Merge branch 'idle.2013.09.25a' into HEAD
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
d1d74d14 57#include <linux/suspend.h>
64db4cff 58
9f77da9f 59#include "rcutree.h"
29c00b4a
PM
60#include <trace/events/rcu.h>
61
62#include "rcu.h"
9f77da9f 63
64db4cff
PM
64/* Data structures. */
65
f885b7f2 66static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 67static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 68
f7f7bac9
SRRH
69/*
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
76 */
a41bfeb2 77#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
78static char sname##_varname[] = #sname; \
79static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 80struct rcu_state sname##_state = { \
6c90cc7b 81 .level = { &sname##_state.node[0] }, \
037b64ed 82 .call = cr, \
af446b70 83 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
84 .gpnum = 0UL - 300UL, \
85 .completed = 0UL - 300UL, \
7b2e6011 86 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
87 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
88 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 89 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 90 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 91 .name = sname##_varname, \
a4889858 92 .abbr = sabbr, \
a41bfeb2
SRRH
93}; \
94DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 95
a41bfeb2
SRRH
96RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
97RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 98
27f4d280 99static struct rcu_state *rcu_state;
6ce75a23 100LIST_HEAD(rcu_struct_flavors);
27f4d280 101
f885b7f2
PM
102/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
103static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 104module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
105int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
106static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
107 NUM_RCU_LVL_0,
108 NUM_RCU_LVL_1,
109 NUM_RCU_LVL_2,
110 NUM_RCU_LVL_3,
111 NUM_RCU_LVL_4,
112};
113int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
114
b0d30417
PM
115/*
116 * The rcu_scheduler_active variable transitions from zero to one just
117 * before the first task is spawned. So when this variable is zero, RCU
118 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 119 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
120 * is one, RCU must actually do all the hard work required to detect real
121 * grace periods. This variable is also used to suppress boot-time false
122 * positives from lockdep-RCU error checking.
123 */
bbad9379
PM
124int rcu_scheduler_active __read_mostly;
125EXPORT_SYMBOL_GPL(rcu_scheduler_active);
126
b0d30417
PM
127/*
128 * The rcu_scheduler_fully_active variable transitions from zero to one
129 * during the early_initcall() processing, which is after the scheduler
130 * is capable of creating new tasks. So RCU processing (for example,
131 * creating tasks for RCU priority boosting) must be delayed until after
132 * rcu_scheduler_fully_active transitions from zero to one. We also
133 * currently delay invocation of any RCU callbacks until after this point.
134 *
135 * It might later prove better for people registering RCU callbacks during
136 * early boot to take responsibility for these callbacks, but one step at
137 * a time.
138 */
139static int rcu_scheduler_fully_active __read_mostly;
140
a46e0899
PM
141#ifdef CONFIG_RCU_BOOST
142
a26ac245
PM
143/*
144 * Control variables for per-CPU and per-rcu_node kthreads. These
145 * handle all flavors of RCU.
146 */
147static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 148DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 149DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 150DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 151
a46e0899
PM
152#endif /* #ifdef CONFIG_RCU_BOOST */
153
5d01bbd1 154static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
155static void invoke_rcu_core(void);
156static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 157
4a298656
PM
158/*
159 * Track the rcutorture test sequence number and the update version
160 * number within a given test. The rcutorture_testseq is incremented
161 * on every rcutorture module load and unload, so has an odd value
162 * when a test is running. The rcutorture_vernum is set to zero
163 * when rcutorture starts and is incremented on each rcutorture update.
164 * These variables enable correlating rcutorture output with the
165 * RCU tracing information.
166 */
167unsigned long rcutorture_testseq;
168unsigned long rcutorture_vernum;
169
fc2219d4
PM
170/*
171 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
172 * permit this function to be invoked without holding the root rcu_node
173 * structure's ->lock, but of course results can be subject to change.
174 */
175static int rcu_gp_in_progress(struct rcu_state *rsp)
176{
177 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
178}
179
b1f77b05 180/*
d6714c22 181 * Note a quiescent state. Because we do not need to know
b1f77b05 182 * how many quiescent states passed, just if there was at least
d6714c22 183 * one since the start of the grace period, this just sets a flag.
e4cc1f22 184 * The caller must have disabled preemption.
b1f77b05 185 */
d6714c22 186void rcu_sched_qs(int cpu)
b1f77b05 187{
25502a6c 188 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 189
e4cc1f22 190 if (rdp->passed_quiesce == 0)
f7f7bac9 191 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 192 rdp->passed_quiesce = 1;
b1f77b05
IM
193}
194
d6714c22 195void rcu_bh_qs(int cpu)
b1f77b05 196{
25502a6c 197 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 198
e4cc1f22 199 if (rdp->passed_quiesce == 0)
f7f7bac9 200 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 201 rdp->passed_quiesce = 1;
b1f77b05 202}
64db4cff 203
25502a6c
PM
204/*
205 * Note a context switch. This is a quiescent state for RCU-sched,
206 * and requires special handling for preemptible RCU.
e4cc1f22 207 * The caller must have disabled preemption.
25502a6c
PM
208 */
209void rcu_note_context_switch(int cpu)
210{
f7f7bac9 211 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 212 rcu_sched_qs(cpu);
cba6d0d6 213 rcu_preempt_note_context_switch(cpu);
f7f7bac9 214 trace_rcu_utilization(TPS("End context switch"));
25502a6c 215}
29ce8310 216EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 217
01896f7e 218static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 219 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 220 .dynticks = ATOMIC_INIT(1),
2333210b
PM
221#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
222 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
223 .dynticks_idle = ATOMIC_INIT(1),
224#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 225};
64db4cff 226
878d7439
ED
227static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
228static long qhimark = 10000; /* If this many pending, ignore blimit. */
229static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 230
878d7439
ED
231module_param(blimit, long, 0444);
232module_param(qhimark, long, 0444);
233module_param(qlowmark, long, 0444);
3d76c082 234
026ad283
PM
235static ulong jiffies_till_first_fqs = ULONG_MAX;
236static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
237
238module_param(jiffies_till_first_fqs, ulong, 0644);
239module_param(jiffies_till_next_fqs, ulong, 0644);
240
910ee45d
PM
241static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
242 struct rcu_data *rdp);
217af2a2
PM
243static void force_qs_rnp(struct rcu_state *rsp,
244 int (*f)(struct rcu_data *rsp, bool *isidle,
245 unsigned long *maxj),
246 bool *isidle, unsigned long *maxj);
4cdfc175 247static void force_quiescent_state(struct rcu_state *rsp);
a157229c 248static int rcu_pending(int cpu);
64db4cff
PM
249
250/*
d6714c22 251 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 252 */
d6714c22 253long rcu_batches_completed_sched(void)
64db4cff 254{
d6714c22 255 return rcu_sched_state.completed;
64db4cff 256}
d6714c22 257EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
258
259/*
260 * Return the number of RCU BH batches processed thus far for debug & stats.
261 */
262long rcu_batches_completed_bh(void)
263{
264 return rcu_bh_state.completed;
265}
266EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
267
bf66f18e
PM
268/*
269 * Force a quiescent state for RCU BH.
270 */
271void rcu_bh_force_quiescent_state(void)
272{
4cdfc175 273 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
274}
275EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
276
4a298656
PM
277/*
278 * Record the number of times rcutorture tests have been initiated and
279 * terminated. This information allows the debugfs tracing stats to be
280 * correlated to the rcutorture messages, even when the rcutorture module
281 * is being repeatedly loaded and unloaded. In other words, we cannot
282 * store this state in rcutorture itself.
283 */
284void rcutorture_record_test_transition(void)
285{
286 rcutorture_testseq++;
287 rcutorture_vernum = 0;
288}
289EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
290
291/*
292 * Record the number of writer passes through the current rcutorture test.
293 * This is also used to correlate debugfs tracing stats with the rcutorture
294 * messages.
295 */
296void rcutorture_record_progress(unsigned long vernum)
297{
298 rcutorture_vernum++;
299}
300EXPORT_SYMBOL_GPL(rcutorture_record_progress);
301
bf66f18e
PM
302/*
303 * Force a quiescent state for RCU-sched.
304 */
305void rcu_sched_force_quiescent_state(void)
306{
4cdfc175 307 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
308}
309EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
310
64db4cff
PM
311/*
312 * Does the CPU have callbacks ready to be invoked?
313 */
314static int
315cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
316{
3fbfbf7a
PM
317 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
318 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
319}
320
321/*
dc35c893
PM
322 * Does the current CPU require a not-yet-started grace period?
323 * The caller must have disabled interrupts to prevent races with
324 * normal callback registry.
64db4cff
PM
325 */
326static int
327cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
328{
dc35c893 329 int i;
3fbfbf7a 330
dc35c893
PM
331 if (rcu_gp_in_progress(rsp))
332 return 0; /* No, a grace period is already in progress. */
dae6e64d 333 if (rcu_nocb_needs_gp(rsp))
34ed6246 334 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
335 if (!rdp->nxttail[RCU_NEXT_TAIL])
336 return 0; /* No, this is a no-CBs (or offline) CPU. */
337 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
338 return 1; /* Yes, this CPU has newly registered callbacks. */
339 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
340 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
341 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
342 rdp->nxtcompleted[i]))
343 return 1; /* Yes, CBs for future grace period. */
344 return 0; /* No grace period needed. */
64db4cff
PM
345}
346
347/*
348 * Return the root node of the specified rcu_state structure.
349 */
350static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
351{
352 return &rsp->node[0];
353}
354
9b2e4f18 355/*
adf5091e 356 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
357 *
358 * If the new value of the ->dynticks_nesting counter now is zero,
359 * we really have entered idle, and must do the appropriate accounting.
360 * The caller must have disabled interrupts.
361 */
adf5091e
FW
362static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
363 bool user)
9b2e4f18 364{
f7f7bac9 365 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 366 if (!user && !is_idle_task(current)) {
289828e6
PM
367 struct task_struct *idle __maybe_unused =
368 idle_task(smp_processor_id());
0989cb46 369
f7f7bac9 370 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 371 ftrace_dump(DUMP_ORIG);
0989cb46
PM
372 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
373 current->pid, current->comm,
374 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 375 }
aea1b35e 376 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
377 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
378 smp_mb__before_atomic_inc(); /* See above. */
379 atomic_inc(&rdtp->dynticks);
380 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
381 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
382
383 /*
adf5091e 384 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
385 * in an RCU read-side critical section.
386 */
387 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
388 "Illegal idle entry in RCU read-side critical section.");
389 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
390 "Illegal idle entry in RCU-bh read-side critical section.");
391 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
392 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 393}
64db4cff 394
adf5091e
FW
395/*
396 * Enter an RCU extended quiescent state, which can be either the
397 * idle loop or adaptive-tickless usermode execution.
64db4cff 398 */
adf5091e 399static void rcu_eqs_enter(bool user)
64db4cff 400{
4145fa7f 401 long long oldval;
64db4cff
PM
402 struct rcu_dynticks *rdtp;
403
c9d4b0af 404 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 405 oldval = rdtp->dynticks_nesting;
29e37d81
PM
406 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
407 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
408 rdtp->dynticks_nesting = 0;
409 else
410 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 411 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 412}
adf5091e
FW
413
414/**
415 * rcu_idle_enter - inform RCU that current CPU is entering idle
416 *
417 * Enter idle mode, in other words, -leave- the mode in which RCU
418 * read-side critical sections can occur. (Though RCU read-side
419 * critical sections can occur in irq handlers in idle, a possibility
420 * handled by irq_enter() and irq_exit().)
421 *
422 * We crowbar the ->dynticks_nesting field to zero to allow for
423 * the possibility of usermode upcalls having messed up our count
424 * of interrupt nesting level during the prior busy period.
425 */
426void rcu_idle_enter(void)
427{
c5d900bf
FW
428 unsigned long flags;
429
430 local_irq_save(flags);
cb349ca9 431 rcu_eqs_enter(false);
c9d4b0af 432 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 433 local_irq_restore(flags);
adf5091e 434}
8a2ecf47 435EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 436
2b1d5024 437#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
438/**
439 * rcu_user_enter - inform RCU that we are resuming userspace.
440 *
441 * Enter RCU idle mode right before resuming userspace. No use of RCU
442 * is permitted between this call and rcu_user_exit(). This way the
443 * CPU doesn't need to maintain the tick for RCU maintenance purposes
444 * when the CPU runs in userspace.
445 */
446void rcu_user_enter(void)
447{
91d1aa43 448 rcu_eqs_enter(1);
adf5091e 449}
2b1d5024 450#endif /* CONFIG_RCU_USER_QS */
19dd1591 451
9b2e4f18
PM
452/**
453 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
454 *
455 * Exit from an interrupt handler, which might possibly result in entering
456 * idle mode, in other words, leaving the mode in which read-side critical
457 * sections can occur.
64db4cff 458 *
9b2e4f18
PM
459 * This code assumes that the idle loop never does anything that might
460 * result in unbalanced calls to irq_enter() and irq_exit(). If your
461 * architecture violates this assumption, RCU will give you what you
462 * deserve, good and hard. But very infrequently and irreproducibly.
463 *
464 * Use things like work queues to work around this limitation.
465 *
466 * You have been warned.
