 /*
2252 * Force the grace period if too many callbacks or too long waiting.
2253 * Enforce hysteresis, and don't invoke force_quiescent_state()
2254 * if some other CPU has recently done so. Also, don't bother
2255 * invoking force_quiescent_state() if the newly enqueued callback
2256 * is the only one waiting for a grace period to complete.
2257 */
2655d57e 2258 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2259
2260 /* Are we ignoring a completed grace period? */
470716fc 2261 note_gp_changes(rsp, rdp);
b52573d2
PM
2262
2263 /* Start a new grace period if one not already started. */
2264 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2265 struct rcu_node *rnp_root = rcu_get_root(rsp);
2266
b8462084
PM
2267 raw_spin_lock(&rnp_root->lock);
2268 rcu_start_gp(rsp);
2269 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2270 } else {
2271 /* Give the grace period a kick. */
2272 rdp->blimit = LONG_MAX;
2273 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2274 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2275 force_quiescent_state(rsp);
b52573d2
PM
2276 rdp->n_force_qs_snap = rsp->n_force_qs;
2277 rdp->qlen_last_fqs_check = rdp->qlen;
2278 }
4cdfc175 2279 }
29154c57
PM
2280}
2281
3fbfbf7a
PM
2282/*
2283 * Helper function for call_rcu() and friends. The cpu argument will
2284 * normally be -1, indicating "currently running CPU". It may specify
2285 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2286 * is expected to specify a CPU.
2287 */
64db4cff
PM
2288static void
2289__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2290 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2291{
2292 unsigned long flags;
2293 struct rcu_data *rdp;
2294
0bb7b59d 2295 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2296 debug_rcu_head_queue(head);
64db4cff
PM
2297 head->func = func;
2298 head->next = NULL;
2299
64db4cff
PM
2300 /*
2301 * Opportunistically note grace-period endings and beginnings.
2302 * Note that we might see a beginning right after we see an
2303 * end, but never vice versa, since this CPU has to pass through
2304 * a quiescent state betweentimes.
2305 */
2306 local_irq_save(flags);
394f99a9 2307 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2308
2309 /* Add the callback to our list. */
3fbfbf7a
PM
2310 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2311 int offline;
2312
2313 if (cpu != -1)
2314 rdp = per_cpu_ptr(rsp->rda, cpu);
2315 offline = !__call_rcu_nocb(rdp, head, lazy);
2316 WARN_ON_ONCE(offline);
0d8ee37e 2317 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2318 local_irq_restore(flags);
2319 return;
2320 }
29154c57 2321 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2322 if (lazy)
2323 rdp->qlen_lazy++;
c57afe80
PM
2324 else
2325 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2326 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2327 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2328 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2329
d4c08f2a
PM
2330 if (__is_kfree_rcu_offset((unsigned long)func))
2331 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2332 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2333 else
486e2593 2334 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2335
29154c57
PM
2336 /* Go handle any RCU core processing required. */
2337 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2338 local_irq_restore(flags);
2339}
2340
2341/*
d6714c22 2342 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2343 */
d6714c22 2344void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2345{
3fbfbf7a 2346 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2347}
d6714c22 2348EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2349
2350/*
486e2593 2351 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2352 */
2353void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2354{
3fbfbf7a 2355 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2356}
2357EXPORT_SYMBOL_GPL(call_rcu_bh);
2358
6d813391
PM
2359/*
2360 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2361 * any blocking grace-period wait automatically implies a grace period
2362 * if there is only one CPU online at any point time during execution
2363 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2364 * occasionally incorrectly indicate that there are multiple CPUs online
2365 * when there was in fact only one the whole time, as this just adds
2366 * some overhead: RCU still operates correctly.
6d813391
PM
2367 */
2368static inline int rcu_blocking_is_gp(void)
2369{
95f0c1de
PM
2370 int ret;
2371
6d813391 2372 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2373 preempt_disable();
2374 ret = num_online_cpus() <= 1;
2375 preempt_enable();
2376 return ret;
6d813391
PM
2377}
2378
6ebb237b
PM
2379/**
2380 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2381 *
2382 * Control will return to the caller some time after a full rcu-sched
2383 * grace period has elapsed, in other words after all currently executing
2384 * rcu-sched read-side critical sections have completed. These read-side
2385 * critical sections are delimited by rcu_read_lock_sched() and
2386 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2387 * local_irq_disable(), and so on may be used in place of
2388 * rcu_read_lock_sched().
