rcu: Remove function versions of __kfree_rcu and __is_kfree_rcu_offset
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
b668c9cf 63static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 64
4300aa64 65#define RCU_STATE_INITIALIZER(structname) { \
e99033c5 66 .level = { &structname##_state.node[0] }, \
64db4cff
PM
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
cf244dc0
PM
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 73 }, \
af446b70 74 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
75 .gpnum = -300, \
76 .completed = -300, \
e99033c5 77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
b1420f1c
PM
78 .orphan_nxttail = &structname##_state.orphan_nxtlist, \
79 .orphan_donetail = &structname##_state.orphan_donelist, \
e99033c5 80 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
64db4cff
PM
81 .n_force_qs = 0, \
82 .n_force_qs_ngp = 0, \
4300aa64 83 .name = #structname, \
64db4cff
PM
84}
85
e99033c5 86struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 87DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 88
e99033c5 89struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 90DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 91
27f4d280
PM
92static struct rcu_state *rcu_state;
93
b0d30417
PM
94/*
95 * The rcu_scheduler_active variable transitions from zero to one just
96 * before the first task is spawned. So when this variable is zero, RCU
97 * can assume that there is but one task, allowing RCU to (for example)
98 * optimized synchronize_sched() to a simple barrier(). When this variable
99 * is one, RCU must actually do all the hard work required to detect real
100 * grace periods. This variable is also used to suppress boot-time false
101 * positives from lockdep-RCU error checking.
102 */
bbad9379
PM
103int rcu_scheduler_active __read_mostly;
104EXPORT_SYMBOL_GPL(rcu_scheduler_active);
105
b0d30417
PM
106/*
107 * The rcu_scheduler_fully_active variable transitions from zero to one
108 * during the early_initcall() processing, which is after the scheduler
109 * is capable of creating new tasks. So RCU processing (for example,
110 * creating tasks for RCU priority boosting) must be delayed until after
111 * rcu_scheduler_fully_active transitions from zero to one. We also
112 * currently delay invocation of any RCU callbacks until after this point.
113 *
114 * It might later prove better for people registering RCU callbacks during
115 * early boot to take responsibility for these callbacks, but one step at
116 * a time.
117 */
118static int rcu_scheduler_fully_active __read_mostly;
119
a46e0899
PM
120#ifdef CONFIG_RCU_BOOST
121
a26ac245
PM
122/*
123 * Control variables for per-CPU and per-rcu_node kthreads. These
124 * handle all flavors of RCU.
125 */
126static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 127DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 128DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 129DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 130DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 131
a46e0899
PM
132#endif /* #ifdef CONFIG_RCU_BOOST */
133
0f962a5e 134static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
135static void invoke_rcu_core(void);
136static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 137
4a298656
PM
138/*
139 * Track the rcutorture test sequence number and the update version
140 * number within a given test. The rcutorture_testseq is incremented
141 * on every rcutorture module load and unload, so has an odd value
142 * when a test is running. The rcutorture_vernum is set to zero
143 * when rcutorture starts and is incremented on each rcutorture update.
144 * These variables enable correlating rcutorture output with the
145 * RCU tracing information.
146 */
147unsigned long rcutorture_testseq;
148unsigned long rcutorture_vernum;
149
b1420f1c
PM
150/* State information for rcu_barrier() and friends. */
151
152static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
153static atomic_t rcu_barrier_cpu_count;
154static DEFINE_MUTEX(rcu_barrier_mutex);
155static struct completion rcu_barrier_completion;
156
fc2219d4
PM
157/*
158 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
159 * permit this function to be invoked without holding the root rcu_node
160 * structure's ->lock, but of course results can be subject to change.
161 */
162static int rcu_gp_in_progress(struct rcu_state *rsp)
163{
164 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
165}
166
b1f77b05 167/*
d6714c22 168 * Note a quiescent state. Because we do not need to know
b1f77b05 169 * how many quiescent states passed, just if there was at least
d6714c22 170 * one since the start of the grace period, this just sets a flag.
e4cc1f22 171 * The caller must have disabled preemption.
b1f77b05 172 */
d6714c22 173void rcu_sched_qs(int cpu)
b1f77b05 174{
25502a6c 175 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 176
e4cc1f22 177 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 178 barrier();
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05
IM
182}
183
d6714c22 184void rcu_bh_qs(int cpu)
b1f77b05 185{
25502a6c 186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 187
e4cc1f22 188 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 189 barrier();
e4cc1f22 190 if (rdp->passed_quiesce == 0)
d4c08f2a 191 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 192 rdp->passed_quiesce = 1;
b1f77b05 193}
64db4cff 194
25502a6c
PM
195/*
196 * Note a context switch. This is a quiescent state for RCU-sched,
197 * and requires special handling for preemptible RCU.
e4cc1f22 198 * The caller must have disabled preemption.