64db4cff 467 */
9b2e4f18 468void rcu_irq_exit(void)
64db4cff
PM
469{
470 unsigned long flags;
4145fa7f 471 long long oldval;
64db4cff
PM
472 struct rcu_dynticks *rdtp;
473
474 local_irq_save(flags);
c9d4b0af 475 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 476 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
477 rdtp->dynticks_nesting--;
478 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 479 if (rdtp->dynticks_nesting)
f7f7bac9 480 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 481 else
cb349ca9 482 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 483 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
484 local_irq_restore(flags);
485}
486
487/*
adf5091e 488 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
489 *
490 * If the new value of the ->dynticks_nesting counter was previously zero,
491 * we really have exited idle, and must do the appropriate accounting.
492 * The caller must have disabled interrupts.
493 */
adf5091e
FW
494static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
495 int user)
9b2e4f18 496{
23b5c8fa
PM
497 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
498 atomic_inc(&rdtp->dynticks);
499 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
500 smp_mb__after_atomic_inc(); /* See above. */
501 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 502 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 503 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 504 if (!user && !is_idle_task(current)) {
289828e6
PM
505 struct task_struct *idle __maybe_unused =
506 idle_task(smp_processor_id());
0989cb46 507
f7f7bac9 508 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 509 oldval, rdtp->dynticks_nesting);
bf1304e9 510 ftrace_dump(DUMP_ORIG);
0989cb46
PM
511 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
512 current->pid, current->comm,
513 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
514 }
515}
516
adf5091e
FW
517/*
518 * Exit an RCU extended quiescent state, which can be either the
519 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 520 */
adf5091e 521static void rcu_eqs_exit(bool user)
9b2e4f18 522{
9b2e4f18
PM
523 struct rcu_dynticks *rdtp;
524 long long oldval;
525
c9d4b0af 526 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 527 oldval = rdtp->dynticks_nesting;
29e37d81
PM
528 WARN_ON_ONCE(oldval < 0);
529 if (oldval & DYNTICK_TASK_NEST_MASK)
530 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
531 else
532 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 533 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 534}
adf5091e
FW
535
536/**
537 * rcu_idle_exit - inform RCU that current CPU is leaving idle
538 *
539 * Exit idle mode, in other words, -enter- the mode in which RCU
540 * read-side critical sections can occur.
541 *
542 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
543 * allow for the possibility of usermode upcalls messing up our count
544 * of interrupt nesting level during the busy period that is just
545 * now starting.
546 */
547void rcu_idle_exit(void)
548{
c5d900bf
FW
549 unsigned long flags;
550
551 local_irq_save(flags);
cb349ca9 552 rcu_eqs_exit(false);
c9d4b0af 553 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 554 local_irq_restore(flags);
adf5091e 555}
8a2ecf47 556EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 557
2b1d5024 558#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
559/**
560 * rcu_user_exit - inform RCU that we are exiting userspace.
561 *
562 * Exit RCU idle mode while entering the kernel because it can
563 * run a RCU read side critical section anytime.
564 */
565void rcu_user_exit(void)
566{
91d1aa43 567 rcu_eqs_exit(1);
adf5091e 568}
2b1d5024 569#endif /* CONFIG_RCU_USER_QS */
19dd1591 570
9b2e4f18
PM
571/**
572 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
573 *
574 * Enter an interrupt handler, which might possibly result in exiting
575 * idle mode, in other words, entering the mode in which read-side critical
576 * sections can occur.
577 *
578 * Note that the Linux kernel is fully capable of entering an interrupt
579 * handler that it never exits, for example when doing upcalls to
580 * user mode! This code assumes that the idle loop never does upcalls to
581 * user mode. If your architecture does do upcalls from the idle loop (or
582 * does anything else that results in unbalanced calls to the irq_enter()
583 * and irq_exit() functions), RCU will give you what you deserve, good
584 * and hard. But very infrequently and irreproducibly.
585 *
586 * Use things like work queues to work around this limitation.
587 *
588 * You have been warned.
589 */
590void rcu_irq_enter(void)
591{
592 unsigned long flags;
593 struct rcu_dynticks *rdtp;
594 long long oldval;
595
596 local_irq_save(flags);
c9d4b0af 597 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
598 oldval = rdtp->dynticks_nesting;
599 rdtp->dynticks_nesting++;
600 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 601 if (oldval)
f7f7bac9 602 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 603 else
cb349ca9 604 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 605 rcu_sysidle_exit(rdtp, 1);
64db4cff 606 local_irq_restore(flags);
64db4cff
PM
607}
608
609/**
610 * rcu_nmi_enter - inform RCU of entry to NMI context
611 *
612 * If the CPU was idle with dynamic ticks active, and there is no
613 * irq handler running, this updates rdtp->dynticks_nmi to let the
614 * RCU grace-period handling know that the CPU is active.
615 */
616void rcu_nmi_enter(void)
617{
c9d4b0af 618 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 619
23b5c8fa
PM
620 if (rdtp->dynticks_nmi_nesting == 0 &&
621 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 622 return;
23b5c8fa
PM
623 rdtp->dynticks_nmi_nesting++;
624 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
625 atomic_inc(&rdtp->dynticks);
626 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
627 smp_mb__after_atomic_inc(); /* See above. */
628 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
629}
630
631/**
632 * rcu_nmi_exit - inform RCU of exit from NMI context
633 *
634 * If the CPU was idle with dynamic ticks active, and there is no
635 * irq handler running, this updates rdtp->dynticks_nmi to let the
636 * RCU grace-period handling know that the CPU is no longer active.
637 */
638void rcu_nmi_exit(void)
639{
c9d4b0af 640 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 641
23b5c8fa
PM
642 if (rdtp->dynticks_nmi_nesting == 0 ||
643 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 644 return;
23b5c8fa
PM
645 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
646 smp_mb__before_atomic_inc(); /* See above. */
647 atomic_inc(&rdtp->dynticks);
648 smp_mb__after_atomic_inc(); /* Force delay to next write. */
649 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
650}
651
652/**
5c173eb8
PM
653 * __rcu_is_watching - are RCU read-side critical sections safe?
654 *
655 * Return true if RCU is watching the running CPU, which means that
656 * this CPU can safely enter RCU read-side critical sections. Unlike
657 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
658 * least disabled preemption.
659 */
660bool __rcu_is_watching(void)
661{
662 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
663}
664
665/**
666 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 667 *
9b2e4f18 668 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 669 * or NMI handler, return true.
64db4cff 670 */
5c173eb8 671bool rcu_is_watching(void)
64db4cff 672{
34240697
PM
673 int ret;
674
675 preempt_disable();
5c173eb8 676 ret = __rcu_is_watching();
34240697
PM
677 preempt_enable();
678 return ret;
64db4cff 679}
5c173eb8 680EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 681
62fde6ed 682#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
683
684/*
685 * Is the current CPU online? Disable preemption to avoid false positives
686 * that could otherwise happen due to the current CPU number being sampled,
687 * this task being preempted, its old CPU being taken offline, resuming
688 * on some other CPU, then determining that its old CPU is now offline.
689 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
690 * the check for rcu_scheduler_fully_active. Note also that it is OK
691 * for a CPU coming online to use RCU for one jiffy prior to marking itself
692 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
693 * offline to continue to use RCU for one jiffy after marking itself
694 * offline in the cpu_online_mask. This leniency is necessary given the
695 * non-atomic nature of the online and offline processing, for example,
696 * the fact that a CPU enters the scheduler after completing the CPU_DYING
697 * notifiers.
698 *
699 * This is also why RCU internally marks CPUs online during the
700 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
701 *
702 * Disable checking if in an NMI handler because we cannot safely report
703 * errors from NMI handlers anyway.
704 */
705bool rcu_lockdep_current_cpu_online(void)
706{
2036d94a
PM
707 struct rcu_data *rdp;
708 struct rcu_node *rnp;
c0d6d01b
PM
709 bool ret;
710
711 if (in_nmi())
712 return 1;
713 preempt_disable();
c9d4b0af 714 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
715 rnp = rdp->mynode;
716 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
717 !rcu_scheduler_fully_active;
718 preempt_enable();
719 return ret;
720}
721EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
722
62fde6ed 723#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 724
64db4cff 725/**
9b2e4f18 726 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 727 *
9b2e4f18
PM
728 * If the current CPU is idle or running at a first-level (not nested)
729 * interrupt from idle, return true. The caller must have at least
730 * disabled preemption.
64db4cff 731 */
62e3cb14 732static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 733{
c9d4b0af 734 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
735}
736
64db4cff
PM
737/*
738 * Snapshot the specified CPU's dynticks counter so that we can later
739 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 740 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 741 */
217af2a2
PM
742static int dyntick_save_progress_counter(struct rcu_data *rdp,
743 bool *isidle, unsigned long *maxj)
64db4cff 744{
23b5c8fa 745 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 746 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 747 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
748}
749
750/*
751 * Return true if the specified CPU has passed through a quiescent
752 * state by virtue of being in or having passed through an dynticks
753 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 754 * for this same CPU, or by virtue of having been offline.
64db4cff 755 */
217af2a2
PM
756static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
757 bool *isidle, unsigned long *maxj)
64db4cff 758{
7eb4f455
PM
759 unsigned int curr;
760 unsigned int snap;
64db4cff 761
7eb4f455
PM
762 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
763 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
764
765 /*
766 * If the CPU passed through or entered a dynticks idle phase with
767 * no active irq/NMI handlers, then we can safely pretend that the CPU
768 * already acknowledged the request to pass through a quiescent
769 * state. Either way, that CPU cannot possibly be in an RCU
770 * read-side critical section that started before the beginning
771 * of the current RCU grace period.
772 */
7eb4f455 773 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 774 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
775 rdp->dynticks_fqs++;
776 return 1;
777 }
778
a82dcc76
PM
779 /*
780 * Check for the CPU being offline, but only if the grace period
781 * is old enough. We don't need to worry about the CPU changing
782 * state: If we see it offline even once, it has been through a
783 * quiescent state.
784 *
785 * The reason for insisting that the grace period be at least
786 * one jiffy old is that CPUs that are not quite online and that
787 * have just gone offline can still execute RCU read-side critical
788 * sections.
789 */
790 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
791 return 0; /* Grace period is not old enough. */
792 barrier();
793 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 794 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
795 rdp->offline_fqs++;
796 return 1;
797 }
65d798f0
PM
798
799 /*
800 * There is a possibility that a CPU in adaptive-ticks state
801 * might run in the kernel with the scheduling-clock tick disabled
802 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
803 * force the CPU to restart the scheduling-clock tick in this
804 * CPU is in this state.
805 */
806 rcu_kick_nohz_cpu(rdp->cpu);
807
a82dcc76 808 return 0;
64db4cff
PM
809}
810
64db4cff
PM
811static void record_gp_stall_check_time(struct rcu_state *rsp)
812{
26cdfedf
PM
813 unsigned long j = ACCESS_ONCE(jiffies);
814
815 rsp->gp_start = j;
816 smp_wmb(); /* Record start time before stall time. */
817 rsp->jiffies_stall = j + rcu_jiffies_till_stall_check();
64db4cff
PM
818}
819
b637a328
PM
820/*
821 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
822 * for architectures that do not implement trigger_all_cpu_backtrace().
823 * The NMI-triggered stack traces are more accurate because they are
824 * printed by the target CPU.
825 */
826static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
827{
828 int cpu;
829 unsigned long flags;
830 struct rcu_node *rnp;
831
832 rcu_for_each_leaf_node(rsp, rnp) {
833 raw_spin_lock_irqsave(&rnp->lock, flags);
834 if (rnp->qsmask != 0) {
835 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
836 if (rnp->qsmask & (1UL << cpu))
837 dump_cpu_task(rnp->grplo + cpu);
838 }
839 raw_spin_unlock_irqrestore(&rnp->lock, flags);
840 }
841}
842
64db4cff
PM
843static void print_other_cpu_stall(struct rcu_state *rsp)
844{
845 int cpu;
846 long delta;
847 unsigned long flags;
285fe294 848 int ndetected = 0;
64db4cff 849 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 850 long totqlen = 0;
64db4cff
PM
851
852 /* Only let one CPU complain about others per time interval. */
853
1304afb2 854 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 855 delta = jiffies - rsp->jiffies_stall;
fc2219d4 856 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 857 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
858 return;
859 }
6bfc09e2 860 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 861 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 862
8cdd32a9
PM
863 /*
864 * OK, time to rat on our buddy...
865 * See Documentation/RCU/stallwarn.txt for info on how to debug
866 * RCU CPU stall warnings.
867 */
d7f3e207 868 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 869 rsp->name);
a858af28 870 print_cpu_stall_info_begin();
a0b6c9a7 871 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 872 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 873 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
874 if (rnp->qsmask != 0) {
875 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
876 if (rnp->qsmask & (1UL << cpu)) {
877 print_cpu_stall_info(rsp,
878 rnp->grplo + cpu);
879 ndetected++;
880 }
881 }
3acd9eb3 882 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 883 }
a858af28
PM
884
885 /*
886 * Now rat on any tasks that got kicked up to the root rcu_node
887 * due to CPU offlining.
888 */
889 rnp = rcu_get_root(rsp);
890 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 891 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
892 raw_spin_unlock_irqrestore(&rnp->lock, flags);
893
894 print_cpu_stall_info_end();
53bb857c
PM
895 for_each_possible_cpu(cpu)
896 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
897 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 898 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 899 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 900 if (ndetected == 0)
d7f3e207 901 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 902 else if (!trigger_all_cpu_backtrace())
b637a328 903 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 904
4cdfc175 905 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
906
907 rcu_print_detail_task_stall(rsp);
908
4cdfc175 909 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
910}
911
912static void print_cpu_stall(struct rcu_state *rsp)
913{
53bb857c 914 int cpu;
64db4cff
PM
915 unsigned long flags;
916 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 917 long totqlen = 0;
64db4cff 918
8cdd32a9
PM
919 /*
920 * OK, time to rat on ourselves...