2389 *
2390 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2391 * non-threaded hardware-interrupt handlers, in progress on entry will
2392 * have completed before this primitive returns. However, this does not
2393 * guarantee that softirq handlers will have completed, since in some
2394 * kernels, these handlers can run in process context, and can block.
2395 *
2396 * Note that this guarantee implies further memory-ordering guarantees.
2397 * On systems with more than one CPU, when synchronize_sched() returns,
2398 * each CPU is guaranteed to have executed a full memory barrier since the
2399 * end of its last RCU-sched read-side critical section whose beginning
2400 * preceded the call to synchronize_sched(). In addition, each CPU having
2401 * an RCU read-side critical section that extends beyond the return from
2402 * synchronize_sched() is guaranteed to have executed a full memory barrier
2403 * after the beginning of synchronize_sched() and before the beginning of
2404 * that RCU read-side critical section. Note that these guarantees include
2405 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2406 * that are executing in the kernel.
2407 *
2408 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2409 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2410 * to have executed a full memory barrier during the execution of
2411 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2412 * again only if the system has more than one CPU).
6ebb237b
PM
2413 *
2414 * This primitive provides the guarantees made by the (now removed)
2415 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2416 * guarantees that rcu_read_lock() sections will have completed.
2417 * In "classic RCU", these two guarantees happen to be one and
2418 * the same, but can differ in realtime RCU implementations.
2419 */
2420void synchronize_sched(void)
2421{
fe15d706
PM
2422 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2423 !lock_is_held(&rcu_lock_map) &&
2424 !lock_is_held(&rcu_sched_lock_map),
2425 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2426 if (rcu_blocking_is_gp())
2427 return;
3705b88d
AM
2428 if (rcu_expedited)
2429 synchronize_sched_expedited();
2430 else
2431 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2432}
2433EXPORT_SYMBOL_GPL(synchronize_sched);
2434
2435/**
2436 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2437 *
2438 * Control will return to the caller some time after a full rcu_bh grace
2439 * period has elapsed, in other words after all currently executing rcu_bh
2440 * read-side critical sections have completed. RCU read-side critical
2441 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2442 * and may be nested.
f0a0e6f2
PM
2443 *
2444 * See the description of synchronize_sched() for more detailed information
2445 * on memory ordering guarantees.
6ebb237b
PM
2446 */
2447void synchronize_rcu_bh(void)
2448{
fe15d706
PM
2449 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2450 !lock_is_held(&rcu_lock_map) &&
2451 !lock_is_held(&rcu_sched_lock_map),
2452 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2453 if (rcu_blocking_is_gp())
2454 return;
3705b88d
AM
2455 if (rcu_expedited)
2456 synchronize_rcu_bh_expedited();
2457 else
2458 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2459}
2460EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2461
3d3b7db0
PM
2462static int synchronize_sched_expedited_cpu_stop(void *data)
2463{
2464 /*
2465 * There must be a full memory barrier on each affected CPU
2466 * between the time that try_stop_cpus() is called and the
2467 * time that it returns.
2468 *
2469 * In the current initial implementation of cpu_stop, the
2470 * above condition is already met when the control reaches
2471 * this point and the following smp_mb() is not strictly
2472 * necessary. Do smp_mb() anyway for documentation and
2473 * robustness against future implementation changes.
2474 */
2475 smp_mb(); /* See above comment block. */
2476 return 0;
2477}
2478
236fefaf
PM
2479/**
2480 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2481 *
2482 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2483 * approach to force the grace period to end quickly. This consumes
2484 * significant time on all CPUs and is unfriendly to real-time workloads,
2485 * so is thus not recommended for any sort of common-case code. In fact,
2486 * if you are using synchronize_sched_expedited() in a loop, please
2487 * restructure your code to batch your updates, and then use a single
2488 * synchronize_sched() instead.
3d3b7db0 2489 *
236fefaf
PM
2490 * Note that it is illegal to call this function while holding any lock
2491 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2492 * to call this function from a CPU-hotplug notifier. Failing to observe
2493 * these restriction will result in deadlock.
