nohz_full: Add rcu_dyntick data for scalable detection of all-idle state
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
64db4cff 57
9f77da9f 58#include "rcutree.h"
29c00b4a
PM
59#include <trace/events/rcu.h>
60
61#include "rcu.h"
9f77da9f 62
f7f7bac9
SRRH
63/*
64 * Strings used in tracepoints need to be exported via the
65 * tracing system such that tools like perf and trace-cmd can
66 * translate the string address pointers to actual text.
67 */
68#define TPS(x) tracepoint_string(x)
69
64db4cff
PM
70/* Data structures. */
71
f885b7f2 72static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 73static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 74
f7f7bac9
SRRH
75/*
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
82 */
a41bfeb2 83#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
84static char sname##_varname[] = #sname; \
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 86struct rcu_state sname##_state = { \
6c90cc7b 87 .level = { &sname##_state.node[0] }, \
037b64ed 88 .call = cr, \
af446b70 89 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
90 .gpnum = 0UL - 300UL, \
91 .completed = 0UL - 300UL, \
7b2e6011 92 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
93 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
94 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 95 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 96 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 97 .name = sname##_varname, \
a4889858 98 .abbr = sabbr, \
a41bfeb2
SRRH
99}; \
100DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 101
a41bfeb2
SRRH
102RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
103RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 104
27f4d280 105static struct rcu_state *rcu_state;
6ce75a23 106LIST_HEAD(rcu_struct_flavors);
27f4d280 107
f885b7f2
PM
108/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
109static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 110module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
113 NUM_RCU_LVL_0,
114 NUM_RCU_LVL_1,
115 NUM_RCU_LVL_2,
116 NUM_RCU_LVL_3,
117 NUM_RCU_LVL_4,
118};
119int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120
b0d30417
PM
121/*
122 * The rcu_scheduler_active variable transitions from zero to one just
123 * before the first task is spawned. So when this variable is zero, RCU
124 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 125 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
126 * is one, RCU must actually do all the hard work required to detect real
127 * grace periods. This variable is also used to suppress boot-time false
128 * positives from lockdep-RCU error checking.
129 */
bbad9379
PM
130int rcu_scheduler_active __read_mostly;
131EXPORT_SYMBOL_GPL(rcu_scheduler_active);
132
b0d30417
PM
133/*
134 * The rcu_scheduler_fully_active variable transitions from zero to one
135 * during the early_initcall() processing, which is after the scheduler
136 * is capable of creating new tasks. So RCU processing (for example,
137 * creating tasks for RCU priority boosting) must be delayed until after
138 * rcu_scheduler_fully_active transitions from zero to one. We also
139 * currently delay invocation of any RCU callbacks until after this point.
140 *
141 * It might later prove better for people registering RCU callbacks during
142 * early boot to take responsibility for these callbacks, but one step at
143 * a time.
144 */
145static int rcu_scheduler_fully_active __read_mostly;
146
a46e0899
PM
147#ifdef CONFIG_RCU_BOOST
148
a26ac245
PM
149/*
150 * Control variables for per-CPU and per-rcu_node kthreads. These
151 * handle all flavors of RCU.
152 */
153static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 156DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 157
a46e0899
PM
158#endif /* #ifdef CONFIG_RCU_BOOST */
159
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 163
4a298656
PM
164/*
165 * Track the rcutorture test sequence number and the update version
166 * number within a given test. The rcutorture_testseq is incremented
167 * on every rcutorture module load and unload, so has an odd value
168 * when a test is running. The rcutorture_vernum is set to zero
169 * when rcutorture starts and is incremented on each rcutorture update.
170 * These variables enable correlating rcutorture output with the
171 * RCU tracing information.
172 */
173unsigned long rcutorture_testseq;
174unsigned long rcutorture_vernum;
175
fc2219d4
PM
176/*
177 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
178 * permit this function to be invoked without holding the root rcu_node
179 * structure's ->lock, but of course results can be subject to change.
180 */
181static int rcu_gp_in_progress(struct rcu_state *rsp)
182{
183 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
184}
185
b1f77b05 186/*
d6714c22 187 * Note a quiescent state. Because we do not need to know
b1f77b05 188 * how many quiescent states passed, just if there was at least
d6714c22 189 * one since the start of the grace period, this just sets a flag.
e4cc1f22 190 * The caller must have disabled preemption.
b1f77b05 191 */
d6714c22 192void rcu_sched_qs(int cpu)
b1f77b05 193{
25502a6c 194 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 195
e4cc1f22 196 if (rdp->passed_quiesce == 0)
f7f7bac9 197 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 198 rdp->passed_quiesce = 1;
b1f77b05
IM
199}
200
d6714c22 201void rcu_bh_qs(int cpu)
b1f77b05 202{
25502a6c 203 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 204
e4cc1f22 205 if (rdp->passed_quiesce == 0)
f7f7bac9 206 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 207 rdp->passed_quiesce = 1;
b1f77b05 208}
64db4cff 209
25502a6c
PM
210/*
211 * Note a context switch. This is a quiescent state for RCU-sched,
212 * and requires special handling for preemptible RCU.
e4cc1f22 213 * The caller must have disabled preemption.
25502a6c
PM
214 */
215void rcu_note_context_switch(int cpu)
216{
f7f7bac9 217 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 218 rcu_sched_qs(cpu);
cba6d0d6 219 rcu_preempt_note_context_switch(cpu);
f7f7bac9 220 trace_rcu_utilization(TPS("End context switch"));
25502a6c 221}
29ce8310 222EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 223
90a4d2c0 224DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 225 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 226 .dynticks = ATOMIC_INIT(1),
2333210b
PM
227#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
228 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
229 .dynticks_idle = ATOMIC_INIT(1),
230#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 231};
64db4cff 232
878d7439
ED
233static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
234static long qhimark = 10000; /* If this many pending, ignore blimit. */
235static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 236
878d7439
ED
237module_param(blimit, long, 0444);
238module_param(qhimark, long, 0444);
239module_param(qlowmark, long, 0444);
3d76c082 240
026ad283
PM
241static ulong jiffies_till_first_fqs = ULONG_MAX;
242static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
243
244module_param(jiffies_till_first_fqs, ulong, 0644);
245module_param(jiffies_till_next_fqs, ulong, 0644);
246
910ee45d
PM
247static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
248 struct rcu_data *rdp);
4cdfc175
PM
249static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
250static void force_quiescent_state(struct rcu_state *rsp);
a157229c 251static int rcu_pending(int cpu);
64db4cff
PM
252
253/*
d6714c22 254 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 255 */
d6714c22 256long rcu_batches_completed_sched(void)
64db4cff 257{
d6714c22 258 return rcu_sched_state.completed;
64db4cff 259}
d6714c22 260EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
261
262/*
263 * Return the number of RCU BH batches processed thus far for debug & stats.
264 */
265long rcu_batches_completed_bh(void)
266{
267 return rcu_bh_state.completed;
268}
269EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
270
bf66f18e
PM
271/*
272 * Force a quiescent state for RCU BH.
273 */
274void rcu_bh_force_quiescent_state(void)
275{
4cdfc175 276 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
277}
278EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
279
4a298656
PM
280/*
281 * Record the number of times rcutorture tests have been initiated and
282 * terminated. This information allows the debugfs tracing stats to be
283 * correlated to the rcutorture messages, even when the rcutorture module
284 * is being repeatedly loaded and unloaded. In other words, we cannot
285 * store this state in rcutorture itself.
286 */
287void rcutorture_record_test_transition(void)
288{
289 rcutorture_testseq++;
290 rcutorture_vernum = 0;
291}
292EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
293
294/*
295 * Record the number of writer passes through the current rcutorture test.
296 * This is also used to correlate debugfs tracing stats with the rcutorture
297 * messages.
298 */
299void rcutorture_record_progress(unsigned long vernum)
300{
301 rcutorture_vernum++;
302}
303EXPORT_SYMBOL_GPL(rcutorture_record_progress);
304
bf66f18e
PM
305/*
306 * Force a quiescent state for RCU-sched.
307 */
308void rcu_sched_force_quiescent_state(void)
309{
4cdfc175 310 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
311}
312EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
313
64db4cff
PM
314/*
315 * Does the CPU have callbacks ready to be invoked?
316 */
317static int
318cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
319{
3fbfbf7a
PM
320 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
321 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
322}
323
324/*
dc35c893
PM
325 * Does the current CPU require a not-yet-started grace period?
326 * The caller must have disabled interrupts to prevent races with
327 * normal callback registry.
64db4cff
PM
328 */
329static int
330cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
331{
dc35c893 332 int i;
3fbfbf7a 333
dc35c893
PM
334 if (rcu_gp_in_progress(rsp))
335 return 0; /* No, a grace period is already in progress. */
dae6e64d 336 if (rcu_nocb_needs_gp(rsp))
34ed6246 337 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
338 if (!rdp->nxttail[RCU_NEXT_TAIL])
339 return 0; /* No, this is a no-CBs (or offline) CPU. */
340 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
341 return 1; /* Yes, this CPU has newly registered callbacks. */
342 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
343 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
344 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
345 rdp->nxtcompleted[i]))
346 return 1; /* Yes, CBs for future grace period. */
347 return 0; /* No grace period needed. */
64db4cff
PM
348}
349
350/*
351 * Return the root node of the specified rcu_state structure.
352 */
353static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
354{
355 return &rsp->node[0];
356}
357
9b2e4f18 358/*
adf5091e 359 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
360 *
361 * If the new value of the ->dynticks_nesting counter now is zero,
362 * we really have entered idle, and must do the appropriate accounting.
363 * The caller must have disabled interrupts.
364 */
adf5091e
FW
365static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
366 bool user)
9b2e4f18 367{
f7f7bac9 368 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 369 if (!user && !is_idle_task(current)) {
0989cb46
PM
370 struct task_struct *idle = idle_task(smp_processor_id());
371
f7f7bac9 372 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 373 ftrace_dump(DUMP_ORIG);
0989cb46
PM
374 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
375 current->pid, current->comm,
376 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 377 }
aea1b35e 378 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
379 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
380 smp_mb__before_atomic_inc(); /* See above. */
381 atomic_inc(&rdtp->dynticks);
382 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
383 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
384
385 /*
adf5091e 386 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
387 * in an RCU read-side critical section.
388 */
389 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
390 "Illegal idle entry in RCU read-side critical section.");
391 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
392 "Illegal idle entry in RCU-bh read-side critical section.");
393 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
394 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 395}
64db4cff 396
adf5091e
FW
397/*
398 * Enter an RCU extended quiescent state, which can be either the
399 * idle loop or adaptive-tickless usermode execution.
64db4cff 400 */
adf5091e 401static void rcu_eqs_enter(bool user)
64db4cff 402{
4145fa7f 403 long long oldval;
64db4cff
PM
404 struct rcu_dynticks *rdtp;
405
64db4cff 406 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 407 oldval = rdtp->dynticks_nesting;
29e37d81
PM
408 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
409 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
410 rdtp->dynticks_nesting = 0;
411 else
412 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 413 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 414}
adf5091e
FW
415
416/**
417 * rcu_idle_enter - inform RCU that current CPU is entering idle
418 *
419 * Enter idle mode, in other words, -leave- the mode in which RCU
420 * read-side critical sections can occur. (Though RCU read-side
421 * critical sections can occur in irq handlers in idle, a possibility
422 * handled by irq_enter() and irq_exit().)
423 *
424 * We crowbar the ->dynticks_nesting field to zero to allow for
425 * the possibility of usermode upcalls having messed up our count
426 * of interrupt nesting level during the prior busy period.
427 */
428void rcu_idle_enter(void)
429{
c5d900bf
FW
430 unsigned long flags;
431
432 local_irq_save(flags);
cb349ca9 433 rcu_eqs_enter(false);
c5d900bf 434 local_irq_restore(flags);
adf5091e 435}
8a2ecf47 436EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 437
2b1d5024 438#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
439/**
440 * rcu_user_enter - inform RCU that we are resuming userspace.
441 *
442 * Enter RCU idle mode right before resuming userspace. No use of RCU
443 * is permitted between this call and rcu_user_exit(). This way the
444 * CPU doesn't need to maintain the tick for RCU maintenance purposes
445 * when the CPU runs in userspace.
446 */
447void rcu_user_enter(void)
448{
91d1aa43 449 rcu_eqs_enter(1);
adf5091e 450}
2b1d5024 451#endif /* CONFIG_RCU_USER_QS */
19dd1591 452
9b2e4f18
PM
453/**
454 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
455 *
456 * Exit from an interrupt handler, which might possibly result in entering
457 * idle mode, in other words, leaving the mode in which read-side critical
458 * sections can occur.