921 * See Documentation/RCU/stallwarn.txt for info on how to debug
922 * RCU CPU stall warnings.
923 */
d7f3e207 924 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
925 print_cpu_stall_info_begin();
926 print_cpu_stall_info(rsp, smp_processor_id());
927 print_cpu_stall_info_end();
53bb857c
PM
928 for_each_possible_cpu(cpu)
929 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
930 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
931 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
932 if (!trigger_all_cpu_backtrace())
933 dump_stack();
c1dc0b9c 934
1304afb2 935 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 936 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 937 rsp->jiffies_stall = jiffies +
6bfc09e2 938 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 939 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 940
64db4cff
PM
941 set_need_resched(); /* kick ourselves to get things going. */
942}
943
944static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
945{
26cdfedf
PM
946 unsigned long completed;
947 unsigned long gpnum;
948 unsigned long gps;
bad6e139
PM
949 unsigned long j;
950 unsigned long js;
64db4cff
PM
951 struct rcu_node *rnp;
952
26cdfedf 953 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 954 return;
bad6e139 955 j = ACCESS_ONCE(jiffies);
26cdfedf
PM
956
957 /*
958 * Lots of memory barriers to reject false positives.
959 *
960 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
961 * then rsp->gp_start, and finally rsp->completed. These values
962 * are updated in the opposite order with memory barriers (or
963 * equivalent) during grace-period initialization and cleanup.
964 * Now, a false positive can occur if we get an new value of
965 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
966 * the memory barriers, the only way that this can happen is if one
967 * grace period ends and another starts between these two fetches.
968 * Detect this by comparing rsp->completed with the previous fetch
969 * from rsp->gpnum.
970 *
971 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
972 * and rsp->gp_start suffice to forestall false positives.
973 */
974 gpnum = ACCESS_ONCE(rsp->gpnum);
975 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 976 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
977 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
978 gps = ACCESS_ONCE(rsp->gp_start);
979 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
980 completed = ACCESS_ONCE(rsp->completed);
981 if (ULONG_CMP_GE(completed, gpnum) ||
982 ULONG_CMP_LT(j, js) ||
983 ULONG_CMP_GE(gps, js))
984 return; /* No stall or GP completed since entering function. */
64db4cff 985 rnp = rdp->mynode;
c96ea7cf 986 if (rcu_gp_in_progress(rsp) &&
26cdfedf 987 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
988
989 /* We haven't checked in, so go dump stack. */
990 print_cpu_stall(rsp);
991
bad6e139
PM
992 } else if (rcu_gp_in_progress(rsp) &&
993 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 994
bad6e139 995 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
996 print_other_cpu_stall(rsp);
997 }
998}
999
53d84e00
PM
1000/**
1001 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1002 *
1003 * Set the stall-warning timeout way off into the future, thus preventing
1004 * any RCU CPU stall-warning messages from appearing in the current set of
1005 * RCU grace periods.
1006 *
1007 * The caller must disable hard irqs.
1008 */
1009void rcu_cpu_stall_reset(void)
1010{
6ce75a23
PM
1011 struct rcu_state *rsp;
1012
1013 for_each_rcu_flavor(rsp)
1014 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1015}
1016
3f5d3ea6
PM
1017/*
1018 * Initialize the specified rcu_data structure's callback list to empty.
1019 */
1020static void init_callback_list(struct rcu_data *rdp)
1021{
1022 int i;
1023
34ed6246
PM
1024 if (init_nocb_callback_list(rdp))
1025 return;
3f5d3ea6
PM
1026 rdp->nxtlist = NULL;
1027 for (i = 0; i < RCU_NEXT_SIZE; i++)
1028 rdp->nxttail[i] = &rdp->nxtlist;
1029}
1030
dc35c893
PM
1031/*
1032 * Determine the value that ->completed will have at the end of the
1033 * next subsequent grace period. This is used to tag callbacks so that
1034 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1035 * been dyntick-idle for an extended period with callbacks under the
1036 * influence of RCU_FAST_NO_HZ.
1037 *
1038 * The caller must hold rnp->lock with interrupts disabled.
1039 */
1040static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1041 struct rcu_node *rnp)
1042{
1043 /*
1044 * If RCU is idle, we just wait for the next grace period.
1045 * But we can only be sure that RCU is idle if we are looking
1046 * at the root rcu_node structure -- otherwise, a new grace
1047 * period might have started, but just not yet gotten around
1048 * to initializing the current non-root rcu_node structure.
1049 */
1050 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1051 return rnp->completed + 1;
1052
1053 /*
1054 * Otherwise, wait for a possible partial grace period and
1055 * then the subsequent full grace period.
1056 */
1057 return rnp->completed + 2;
1058}
1059
0446be48
PM
1060/*
1061 * Trace-event helper function for rcu_start_future_gp() and
1062 * rcu_nocb_wait_gp().
1063 */
1064static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1065 unsigned long c, const char *s)
0446be48
PM
1066{
1067 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1068 rnp->completed, c, rnp->level,
1069 rnp->grplo, rnp->grphi, s);
1070}
1071
1072/*
1073 * Start some future grace period, as needed to handle newly arrived
1074 * callbacks. The required future grace periods are recorded in each
1075 * rcu_node structure's ->need_future_gp field.
1076 *
1077 * The caller must hold the specified rcu_node structure's ->lock.
1078 */
1079static unsigned long __maybe_unused
1080rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1081{
1082 unsigned long c;
1083 int i;
1084 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1085
1086 /*
1087 * Pick up grace-period number for new callbacks. If this
1088 * grace period is already marked as needed, return to the caller.
1089 */
1090 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1091 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1092 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1093 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1094 return c;
1095 }
1096
1097 /*
1098 * If either this rcu_node structure or the root rcu_node structure
1099 * believe that a grace period is in progress, then we must wait
1100 * for the one following, which is in "c". Because our request
1101 * will be noticed at the end of the current grace period, we don't
1102 * need to explicitly start one.
1103 */
1104 if (rnp->gpnum != rnp->completed ||
1105 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1106 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1107 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1108 return c;
1109 }
1110
1111 /*
1112 * There might be no grace period in progress. If we don't already
1113 * hold it, acquire the root rcu_node structure's lock in order to
1114 * start one (if needed).
1115 */
1116 if (rnp != rnp_root)
1117 raw_spin_lock(&rnp_root->lock);
1118
1119 /*
1120 * Get a new grace-period number. If there really is no grace
1121 * period in progress, it will be smaller than the one we obtained
1122 * earlier. Adjust callbacks as needed. Note that even no-CBs
1123 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1124 */
1125 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1126 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1127 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1128 rdp->nxtcompleted[i] = c;
1129
1130 /*
1131 * If the needed for the required grace period is already
1132 * recorded, trace and leave.
1133 */
1134 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1135 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1136 goto unlock_out;
1137 }
1138
1139 /* Record the need for the future grace period. */
1140 rnp_root->need_future_gp[c & 0x1]++;
1141
1142 /* If a grace period is not already in progress, start one. */
1143 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1144 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1145 } else {
f7f7bac9 1146 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1147 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1148 }
1149unlock_out:
1150 if (rnp != rnp_root)
1151 raw_spin_unlock(&rnp_root->lock);
1152 return c;
1153}
1154
1155/*
1156 * Clean up any old requests for the just-ended grace period. Also return
1157 * whether any additional grace periods have been requested. Also invoke
1158 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1159 * waiting for this grace period to complete.
1160 */
1161static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1162{
1163 int c = rnp->completed;
1164 int needmore;
1165 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1166
1167 rcu_nocb_gp_cleanup(rsp, rnp);
1168 rnp->need_future_gp[c & 0x1] = 0;
1169 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1170 trace_rcu_future_gp(rnp, rdp, c,
1171 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1172 return needmore;
1173}
1174
dc35c893
PM
1175/*
1176 * If there is room, assign a ->completed number to any callbacks on
1177 * this CPU that have not already been assigned. Also accelerate any
1178 * callbacks that were previously assigned a ->completed number that has
1179 * since proven to be too conservative, which can happen if callbacks get
1180 * assigned a ->completed number while RCU is idle, but with reference to
1181 * a non-root rcu_node structure. This function is idempotent, so it does
1182 * not hurt to call it repeatedly.
1183 *
1184 * The caller must hold rnp->lock with interrupts disabled.
1185 */
1186static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1187 struct rcu_data *rdp)
1188{
1189 unsigned long c;
1190 int i;
1191
1192 /* If the CPU has no callbacks, nothing to do. */
1193 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1194 return;
1195
1196 /*
1197 * Starting from the sublist containing the callbacks most
1198 * recently assigned a ->completed number and working down, find the
1199 * first sublist that is not assignable to an upcoming grace period.
1200 * Such a sublist has something in it (first two tests) and has
1201 * a ->completed number assigned that will complete sooner than
1202 * the ->completed number for newly arrived callbacks (last test).
1203 *
1204 * The key point is that any later sublist can be assigned the
1205 * same ->completed number as the newly arrived callbacks, which
1206 * means that the callbacks in any of these later sublist can be
1207 * grouped into a single sublist, whether or not they have already
1208 * been assigned a ->completed number.
1209 */
1210 c = rcu_cbs_completed(rsp, rnp);
1211 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1212 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1213 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1214 break;
1215
1216 /*
1217 * If there are no sublist for unassigned callbacks, leave.
1218 * At the same time, advance "i" one sublist, so that "i" will
1219 * index into the sublist where all the remaining callbacks should
1220 * be grouped into.
1221 */
1222 if (++i >= RCU_NEXT_TAIL)
1223 return;
1224
1225 /*
1226 * Assign all subsequent callbacks' ->completed number to the next
1227 * full grace period and group them all in the sublist initially
1228 * indexed by "i".
1229 */
1230 for (; i <= RCU_NEXT_TAIL; i++) {
1231 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1232 rdp->nxtcompleted[i] = c;
1233 }
910ee45d
PM
1234 /* Record any needed additional grace periods. */
1235 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1236
1237 /* Trace depending on how much we were able to accelerate. */
1238 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1239 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1240 else
f7f7bac9 1241 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1242}
1243
1244/*
1245 * Move any callbacks whose grace period has completed to the
1246 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1247 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1248 * sublist. This function is idempotent, so it does not hurt to
1249 * invoke it repeatedly. As long as it is not invoked -too- often...
1250 *
1251 * The caller must hold rnp->lock with interrupts disabled.
1252 */
1253static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1254 struct rcu_data *rdp)
1255{
1256 int i, j;
1257
1258 /* If the CPU has no callbacks, nothing to do. */
1259 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1260 return;
1261
1262 /*
1263 * Find all callbacks whose ->completed numbers indicate that they
1264 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1265 */
1266 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1267 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1268 break;
1269 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1270 }
1271 /* Clean up any sublist tail pointers that were misordered above. */
1272 for (j = RCU_WAIT_TAIL; j < i; j++)
1273 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1274
1275 /* Copy down callbacks to fill in empty sublists. */
1276 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1277 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1278 break;
1279 rdp->nxttail[j] = rdp->nxttail[i];
1280 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1281 }
1282
1283 /* Classify any remaining callbacks. */
1284 rcu_accelerate_cbs(rsp, rnp, rdp);
1285}
1286
d09b62df 1287/*
ba9fbe95
PM
1288 * Update CPU-local rcu_data state to record the beginnings and ends of
1289 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1290 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1291 */
ba9fbe95 1292static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1293{
ba9fbe95 1294 /* Handle the ends of any preceding grace periods first. */
dc35c893 1295 if (rdp->completed == rnp->completed) {
d09b62df 1296
ba9fbe95 1297 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1298 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1299
dc35c893
PM
1300 } else {
1301
1302 /* Advance callbacks. */
1303 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1304
1305 /* Remember that we saw this grace-period completion. */
1306 rdp->completed = rnp->completed;
f7f7bac9 1307 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1308 }
398ebe60 1309
6eaef633
PM
1310 if (rdp->gpnum != rnp->gpnum) {
1311 /*
1312 * If the current grace period is waiting for this CPU,
1313 * set up to detect a quiescent state, otherwise don't
1314 * go looking for one.
1315 */
1316 rdp->gpnum = rnp->gpnum;
f7f7bac9 1317 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1318 rdp->passed_quiesce = 0;
1319 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1320 zero_cpu_stall_ticks(rdp);
1321 }
1322}
1323
d34ea322 1324static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1325{
1326 unsigned long flags;
1327 struct rcu_node *rnp;
1328
1329 local_irq_save(flags);
1330 rnp = rdp->mynode;
d34ea322
PM
1331 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1332 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1333 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1334 local_irq_restore(flags);
1335 return;
1336 }
d34ea322 1337 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1338 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1339}
1340
b3dbec76 1341/*
f7be8209 1342 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1343 */
7fdefc10 1344static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1345{
1346 struct rcu_data *rdp;
7fdefc10 1347 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1348
eb75767b 1349 rcu_bind_gp_kthread();
7fdefc10 1350 raw_spin_lock_irq(&rnp->lock);
f7be8209
PM
1351 if (rsp->gp_flags == 0) {
1352 /* Spurious wakeup, tell caller to go back to sleep. */
1353 raw_spin_unlock_irq(&rnp->lock);
1354 return 0;
1355 }
4cdfc175 1356 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1357
f7be8209
PM
1358 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1359 /*
1360 * Grace period already in progress, don't start another.
