rcu: Silence unused-variable warnings
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
d1d74d14 57#include <linux/suspend.h>
64db4cff 58
9f77da9f 59#include "rcutree.h"
29c00b4a
PM
60#include <trace/events/rcu.h>
61
62#include "rcu.h"
9f77da9f 63
f7f7bac9
SRRH
64/*
65 * Strings used in tracepoints need to be exported via the
66 * tracing system such that tools like perf and trace-cmd can
67 * translate the string address pointers to actual text.
68 */
69#define TPS(x) tracepoint_string(x)
70
64db4cff
PM
71/* Data structures. */
72
f885b7f2 73static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 74static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 75
f7f7bac9
SRRH
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
a41bfeb2 84#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
85static char sname##_varname[] = #sname; \
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 87struct rcu_state sname##_state = { \
6c90cc7b 88 .level = { &sname##_state.node[0] }, \
037b64ed 89 .call = cr, \
af446b70 90 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
7b2e6011 93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 98 .name = sname##_varname, \
a4889858 99 .abbr = sabbr, \
a41bfeb2
SRRH
100}; \
101DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 102
a41bfeb2
SRRH
103RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 105
27f4d280 106static struct rcu_state *rcu_state;
6ce75a23 107LIST_HEAD(rcu_struct_flavors);
27f4d280 108
f885b7f2
PM
109/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 111module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119};
120int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
b0d30417
PM
122/*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 126 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
bbad9379
PM
131int rcu_scheduler_active __read_mostly;
132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
b0d30417
PM
134/*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146static int rcu_scheduler_fully_active __read_mostly;
147
a46e0899
PM
148#ifdef CONFIG_RCU_BOOST
149
a26ac245
PM
150/*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 156DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 157DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 158
a46e0899
PM
159#endif /* #ifdef CONFIG_RCU_BOOST */
160
5d01bbd1 161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 164
4a298656
PM
165/*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174unsigned long rcutorture_testseq;
175unsigned long rcutorture_vernum;
176
fc2219d4
PM
177/*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182static int rcu_gp_in_progress(struct rcu_state *rsp)
183{
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185}
186
b1f77b05 187/*
d6714c22 188 * Note a quiescent state. Because we do not need to know
b1f77b05 189 * how many quiescent states passed, just if there was at least
d6714c22 190 * one since the start of the grace period, this just sets a flag.
e4cc1f22 191 * The caller must have disabled preemption.
b1f77b05 192 */
d6714c22 193void rcu_sched_qs(int cpu)
b1f77b05 194{
25502a6c 195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 196
e4cc1f22 197 if (rdp->passed_quiesce == 0)
f7f7bac9 198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 199 rdp->passed_quiesce = 1;
b1f77b05
IM
200}
201
d6714c22 202void rcu_bh_qs(int cpu)
b1f77b05 203{
25502a6c 204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 205
e4cc1f22 206 if (rdp->passed_quiesce == 0)
f7f7bac9 207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 208 rdp->passed_quiesce = 1;
b1f77b05 209}
64db4cff 210
25502a6c
PM
211/*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
e4cc1f22 214 * The caller must have disabled preemption.
25502a6c
PM
215 */
216void rcu_note_context_switch(int cpu)
217{
f7f7bac9 218 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 219 rcu_sched_qs(cpu);
cba6d0d6 220 rcu_preempt_note_context_switch(cpu);
f7f7bac9 221 trace_rcu_utilization(TPS("End context switch"));
25502a6c 222}
29ce8310 223EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 224
01896f7e 225static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 227 .dynticks = ATOMIC_INIT(1),
2333210b
PM
228#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
229 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
230 .dynticks_idle = ATOMIC_INIT(1),
231#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 232};
64db4cff 233
878d7439
ED
234static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
235static long qhimark = 10000; /* If this many pending, ignore blimit. */
236static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 237
878d7439
ED
238module_param(blimit, long, 0444);
239module_param(qhimark, long, 0444);
240module_param(qlowmark, long, 0444);
3d76c082 241
026ad283
PM
242static ulong jiffies_till_first_fqs = ULONG_MAX;
243static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
244
245module_param(jiffies_till_first_fqs, ulong, 0644);
246module_param(jiffies_till_next_fqs, ulong, 0644);
247
910ee45d
PM
248static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
249 struct rcu_data *rdp);
217af2a2
PM
250static void force_qs_rnp(struct rcu_state *rsp,
251 int (*f)(struct rcu_data *rsp, bool *isidle,
252 unsigned long *maxj),
253 bool *isidle, unsigned long *maxj);
4cdfc175 254static void force_quiescent_state(struct rcu_state *rsp);
a157229c 255static int rcu_pending(int cpu);
64db4cff
PM
256
257/*
d6714c22 258 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 259 */
d6714c22 260long rcu_batches_completed_sched(void)
64db4cff 261{
d6714c22 262 return rcu_sched_state.completed;
64db4cff 263}
d6714c22 264EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
265
266/*
267 * Return the number of RCU BH batches processed thus far for debug & stats.
268 */
269long rcu_batches_completed_bh(void)
270{
271 return rcu_bh_state.completed;
272}
273EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
274
bf66f18e
PM
275/*
276 * Force a quiescent state for RCU BH.
277 */
278void rcu_bh_force_quiescent_state(void)
279{
4cdfc175 280 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
281}
282EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
283
4a298656
PM
284/*
285 * Record the number of times rcutorture tests have been initiated and
286 * terminated. This information allows the debugfs tracing stats to be
287 * correlated to the rcutorture messages, even when the rcutorture module
288 * is being repeatedly loaded and unloaded. In other words, we cannot
289 * store this state in rcutorture itself.
290 */
291void rcutorture_record_test_transition(void)
292{
293 rcutorture_testseq++;
294 rcutorture_vernum = 0;
295}
296EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
297
298/*
299 * Record the number of writer passes through the current rcutorture test.
300 * This is also used to correlate debugfs tracing stats with the rcutorture
301 * messages.
302 */
303void rcutorture_record_progress(unsigned long vernum)
304{
305 rcutorture_vernum++;
306}
307EXPORT_SYMBOL_GPL(rcutorture_record_progress);
308
bf66f18e
PM
309/*
310 * Force a quiescent state for RCU-sched.
311 */
312void rcu_sched_force_quiescent_state(void)
313{
4cdfc175 314 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
315}
316EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
317
64db4cff
PM
318/*
319 * Does the CPU have callbacks ready to be invoked?
320 */
321static int
322cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
323{
3fbfbf7a
PM
324 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
325 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
326}
327
328/*
dc35c893
PM
329 * Does the current CPU require a not-yet-started grace period?
330 * The caller must have disabled interrupts to prevent races with
331 * normal callback registry.
64db4cff
PM
332 */
333static int
334cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
335{
dc35c893 336 int i;
3fbfbf7a 337
dc35c893
PM
338 if (rcu_gp_in_progress(rsp))
339 return 0; /* No, a grace period is already in progress. */
dae6e64d 340 if (rcu_nocb_needs_gp(rsp))
34ed6246 341 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
342 if (!rdp->nxttail[RCU_NEXT_TAIL])
343 return 0; /* No, this is a no-CBs (or offline) CPU. */
344 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
345 return 1; /* Yes, this CPU has newly registered callbacks. */
346 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
347 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
348 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
349 rdp->nxtcompleted[i]))
350 return 1; /* Yes, CBs for future grace period. */
351 return 0; /* No grace period needed. */
64db4cff
PM
352}
353
354/*
355 * Return the root node of the specified rcu_state structure.
356 */
357static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
358{
359 return &rsp->node[0];
360}
361
9b2e4f18 362/*
adf5091e 363 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
364 *
365 * If the new value of the ->dynticks_nesting counter now is zero,
366 * we really have entered idle, and must do the appropriate accounting.
367 * The caller must have disabled interrupts.
368 */
adf5091e
FW
369static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
370 bool user)
9b2e4f18 371{
f7f7bac9 372 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 373 if (!user && !is_idle_task(current)) {
289828e6
PM
374 struct task_struct *idle __maybe_unused =
375 idle_task(smp_processor_id());
0989cb46 376
f7f7bac9 377 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 378 ftrace_dump(DUMP_ORIG);
0989cb46
PM
379 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
380 current->pid, current->comm,
381 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 382 }
aea1b35e 383 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
384 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
385 smp_mb__before_atomic_inc(); /* See above. */
386 atomic_inc(&rdtp->dynticks);
387 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
388 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
389
390 /*
adf5091e 391 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
392 * in an RCU read-side critical section.
393 */
394 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
395 "Illegal idle entry in RCU read-side critical section.");
396 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
397 "Illegal idle entry in RCU-bh read-side critical section.");
398 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
399 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 400}
64db4cff 401
adf5091e
FW
402/*
403 * Enter an RCU extended quiescent state, which can be either the
404 * idle loop or adaptive-tickless usermode execution.
64db4cff 405 */
adf5091e 406static void rcu_eqs_enter(bool user)
64db4cff 407{
4145fa7f 408 long long oldval;
64db4cff
PM
409 struct rcu_dynticks *rdtp;
410
c9d4b0af 411 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 412 oldval = rdtp->dynticks_nesting;
29e37d81
PM
413 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
414 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
415 rdtp->dynticks_nesting = 0;
416 else
417 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 418 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 419}
adf5091e
FW
420
421/**
422 * rcu_idle_enter - inform RCU that current CPU is entering idle
423 *
424 * Enter idle mode, in other words, -leave- the mode in which RCU
425 * read-side critical sections can occur. (Though RCU read-side
426 * critical sections can occur in irq handlers in idle, a possibility
427 * handled by irq_enter() and irq_exit().)
428 *
429 * We crowbar the ->dynticks_nesting field to zero to allow for
430 * the possibility of usermode upcalls having messed up our count
431 * of interrupt nesting level during the prior busy period.
432 */
433void rcu_idle_enter(void)
434{
c5d900bf
FW
435 unsigned long flags;
436
437 local_irq_save(flags);
cb349ca9 438 rcu_eqs_enter(false);
c9d4b0af 439 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 440 local_irq_restore(flags);
adf5091e 441}
8a2ecf47 442EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 443
2b1d5024 444#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
445/**
446 * rcu_user_enter - inform RCU that we are resuming userspace.
447 *
448 * Enter RCU idle mode right before resuming userspace. No use of RCU
449 * is permitted between this call and rcu_user_exit(). This way the
450 * CPU doesn't need to maintain the tick for RCU maintenance purposes
451 * when the CPU runs in userspace.
452 */
453void rcu_user_enter(void)
454{
91d1aa43 455 rcu_eqs_enter(1);
adf5091e 456}
2b1d5024 457#endif /* CONFIG_RCU_USER_QS */
19dd1591 458
9b2e4f18
PM
459/**
460 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
461 *
462 * Exit from an interrupt handler, which might possibly result in entering
463 * idle mode, in other words, leaving the mode in which read-side critical
464 * sections can occur.
64db4cff 465 *
9b2e4f18
PM
466 * This code assumes that the idle loop never does anything that might
467 * result in unbalanced calls to irq_enter() and irq_exit(). If your
468 * architecture violates this assumption, RCU will give you what you
469 * deserve, good and hard. But very infrequently and irreproducibly.
470 *
471 * Use things like work queues to work around this limitation.
472 *
473 * You have been warned.
64db4cff 474 */
9b2e4f18 475void rcu_irq_exit(void)
64db4cff
PM
476{
477 unsigned long flags;
4145fa7f 478 long long oldval;
64db4cff
PM
479 struct rcu_dynticks *rdtp;
480
481 local_irq_save(flags);
c9d4b0af 482 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 483 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
484 rdtp->dynticks_nesting--;
485 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 486 if (rdtp->dynticks_nesting)
f7f7bac9 487 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 488 else
cb349ca9 489 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 490 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
491 local_irq_restore(flags);
492}
493
494/*
adf5091e 495 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
496 *
497 * If the new value of the ->dynticks_nesting counter was previously zero,
498 * we really have exited idle, and must do the appropriate accounting.
499 * The caller must have disabled interrupts.