3d3b7db0
PM
2494 *
2495 * This implementation can be thought of as an application of ticket
2496 * locking to RCU, with sync_sched_expedited_started and
2497 * sync_sched_expedited_done taking on the roles of the halves
2498 * of the ticket-lock word. Each task atomically increments
2499 * sync_sched_expedited_started upon entry, snapshotting the old value,
2500 * then attempts to stop all the CPUs. If this succeeds, then each
2501 * CPU will have executed a context switch, resulting in an RCU-sched
2502 * grace period. We are then done, so we use atomic_cmpxchg() to
2503 * update sync_sched_expedited_done to match our snapshot -- but
2504 * only if someone else has not already advanced past our snapshot.
2505 *
2506 * On the other hand, if try_stop_cpus() fails, we check the value
2507 * of sync_sched_expedited_done. If it has advanced past our
2508 * initial snapshot, then someone else must have forced a grace period
2509 * some time after we took our snapshot. In this case, our work is
2510 * done for us, and we can simply return. Otherwise, we try again,
2511 * but keep our initial snapshot for purposes of checking for someone
2512 * doing our work for us.
2513 *
2514 * If we fail too many times in a row, we fall back to synchronize_sched().
2515 */
2516void synchronize_sched_expedited(void)
2517{
1924bcb0
PM
2518 long firstsnap, s, snap;
2519 int trycount = 0;
40694d66 2520 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2521
1924bcb0
PM
2522 /*
2523 * If we are in danger of counter wrap, just do synchronize_sched().
2524 * By allowing sync_sched_expedited_started to advance no more than
2525 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2526 * that more than 3.5 billion CPUs would be required to force a
2527 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2528 * course be required on a 64-bit system.
2529 */
40694d66
PM
2530 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2531 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2532 ULONG_MAX / 8)) {
2533 synchronize_sched();
a30489c5 2534 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2535 return;
2536 }
3d3b7db0 2537
1924bcb0
PM
2538 /*
2539 * Take a ticket. Note that atomic_inc_return() implies a
2540 * full memory barrier.
2541 */
40694d66 2542 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2543 firstsnap = snap;
3d3b7db0 2544 get_online_cpus();
1cc85961 2545 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2546
2547 /*
2548 * Each pass through the following loop attempts to force a
2549 * context switch on each CPU.
2550 */
2551 while (try_stop_cpus(cpu_online_mask,
2552 synchronize_sched_expedited_cpu_stop,
2553 NULL) == -EAGAIN) {
2554 put_online_cpus();
a30489c5 2555 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2556
1924bcb0 2557 /* Check to see if someone else did our work for us. */
40694d66 2558 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2559 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2560 /* ensure test happens before caller kfree */
2561 smp_mb__before_atomic_inc(); /* ^^^ */
2562 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2563 return;
2564 }
3d3b7db0
PM
2565
2566 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2567 if (trycount++ < 10) {
3d3b7db0 2568 udelay(trycount * num_online_cpus());
c701d5d9 2569 } else {
3705b88d 2570 wait_rcu_gp(call_rcu_sched);
a30489c5 2571 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2572 return;
2573 }
2574
1924bcb0 2575 /* Recheck to see if someone else did our work for us. */
40694d66 2576 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2577 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2578 /* ensure test happens before caller kfree */
2579 smp_mb__before_atomic_inc(); /* ^^^ */
2580 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2581 return;
2582 }
2583
2584 /*
2585 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2586 * callers to piggyback on our grace period. We retry
2587 * after they started, so our grace period works for them,
2588 * and they started after our first try, so their grace
2589 * period works for us.
3d3b7db0
PM
2590 */
2591 get_online_cpus();
40694d66 2592 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2593 smp_mb(); /* ensure read is before try_stop_cpus(). */
2594 }
a30489c5 2595 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2596
2597 /*
2598 * Everyone up to our most recent fetch is covered by our grace
2599 * period. Update the counter, but only if our work is still
2600 * relevant -- which it won't be if someone who started later
1924bcb0 2601 * than we did already did their update.
3d3b7db0
PM
2602 */
2603 do {
a30489c5 2604 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2605 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2606 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2607 /* ensure test happens before caller kfree */
2608 smp_mb__before_atomic_inc(); /* ^^^ */
2609 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2610 break;
2611 }
40694d66 2612 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2613 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2614
2615 put_online_cpus();
2616}
2617EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2618
64db4cff
PM
2619/*
2620 * Check to see if there is any immediate RCU-related work to be done
2621 * by the current CPU, for the specified type of RCU, returning 1 if so.