1361 * Not supposed to be able to happen.
1362 */
7fdefc10
PM
1363 raw_spin_unlock_irq(&rnp->lock);
1364 return 0;
1365 }
1366
7fdefc10 1367 /* Advance to a new grace period and initialize state. */
26cdfedf
PM
1368 record_gp_stall_check_time(rsp);
1369 smp_wmb(); /* Record GP times before starting GP. */
7fdefc10 1370 rsp->gpnum++;
f7f7bac9 1371 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1372 raw_spin_unlock_irq(&rnp->lock);
1373
1374 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1375 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1376
1377 /*
1378 * Set the quiescent-state-needed bits in all the rcu_node
1379 * structures for all currently online CPUs in breadth-first order,
1380 * starting from the root rcu_node structure, relying on the layout
1381 * of the tree within the rsp->node[] array. Note that other CPUs
1382 * will access only the leaves of the hierarchy, thus seeing that no
1383 * grace period is in progress, at least until the corresponding
1384 * leaf node has been initialized. In addition, we have excluded
1385 * CPU-hotplug operations.
1386 *
1387 * The grace period cannot complete until the initialization
1388 * process finishes, because this kthread handles both.
1389 */
1390 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1391 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1392 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1393 rcu_preempt_check_blocked_tasks(rnp);
1394 rnp->qsmask = rnp->qsmaskinit;
0446be48 1395 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1396 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1397 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1398 if (rnp == rdp->mynode)
ce3d9c03 1399 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1400 rcu_preempt_boost_start_gp(rnp);
1401 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1402 rnp->level, rnp->grplo,
1403 rnp->grphi, rnp->qsmask);
1404 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1405#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1406 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1407 system_state == SYSTEM_RUNNING)
971394f3 1408 udelay(200);
661a85dc 1409#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1410 cond_resched();
1411 }
b3dbec76 1412
a4fbe35a 1413 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1414 return 1;
1415}
b3dbec76 1416
4cdfc175
PM
1417/*
1418 * Do one round of quiescent-state forcing.
1419 */
01896f7e 1420static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1421{
1422 int fqs_state = fqs_state_in;
217af2a2
PM
1423 bool isidle = false;
1424 unsigned long maxj;
4cdfc175
PM
1425 struct rcu_node *rnp = rcu_get_root(rsp);
1426
1427 rsp->n_force_qs++;
1428 if (fqs_state == RCU_SAVE_DYNTICK) {
1429 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1430 if (is_sysidle_rcu_state(rsp)) {
1431 isidle = 1;
1432 maxj = jiffies - ULONG_MAX / 4;
1433 }
217af2a2
PM
1434 force_qs_rnp(rsp, dyntick_save_progress_counter,
1435 &isidle, &maxj);
0edd1b17 1436 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1437 fqs_state = RCU_FORCE_QS;
1438 } else {
1439 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1440 isidle = 0;
217af2a2 1441 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1442 }
1443 /* Clear flag to prevent immediate re-entry. */
1444 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1445 raw_spin_lock_irq(&rnp->lock);
1446 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1447 raw_spin_unlock_irq(&rnp->lock);
1448 }
1449 return fqs_state;
1450}
1451
7fdefc10
PM
1452/*
1453 * Clean up after the old grace period.
1454 */
4cdfc175 1455static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1456{
1457 unsigned long gp_duration;
dae6e64d 1458 int nocb = 0;
7fdefc10
PM
1459 struct rcu_data *rdp;
1460 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1461
7fdefc10
PM
1462 raw_spin_lock_irq(&rnp->lock);
1463 gp_duration = jiffies - rsp->gp_start;
1464 if (gp_duration > rsp->gp_max)
1465 rsp->gp_max = gp_duration;
b3dbec76 1466
7fdefc10
PM
1467 /*
1468 * We know the grace period is complete, but to everyone else
1469 * it appears to still be ongoing. But it is also the case
1470 * that to everyone else it looks like there is nothing that
1471 * they can do to advance the grace period. It is therefore
1472 * safe for us to drop the lock in order to mark the grace
1473 * period as completed in all of the rcu_node structures.
7fdefc10 1474 */
5d4b8659 1475 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1476
5d4b8659
PM
1477 /*
1478 * Propagate new ->completed value to rcu_node structures so
1479 * that other CPUs don't have to wait until the start of the next
1480 * grace period to process their callbacks. This also avoids
1481 * some nasty RCU grace-period initialization races by forcing
1482 * the end of the current grace period to be completely recorded in
1483 * all of the rcu_node structures before the beginning of the next
1484 * grace period is recorded in any of the rcu_node structures.
1485 */
1486 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1487 raw_spin_lock_irq(&rnp->lock);
0446be48 1488 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1489 rdp = this_cpu_ptr(rsp->rda);
1490 if (rnp == rdp->mynode)
470716fc 1491 __note_gp_changes(rsp, rnp, rdp);
0446be48 1492 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1493 raw_spin_unlock_irq(&rnp->lock);
1494 cond_resched();
7fdefc10 1495 }
5d4b8659
PM
1496 rnp = rcu_get_root(rsp);
1497 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1498 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1499
1500 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1501 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1502 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1503 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1504 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
bb311ecc 1505 if (cpu_needs_another_gp(rsp, rdp)) {
b3f2d025 1506 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1507 trace_rcu_grace_period(rsp->name,
1508 ACCESS_ONCE(rsp->gpnum),
1509 TPS("newreq"));
1510 }
7fdefc10 1511 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1512}
1513
1514/*
1515 * Body of kthread that handles grace periods.
1516 */
1517static int __noreturn rcu_gp_kthread(void *arg)
1518{
4cdfc175 1519 int fqs_state;
88d6df61 1520 int gf;
d40011f6 1521 unsigned long j;
4cdfc175 1522 int ret;
7fdefc10
PM
1523 struct rcu_state *rsp = arg;
1524 struct rcu_node *rnp = rcu_get_root(rsp);
1525
1526 for (;;) {
1527
1528 /* Handle grace-period start. */
1529 for (;;) {
63c4db78
PM
1530 trace_rcu_grace_period(rsp->name,
1531 ACCESS_ONCE(rsp->gpnum),
1532 TPS("reqwait"));
4cdfc175 1533 wait_event_interruptible(rsp->gp_wq,
591c6d17 1534 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1535 RCU_GP_FLAG_INIT);
f7be8209 1536 if (rcu_gp_init(rsp))
7fdefc10
PM
1537 break;
1538 cond_resched();
1539 flush_signals(current);
63c4db78
PM
1540 trace_rcu_grace_period(rsp->name,
1541 ACCESS_ONCE(rsp->gpnum),
1542 TPS("reqwaitsig"));
7fdefc10 1543 }
cabc49c1 1544
4cdfc175
PM
1545 /* Handle quiescent-state forcing. */
1546 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1547 j = jiffies_till_first_fqs;
1548 if (j > HZ) {
1549 j = HZ;
1550 jiffies_till_first_fqs = HZ;
1551 }
88d6df61 1552 ret = 0;
cabc49c1 1553 for (;;) {
88d6df61
PM
1554 if (!ret)
1555 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1556 trace_rcu_grace_period(rsp->name,
1557 ACCESS_ONCE(rsp->gpnum),
1558 TPS("fqswait"));
4cdfc175 1559 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1560 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1561 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1562 (!ACCESS_ONCE(rnp->qsmask) &&
1563 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1564 j);
4cdfc175 1565 /* If grace period done, leave loop. */
cabc49c1 1566 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1567 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1568 break;
4cdfc175 1569 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1570 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1571 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1572 trace_rcu_grace_period(rsp->name,
1573 ACCESS_ONCE(rsp->gpnum),
1574 TPS("fqsstart"));
4cdfc175 1575 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1576 trace_rcu_grace_period(rsp->name,
1577 ACCESS_ONCE(rsp->gpnum),
1578 TPS("fqsend"));
4cdfc175
PM
1579 cond_resched();
1580 } else {
1581 /* Deal with stray signal. */
1582 cond_resched();
1583 flush_signals(current);
63c4db78
PM
1584 trace_rcu_grace_period(rsp->name,
1585 ACCESS_ONCE(rsp->gpnum),
1586 TPS("fqswaitsig"));
4cdfc175 1587 }
d40011f6
PM
1588 j = jiffies_till_next_fqs;
1589 if (j > HZ) {
1590 j = HZ;
1591 jiffies_till_next_fqs = HZ;
1592 } else if (j < 1) {
1593 j = 1;
1594 jiffies_till_next_fqs = 1;
1595 }
cabc49c1 1596 }
4cdfc175
PM
1597
1598 /* Handle grace-period end. */
1599 rcu_gp_cleanup(rsp);
b3dbec76 1600 }
b3dbec76
PM
1601}
1602
016a8d5b
SR
1603static void rsp_wakeup(struct irq_work *work)
1604{
1605 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1606
1607 /* Wake up rcu_gp_kthread() to start the grace period. */
1608 wake_up(&rsp->gp_wq);
1609}
1610
64db4cff
PM
1611/*
1612 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1613 * in preparation for detecting the next grace period. The caller must hold
b8462084 1614 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1615 *
1616 * Note that it is legal for a dying CPU (which is marked as offline) to
1617 * invoke this function. This can happen when the dying CPU reports its
1618 * quiescent state.
64db4cff
PM
1619 */
1620static void
910ee45d
PM
1621rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1622 struct rcu_data *rdp)
64db4cff 1623{
b8462084 1624 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1625 /*
b3dbec76 1626 * Either we have not yet spawned the grace-period
62da1921
PM
1627 * task, this CPU does not need another grace period,
1628 * or a grace period is already in progress.
b3dbec76 1629 * Either way, don't start a new grace period.
afe24b12 1630 */
afe24b12
PM
1631 return;
1632 }
4cdfc175 1633 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1634 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1635 TPS("newreq"));
62da1921 1636
016a8d5b
SR
1637 /*
1638 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1639 * could cause possible deadlocks with the rq->lock. Defer
1640 * the wakeup to interrupt context. And don't bother waking
1641 * up the running kthread.
016a8d5b 1642 */
1eafd31c
PM
1643 if (current != rsp->gp_kthread)
1644 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1645}
1646
910ee45d
PM
1647/*
1648 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1649 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1650 * is invoked indirectly from rcu_advance_cbs(), which would result in
1651 * endless recursion -- or would do so if it wasn't for the self-deadlock
1652 * that is encountered beforehand.
1653 */
1654static void
1655rcu_start_gp(struct rcu_state *rsp)
1656{
1657 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1658 struct rcu_node *rnp = rcu_get_root(rsp);
1659
1660 /*
1661 * If there is no grace period in progress right now, any
1662 * callbacks we have up to this point will be satisfied by the
1663 * next grace period. Also, advancing the callbacks reduces the
1664 * probability of false positives from cpu_needs_another_gp()
1665 * resulting in pointless grace periods. So, advance callbacks
1666 * then start the grace period!
1667 */
1668 rcu_advance_cbs(rsp, rnp, rdp);
1669 rcu_start_gp_advanced(rsp, rnp, rdp);
1670}
1671
f41d911f 1672/*
d3f6bad3
PM
1673 * Report a full set of quiescent states to the specified rcu_state
1674 * data structure. This involves cleaning up after the prior grace
1675 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1676 * if one is needed. Note that the caller must hold rnp->lock, which
1677 * is released before return.
f41d911f 1678 */
d3f6bad3 1679static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1680 __releases(rcu_get_root(rsp)->lock)
f41d911f 1681{
fc2219d4 1682 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1683 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1684 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1685}
1686
64db4cff 1687/*
d3f6bad3
PM
1688 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1689 * Allows quiescent states for a group of CPUs to be reported at one go
1690 * to the specified rcu_node structure, though all the CPUs in the group
1691 * must be represented by the same rcu_node structure (which need not be
1692 * a leaf rcu_node structure, though it often will be). That structure's
1693 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1694 */
1695static void
d3f6bad3
PM
1696rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1697 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1698 __releases(rnp->lock)
1699{
28ecd580
PM
1700 struct rcu_node *rnp_c;
1701
64db4cff
PM
1702 /* Walk up the rcu_node hierarchy. */
1703 for (;;) {
1704 if (!(rnp->qsmask & mask)) {
1705
1706 /* Our bit has already been cleared, so done. */
1304afb2 1707 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1708 return;
1709 }
1710 rnp->qsmask &= ~mask;
d4c08f2a
PM
1711 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1712 mask, rnp->qsmask, rnp->level,
1713 rnp->grplo, rnp->grphi,
1714 !!rnp->gp_tasks);
27f4d280 1715 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1716
1717 /* Other bits still set at this level, so done. */
1304afb2 1718 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1719 return;
1720 }
1721 mask = rnp->grpmask;
1722 if (rnp->parent == NULL) {
1723
1724 /* No more levels. Exit loop holding root lock. */
1725
1726 break;
1727 }
1304afb2 1728 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1729 rnp_c = rnp;
64db4cff 1730 rnp = rnp->parent;
1304afb2 1731 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1732 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1733 }
1734
1735 /*
1736 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1737 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1738 * to clean up and start the next grace period if one is needed.