64db4cff 459 *
9b2e4f18
PM
460 * This code assumes that the idle loop never does anything that might
461 * result in unbalanced calls to irq_enter() and irq_exit(). If your
462 * architecture violates this assumption, RCU will give you what you
463 * deserve, good and hard. But very infrequently and irreproducibly.
464 *
465 * Use things like work queues to work around this limitation.
466 *
467 * You have been warned.
64db4cff 468 */
9b2e4f18 469void rcu_irq_exit(void)
64db4cff
PM
470{
471 unsigned long flags;
4145fa7f 472 long long oldval;
64db4cff
PM
473 struct rcu_dynticks *rdtp;
474
475 local_irq_save(flags);
476 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 477 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
478 rdtp->dynticks_nesting--;
479 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 480 if (rdtp->dynticks_nesting)
f7f7bac9 481 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 482 else
cb349ca9 483 rcu_eqs_enter_common(rdtp, oldval, true);
9b2e4f18
PM
484 local_irq_restore(flags);
485}
486
487/*
adf5091e 488 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
489 *
490 * If the new value of the ->dynticks_nesting counter was previously zero,
491 * we really have exited idle, and must do the appropriate accounting.
492 * The caller must have disabled interrupts.
493 */
adf5091e
FW
494static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
495 int user)
9b2e4f18 496{
23b5c8fa
PM
497 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
498 atomic_inc(&rdtp->dynticks);
499 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
500 smp_mb__after_atomic_inc(); /* See above. */
501 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 502 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 503 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 504 if (!user && !is_idle_task(current)) {
0989cb46
PM
505 struct task_struct *idle = idle_task(smp_processor_id());
506
f7f7bac9 507 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 508 oldval, rdtp->dynticks_nesting);
bf1304e9 509 ftrace_dump(DUMP_ORIG);
0989cb46
PM
510 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
511 current->pid, current->comm,
512 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
513 }
514}
515
adf5091e
FW
516/*
517 * Exit an RCU extended quiescent state, which can be either the
518 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 519 */
adf5091e 520static void rcu_eqs_exit(bool user)
9b2e4f18 521{
9b2e4f18
PM
522 struct rcu_dynticks *rdtp;
523 long long oldval;
524
9b2e4f18
PM
525 rdtp = &__get_cpu_var(rcu_dynticks);
526 oldval = rdtp->dynticks_nesting;
29e37d81
PM
527 WARN_ON_ONCE(oldval < 0);
528 if (oldval & DYNTICK_TASK_NEST_MASK)
529 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
530 else
531 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 532 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 533}
adf5091e
FW
534
535/**
536 * rcu_idle_exit - inform RCU that current CPU is leaving idle
537 *
538 * Exit idle mode, in other words, -enter- the mode in which RCU
539 * read-side critical sections can occur.
540 *
541 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
542 * allow for the possibility of usermode upcalls messing up our count
543 * of interrupt nesting level during the busy period that is just
544 * now starting.
545 */
546void rcu_idle_exit(void)
547{
c5d900bf
FW
548 unsigned long flags;
549
550 local_irq_save(flags);
cb349ca9 551 rcu_eqs_exit(false);
c5d900bf 552 local_irq_restore(flags);
adf5091e 553}
8a2ecf47 554EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 555
2b1d5024 556#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
557/**
558 * rcu_user_exit - inform RCU that we are exiting userspace.
559 *
560 * Exit RCU idle mode while entering the kernel because it can
561 * run a RCU read side critical section anytime.
562 */
563void rcu_user_exit(void)
564{
91d1aa43 565 rcu_eqs_exit(1);
adf5091e 566}
2b1d5024 567#endif /* CONFIG_RCU_USER_QS */
19dd1591 568
9b2e4f18
PM
569/**
570 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
571 *
572 * Enter an interrupt handler, which might possibly result in exiting
573 * idle mode, in other words, entering the mode in which read-side critical
574 * sections can occur.
575 *
576 * Note that the Linux kernel is fully capable of entering an interrupt
577 * handler that it never exits, for example when doing upcalls to
578 * user mode! This code assumes that the idle loop never does upcalls to
579 * user mode. If your architecture does do upcalls from the idle loop (or
580 * does anything else that results in unbalanced calls to the irq_enter()
581 * and irq_exit() functions), RCU will give you what you deserve, good
582 * and hard. But very infrequently and irreproducibly.
583 *
584 * Use things like work queues to work around this limitation.
585 *
586 * You have been warned.
587 */
588void rcu_irq_enter(void)
589{
590 unsigned long flags;
591 struct rcu_dynticks *rdtp;
592 long long oldval;
593
594 local_irq_save(flags);
595 rdtp = &__get_cpu_var(rcu_dynticks);
596 oldval = rdtp->dynticks_nesting;
597 rdtp->dynticks_nesting++;
598 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 599 if (oldval)
f7f7bac9 600 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 601 else
cb349ca9 602 rcu_eqs_exit_common(rdtp, oldval, true);
64db4cff 603 local_irq_restore(flags);
64db4cff
PM
604}
605
606/**
607 * rcu_nmi_enter - inform RCU of entry to NMI context
608 *
609 * If the CPU was idle with dynamic ticks active, and there is no
610 * irq handler running, this updates rdtp->dynticks_nmi to let the
611 * RCU grace-period handling know that the CPU is active.
612 */
613void rcu_nmi_enter(void)
614{
615 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
616
23b5c8fa
PM
617 if (rdtp->dynticks_nmi_nesting == 0 &&
618 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 619 return;
23b5c8fa
PM
620 rdtp->dynticks_nmi_nesting++;
621 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
622 atomic_inc(&rdtp->dynticks);
623 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
624 smp_mb__after_atomic_inc(); /* See above. */
625 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
626}
627
628/**
629 * rcu_nmi_exit - inform RCU of exit from NMI context
630 *
631 * If the CPU was idle with dynamic ticks active, and there is no
632 * irq handler running, this updates rdtp->dynticks_nmi to let the
633 * RCU grace-period handling know that the CPU is no longer active.
634 */
635void rcu_nmi_exit(void)
636{
637 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
638
23b5c8fa
PM
639 if (rdtp->dynticks_nmi_nesting == 0 ||
640 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 641 return;
23b5c8fa
PM
642 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
643 smp_mb__before_atomic_inc(); /* See above. */
644 atomic_inc(&rdtp->dynticks);
645 smp_mb__after_atomic_inc(); /* Force delay to next write. */
646 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
647}
648
649/**
9b2e4f18 650 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 651 *
9b2e4f18 652 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 653 * or NMI handler, return true.
64db4cff 654 */
9b2e4f18 655int rcu_is_cpu_idle(void)
64db4cff 656{
34240697
PM
657 int ret;
658
659 preempt_disable();
660 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
661 preempt_enable();
662 return ret;
64db4cff 663}
e6b80a3b 664EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 665
62fde6ed 666#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
667
668/*
669 * Is the current CPU online? Disable preemption to avoid false positives
670 * that could otherwise happen due to the current CPU number being sampled,
671 * this task being preempted, its old CPU being taken offline, resuming
672 * on some other CPU, then determining that its old CPU is now offline.
673 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
674 * the check for rcu_scheduler_fully_active. Note also that it is OK
675 * for a CPU coming online to use RCU for one jiffy prior to marking itself
676 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
677 * offline to continue to use RCU for one jiffy after marking itself
678 * offline in the cpu_online_mask. This leniency is necessary given the
679 * non-atomic nature of the online and offline processing, for example,
680 * the fact that a CPU enters the scheduler after completing the CPU_DYING
681 * notifiers.
682 *
683 * This is also why RCU internally marks CPUs online during the
684 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
685 *
686 * Disable checking if in an NMI handler because we cannot safely report
687 * errors from NMI handlers anyway.
688 */
689bool rcu_lockdep_current_cpu_online(void)
690{
2036d94a
PM
691 struct rcu_data *rdp;
692 struct rcu_node *rnp;
c0d6d01b
PM
693 bool ret;
694
695 if (in_nmi())
696 return 1;
697 preempt_disable();
2036d94a
PM
698 rdp = &__get_cpu_var(rcu_sched_data);
699 rnp = rdp->mynode;
700 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
701 !rcu_scheduler_fully_active;
702 preempt_enable();
703 return ret;
704}
705EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
706
62fde6ed 707#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 708
64db4cff 709/**
9b2e4f18 710 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 711 *
9b2e4f18
PM
712 * If the current CPU is idle or running at a first-level (not nested)
713 * interrupt from idle, return true. The caller must have at least
714 * disabled preemption.
64db4cff 715 */
62e3cb14 716static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 717{
9b2e4f18 718 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
719}
720
64db4cff
PM
721/*
722 * Snapshot the specified CPU's dynticks counter so that we can later
723 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 724 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
725 */
726static int dyntick_save_progress_counter(struct rcu_data *rdp)
727{
23b5c8fa 728 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 729 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
730}
731
732/*
733 * Return true if the specified CPU has passed through a quiescent
734 * state by virtue of being in or having passed through an dynticks
735 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 736 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
737 */
738static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
739{
7eb4f455
PM
740 unsigned int curr;
741 unsigned int snap;
64db4cff 742
7eb4f455
PM
743 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
744 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
745
746 /*
747 * If the CPU passed through or entered a dynticks idle phase with
748 * no active irq/NMI handlers, then we can safely pretend that the CPU
749 * already acknowledged the request to pass through a quiescent
750 * state. Either way, that CPU cannot possibly be in an RCU
751 * read-side critical section that started before the beginning
752 * of the current RCU grace period.
753 */
7eb4f455 754 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 755 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
756 rdp->dynticks_fqs++;
757 return 1;
758 }
759
a82dcc76
PM
760 /*
761 * Check for the CPU being offline, but only if the grace period
762 * is old enough. We don't need to worry about the CPU changing
763 * state: If we see it offline even once, it has been through a
764 * quiescent state.
765 *
766 * The reason for insisting that the grace period be at least
767 * one jiffy old is that CPUs that are not quite online and that
768 * have just gone offline can still execute RCU read-side critical
769 * sections.
770 */
771 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
772 return 0; /* Grace period is not old enough. */
773 barrier();
774 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 775 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
776 rdp->offline_fqs++;
777 return 1;
778 }
65d798f0
PM
779
780 /*
781 * There is a possibility that a CPU in adaptive-ticks state
782 * might run in the kernel with the scheduling-clock tick disabled
783 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
784 * force the CPU to restart the scheduling-clock tick in this
785 * CPU is in this state.
786 */
787 rcu_kick_nohz_cpu(rdp->cpu);
788
a82dcc76 789 return 0;
64db4cff
PM
790}
791
64db4cff
PM
792static void record_gp_stall_check_time(struct rcu_state *rsp)
793{
794 rsp->gp_start = jiffies;
6bfc09e2 795 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
796}
797
b637a328
PM
798/*
799 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
800 * for architectures that do not implement trigger_all_cpu_backtrace().
801 * The NMI-triggered stack traces are more accurate because they are
802 * printed by the target CPU.
803 */
804static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
805{
806 int cpu;
807 unsigned long flags;
808 struct rcu_node *rnp;
809
810 rcu_for_each_leaf_node(rsp, rnp) {
811 raw_spin_lock_irqsave(&rnp->lock, flags);
812 if (rnp->qsmask != 0) {
813 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
814 if (rnp->qsmask & (1UL << cpu))
815 dump_cpu_task(rnp->grplo + cpu);
816 }
817 raw_spin_unlock_irqrestore(&rnp->lock, flags);
818 }
819}
820
64db4cff
PM
821static void print_other_cpu_stall(struct rcu_state *rsp)
822{
823 int cpu;
824 long delta;
825 unsigned long flags;
285fe294 826 int ndetected = 0;
64db4cff 827 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 828 long totqlen = 0;
64db4cff
PM
829
830 /* Only let one CPU complain about others per time interval. */
831
1304afb2 832 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 833 delta = jiffies - rsp->jiffies_stall;
fc2219d4 834 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 835 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
836 return;
837 }
6bfc09e2 838 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 839 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 840
8cdd32a9
PM
841 /*
842 * OK, time to rat on our buddy...
843 * See Documentation/RCU/stallwarn.txt for info on how to debug
844 * RCU CPU stall warnings.
845 */
d7f3e207 846 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 847 rsp->name);
a858af28 848 print_cpu_stall_info_begin();
a0b6c9a7 849 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 850 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 851 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
852 if (rnp->qsmask != 0) {
853 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
854 if (rnp->qsmask & (1UL << cpu)) {
855 print_cpu_stall_info(rsp,
856 rnp->grplo + cpu);
857 ndetected++;
858 }
859 }
3acd9eb3 860 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 861 }
a858af28
PM
862
863 /*
864 * Now rat on any tasks that got kicked up to the root rcu_node
865 * due to CPU offlining.