500 */
adf5091e
FW
501static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
502 int user)
9b2e4f18 503{
23b5c8fa
PM
504 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
505 atomic_inc(&rdtp->dynticks);
506 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
507 smp_mb__after_atomic_inc(); /* See above. */
508 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 509 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 510 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 511 if (!user && !is_idle_task(current)) {
289828e6
PM
512 struct task_struct *idle __maybe_unused =
513 idle_task(smp_processor_id());
0989cb46 514
f7f7bac9 515 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 516 oldval, rdtp->dynticks_nesting);
bf1304e9 517 ftrace_dump(DUMP_ORIG);
0989cb46
PM
518 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
519 current->pid, current->comm,
520 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
521 }
522}
523
adf5091e
FW
524/*
525 * Exit an RCU extended quiescent state, which can be either the
526 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 527 */
adf5091e 528static void rcu_eqs_exit(bool user)
9b2e4f18 529{
9b2e4f18
PM
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
c9d4b0af 533 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 534 oldval = rdtp->dynticks_nesting;
29e37d81
PM
535 WARN_ON_ONCE(oldval < 0);
536 if (oldval & DYNTICK_TASK_NEST_MASK)
537 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
538 else
539 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 540 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 541}
adf5091e
FW
542
543/**
544 * rcu_idle_exit - inform RCU that current CPU is leaving idle
545 *
546 * Exit idle mode, in other words, -enter- the mode in which RCU
547 * read-side critical sections can occur.
548 *
549 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
550 * allow for the possibility of usermode upcalls messing up our count
551 * of interrupt nesting level during the busy period that is just
552 * now starting.
553 */
554void rcu_idle_exit(void)
555{
c5d900bf
FW
556 unsigned long flags;
557
558 local_irq_save(flags);
cb349ca9 559 rcu_eqs_exit(false);
c9d4b0af 560 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 561 local_irq_restore(flags);
adf5091e 562}
8a2ecf47 563EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 564
2b1d5024 565#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
566/**
567 * rcu_user_exit - inform RCU that we are exiting userspace.
568 *
569 * Exit RCU idle mode while entering the kernel because it can
570 * run a RCU read side critical section anytime.
571 */
572void rcu_user_exit(void)
573{
91d1aa43 574 rcu_eqs_exit(1);
adf5091e 575}
2b1d5024 576#endif /* CONFIG_RCU_USER_QS */
19dd1591 577
9b2e4f18
PM
578/**
579 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
580 *
581 * Enter an interrupt handler, which might possibly result in exiting
582 * idle mode, in other words, entering the mode in which read-side critical
583 * sections can occur.
584 *
585 * Note that the Linux kernel is fully capable of entering an interrupt
586 * handler that it never exits, for example when doing upcalls to
587 * user mode! This code assumes that the idle loop never does upcalls to
588 * user mode. If your architecture does do upcalls from the idle loop (or
589 * does anything else that results in unbalanced calls to the irq_enter()
590 * and irq_exit() functions), RCU will give you what you deserve, good
591 * and hard. But very infrequently and irreproducibly.
592 *
593 * Use things like work queues to work around this limitation.
594 *
595 * You have been warned.
596 */
597void rcu_irq_enter(void)
598{
599 unsigned long flags;
600 struct rcu_dynticks *rdtp;
601 long long oldval;
602
603 local_irq_save(flags);
c9d4b0af 604 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
605 oldval = rdtp->dynticks_nesting;
606 rdtp->dynticks_nesting++;
607 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 608 if (oldval)
f7f7bac9 609 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 610 else
cb349ca9 611 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 612 rcu_sysidle_exit(rdtp, 1);
64db4cff 613 local_irq_restore(flags);
64db4cff
PM
614}
615
616/**
617 * rcu_nmi_enter - inform RCU of entry to NMI context
618 *
619 * If the CPU was idle with dynamic ticks active, and there is no
620 * irq handler running, this updates rdtp->dynticks_nmi to let the
621 * RCU grace-period handling know that the CPU is active.
622 */
623void rcu_nmi_enter(void)
624{
c9d4b0af 625 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 626
23b5c8fa
PM
627 if (rdtp->dynticks_nmi_nesting == 0 &&
628 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 629 return;
23b5c8fa
PM
630 rdtp->dynticks_nmi_nesting++;
631 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
632 atomic_inc(&rdtp->dynticks);
633 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
634 smp_mb__after_atomic_inc(); /* See above. */
635 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
636}
637
638/**
639 * rcu_nmi_exit - inform RCU of exit from NMI context
640 *
641 * If the CPU was idle with dynamic ticks active, and there is no
642 * irq handler running, this updates rdtp->dynticks_nmi to let the
643 * RCU grace-period handling know that the CPU is no longer active.
644 */
645void rcu_nmi_exit(void)
646{
c9d4b0af 647 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 648
23b5c8fa
PM
649 if (rdtp->dynticks_nmi_nesting == 0 ||
650 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 651 return;
23b5c8fa
PM
652 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
653 smp_mb__before_atomic_inc(); /* See above. */
654 atomic_inc(&rdtp->dynticks);
655 smp_mb__after_atomic_inc(); /* Force delay to next write. */
656 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
657}
658
659/**
9b2e4f18 660 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 661 *
9b2e4f18 662 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 663 * or NMI handler, return true.
64db4cff 664 */
9b2e4f18 665int rcu_is_cpu_idle(void)
64db4cff 666{
34240697
PM
667 int ret;
668
669 preempt_disable();
c9d4b0af 670 ret = (atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1) == 0;
34240697
PM
671 preempt_enable();
672 return ret;
64db4cff 673}
e6b80a3b 674EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 675
62fde6ed 676#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
677
678/*
679 * Is the current CPU online? Disable preemption to avoid false positives
680 * that could otherwise happen due to the current CPU number being sampled,
681 * this task being preempted, its old CPU being taken offline, resuming
682 * on some other CPU, then determining that its old CPU is now offline.
683 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
684 * the check for rcu_scheduler_fully_active. Note also that it is OK
685 * for a CPU coming online to use RCU for one jiffy prior to marking itself
686 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
687 * offline to continue to use RCU for one jiffy after marking itself
688 * offline in the cpu_online_mask. This leniency is necessary given the
689 * non-atomic nature of the online and offline processing, for example,
690 * the fact that a CPU enters the scheduler after completing the CPU_DYING
691 * notifiers.
692 *
693 * This is also why RCU internally marks CPUs online during the
694 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
695 *
696 * Disable checking if in an NMI handler because we cannot safely report
697 * errors from NMI handlers anyway.
698 */
699bool rcu_lockdep_current_cpu_online(void)
700{
2036d94a
PM
701 struct rcu_data *rdp;
702 struct rcu_node *rnp;
c0d6d01b
PM
703 bool ret;
704
705 if (in_nmi())
706 return 1;
707 preempt_disable();
c9d4b0af 708 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
709 rnp = rdp->mynode;
710 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
711 !rcu_scheduler_fully_active;
712 preempt_enable();
713 return ret;
714}
715EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
716
62fde6ed 717#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 718
64db4cff 719/**
9b2e4f18 720 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 721 *
9b2e4f18
PM
722 * If the current CPU is idle or running at a first-level (not nested)
723 * interrupt from idle, return true. The caller must have at least
724 * disabled preemption.
64db4cff 725 */
62e3cb14 726static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 727{
c9d4b0af 728 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
729}
730
64db4cff
PM
731/*
732 * Snapshot the specified CPU's dynticks counter so that we can later
733 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 734 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 735 */
217af2a2
PM
736static int dyntick_save_progress_counter(struct rcu_data *rdp,
737 bool *isidle, unsigned long *maxj)
64db4cff 738{
23b5c8fa 739 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 740 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 741 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
742}
743
744/*
745 * Return true if the specified CPU has passed through a quiescent
746 * state by virtue of being in or having passed through an dynticks
747 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 748 * for this same CPU, or by virtue of having been offline.
64db4cff 749 */
217af2a2
PM
750static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
751 bool *isidle, unsigned long *maxj)
64db4cff 752{
7eb4f455
PM
753 unsigned int curr;
754 unsigned int snap;
64db4cff 755
7eb4f455
PM
756 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
757 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
758
759 /*
760 * If the CPU passed through or entered a dynticks idle phase with
761 * no active irq/NMI handlers, then we can safely pretend that the CPU
762 * already acknowledged the request to pass through a quiescent
763 * state. Either way, that CPU cannot possibly be in an RCU
764 * read-side critical section that started before the beginning
765 * of the current RCU grace period.
766 */
7eb4f455 767 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 768 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
769 rdp->dynticks_fqs++;
770 return 1;
771 }
772
a82dcc76
PM
773 /*
774 * Check for the CPU being offline, but only if the grace period
775 * is old enough. We don't need to worry about the CPU changing
776 * state: If we see it offline even once, it has been through a
777 * quiescent state.
778 *
779 * The reason for insisting that the grace period be at least
780 * one jiffy old is that CPUs that are not quite online and that
781 * have just gone offline can still execute RCU read-side critical
782 * sections.
783 */
784 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
785 return 0; /* Grace period is not old enough. */
786 barrier();
787 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 788 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
789 rdp->offline_fqs++;
790 return 1;
791 }
65d798f0
PM
792
793 /*
794 * There is a possibility that a CPU in adaptive-ticks state
795 * might run in the kernel with the scheduling-clock tick disabled
796 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
797 * force the CPU to restart the scheduling-clock tick in this
798 * CPU is in this state.
799 */
800 rcu_kick_nohz_cpu(rdp->cpu);
801
a82dcc76 802 return 0;
64db4cff
PM
803}
804
64db4cff
PM
805static void record_gp_stall_check_time(struct rcu_state *rsp)
806{
807 rsp->gp_start = jiffies;
6bfc09e2 808 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
809}
810
b637a328
PM
811/*
812 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
813 * for architectures that do not implement trigger_all_cpu_backtrace().
814 * The NMI-triggered stack traces are more accurate because they are
815 * printed by the target CPU.
816 */
817static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
818{
819 int cpu;
820 unsigned long flags;
821 struct rcu_node *rnp;
822
823 rcu_for_each_leaf_node(rsp, rnp) {
824 raw_spin_lock_irqsave(&rnp->lock, flags);
825 if (rnp->qsmask != 0) {
826 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
827 if (rnp->qsmask & (1UL << cpu))
828 dump_cpu_task(rnp->grplo + cpu);
829 }
830 raw_spin_unlock_irqrestore(&rnp->lock, flags);
831 }
832}
833
64db4cff
PM
834static void print_other_cpu_stall(struct rcu_state *rsp)
835{
836 int cpu;
837 long delta;
838 unsigned long flags;
285fe294 839 int ndetected = 0;
64db4cff 840 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 841 long totqlen = 0;
64db4cff
PM
842
843 /* Only let one CPU complain about others per time interval. */
844
1304afb2 845 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 846 delta = jiffies - rsp->jiffies_stall;
fc2219d4 847 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 848 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
849 return;
850 }
6bfc09e2 851 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 852 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 853
8cdd32a9
PM
854 /*
855 * OK, time to rat on our buddy...
856 * See Documentation/RCU/stallwarn.txt for info on how to debug
857 * RCU CPU stall warnings.
858 */
d7f3e207 859 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 860 rsp->name);
a858af28 861 print_cpu_stall_info_begin();
a0b6c9a7 862 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 863 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 864 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
865 if (rnp->qsmask != 0) {
866 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
867 if (rnp->qsmask & (1UL << cpu)) {
868 print_cpu_stall_info(rsp,
869 rnp->grplo + cpu);
870 ndetected++;
871 }
872 }
3acd9eb3 873 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 874 }
a858af28
PM
875
876 /*
877 * Now rat on any tasks that got kicked up to the root rcu_node
878 * due to CPU offlining.
879 */
880 rnp = rcu_get_root(rsp);
881 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 882 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
883 raw_spin_unlock_irqrestore(&rnp->lock, flags);
884
885 print_cpu_stall_info_end();
53bb857c
PM
886 for_each_possible_cpu(cpu)
887 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
888 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 889 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 890 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 891 if (ndetected == 0)
d7f3e207 892 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 893 else if (!trigger_all_cpu_backtrace())
b637a328 894 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 895
4cdfc175 896 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
897
898 rcu_print_detail_task_stall(rsp);
899
4cdfc175 900 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
901}
902
903static void print_cpu_stall(struct rcu_state *rsp)
904{
53bb857c 905 int cpu;
64db4cff
PM
906 unsigned long flags;
907 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 908 long totqlen = 0;
64db4cff 909
8cdd32a9
PM
910 /*
911 * OK, time to rat on ourselves...
912 * See Documentation/RCU/stallwarn.txt for info on how to debug
913 * RCU CPU stall warnings.