64db4cff 1739 */
d3f6bad3 1740 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1741}
1742
1743/*
d3f6bad3
PM
1744 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1745 * structure. This must be either called from the specified CPU, or
1746 * called when the specified CPU is known to be offline (and when it is
1747 * also known that no other CPU is concurrently trying to help the offline
1748 * CPU). The lastcomp argument is used to make sure we are still in the
1749 * grace period of interest. We don't want to end the current grace period
1750 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1751 */
1752static void
d7d6a11e 1753rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1754{
1755 unsigned long flags;
1756 unsigned long mask;
1757 struct rcu_node *rnp;
1758
1759 rnp = rdp->mynode;
1304afb2 1760 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1761 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1762 rnp->completed == rnp->gpnum) {
64db4cff
PM
1763
1764 /*
e4cc1f22
PM
1765 * The grace period in which this quiescent state was
1766 * recorded has ended, so don't report it upwards.
1767 * We will instead need a new quiescent state that lies
1768 * within the current grace period.
64db4cff 1769 */
e4cc1f22 1770 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1771 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1772 return;
1773 }
1774 mask = rdp->grpmask;
1775 if ((rnp->qsmask & mask) == 0) {
1304afb2 1776 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1777 } else {
1778 rdp->qs_pending = 0;
1779
1780 /*
1781 * This GP can't end until cpu checks in, so all of our
1782 * callbacks can be processed during the next GP.
1783 */
dc35c893 1784 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1785
d3f6bad3 1786 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1787 }
1788}
1789
1790/*
1791 * Check to see if there is a new grace period of which this CPU
1792 * is not yet aware, and if so, set up local rcu_data state for it.
1793 * Otherwise, see if this CPU has just passed through its first
1794 * quiescent state for this grace period, and record that fact if so.
1795 */
1796static void
1797rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1798{
05eb552b
PM
1799 /* Check for grace-period ends and beginnings. */
1800 note_gp_changes(rsp, rdp);
64db4cff
PM
1801
1802 /*
1803 * Does this CPU still need to do its part for current grace period?
1804 * If no, return and let the other CPUs do their part as well.
1805 */
1806 if (!rdp->qs_pending)
1807 return;
1808
1809 /*
1810 * Was there a quiescent state since the beginning of the grace
1811 * period? If no, then exit and wait for the next call.
1812 */
e4cc1f22 1813 if (!rdp->passed_quiesce)
64db4cff
PM
1814 return;
1815
d3f6bad3
PM
1816 /*
1817 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1818 * judge of that).
1819 */
d7d6a11e 1820 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1821}
1822
1823#ifdef CONFIG_HOTPLUG_CPU
1824
e74f4c45 1825/*
b1420f1c
PM
1826 * Send the specified CPU's RCU callbacks to the orphanage. The
1827 * specified CPU must be offline, and the caller must hold the
7b2e6011 1828 * ->orphan_lock.
e74f4c45 1829 */
b1420f1c
PM
1830static void
1831rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1832 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1833{
3fbfbf7a 1834 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1835 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1836 return;
1837
b1420f1c
PM
1838 /*
1839 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1840 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1841 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1842 */
a50c3af9 1843 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1844 rsp->qlen_lazy += rdp->qlen_lazy;
1845 rsp->qlen += rdp->qlen;
1846 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1847 rdp->qlen_lazy = 0;
1d1fb395 1848 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1849 }
1850
1851 /*
b1420f1c
PM
1852 * Next, move those callbacks still needing a grace period to
1853 * the orphanage, where some other CPU will pick them up.
1854 * Some of the callbacks might have gone partway through a grace
1855 * period, but that is too bad. They get to start over because we
1856 * cannot assume that grace periods are synchronized across CPUs.
1857 * We don't bother updating the ->nxttail[] array yet, instead
1858 * we just reset the whole thing later on.
a50c3af9 1859 */
b1420f1c
PM
1860 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1861 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1862 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1863 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1864 }
1865
1866 /*
b1420f1c
PM
1867 * Then move the ready-to-invoke callbacks to the orphanage,
1868 * where some other CPU will pick them up. These will not be
1869 * required to pass though another grace period: They are done.
a50c3af9 1870 */
e5601400 1871 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1872 *rsp->orphan_donetail = rdp->nxtlist;
1873 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1874 }
e74f4c45 1875
b1420f1c 1876 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1877 init_callback_list(rdp);
b1420f1c
PM
1878}
1879
1880/*
1881 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1882 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1883 */
1884static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1885{
1886 int i;
1887 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1888
3fbfbf7a
PM
1889 /* No-CBs CPUs are handled specially. */
1890 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1891 return;
1892
b1420f1c
PM
1893 /* Do the accounting first. */
1894 rdp->qlen_lazy += rsp->qlen_lazy;
1895 rdp->qlen += rsp->qlen;
1896 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1897 if (rsp->qlen_lazy != rsp->qlen)
1898 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1899 rsp->qlen_lazy = 0;
1900 rsp->qlen = 0;
1901
1902 /*
1903 * We do not need a memory barrier here because the only way we
1904 * can get here if there is an rcu_barrier() in flight is if
1905 * we are the task doing the rcu_barrier().
1906 */
1907
1908 /* First adopt the ready-to-invoke callbacks. */
1909 if (rsp->orphan_donelist != NULL) {
1910 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1911 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1912 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1913 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1914 rdp->nxttail[i] = rsp->orphan_donetail;
1915 rsp->orphan_donelist = NULL;
1916 rsp->orphan_donetail = &rsp->orphan_donelist;
1917 }
1918
1919 /* And then adopt the callbacks that still need a grace period. */
1920 if (rsp->orphan_nxtlist != NULL) {
1921 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1922 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1923 rsp->orphan_nxtlist = NULL;
1924 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1925 }
1926}
1927
1928/*
1929 * Trace the fact that this CPU is going offline.
1930 */
1931static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1932{
1933 RCU_TRACE(unsigned long mask);
1934 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1935 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1936
1937 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1938 trace_rcu_grace_period(rsp->name,
1939 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1940 TPS("cpuofl"));
64db4cff
PM
1941}
1942
1943/*
e5601400 1944 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1945 * this fact from process context. Do the remainder of the cleanup,
1946 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1947 * adopting them. There can only be one CPU hotplug operation at a time,
1948 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1949 */
e5601400 1950static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1951{
2036d94a
PM
1952 unsigned long flags;
1953 unsigned long mask;
1954 int need_report = 0;
e5601400 1955 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1956 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1957
2036d94a 1958 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1959 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1960
b1420f1c 1961 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1962
1963 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1964 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1965 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1966
b1420f1c
PM
1967 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1968 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1969 rcu_adopt_orphan_cbs(rsp);
1970
2036d94a
PM
1971 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1972 mask = rdp->grpmask; /* rnp->grplo is constant. */
1973 do {
1974 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1975 rnp->qsmaskinit &= ~mask;
1976 if (rnp->qsmaskinit != 0) {
1977 if (rnp != rdp->mynode)
1978 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1979 break;
1980 }
1981 if (rnp == rdp->mynode)
1982 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1983 else
1984 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1985 mask = rnp->grpmask;
1986 rnp = rnp->parent;
1987 } while (rnp != NULL);
1988
1989 /*
1990 * We still hold the leaf rcu_node structure lock here, and
1991 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1992 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1993 * held leads to deadlock.
1994 */
7b2e6011 1995 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1996 rnp = rdp->mynode;
1997 if (need_report & RCU_OFL_TASKS_NORM_GP)
1998 rcu_report_unblock_qs_rnp(rnp, flags);
1999 else
2000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2001 if (need_report & RCU_OFL_TASKS_EXP_GP)
2002 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2003 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2004 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2005 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2006 init_callback_list(rdp);
2007 /* Disallow further callbacks on this CPU. */
2008 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2009 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2010}
2011
2012#else /* #ifdef CONFIG_HOTPLUG_CPU */
2013
e5601400 2014static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2015{
2016}
2017
e5601400 2018static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2019{
2020}
2021
2022#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2023
2024/*
2025 * Invoke any RCU callbacks that have made it to the end of their grace
2026 * period. Thottle as specified by rdp->blimit.
2027 */
37c72e56 2028static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2029{
2030 unsigned long flags;
2031 struct rcu_head *next, *list, **tail;
878d7439
ED
2032 long bl, count, count_lazy;
2033 int i;
64db4cff 2034
dc35c893 2035 /* If no callbacks are ready, just return. */
29c00b4a 2036 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2037 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2038 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2039 need_resched(), is_idle_task(current),
2040 rcu_is_callbacks_kthread());
64db4cff 2041 return;
29c00b4a 2042 }
64db4cff
PM
2043
2044 /*
2045 * Extract the list of ready callbacks, disabling to prevent
2046 * races with call_rcu() from interrupt handlers.
2047 */
2048 local_irq_save(flags);
8146c4e2 2049 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2050 bl = rdp->blimit;
486e2593 2051 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2052 list = rdp->nxtlist;
2053 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2054 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2055 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2056 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2057 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2058 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2059 local_irq_restore(flags);
2060
2061 /* Invoke callbacks. */
486e2593 2062 count = count_lazy = 0;
64db4cff
PM
2063 while (list) {
2064 next = list->next;
2065 prefetch(next);
551d55a9 2066 debug_rcu_head_unqueue(list);
486e2593
PM
2067 if (__rcu_reclaim(rsp->name, list))
2068 count_lazy++;
64db4cff 2069 list = next;
dff1672d
PM
2070 /* Stop only if limit reached and CPU has something to do. */
2071 if (++count >= bl &&
2072 (need_resched() ||
2073 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2074 break;
2075 }
2076
2077 local_irq_save(flags);
4968c300
PM
2078 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2079 is_idle_task(current),
2080 rcu_is_callbacks_kthread());
64db4cff
PM
2081
2082 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2083 if (list != NULL) {
2084 *tail = rdp->nxtlist;
2085 rdp->nxtlist = list;
b41772ab
PM
2086 for (i = 0; i < RCU_NEXT_SIZE; i++)
2087 if (&rdp->nxtlist == rdp->nxttail[i])
2088 rdp->nxttail[i] = tail;
64db4cff
PM
2089 else
2090 break;
2091 }
b1420f1c
PM
2092 smp_mb(); /* List handling before counting for rcu_barrier(). */
2093 rdp->qlen_lazy -= count_lazy;
1d1fb395 2094 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2095 rdp->n_cbs_invoked += count;
64db4cff
PM
2096
2097 /* Reinstate batch limit if we have worked down the excess. */
2098 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2099 rdp->blimit = blimit;
2100
37c72e56
PM
2101 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2102 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2103 rdp->qlen_last_fqs_check = 0;
2104 rdp->n_force_qs_snap = rsp->n_force_qs;
2105 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2106 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2107 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2108
64db4cff
PM
2109 local_irq_restore(flags);
2110
e0f23060 2111 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2112 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2113 invoke_rcu_core();
64db4cff
PM
2114}
2115
2116/*
2117 * Check to see if this CPU is in a non-context-switch quiescent state
2118 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2119 * Also schedule RCU core processing.
64db4cff 2120 *
9b2e4f18 2121 * This function must be called from hardirq context. It is normally
64db4cff
PM
2122 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2123 * false, there is no point in invoking rcu_check_callbacks().
2124 */
2125void rcu_check_callbacks(int cpu, int user)
2126{
f7f7bac9 2127 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2128 increment_cpu_stall_ticks();
9b2e4f18 2129 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2130
2131 /*
2132 * Get here if this CPU took its interrupt from user
2133 * mode or from the idle loop, and if this is not a
2134 * nested interrupt. In this case, the CPU is in
d6714c22 2135 * a quiescent state, so note it.
64db4cff
PM
2136 *
2137 * No memory barrier is required here because both
d6714c22
PM
2138 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2139 * variables that other CPUs neither access nor modify,
2140 * at least not while the corresponding CPU is online.
64db4cff
PM
2141 */
2142
d6714c22
PM
2143 rcu_sched_qs(cpu);
2144 rcu_bh_qs(cpu);
64db4cff
PM
2145
2146 } else if (!in_softirq()) {
2147
2148 /*
2149 * Get here if this CPU did not take its interrupt from
2150 * softirq, in other words, if it is not interrupting
2151 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2152 * critical section, so note it.
64db4cff
PM
2153 */
2154
d6714c22 2155 rcu_bh_qs(cpu);
64db4cff 2156 }
f41d911f 2157 rcu_preempt_check_callbacks(cpu);
d21670ac 2158 if (rcu_pending(cpu))
a46e0899 2159 invoke_rcu_core();
f7f7bac9 2160 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2161}
2162
64db4cff
PM
2163/*
2164 * Scan the leaf rcu_node structures, processing dyntick state for any that
2165 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2166 * Also initiate boosting for any threads blocked on the root rcu_node.
2167 *
ee47eb9f 2168 * The caller must have suppressed start of new grace periods.