2622 * The checks are in order of increasing expense: checks that can be
2623 * carried out against CPU-local state are performed first. However,
2624 * we must check for CPU stalls first, else we might not get a chance.
2625 */
2626static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2627{
2f51f988
PM
2628 struct rcu_node *rnp = rdp->mynode;
2629
64db4cff
PM
2630 rdp->n_rcu_pending++;
2631
2632 /* Check for CPU stalls, if enabled. */
2633 check_cpu_stall(rsp, rdp);
2634
2635 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2636 if (rcu_scheduler_fully_active &&
2637 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2638 rdp->n_rp_qs_pending++;
e4cc1f22 2639 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2640 rdp->n_rp_report_qs++;
64db4cff 2641 return 1;
7ba5c840 2642 }
64db4cff
PM
2643
2644 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2645 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2646 rdp->n_rp_cb_ready++;
64db4cff 2647 return 1;
7ba5c840 2648 }
64db4cff
PM
2649
2650 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2651 if (cpu_needs_another_gp(rsp, rdp)) {
2652 rdp->n_rp_cpu_needs_gp++;
64db4cff 2653 return 1;
7ba5c840 2654 }
64db4cff
PM
2655
2656 /* Has another RCU grace period completed? */
2f51f988 2657 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2658 rdp->n_rp_gp_completed++;
64db4cff 2659 return 1;
7ba5c840 2660 }
64db4cff
PM
2661
2662 /* Has a new RCU grace period started? */
2f51f988 2663 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2664 rdp->n_rp_gp_started++;
64db4cff 2665 return 1;
7ba5c840 2666 }
64db4cff 2667
64db4cff 2668 /* nothing to do */
7ba5c840 2669 rdp->n_rp_need_nothing++;
64db4cff
PM
2670 return 0;
2671}
2672
2673/*
2674 * Check to see if there is any immediate RCU-related work to be done
2675 * by the current CPU, returning 1 if so. This function is part of the
2676 * RCU implementation; it is -not- an exported member of the RCU API.
2677 */
a157229c 2678static int rcu_pending(int cpu)
64db4cff 2679{
6ce75a23
PM
2680 struct rcu_state *rsp;
2681
2682 for_each_rcu_flavor(rsp)
2683 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2684 return 1;
2685 return 0;
64db4cff
PM
2686}
2687
2688/*
c0f4dfd4
PM
2689 * Return true if the specified CPU has any callback. If all_lazy is
2690 * non-NULL, store an indication of whether all callbacks are lazy.
2691 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2692 */
c0f4dfd4 2693static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2694{
c0f4dfd4
PM
2695 bool al = true;
2696 bool hc = false;
2697 struct rcu_data *rdp;
6ce75a23
PM
2698 struct rcu_state *rsp;
2699
c0f4dfd4
PM
2700 for_each_rcu_flavor(rsp) {
2701 rdp = per_cpu_ptr(rsp->rda, cpu);
2702 if (rdp->qlen != rdp->qlen_lazy)
2703 al = false;
2704 if (rdp->nxtlist)
2705 hc = true;
2706 }
2707 if (all_lazy)
2708 *all_lazy = al;
2709 return hc;
64db4cff
PM
2710}
2711
a83eff0a
PM
2712/*
2713 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2714 * the compiler is expected to optimize this away.
2715 */
e66c33d5 2716static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2717 int cpu, unsigned long done)
2718{
2719 trace_rcu_barrier(rsp->name, s, cpu,
2720 atomic_read(&rsp->barrier_cpu_count), done);
2721}
2722
b1420f1c
PM
2723/*
2724 * RCU callback function for _rcu_barrier(). If we are last, wake
2725 * up the task executing _rcu_barrier().
2726 */
24ebbca8 2727static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2728{
24ebbca8
PM
2729 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2730 struct rcu_state *rsp = rdp->rsp;
2731
a83eff0a
PM
2732 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2733 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2734 complete(&rsp->barrier_completion);
a83eff0a
PM
2735 } else {
2736 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2737 }
d0ec774c
PM
2738}
2739
2740/*
2741 * Called with preemption disabled, and from cross-cpu IRQ context.