914 */
d7f3e207 915 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
916 print_cpu_stall_info_begin();
917 print_cpu_stall_info(rsp, smp_processor_id());
918 print_cpu_stall_info_end();
53bb857c
PM
919 for_each_possible_cpu(cpu)
920 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
921 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
922 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
923 if (!trigger_all_cpu_backtrace())
924 dump_stack();
c1dc0b9c 925
1304afb2 926 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 927 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 928 rsp->jiffies_stall = jiffies +
6bfc09e2 929 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 930 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 931
64db4cff
PM
932 set_need_resched(); /* kick ourselves to get things going. */
933}
934
935static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
936{
bad6e139
PM
937 unsigned long j;
938 unsigned long js;
64db4cff
PM
939 struct rcu_node *rnp;
940
742734ee 941 if (rcu_cpu_stall_suppress)
c68de209 942 return;
bad6e139
PM
943 j = ACCESS_ONCE(jiffies);
944 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 945 rnp = rdp->mynode;
c96ea7cf
PM
946 if (rcu_gp_in_progress(rsp) &&
947 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
948
949 /* We haven't checked in, so go dump stack. */
950 print_cpu_stall(rsp);
951
bad6e139
PM
952 } else if (rcu_gp_in_progress(rsp) &&
953 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 954
bad6e139 955 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
956 print_other_cpu_stall(rsp);
957 }
958}
959
53d84e00
PM
960/**
961 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
962 *
963 * Set the stall-warning timeout way off into the future, thus preventing
964 * any RCU CPU stall-warning messages from appearing in the current set of
965 * RCU grace periods.
966 *
967 * The caller must disable hard irqs.
968 */
969void rcu_cpu_stall_reset(void)
970{
6ce75a23
PM
971 struct rcu_state *rsp;
972
973 for_each_rcu_flavor(rsp)
974 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
975}
976
3f5d3ea6
PM
977/*
978 * Initialize the specified rcu_data structure's callback list to empty.
979 */
980static void init_callback_list(struct rcu_data *rdp)
981{
982 int i;
983
34ed6246
PM
984 if (init_nocb_callback_list(rdp))
985 return;
3f5d3ea6
PM
986 rdp->nxtlist = NULL;
987 for (i = 0; i < RCU_NEXT_SIZE; i++)
988 rdp->nxttail[i] = &rdp->nxtlist;
989}
990
dc35c893
PM
991/*
992 * Determine the value that ->completed will have at the end of the
993 * next subsequent grace period. This is used to tag callbacks so that
994 * a CPU can invoke callbacks in a timely fashion even if that CPU has
995 * been dyntick-idle for an extended period with callbacks under the
996 * influence of RCU_FAST_NO_HZ.
997 *
998 * The caller must hold rnp->lock with interrupts disabled.
999 */
1000static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1001 struct rcu_node *rnp)
1002{
1003 /*
1004 * If RCU is idle, we just wait for the next grace period.
1005 * But we can only be sure that RCU is idle if we are looking
1006 * at the root rcu_node structure -- otherwise, a new grace
1007 * period might have started, but just not yet gotten around
1008 * to initializing the current non-root rcu_node structure.
1009 */
1010 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1011 return rnp->completed + 1;
1012
1013 /*
1014 * Otherwise, wait for a possible partial grace period and
1015 * then the subsequent full grace period.
1016 */
1017 return rnp->completed + 2;
1018}
1019
0446be48
PM
1020/*
1021 * Trace-event helper function for rcu_start_future_gp() and
1022 * rcu_nocb_wait_gp().
1023 */
1024static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1025 unsigned long c, const char *s)
0446be48
PM
1026{
1027 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1028 rnp->completed, c, rnp->level,
1029 rnp->grplo, rnp->grphi, s);
1030}
1031
1032/*
1033 * Start some future grace period, as needed to handle newly arrived
1034 * callbacks. The required future grace periods are recorded in each
1035 * rcu_node structure's ->need_future_gp field.
1036 *
1037 * The caller must hold the specified rcu_node structure's ->lock.
1038 */
1039static unsigned long __maybe_unused
1040rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1041{
1042 unsigned long c;
1043 int i;
1044 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1045
1046 /*
1047 * Pick up grace-period number for new callbacks. If this
1048 * grace period is already marked as needed, return to the caller.
1049 */
1050 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1051 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1052 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1053 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1054 return c;
1055 }
1056
1057 /*
1058 * If either this rcu_node structure or the root rcu_node structure
1059 * believe that a grace period is in progress, then we must wait
1060 * for the one following, which is in "c". Because our request
1061 * will be noticed at the end of the current grace period, we don't
1062 * need to explicitly start one.
1063 */
1064 if (rnp->gpnum != rnp->completed ||
1065 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1066 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1067 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1068 return c;
1069 }
1070
1071 /*
1072 * There might be no grace period in progress. If we don't already
1073 * hold it, acquire the root rcu_node structure's lock in order to
1074 * start one (if needed).
1075 */
1076 if (rnp != rnp_root)
1077 raw_spin_lock(&rnp_root->lock);
1078
1079 /*
1080 * Get a new grace-period number. If there really is no grace
1081 * period in progress, it will be smaller than the one we obtained
1082 * earlier. Adjust callbacks as needed. Note that even no-CBs
1083 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1084 */
1085 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1086 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1087 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1088 rdp->nxtcompleted[i] = c;
1089
1090 /*
1091 * If the needed for the required grace period is already
1092 * recorded, trace and leave.
1093 */
1094 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1095 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1096 goto unlock_out;
1097 }
1098
1099 /* Record the need for the future grace period. */
1100 rnp_root->need_future_gp[c & 0x1]++;
1101
1102 /* If a grace period is not already in progress, start one. */
1103 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1104 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1105 } else {
f7f7bac9 1106 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1107 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1108 }
1109unlock_out:
1110 if (rnp != rnp_root)
1111 raw_spin_unlock(&rnp_root->lock);
1112 return c;
1113}
1114
1115/*
1116 * Clean up any old requests for the just-ended grace period. Also return
1117 * whether any additional grace periods have been requested. Also invoke
1118 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1119 * waiting for this grace period to complete.
1120 */
1121static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1122{
1123 int c = rnp->completed;
1124 int needmore;
1125 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1126
1127 rcu_nocb_gp_cleanup(rsp, rnp);
1128 rnp->need_future_gp[c & 0x1] = 0;
1129 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1130 trace_rcu_future_gp(rnp, rdp, c,
1131 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1132 return needmore;
1133}
1134
dc35c893
PM
1135/*
1136 * If there is room, assign a ->completed number to any callbacks on
1137 * this CPU that have not already been assigned. Also accelerate any
1138 * callbacks that were previously assigned a ->completed number that has
1139 * since proven to be too conservative, which can happen if callbacks get
1140 * assigned a ->completed number while RCU is idle, but with reference to
1141 * a non-root rcu_node structure. This function is idempotent, so it does
1142 * not hurt to call it repeatedly.
1143 *
1144 * The caller must hold rnp->lock with interrupts disabled.
1145 */
1146static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1147 struct rcu_data *rdp)
1148{
1149 unsigned long c;
1150 int i;
1151
1152 /* If the CPU has no callbacks, nothing to do. */
1153 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1154 return;
1155
1156 /*
1157 * Starting from the sublist containing the callbacks most
1158 * recently assigned a ->completed number and working down, find the
1159 * first sublist that is not assignable to an upcoming grace period.
1160 * Such a sublist has something in it (first two tests) and has
1161 * a ->completed number assigned that will complete sooner than
1162 * the ->completed number for newly arrived callbacks (last test).
1163 *
1164 * The key point is that any later sublist can be assigned the
1165 * same ->completed number as the newly arrived callbacks, which
1166 * means that the callbacks in any of these later sublist can be
1167 * grouped into a single sublist, whether or not they have already
1168 * been assigned a ->completed number.
1169 */
1170 c = rcu_cbs_completed(rsp, rnp);
1171 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1172 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1173 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1174 break;
1175
1176 /*
1177 * If there are no sublist for unassigned callbacks, leave.
1178 * At the same time, advance "i" one sublist, so that "i" will
1179 * index into the sublist where all the remaining callbacks should
1180 * be grouped into.
1181 */
1182 if (++i >= RCU_NEXT_TAIL)
1183 return;
1184
1185 /*
1186 * Assign all subsequent callbacks' ->completed number to the next
1187 * full grace period and group them all in the sublist initially
1188 * indexed by "i".
1189 */
1190 for (; i <= RCU_NEXT_TAIL; i++) {
1191 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1192 rdp->nxtcompleted[i] = c;
1193 }
910ee45d
PM
1194 /* Record any needed additional grace periods. */
1195 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1196
1197 /* Trace depending on how much we were able to accelerate. */
1198 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1199 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1200 else
f7f7bac9 1201 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1202}
1203
1204/*
1205 * Move any callbacks whose grace period has completed to the
1206 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1207 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1208 * sublist. This function is idempotent, so it does not hurt to
1209 * invoke it repeatedly. As long as it is not invoked -too- often...
1210 *
1211 * The caller must hold rnp->lock with interrupts disabled.
1212 */
1213static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1214 struct rcu_data *rdp)
1215{
1216 int i, j;
1217
1218 /* If the CPU has no callbacks, nothing to do. */
1219 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1220 return;
1221
1222 /*
1223 * Find all callbacks whose ->completed numbers indicate that they
1224 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1225 */
1226 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1227 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1228 break;
1229 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1230 }
1231 /* Clean up any sublist tail pointers that were misordered above. */
1232 for (j = RCU_WAIT_TAIL; j < i; j++)
1233 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1234
1235 /* Copy down callbacks to fill in empty sublists. */
1236 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1237 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1238 break;
1239 rdp->nxttail[j] = rdp->nxttail[i];
1240 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1241 }
1242
1243 /* Classify any remaining callbacks. */
1244 rcu_accelerate_cbs(rsp, rnp, rdp);
1245}
1246
d09b62df 1247/*
ba9fbe95
PM
1248 * Update CPU-local rcu_data state to record the beginnings and ends of
1249 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1250 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1251 */
ba9fbe95 1252static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1253{
ba9fbe95 1254 /* Handle the ends of any preceding grace periods first. */
dc35c893 1255 if (rdp->completed == rnp->completed) {
d09b62df 1256
ba9fbe95 1257 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1258 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1259
dc35c893
PM
1260 } else {
1261
1262 /* Advance callbacks. */
1263 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1264
1265 /* Remember that we saw this grace-period completion. */
1266 rdp->completed = rnp->completed;
f7f7bac9 1267 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1268 }
398ebe60 1269
6eaef633
PM
1270 if (rdp->gpnum != rnp->gpnum) {
1271 /*
1272 * If the current grace period is waiting for this CPU,
1273 * set up to detect a quiescent state, otherwise don't
1274 * go looking for one.
1275 */
1276 rdp->gpnum = rnp->gpnum;
f7f7bac9 1277 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1278 rdp->passed_quiesce = 0;
1279 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1280 zero_cpu_stall_ticks(rdp);
1281 }
1282}
1283
d34ea322 1284static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1285{
1286 unsigned long flags;
1287 struct rcu_node *rnp;
1288
1289 local_irq_save(flags);
1290 rnp = rdp->mynode;
d34ea322
PM
1291 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1292 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1293 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1294 local_irq_restore(flags);
1295 return;
1296 }
d34ea322 1297 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1298 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1299}
1300
b3dbec76 1301/*
7fdefc10 1302 * Initialize a new grace period.
b3dbec76 1303 */
7fdefc10 1304static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1305{
1306 struct rcu_data *rdp;
7fdefc10 1307 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1308
eb75767b 1309 rcu_bind_gp_kthread();
7fdefc10 1310 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1311 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1312
7fdefc10
PM
1313 if (rcu_gp_in_progress(rsp)) {
1314 /* Grace period already in progress, don't start another. */
1315 raw_spin_unlock_irq(&rnp->lock);
1316 return 0;
1317 }
1318
7fdefc10
PM
1319 /* Advance to a new grace period and initialize state. */
1320 rsp->gpnum++;
f7f7bac9 1321 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1322 record_gp_stall_check_time(rsp);
1323 raw_spin_unlock_irq(&rnp->lock);
1324
1325 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1326 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1327
1328 /*
1329 * Set the quiescent-state-needed bits in all the rcu_node
1330 * structures for all currently online CPUs in breadth-first order,
1331 * starting from the root rcu_node structure, relying on the layout
1332 * of the tree within the rsp->node[] array. Note that other CPUs
1333 * will access only the leaves of the hierarchy, thus seeing that no
1334 * grace period is in progress, at least until the corresponding
1335 * leaf node has been initialized. In addition, we have excluded
1336 * CPU-hotplug operations.
1337 *
1338 * The grace period cannot complete until the initialization
1339 * process finishes, because this kthread handles both.
1340 */
1341 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1342 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1343 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1344 rcu_preempt_check_blocked_tasks(rnp);
1345 rnp->qsmask = rnp->qsmaskinit;
0446be48 1346 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1347 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1348 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1349 if (rnp == rdp->mynode)
ce3d9c03 1350 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1351 rcu_preempt_boost_start_gp(rnp);
1352 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1353 rnp->level, rnp->grplo,
1354 rnp->grphi, rnp->qsmask);
1355 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1356#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1357 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1358 system_state == SYSTEM_RUNNING)
971394f3 1359 udelay(200);
661a85dc 1360#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1361 cond_resched();
1362 }
b3dbec76 1363
a4fbe35a 1364 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1365 return 1;
1366}
b3dbec76 1367
4cdfc175
PM
1368/*
1369 * Do one round of quiescent-state forcing.