64db4cff 2169 */
217af2a2
PM
2170static void force_qs_rnp(struct rcu_state *rsp,
2171 int (*f)(struct rcu_data *rsp, bool *isidle,
2172 unsigned long *maxj),
2173 bool *isidle, unsigned long *maxj)
64db4cff
PM
2174{
2175 unsigned long bit;
2176 int cpu;
2177 unsigned long flags;
2178 unsigned long mask;
a0b6c9a7 2179 struct rcu_node *rnp;
64db4cff 2180
a0b6c9a7 2181 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2182 cond_resched();
64db4cff 2183 mask = 0;
1304afb2 2184 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2185 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2186 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2187 return;
64db4cff 2188 }
a0b6c9a7 2189 if (rnp->qsmask == 0) {
1217ed1b 2190 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2191 continue;
2192 }
a0b6c9a7 2193 cpu = rnp->grplo;
64db4cff 2194 bit = 1;
a0b6c9a7 2195 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2196 if ((rnp->qsmask & bit) != 0) {
2197 if ((rnp->qsmaskinit & bit) != 0)
2198 *isidle = 0;
2199 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2200 mask |= bit;
2201 }
64db4cff 2202 }
45f014c5 2203 if (mask != 0) {
64db4cff 2204
d3f6bad3
PM
2205 /* rcu_report_qs_rnp() releases rnp->lock. */
2206 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2207 continue;
2208 }
1304afb2 2209 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2210 }
27f4d280 2211 rnp = rcu_get_root(rsp);
1217ed1b
PM
2212 if (rnp->qsmask == 0) {
2213 raw_spin_lock_irqsave(&rnp->lock, flags);
2214 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2215 }
64db4cff
PM
2216}
2217
2218/*
2219 * Force quiescent states on reluctant CPUs, and also detect which
2220 * CPUs are in dyntick-idle mode.
2221 */
4cdfc175 2222static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2223{
2224 unsigned long flags;
394f2769
PM
2225 bool ret;
2226 struct rcu_node *rnp;
2227 struct rcu_node *rnp_old = NULL;
2228
2229 /* Funnel through hierarchy to reduce memory contention. */
2230 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2231 for (; rnp != NULL; rnp = rnp->parent) {
2232 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2233 !raw_spin_trylock(&rnp->fqslock);
2234 if (rnp_old != NULL)
2235 raw_spin_unlock(&rnp_old->fqslock);
2236 if (ret) {
2237 rsp->n_force_qs_lh++;
2238 return;
2239 }
2240 rnp_old = rnp;
2241 }
2242 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2243
394f2769
PM
2244 /* Reached the root of the rcu_node tree, acquire lock. */
2245 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2246 raw_spin_unlock(&rnp_old->fqslock);
2247 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2248 rsp->n_force_qs_lh++;
2249 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2250 return; /* Someone beat us to it. */
46a1e34e 2251 }
4cdfc175 2252 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2253 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2254 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2255}
2256
64db4cff 2257/*
e0f23060
PM
2258 * This does the RCU core processing work for the specified rcu_state
2259 * and rcu_data structures. This may be called only from the CPU to
2260 * whom the rdp belongs.
64db4cff
PM
2261 */
2262static void
1bca8cf1 2263__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2264{
2265 unsigned long flags;
1bca8cf1 2266 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2267
2e597558
PM
2268 WARN_ON_ONCE(rdp->beenonline == 0);
2269
64db4cff
PM
2270 /* Update RCU state based on any recent quiescent states. */
2271 rcu_check_quiescent_state(rsp, rdp);
2272
2273 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2274 local_irq_save(flags);
64db4cff 2275 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2276 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2277 rcu_start_gp(rsp);
2278 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2279 } else {
2280 local_irq_restore(flags);
64db4cff
PM
2281 }
2282
2283 /* If there are callbacks ready, invoke them. */
09223371 2284 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2285 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2286}
2287
64db4cff 2288/*
e0f23060 2289 * Do RCU core processing for the current CPU.
64db4cff 2290 */
09223371 2291static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2292{
6ce75a23
PM
2293 struct rcu_state *rsp;
2294
bfa00b4c
PM
2295 if (cpu_is_offline(smp_processor_id()))
2296 return;
f7f7bac9 2297 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2298 for_each_rcu_flavor(rsp)
2299 __rcu_process_callbacks(rsp);
f7f7bac9 2300 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2301}
2302
a26ac245 2303/*
e0f23060
PM
2304 * Schedule RCU callback invocation. If the specified type of RCU
2305 * does not support RCU priority boosting, just do a direct call,
2306 * otherwise wake up the per-CPU kernel kthread. Note that because we
2307 * are running on the current CPU with interrupts disabled, the
2308 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2309 */
a46e0899 2310static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2311{
b0d30417
PM
2312 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2313 return;
a46e0899
PM
2314 if (likely(!rsp->boost)) {
2315 rcu_do_batch(rsp, rdp);
a26ac245
PM
2316 return;
2317 }
a46e0899 2318 invoke_rcu_callbacks_kthread();
a26ac245
PM
2319}
2320
a46e0899 2321static void invoke_rcu_core(void)
09223371 2322{
b0f74036
PM
2323 if (cpu_online(smp_processor_id()))
2324 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2325}
2326
29154c57
PM
2327/*
2328 * Handle any core-RCU processing required by a call_rcu() invocation.
2329 */
2330static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2331 struct rcu_head *head, unsigned long flags)
64db4cff 2332{
62fde6ed
PM
2333 /*
2334 * If called from an extended quiescent state, invoke the RCU
2335 * core in order to force a re-evaluation of RCU's idleness.
2336 */
5c173eb8 2337 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2338 invoke_rcu_core();
2339
a16b7a69 2340 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2341 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2342 return;
64db4cff 2343
37c72e56
PM
2344 /*
2345 * Force the grace period if too many callbacks or too long waiting.
2346 * Enforce hysteresis, and don't invoke force_quiescent_state()
2347 * if some other CPU has recently done so. Also, don't bother
2348 * invoking force_quiescent_state() if the newly enqueued callback
2349 * is the only one waiting for a grace period to complete.
2350 */
2655d57e 2351 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2352
2353 /* Are we ignoring a completed grace period? */
470716fc 2354 note_gp_changes(rsp, rdp);
b52573d2
PM
2355
2356 /* Start a new grace period if one not already started. */
2357 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2358 struct rcu_node *rnp_root = rcu_get_root(rsp);
2359
b8462084
PM
2360 raw_spin_lock(&rnp_root->lock);
2361 rcu_start_gp(rsp);
2362 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2363 } else {
2364 /* Give the grace period a kick. */
2365 rdp->blimit = LONG_MAX;
2366 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2367 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2368 force_quiescent_state(rsp);
b52573d2
PM
2369 rdp->n_force_qs_snap = rsp->n_force_qs;
2370 rdp->qlen_last_fqs_check = rdp->qlen;
2371 }
4cdfc175 2372 }
29154c57
PM
2373}
2374
ae150184
PM
2375/*
2376 * RCU callback function to leak a callback.
2377 */
2378static void rcu_leak_callback(struct rcu_head *rhp)
2379{
2380}
2381
3fbfbf7a
PM
2382/*
2383 * Helper function for call_rcu() and friends. The cpu argument will
2384 * normally be -1, indicating "currently running CPU". It may specify
2385 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2386 * is expected to specify a CPU.
2387 */
64db4cff
PM
2388static void
2389__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2390 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2391{
2392 unsigned long flags;
2393 struct rcu_data *rdp;
2394
0bb7b59d 2395 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2396 if (debug_rcu_head_queue(head)) {
2397 /* Probable double call_rcu(), so leak the callback. */
2398 ACCESS_ONCE(head->func) = rcu_leak_callback;
2399 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2400 return;
2401 }
64db4cff
PM
2402 head->func = func;
2403 head->next = NULL;
2404
64db4cff
PM
2405 /*
2406 * Opportunistically note grace-period endings and beginnings.
2407 * Note that we might see a beginning right after we see an
2408 * end, but never vice versa, since this CPU has to pass through
2409 * a quiescent state betweentimes.
2410 */
2411 local_irq_save(flags);
394f99a9 2412 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2413
2414 /* Add the callback to our list. */
3fbfbf7a
PM
2415 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2416 int offline;
2417
2418 if (cpu != -1)
2419 rdp = per_cpu_ptr(rsp->rda, cpu);
2420 offline = !__call_rcu_nocb(rdp, head, lazy);
2421 WARN_ON_ONCE(offline);
0d8ee37e 2422 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2423 local_irq_restore(flags);
2424 return;
2425 }
29154c57 2426 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2427 if (lazy)
2428 rdp->qlen_lazy++;
c57afe80
PM
2429 else
2430 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2431 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2432 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2433 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2434
d4c08f2a
PM
2435 if (__is_kfree_rcu_offset((unsigned long)func))
2436 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2437 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2438 else
486e2593 2439 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2440
29154c57
PM
2441 /* Go handle any RCU core processing required. */
2442 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2443 local_irq_restore(flags);
2444}
2445
2446/*
d6714c22 2447 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2448 */
d6714c22 2449void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2450{
3fbfbf7a 2451 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2452}
d6714c22 2453EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2454
2455/*
486e2593 2456 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2457 */
2458void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2459{
3fbfbf7a 2460 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2461}
2462EXPORT_SYMBOL_GPL(call_rcu_bh);
2463
6d813391
PM
2464/*
2465 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2466 * any blocking grace-period wait automatically implies a grace period
2467 * if there is only one CPU online at any point time during execution
2468 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2469 * occasionally incorrectly indicate that there are multiple CPUs online
2470 * when there was in fact only one the whole time, as this just adds
2471 * some overhead: RCU still operates correctly.
6d813391
PM
2472 */
2473static inline int rcu_blocking_is_gp(void)
2474{
95f0c1de
PM
2475 int ret;
2476
6d813391 2477 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2478 preempt_disable();
2479 ret = num_online_cpus() <= 1;
2480 preempt_enable();
2481 return ret;
6d813391
PM
2482}
2483
6ebb237b
PM
2484/**
2485 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2486 *
2487 * Control will return to the caller some time after a full rcu-sched
2488 * grace period has elapsed, in other words after all currently executing
2489 * rcu-sched read-side critical sections have completed. These read-side
2490 * critical sections are delimited by rcu_read_lock_sched() and
2491 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2492 * local_irq_disable(), and so on may be used in place of
2493 * rcu_read_lock_sched().
2494 *
2495 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2496 * non-threaded hardware-interrupt handlers, in progress on entry will
2497 * have completed before this primitive returns. However, this does not
2498 * guarantee that softirq handlers will have completed, since in some
2499 * kernels, these handlers can run in process context, and can block.
2500 *
2501 * Note that this guarantee implies further memory-ordering guarantees.
2502 * On systems with more than one CPU, when synchronize_sched() returns,
2503 * each CPU is guaranteed to have executed a full memory barrier since the
2504 * end of its last RCU-sched read-side critical section whose beginning
2505 * preceded the call to synchronize_sched(). In addition, each CPU having
2506 * an RCU read-side critical section that extends beyond the return from
2507 * synchronize_sched() is guaranteed to have executed a full memory barrier
2508 * after the beginning of synchronize_sched() and before the beginning of
2509 * that RCU read-side critical section. Note that these guarantees include
2510 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2511 * that are executing in the kernel.
2512 *
2513 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2514 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2515 * to have executed a full memory barrier during the execution of
2516 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2517 * again only if the system has more than one CPU).
6ebb237b
PM
2518 *
2519 * This primitive provides the guarantees made by the (now removed)
2520 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2521 * guarantees that rcu_read_lock() sections will have completed.
2522 * In "classic RCU", these two guarantees happen to be one and
2523 * the same, but can differ in realtime RCU implementations.
2524 */
2525void synchronize_sched(void)
2526{
fe15d706
PM
2527 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2528 !lock_is_held(&rcu_lock_map) &&
2529 !lock_is_held(&rcu_sched_lock_map),
2530 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2531 if (rcu_blocking_is_gp())
2532 return;
3705b88d
AM
2533 if (rcu_expedited)
2534 synchronize_sched_expedited();
2535 else
2536 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2537}
2538EXPORT_SYMBOL_GPL(synchronize_sched);
2539
2540/**
2541 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2542 *
2543 * Control will return to the caller some time after a full rcu_bh grace
2544 * period has elapsed, in other words after all currently executing rcu_bh
2545 * read-side critical sections have completed. RCU read-side critical
2546 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2547 * and may be nested.
f0a0e6f2
PM
2548 *
2549 * See the description of synchronize_sched() for more detailed information
2550 * on memory ordering guarantees.
6ebb237b
PM
2551 */
2552void synchronize_rcu_bh(void)
2553{
fe15d706
PM
2554 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2555 !lock_is_held(&rcu_lock_map) &&
2556 !lock_is_held(&rcu_sched_lock_map),
2557 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2558 if (rcu_blocking_is_gp())
2559 return;
3705b88d
AM
2560 if (rcu_expedited)
2561 synchronize_rcu_bh_expedited();
2562 else
2563 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2564}
2565EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2566
3d3b7db0
PM
2567static int synchronize_sched_expedited_cpu_stop(void *data)
2568{
2569 /*
2570 * There must be a full memory barrier on each affected CPU
2571 * between the time that try_stop_cpus() is called and the
2572 * time that it returns.
2573 *
2574 * In the current initial implementation of cpu_stop, the
2575 * above condition is already met when the control reaches
2576 * this point and the following smp_mb() is not strictly
2577 * necessary. Do smp_mb() anyway for documentation and
2578 * robustness against future implementation changes.