25502a6c
PM
199 */
200void rcu_note_context_switch(int cpu)
201{
300df91c 202 trace_rcu_utilization("Start context switch");
25502a6c 203 rcu_sched_qs(cpu);
cba6d0d6 204 rcu_preempt_note_context_switch(cpu);
300df91c 205 trace_rcu_utilization("End context switch");
25502a6c 206}
29ce8310 207EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 208
90a4d2c0 209DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 210 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 211 .dynticks = ATOMIC_INIT(1),
90a4d2c0 212};
64db4cff 213
e0f23060 214static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
215static int qhimark = 10000; /* If this many pending, ignore blimit. */
216static int qlowmark = 100; /* Once only this many pending, use blimit. */
217
3d76c082
PM
218module_param(blimit, int, 0);
219module_param(qhimark, int, 0);
220module_param(qlowmark, int, 0);
221
13cfcca0
PM
222int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
223int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
224
f2e0dd70 225module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 226module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 227
64db4cff 228static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 229static int rcu_pending(int cpu);
64db4cff
PM
230
231/*
d6714c22 232 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 233 */
d6714c22 234long rcu_batches_completed_sched(void)
64db4cff 235{
d6714c22 236 return rcu_sched_state.completed;
64db4cff 237}
d6714c22 238EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
239
240/*
241 * Return the number of RCU BH batches processed thus far for debug & stats.
242 */
243long rcu_batches_completed_bh(void)
244{
245 return rcu_bh_state.completed;
246}
247EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
248
bf66f18e
PM
249/*
250 * Force a quiescent state for RCU BH.
251 */
252void rcu_bh_force_quiescent_state(void)
253{
254 force_quiescent_state(&rcu_bh_state, 0);
255}
256EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
257
4a298656
PM
258/*
259 * Record the number of times rcutorture tests have been initiated and
260 * terminated. This information allows the debugfs tracing stats to be
261 * correlated to the rcutorture messages, even when the rcutorture module
262 * is being repeatedly loaded and unloaded. In other words, we cannot
263 * store this state in rcutorture itself.
264 */
265void rcutorture_record_test_transition(void)
266{
267 rcutorture_testseq++;
268 rcutorture_vernum = 0;
269}
270EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
271
272/*
273 * Record the number of writer passes through the current rcutorture test.
274 * This is also used to correlate debugfs tracing stats with the rcutorture
275 * messages.
276 */
277void rcutorture_record_progress(unsigned long vernum)
278{
279 rcutorture_vernum++;
280}
281EXPORT_SYMBOL_GPL(rcutorture_record_progress);
282
bf66f18e
PM
283/*
284 * Force a quiescent state for RCU-sched.
285 */
286void rcu_sched_force_quiescent_state(void)
287{
288 force_quiescent_state(&rcu_sched_state, 0);
289}
290EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
291
64db4cff
PM
292/*
293 * Does the CPU have callbacks ready to be invoked?
294 */
295static int
296cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
297{
298 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
299}
300
301/*
302 * Does the current CPU require a yet-as-unscheduled grace period?
303 */
304static int
305cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
306{
fc2219d4 307 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
308}
309
310/*
311 * Return the root node of the specified rcu_state structure.
312 */
313static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
314{
315 return &rsp->node[0];
316}
317
64db4cff
PM
318/*
319 * If the specified CPU is offline, tell the caller that it is in
320 * a quiescent state. Otherwise, whack it with a reschedule IPI.
321 * Grace periods can end up waiting on an offline CPU when that
322 * CPU is in the process of coming online -- it will be added to the
323 * rcu_node bitmasks before it actually makes it online. The same thing
324 * can happen while a CPU is in the process of coming online. Because this
325 * race is quite rare, we check for it after detecting that the grace
326 * period has been delayed rather than checking each and every CPU
327 * each and every time we start a new grace period.
328 */
329static int rcu_implicit_offline_qs(struct rcu_data *rdp)
330{
331 /*
2036d94a
PM
332 * If the CPU is offline for more than a jiffy, it is in a quiescent
333 * state. We can trust its state not to change because interrupts
334 * are disabled. The reason for the jiffy's worth of slack is to
335 * handle CPUs initializing on the way up and finding their way
336 * to the idle loop on the way down.