866 */
867 rnp = rcu_get_root(rsp);
868 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 869 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
870 raw_spin_unlock_irqrestore(&rnp->lock, flags);
871
872 print_cpu_stall_info_end();
53bb857c
PM
873 for_each_possible_cpu(cpu)
874 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
875 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 876 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 877 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 878 if (ndetected == 0)
d7f3e207 879 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 880 else if (!trigger_all_cpu_backtrace())
b637a328 881 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 882
4cdfc175 883 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
884
885 rcu_print_detail_task_stall(rsp);
886
4cdfc175 887 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
888}
889
890static void print_cpu_stall(struct rcu_state *rsp)
891{
53bb857c 892 int cpu;
64db4cff
PM
893 unsigned long flags;
894 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 895 long totqlen = 0;
64db4cff 896
8cdd32a9
PM
897 /*
898 * OK, time to rat on ourselves...
899 * See Documentation/RCU/stallwarn.txt for info on how to debug
900 * RCU CPU stall warnings.
901 */
d7f3e207 902 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
903 print_cpu_stall_info_begin();
904 print_cpu_stall_info(rsp, smp_processor_id());
905 print_cpu_stall_info_end();
53bb857c
PM
906 for_each_possible_cpu(cpu)
907 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
908 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
909 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
910 if (!trigger_all_cpu_backtrace())
911 dump_stack();
c1dc0b9c 912
1304afb2 913 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 914 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 915 rsp->jiffies_stall = jiffies +
6bfc09e2 916 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 917 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 918
64db4cff
PM
919 set_need_resched(); /* kick ourselves to get things going. */
920}
921
922static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
923{
bad6e139
PM
924 unsigned long j;
925 unsigned long js;
64db4cff
PM
926 struct rcu_node *rnp;
927
742734ee 928 if (rcu_cpu_stall_suppress)
c68de209 929 return;
bad6e139
PM
930 j = ACCESS_ONCE(jiffies);
931 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 932 rnp = rdp->mynode;
c96ea7cf
PM
933 if (rcu_gp_in_progress(rsp) &&
934 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
935
936 /* We haven't checked in, so go dump stack. */
937 print_cpu_stall(rsp);
938
bad6e139
PM
939 } else if (rcu_gp_in_progress(rsp) &&
940 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 941
bad6e139 942 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
943 print_other_cpu_stall(rsp);
944 }
945}
946
53d84e00
PM
947/**
948 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
949 *
950 * Set the stall-warning timeout way off into the future, thus preventing
951 * any RCU CPU stall-warning messages from appearing in the current set of
952 * RCU grace periods.
953 *
954 * The caller must disable hard irqs.
955 */
956void rcu_cpu_stall_reset(void)
957{
6ce75a23
PM
958 struct rcu_state *rsp;
959
960 for_each_rcu_flavor(rsp)
961 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
962}
963
3f5d3ea6
PM
964/*
965 * Initialize the specified rcu_data structure's callback list to empty.
966 */
967static void init_callback_list(struct rcu_data *rdp)
968{
969 int i;
970
34ed6246
PM
971 if (init_nocb_callback_list(rdp))
972 return;
3f5d3ea6
PM
973 rdp->nxtlist = NULL;
974 for (i = 0; i < RCU_NEXT_SIZE; i++)
975 rdp->nxttail[i] = &rdp->nxtlist;
976}
977
dc35c893
PM
978/*
979 * Determine the value that ->completed will have at the end of the
980 * next subsequent grace period. This is used to tag callbacks so that
981 * a CPU can invoke callbacks in a timely fashion even if that CPU has
982 * been dyntick-idle for an extended period with callbacks under the
983 * influence of RCU_FAST_NO_HZ.
984 *
985 * The caller must hold rnp->lock with interrupts disabled.
986 */
987static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
988 struct rcu_node *rnp)
989{
990 /*
991 * If RCU is idle, we just wait for the next grace period.
992 * But we can only be sure that RCU is idle if we are looking
993 * at the root rcu_node structure -- otherwise, a new grace
994 * period might have started, but just not yet gotten around
995 * to initializing the current non-root rcu_node structure.
996 */
997 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
998 return rnp->completed + 1;
999
1000 /*
1001 * Otherwise, wait for a possible partial grace period and
1002 * then the subsequent full grace period.
1003 */
1004 return rnp->completed + 2;
1005}
1006
0446be48
PM
1007/*
1008 * Trace-event helper function for rcu_start_future_gp() and
1009 * rcu_nocb_wait_gp().
1010 */
1011static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1012 unsigned long c, const char *s)
0446be48
PM
1013{
1014 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1015 rnp->completed, c, rnp->level,
1016 rnp->grplo, rnp->grphi, s);
1017}
1018
1019/*
1020 * Start some future grace period, as needed to handle newly arrived
1021 * callbacks. The required future grace periods are recorded in each
1022 * rcu_node structure's ->need_future_gp field.
1023 *
1024 * The caller must hold the specified rcu_node structure's ->lock.
1025 */
1026static unsigned long __maybe_unused
1027rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1028{
1029 unsigned long c;
1030 int i;
1031 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1032
1033 /*
1034 * Pick up grace-period number for new callbacks. If this
1035 * grace period is already marked as needed, return to the caller.
1036 */
1037 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1038 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1039 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1040 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1041 return c;
1042 }
1043
1044 /*
1045 * If either this rcu_node structure or the root rcu_node structure
1046 * believe that a grace period is in progress, then we must wait
1047 * for the one following, which is in "c". Because our request
1048 * will be noticed at the end of the current grace period, we don't
1049 * need to explicitly start one.
1050 */
1051 if (rnp->gpnum != rnp->completed ||
1052 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1053 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1054 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1055 return c;
1056 }
1057
1058 /*
1059 * There might be no grace period in progress. If we don't already
1060 * hold it, acquire the root rcu_node structure's lock in order to
1061 * start one (if needed).
1062 */
1063 if (rnp != rnp_root)
1064 raw_spin_lock(&rnp_root->lock);
1065
1066 /*
1067 * Get a new grace-period number. If there really is no grace
1068 * period in progress, it will be smaller than the one we obtained
1069 * earlier. Adjust callbacks as needed. Note that even no-CBs
1070 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1071 */
1072 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1073 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1074 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1075 rdp->nxtcompleted[i] = c;
1076
1077 /*
1078 * If the needed for the required grace period is already
1079 * recorded, trace and leave.
1080 */
1081 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1082 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1083 goto unlock_out;
1084 }
1085
1086 /* Record the need for the future grace period. */
1087 rnp_root->need_future_gp[c & 0x1]++;
1088
1089 /* If a grace period is not already in progress, start one. */
1090 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1091 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1092 } else {
f7f7bac9 1093 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1094 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1095 }
1096unlock_out:
1097 if (rnp != rnp_root)
1098 raw_spin_unlock(&rnp_root->lock);
1099 return c;
1100}
1101
1102/*
1103 * Clean up any old requests for the just-ended grace period. Also return
1104 * whether any additional grace periods have been requested. Also invoke
1105 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1106 * waiting for this grace period to complete.
1107 */
1108static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1109{
1110 int c = rnp->completed;
1111 int needmore;
1112 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1113
1114 rcu_nocb_gp_cleanup(rsp, rnp);
1115 rnp->need_future_gp[c & 0x1] = 0;
1116 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1117 trace_rcu_future_gp(rnp, rdp, c,
1118 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1119 return needmore;
1120}
1121
dc35c893
PM
1122/*
1123 * If there is room, assign a ->completed number to any callbacks on
1124 * this CPU that have not already been assigned. Also accelerate any
1125 * callbacks that were previously assigned a ->completed number that has
1126 * since proven to be too conservative, which can happen if callbacks get
1127 * assigned a ->completed number while RCU is idle, but with reference to
1128 * a non-root rcu_node structure. This function is idempotent, so it does
1129 * not hurt to call it repeatedly.
1130 *
1131 * The caller must hold rnp->lock with interrupts disabled.
1132 */
1133static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1134 struct rcu_data *rdp)
1135{
1136 unsigned long c;
1137 int i;
1138
1139 /* If the CPU has no callbacks, nothing to do. */
1140 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1141 return;
1142
1143 /*
1144 * Starting from the sublist containing the callbacks most
1145 * recently assigned a ->completed number and working down, find the
1146 * first sublist that is not assignable to an upcoming grace period.
1147 * Such a sublist has something in it (first two tests) and has
1148 * a ->completed number assigned that will complete sooner than
1149 * the ->completed number for newly arrived callbacks (last test).
1150 *
1151 * The key point is that any later sublist can be assigned the
1152 * same ->completed number as the newly arrived callbacks, which
1153 * means that the callbacks in any of these later sublist can be
1154 * grouped into a single sublist, whether or not they have already
1155 * been assigned a ->completed number.
1156 */
1157 c = rcu_cbs_completed(rsp, rnp);
1158 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1159 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1160 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1161 break;
1162
1163 /*
1164 * If there are no sublist for unassigned callbacks, leave.
1165 * At the same time, advance "i" one sublist, so that "i" will
1166 * index into the sublist where all the remaining callbacks should
1167 * be grouped into.
1168 */
1169 if (++i >= RCU_NEXT_TAIL)
1170 return;
1171
1172 /*
1173 * Assign all subsequent callbacks' ->completed number to the next
1174 * full grace period and group them all in the sublist initially
1175 * indexed by "i".
1176 */
1177 for (; i <= RCU_NEXT_TAIL; i++) {
1178 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1179 rdp->nxtcompleted[i] = c;
1180 }
910ee45d
PM
1181 /* Record any needed additional grace periods. */
1182 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1183
1184 /* Trace depending on how much we were able to accelerate. */
1185 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1186 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1187 else
f7f7bac9 1188 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1189}
1190
1191/*
1192 * Move any callbacks whose grace period has completed to the
1193 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1194 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1195 * sublist. This function is idempotent, so it does not hurt to
1196 * invoke it repeatedly. As long as it is not invoked -too- often...
1197 *
1198 * The caller must hold rnp->lock with interrupts disabled.
1199 */
1200static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1201 struct rcu_data *rdp)
1202{
1203 int i, j;
1204
1205 /* If the CPU has no callbacks, nothing to do. */
1206 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1207 return;
1208
1209 /*
1210 * Find all callbacks whose ->completed numbers indicate that they
1211 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1212 */
1213 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1214 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1215 break;
1216 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1217 }
1218 /* Clean up any sublist tail pointers that were misordered above. */
1219 for (j = RCU_WAIT_TAIL; j < i; j++)
1220 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1221
1222 /* Copy down callbacks to fill in empty sublists. */
1223 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1224 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1225 break;
1226 rdp->nxttail[j] = rdp->nxttail[i];
1227 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1228 }
1229
1230 /* Classify any remaining callbacks. */
1231 rcu_accelerate_cbs(rsp, rnp, rdp);
1232}
1233
d09b62df 1234/*
ba9fbe95
PM
1235 * Update CPU-local rcu_data state to record the beginnings and ends of
1236 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1237 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1238 */
ba9fbe95 1239static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1240{
ba9fbe95 1241 /* Handle the ends of any preceding grace periods first. */
dc35c893 1242 if (rdp->completed == rnp->completed) {
d09b62df 1243
ba9fbe95 1244 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1245 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1246
dc35c893
PM
1247 } else {
1248
1249 /* Advance callbacks. */
1250 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1251
1252 /* Remember that we saw this grace-period completion. */
1253 rdp->completed = rnp->completed;
f7f7bac9 1254 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1255 }
398ebe60 1256
6eaef633
PM
1257 if (rdp->gpnum != rnp->gpnum) {
1258 /*
1259 * If the current grace period is waiting for this CPU,
1260 * set up to detect a quiescent state, otherwise don't
1261 * go looking for one.