2579 */
2580 smp_mb(); /* See above comment block. */
2581 return 0;
2582}
2583
236fefaf
PM
2584/**
2585 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2586 *
2587 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2588 * approach to force the grace period to end quickly. This consumes
2589 * significant time on all CPUs and is unfriendly to real-time workloads,
2590 * so is thus not recommended for any sort of common-case code. In fact,
2591 * if you are using synchronize_sched_expedited() in a loop, please
2592 * restructure your code to batch your updates, and then use a single
2593 * synchronize_sched() instead.
3d3b7db0 2594 *
236fefaf
PM
2595 * Note that it is illegal to call this function while holding any lock
2596 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2597 * to call this function from a CPU-hotplug notifier. Failing to observe
2598 * these restriction will result in deadlock.
3d3b7db0
PM
2599 *
2600 * This implementation can be thought of as an application of ticket
2601 * locking to RCU, with sync_sched_expedited_started and
2602 * sync_sched_expedited_done taking on the roles of the halves
2603 * of the ticket-lock word. Each task atomically increments
2604 * sync_sched_expedited_started upon entry, snapshotting the old value,
2605 * then attempts to stop all the CPUs. If this succeeds, then each
2606 * CPU will have executed a context switch, resulting in an RCU-sched
2607 * grace period. We are then done, so we use atomic_cmpxchg() to
2608 * update sync_sched_expedited_done to match our snapshot -- but
2609 * only if someone else has not already advanced past our snapshot.
2610 *
2611 * On the other hand, if try_stop_cpus() fails, we check the value
2612 * of sync_sched_expedited_done. If it has advanced past our
2613 * initial snapshot, then someone else must have forced a grace period
2614 * some time after we took our snapshot. In this case, our work is
2615 * done for us, and we can simply return. Otherwise, we try again,
2616 * but keep our initial snapshot for purposes of checking for someone
2617 * doing our work for us.
2618 *
2619 * If we fail too many times in a row, we fall back to synchronize_sched().
2620 */
2621void synchronize_sched_expedited(void)
2622{
1924bcb0
PM
2623 long firstsnap, s, snap;
2624 int trycount = 0;
40694d66 2625 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2626
1924bcb0
PM
2627 /*
2628 * If we are in danger of counter wrap, just do synchronize_sched().
2629 * By allowing sync_sched_expedited_started to advance no more than
2630 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2631 * that more than 3.5 billion CPUs would be required to force a
2632 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2633 * course be required on a 64-bit system.
2634 */
40694d66
PM
2635 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2636 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2637 ULONG_MAX / 8)) {
2638 synchronize_sched();
a30489c5 2639 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2640 return;
2641 }
3d3b7db0 2642
1924bcb0
PM
2643 /*
2644 * Take a ticket. Note that atomic_inc_return() implies a
2645 * full memory barrier.
2646 */
40694d66 2647 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2648 firstsnap = snap;
3d3b7db0 2649 get_online_cpus();
1cc85961 2650 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2651
2652 /*
2653 * Each pass through the following loop attempts to force a
2654 * context switch on each CPU.
2655 */
2656 while (try_stop_cpus(cpu_online_mask,
2657 synchronize_sched_expedited_cpu_stop,
2658 NULL) == -EAGAIN) {
2659 put_online_cpus();
a30489c5 2660 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2661
1924bcb0 2662 /* Check to see if someone else did our work for us. */
40694d66 2663 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2664 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2665 /* ensure test happens before caller kfree */
2666 smp_mb__before_atomic_inc(); /* ^^^ */
2667 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2668 return;
2669 }
3d3b7db0
PM
2670
2671 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2672 if (trycount++ < 10) {
3d3b7db0 2673 udelay(trycount * num_online_cpus());
c701d5d9 2674 } else {
3705b88d 2675 wait_rcu_gp(call_rcu_sched);
a30489c5 2676 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2677 return;
2678 }
2679
1924bcb0 2680 /* Recheck to see if someone else did our work for us. */
40694d66 2681 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2682 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2683 /* ensure test happens before caller kfree */
2684 smp_mb__before_atomic_inc(); /* ^^^ */
2685 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2686 return;
2687 }
2688
2689 /*
2690 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2691 * callers to piggyback on our grace period. We retry
2692 * after they started, so our grace period works for them,
2693 * and they started after our first try, so their grace
2694 * period works for us.
3d3b7db0
PM
2695 */
2696 get_online_cpus();
40694d66 2697 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2698 smp_mb(); /* ensure read is before try_stop_cpus(). */
2699 }
a30489c5 2700 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2701
2702 /*
2703 * Everyone up to our most recent fetch is covered by our grace
2704 * period. Update the counter, but only if our work is still
2705 * relevant -- which it won't be if someone who started later
1924bcb0 2706 * than we did already did their update.
3d3b7db0
PM
2707 */
2708 do {
a30489c5 2709 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2710 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2711 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2712 /* ensure test happens before caller kfree */
2713 smp_mb__before_atomic_inc(); /* ^^^ */
2714 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2715 break;
2716 }
40694d66 2717 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2718 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2719
2720 put_online_cpus();
2721}
2722EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2723
64db4cff
PM
2724/*
2725 * Check to see if there is any immediate RCU-related work to be done
2726 * by the current CPU, for the specified type of RCU, returning 1 if so.
2727 * The checks are in order of increasing expense: checks that can be
2728 * carried out against CPU-local state are performed first. However,
2729 * we must check for CPU stalls first, else we might not get a chance.
2730 */
2731static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2732{
2f51f988
PM
2733 struct rcu_node *rnp = rdp->mynode;
2734
64db4cff
PM
2735 rdp->n_rcu_pending++;
2736
2737 /* Check for CPU stalls, if enabled. */
2738 check_cpu_stall(rsp, rdp);
2739
2740 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2741 if (rcu_scheduler_fully_active &&
2742 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2743 rdp->n_rp_qs_pending++;
e4cc1f22 2744 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2745 rdp->n_rp_report_qs++;
64db4cff 2746 return 1;
7ba5c840 2747 }
64db4cff
PM
2748
2749 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2750 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2751 rdp->n_rp_cb_ready++;
64db4cff 2752 return 1;
7ba5c840 2753 }
64db4cff
PM
2754
2755 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2756 if (cpu_needs_another_gp(rsp, rdp)) {
2757 rdp->n_rp_cpu_needs_gp++;
64db4cff 2758 return 1;
7ba5c840 2759 }
64db4cff
PM
2760
2761 /* Has another RCU grace period completed? */
2f51f988 2762 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2763 rdp->n_rp_gp_completed++;
64db4cff 2764 return 1;
7ba5c840 2765 }
64db4cff
PM
2766
2767 /* Has a new RCU grace period started? */
2f51f988 2768 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2769 rdp->n_rp_gp_started++;
64db4cff 2770 return 1;
7ba5c840 2771 }
64db4cff 2772
64db4cff 2773 /* nothing to do */
7ba5c840 2774 rdp->n_rp_need_nothing++;
64db4cff
PM
2775 return 0;
2776}
2777
2778/*
2779 * Check to see if there is any immediate RCU-related work to be done
2780 * by the current CPU, returning 1 if so. This function is part of the
2781 * RCU implementation; it is -not- an exported member of the RCU API.
2782 */
a157229c 2783static int rcu_pending(int cpu)
64db4cff 2784{
6ce75a23
PM
2785 struct rcu_state *rsp;
2786
2787 for_each_rcu_flavor(rsp)
2788 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2789 return 1;
2790 return 0;
64db4cff
PM
2791}
2792
2793/*
c0f4dfd4
PM
2794 * Return true if the specified CPU has any callback. If all_lazy is
2795 * non-NULL, store an indication of whether all callbacks are lazy.
2796 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2797 */
c0f4dfd4 2798static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2799{
c0f4dfd4
PM
2800 bool al = true;
2801 bool hc = false;
2802 struct rcu_data *rdp;
6ce75a23
PM
2803 struct rcu_state *rsp;
2804
c0f4dfd4
PM
2805 for_each_rcu_flavor(rsp) {
2806 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
2807 if (!rdp->nxtlist)
2808 continue;
2809 hc = true;
2810 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 2811 al = false;
69c8d28c
PM
2812 break;
2813 }
c0f4dfd4
PM
2814 }
2815 if (all_lazy)
2816 *all_lazy = al;
2817 return hc;
64db4cff
PM
2818}
2819
a83eff0a
PM
2820/*
2821 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2822 * the compiler is expected to optimize this away.
2823 */
e66c33d5 2824static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2825 int cpu, unsigned long done)
2826{
2827 trace_rcu_barrier(rsp->name, s, cpu,
2828 atomic_read(&rsp->barrier_cpu_count), done);
2829}
2830
b1420f1c
PM
2831/*
2832 * RCU callback function for _rcu_barrier(). If we are last, wake
2833 * up the task executing _rcu_barrier().
2834 */
24ebbca8 2835static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2836{
24ebbca8
PM
2837 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2838 struct rcu_state *rsp = rdp->rsp;
2839
a83eff0a
PM
2840 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2841 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2842 complete(&rsp->barrier_completion);
a83eff0a
PM
2843 } else {
2844 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2845 }
d0ec774c
PM
2846}
2847
2848/*
2849 * Called with preemption disabled, and from cross-cpu IRQ context.
2850 */
2851static void rcu_barrier_func(void *type)
2852{
037b64ed 2853 struct rcu_state *rsp = type;
06668efa 2854 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2855
a83eff0a 2856 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2857 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2858 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2859}
2860
d0ec774c
PM
2861/*
2862 * Orchestrate the specified type of RCU barrier, waiting for all
2863 * RCU callbacks of the specified type to complete.
2864 */
037b64ed 2865static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2866{
b1420f1c 2867 int cpu;
b1420f1c 2868 struct rcu_data *rdp;
cf3a9c48
PM
2869 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2870 unsigned long snap_done;
b1420f1c 2871
a83eff0a 2872 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2873
e74f4c45 2874 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2875 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2876
cf3a9c48
PM
2877 /*
2878 * Ensure that all prior references, including to ->n_barrier_done,
2879 * are ordered before the _rcu_barrier() machinery.
2880 */
2881 smp_mb(); /* See above block comment. */
2882
2883 /*
2884 * Recheck ->n_barrier_done to see if others did our work for us.
2885 * This means checking ->n_barrier_done for an even-to-odd-to-even
2886 * transition. The "if" expression below therefore rounds the old
2887 * value up to the next even number and adds two before comparing.
2888 */
458fb381 2889 snap_done = rsp->n_barrier_done;
a83eff0a 2890 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
2891
2892 /*
2893 * If the value in snap is odd, we needed to wait for the current
2894 * rcu_barrier() to complete, then wait for the next one, in other
2895 * words, we need the value of snap_done to be three larger than
2896 * the value of snap. On the other hand, if the value in snap is
2897 * even, we only had to wait for the next rcu_barrier() to complete,
2898 * in other words, we need the value of snap_done to be only two
2899 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2900 * this for us (thank you, Linus!).
2901 */
2902 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 2903 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2904 smp_mb(); /* caller's subsequent code after above check. */
2905 mutex_unlock(&rsp->barrier_mutex);
2906 return;
2907 }
2908
2909 /*
2910 * Increment ->n_barrier_done to avoid duplicate work. Use
2911 * ACCESS_ONCE() to prevent the compiler from speculating
2912 * the increment to precede the early-exit check.
2913 */
2914 ACCESS_ONCE(rsp->n_barrier_done)++;
2915 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2916 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2917 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2918
d0ec774c 2919 /*
b1420f1c
PM
2920 * Initialize the count to one rather than to zero in order to
2921 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2922 * (or preemption of this task). Exclude CPU-hotplug operations
2923 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2924 */
7db74df8 2925 init_completion(&rsp->barrier_completion);
24ebbca8 2926 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2927 get_online_cpus();
b1420f1c
PM
2928
2929 /*
1331e7a1
PM
2930 * Force each CPU with callbacks to register a new callback.
2931 * When that callback is invoked, we will know that all of the
2932 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2933 */
3fbfbf7a 2934 for_each_possible_cpu(cpu) {
d1e43fa5 2935 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2936 continue;
b1420f1c 2937 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2938 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2939 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2940 rsp->n_barrier_done);
2941 atomic_inc(&rsp->barrier_cpu_count);
2942 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2943 rsp, cpu, 0);
2944 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2945 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2946 rsp->n_barrier_done);
037b64ed 2947 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2948 } else {
a83eff0a
PM
2949 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2950 rsp->n_barrier_done);
b1420f1c
PM
2951 }
2952 }
1331e7a1 2953 put_online_cpus();
b1420f1c
PM
2954
2955 /*
2956 * Now that we have an rcu_barrier_callback() callback on each
2957 * CPU, and thus each counted, remove the initial count.