64db4cff 337 */
2036d94a
PM
338 if (cpu_is_offline(rdp->cpu) &&
339 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 340 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
341 rdp->offline_fqs++;
342 return 1;
343 }
64db4cff
PM
344 return 0;
345}
346
9b2e4f18
PM
347/*
348 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
349 *
350 * If the new value of the ->dynticks_nesting counter now is zero,
351 * we really have entered idle, and must do the appropriate accounting.
352 * The caller must have disabled interrupts.
353 */
4145fa7f 354static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 355{
facc4e15 356 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 357 if (!is_idle_task(current)) {
0989cb46
PM
358 struct task_struct *idle = idle_task(smp_processor_id());
359
facc4e15 360 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 361 ftrace_dump(DUMP_ALL);
0989cb46
PM
362 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
363 current->pid, current->comm,
364 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 365 }
aea1b35e 366 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
367 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
368 smp_mb__before_atomic_inc(); /* See above. */
369 atomic_inc(&rdtp->dynticks);
370 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
371 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
372
373 /*
374 * The idle task is not permitted to enter the idle loop while
375 * in an RCU read-side critical section.
376 */
377 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
378 "Illegal idle entry in RCU read-side critical section.");
379 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
380 "Illegal idle entry in RCU-bh read-side critical section.");
381 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
382 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 383}
64db4cff
PM
384
385/**
9b2e4f18 386 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 387 *
9b2e4f18 388 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 389 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
390 * critical sections can occur in irq handlers in idle, a possibility
391 * handled by irq_enter() and irq_exit().)
392 *
393 * We crowbar the ->dynticks_nesting field to zero to allow for
394 * the possibility of usermode upcalls having messed up our count
395 * of interrupt nesting level during the prior busy period.
64db4cff 396 */
9b2e4f18 397void rcu_idle_enter(void)
64db4cff
PM
398{
399 unsigned long flags;
4145fa7f 400 long long oldval;
64db4cff
PM
401 struct rcu_dynticks *rdtp;
402
64db4cff
PM
403 local_irq_save(flags);
404 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 405 oldval = rdtp->dynticks_nesting;
29e37d81
PM
406 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
407 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
408 rdtp->dynticks_nesting = 0;
409 else
410 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 411 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
412 local_irq_restore(flags);
413}
8a2ecf47 414EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 415
9b2e4f18
PM
416/**
417 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
418 *
419 * Exit from an interrupt handler, which might possibly result in entering
420 * idle mode, in other words, leaving the mode in which read-side critical
421 * sections can occur.
64db4cff 422 *
9b2e4f18
PM
423 * This code assumes that the idle loop never does anything that might
424 * result in unbalanced calls to irq_enter() and irq_exit(). If your
425 * architecture violates this assumption, RCU will give you what you
426 * deserve, good and hard. But very infrequently and irreproducibly.
427 *
428 * Use things like work queues to work around this limitation.
429 *
430 * You have been warned.
64db4cff 431 */
9b2e4f18 432void rcu_irq_exit(void)
64db4cff
PM
433{
434 unsigned long flags;
4145fa7f 435 long long oldval;
64db4cff
PM
436 struct rcu_dynticks *rdtp;
437
438 local_irq_save(flags);
439 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 440 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
441 rdtp->dynticks_nesting--;
442 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
443 if (rdtp->dynticks_nesting)
444 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
445 else
446 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
447 local_irq_restore(flags);
448}
449
450/*
451 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
452 *
453 * If the new value of the ->dynticks_nesting counter was previously zero,
454 * we really have exited idle, and must do the appropriate accounting.
455 * The caller must have disabled interrupts.
456 */
457static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
458{
23b5c8fa
PM
459 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
460 atomic_inc(&rdtp->dynticks);
461 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
462 smp_mb__after_atomic_inc(); /* See above. */
463 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 464 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 465 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 466 if (!is_idle_task(current)) {
0989cb46
PM
467 struct task_struct *idle = idle_task(smp_processor_id());
468
4145fa7f
PM
469 trace_rcu_dyntick("Error on exit: not idle task",
470 oldval, rdtp->dynticks_nesting);
9b2e4f18 471 ftrace_dump(DUMP_ALL);
0989cb46
PM
472 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
473 current->pid, current->comm,
474 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
475 }
476}
477
478/**
479 * rcu_idle_exit - inform RCU that current CPU is leaving idle
480 *
481 * Exit idle mode, in other words, -enter- the mode in which RCU
482 * read-side critical sections can occur.