1262 */
1263 rdp->gpnum = rnp->gpnum;
f7f7bac9 1264 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1265 rdp->passed_quiesce = 0;
1266 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1267 zero_cpu_stall_ticks(rdp);
1268 }
1269}
1270
d34ea322 1271static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1272{
1273 unsigned long flags;
1274 struct rcu_node *rnp;
1275
1276 local_irq_save(flags);
1277 rnp = rdp->mynode;
d34ea322
PM
1278 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1279 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1280 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1281 local_irq_restore(flags);
1282 return;
1283 }
d34ea322 1284 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1285 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1286}
1287
b3dbec76 1288/*
7fdefc10 1289 * Initialize a new grace period.
b3dbec76 1290 */
7fdefc10 1291static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1292{
1293 struct rcu_data *rdp;
7fdefc10 1294 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1295
7fdefc10 1296 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1297 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1298
7fdefc10
PM
1299 if (rcu_gp_in_progress(rsp)) {
1300 /* Grace period already in progress, don't start another. */
1301 raw_spin_unlock_irq(&rnp->lock);
1302 return 0;
1303 }
1304
7fdefc10
PM
1305 /* Advance to a new grace period and initialize state. */
1306 rsp->gpnum++;
f7f7bac9 1307 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1308 record_gp_stall_check_time(rsp);
1309 raw_spin_unlock_irq(&rnp->lock);
1310
1311 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1312 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1313
1314 /*
1315 * Set the quiescent-state-needed bits in all the rcu_node
1316 * structures for all currently online CPUs in breadth-first order,
1317 * starting from the root rcu_node structure, relying on the layout
1318 * of the tree within the rsp->node[] array. Note that other CPUs
1319 * will access only the leaves of the hierarchy, thus seeing that no
1320 * grace period is in progress, at least until the corresponding
1321 * leaf node has been initialized. In addition, we have excluded
1322 * CPU-hotplug operations.
1323 *
1324 * The grace period cannot complete until the initialization
1325 * process finishes, because this kthread handles both.
1326 */
1327 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1328 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1329 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1330 rcu_preempt_check_blocked_tasks(rnp);
1331 rnp->qsmask = rnp->qsmaskinit;
0446be48 1332 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1333 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1334 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1335 if (rnp == rdp->mynode)
ce3d9c03 1336 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1337 rcu_preempt_boost_start_gp(rnp);
1338 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1339 rnp->level, rnp->grplo,
1340 rnp->grphi, rnp->qsmask);
1341 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1342#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1343 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1344 system_state == SYSTEM_RUNNING)
971394f3 1345 udelay(200);
661a85dc 1346#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1347 cond_resched();
1348 }
b3dbec76 1349
a4fbe35a 1350 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1351 return 1;
1352}
b3dbec76 1353
4cdfc175
PM
1354/*
1355 * Do one round of quiescent-state forcing.
1356 */
1357int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1358{
1359 int fqs_state = fqs_state_in;
1360 struct rcu_node *rnp = rcu_get_root(rsp);
1361
1362 rsp->n_force_qs++;
1363 if (fqs_state == RCU_SAVE_DYNTICK) {
1364 /* Collect dyntick-idle snapshots. */
1365 force_qs_rnp(rsp, dyntick_save_progress_counter);
1366 fqs_state = RCU_FORCE_QS;
1367 } else {
1368 /* Handle dyntick-idle and offline CPUs. */
1369 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1370 }
1371 /* Clear flag to prevent immediate re-entry. */
1372 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1373 raw_spin_lock_irq(&rnp->lock);
1374 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1375 raw_spin_unlock_irq(&rnp->lock);
1376 }
1377 return fqs_state;
1378}
1379
7fdefc10
PM
1380/*
1381 * Clean up after the old grace period.
1382 */
4cdfc175 1383static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1384{
1385 unsigned long gp_duration;
dae6e64d 1386 int nocb = 0;
7fdefc10
PM
1387 struct rcu_data *rdp;
1388 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1389
7fdefc10
PM
1390 raw_spin_lock_irq(&rnp->lock);
1391 gp_duration = jiffies - rsp->gp_start;
1392 if (gp_duration > rsp->gp_max)
1393 rsp->gp_max = gp_duration;
b3dbec76 1394
7fdefc10
PM
1395 /*
1396 * We know the grace period is complete, but to everyone else
1397 * it appears to still be ongoing. But it is also the case
1398 * that to everyone else it looks like there is nothing that
1399 * they can do to advance the grace period. It is therefore
1400 * safe for us to drop the lock in order to mark the grace
1401 * period as completed in all of the rcu_node structures.
7fdefc10 1402 */
5d4b8659 1403 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1404
5d4b8659
PM
1405 /*
1406 * Propagate new ->completed value to rcu_node structures so
1407 * that other CPUs don't have to wait until the start of the next
1408 * grace period to process their callbacks. This also avoids
1409 * some nasty RCU grace-period initialization races by forcing
1410 * the end of the current grace period to be completely recorded in
1411 * all of the rcu_node structures before the beginning of the next
1412 * grace period is recorded in any of the rcu_node structures.
1413 */
1414 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1415 raw_spin_lock_irq(&rnp->lock);
0446be48 1416 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1417 rdp = this_cpu_ptr(rsp->rda);
1418 if (rnp == rdp->mynode)
470716fc 1419 __note_gp_changes(rsp, rnp, rdp);
0446be48 1420 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1421 raw_spin_unlock_irq(&rnp->lock);
1422 cond_resched();
7fdefc10 1423 }
5d4b8659
PM
1424 rnp = rcu_get_root(rsp);
1425 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1426 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1427
1428 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1429 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1430 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1431 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1432 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10
PM
1433 if (cpu_needs_another_gp(rsp, rdp))
1434 rsp->gp_flags = 1;
1435 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1436}
1437
1438/*
1439 * Body of kthread that handles grace periods.
1440 */
1441static int __noreturn rcu_gp_kthread(void *arg)
1442{
4cdfc175 1443 int fqs_state;
d40011f6 1444 unsigned long j;
4cdfc175 1445 int ret;
7fdefc10
PM
1446 struct rcu_state *rsp = arg;
1447 struct rcu_node *rnp = rcu_get_root(rsp);
1448
1449 for (;;) {
1450
1451 /* Handle grace-period start. */
1452 for (;;) {
4cdfc175
PM
1453 wait_event_interruptible(rsp->gp_wq,
1454 rsp->gp_flags &
1455 RCU_GP_FLAG_INIT);
1456 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1457 rcu_gp_init(rsp))
7fdefc10
PM
1458 break;
1459 cond_resched();
1460 flush_signals(current);
1461 }
cabc49c1 1462
4cdfc175
PM
1463 /* Handle quiescent-state forcing. */
1464 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1465 j = jiffies_till_first_fqs;
1466 if (j > HZ) {
1467 j = HZ;
1468 jiffies_till_first_fqs = HZ;
1469 }
cabc49c1 1470 for (;;) {
d40011f6 1471 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1472 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1473 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1474 (!ACCESS_ONCE(rnp->qsmask) &&
1475 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1476 j);
4cdfc175 1477 /* If grace period done, leave loop. */
cabc49c1 1478 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1479 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1480 break;
4cdfc175
PM
1481 /* If time for quiescent-state forcing, do it. */
1482 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1483 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1484 cond_resched();
1485 } else {
1486 /* Deal with stray signal. */
1487 cond_resched();
1488 flush_signals(current);
1489 }
d40011f6
PM
1490 j = jiffies_till_next_fqs;
1491 if (j > HZ) {
1492 j = HZ;
1493 jiffies_till_next_fqs = HZ;
1494 } else if (j < 1) {
1495 j = 1;
1496 jiffies_till_next_fqs = 1;
1497 }
cabc49c1 1498 }
4cdfc175
PM
1499
1500 /* Handle grace-period end. */
1501 rcu_gp_cleanup(rsp);
b3dbec76 1502 }
b3dbec76
PM
1503}
1504
016a8d5b
SR
1505static void rsp_wakeup(struct irq_work *work)
1506{
1507 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1508
1509 /* Wake up rcu_gp_kthread() to start the grace period. */
1510 wake_up(&rsp->gp_wq);
1511}
1512
64db4cff
PM
1513/*
1514 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1515 * in preparation for detecting the next grace period. The caller must hold
b8462084 1516 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1517 *
1518 * Note that it is legal for a dying CPU (which is marked as offline) to
1519 * invoke this function. This can happen when the dying CPU reports its
1520 * quiescent state.
64db4cff
PM
1521 */
1522static void
910ee45d
PM
1523rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1524 struct rcu_data *rdp)
64db4cff 1525{
b8462084 1526 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1527 /*
b3dbec76 1528 * Either we have not yet spawned the grace-period
62da1921
PM
1529 * task, this CPU does not need another grace period,
1530 * or a grace period is already in progress.
b3dbec76 1531 * Either way, don't start a new grace period.
afe24b12 1532 */
afe24b12
PM
1533 return;
1534 }
4cdfc175 1535 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921 1536
016a8d5b
SR
1537 /*
1538 * We can't do wakeups while holding the rnp->lock, as that
1539 * could cause possible deadlocks with the rq->lock. Deter
1540 * the wakeup to interrupt context.
1541 */
1542 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1543}
1544
910ee45d
PM
1545/*
1546 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1547 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1548 * is invoked indirectly from rcu_advance_cbs(), which would result in
1549 * endless recursion -- or would do so if it wasn't for the self-deadlock
1550 * that is encountered beforehand.
1551 */
1552static void
1553rcu_start_gp(struct rcu_state *rsp)
1554{
1555 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1556 struct rcu_node *rnp = rcu_get_root(rsp);
1557
1558 /*
1559 * If there is no grace period in progress right now, any
1560 * callbacks we have up to this point will be satisfied by the
1561 * next grace period. Also, advancing the callbacks reduces the
1562 * probability of false positives from cpu_needs_another_gp()
1563 * resulting in pointless grace periods. So, advance callbacks
1564 * then start the grace period!
1565 */
1566 rcu_advance_cbs(rsp, rnp, rdp);
1567 rcu_start_gp_advanced(rsp, rnp, rdp);
1568}
1569
f41d911f 1570/*
d3f6bad3
PM
1571 * Report a full set of quiescent states to the specified rcu_state
1572 * data structure. This involves cleaning up after the prior grace
1573 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1574 * if one is needed. Note that the caller must hold rnp->lock, which
1575 * is released before return.
f41d911f 1576 */
d3f6bad3 1577static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1578 __releases(rcu_get_root(rsp)->lock)
f41d911f 1579{
fc2219d4 1580 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1581 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1582 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1583}
1584
64db4cff 1585/*
d3f6bad3
PM
1586 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1587 * Allows quiescent states for a group of CPUs to be reported at one go
1588 * to the specified rcu_node structure, though all the CPUs in the group
1589 * must be represented by the same rcu_node structure (which need not be
1590 * a leaf rcu_node structure, though it often will be). That structure's
1591 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1592 */
1593static void
d3f6bad3
PM
1594rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1595 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1596 __releases(rnp->lock)
1597{
28ecd580
PM
1598 struct rcu_node *rnp_c;
1599
64db4cff
PM
1600 /* Walk up the rcu_node hierarchy. */
1601 for (;;) {
1602 if (!(rnp->qsmask & mask)) {
1603
1604 /* Our bit has already been cleared, so done. */
1304afb2 1605 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1606 return;
1607 }
1608 rnp->qsmask &= ~mask;
d4c08f2a
PM
1609 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1610 mask, rnp->qsmask, rnp->level,
1611 rnp->grplo, rnp->grphi,
1612 !!rnp->gp_tasks);
27f4d280 1613 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1614
1615 /* Other bits still set at this level, so done. */
1304afb2 1616 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1617 return;
1618 }
1619 mask = rnp->grpmask;
1620 if (rnp->parent == NULL) {
1621
1622 /* No more levels. Exit loop holding root lock. */
1623
1624 break;
1625 }
1304afb2 1626 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1627 rnp_c = rnp;
64db4cff 1628 rnp = rnp->parent;
1304afb2 1629 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1630 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1631 }
1632
1633 /*
1634 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1635 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1636 * to clean up and start the next grace period if one is needed.
64db4cff 1637 */
d3f6bad3 1638 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1639}
1640
1641/*
d3f6bad3
PM
1642 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1643 * structure. This must be either called from the specified CPU, or
1644 * called when the specified CPU is known to be offline (and when it is
1645 * also known that no other CPU is concurrently trying to help the offline
1646 * CPU). The lastcomp argument is used to make sure we are still in the
1647 * grace period of interest. We don't want to end the current grace period
1648 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1649 */
1650static void
d7d6a11e 1651rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1652{
1653 unsigned long flags;
1654 unsigned long mask;
1655 struct rcu_node *rnp;
1656
1657 rnp = rdp->mynode;
1304afb2 1658 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1659 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1660 rnp->completed == rnp->gpnum) {
64db4cff
PM
1661
1662 /*
e4cc1f22
PM
1663 * The grace period in which this quiescent state was
1664 * recorded has ended, so don't report it upwards.
1665 * We will instead need a new quiescent state that lies
1666 * within the current grace period.
64db4cff 1667 */
e4cc1f22 1668 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1669 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1670 return;
1671 }
1672 mask = rdp->grpmask;
1673 if ((rnp->qsmask & mask) == 0) {
1304afb2 1674 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1675 } else {
1676 rdp->qs_pending = 0;
1677
1678 /*
1679 * This GP can't end until cpu checks in, so all of our
1680 * callbacks can be processed during the next GP.