2742 */
2743static void rcu_barrier_func(void *type)
2744{
037b64ed 2745 struct rcu_state *rsp = type;
06668efa 2746 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2747
a83eff0a 2748 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2749 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2750 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2751}
2752
d0ec774c
PM
2753/*
2754 * Orchestrate the specified type of RCU barrier, waiting for all
2755 * RCU callbacks of the specified type to complete.
2756 */
037b64ed 2757static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2758{
b1420f1c 2759 int cpu;
b1420f1c 2760 struct rcu_data *rdp;
cf3a9c48
PM
2761 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2762 unsigned long snap_done;
b1420f1c 2763
a83eff0a 2764 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2765
e74f4c45 2766 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2767 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2768
cf3a9c48
PM
2769 /*
2770 * Ensure that all prior references, including to ->n_barrier_done,
2771 * are ordered before the _rcu_barrier() machinery.
2772 */
2773 smp_mb(); /* See above block comment. */
2774
2775 /*
2776 * Recheck ->n_barrier_done to see if others did our work for us.
2777 * This means checking ->n_barrier_done for an even-to-odd-to-even
2778 * transition. The "if" expression below therefore rounds the old
2779 * value up to the next even number and adds two before comparing.
2780 */
2781 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2782 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2783 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2784 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2785 smp_mb(); /* caller's subsequent code after above check. */
2786 mutex_unlock(&rsp->barrier_mutex);
2787 return;
2788 }
2789
2790 /*
2791 * Increment ->n_barrier_done to avoid duplicate work. Use
2792 * ACCESS_ONCE() to prevent the compiler from speculating
2793 * the increment to precede the early-exit check.
2794 */
2795 ACCESS_ONCE(rsp->n_barrier_done)++;
2796 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2797 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2798 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2799
d0ec774c 2800 /*
b1420f1c
PM
2801 * Initialize the count to one rather than to zero in order to
2802 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2803 * (or preemption of this task). Exclude CPU-hotplug operations
2804 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2805 */
7db74df8 2806 init_completion(&rsp->barrier_completion);
24ebbca8 2807 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2808 get_online_cpus();
b1420f1c
PM
2809
2810 /*
1331e7a1
PM
2811 * Force each CPU with callbacks to register a new callback.
2812 * When that callback is invoked, we will know that all of the
2813 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2814 */
3fbfbf7a 2815 for_each_possible_cpu(cpu) {
d1e43fa5 2816 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2817 continue;
b1420f1c 2818 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2819 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2820 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2821 rsp->n_barrier_done);
2822 atomic_inc(&rsp->barrier_cpu_count);
2823 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2824 rsp, cpu, 0);
2825 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2826 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2827 rsp->n_barrier_done);
037b64ed 2828 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2829 } else {
a83eff0a
PM
2830 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2831 rsp->n_barrier_done);
b1420f1c
PM
2832 }
2833 }
1331e7a1 2834 put_online_cpus();
b1420f1c
PM
2835
2836 /*
2837 * Now that we have an rcu_barrier_callback() callback on each
2838 * CPU, and thus each counted, remove the initial count.