483 *
29e37d81 484 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 485 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
486 * of interrupt nesting level during the busy period that is just
487 * now starting.
488 */
489void rcu_idle_exit(void)
490{
491 unsigned long flags;
492 struct rcu_dynticks *rdtp;
493 long long oldval;
494
495 local_irq_save(flags);
496 rdtp = &__get_cpu_var(rcu_dynticks);
497 oldval = rdtp->dynticks_nesting;
29e37d81
PM
498 WARN_ON_ONCE(oldval < 0);
499 if (oldval & DYNTICK_TASK_NEST_MASK)
500 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
501 else
502 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
503 rcu_idle_exit_common(rdtp, oldval);
504 local_irq_restore(flags);
505}
8a2ecf47 506EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
507
508/**
509 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
510 *
511 * Enter an interrupt handler, which might possibly result in exiting
512 * idle mode, in other words, entering the mode in which read-side critical
513 * sections can occur.
514 *
515 * Note that the Linux kernel is fully capable of entering an interrupt
516 * handler that it never exits, for example when doing upcalls to
517 * user mode! This code assumes that the idle loop never does upcalls to
518 * user mode. If your architecture does do upcalls from the idle loop (or
519 * does anything else that results in unbalanced calls to the irq_enter()
520 * and irq_exit() functions), RCU will give you what you deserve, good
521 * and hard. But very infrequently and irreproducibly.
522 *
523 * Use things like work queues to work around this limitation.
524 *
525 * You have been warned.
526 */
527void rcu_irq_enter(void)
528{
529 unsigned long flags;
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
533 local_irq_save(flags);
534 rdtp = &__get_cpu_var(rcu_dynticks);
535 oldval = rdtp->dynticks_nesting;
536 rdtp->dynticks_nesting++;
537 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
538 if (oldval)
539 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
540 else
541 rcu_idle_exit_common(rdtp, oldval);
64db4cff 542 local_irq_restore(flags);
64db4cff
PM
543}
544
545/**
546 * rcu_nmi_enter - inform RCU of entry to NMI context
547 *
548 * If the CPU was idle with dynamic ticks active, and there is no
549 * irq handler running, this updates rdtp->dynticks_nmi to let the
550 * RCU grace-period handling know that the CPU is active.
551 */
552void rcu_nmi_enter(void)
553{
554 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
555
23b5c8fa
PM
556 if (rdtp->dynticks_nmi_nesting == 0 &&
557 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 558 return;
23b5c8fa
PM
559 rdtp->dynticks_nmi_nesting++;
560 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
561 atomic_inc(&rdtp->dynticks);
562 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
563 smp_mb__after_atomic_inc(); /* See above. */
564 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
565}
566
567/**
568 * rcu_nmi_exit - inform RCU of exit from NMI context
569 *
570 * If the CPU was idle with dynamic ticks active, and there is no
571 * irq handler running, this updates rdtp->dynticks_nmi to let the
572 * RCU grace-period handling know that the CPU is no longer active.
573 */
574void rcu_nmi_exit(void)
575{
576 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
577
23b5c8fa
PM
578 if (rdtp->dynticks_nmi_nesting == 0 ||
579 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 580 return;
23b5c8fa
PM
581 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
582 smp_mb__before_atomic_inc(); /* See above. */
583 atomic_inc(&rdtp->dynticks);
584 smp_mb__after_atomic_inc(); /* Force delay to next write. */
585 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
586}
587
9b2e4f18
PM
588#ifdef CONFIG_PROVE_RCU
589
64db4cff 590/**
9b2e4f18 591 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 592 *
9b2e4f18 593 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 594 * or NMI handler, return true.
64db4cff 595 */
9b2e4f18 596int rcu_is_cpu_idle(void)
64db4cff 597{
34240697
PM
598 int ret;
599
600 preempt_disable();
601 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
602 preempt_enable();
603 return ret;
64db4cff 604}
e6b80a3b 605EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 606
c0d6d01b
PM
607#ifdef CONFIG_HOTPLUG_CPU
608
609/*
610 * Is the current CPU online? Disable preemption to avoid false positives
611 * that could otherwise happen due to the current CPU number being sampled,
612 * this task being preempted, its old CPU being taken offline, resuming
613 * on some other CPU, then determining that its old CPU is now offline.