1370 */
01896f7e 1371static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1372{
1373 int fqs_state = fqs_state_in;
217af2a2
PM
1374 bool isidle = false;
1375 unsigned long maxj;
4cdfc175
PM
1376 struct rcu_node *rnp = rcu_get_root(rsp);
1377
1378 rsp->n_force_qs++;
1379 if (fqs_state == RCU_SAVE_DYNTICK) {
1380 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1381 if (is_sysidle_rcu_state(rsp)) {
1382 isidle = 1;
1383 maxj = jiffies - ULONG_MAX / 4;
1384 }
217af2a2
PM
1385 force_qs_rnp(rsp, dyntick_save_progress_counter,
1386 &isidle, &maxj);
0edd1b17 1387 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1388 fqs_state = RCU_FORCE_QS;
1389 } else {
1390 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1391 isidle = 0;
217af2a2 1392 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1393 }
1394 /* Clear flag to prevent immediate re-entry. */
1395 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1396 raw_spin_lock_irq(&rnp->lock);
1397 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1398 raw_spin_unlock_irq(&rnp->lock);
1399 }
1400 return fqs_state;
1401}
1402
7fdefc10
PM
1403/*
1404 * Clean up after the old grace period.
1405 */
4cdfc175 1406static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1407{
1408 unsigned long gp_duration;
dae6e64d 1409 int nocb = 0;
7fdefc10
PM
1410 struct rcu_data *rdp;
1411 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1412
7fdefc10
PM
1413 raw_spin_lock_irq(&rnp->lock);
1414 gp_duration = jiffies - rsp->gp_start;
1415 if (gp_duration > rsp->gp_max)
1416 rsp->gp_max = gp_duration;
b3dbec76 1417
7fdefc10
PM
1418 /*
1419 * We know the grace period is complete, but to everyone else
1420 * it appears to still be ongoing. But it is also the case
1421 * that to everyone else it looks like there is nothing that
1422 * they can do to advance the grace period. It is therefore
1423 * safe for us to drop the lock in order to mark the grace
1424 * period as completed in all of the rcu_node structures.
7fdefc10 1425 */
5d4b8659 1426 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1427
5d4b8659
PM
1428 /*
1429 * Propagate new ->completed value to rcu_node structures so
1430 * that other CPUs don't have to wait until the start of the next
1431 * grace period to process their callbacks. This also avoids
1432 * some nasty RCU grace-period initialization races by forcing
1433 * the end of the current grace period to be completely recorded in
1434 * all of the rcu_node structures before the beginning of the next
1435 * grace period is recorded in any of the rcu_node structures.
1436 */
1437 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1438 raw_spin_lock_irq(&rnp->lock);
0446be48 1439 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1440 rdp = this_cpu_ptr(rsp->rda);
1441 if (rnp == rdp->mynode)
470716fc 1442 __note_gp_changes(rsp, rnp, rdp);
0446be48 1443 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1444 raw_spin_unlock_irq(&rnp->lock);
1445 cond_resched();
7fdefc10 1446 }
5d4b8659
PM
1447 rnp = rcu_get_root(rsp);
1448 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1449 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1450
1451 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1452 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1453 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1454 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1455 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10 1456 if (cpu_needs_another_gp(rsp, rdp))
b3f2d025 1457 rsp->gp_flags = RCU_GP_FLAG_INIT;
7fdefc10 1458 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1459}
1460
1461/*
1462 * Body of kthread that handles grace periods.
1463 */
1464static int __noreturn rcu_gp_kthread(void *arg)
1465{
4cdfc175 1466 int fqs_state;
d40011f6 1467 unsigned long j;
4cdfc175 1468 int ret;
7fdefc10
PM
1469 struct rcu_state *rsp = arg;
1470 struct rcu_node *rnp = rcu_get_root(rsp);
1471
1472 for (;;) {
1473
1474 /* Handle grace-period start. */
1475 for (;;) {
4cdfc175
PM
1476 wait_event_interruptible(rsp->gp_wq,
1477 rsp->gp_flags &
1478 RCU_GP_FLAG_INIT);
1479 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1480 rcu_gp_init(rsp))
7fdefc10
PM
1481 break;
1482 cond_resched();
1483 flush_signals(current);
1484 }
cabc49c1 1485
4cdfc175
PM
1486 /* Handle quiescent-state forcing. */
1487 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1488 j = jiffies_till_first_fqs;
1489 if (j > HZ) {
1490 j = HZ;
1491 jiffies_till_first_fqs = HZ;
1492 }
cabc49c1 1493 for (;;) {
d40011f6 1494 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1495 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1496 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1497 (!ACCESS_ONCE(rnp->qsmask) &&
1498 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1499 j);
4cdfc175 1500 /* If grace period done, leave loop. */
cabc49c1 1501 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1502 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1503 break;
4cdfc175
PM
1504 /* If time for quiescent-state forcing, do it. */
1505 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1506 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1507 cond_resched();
1508 } else {
1509 /* Deal with stray signal. */
1510 cond_resched();
1511 flush_signals(current);
1512 }
d40011f6
PM
1513 j = jiffies_till_next_fqs;
1514 if (j > HZ) {
1515 j = HZ;
1516 jiffies_till_next_fqs = HZ;
1517 } else if (j < 1) {
1518 j = 1;
1519 jiffies_till_next_fqs = 1;
1520 }
cabc49c1 1521 }
4cdfc175
PM
1522
1523 /* Handle grace-period end. */
1524 rcu_gp_cleanup(rsp);
b3dbec76 1525 }
b3dbec76
PM
1526}
1527
016a8d5b
SR
1528static void rsp_wakeup(struct irq_work *work)
1529{
1530 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1531
1532 /* Wake up rcu_gp_kthread() to start the grace period. */
1533 wake_up(&rsp->gp_wq);
1534}
1535
64db4cff
PM
1536/*
1537 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1538 * in preparation for detecting the next grace period. The caller must hold
b8462084 1539 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1540 *
1541 * Note that it is legal for a dying CPU (which is marked as offline) to
1542 * invoke this function. This can happen when the dying CPU reports its
1543 * quiescent state.
64db4cff
PM
1544 */
1545static void
910ee45d
PM
1546rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1547 struct rcu_data *rdp)
64db4cff 1548{
b8462084 1549 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1550 /*
b3dbec76 1551 * Either we have not yet spawned the grace-period
62da1921
PM
1552 * task, this CPU does not need another grace period,
1553 * or a grace period is already in progress.
b3dbec76 1554 * Either way, don't start a new grace period.
afe24b12 1555 */
afe24b12
PM
1556 return;
1557 }
4cdfc175 1558 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921 1559
016a8d5b
SR
1560 /*
1561 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1562 * could cause possible deadlocks with the rq->lock. Defer
1563 * the wakeup to interrupt context. And don't bother waking
1564 * up the running kthread.
016a8d5b 1565 */
1eafd31c
PM
1566 if (current != rsp->gp_kthread)
1567 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1568}
1569
910ee45d
PM
1570/*
1571 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1572 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1573 * is invoked indirectly from rcu_advance_cbs(), which would result in
1574 * endless recursion -- or would do so if it wasn't for the self-deadlock
1575 * that is encountered beforehand.
1576 */
1577static void
1578rcu_start_gp(struct rcu_state *rsp)
1579{
1580 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1581 struct rcu_node *rnp = rcu_get_root(rsp);
1582
1583 /*
1584 * If there is no grace period in progress right now, any
1585 * callbacks we have up to this point will be satisfied by the
1586 * next grace period. Also, advancing the callbacks reduces the
1587 * probability of false positives from cpu_needs_another_gp()
1588 * resulting in pointless grace periods. So, advance callbacks
1589 * then start the grace period!
1590 */
1591 rcu_advance_cbs(rsp, rnp, rdp);
1592 rcu_start_gp_advanced(rsp, rnp, rdp);
1593}
1594
f41d911f 1595/*
d3f6bad3
PM
1596 * Report a full set of quiescent states to the specified rcu_state
1597 * data structure. This involves cleaning up after the prior grace
1598 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1599 * if one is needed. Note that the caller must hold rnp->lock, which
1600 * is released before return.
f41d911f 1601 */
d3f6bad3 1602static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1603 __releases(rcu_get_root(rsp)->lock)
f41d911f 1604{
fc2219d4 1605 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1606 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1607 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1608}
1609
64db4cff 1610/*
d3f6bad3
PM
1611 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1612 * Allows quiescent states for a group of CPUs to be reported at one go
1613 * to the specified rcu_node structure, though all the CPUs in the group
1614 * must be represented by the same rcu_node structure (which need not be
1615 * a leaf rcu_node structure, though it often will be). That structure's
1616 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1617 */
1618static void
d3f6bad3
PM
1619rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1620 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1621 __releases(rnp->lock)
1622{
28ecd580
PM
1623 struct rcu_node *rnp_c;
1624
64db4cff
PM
1625 /* Walk up the rcu_node hierarchy. */
1626 for (;;) {
1627 if (!(rnp->qsmask & mask)) {
1628
1629 /* Our bit has already been cleared, so done. */
1304afb2 1630 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1631 return;
1632 }
1633 rnp->qsmask &= ~mask;
d4c08f2a
PM
1634 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1635 mask, rnp->qsmask, rnp->level,
1636 rnp->grplo, rnp->grphi,
1637 !!rnp->gp_tasks);
27f4d280 1638 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1639
1640 /* Other bits still set at this level, so done. */
1304afb2 1641 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1642 return;
1643 }
1644 mask = rnp->grpmask;
1645 if (rnp->parent == NULL) {
1646
1647 /* No more levels. Exit loop holding root lock. */
1648
1649 break;
1650 }
1304afb2 1651 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1652 rnp_c = rnp;
64db4cff 1653 rnp = rnp->parent;
1304afb2 1654 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1655 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1656 }
1657
1658 /*
1659 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1660 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1661 * to clean up and start the next grace period if one is needed.
64db4cff 1662 */
d3f6bad3 1663 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1664}
1665
1666/*
d3f6bad3
PM
1667 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1668 * structure. This must be either called from the specified CPU, or
1669 * called when the specified CPU is known to be offline (and when it is
1670 * also known that no other CPU is concurrently trying to help the offline
1671 * CPU). The lastcomp argument is used to make sure we are still in the
1672 * grace period of interest. We don't want to end the current grace period
1673 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1674 */
1675static void
d7d6a11e 1676rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1677{
1678 unsigned long flags;
1679 unsigned long mask;
1680 struct rcu_node *rnp;
1681
1682 rnp = rdp->mynode;
1304afb2 1683 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1684 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1685 rnp->completed == rnp->gpnum) {
64db4cff
PM
1686
1687 /*
e4cc1f22
PM
1688 * The grace period in which this quiescent state was
1689 * recorded has ended, so don't report it upwards.
1690 * We will instead need a new quiescent state that lies
1691 * within the current grace period.
64db4cff 1692 */
e4cc1f22 1693 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1694 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1695 return;
1696 }
1697 mask = rdp->grpmask;
1698 if ((rnp->qsmask & mask) == 0) {
1304afb2 1699 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1700 } else {
1701 rdp->qs_pending = 0;
1702
1703 /*
1704 * This GP can't end until cpu checks in, so all of our
1705 * callbacks can be processed during the next GP.
1706 */
dc35c893 1707 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1708
d3f6bad3 1709 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1710 }
1711}
1712
1713/*
1714 * Check to see if there is a new grace period of which this CPU
1715 * is not yet aware, and if so, set up local rcu_data state for it.
1716 * Otherwise, see if this CPU has just passed through its first
1717 * quiescent state for this grace period, and record that fact if so.
1718 */
1719static void
1720rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1721{
05eb552b
PM
1722 /* Check for grace-period ends and beginnings. */
1723 note_gp_changes(rsp, rdp);
64db4cff
PM
1724
1725 /*
1726 * Does this CPU still need to do its part for current grace period?
1727 * If no, return and let the other CPUs do their part as well.
1728 */
1729 if (!rdp->qs_pending)
1730 return;
1731
1732 /*
1733 * Was there a quiescent state since the beginning of the grace
1734 * period? If no, then exit and wait for the next call.
1735 */
e4cc1f22 1736 if (!rdp->passed_quiesce)
64db4cff
PM
1737 return;
1738
d3f6bad3
PM
1739 /*
1740 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1741 * judge of that).