1681 */
dc35c893 1682 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1683
d3f6bad3 1684 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1685 }
1686}
1687
1688/*
1689 * Check to see if there is a new grace period of which this CPU
1690 * is not yet aware, and if so, set up local rcu_data state for it.
1691 * Otherwise, see if this CPU has just passed through its first
1692 * quiescent state for this grace period, and record that fact if so.
1693 */
1694static void
1695rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1696{
05eb552b
PM
1697 /* Check for grace-period ends and beginnings. */
1698 note_gp_changes(rsp, rdp);
64db4cff
PM
1699
1700 /*
1701 * Does this CPU still need to do its part for current grace period?
1702 * If no, return and let the other CPUs do their part as well.
1703 */
1704 if (!rdp->qs_pending)
1705 return;
1706
1707 /*
1708 * Was there a quiescent state since the beginning of the grace
1709 * period? If no, then exit and wait for the next call.
1710 */
e4cc1f22 1711 if (!rdp->passed_quiesce)
64db4cff
PM
1712 return;
1713
d3f6bad3
PM
1714 /*
1715 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1716 * judge of that).
1717 */
d7d6a11e 1718 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1719}
1720
1721#ifdef CONFIG_HOTPLUG_CPU
1722
e74f4c45 1723/*
b1420f1c
PM
1724 * Send the specified CPU's RCU callbacks to the orphanage. The
1725 * specified CPU must be offline, and the caller must hold the
7b2e6011 1726 * ->orphan_lock.
e74f4c45 1727 */
b1420f1c
PM
1728static void
1729rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1730 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1731{
3fbfbf7a 1732 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1733 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1734 return;
1735
b1420f1c
PM
1736 /*
1737 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1738 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1739 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1740 */
a50c3af9 1741 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1742 rsp->qlen_lazy += rdp->qlen_lazy;
1743 rsp->qlen += rdp->qlen;
1744 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1745 rdp->qlen_lazy = 0;
1d1fb395 1746 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1747 }
1748
1749 /*
b1420f1c
PM
1750 * Next, move those callbacks still needing a grace period to
1751 * the orphanage, where some other CPU will pick them up.
1752 * Some of the callbacks might have gone partway through a grace
1753 * period, but that is too bad. They get to start over because we
1754 * cannot assume that grace periods are synchronized across CPUs.
1755 * We don't bother updating the ->nxttail[] array yet, instead
1756 * we just reset the whole thing later on.
a50c3af9 1757 */
b1420f1c
PM
1758 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1759 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1760 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1761 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1762 }
1763
1764 /*
b1420f1c
PM
1765 * Then move the ready-to-invoke callbacks to the orphanage,
1766 * where some other CPU will pick them up. These will not be
1767 * required to pass though another grace period: They are done.
a50c3af9 1768 */
e5601400 1769 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1770 *rsp->orphan_donetail = rdp->nxtlist;
1771 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1772 }
e74f4c45 1773
b1420f1c 1774 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1775 init_callback_list(rdp);
b1420f1c
PM
1776}
1777
1778/*
1779 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1780 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1781 */
1782static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1783{
1784 int i;
1785 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1786
3fbfbf7a
PM
1787 /* No-CBs CPUs are handled specially. */
1788 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1789 return;
1790
b1420f1c
PM
1791 /* Do the accounting first. */
1792 rdp->qlen_lazy += rsp->qlen_lazy;
1793 rdp->qlen += rsp->qlen;
1794 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1795 if (rsp->qlen_lazy != rsp->qlen)
1796 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1797 rsp->qlen_lazy = 0;
1798 rsp->qlen = 0;
1799
1800 /*
1801 * We do not need a memory barrier here because the only way we
1802 * can get here if there is an rcu_barrier() in flight is if
1803 * we are the task doing the rcu_barrier().
1804 */
1805
1806 /* First adopt the ready-to-invoke callbacks. */
1807 if (rsp->orphan_donelist != NULL) {
1808 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1809 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1810 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1811 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1812 rdp->nxttail[i] = rsp->orphan_donetail;
1813 rsp->orphan_donelist = NULL;
1814 rsp->orphan_donetail = &rsp->orphan_donelist;
1815 }
1816
1817 /* And then adopt the callbacks that still need a grace period. */
1818 if (rsp->orphan_nxtlist != NULL) {
1819 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1820 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1821 rsp->orphan_nxtlist = NULL;
1822 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1823 }
1824}
1825
1826/*
1827 * Trace the fact that this CPU is going offline.
1828 */
1829static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1830{
1831 RCU_TRACE(unsigned long mask);
1832 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1833 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1834
1835 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1836 trace_rcu_grace_period(rsp->name,
1837 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1838 TPS("cpuofl"));
64db4cff
PM
1839}
1840
1841/*
e5601400 1842 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1843 * this fact from process context. Do the remainder of the cleanup,
1844 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1845 * adopting them. There can only be one CPU hotplug operation at a time,
1846 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1847 */
e5601400 1848static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1849{
2036d94a
PM
1850 unsigned long flags;
1851 unsigned long mask;
1852 int need_report = 0;
e5601400 1853 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1854 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1855
2036d94a 1856 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1857 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1858
b1420f1c 1859 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1860
1861 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1862 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1863 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1864
b1420f1c
PM
1865 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1866 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1867 rcu_adopt_orphan_cbs(rsp);
1868
2036d94a
PM
1869 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1870 mask = rdp->grpmask; /* rnp->grplo is constant. */
1871 do {
1872 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1873 rnp->qsmaskinit &= ~mask;
1874 if (rnp->qsmaskinit != 0) {
1875 if (rnp != rdp->mynode)
1876 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1877 break;
1878 }
1879 if (rnp == rdp->mynode)
1880 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1881 else
1882 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1883 mask = rnp->grpmask;
1884 rnp = rnp->parent;
1885 } while (rnp != NULL);
1886
1887 /*
1888 * We still hold the leaf rcu_node structure lock here, and
1889 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1890 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1891 * held leads to deadlock.
1892 */
7b2e6011 1893 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1894 rnp = rdp->mynode;
1895 if (need_report & RCU_OFL_TASKS_NORM_GP)
1896 rcu_report_unblock_qs_rnp(rnp, flags);
1897 else
1898 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1899 if (need_report & RCU_OFL_TASKS_EXP_GP)
1900 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1901 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1902 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1903 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1904 init_callback_list(rdp);
1905 /* Disallow further callbacks on this CPU. */
1906 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1907 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1908}
1909
1910#else /* #ifdef CONFIG_HOTPLUG_CPU */
1911
e5601400 1912static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1913{
1914}
1915
e5601400 1916static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1917{
1918}
1919
1920#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1921
1922/*
1923 * Invoke any RCU callbacks that have made it to the end of their grace
1924 * period. Thottle as specified by rdp->blimit.
1925 */
37c72e56 1926static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1927{
1928 unsigned long flags;
1929 struct rcu_head *next, *list, **tail;
878d7439
ED
1930 long bl, count, count_lazy;
1931 int i;
64db4cff 1932
dc35c893 1933 /* If no callbacks are ready, just return. */
29c00b4a 1934 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1935 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1936 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1937 need_resched(), is_idle_task(current),
1938 rcu_is_callbacks_kthread());
64db4cff 1939 return;
29c00b4a 1940 }
64db4cff
PM
1941
1942 /*
1943 * Extract the list of ready callbacks, disabling to prevent
1944 * races with call_rcu() from interrupt handlers.
1945 */
1946 local_irq_save(flags);
8146c4e2 1947 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1948 bl = rdp->blimit;
486e2593 1949 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1950 list = rdp->nxtlist;
1951 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1952 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1953 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1954 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1955 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1956 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1957 local_irq_restore(flags);
1958
1959 /* Invoke callbacks. */
486e2593 1960 count = count_lazy = 0;
64db4cff
PM
1961 while (list) {
1962 next = list->next;
1963 prefetch(next);
551d55a9 1964 debug_rcu_head_unqueue(list);
486e2593
PM
1965 if (__rcu_reclaim(rsp->name, list))
1966 count_lazy++;
64db4cff 1967 list = next;
dff1672d
PM
1968 /* Stop only if limit reached and CPU has something to do. */
1969 if (++count >= bl &&
1970 (need_resched() ||
1971 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1972 break;
1973 }
1974
1975 local_irq_save(flags);
4968c300
PM
1976 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1977 is_idle_task(current),
1978 rcu_is_callbacks_kthread());
64db4cff
PM
1979
1980 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1981 if (list != NULL) {
1982 *tail = rdp->nxtlist;
1983 rdp->nxtlist = list;
b41772ab
PM
1984 for (i = 0; i < RCU_NEXT_SIZE; i++)
1985 if (&rdp->nxtlist == rdp->nxttail[i])
1986 rdp->nxttail[i] = tail;
64db4cff
PM
1987 else
1988 break;
1989 }
b1420f1c
PM
1990 smp_mb(); /* List handling before counting for rcu_barrier(). */
1991 rdp->qlen_lazy -= count_lazy;
1d1fb395 1992 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1993 rdp->n_cbs_invoked += count;
64db4cff
PM
1994
1995 /* Reinstate batch limit if we have worked down the excess. */
1996 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1997 rdp->blimit = blimit;
1998
37c72e56
PM
1999 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2000 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2001 rdp->qlen_last_fqs_check = 0;
2002 rdp->n_force_qs_snap = rsp->n_force_qs;
2003 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2004 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2005 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2006
64db4cff
PM
2007 local_irq_restore(flags);
2008
e0f23060 2009 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2010 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2011 invoke_rcu_core();
64db4cff
PM
2012}
2013
2014/*
2015 * Check to see if this CPU is in a non-context-switch quiescent state
2016 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2017 * Also schedule RCU core processing.
64db4cff 2018 *
9b2e4f18 2019 * This function must be called from hardirq context. It is normally
64db4cff
PM
2020 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2021 * false, there is no point in invoking rcu_check_callbacks().
2022 */
2023void rcu_check_callbacks(int cpu, int user)
2024{
f7f7bac9 2025 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2026 increment_cpu_stall_ticks();
9b2e4f18 2027 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2028
2029 /*
2030 * Get here if this CPU took its interrupt from user
2031 * mode or from the idle loop, and if this is not a
2032 * nested interrupt. In this case, the CPU is in
d6714c22 2033 * a quiescent state, so note it.
64db4cff
PM
2034 *
2035 * No memory barrier is required here because both
d6714c22
PM
2036 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2037 * variables that other CPUs neither access nor modify,
2038 * at least not while the corresponding CPU is online.
64db4cff
PM
2039 */
2040
d6714c22
PM
2041 rcu_sched_qs(cpu);
2042 rcu_bh_qs(cpu);
64db4cff
PM
2043
2044 } else if (!in_softirq()) {
2045
2046 /*
2047 * Get here if this CPU did not take its interrupt from
2048 * softirq, in other words, if it is not interrupting
2049 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2050 * critical section, so note it.
64db4cff
PM
2051 */
2052
d6714c22 2053 rcu_bh_qs(cpu);
64db4cff 2054 }
f41d911f 2055 rcu_preempt_check_callbacks(cpu);
d21670ac 2056 if (rcu_pending(cpu))
a46e0899 2057 invoke_rcu_core();
f7f7bac9 2058 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2059}
2060
64db4cff
PM
2061/*
2062 * Scan the leaf rcu_node structures, processing dyntick state for any that
2063 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2064 * Also initiate boosting for any threads blocked on the root rcu_node.
2065 *
ee47eb9f 2066 * The caller must have suppressed start of new grace periods.
64db4cff 2067 */
45f014c5 2068static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
2069{
2070 unsigned long bit;
2071 int cpu;
2072 unsigned long flags;
2073 unsigned long mask;
a0b6c9a7 2074 struct rcu_node *rnp;
64db4cff 2075
a0b6c9a7 2076 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2077 cond_resched();
64db4cff 2078 mask = 0;
1304afb2 2079 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2080 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2081 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2082 return;
64db4cff 2083 }
a0b6c9a7 2084 if (rnp->qsmask == 0) {
1217ed1b 2085 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2086 continue;
2087 }
a0b6c9a7 2088 cpu = rnp->grplo;
64db4cff 2089 bit = 1;
a0b6c9a7 2090 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
2091 if ((rnp->qsmask & bit) != 0 &&
2092 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
2093 mask |= bit;
2094 }
45f014c5 2095 if (mask != 0) {
64db4cff 2096
d3f6bad3
PM
2097 /* rcu_report_qs_rnp() releases rnp->lock. */
2098 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2099 continue;
2100 }
1304afb2 2101 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2102 }
27f4d280 2103 rnp = rcu_get_root(rsp);
1217ed1b
PM
2104 if (rnp->qsmask == 0) {
2105 raw_spin_lock_irqsave(&rnp->lock, flags);
2106 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2107 }
64db4cff
PM
2108}
2109
2110/*
2111 * Force quiescent states on reluctant CPUs, and also detect which
2112 * CPUs are in dyntick-idle mode.