614 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
615 * the check for rcu_scheduler_fully_active. Note also that it is OK
616 * for a CPU coming online to use RCU for one jiffy prior to marking itself
617 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
618 * offline to continue to use RCU for one jiffy after marking itself
619 * offline in the cpu_online_mask. This leniency is necessary given the
620 * non-atomic nature of the online and offline processing, for example,
621 * the fact that a CPU enters the scheduler after completing the CPU_DYING
622 * notifiers.
623 *
624 * This is also why RCU internally marks CPUs online during the
625 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
626 *
627 * Disable checking if in an NMI handler because we cannot safely report
628 * errors from NMI handlers anyway.
629 */
630bool rcu_lockdep_current_cpu_online(void)
631{
2036d94a
PM
632 struct rcu_data *rdp;
633 struct rcu_node *rnp;
c0d6d01b
PM
634 bool ret;
635
636 if (in_nmi())
637 return 1;
638 preempt_disable();
2036d94a
PM
639 rdp = &__get_cpu_var(rcu_sched_data);
640 rnp = rdp->mynode;
641 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
642 !rcu_scheduler_fully_active;
643 preempt_enable();
644 return ret;
645}
646EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
647
648#endif /* #ifdef CONFIG_HOTPLUG_CPU */
649
9b2e4f18
PM
650#endif /* #ifdef CONFIG_PROVE_RCU */
651
64db4cff 652/**
9b2e4f18 653 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 654 *
9b2e4f18
PM
655 * If the current CPU is idle or running at a first-level (not nested)
656 * interrupt from idle, return true. The caller must have at least
657 * disabled preemption.
64db4cff 658 */
9b2e4f18 659int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 660{
9b2e4f18 661 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
662}
663
64db4cff
PM
664/*
665 * Snapshot the specified CPU's dynticks counter so that we can later
666 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 667 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
668 */
669static int dyntick_save_progress_counter(struct rcu_data *rdp)
670{
23b5c8fa 671 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 672 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
673}
674
675/*
676 * Return true if the specified CPU has passed through a quiescent
677 * state by virtue of being in or having passed through an dynticks
678 * idle state since the last call to dyntick_save_progress_counter()
679 * for this same CPU.
680 */
681static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
682{
7eb4f455
PM
683 unsigned int curr;
684 unsigned int snap;
64db4cff 685
7eb4f455
PM
686 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
687 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
688
689 /*
690 * If the CPU passed through or entered a dynticks idle phase with
691 * no active irq/NMI handlers, then we can safely pretend that the CPU
692 * already acknowledged the request to pass through a quiescent
693 * state. Either way, that CPU cannot possibly be in an RCU
694 * read-side critical section that started before the beginning
695 * of the current RCU grace period.
696 */
7eb4f455 697 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 698 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
699 rdp->dynticks_fqs++;
700 return 1;
701 }
702
703 /* Go check for the CPU being offline. */
704 return rcu_implicit_offline_qs(rdp);
705}
706
13cfcca0
PM
707static int jiffies_till_stall_check(void)
708{
709 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
710
711 /*
712 * Limit check must be consistent with the Kconfig limits
713 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
714 */
715 if (till_stall_check < 3) {
716 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
717 till_stall_check = 3;
718 } else if (till_stall_check > 300) {
719 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
720 till_stall_check = 300;
721 }
722 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
723}
724
64db4cff
PM
725static void record_gp_stall_check_time(struct rcu_state *rsp)
726{
727 rsp->gp_start = jiffies;
13cfcca0 728 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
729}
730
731static void print_other_cpu_stall(struct rcu_state *rsp)
732{
733 int cpu;
734 long delta;
735 unsigned long flags;
285fe294 736 int ndetected = 0;
64db4cff 737 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
738
739 /* Only let one CPU complain about others per time interval. */
740
1304afb2 741 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 742 delta = jiffies - rsp->jiffies_stall;
fc2219d4 743 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 744 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
745 return;
746 }
13cfcca0 747 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 748 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 749
8cdd32a9
PM
750 /*
751 * OK, time to rat on our buddy...
752 * See Documentation/RCU/stallwarn.txt for info on how to debug
753 * RCU CPU stall warnings.
754 */
a858af28 755 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 756 rsp->name);
a858af28 757 print_cpu_stall_info_begin();
a0b6c9a7 758 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 759 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 760 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 762 if (rnp->qsmask == 0)
64db4cff 763 continue;
a0b6c9a7 764 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 765 if (rnp->qsmask & (1UL << cpu)) {
a858af28 766 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
767 ndetected++;
768 }
64db4cff 769 }
a858af28
PM
770
771 /*
772 * Now rat on any tasks that got kicked up to the root rcu_node
773 * due to CPU offlining.