2839 */
24ebbca8 2840 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2841 complete(&rsp->barrier_completion);
b1420f1c 2842
cf3a9c48
PM
2843 /* Increment ->n_barrier_done to prevent duplicate work. */
2844 smp_mb(); /* Keep increment after above mechanism. */
2845 ACCESS_ONCE(rsp->n_barrier_done)++;
2846 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2847 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2848 smp_mb(); /* Keep increment before caller's subsequent code. */
2849
b1420f1c 2850 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2851 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2852
2853 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2854 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2855}
d0ec774c
PM
2856
2857/**
2858 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2859 */
2860void rcu_barrier_bh(void)
2861{
037b64ed 2862 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2863}
2864EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2865
2866/**
2867 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2868 */
2869void rcu_barrier_sched(void)
2870{
037b64ed 2871 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2872}
2873EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2874
64db4cff 2875/*
27569620 2876 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2877 */
27569620
PM
2878static void __init
2879rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2880{
2881 unsigned long flags;
394f99a9 2882 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2883 struct rcu_node *rnp = rcu_get_root(rsp);
2884
2885 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2886 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2887 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2888 init_callback_list(rdp);
486e2593 2889 rdp->qlen_lazy = 0;
1d1fb395 2890 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2891 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2892 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2893 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2894 rdp->cpu = cpu;
d4c08f2a 2895 rdp->rsp = rsp;
3fbfbf7a 2896 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2897 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2898}
2899
2900/*
2901 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2902 * offline event can be happening at a given time. Note also that we
2903 * can accept some slop in the rsp->completed access due to the fact
2904 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2905 */
49fb4c62 2906static void
6cc68793 2907rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2908{
2909 unsigned long flags;
64db4cff 2910 unsigned long mask;
394f99a9 2911 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2912 struct rcu_node *rnp = rcu_get_root(rsp);
2913
a4fbe35a
PM
2914 /* Exclude new grace periods. */
2915 mutex_lock(&rsp->onoff_mutex);
2916
64db4cff 2917 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2918 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2919 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2920 rdp->preemptible = preemptible;
37c72e56
PM
2921 rdp->qlen_last_fqs_check = 0;
2922 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2923 rdp->blimit = blimit;
0d8ee37e 2924 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2925 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 2926 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
2927 atomic_set(&rdp->dynticks->dynticks,
2928 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 2929 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2930
64db4cff
PM
2931 /* Add CPU to rcu_node bitmasks. */
2932 rnp = rdp->mynode;
2933 mask = rdp->grpmask;
2934 do {
2935 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2936 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2937 rnp->qsmaskinit |= mask;
2938 mask = rnp->grpmask;
d09b62df 2939 if (rnp == rdp->mynode) {
06ae115a
PM
2940 /*
2941 * If there is a grace period in progress, we will
2942 * set up to wait for it next time we run the
2943 * RCU core code.
2944 */
2945 rdp->gpnum = rnp->completed;
d09b62df 2946 rdp->completed = rnp->completed;
06ae115a
PM
2947 rdp->passed_quiesce = 0;
2948 rdp->qs_pending = 0;
f7f7bac9 2949 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 2950 }
1304afb2 2951 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2952 rnp = rnp->parent;
2953 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2954 local_irq_restore(flags);
64db4cff 2955
a4fbe35a 2956 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2957}
2958
49fb4c62 2959static void rcu_prepare_cpu(int cpu)
64db4cff 2960{
6ce75a23
PM
2961 struct rcu_state *rsp;
2962
2963 for_each_rcu_flavor(rsp)
2964 rcu_init_percpu_data(cpu, rsp,
2965 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2966}
2967
2968/*
f41d911f 2969 * Handle CPU online/offline notification events.
64db4cff 2970 */
49fb4c62 2971static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 2972 unsigned long action, void *hcpu)
64db4cff
PM
2973{
2974 long cpu = (long)hcpu;
27f4d280 2975 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2976 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2977 struct rcu_state *rsp;
64db4cff 2978
f7f7bac9 2979 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
2980 switch (action) {
2981 case CPU_UP_PREPARE:
2982 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2983 rcu_prepare_cpu(cpu);
2984 rcu_prepare_kthreads(cpu);
a26ac245
PM
2985 break;
2986 case CPU_ONLINE:
0f962a5e 2987 case CPU_DOWN_FAILED:
5d01bbd1 2988 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
2989 break;
2990 case CPU_DOWN_PREPARE:
34ed6246 2991 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 2992 break;
d0ec774c
PM
2993 case CPU_DYING:
2994 case CPU_DYING_FROZEN:
6ce75a23
PM
2995 for_each_rcu_flavor(rsp)
2996 rcu_cleanup_dying_cpu(rsp);
d0ec774c 2997 break;
64db4cff
PM
2998 case CPU_DEAD:
2999 case CPU_DEAD_FROZEN:
3000 case CPU_UP_CANCELED:
3001 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3002 for_each_rcu_flavor(rsp)
3003 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3004 break;
3005 default:
3006 break;
3007 }
f7f7bac9 3008 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3009 return NOTIFY_OK;
64db4cff
PM
3010}
3011
b3dbec76
PM
3012/*
3013 * Spawn the kthread that handles this RCU flavor's grace periods.