1742 */
d7d6a11e 1743 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1744}
1745
1746#ifdef CONFIG_HOTPLUG_CPU
1747
e74f4c45 1748/*
b1420f1c
PM
1749 * Send the specified CPU's RCU callbacks to the orphanage. The
1750 * specified CPU must be offline, and the caller must hold the
7b2e6011 1751 * ->orphan_lock.
e74f4c45 1752 */
b1420f1c
PM
1753static void
1754rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1755 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1756{
3fbfbf7a 1757 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1758 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1759 return;
1760
b1420f1c
PM
1761 /*
1762 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1763 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1764 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1765 */
a50c3af9 1766 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1767 rsp->qlen_lazy += rdp->qlen_lazy;
1768 rsp->qlen += rdp->qlen;
1769 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1770 rdp->qlen_lazy = 0;
1d1fb395 1771 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1772 }
1773
1774 /*
b1420f1c
PM
1775 * Next, move those callbacks still needing a grace period to
1776 * the orphanage, where some other CPU will pick them up.
1777 * Some of the callbacks might have gone partway through a grace
1778 * period, but that is too bad. They get to start over because we
1779 * cannot assume that grace periods are synchronized across CPUs.
1780 * We don't bother updating the ->nxttail[] array yet, instead
1781 * we just reset the whole thing later on.
a50c3af9 1782 */
b1420f1c
PM
1783 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1784 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1785 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1786 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1787 }
1788
1789 /*
b1420f1c
PM
1790 * Then move the ready-to-invoke callbacks to the orphanage,
1791 * where some other CPU will pick them up. These will not be
1792 * required to pass though another grace period: They are done.
a50c3af9 1793 */
e5601400 1794 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1795 *rsp->orphan_donetail = rdp->nxtlist;
1796 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1797 }
e74f4c45 1798
b1420f1c 1799 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1800 init_callback_list(rdp);
b1420f1c
PM
1801}
1802
1803/*
1804 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1805 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1806 */
1807static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1808{
1809 int i;
1810 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1811
3fbfbf7a
PM
1812 /* No-CBs CPUs are handled specially. */
1813 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1814 return;
1815
b1420f1c
PM
1816 /* Do the accounting first. */
1817 rdp->qlen_lazy += rsp->qlen_lazy;
1818 rdp->qlen += rsp->qlen;
1819 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1820 if (rsp->qlen_lazy != rsp->qlen)
1821 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1822 rsp->qlen_lazy = 0;
1823 rsp->qlen = 0;
1824
1825 /*
1826 * We do not need a memory barrier here because the only way we
1827 * can get here if there is an rcu_barrier() in flight is if
1828 * we are the task doing the rcu_barrier().
1829 */
1830
1831 /* First adopt the ready-to-invoke callbacks. */
1832 if (rsp->orphan_donelist != NULL) {
1833 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1834 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1835 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1836 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1837 rdp->nxttail[i] = rsp->orphan_donetail;
1838 rsp->orphan_donelist = NULL;
1839 rsp->orphan_donetail = &rsp->orphan_donelist;
1840 }
1841
1842 /* And then adopt the callbacks that still need a grace period. */
1843 if (rsp->orphan_nxtlist != NULL) {
1844 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1845 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1846 rsp->orphan_nxtlist = NULL;
1847 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1848 }
1849}
1850
1851/*
1852 * Trace the fact that this CPU is going offline.
1853 */
1854static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1855{
1856 RCU_TRACE(unsigned long mask);
1857 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1858 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1859
1860 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1861 trace_rcu_grace_period(rsp->name,
1862 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1863 TPS("cpuofl"));
64db4cff
PM
1864}
1865
1866/*
e5601400 1867 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1868 * this fact from process context. Do the remainder of the cleanup,
1869 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1870 * adopting them. There can only be one CPU hotplug operation at a time,
1871 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1872 */
e5601400 1873static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1874{
2036d94a
PM
1875 unsigned long flags;
1876 unsigned long mask;
1877 int need_report = 0;
e5601400 1878 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1879 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1880
2036d94a 1881 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1882 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1883
b1420f1c 1884 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1885
1886 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1887 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1888 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1889
b1420f1c
PM
1890 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1891 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1892 rcu_adopt_orphan_cbs(rsp);
1893
2036d94a
PM
1894 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1895 mask = rdp->grpmask; /* rnp->grplo is constant. */
1896 do {
1897 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1898 rnp->qsmaskinit &= ~mask;
1899 if (rnp->qsmaskinit != 0) {
1900 if (rnp != rdp->mynode)
1901 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1902 break;
1903 }
1904 if (rnp == rdp->mynode)
1905 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1906 else
1907 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1908 mask = rnp->grpmask;
1909 rnp = rnp->parent;
1910 } while (rnp != NULL);
1911
1912 /*
1913 * We still hold the leaf rcu_node structure lock here, and
1914 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1915 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1916 * held leads to deadlock.
1917 */
7b2e6011 1918 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1919 rnp = rdp->mynode;
1920 if (need_report & RCU_OFL_TASKS_NORM_GP)
1921 rcu_report_unblock_qs_rnp(rnp, flags);
1922 else
1923 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1924 if (need_report & RCU_OFL_TASKS_EXP_GP)
1925 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1926 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1927 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1928 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1929 init_callback_list(rdp);
1930 /* Disallow further callbacks on this CPU. */
1931 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1932 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1933}
1934
1935#else /* #ifdef CONFIG_HOTPLUG_CPU */
1936
e5601400 1937static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1938{
1939}
1940
e5601400 1941static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1942{
1943}
1944
1945#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1946
1947/*
1948 * Invoke any RCU callbacks that have made it to the end of their grace
1949 * period. Thottle as specified by rdp->blimit.
1950 */
37c72e56 1951static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1952{
1953 unsigned long flags;
1954 struct rcu_head *next, *list, **tail;
878d7439
ED
1955 long bl, count, count_lazy;
1956 int i;
64db4cff 1957
dc35c893 1958 /* If no callbacks are ready, just return. */
29c00b4a 1959 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1960 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1961 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1962 need_resched(), is_idle_task(current),
1963 rcu_is_callbacks_kthread());
64db4cff 1964 return;
29c00b4a 1965 }
64db4cff
PM
1966
1967 /*
1968 * Extract the list of ready callbacks, disabling to prevent
1969 * races with call_rcu() from interrupt handlers.
1970 */
1971 local_irq_save(flags);
8146c4e2 1972 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1973 bl = rdp->blimit;
486e2593 1974 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1975 list = rdp->nxtlist;
1976 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1977 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1978 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1979 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1980 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1981 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1982 local_irq_restore(flags);
1983
1984 /* Invoke callbacks. */
486e2593 1985 count = count_lazy = 0;
64db4cff
PM
1986 while (list) {
1987 next = list->next;
1988 prefetch(next);
551d55a9 1989 debug_rcu_head_unqueue(list);
486e2593
PM
1990 if (__rcu_reclaim(rsp->name, list))
1991 count_lazy++;
64db4cff 1992 list = next;
dff1672d
PM
1993 /* Stop only if limit reached and CPU has something to do. */
1994 if (++count >= bl &&
1995 (need_resched() ||
1996 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1997 break;
1998 }
1999
2000 local_irq_save(flags);
4968c300
PM
2001 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2002 is_idle_task(current),
2003 rcu_is_callbacks_kthread());
64db4cff
PM
2004
2005 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2006 if (list != NULL) {
2007 *tail = rdp->nxtlist;
2008 rdp->nxtlist = list;
b41772ab
PM
2009 for (i = 0; i < RCU_NEXT_SIZE; i++)
2010 if (&rdp->nxtlist == rdp->nxttail[i])
2011 rdp->nxttail[i] = tail;
64db4cff
PM
2012 else
2013 break;
2014 }
b1420f1c
PM
2015 smp_mb(); /* List handling before counting for rcu_barrier(). */
2016 rdp->qlen_lazy -= count_lazy;
1d1fb395 2017 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2018 rdp->n_cbs_invoked += count;
64db4cff
PM
2019
2020 /* Reinstate batch limit if we have worked down the excess. */
2021 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2022 rdp->blimit = blimit;
2023
37c72e56
PM
2024 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2025 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2026 rdp->qlen_last_fqs_check = 0;
2027 rdp->n_force_qs_snap = rsp->n_force_qs;
2028 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2029 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2030 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2031
64db4cff
PM
2032 local_irq_restore(flags);
2033
e0f23060 2034 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2035 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2036 invoke_rcu_core();
64db4cff
PM
2037}
2038
2039/*
2040 * Check to see if this CPU is in a non-context-switch quiescent state
2041 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2042 * Also schedule RCU core processing.
64db4cff 2043 *
9b2e4f18 2044 * This function must be called from hardirq context. It is normally
64db4cff
PM
2045 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2046 * false, there is no point in invoking rcu_check_callbacks().
2047 */
2048void rcu_check_callbacks(int cpu, int user)
2049{
f7f7bac9 2050 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2051 increment_cpu_stall_ticks();
9b2e4f18 2052 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2053
2054 /*
2055 * Get here if this CPU took its interrupt from user
2056 * mode or from the idle loop, and if this is not a
2057 * nested interrupt. In this case, the CPU is in
d6714c22 2058 * a quiescent state, so note it.
64db4cff
PM
2059 *
2060 * No memory barrier is required here because both
d6714c22
PM
2061 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2062 * variables that other CPUs neither access nor modify,
2063 * at least not while the corresponding CPU is online.
64db4cff
PM
2064 */
2065
d6714c22
PM
2066 rcu_sched_qs(cpu);
2067 rcu_bh_qs(cpu);
64db4cff
PM
2068
2069 } else if (!in_softirq()) {
2070
2071 /*
2072 * Get here if this CPU did not take its interrupt from
2073 * softirq, in other words, if it is not interrupting
2074 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2075 * critical section, so note it.
64db4cff
PM
2076 */
2077
d6714c22 2078 rcu_bh_qs(cpu);
64db4cff 2079 }
f41d911f 2080 rcu_preempt_check_callbacks(cpu);
d21670ac 2081 if (rcu_pending(cpu))
a46e0899 2082 invoke_rcu_core();
f7f7bac9 2083 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2084}
2085
64db4cff
PM
2086/*
2087 * Scan the leaf rcu_node structures, processing dyntick state for any that
2088 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2089 * Also initiate boosting for any threads blocked on the root rcu_node.
2090 *
ee47eb9f 2091 * The caller must have suppressed start of new grace periods.
64db4cff 2092 */
217af2a2
PM
2093static void force_qs_rnp(struct rcu_state *rsp,
2094 int (*f)(struct rcu_data *rsp, bool *isidle,
2095 unsigned long *maxj),
2096 bool *isidle, unsigned long *maxj)
64db4cff
PM
2097{
2098 unsigned long bit;
2099 int cpu;
2100 unsigned long flags;
2101 unsigned long mask;
a0b6c9a7 2102 struct rcu_node *rnp;
64db4cff 2103
a0b6c9a7 2104 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2105 cond_resched();
64db4cff 2106 mask = 0;
1304afb2 2107 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2108 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2109 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2110 return;
64db4cff 2111 }
a0b6c9a7 2112 if (rnp->qsmask == 0) {
1217ed1b 2113 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2114 continue;
2115 }
a0b6c9a7 2116 cpu = rnp->grplo;
64db4cff 2117 bit = 1;
a0b6c9a7 2118 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2119 if ((rnp->qsmask & bit) != 0) {
2120 if ((rnp->qsmaskinit & bit) != 0)
2121 *isidle = 0;
2122 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2123 mask |= bit;
2124 }
64db4cff 2125 }
45f014c5 2126 if (mask != 0) {
64db4cff 2127
d3f6bad3
PM
2128 /* rcu_report_qs_rnp() releases rnp->lock. */
2129 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2130 continue;
2131 }
1304afb2 2132 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2133 }
27f4d280 2134 rnp = rcu_get_root(rsp);
1217ed1b
PM
2135 if (rnp->qsmask == 0) {
2136 raw_spin_lock_irqsave(&rnp->lock, flags);
2137 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2138 }
64db4cff
PM
2139}
2140
2141/*
2142 * Force quiescent states on reluctant CPUs, and also detect which
2143 * CPUs are in dyntick-idle mode.