2958 */
24ebbca8 2959 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2960 complete(&rsp->barrier_completion);
b1420f1c 2961
cf3a9c48
PM
2962 /* Increment ->n_barrier_done to prevent duplicate work. */
2963 smp_mb(); /* Keep increment after above mechanism. */
2964 ACCESS_ONCE(rsp->n_barrier_done)++;
2965 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2966 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2967 smp_mb(); /* Keep increment before caller's subsequent code. */
2968
b1420f1c 2969 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2970 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2971
2972 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2973 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2974}
d0ec774c
PM
2975
2976/**
2977 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2978 */
2979void rcu_barrier_bh(void)
2980{
037b64ed 2981 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2982}
2983EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2984
2985/**
2986 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2987 */
2988void rcu_barrier_sched(void)
2989{
037b64ed 2990 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2991}
2992EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2993
64db4cff 2994/*
27569620 2995 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2996 */
27569620
PM
2997static void __init
2998rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2999{
3000 unsigned long flags;
394f99a9 3001 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3002 struct rcu_node *rnp = rcu_get_root(rsp);
3003
3004 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3005 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3006 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3007 init_callback_list(rdp);
486e2593 3008 rdp->qlen_lazy = 0;
1d1fb395 3009 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3010 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3011 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3012 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3013 rdp->cpu = cpu;
d4c08f2a 3014 rdp->rsp = rsp;
3fbfbf7a 3015 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3016 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3017}
3018
3019/*
3020 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3021 * offline event can be happening at a given time. Note also that we
3022 * can accept some slop in the rsp->completed access due to the fact
3023 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3024 */
49fb4c62 3025static void
6cc68793 3026rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
3027{
3028 unsigned long flags;
64db4cff 3029 unsigned long mask;
394f99a9 3030 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3031 struct rcu_node *rnp = rcu_get_root(rsp);
3032
a4fbe35a
PM
3033 /* Exclude new grace periods. */
3034 mutex_lock(&rsp->onoff_mutex);
3035
64db4cff 3036 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3037 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3038 rdp->beenonline = 1; /* We have now been online. */
6cc68793 3039 rdp->preemptible = preemptible;
37c72e56
PM
3040 rdp->qlen_last_fqs_check = 0;
3041 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3042 rdp->blimit = blimit;
0d8ee37e 3043 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3044 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3045 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3046 atomic_set(&rdp->dynticks->dynticks,
3047 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3048 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3049
64db4cff
PM
3050 /* Add CPU to rcu_node bitmasks. */
3051 rnp = rdp->mynode;
3052 mask = rdp->grpmask;
3053 do {
3054 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3055 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3056 rnp->qsmaskinit |= mask;
3057 mask = rnp->grpmask;
d09b62df 3058 if (rnp == rdp->mynode) {
06ae115a
PM
3059 /*
3060 * If there is a grace period in progress, we will
3061 * set up to wait for it next time we run the
3062 * RCU core code.
3063 */
3064 rdp->gpnum = rnp->completed;
d09b62df 3065 rdp->completed = rnp->completed;
06ae115a
PM
3066 rdp->passed_quiesce = 0;
3067 rdp->qs_pending = 0;
f7f7bac9 3068 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3069 }
1304afb2 3070 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3071 rnp = rnp->parent;
3072 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3073 local_irq_restore(flags);
64db4cff 3074
a4fbe35a 3075 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3076}
3077
49fb4c62 3078static void rcu_prepare_cpu(int cpu)
64db4cff 3079{
6ce75a23
PM
3080 struct rcu_state *rsp;
3081
3082 for_each_rcu_flavor(rsp)
3083 rcu_init_percpu_data(cpu, rsp,
3084 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3085}
3086
3087/*
f41d911f 3088 * Handle CPU online/offline notification events.
64db4cff 3089 */
49fb4c62 3090static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3091 unsigned long action, void *hcpu)
64db4cff
PM
3092{
3093 long cpu = (long)hcpu;
27f4d280 3094 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3095 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3096 struct rcu_state *rsp;
64db4cff 3097
f7f7bac9 3098 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3099 switch (action) {
3100 case CPU_UP_PREPARE:
3101 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3102 rcu_prepare_cpu(cpu);
3103 rcu_prepare_kthreads(cpu);
a26ac245
PM
3104 break;
3105 case CPU_ONLINE:
0f962a5e 3106 case CPU_DOWN_FAILED:
5d01bbd1 3107 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3108 break;
3109 case CPU_DOWN_PREPARE:
34ed6246 3110 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3111 break;
d0ec774c
PM
3112 case CPU_DYING:
3113 case CPU_DYING_FROZEN:
6ce75a23
PM
3114 for_each_rcu_flavor(rsp)
3115 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3116 break;
64db4cff
PM
3117 case CPU_DEAD:
3118 case CPU_DEAD_FROZEN:
3119 case CPU_UP_CANCELED:
3120 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3121 for_each_rcu_flavor(rsp)
3122 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3123 break;
3124 default:
3125 break;
3126 }
f7f7bac9 3127 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3128 return NOTIFY_OK;
64db4cff
PM
3129}
3130
d1d74d14
BP
3131static int rcu_pm_notify(struct notifier_block *self,
3132 unsigned long action, void *hcpu)
3133{
3134 switch (action) {
3135 case PM_HIBERNATION_PREPARE:
3136 case PM_SUSPEND_PREPARE:
3137 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3138 rcu_expedited = 1;
3139 break;
3140 case PM_POST_HIBERNATION:
3141 case PM_POST_SUSPEND:
3142 rcu_expedited = 0;
3143 break;
3144 default:
3145 break;
3146 }
3147 return NOTIFY_OK;
3148}
3149
b3dbec76
PM
3150/*
3151 * Spawn the kthread that handles this RCU flavor's grace periods.
3152 */
3153static int __init rcu_spawn_gp_kthread(void)
3154{
3155 unsigned long flags;
3156 struct rcu_node *rnp;
3157 struct rcu_state *rsp;
3158 struct task_struct *t;
3159
3160 for_each_rcu_flavor(rsp) {
f170168b 3161 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3162 BUG_ON(IS_ERR(t));
3163 rnp = rcu_get_root(rsp);
3164 raw_spin_lock_irqsave(&rnp->lock, flags);
3165 rsp->gp_kthread = t;
3166 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3167 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3168 }
3169 return 0;
3170}
3171early_initcall(rcu_spawn_gp_kthread);
3172
bbad9379
PM
3173/*
3174 * This function is invoked towards the end of the scheduler's initialization
3175 * process. Before this is called, the idle task might contain
3176 * RCU read-side critical sections (during which time, this idle
3177 * task is booting the system). After this function is called, the
3178 * idle tasks are prohibited from containing RCU read-side critical
3179 * sections. This function also enables RCU lockdep checking.
3180 */
3181void rcu_scheduler_starting(void)
3182{
3183 WARN_ON(num_online_cpus() != 1);
3184 WARN_ON(nr_context_switches() > 0);
3185 rcu_scheduler_active = 1;
3186}
3187
64db4cff
PM
3188/*
3189 * Compute the per-level fanout, either using the exact fanout specified
3190 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3191 */
3192#ifdef CONFIG_RCU_FANOUT_EXACT
3193static void __init rcu_init_levelspread(struct rcu_state *rsp)
3194{
3195 int i;
3196
f885b7f2 3197 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3198 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3199 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3200}
3201#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3202static void __init rcu_init_levelspread(struct rcu_state *rsp)
3203{
3204 int ccur;
3205 int cprv;
3206 int i;
3207
4dbd6bb3 3208 cprv = nr_cpu_ids;
f885b7f2 3209 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3210 ccur = rsp->levelcnt[i];
3211 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3212 cprv = ccur;
3213 }
3214}
3215#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3216
3217/*
3218 * Helper function for rcu_init() that initializes one rcu_state structure.
3219 */
394f99a9
LJ
3220static void __init rcu_init_one(struct rcu_state *rsp,
3221 struct rcu_data __percpu *rda)
64db4cff 3222{
394f2769
PM
3223 static char *buf[] = { "rcu_node_0",
3224 "rcu_node_1",
3225 "rcu_node_2",
3226 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3227 static char *fqs[] = { "rcu_node_fqs_0",
3228 "rcu_node_fqs_1",
3229 "rcu_node_fqs_2",
3230 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3231 int cpustride = 1;
3232 int i;
3233 int j;
3234 struct rcu_node *rnp;
3235
b6407e86
PM
3236 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3237
4930521a
PM
3238 /* Silence gcc 4.8 warning about array index out of range. */
3239 if (rcu_num_lvls > RCU_NUM_LVLS)
3240 panic("rcu_init_one: rcu_num_lvls overflow");
3241
64db4cff
PM
3242 /* Initialize the level-tracking arrays. */
3243
f885b7f2
PM
3244 for (i = 0; i < rcu_num_lvls; i++)
3245 rsp->levelcnt[i] = num_rcu_lvl[i];
3246 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3247 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3248 rcu_init_levelspread(rsp);
3249
3250 /* Initialize the elements themselves, starting from the leaves. */
3251
f885b7f2 3252 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3253 cpustride *= rsp->levelspread[i];
3254 rnp = rsp->level[i];
3255 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3256 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3257 lockdep_set_class_and_name(&rnp->lock,
3258 &rcu_node_class[i], buf[i]);
394f2769
PM
3259 raw_spin_lock_init(&rnp->fqslock);
3260 lockdep_set_class_and_name(&rnp->fqslock,
3261 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3262 rnp->gpnum = rsp->gpnum;
3263 rnp->completed = rsp->completed;
64db4cff
PM
3264 rnp->qsmask = 0;
3265 rnp->qsmaskinit = 0;
3266 rnp->grplo = j * cpustride;
3267 rnp->grphi = (j + 1) * cpustride - 1;
3268 if (rnp->grphi >= NR_CPUS)
3269 rnp->grphi = NR_CPUS - 1;
3270 if (i == 0) {
3271 rnp->grpnum = 0;
3272 rnp->grpmask = 0;
3273 rnp->parent = NULL;
3274 } else {
3275 rnp->grpnum = j % rsp->levelspread[i - 1];
3276 rnp->grpmask = 1UL << rnp->grpnum;
3277 rnp->parent = rsp->level[i - 1] +
3278 j / rsp->levelspread[i - 1];
3279 }
3280 rnp->level = i;
12f5f524 3281 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3282 rcu_init_one_nocb(rnp);
64db4cff
PM
3283 }
3284 }
0c34029a 3285
394f99a9 3286 rsp->rda = rda;
b3dbec76 3287 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3288 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3289 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3290 for_each_possible_cpu(i) {
4a90a068 3291 while (i > rnp->grphi)
0c34029a 3292 rnp++;
394f99a9 3293 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3294 rcu_boot_init_percpu_data(i, rsp);
3295 }
6ce75a23 3296 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3297}
3298
f885b7f2
PM
3299/*
3300 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3301 * replace the definitions in rcutree.h because those are needed to size
3302 * the ->node array in the rcu_state structure.
3303 */
3304static void __init rcu_init_geometry(void)
3305{
026ad283 3306 ulong d;
f885b7f2
PM
3307 int i;
3308 int j;
cca6f393 3309 int n = nr_cpu_ids;
f885b7f2
PM
3310 int rcu_capacity[MAX_RCU_LVLS + 1];
3311
026ad283
PM
3312 /*
3313 * Initialize any unspecified boot parameters.
3314 * The default values of jiffies_till_first_fqs and
3315 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3316 * value, which is a function of HZ, then adding one for each
3317 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3318 */
3319 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3320 if (jiffies_till_first_fqs == ULONG_MAX)
3321 jiffies_till_first_fqs = d;
3322 if (jiffies_till_next_fqs == ULONG_MAX)
3323 jiffies_till_next_fqs = d;
3324
f885b7f2 3325 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3326 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3327 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3328 return;
3329
3330 /*
3331 * Compute number of nodes that can be handled an rcu_node tree
3332 * with the given number of levels. Setting rcu_capacity[0] makes
3333 * some of the arithmetic easier.
3334 */
3335 rcu_capacity[0] = 1;
3336 rcu_capacity[1] = rcu_fanout_leaf;
3337 for (i = 2; i <= MAX_RCU_LVLS; i++)
3338 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3339
3340 /*
3341 * The boot-time rcu_fanout_leaf parameter is only permitted
3342 * to increase the leaf-level fanout, not decrease it. Of course,
3343 * the leaf-level fanout cannot exceed the number of bits in
3344 * the rcu_node masks. Finally, the tree must be able to accommodate
3345 * the configured number of CPUs. Complain and fall back to the
3346 * compile-time values if these limits are exceeded.
3347 */
3348 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3349 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3350 n > rcu_capacity[MAX_RCU_LVLS]) {
3351 WARN_ON(1);
3352 return;
3353 }
3354
3355 /* Calculate the number of rcu_nodes at each level of the tree. */
3356 for (i = 1; i <= MAX_RCU_LVLS; i++)
3357 if (n <= rcu_capacity[i]) {
3358 for (j = 0; j <= i; j++)
3359 num_rcu_lvl[j] =
3360 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3361 rcu_num_lvls = i;
3362 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3363 num_rcu_lvl[j] = 0;
3364 break;
3365 }
3366
3367 /* Calculate the total number of rcu_node structures. */
3368 rcu_num_nodes = 0;
3369 for (i = 0; i <= MAX_RCU_LVLS; i++)
3370 rcu_num_nodes += num_rcu_lvl[i];
3371 rcu_num_nodes -= n;
3372}
3373
9f680ab4 3374void __init rcu_init(void)
64db4cff 3375{
017c4261 3376 int cpu;
9f680ab4 3377
f41d911f 3378 rcu_bootup_announce();
f885b7f2 3379 rcu_init_geometry();
394f99a9 3380 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3381 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3382 __rcu_init_preempt();
b5b39360 3383 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3384
3385 /*
3386 * We don't need protection against CPU-hotplug here because
3387 * this is called early in boot, before either interrupts
3388 * or the scheduler are operational.
3389 */
3390 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3391 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3392 for_each_online_cpu(cpu)
3393 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3394}
3395
1eba8f84 3396#include "rcutree_plugin.h"
This page took 0.469414 seconds and 5 git commands to generate.