3014 */
3015static int __init rcu_spawn_gp_kthread(void)
3016{
3017 unsigned long flags;
3018 struct rcu_node *rnp;
3019 struct rcu_state *rsp;
3020 struct task_struct *t;
3021
3022 for_each_rcu_flavor(rsp) {
f170168b 3023 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3024 BUG_ON(IS_ERR(t));
3025 rnp = rcu_get_root(rsp);
3026 raw_spin_lock_irqsave(&rnp->lock, flags);
3027 rsp->gp_kthread = t;
3028 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3029 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3030 }
3031 return 0;
3032}
3033early_initcall(rcu_spawn_gp_kthread);
3034
bbad9379
PM
3035/*
3036 * This function is invoked towards the end of the scheduler's initialization
3037 * process. Before this is called, the idle task might contain
3038 * RCU read-side critical sections (during which time, this idle
3039 * task is booting the system). After this function is called, the
3040 * idle tasks are prohibited from containing RCU read-side critical
3041 * sections. This function also enables RCU lockdep checking.
3042 */
3043void rcu_scheduler_starting(void)
3044{
3045 WARN_ON(num_online_cpus() != 1);
3046 WARN_ON(nr_context_switches() > 0);
3047 rcu_scheduler_active = 1;
3048}
3049
64db4cff
PM
3050/*
3051 * Compute the per-level fanout, either using the exact fanout specified
3052 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3053 */
3054#ifdef CONFIG_RCU_FANOUT_EXACT
3055static void __init rcu_init_levelspread(struct rcu_state *rsp)
3056{
3057 int i;
3058
f885b7f2 3059 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3060 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3061 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3062}
3063#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3064static void __init rcu_init_levelspread(struct rcu_state *rsp)
3065{
3066 int ccur;
3067 int cprv;
3068 int i;
3069
4dbd6bb3 3070 cprv = nr_cpu_ids;
f885b7f2 3071 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3072 ccur = rsp->levelcnt[i];
3073 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3074 cprv = ccur;
3075 }
3076}
3077#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3078
3079/*
3080 * Helper function for rcu_init() that initializes one rcu_state structure.
3081 */
394f99a9
LJ
3082static void __init rcu_init_one(struct rcu_state *rsp,
3083 struct rcu_data __percpu *rda)
64db4cff 3084{
394f2769
PM
3085 static char *buf[] = { "rcu_node_0",
3086 "rcu_node_1",
3087 "rcu_node_2",
3088 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3089 static char *fqs[] = { "rcu_node_fqs_0",
3090 "rcu_node_fqs_1",
3091 "rcu_node_fqs_2",
3092 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3093 int cpustride = 1;
3094 int i;
3095 int j;
3096 struct rcu_node *rnp;
3097
b6407e86
PM
3098 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3099
4930521a
PM
3100 /* Silence gcc 4.8 warning about array index out of range. */
3101 if (rcu_num_lvls > RCU_NUM_LVLS)
3102 panic("rcu_init_one: rcu_num_lvls overflow");
3103
64db4cff
PM
3104 /* Initialize the level-tracking arrays. */
3105
f885b7f2
PM
3106 for (i = 0; i < rcu_num_lvls; i++)
3107 rsp->levelcnt[i] = num_rcu_lvl[i];
3108 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3109 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3110 rcu_init_levelspread(rsp);
3111
3112 /* Initialize the elements themselves, starting from the leaves. */
3113
f885b7f2 3114 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3115 cpustride *= rsp->levelspread[i];
3116 rnp = rsp->level[i];
3117 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3118 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3119 lockdep_set_class_and_name(&rnp->lock,
3120 &rcu_node_class[i], buf[i]);
394f2769
PM
3121 raw_spin_lock_init(&rnp->fqslock);
3122 lockdep_set_class_and_name(&rnp->fqslock,
3123 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3124 rnp->gpnum = rsp->gpnum;
3125 rnp->completed = rsp->completed;
64db4cff
PM
3126 rnp->qsmask = 0;
3127 rnp->qsmaskinit = 0;
3128 rnp->grplo = j * cpustride;
3129 rnp->grphi = (j + 1) * cpustride - 1;
3130 if (rnp->grphi >= NR_CPUS)
3131 rnp->grphi = NR_CPUS - 1;
3132 if (i == 0) {
3133 rnp->grpnum = 0;
3134 rnp->grpmask = 0;
3135 rnp->parent = NULL;
3136 } else {
3137 rnp->grpnum = j % rsp->levelspread[i - 1];
3138 rnp->grpmask = 1UL << rnp->grpnum;
3139 rnp->parent = rsp->level[i - 1] +
3140 j / rsp->levelspread[i - 1];
3141 }
3142 rnp->level = i;
12f5f524 3143 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3144 rcu_init_one_nocb(rnp);
64db4cff
PM
3145 }
3146 }
0c34029a 3147
394f99a9 3148 rsp->rda = rda;
b3dbec76 3149 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3150 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3151 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3152 for_each_possible_cpu(i) {
4a90a068 3153 while (i > rnp->grphi)
0c34029a 3154 rnp++;
394f99a9 3155 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3156 rcu_boot_init_percpu_data(i, rsp);
3157 }
6ce75a23 3158 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3159}
3160
f885b7f2
PM
3161/*
3162 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3163 * replace the definitions in rcutree.h because those are needed to size
3164 * the ->node array in the rcu_state structure.