2113 */
4cdfc175 2114static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2115{
2116 unsigned long flags;
394f2769
PM
2117 bool ret;
2118 struct rcu_node *rnp;
2119 struct rcu_node *rnp_old = NULL;
2120
2121 /* Funnel through hierarchy to reduce memory contention. */
2122 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2123 for (; rnp != NULL; rnp = rnp->parent) {
2124 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2125 !raw_spin_trylock(&rnp->fqslock);
2126 if (rnp_old != NULL)
2127 raw_spin_unlock(&rnp_old->fqslock);
2128 if (ret) {
2129 rsp->n_force_qs_lh++;
2130 return;
2131 }
2132 rnp_old = rnp;
2133 }
2134 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2135
394f2769
PM
2136 /* Reached the root of the rcu_node tree, acquire lock. */
2137 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2138 raw_spin_unlock(&rnp_old->fqslock);
2139 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2140 rsp->n_force_qs_lh++;
2141 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2142 return; /* Someone beat us to it. */
46a1e34e 2143 }
4cdfc175 2144 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2145 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2146 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2147}
2148
64db4cff 2149/*
e0f23060
PM
2150 * This does the RCU core processing work for the specified rcu_state
2151 * and rcu_data structures. This may be called only from the CPU to
2152 * whom the rdp belongs.
64db4cff
PM
2153 */
2154static void
1bca8cf1 2155__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2156{
2157 unsigned long flags;
1bca8cf1 2158 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2159
2e597558
PM
2160 WARN_ON_ONCE(rdp->beenonline == 0);
2161
64db4cff
PM
2162 /* Update RCU state based on any recent quiescent states. */
2163 rcu_check_quiescent_state(rsp, rdp);
2164
2165 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2166 local_irq_save(flags);
64db4cff 2167 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2168 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2169 rcu_start_gp(rsp);
2170 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2171 } else {
2172 local_irq_restore(flags);
64db4cff
PM
2173 }
2174
2175 /* If there are callbacks ready, invoke them. */
09223371 2176 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2177 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2178}
2179
64db4cff 2180/*
e0f23060 2181 * Do RCU core processing for the current CPU.
64db4cff 2182 */
09223371 2183static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2184{
6ce75a23
PM
2185 struct rcu_state *rsp;
2186
bfa00b4c
PM
2187 if (cpu_is_offline(smp_processor_id()))
2188 return;
f7f7bac9 2189 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2190 for_each_rcu_flavor(rsp)
2191 __rcu_process_callbacks(rsp);
f7f7bac9 2192 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2193}
2194
a26ac245 2195/*
e0f23060
PM
2196 * Schedule RCU callback invocation. If the specified type of RCU
2197 * does not support RCU priority boosting, just do a direct call,
2198 * otherwise wake up the per-CPU kernel kthread. Note that because we
2199 * are running on the current CPU with interrupts disabled, the
2200 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2201 */
a46e0899 2202static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2203{
b0d30417
PM
2204 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2205 return;
a46e0899
PM
2206 if (likely(!rsp->boost)) {
2207 rcu_do_batch(rsp, rdp);
a26ac245
PM
2208 return;
2209 }
a46e0899 2210 invoke_rcu_callbacks_kthread();
a26ac245
PM
2211}
2212
a46e0899 2213static void invoke_rcu_core(void)
09223371 2214{
b0f74036
PM
2215 if (cpu_online(smp_processor_id()))
2216 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2217}
2218
29154c57
PM
2219/*
2220 * Handle any core-RCU processing required by a call_rcu() invocation.
2221 */
2222static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2223 struct rcu_head *head, unsigned long flags)
64db4cff 2224{
62fde6ed
PM
2225 /*
2226 * If called from an extended quiescent state, invoke the RCU
2227 * core in order to force a re-evaluation of RCU's idleness.
2228 */
a16b7a69 2229 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2230 invoke_rcu_core();
2231
a16b7a69 2232 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2233 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2234 return;
64db4cff 2235
37c72e56
PM
2236 /*
2237 * Force the grace period if too many callbacks or too long waiting.
2238 * Enforce hysteresis, and don't invoke force_quiescent_state()
2239 * if some other CPU has recently done so. Also, don't bother
2240 * invoking force_quiescent_state() if the newly enqueued callback
2241 * is the only one waiting for a grace period to complete.
2242 */
2655d57e 2243 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2244
2245 /* Are we ignoring a completed grace period? */
470716fc 2246 note_gp_changes(rsp, rdp);
b52573d2
PM
2247
2248 /* Start a new grace period if one not already started. */
2249 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2250 struct rcu_node *rnp_root = rcu_get_root(rsp);
2251
b8462084
PM
2252 raw_spin_lock(&rnp_root->lock);
2253 rcu_start_gp(rsp);
2254 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2255 } else {
2256 /* Give the grace period a kick. */
2257 rdp->blimit = LONG_MAX;
2258 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2259 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2260 force_quiescent_state(rsp);
b52573d2
PM
2261 rdp->n_force_qs_snap = rsp->n_force_qs;
2262 rdp->qlen_last_fqs_check = rdp->qlen;
2263 }
4cdfc175 2264 }
29154c57
PM
2265}
2266
3fbfbf7a
PM
2267/*
2268 * Helper function for call_rcu() and friends. The cpu argument will
2269 * normally be -1, indicating "currently running CPU". It may specify
2270 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2271 * is expected to specify a CPU.
2272 */
64db4cff
PM
2273static void
2274__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2275 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2276{
2277 unsigned long flags;
2278 struct rcu_data *rdp;
2279
0bb7b59d 2280 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2281 debug_rcu_head_queue(head);
64db4cff
PM
2282 head->func = func;
2283 head->next = NULL;
2284
64db4cff
PM
2285 /*
2286 * Opportunistically note grace-period endings and beginnings.
2287 * Note that we might see a beginning right after we see an
2288 * end, but never vice versa, since this CPU has to pass through
2289 * a quiescent state betweentimes.
2290 */
2291 local_irq_save(flags);
394f99a9 2292 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2293
2294 /* Add the callback to our list. */
3fbfbf7a
PM
2295 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2296 int offline;
2297
2298 if (cpu != -1)
2299 rdp = per_cpu_ptr(rsp->rda, cpu);
2300 offline = !__call_rcu_nocb(rdp, head, lazy);
2301 WARN_ON_ONCE(offline);
0d8ee37e 2302 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2303 local_irq_restore(flags);
2304 return;
2305 }
29154c57 2306 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2307 if (lazy)
2308 rdp->qlen_lazy++;
c57afe80
PM
2309 else
2310 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2311 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2312 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2313 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2314
d4c08f2a
PM
2315 if (__is_kfree_rcu_offset((unsigned long)func))
2316 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2317 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2318 else
486e2593 2319 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2320
29154c57
PM
2321 /* Go handle any RCU core processing required. */
2322 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2323 local_irq_restore(flags);
2324}
2325
2326/*
d6714c22 2327 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2328 */
d6714c22 2329void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2330{
3fbfbf7a 2331 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2332}
d6714c22 2333EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2334
2335/*
486e2593 2336 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2337 */
2338void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2339{
3fbfbf7a 2340 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2341}
2342EXPORT_SYMBOL_GPL(call_rcu_bh);
2343
6d813391
PM
2344/*
2345 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2346 * any blocking grace-period wait automatically implies a grace period
2347 * if there is only one CPU online at any point time during execution
2348 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2349 * occasionally incorrectly indicate that there are multiple CPUs online
2350 * when there was in fact only one the whole time, as this just adds
2351 * some overhead: RCU still operates correctly.
6d813391
PM
2352 */
2353static inline int rcu_blocking_is_gp(void)
2354{
95f0c1de
PM
2355 int ret;
2356
6d813391 2357 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2358 preempt_disable();
2359 ret = num_online_cpus() <= 1;
2360 preempt_enable();
2361 return ret;
6d813391
PM
2362}
2363
6ebb237b
PM
2364/**
2365 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2366 *
2367 * Control will return to the caller some time after a full rcu-sched
2368 * grace period has elapsed, in other words after all currently executing
2369 * rcu-sched read-side critical sections have completed. These read-side
2370 * critical sections are delimited by rcu_read_lock_sched() and
2371 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2372 * local_irq_disable(), and so on may be used in place of
2373 * rcu_read_lock_sched().
2374 *
2375 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2376 * non-threaded hardware-interrupt handlers, in progress on entry will
2377 * have completed before this primitive returns. However, this does not
2378 * guarantee that softirq handlers will have completed, since in some
2379 * kernels, these handlers can run in process context, and can block.
2380 *
2381 * Note that this guarantee implies further memory-ordering guarantees.
2382 * On systems with more than one CPU, when synchronize_sched() returns,
2383 * each CPU is guaranteed to have executed a full memory barrier since the
2384 * end of its last RCU-sched read-side critical section whose beginning
2385 * preceded the call to synchronize_sched(). In addition, each CPU having
2386 * an RCU read-side critical section that extends beyond the return from
2387 * synchronize_sched() is guaranteed to have executed a full memory barrier
2388 * after the beginning of synchronize_sched() and before the beginning of
2389 * that RCU read-side critical section. Note that these guarantees include
2390 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2391 * that are executing in the kernel.
2392 *
2393 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2394 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2395 * to have executed a full memory barrier during the execution of
2396 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2397 * again only if the system has more than one CPU).
6ebb237b
PM
2398 *
2399 * This primitive provides the guarantees made by the (now removed)
2400 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2401 * guarantees that rcu_read_lock() sections will have completed.
2402 * In "classic RCU", these two guarantees happen to be one and
2403 * the same, but can differ in realtime RCU implementations.
2404 */
2405void synchronize_sched(void)
2406{
fe15d706
PM
2407 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2408 !lock_is_held(&rcu_lock_map) &&
2409 !lock_is_held(&rcu_sched_lock_map),
2410 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2411 if (rcu_blocking_is_gp())
2412 return;
3705b88d
AM
2413 if (rcu_expedited)
2414 synchronize_sched_expedited();
2415 else
2416 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2417}
2418EXPORT_SYMBOL_GPL(synchronize_sched);
2419
2420/**
2421 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2422 *
2423 * Control will return to the caller some time after a full rcu_bh grace
2424 * period has elapsed, in other words after all currently executing rcu_bh
2425 * read-side critical sections have completed. RCU read-side critical
2426 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2427 * and may be nested.
f0a0e6f2
PM
2428 *
2429 * See the description of synchronize_sched() for more detailed information
2430 * on memory ordering guarantees.
6ebb237b
PM
2431 */
2432void synchronize_rcu_bh(void)
2433{
fe15d706
PM
2434 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2435 !lock_is_held(&rcu_lock_map) &&
2436 !lock_is_held(&rcu_sched_lock_map),
2437 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2438 if (rcu_blocking_is_gp())
2439 return;
3705b88d
AM
2440 if (rcu_expedited)
2441 synchronize_rcu_bh_expedited();
2442 else
2443 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2444}
2445EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2446
3d3b7db0
PM
2447static int synchronize_sched_expedited_cpu_stop(void *data)
2448{
2449 /*
2450 * There must be a full memory barrier on each affected CPU
2451 * between the time that try_stop_cpus() is called and the
2452 * time that it returns.
2453 *
2454 * In the current initial implementation of cpu_stop, the
2455 * above condition is already met when the control reaches
2456 * this point and the following smp_mb() is not strictly
2457 * necessary. Do smp_mb() anyway for documentation and
2458 * robustness against future implementation changes.
2459 */
2460 smp_mb(); /* See above comment block. */
2461 return 0;
2462}
2463
236fefaf
PM
2464/**
2465 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2466 *
2467 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2468 * approach to force the grace period to end quickly. This consumes
2469 * significant time on all CPUs and is unfriendly to real-time workloads,
2470 * so is thus not recommended for any sort of common-case code. In fact,
2471 * if you are using synchronize_sched_expedited() in a loop, please
2472 * restructure your code to batch your updates, and then use a single
2473 * synchronize_sched() instead.
3d3b7db0 2474 *
236fefaf
PM
2475 * Note that it is illegal to call this function while holding any lock
2476 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2477 * to call this function from a CPU-hotplug notifier. Failing to observe
2478 * these restriction will result in deadlock.