2144 */
4cdfc175 2145static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2146{
2147 unsigned long flags;
394f2769
PM
2148 bool ret;
2149 struct rcu_node *rnp;
2150 struct rcu_node *rnp_old = NULL;
2151
2152 /* Funnel through hierarchy to reduce memory contention. */
2153 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2154 for (; rnp != NULL; rnp = rnp->parent) {
2155 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2156 !raw_spin_trylock(&rnp->fqslock);
2157 if (rnp_old != NULL)
2158 raw_spin_unlock(&rnp_old->fqslock);
2159 if (ret) {
2160 rsp->n_force_qs_lh++;
2161 return;
2162 }
2163 rnp_old = rnp;
2164 }
2165 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2166
394f2769
PM
2167 /* Reached the root of the rcu_node tree, acquire lock. */
2168 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2169 raw_spin_unlock(&rnp_old->fqslock);
2170 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2171 rsp->n_force_qs_lh++;
2172 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2173 return; /* Someone beat us to it. */
46a1e34e 2174 }
4cdfc175 2175 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2176 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2177 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2178}
2179
64db4cff 2180/*
e0f23060
PM
2181 * This does the RCU core processing work for the specified rcu_state
2182 * and rcu_data structures. This may be called only from the CPU to
2183 * whom the rdp belongs.
64db4cff
PM
2184 */
2185static void
1bca8cf1 2186__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2187{
2188 unsigned long flags;
1bca8cf1 2189 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2190
2e597558
PM
2191 WARN_ON_ONCE(rdp->beenonline == 0);
2192
64db4cff
PM
2193 /* Update RCU state based on any recent quiescent states. */
2194 rcu_check_quiescent_state(rsp, rdp);
2195
2196 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2197 local_irq_save(flags);
64db4cff 2198 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2199 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2200 rcu_start_gp(rsp);
2201 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2202 } else {
2203 local_irq_restore(flags);
64db4cff
PM
2204 }
2205
2206 /* If there are callbacks ready, invoke them. */
09223371 2207 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2208 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2209}
2210
64db4cff 2211/*
e0f23060 2212 * Do RCU core processing for the current CPU.
64db4cff 2213 */
09223371 2214static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2215{
6ce75a23
PM
2216 struct rcu_state *rsp;
2217
bfa00b4c
PM
2218 if (cpu_is_offline(smp_processor_id()))
2219 return;
f7f7bac9 2220 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2221 for_each_rcu_flavor(rsp)
2222 __rcu_process_callbacks(rsp);
f7f7bac9 2223 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2224}
2225
a26ac245 2226/*
e0f23060
PM
2227 * Schedule RCU callback invocation. If the specified type of RCU
2228 * does not support RCU priority boosting, just do a direct call,
2229 * otherwise wake up the per-CPU kernel kthread. Note that because we
2230 * are running on the current CPU with interrupts disabled, the
2231 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2232 */
a46e0899 2233static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2234{
b0d30417
PM
2235 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2236 return;
a46e0899
PM
2237 if (likely(!rsp->boost)) {
2238 rcu_do_batch(rsp, rdp);
a26ac245
PM
2239 return;
2240 }
a46e0899 2241 invoke_rcu_callbacks_kthread();
a26ac245
PM
2242}
2243
a46e0899 2244static void invoke_rcu_core(void)
09223371 2245{
b0f74036
PM
2246 if (cpu_online(smp_processor_id()))
2247 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2248}
2249
29154c57
PM
2250/*
2251 * Handle any core-RCU processing required by a call_rcu() invocation.
2252 */
2253static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2254 struct rcu_head *head, unsigned long flags)
64db4cff 2255{
62fde6ed
PM
2256 /*
2257 * If called from an extended quiescent state, invoke the RCU
2258 * core in order to force a re-evaluation of RCU's idleness.
2259 */
a16b7a69 2260 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2261 invoke_rcu_core();
2262
a16b7a69 2263 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2264 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2265 return;
64db4cff 2266
37c72e56
PM
2267 /*
2268 * Force the grace period if too many callbacks or too long waiting.
2269 * Enforce hysteresis, and don't invoke force_quiescent_state()
2270 * if some other CPU has recently done so. Also, don't bother
2271 * invoking force_quiescent_state() if the newly enqueued callback
2272 * is the only one waiting for a grace period to complete.
2273 */
2655d57e 2274 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2275
2276 /* Are we ignoring a completed grace period? */
470716fc 2277 note_gp_changes(rsp, rdp);
b52573d2
PM
2278
2279 /* Start a new grace period if one not already started. */
2280 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2281 struct rcu_node *rnp_root = rcu_get_root(rsp);
2282
b8462084
PM
2283 raw_spin_lock(&rnp_root->lock);
2284 rcu_start_gp(rsp);
2285 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2286 } else {
2287 /* Give the grace period a kick. */
2288 rdp->blimit = LONG_MAX;
2289 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2290 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2291 force_quiescent_state(rsp);
b52573d2
PM
2292 rdp->n_force_qs_snap = rsp->n_force_qs;
2293 rdp->qlen_last_fqs_check = rdp->qlen;
2294 }
4cdfc175 2295 }
29154c57
PM
2296}
2297
ae150184
PM
2298/*
2299 * RCU callback function to leak a callback.
2300 */
2301static void rcu_leak_callback(struct rcu_head *rhp)
2302{
2303}
2304
3fbfbf7a
PM
2305/*
2306 * Helper function for call_rcu() and friends. The cpu argument will
2307 * normally be -1, indicating "currently running CPU". It may specify
2308 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2309 * is expected to specify a CPU.
2310 */
64db4cff
PM
2311static void
2312__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2313 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2314{
2315 unsigned long flags;
2316 struct rcu_data *rdp;
2317
0bb7b59d 2318 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2319 if (debug_rcu_head_queue(head)) {
2320 /* Probable double call_rcu(), so leak the callback. */
2321 ACCESS_ONCE(head->func) = rcu_leak_callback;
2322 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2323 return;
2324 }
64db4cff
PM
2325 head->func = func;
2326 head->next = NULL;
2327
64db4cff
PM
2328 /*
2329 * Opportunistically note grace-period endings and beginnings.
2330 * Note that we might see a beginning right after we see an
2331 * end, but never vice versa, since this CPU has to pass through
2332 * a quiescent state betweentimes.
2333 */
2334 local_irq_save(flags);
394f99a9 2335 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2336
2337 /* Add the callback to our list. */
3fbfbf7a
PM
2338 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2339 int offline;
2340
2341 if (cpu != -1)
2342 rdp = per_cpu_ptr(rsp->rda, cpu);
2343 offline = !__call_rcu_nocb(rdp, head, lazy);
2344 WARN_ON_ONCE(offline);
0d8ee37e 2345 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2346 local_irq_restore(flags);
2347 return;
2348 }
29154c57 2349 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2350 if (lazy)
2351 rdp->qlen_lazy++;
c57afe80
PM
2352 else
2353 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2354 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2355 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2356 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2357
d4c08f2a
PM
2358 if (__is_kfree_rcu_offset((unsigned long)func))
2359 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2360 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2361 else
486e2593 2362 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2363
29154c57
PM
2364 /* Go handle any RCU core processing required. */
2365 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2366 local_irq_restore(flags);
2367}
2368
2369/*
d6714c22 2370 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2371 */
d6714c22 2372void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2373{
3fbfbf7a 2374 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2375}
d6714c22 2376EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2377
2378/*
486e2593 2379 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2380 */
2381void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2382{
3fbfbf7a 2383 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2384}
2385EXPORT_SYMBOL_GPL(call_rcu_bh);
2386
6d813391
PM
2387/*
2388 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2389 * any blocking grace-period wait automatically implies a grace period
2390 * if there is only one CPU online at any point time during execution
2391 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2392 * occasionally incorrectly indicate that there are multiple CPUs online
2393 * when there was in fact only one the whole time, as this just adds
2394 * some overhead: RCU still operates correctly.
6d813391
PM
2395 */
2396static inline int rcu_blocking_is_gp(void)
2397{
95f0c1de
PM
2398 int ret;
2399
6d813391 2400 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2401 preempt_disable();
2402 ret = num_online_cpus() <= 1;
2403 preempt_enable();
2404 return ret;
6d813391
PM
2405}
2406
6ebb237b
PM
2407/**
2408 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2409 *
2410 * Control will return to the caller some time after a full rcu-sched
2411 * grace period has elapsed, in other words after all currently executing
2412 * rcu-sched read-side critical sections have completed. These read-side
2413 * critical sections are delimited by rcu_read_lock_sched() and
2414 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2415 * local_irq_disable(), and so on may be used in place of
2416 * rcu_read_lock_sched().
2417 *
2418 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2419 * non-threaded hardware-interrupt handlers, in progress on entry will
2420 * have completed before this primitive returns. However, this does not
2421 * guarantee that softirq handlers will have completed, since in some
2422 * kernels, these handlers can run in process context, and can block.
2423 *
2424 * Note that this guarantee implies further memory-ordering guarantees.
2425 * On systems with more than one CPU, when synchronize_sched() returns,
2426 * each CPU is guaranteed to have executed a full memory barrier since the
2427 * end of its last RCU-sched read-side critical section whose beginning
2428 * preceded the call to synchronize_sched(). In addition, each CPU having
2429 * an RCU read-side critical section that extends beyond the return from
2430 * synchronize_sched() is guaranteed to have executed a full memory barrier
2431 * after the beginning of synchronize_sched() and before the beginning of
2432 * that RCU read-side critical section. Note that these guarantees include
2433 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2434 * that are executing in the kernel.
2435 *
2436 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2437 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2438 * to have executed a full memory barrier during the execution of
2439 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2440 * again only if the system has more than one CPU).
6ebb237b
PM
2441 *
2442 * This primitive provides the guarantees made by the (now removed)
2443 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2444 * guarantees that rcu_read_lock() sections will have completed.
2445 * In "classic RCU", these two guarantees happen to be one and
2446 * the same, but can differ in realtime RCU implementations.
2447 */
2448void synchronize_sched(void)
2449{
fe15d706
PM
2450 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2451 !lock_is_held(&rcu_lock_map) &&
2452 !lock_is_held(&rcu_sched_lock_map),
2453 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2454 if (rcu_blocking_is_gp())
2455 return;
3705b88d
AM
2456 if (rcu_expedited)
2457 synchronize_sched_expedited();
2458 else
2459 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2460}
2461EXPORT_SYMBOL_GPL(synchronize_sched);
2462
2463/**
2464 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2465 *
2466 * Control will return to the caller some time after a full rcu_bh grace
2467 * period has elapsed, in other words after all currently executing rcu_bh
2468 * read-side critical sections have completed. RCU read-side critical
2469 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2470 * and may be nested.
f0a0e6f2
PM
2471 *
2472 * See the description of synchronize_sched() for more detailed information
2473 * on memory ordering guarantees.
6ebb237b
PM
2474 */
2475void synchronize_rcu_bh(void)
2476{
fe15d706
PM
2477 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2478 !lock_is_held(&rcu_lock_map) &&
2479 !lock_is_held(&rcu_sched_lock_map),
2480 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2481 if (rcu_blocking_is_gp())
2482 return;
3705b88d
AM
2483 if (rcu_expedited)
2484 synchronize_rcu_bh_expedited();
2485 else
2486 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2487}
2488EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2489
3d3b7db0
PM
2490static int synchronize_sched_expedited_cpu_stop(void *data)
2491{
2492 /*
2493 * There must be a full memory barrier on each affected CPU
2494 * between the time that try_stop_cpus() is called and the
2495 * time that it returns.
2496 *
2497 * In the current initial implementation of cpu_stop, the
2498 * above condition is already met when the control reaches
2499 * this point and the following smp_mb() is not strictly
2500 * necessary. Do smp_mb() anyway for documentation and
2501 * robustness against future implementation changes.
2502 */
2503 smp_mb(); /* See above comment block. */
2504 return 0;
2505}
2506
236fefaf
PM
2507/**
2508 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2509 *
2510 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2511 * approach to force the grace period to end quickly. This consumes
2512 * significant time on all CPUs and is unfriendly to real-time workloads,
2513 * so is thus not recommended for any sort of common-case code. In fact,
2514 * if you are using synchronize_sched_expedited() in a loop, please
2515 * restructure your code to batch your updates, and then use a single
2516 * synchronize_sched() instead.
3d3b7db0 2517 *
236fefaf
PM
2518 * Note that it is illegal to call this function while holding any lock
2519 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2520 * to call this function from a CPU-hotplug notifier. Failing to observe
2521 * these restriction will result in deadlock.
3d3b7db0
PM
2522 *
2523 * This implementation can be thought of as an application of ticket
2524 * locking to RCU, with sync_sched_expedited_started and
2525 * sync_sched_expedited_done taking on the roles of the halves
2526 * of the ticket-lock word. Each task atomically increments
2527 * sync_sched_expedited_started upon entry, snapshotting the old value,
2528 * then attempts to stop all the CPUs. If this succeeds, then each
2529 * CPU will have executed a context switch, resulting in an RCU-sched
2530 * grace period. We are then done, so we use atomic_cmpxchg() to
2531 * update sync_sched_expedited_done to match our snapshot -- but
2532 * only if someone else has not already advanced past our snapshot.