3165 */
3166static void __init rcu_init_geometry(void)
3167{
026ad283 3168 ulong d;
f885b7f2
PM
3169 int i;
3170 int j;
cca6f393 3171 int n = nr_cpu_ids;
f885b7f2
PM
3172 int rcu_capacity[MAX_RCU_LVLS + 1];
3173
026ad283
PM
3174 /*
3175 * Initialize any unspecified boot parameters.
3176 * The default values of jiffies_till_first_fqs and
3177 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3178 * value, which is a function of HZ, then adding one for each
3179 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3180 */
3181 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3182 if (jiffies_till_first_fqs == ULONG_MAX)
3183 jiffies_till_first_fqs = d;
3184 if (jiffies_till_next_fqs == ULONG_MAX)
3185 jiffies_till_next_fqs = d;
3186
f885b7f2 3187 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3188 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3189 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3190 return;
3191
3192 /*
3193 * Compute number of nodes that can be handled an rcu_node tree
3194 * with the given number of levels. Setting rcu_capacity[0] makes
3195 * some of the arithmetic easier.
3196 */
3197 rcu_capacity[0] = 1;
3198 rcu_capacity[1] = rcu_fanout_leaf;
3199 for (i = 2; i <= MAX_RCU_LVLS; i++)
3200 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3201
3202 /*
3203 * The boot-time rcu_fanout_leaf parameter is only permitted
3204 * to increase the leaf-level fanout, not decrease it. Of course,
3205 * the leaf-level fanout cannot exceed the number of bits in
3206 * the rcu_node masks. Finally, the tree must be able to accommodate
3207 * the configured number of CPUs. Complain and fall back to the
3208 * compile-time values if these limits are exceeded.
3209 */
3210 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3211 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3212 n > rcu_capacity[MAX_RCU_LVLS]) {
3213 WARN_ON(1);
3214 return;
3215 }
3216
3217 /* Calculate the number of rcu_nodes at each level of the tree. */
3218 for (i = 1; i <= MAX_RCU_LVLS; i++)
3219 if (n <= rcu_capacity[i]) {
3220 for (j = 0; j <= i; j++)
3221 num_rcu_lvl[j] =
3222 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3223 rcu_num_lvls = i;
3224 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3225 num_rcu_lvl[j] = 0;
3226 break;
3227 }
3228
3229 /* Calculate the total number of rcu_node structures. */
3230 rcu_num_nodes = 0;
3231 for (i = 0; i <= MAX_RCU_LVLS; i++)
3232 rcu_num_nodes += num_rcu_lvl[i];
3233 rcu_num_nodes -= n;
3234}
3235
9f680ab4 3236void __init rcu_init(void)
64db4cff 3237{
017c4261 3238 int cpu;
9f680ab4 3239
f41d911f 3240 rcu_bootup_announce();
f885b7f2 3241 rcu_init_geometry();
394f99a9
LJ
3242 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3243 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3244 __rcu_init_preempt();
b5b39360 3245 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3246
3247 /*
3248 * We don't need protection against CPU-hotplug here because
3249 * this is called early in boot, before either interrupts
3250 * or the scheduler are operational.
3251 */
3252 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
3253 for_each_online_cpu(cpu)
3254 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3255}
3256
1eba8f84 3257#include "rcutree_plugin.h"
This page took 0.512539 seconds and 5 git commands to generate.