3d3b7db0
PM
2479 *
2480 * This implementation can be thought of as an application of ticket
2481 * locking to RCU, with sync_sched_expedited_started and
2482 * sync_sched_expedited_done taking on the roles of the halves
2483 * of the ticket-lock word. Each task atomically increments
2484 * sync_sched_expedited_started upon entry, snapshotting the old value,
2485 * then attempts to stop all the CPUs. If this succeeds, then each
2486 * CPU will have executed a context switch, resulting in an RCU-sched
2487 * grace period. We are then done, so we use atomic_cmpxchg() to
2488 * update sync_sched_expedited_done to match our snapshot -- but
2489 * only if someone else has not already advanced past our snapshot.
2490 *
2491 * On the other hand, if try_stop_cpus() fails, we check the value
2492 * of sync_sched_expedited_done. If it has advanced past our
2493 * initial snapshot, then someone else must have forced a grace period
2494 * some time after we took our snapshot. In this case, our work is
2495 * done for us, and we can simply return. Otherwise, we try again,
2496 * but keep our initial snapshot for purposes of checking for someone
2497 * doing our work for us.
2498 *
2499 * If we fail too many times in a row, we fall back to synchronize_sched().
2500 */
2501void synchronize_sched_expedited(void)
2502{
1924bcb0
PM
2503 long firstsnap, s, snap;
2504 int trycount = 0;
40694d66 2505 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2506
1924bcb0
PM
2507 /*
2508 * If we are in danger of counter wrap, just do synchronize_sched().
2509 * By allowing sync_sched_expedited_started to advance no more than
2510 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2511 * that more than 3.5 billion CPUs would be required to force a
2512 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2513 * course be required on a 64-bit system.
2514 */
40694d66
PM
2515 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2516 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2517 ULONG_MAX / 8)) {
2518 synchronize_sched();
a30489c5 2519 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2520 return;
2521 }
3d3b7db0 2522
1924bcb0
PM
2523 /*
2524 * Take a ticket. Note that atomic_inc_return() implies a
2525 * full memory barrier.
2526 */
40694d66 2527 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2528 firstsnap = snap;
3d3b7db0 2529 get_online_cpus();
1cc85961 2530 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2531
2532 /*
2533 * Each pass through the following loop attempts to force a
2534 * context switch on each CPU.
2535 */
2536 while (try_stop_cpus(cpu_online_mask,
2537 synchronize_sched_expedited_cpu_stop,
2538 NULL) == -EAGAIN) {
2539 put_online_cpus();
a30489c5 2540 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2541
1924bcb0 2542 /* Check to see if someone else did our work for us. */
40694d66 2543 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2544 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2545 /* ensure test happens before caller kfree */
2546 smp_mb__before_atomic_inc(); /* ^^^ */
2547 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2548 return;
2549 }
3d3b7db0
PM
2550
2551 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2552 if (trycount++ < 10) {
3d3b7db0 2553 udelay(trycount * num_online_cpus());
c701d5d9 2554 } else {
3705b88d 2555 wait_rcu_gp(call_rcu_sched);
a30489c5 2556 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2557 return;
2558 }
2559
1924bcb0 2560 /* Recheck to see if someone else did our work for us. */
40694d66 2561 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2562 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2563 /* ensure test happens before caller kfree */
2564 smp_mb__before_atomic_inc(); /* ^^^ */
2565 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2566 return;
2567 }
2568
2569 /*
2570 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2571 * callers to piggyback on our grace period. We retry
2572 * after they started, so our grace period works for them,
2573 * and they started after our first try, so their grace
2574 * period works for us.
3d3b7db0
PM
2575 */
2576 get_online_cpus();
40694d66 2577 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2578 smp_mb(); /* ensure read is before try_stop_cpus(). */
2579 }
a30489c5 2580 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2581
2582 /*
2583 * Everyone up to our most recent fetch is covered by our grace
2584 * period. Update the counter, but only if our work is still
2585 * relevant -- which it won't be if someone who started later
1924bcb0 2586 * than we did already did their update.
3d3b7db0
PM
2587 */
2588 do {
a30489c5 2589 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2590 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2591 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2592 /* ensure test happens before caller kfree */
2593 smp_mb__before_atomic_inc(); /* ^^^ */
2594 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2595 break;
2596 }
40694d66 2597 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2598 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2599
2600 put_online_cpus();
2601}
2602EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2603
64db4cff
PM
2604/*
2605 * Check to see if there is any immediate RCU-related work to be done
2606 * by the current CPU, for the specified type of RCU, returning 1 if so.
2607 * The checks are in order of increasing expense: checks that can be
2608 * carried out against CPU-local state are performed first. However,
2609 * we must check for CPU stalls first, else we might not get a chance.
2610 */
2611static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2612{
2f51f988
PM
2613 struct rcu_node *rnp = rdp->mynode;
2614
64db4cff
PM
2615 rdp->n_rcu_pending++;
2616
2617 /* Check for CPU stalls, if enabled. */
2618 check_cpu_stall(rsp, rdp);
2619
2620 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2621 if (rcu_scheduler_fully_active &&
2622 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2623 rdp->n_rp_qs_pending++;
e4cc1f22 2624 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2625 rdp->n_rp_report_qs++;
64db4cff 2626 return 1;
7ba5c840 2627 }
64db4cff
PM
2628
2629 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2630 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2631 rdp->n_rp_cb_ready++;
64db4cff 2632 return 1;
7ba5c840 2633 }
64db4cff
PM
2634
2635 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2636 if (cpu_needs_another_gp(rsp, rdp)) {
2637 rdp->n_rp_cpu_needs_gp++;
64db4cff 2638 return 1;
7ba5c840 2639 }
64db4cff
PM
2640
2641 /* Has another RCU grace period completed? */
2f51f988 2642 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2643 rdp->n_rp_gp_completed++;
64db4cff 2644 return 1;
7ba5c840 2645 }
64db4cff
PM
2646
2647 /* Has a new RCU grace period started? */
2f51f988 2648 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2649 rdp->n_rp_gp_started++;
64db4cff 2650 return 1;
7ba5c840 2651 }
64db4cff 2652
64db4cff 2653 /* nothing to do */
7ba5c840 2654 rdp->n_rp_need_nothing++;
64db4cff
PM
2655 return 0;
2656}
2657
2658/*
2659 * Check to see if there is any immediate RCU-related work to be done
2660 * by the current CPU, returning 1 if so. This function is part of the
2661 * RCU implementation; it is -not- an exported member of the RCU API.
2662 */
a157229c 2663static int rcu_pending(int cpu)
64db4cff 2664{
6ce75a23
PM
2665 struct rcu_state *rsp;
2666
2667 for_each_rcu_flavor(rsp)
2668 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2669 return 1;
2670 return 0;
64db4cff
PM
2671}
2672
2673/*
c0f4dfd4
PM
2674 * Return true if the specified CPU has any callback. If all_lazy is
2675 * non-NULL, store an indication of whether all callbacks are lazy.
2676 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2677 */
c0f4dfd4 2678static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2679{
c0f4dfd4
PM
2680 bool al = true;
2681 bool hc = false;
2682 struct rcu_data *rdp;
6ce75a23
PM
2683 struct rcu_state *rsp;
2684
c0f4dfd4
PM
2685 for_each_rcu_flavor(rsp) {
2686 rdp = per_cpu_ptr(rsp->rda, cpu);
2687 if (rdp->qlen != rdp->qlen_lazy)
2688 al = false;
2689 if (rdp->nxtlist)
2690 hc = true;
2691 }
2692 if (all_lazy)
2693 *all_lazy = al;
2694 return hc;
64db4cff
PM
2695}
2696
a83eff0a
PM
2697/*
2698 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2699 * the compiler is expected to optimize this away.
2700 */
e66c33d5 2701static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2702 int cpu, unsigned long done)
2703{
2704 trace_rcu_barrier(rsp->name, s, cpu,
2705 atomic_read(&rsp->barrier_cpu_count), done);
2706}
2707
b1420f1c
PM
2708/*
2709 * RCU callback function for _rcu_barrier(). If we are last, wake
2710 * up the task executing _rcu_barrier().
2711 */
24ebbca8 2712static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2713{
24ebbca8
PM
2714 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2715 struct rcu_state *rsp = rdp->rsp;
2716
a83eff0a
PM
2717 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2718 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2719 complete(&rsp->barrier_completion);
a83eff0a
PM
2720 } else {
2721 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2722 }
d0ec774c
PM
2723}
2724
2725/*
2726 * Called with preemption disabled, and from cross-cpu IRQ context.
2727 */
2728static void rcu_barrier_func(void *type)
2729{
037b64ed 2730 struct rcu_state *rsp = type;
06668efa 2731 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2732
a83eff0a 2733 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2734 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2735 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2736}
2737
d0ec774c
PM
2738/*
2739 * Orchestrate the specified type of RCU barrier, waiting for all
2740 * RCU callbacks of the specified type to complete.
2741 */
037b64ed 2742static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2743{
b1420f1c 2744 int cpu;
b1420f1c 2745 struct rcu_data *rdp;
cf3a9c48
PM
2746 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2747 unsigned long snap_done;
b1420f1c 2748
a83eff0a 2749 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2750
e74f4c45 2751 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2752 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2753
cf3a9c48
PM
2754 /*
2755 * Ensure that all prior references, including to ->n_barrier_done,
2756 * are ordered before the _rcu_barrier() machinery.
2757 */
2758 smp_mb(); /* See above block comment. */
2759
2760 /*
2761 * Recheck ->n_barrier_done to see if others did our work for us.
2762 * This means checking ->n_barrier_done for an even-to-odd-to-even
2763 * transition. The "if" expression below therefore rounds the old
2764 * value up to the next even number and adds two before comparing.
2765 */
2766 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2767 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2768 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2769 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2770 smp_mb(); /* caller's subsequent code after above check. */
2771 mutex_unlock(&rsp->barrier_mutex);
2772 return;
2773 }
2774
2775 /*
2776 * Increment ->n_barrier_done to avoid duplicate work. Use
2777 * ACCESS_ONCE() to prevent the compiler from speculating
2778 * the increment to precede the early-exit check.
2779 */
2780 ACCESS_ONCE(rsp->n_barrier_done)++;
2781 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2782 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2783 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2784
d0ec774c 2785 /*
b1420f1c
PM
2786 * Initialize the count to one rather than to zero in order to
2787 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2788 * (or preemption of this task). Exclude CPU-hotplug operations
2789 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2790 */
7db74df8 2791 init_completion(&rsp->barrier_completion);
24ebbca8 2792 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2793 get_online_cpus();
b1420f1c
PM
2794
2795 /*
1331e7a1
PM
2796 * Force each CPU with callbacks to register a new callback.
2797 * When that callback is invoked, we will know that all of the
2798 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2799 */
3fbfbf7a 2800 for_each_possible_cpu(cpu) {
d1e43fa5 2801 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2802 continue;
b1420f1c 2803 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2804 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2805 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2806 rsp->n_barrier_done);
2807 atomic_inc(&rsp->barrier_cpu_count);
2808 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2809 rsp, cpu, 0);
2810 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2811 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2812 rsp->n_barrier_done);
037b64ed 2813 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2814 } else {
a83eff0a
PM
2815 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2816 rsp->n_barrier_done);
b1420f1c
PM
2817 }
2818 }
1331e7a1 2819 put_online_cpus();
b1420f1c
PM
2820
2821 /*
2822 * Now that we have an rcu_barrier_callback() callback on each
2823 * CPU, and thus each counted, remove the initial count.