2533 *
2534 * On the other hand, if try_stop_cpus() fails, we check the value
2535 * of sync_sched_expedited_done. If it has advanced past our
2536 * initial snapshot, then someone else must have forced a grace period
2537 * some time after we took our snapshot. In this case, our work is
2538 * done for us, and we can simply return. Otherwise, we try again,
2539 * but keep our initial snapshot for purposes of checking for someone
2540 * doing our work for us.
2541 *
2542 * If we fail too many times in a row, we fall back to synchronize_sched().
2543 */
2544void synchronize_sched_expedited(void)
2545{
1924bcb0
PM
2546 long firstsnap, s, snap;
2547 int trycount = 0;
40694d66 2548 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2549
1924bcb0
PM
2550 /*
2551 * If we are in danger of counter wrap, just do synchronize_sched().
2552 * By allowing sync_sched_expedited_started to advance no more than
2553 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2554 * that more than 3.5 billion CPUs would be required to force a
2555 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2556 * course be required on a 64-bit system.
2557 */
40694d66
PM
2558 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2559 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2560 ULONG_MAX / 8)) {
2561 synchronize_sched();
a30489c5 2562 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2563 return;
2564 }
3d3b7db0 2565
1924bcb0
PM
2566 /*
2567 * Take a ticket. Note that atomic_inc_return() implies a
2568 * full memory barrier.
2569 */
40694d66 2570 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2571 firstsnap = snap;
3d3b7db0 2572 get_online_cpus();
1cc85961 2573 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2574
2575 /*
2576 * Each pass through the following loop attempts to force a
2577 * context switch on each CPU.
2578 */
2579 while (try_stop_cpus(cpu_online_mask,
2580 synchronize_sched_expedited_cpu_stop,
2581 NULL) == -EAGAIN) {
2582 put_online_cpus();
a30489c5 2583 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2584
1924bcb0 2585 /* Check to see if someone else did our work for us. */
40694d66 2586 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2587 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2588 /* ensure test happens before caller kfree */
2589 smp_mb__before_atomic_inc(); /* ^^^ */
2590 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2591 return;
2592 }
3d3b7db0
PM
2593
2594 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2595 if (trycount++ < 10) {
3d3b7db0 2596 udelay(trycount * num_online_cpus());
c701d5d9 2597 } else {
3705b88d 2598 wait_rcu_gp(call_rcu_sched);
a30489c5 2599 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2600 return;
2601 }
2602
1924bcb0 2603 /* Recheck to see if someone else did our work for us. */
40694d66 2604 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2605 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2606 /* ensure test happens before caller kfree */
2607 smp_mb__before_atomic_inc(); /* ^^^ */
2608 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2609 return;
2610 }
2611
2612 /*
2613 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2614 * callers to piggyback on our grace period. We retry
2615 * after they started, so our grace period works for them,
2616 * and they started after our first try, so their grace
2617 * period works for us.
3d3b7db0
PM
2618 */
2619 get_online_cpus();
40694d66 2620 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2621 smp_mb(); /* ensure read is before try_stop_cpus(). */
2622 }
a30489c5 2623 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2624
2625 /*
2626 * Everyone up to our most recent fetch is covered by our grace
2627 * period. Update the counter, but only if our work is still
2628 * relevant -- which it won't be if someone who started later
1924bcb0 2629 * than we did already did their update.
3d3b7db0
PM
2630 */
2631 do {
a30489c5 2632 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2633 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2634 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2635 /* ensure test happens before caller kfree */
2636 smp_mb__before_atomic_inc(); /* ^^^ */
2637 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2638 break;
2639 }
40694d66 2640 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2641 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2642
2643 put_online_cpus();
2644}
2645EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2646
64db4cff
PM
2647/*
2648 * Check to see if there is any immediate RCU-related work to be done
2649 * by the current CPU, for the specified type of RCU, returning 1 if so.
2650 * The checks are in order of increasing expense: checks that can be
2651 * carried out against CPU-local state are performed first. However,
2652 * we must check for CPU stalls first, else we might not get a chance.
2653 */
2654static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2655{
2f51f988
PM
2656 struct rcu_node *rnp = rdp->mynode;
2657
64db4cff
PM
2658 rdp->n_rcu_pending++;
2659
2660 /* Check for CPU stalls, if enabled. */
2661 check_cpu_stall(rsp, rdp);
2662
2663 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2664 if (rcu_scheduler_fully_active &&
2665 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2666 rdp->n_rp_qs_pending++;
e4cc1f22 2667 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2668 rdp->n_rp_report_qs++;
64db4cff 2669 return 1;
7ba5c840 2670 }
64db4cff
PM
2671
2672 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2673 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2674 rdp->n_rp_cb_ready++;
64db4cff 2675 return 1;
7ba5c840 2676 }
64db4cff
PM
2677
2678 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2679 if (cpu_needs_another_gp(rsp, rdp)) {
2680 rdp->n_rp_cpu_needs_gp++;
64db4cff 2681 return 1;
7ba5c840 2682 }
64db4cff
PM
2683
2684 /* Has another RCU grace period completed? */
2f51f988 2685 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2686 rdp->n_rp_gp_completed++;
64db4cff 2687 return 1;
7ba5c840 2688 }
64db4cff
PM
2689
2690 /* Has a new RCU grace period started? */
2f51f988 2691 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2692 rdp->n_rp_gp_started++;
64db4cff 2693 return 1;
7ba5c840 2694 }
64db4cff 2695
64db4cff 2696 /* nothing to do */
7ba5c840 2697 rdp->n_rp_need_nothing++;
64db4cff
PM
2698 return 0;
2699}
2700
2701/*
2702 * Check to see if there is any immediate RCU-related work to be done
2703 * by the current CPU, returning 1 if so. This function is part of the
2704 * RCU implementation; it is -not- an exported member of the RCU API.
2705 */
a157229c 2706static int rcu_pending(int cpu)
64db4cff 2707{
6ce75a23
PM
2708 struct rcu_state *rsp;
2709
2710 for_each_rcu_flavor(rsp)
2711 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2712 return 1;
2713 return 0;
64db4cff
PM
2714}
2715
2716/*
c0f4dfd4
PM
2717 * Return true if the specified CPU has any callback. If all_lazy is
2718 * non-NULL, store an indication of whether all callbacks are lazy.
2719 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2720 */
c0f4dfd4 2721static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2722{
c0f4dfd4
PM
2723 bool al = true;
2724 bool hc = false;
2725 struct rcu_data *rdp;
6ce75a23
PM
2726 struct rcu_state *rsp;
2727
c0f4dfd4
PM
2728 for_each_rcu_flavor(rsp) {
2729 rdp = per_cpu_ptr(rsp->rda, cpu);
2730 if (rdp->qlen != rdp->qlen_lazy)
2731 al = false;
2732 if (rdp->nxtlist)
2733 hc = true;
2734 }
2735 if (all_lazy)
2736 *all_lazy = al;
2737 return hc;
64db4cff
PM
2738}
2739
a83eff0a
PM
2740/*
2741 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2742 * the compiler is expected to optimize this away.
2743 */
e66c33d5 2744static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2745 int cpu, unsigned long done)
2746{
2747 trace_rcu_barrier(rsp->name, s, cpu,
2748 atomic_read(&rsp->barrier_cpu_count), done);
2749}
2750
b1420f1c
PM
2751/*
2752 * RCU callback function for _rcu_barrier(). If we are last, wake
2753 * up the task executing _rcu_barrier().
2754 */
24ebbca8 2755static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2756{
24ebbca8
PM
2757 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2758 struct rcu_state *rsp = rdp->rsp;
2759
a83eff0a
PM
2760 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2761 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2762 complete(&rsp->barrier_completion);
a83eff0a
PM
2763 } else {
2764 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2765 }
d0ec774c
PM
2766}
2767
2768/*
2769 * Called with preemption disabled, and from cross-cpu IRQ context.
2770 */
2771static void rcu_barrier_func(void *type)
2772{
037b64ed 2773 struct rcu_state *rsp = type;
06668efa 2774 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2775
a83eff0a 2776 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2777 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2778 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2779}
2780
d0ec774c
PM
2781/*
2782 * Orchestrate the specified type of RCU barrier, waiting for all
2783 * RCU callbacks of the specified type to complete.
2784 */
037b64ed 2785static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2786{
b1420f1c 2787 int cpu;
b1420f1c 2788 struct rcu_data *rdp;
cf3a9c48
PM
2789 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2790 unsigned long snap_done;
b1420f1c 2791
a83eff0a 2792 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2793
e74f4c45 2794 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2795 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2796
cf3a9c48
PM
2797 /*
2798 * Ensure that all prior references, including to ->n_barrier_done,
2799 * are ordered before the _rcu_barrier() machinery.
2800 */
2801 smp_mb(); /* See above block comment. */
2802
2803 /*
2804 * Recheck ->n_barrier_done to see if others did our work for us.
2805 * This means checking ->n_barrier_done for an even-to-odd-to-even
2806 * transition. The "if" expression below therefore rounds the old
2807 * value up to the next even number and adds two before comparing.
2808 */
458fb381 2809 snap_done = rsp->n_barrier_done;
a83eff0a 2810 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
2811
2812 /*
2813 * If the value in snap is odd, we needed to wait for the current
2814 * rcu_barrier() to complete, then wait for the next one, in other
2815 * words, we need the value of snap_done to be three larger than
2816 * the value of snap. On the other hand, if the value in snap is
2817 * even, we only had to wait for the next rcu_barrier() to complete,
2818 * in other words, we need the value of snap_done to be only two
2819 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
2820 * this for us (thank you, Linus!).
2821 */
2822 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 2823 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2824 smp_mb(); /* caller's subsequent code after above check. */
2825 mutex_unlock(&rsp->barrier_mutex);
2826 return;
2827 }
2828
2829 /*
2830 * Increment ->n_barrier_done to avoid duplicate work. Use
2831 * ACCESS_ONCE() to prevent the compiler from speculating
2832 * the increment to precede the early-exit check.
2833 */
2834 ACCESS_ONCE(rsp->n_barrier_done)++;
2835 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2836 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2837 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2838
d0ec774c 2839 /*
b1420f1c
PM
2840 * Initialize the count to one rather than to zero in order to
2841 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2842 * (or preemption of this task). Exclude CPU-hotplug operations
2843 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2844 */
7db74df8 2845 init_completion(&rsp->barrier_completion);
24ebbca8 2846 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2847 get_online_cpus();
b1420f1c
PM
2848
2849 /*
1331e7a1
PM
2850 * Force each CPU with callbacks to register a new callback.
2851 * When that callback is invoked, we will know that all of the
2852 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2853 */
3fbfbf7a 2854 for_each_possible_cpu(cpu) {
d1e43fa5 2855 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2856 continue;
b1420f1c 2857 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2858 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2859 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2860 rsp->n_barrier_done);
2861 atomic_inc(&rsp->barrier_cpu_count);
2862 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2863 rsp, cpu, 0);
2864 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2865 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2866 rsp->n_barrier_done);
037b64ed 2867 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2868 } else {
a83eff0a
PM
2869 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2870 rsp->n_barrier_done);
b1420f1c
PM
2871 }
2872 }
1331e7a1 2873 put_online_cpus();
b1420f1c
PM
2874
2875 /*
2876 * Now that we have an rcu_barrier_callback() callback on each
2877 * CPU, and thus each counted, remove the initial count.
2878 */
24ebbca8 2879 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2880 complete(&rsp->barrier_completion);
b1420f1c 2881
cf3a9c48
PM
2882 /* Increment ->n_barrier_done to prevent duplicate work. */
2883 smp_mb(); /* Keep increment after above mechanism. */
2884 ACCESS_ONCE(rsp->n_barrier_done)++;
2885 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2886 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2887 smp_mb(); /* Keep increment before caller's subsequent code. */
2888
b1420f1c 2889 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2890 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2891
2892 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2893 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2894}
d0ec774c
PM
2895
2896/**
2897 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2898 */
2899void rcu_barrier_bh(void)
2900{
037b64ed 2901 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2902}
2903EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2904
2905/**
2906 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2907 */
2908void rcu_barrier_sched(void)
2909{
037b64ed 2910 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2911}
2912EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2913
64db4cff 2914/*
27569620 2915 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2916 */
27569620
PM
2917static void __init
2918rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2919{
2920 unsigned long flags;
394f99a9 2921 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2922 struct rcu_node *rnp = rcu_get_root(rsp);
2923
2924 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2925 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2926 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2927 init_callback_list(rdp);
486e2593 2928 rdp->qlen_lazy = 0;
1d1fb395 2929 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2930 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2931 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2932 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2933 rdp->cpu = cpu;
d4c08f2a 2934 rdp->rsp = rsp;
3fbfbf7a 2935 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2936 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2937}
2938
2939/*
2940 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2941 * offline event can be happening at a given time. Note also that we
2942 * can accept some slop in the rsp->completed access due to the fact
2943 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2944 */
49fb4c62 2945static void
6cc68793 2946rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2947{
2948 unsigned long flags;
64db4cff 2949 unsigned long mask;
394f99a9 2950 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2951 struct rcu_node *rnp = rcu_get_root(rsp);
2952
a4fbe35a
PM
2953 /* Exclude new grace periods. */
2954 mutex_lock(&rsp->onoff_mutex);
2955
64db4cff 2956 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2957 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2958 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2959 rdp->preemptible = preemptible;
37c72e56
PM
2960 rdp->qlen_last_fqs_check = 0;
2961 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2962 rdp->blimit = blimit;
0d8ee37e 2963 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2964 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 2965 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
2966 atomic_set(&rdp->dynticks->dynticks,
2967 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 2968 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2969
64db4cff
PM
2970 /* Add CPU to rcu_node bitmasks. */
2971 rnp = rdp->mynode;
2972 mask = rdp->grpmask;
2973 do {
2974 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2975 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2976 rnp->qsmaskinit |= mask;
2977 mask = rnp->grpmask;
d09b62df 2978 if (rnp == rdp->mynode) {
06ae115a
PM
2979 /*
2980 * If there is a grace period in progress, we will
2981 * set up to wait for it next time we run the
2982 * RCU core code.