2824 */
24ebbca8 2825 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2826 complete(&rsp->barrier_completion);
b1420f1c 2827
cf3a9c48
PM
2828 /* Increment ->n_barrier_done to prevent duplicate work. */
2829 smp_mb(); /* Keep increment after above mechanism. */
2830 ACCESS_ONCE(rsp->n_barrier_done)++;
2831 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2832 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2833 smp_mb(); /* Keep increment before caller's subsequent code. */
2834
b1420f1c 2835 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2836 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2837
2838 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2839 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2840}
d0ec774c
PM
2841
2842/**
2843 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2844 */
2845void rcu_barrier_bh(void)
2846{
037b64ed 2847 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2848}
2849EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2850
2851/**
2852 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2853 */
2854void rcu_barrier_sched(void)
2855{
037b64ed 2856 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2857}
2858EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2859
64db4cff 2860/*
27569620 2861 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2862 */
27569620
PM
2863static void __init
2864rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2865{
2866 unsigned long flags;
394f99a9 2867 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2868 struct rcu_node *rnp = rcu_get_root(rsp);
2869
2870 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2871 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2872 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2873 init_callback_list(rdp);
486e2593 2874 rdp->qlen_lazy = 0;
1d1fb395 2875 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2876 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2877 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2878 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2879 rdp->cpu = cpu;
d4c08f2a 2880 rdp->rsp = rsp;
3fbfbf7a 2881 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2882 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2883}
2884
2885/*
2886 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2887 * offline event can be happening at a given time. Note also that we
2888 * can accept some slop in the rsp->completed access due to the fact
2889 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2890 */
49fb4c62 2891static void
6cc68793 2892rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2893{
2894 unsigned long flags;
64db4cff 2895 unsigned long mask;
394f99a9 2896 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2897 struct rcu_node *rnp = rcu_get_root(rsp);
2898
a4fbe35a
PM
2899 /* Exclude new grace periods. */
2900 mutex_lock(&rsp->onoff_mutex);
2901
64db4cff 2902 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2903 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2904 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2905 rdp->preemptible = preemptible;
37c72e56
PM
2906 rdp->qlen_last_fqs_check = 0;
2907 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2908 rdp->blimit = blimit;
0d8ee37e 2909 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2910 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 2911 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
2912 atomic_set(&rdp->dynticks->dynticks,
2913 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 2914 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2915
64db4cff
PM
2916 /* Add CPU to rcu_node bitmasks. */
2917 rnp = rdp->mynode;
2918 mask = rdp->grpmask;
2919 do {
2920 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2921 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2922 rnp->qsmaskinit |= mask;
2923 mask = rnp->grpmask;
d09b62df 2924 if (rnp == rdp->mynode) {
06ae115a
PM
2925 /*
2926 * If there is a grace period in progress, we will
2927 * set up to wait for it next time we run the
2928 * RCU core code.
2929 */
2930 rdp->gpnum = rnp->completed;
d09b62df 2931 rdp->completed = rnp->completed;
06ae115a
PM
2932 rdp->passed_quiesce = 0;
2933 rdp->qs_pending = 0;
f7f7bac9 2934 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 2935 }
1304afb2 2936 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2937 rnp = rnp->parent;
2938 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2939 local_irq_restore(flags);
64db4cff 2940
a4fbe35a 2941 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2942}
2943
49fb4c62 2944static void rcu_prepare_cpu(int cpu)
64db4cff 2945{
6ce75a23
PM
2946 struct rcu_state *rsp;
2947
2948 for_each_rcu_flavor(rsp)
2949 rcu_init_percpu_data(cpu, rsp,
2950 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2951}
2952
2953/*
f41d911f 2954 * Handle CPU online/offline notification events.
64db4cff 2955 */
49fb4c62 2956static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 2957 unsigned long action, void *hcpu)
64db4cff
PM
2958{
2959 long cpu = (long)hcpu;
27f4d280 2960 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2961 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2962 struct rcu_state *rsp;
64db4cff 2963
f7f7bac9 2964 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
2965 switch (action) {
2966 case CPU_UP_PREPARE:
2967 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2968 rcu_prepare_cpu(cpu);
2969 rcu_prepare_kthreads(cpu);
a26ac245
PM
2970 break;
2971 case CPU_ONLINE:
0f962a5e 2972 case CPU_DOWN_FAILED:
5d01bbd1 2973 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
2974 break;
2975 case CPU_DOWN_PREPARE:
34ed6246 2976 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 2977 break;
d0ec774c
PM
2978 case CPU_DYING:
2979 case CPU_DYING_FROZEN:
6ce75a23
PM
2980 for_each_rcu_flavor(rsp)
2981 rcu_cleanup_dying_cpu(rsp);
d0ec774c 2982 break;
64db4cff
PM
2983 case CPU_DEAD:
2984 case CPU_DEAD_FROZEN:
2985 case CPU_UP_CANCELED:
2986 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2987 for_each_rcu_flavor(rsp)
2988 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2989 break;
2990 default:
2991 break;
2992 }
f7f7bac9 2993 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 2994 return NOTIFY_OK;
64db4cff
PM
2995}
2996
b3dbec76
PM
2997/*
2998 * Spawn the kthread that handles this RCU flavor's grace periods.
2999 */
3000static int __init rcu_spawn_gp_kthread(void)
3001{
3002 unsigned long flags;
3003 struct rcu_node *rnp;
3004 struct rcu_state *rsp;
3005 struct task_struct *t;
3006
3007 for_each_rcu_flavor(rsp) {
f170168b 3008 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3009 BUG_ON(IS_ERR(t));
3010 rnp = rcu_get_root(rsp);
3011 raw_spin_lock_irqsave(&rnp->lock, flags);
3012 rsp->gp_kthread = t;
3013 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3014 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3015 }
3016 return 0;
3017}
3018early_initcall(rcu_spawn_gp_kthread);
3019
bbad9379
PM
3020/*
3021 * This function is invoked towards the end of the scheduler's initialization
3022 * process. Before this is called, the idle task might contain
3023 * RCU read-side critical sections (during which time, this idle
3024 * task is booting the system). After this function is called, the
3025 * idle tasks are prohibited from containing RCU read-side critical
3026 * sections. This function also enables RCU lockdep checking.
3027 */
3028void rcu_scheduler_starting(void)
3029{
3030 WARN_ON(num_online_cpus() != 1);
3031 WARN_ON(nr_context_switches() > 0);
3032 rcu_scheduler_active = 1;
3033}
3034
64db4cff
PM
3035/*
3036 * Compute the per-level fanout, either using the exact fanout specified
3037 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3038 */
3039#ifdef CONFIG_RCU_FANOUT_EXACT
3040static void __init rcu_init_levelspread(struct rcu_state *rsp)
3041{
3042 int i;
3043
f885b7f2 3044 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3045 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3046 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3047}
3048#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3049static void __init rcu_init_levelspread(struct rcu_state *rsp)
3050{
3051 int ccur;
3052 int cprv;
3053 int i;
3054
4dbd6bb3 3055 cprv = nr_cpu_ids;
f885b7f2 3056 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3057 ccur = rsp->levelcnt[i];
3058 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3059 cprv = ccur;
3060 }
3061}
3062#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3063
3064/*
3065 * Helper function for rcu_init() that initializes one rcu_state structure.
3066 */
394f99a9
LJ
3067static void __init rcu_init_one(struct rcu_state *rsp,
3068 struct rcu_data __percpu *rda)
64db4cff 3069{
394f2769
PM
3070 static char *buf[] = { "rcu_node_0",
3071 "rcu_node_1",
3072 "rcu_node_2",
3073 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3074 static char *fqs[] = { "rcu_node_fqs_0",
3075 "rcu_node_fqs_1",
3076 "rcu_node_fqs_2",
3077 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3078 int cpustride = 1;
3079 int i;
3080 int j;
3081 struct rcu_node *rnp;
3082
b6407e86
PM
3083 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3084
4930521a
PM
3085 /* Silence gcc 4.8 warning about array index out of range. */
3086 if (rcu_num_lvls > RCU_NUM_LVLS)
3087 panic("rcu_init_one: rcu_num_lvls overflow");
3088
64db4cff
PM
3089 /* Initialize the level-tracking arrays. */
3090
f885b7f2
PM
3091 for (i = 0; i < rcu_num_lvls; i++)
3092 rsp->levelcnt[i] = num_rcu_lvl[i];
3093 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3094 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3095 rcu_init_levelspread(rsp);
3096
3097 /* Initialize the elements themselves, starting from the leaves. */
3098
f885b7f2 3099 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3100 cpustride *= rsp->levelspread[i];
3101 rnp = rsp->level[i];
3102 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3103 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3104 lockdep_set_class_and_name(&rnp->lock,
3105 &rcu_node_class[i], buf[i]);
394f2769
PM
3106 raw_spin_lock_init(&rnp->fqslock);
3107 lockdep_set_class_and_name(&rnp->fqslock,
3108 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3109 rnp->gpnum = rsp->gpnum;
3110 rnp->completed = rsp->completed;
64db4cff
PM
3111 rnp->qsmask = 0;
3112 rnp->qsmaskinit = 0;
3113 rnp->grplo = j * cpustride;
3114 rnp->grphi = (j + 1) * cpustride - 1;
3115 if (rnp->grphi >= NR_CPUS)
3116 rnp->grphi = NR_CPUS - 1;
3117 if (i == 0) {
3118 rnp->grpnum = 0;
3119 rnp->grpmask = 0;
3120 rnp->parent = NULL;
3121 } else {
3122 rnp->grpnum = j % rsp->levelspread[i - 1];
3123 rnp->grpmask = 1UL << rnp->grpnum;
3124 rnp->parent = rsp->level[i - 1] +
3125 j / rsp->levelspread[i - 1];
3126 }
3127 rnp->level = i;
12f5f524 3128 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3129 rcu_init_one_nocb(rnp);
64db4cff
PM
3130 }
3131 }
0c34029a 3132
394f99a9 3133 rsp->rda = rda;
b3dbec76 3134 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3135 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3136 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3137 for_each_possible_cpu(i) {
4a90a068 3138 while (i > rnp->grphi)
0c34029a 3139 rnp++;
394f99a9 3140 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3141 rcu_boot_init_percpu_data(i, rsp);
3142 }
6ce75a23 3143 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3144}
3145
f885b7f2
PM
3146/*
3147 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3148 * replace the definitions in rcutree.h because those are needed to size
3149 * the ->node array in the rcu_state structure.
3150 */
3151static void __init rcu_init_geometry(void)
3152{
026ad283 3153 ulong d;
f885b7f2
PM
3154 int i;
3155 int j;
cca6f393 3156 int n = nr_cpu_ids;
f885b7f2
PM
3157 int rcu_capacity[MAX_RCU_LVLS + 1];
3158
026ad283
PM
3159 /*
3160 * Initialize any unspecified boot parameters.
3161 * The default values of jiffies_till_first_fqs and
3162 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3163 * value, which is a function of HZ, then adding one for each
3164 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3165 */
3166 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3167 if (jiffies_till_first_fqs == ULONG_MAX)
3168 jiffies_till_first_fqs = d;
3169 if (jiffies_till_next_fqs == ULONG_MAX)
3170 jiffies_till_next_fqs = d;
3171
f885b7f2 3172 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3173 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3174 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3175 return;
3176
3177 /*
3178 * Compute number of nodes that can be handled an rcu_node tree
3179 * with the given number of levels. Setting rcu_capacity[0] makes
3180 * some of the arithmetic easier.
3181 */
3182 rcu_capacity[0] = 1;
3183 rcu_capacity[1] = rcu_fanout_leaf;
3184 for (i = 2; i <= MAX_RCU_LVLS; i++)
3185 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3186
3187 /*
3188 * The boot-time rcu_fanout_leaf parameter is only permitted
3189 * to increase the leaf-level fanout, not decrease it. Of course,
3190 * the leaf-level fanout cannot exceed the number of bits in
3191 * the rcu_node masks. Finally, the tree must be able to accommodate
3192 * the configured number of CPUs. Complain and fall back to the
3193 * compile-time values if these limits are exceeded.
3194 */
3195 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3196 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3197 n > rcu_capacity[MAX_RCU_LVLS]) {
3198 WARN_ON(1);
3199 return;
3200 }
3201
3202 /* Calculate the number of rcu_nodes at each level of the tree. */
3203 for (i = 1; i <= MAX_RCU_LVLS; i++)
3204 if (n <= rcu_capacity[i]) {
3205 for (j = 0; j <= i; j++)
3206 num_rcu_lvl[j] =
3207 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3208 rcu_num_lvls = i;
3209 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3210 num_rcu_lvl[j] = 0;
3211 break;
3212 }
3213
3214 /* Calculate the total number of rcu_node structures. */
3215 rcu_num_nodes = 0;
3216 for (i = 0; i <= MAX_RCU_LVLS; i++)
3217 rcu_num_nodes += num_rcu_lvl[i];
3218 rcu_num_nodes -= n;
3219}
3220
9f680ab4 3221void __init rcu_init(void)
64db4cff 3222{
017c4261 3223 int cpu;
9f680ab4 3224
f41d911f 3225 rcu_bootup_announce();
f885b7f2 3226 rcu_init_geometry();
394f99a9
LJ
3227 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3228 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3229 __rcu_init_preempt();
b5b39360 3230 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3231
3232 /*
3233 * We don't need protection against CPU-hotplug here because
3234 * this is called early in boot, before either interrupts
3235 * or the scheduler are operational.
3236 */
3237 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
3238 for_each_online_cpu(cpu)
3239 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3240}
3241
1eba8f84 3242#include "rcutree_plugin.h"
This page took 0.535637 seconds and 5 git commands to generate.