2983 */
2984 rdp->gpnum = rnp->completed;
d09b62df 2985 rdp->completed = rnp->completed;
06ae115a
PM
2986 rdp->passed_quiesce = 0;
2987 rdp->qs_pending = 0;
f7f7bac9 2988 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 2989 }
1304afb2 2990 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2991 rnp = rnp->parent;
2992 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2993 local_irq_restore(flags);
64db4cff 2994
a4fbe35a 2995 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2996}
2997
49fb4c62 2998static void rcu_prepare_cpu(int cpu)
64db4cff 2999{
6ce75a23
PM
3000 struct rcu_state *rsp;
3001
3002 for_each_rcu_flavor(rsp)
3003 rcu_init_percpu_data(cpu, rsp,
3004 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3005}
3006
3007/*
f41d911f 3008 * Handle CPU online/offline notification events.
64db4cff 3009 */
49fb4c62 3010static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3011 unsigned long action, void *hcpu)
64db4cff
PM
3012{
3013 long cpu = (long)hcpu;
27f4d280 3014 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3015 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3016 struct rcu_state *rsp;
64db4cff 3017
f7f7bac9 3018 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3019 switch (action) {
3020 case CPU_UP_PREPARE:
3021 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3022 rcu_prepare_cpu(cpu);
3023 rcu_prepare_kthreads(cpu);
a26ac245
PM
3024 break;
3025 case CPU_ONLINE:
0f962a5e 3026 case CPU_DOWN_FAILED:
5d01bbd1 3027 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3028 break;
3029 case CPU_DOWN_PREPARE:
34ed6246 3030 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3031 break;
d0ec774c
PM
3032 case CPU_DYING:
3033 case CPU_DYING_FROZEN:
6ce75a23
PM
3034 for_each_rcu_flavor(rsp)
3035 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3036 break;
64db4cff
PM
3037 case CPU_DEAD:
3038 case CPU_DEAD_FROZEN:
3039 case CPU_UP_CANCELED:
3040 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3041 for_each_rcu_flavor(rsp)
3042 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3043 break;
3044 default:
3045 break;
3046 }
f7f7bac9 3047 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3048 return NOTIFY_OK;
64db4cff
PM
3049}
3050
d1d74d14
BP
3051static int rcu_pm_notify(struct notifier_block *self,
3052 unsigned long action, void *hcpu)
3053{
3054 switch (action) {
3055 case PM_HIBERNATION_PREPARE:
3056 case PM_SUSPEND_PREPARE:
3057 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3058 rcu_expedited = 1;
3059 break;
3060 case PM_POST_HIBERNATION:
3061 case PM_POST_SUSPEND:
3062 rcu_expedited = 0;
3063 break;
3064 default:
3065 break;
3066 }
3067 return NOTIFY_OK;
3068}
3069
b3dbec76
PM
3070/*
3071 * Spawn the kthread that handles this RCU flavor's grace periods.
3072 */
3073static int __init rcu_spawn_gp_kthread(void)
3074{
3075 unsigned long flags;
3076 struct rcu_node *rnp;
3077 struct rcu_state *rsp;
3078 struct task_struct *t;
3079
3080 for_each_rcu_flavor(rsp) {
f170168b 3081 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3082 BUG_ON(IS_ERR(t));
3083 rnp = rcu_get_root(rsp);
3084 raw_spin_lock_irqsave(&rnp->lock, flags);
3085 rsp->gp_kthread = t;
3086 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3087 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3088 }
3089 return 0;
3090}
3091early_initcall(rcu_spawn_gp_kthread);
3092
bbad9379
PM
3093/*
3094 * This function is invoked towards the end of the scheduler's initialization
3095 * process. Before this is called, the idle task might contain
3096 * RCU read-side critical sections (during which time, this idle
3097 * task is booting the system). After this function is called, the
3098 * idle tasks are prohibited from containing RCU read-side critical
3099 * sections. This function also enables RCU lockdep checking.
3100 */
3101void rcu_scheduler_starting(void)
3102{
3103 WARN_ON(num_online_cpus() != 1);
3104 WARN_ON(nr_context_switches() > 0);
3105 rcu_scheduler_active = 1;
3106}
3107
64db4cff
PM
3108/*
3109 * Compute the per-level fanout, either using the exact fanout specified
3110 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3111 */
3112#ifdef CONFIG_RCU_FANOUT_EXACT
3113static void __init rcu_init_levelspread(struct rcu_state *rsp)
3114{
3115 int i;
3116
f885b7f2 3117 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3118 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3119 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3120}
3121#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3122static void __init rcu_init_levelspread(struct rcu_state *rsp)
3123{
3124 int ccur;
3125 int cprv;
3126 int i;
3127
4dbd6bb3 3128 cprv = nr_cpu_ids;
f885b7f2 3129 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3130 ccur = rsp->levelcnt[i];
3131 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3132 cprv = ccur;
3133 }
3134}
3135#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3136
3137/*
3138 * Helper function for rcu_init() that initializes one rcu_state structure.
3139 */
394f99a9
LJ
3140static void __init rcu_init_one(struct rcu_state *rsp,
3141 struct rcu_data __percpu *rda)
64db4cff 3142{
394f2769
PM
3143 static char *buf[] = { "rcu_node_0",
3144 "rcu_node_1",
3145 "rcu_node_2",
3146 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3147 static char *fqs[] = { "rcu_node_fqs_0",
3148 "rcu_node_fqs_1",
3149 "rcu_node_fqs_2",
3150 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3151 int cpustride = 1;
3152 int i;
3153 int j;
3154 struct rcu_node *rnp;
3155
b6407e86
PM
3156 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3157
4930521a
PM
3158 /* Silence gcc 4.8 warning about array index out of range. */
3159 if (rcu_num_lvls > RCU_NUM_LVLS)
3160 panic("rcu_init_one: rcu_num_lvls overflow");
3161
64db4cff
PM
3162 /* Initialize the level-tracking arrays. */
3163
f885b7f2
PM
3164 for (i = 0; i < rcu_num_lvls; i++)
3165 rsp->levelcnt[i] = num_rcu_lvl[i];
3166 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3167 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3168 rcu_init_levelspread(rsp);
3169
3170 /* Initialize the elements themselves, starting from the leaves. */
3171
f885b7f2 3172 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3173 cpustride *= rsp->levelspread[i];
3174 rnp = rsp->level[i];
3175 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3176 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3177 lockdep_set_class_and_name(&rnp->lock,
3178 &rcu_node_class[i], buf[i]);
394f2769
PM
3179 raw_spin_lock_init(&rnp->fqslock);
3180 lockdep_set_class_and_name(&rnp->fqslock,
3181 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3182 rnp->gpnum = rsp->gpnum;
3183 rnp->completed = rsp->completed;
64db4cff
PM
3184 rnp->qsmask = 0;
3185 rnp->qsmaskinit = 0;
3186 rnp->grplo = j * cpustride;
3187 rnp->grphi = (j + 1) * cpustride - 1;
3188 if (rnp->grphi >= NR_CPUS)
3189 rnp->grphi = NR_CPUS - 1;
3190 if (i == 0) {
3191 rnp->grpnum = 0;
3192 rnp->grpmask = 0;
3193 rnp->parent = NULL;
3194 } else {
3195 rnp->grpnum = j % rsp->levelspread[i - 1];
3196 rnp->grpmask = 1UL << rnp->grpnum;
3197 rnp->parent = rsp->level[i - 1] +
3198 j / rsp->levelspread[i - 1];
3199 }
3200 rnp->level = i;
12f5f524 3201 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3202 rcu_init_one_nocb(rnp);
64db4cff
PM
3203 }
3204 }
0c34029a 3205
394f99a9 3206 rsp->rda = rda;
b3dbec76 3207 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3208 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3209 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3210 for_each_possible_cpu(i) {
4a90a068 3211 while (i > rnp->grphi)
0c34029a 3212 rnp++;
394f99a9 3213 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3214 rcu_boot_init_percpu_data(i, rsp);
3215 }
6ce75a23 3216 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3217}
3218
f885b7f2
PM
3219/*
3220 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3221 * replace the definitions in rcutree.h because those are needed to size
3222 * the ->node array in the rcu_state structure.
3223 */
3224static void __init rcu_init_geometry(void)
3225{
026ad283 3226 ulong d;
f885b7f2
PM
3227 int i;
3228 int j;
cca6f393 3229 int n = nr_cpu_ids;
f885b7f2
PM
3230 int rcu_capacity[MAX_RCU_LVLS + 1];
3231
026ad283
PM
3232 /*
3233 * Initialize any unspecified boot parameters.
3234 * The default values of jiffies_till_first_fqs and
3235 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3236 * value, which is a function of HZ, then adding one for each
3237 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3238 */
3239 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3240 if (jiffies_till_first_fqs == ULONG_MAX)
3241 jiffies_till_first_fqs = d;
3242 if (jiffies_till_next_fqs == ULONG_MAX)
3243 jiffies_till_next_fqs = d;
3244
f885b7f2 3245 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3246 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3247 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3248 return;
3249
3250 /*
3251 * Compute number of nodes that can be handled an rcu_node tree
3252 * with the given number of levels. Setting rcu_capacity[0] makes
3253 * some of the arithmetic easier.
3254 */
3255 rcu_capacity[0] = 1;
3256 rcu_capacity[1] = rcu_fanout_leaf;
3257 for (i = 2; i <= MAX_RCU_LVLS; i++)
3258 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3259
3260 /*
3261 * The boot-time rcu_fanout_leaf parameter is only permitted
3262 * to increase the leaf-level fanout, not decrease it. Of course,
3263 * the leaf-level fanout cannot exceed the number of bits in
3264 * the rcu_node masks. Finally, the tree must be able to accommodate
3265 * the configured number of CPUs. Complain and fall back to the
3266 * compile-time values if these limits are exceeded.
3267 */
3268 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3269 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3270 n > rcu_capacity[MAX_RCU_LVLS]) {
3271 WARN_ON(1);
3272 return;
3273 }
3274
3275 /* Calculate the number of rcu_nodes at each level of the tree. */
3276 for (i = 1; i <= MAX_RCU_LVLS; i++)
3277 if (n <= rcu_capacity[i]) {
3278 for (j = 0; j <= i; j++)
3279 num_rcu_lvl[j] =
3280 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3281 rcu_num_lvls = i;
3282 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3283 num_rcu_lvl[j] = 0;
3284 break;
3285 }
3286
3287 /* Calculate the total number of rcu_node structures. */
3288 rcu_num_nodes = 0;
3289 for (i = 0; i <= MAX_RCU_LVLS; i++)
3290 rcu_num_nodes += num_rcu_lvl[i];
3291 rcu_num_nodes -= n;
3292}
3293
9f680ab4 3294void __init rcu_init(void)
64db4cff 3295{
017c4261 3296 int cpu;
9f680ab4 3297
f41d911f 3298 rcu_bootup_announce();
f885b7f2 3299 rcu_init_geometry();
394f99a9
LJ
3300 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3301 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3302 __rcu_init_preempt();
b5b39360 3303 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3304
3305 /*
3306 * We don't need protection against CPU-hotplug here because
3307 * this is called early in boot, before either interrupts
3308 * or the scheduler are operational.
3309 */
3310 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3311 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3312 for_each_online_cpu(cpu)
3313 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3314}
3315
1eba8f84 3316#include "rcutree_plugin.h"
This page took 0.458904 seconds and 5 git commands to generate.