774 */
775 rnp = rcu_get_root(rsp);
776 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 777 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
778 raw_spin_unlock_irqrestore(&rnp->lock, flags);
779
780 print_cpu_stall_info_end();
781 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 782 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
783 if (ndetected == 0)
784 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
785 else if (!trigger_all_cpu_backtrace())
4627e240 786 dump_stack();
c1dc0b9c 787
1ed509a2
PM
788 /* If so configured, complain about tasks blocking the grace period. */
789
790 rcu_print_detail_task_stall(rsp);
791
64db4cff
PM
792 force_quiescent_state(rsp, 0); /* Kick them all. */
793}
794
795static void print_cpu_stall(struct rcu_state *rsp)
796{
797 unsigned long flags;
798 struct rcu_node *rnp = rcu_get_root(rsp);
799
8cdd32a9
PM
800 /*
801 * OK, time to rat on ourselves...
802 * See Documentation/RCU/stallwarn.txt for info on how to debug
803 * RCU CPU stall warnings.
804 */
a858af28
PM
805 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
806 print_cpu_stall_info_begin();
807 print_cpu_stall_info(rsp, smp_processor_id());
808 print_cpu_stall_info_end();
809 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
810 if (!trigger_all_cpu_backtrace())
811 dump_stack();
c1dc0b9c 812
1304afb2 813 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 814 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
815 rsp->jiffies_stall = jiffies +
816 3 * jiffies_till_stall_check() + 3;
1304afb2 817 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 818
64db4cff
PM
819 set_need_resched(); /* kick ourselves to get things going. */
820}
821
822static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
823{
bad6e139
PM
824 unsigned long j;
825 unsigned long js;
64db4cff
PM
826 struct rcu_node *rnp;
827
742734ee 828 if (rcu_cpu_stall_suppress)
c68de209 829 return;
bad6e139
PM
830 j = ACCESS_ONCE(jiffies);
831 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 832 rnp = rdp->mynode;
bad6e139 833 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
834
835 /* We haven't checked in, so go dump stack. */
836 print_cpu_stall(rsp);
837
bad6e139
PM
838 } else if (rcu_gp_in_progress(rsp) &&
839 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 840
bad6e139 841 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
842 print_other_cpu_stall(rsp);
843 }
844}
845
c68de209
PM
846static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
847{
742734ee 848 rcu_cpu_stall_suppress = 1;
c68de209
PM
849 return NOTIFY_DONE;
850}
851
53d84e00
PM
852/**
853 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
854 *
855 * Set the stall-warning timeout way off into the future, thus preventing
856 * any RCU CPU stall-warning messages from appearing in the current set of
857 * RCU grace periods.
858 *
859 * The caller must disable hard irqs.
860 */
861void rcu_cpu_stall_reset(void)
862{
863 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
864 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
865 rcu_preempt_stall_reset();
866}
867
c68de209
PM
868static struct notifier_block rcu_panic_block = {
869 .notifier_call = rcu_panic,
870};
871
872static void __init check_cpu_stall_init(void)
873{
874 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
875}
876
64db4cff
PM
877/*
878 * Update CPU-local rcu_data state to record the newly noticed grace period.
879 * This is used both when we started the grace period and when we notice
9160306e
PM
880 * that someone else started the grace period. The caller must hold the
881 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
882 * and must have irqs disabled.
64db4cff 883 */
9160306e
PM
884static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
885{
886 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
887 /*
888 * If the current grace period is waiting for this CPU,
889 * set up to detect a quiescent state, otherwise don't
890 * go looking for one.
891 */
9160306e 892 rdp->gpnum = rnp->gpnum;
d4c08f2a 893 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
894 if (rnp->qsmask & rdp->grpmask) {
895 rdp->qs_pending = 1;
e4cc1f22 896 rdp->passed_quiesce = 0;
121dfc4b
PM
897 } else
898 rdp->qs_pending = 0;
a858af28 899 zero_cpu_stall_ticks(rdp);
9160306e
PM
900 }
901}
902
64db4cff
PM
903static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
904{
9160306e
PM
905 unsigned long flags;
906 struct rcu_node *rnp;
907
908 local_irq_save(flags);
909 rnp = rdp->mynode;
910 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 911 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
912 local_irq_restore(flags);
913 return;
914 }
915 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 916 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
917}
918
919/*
920 * Did someone else start a new RCU grace period start since we last
921 * checked? Update local state appropriately if so. Must be called
922 * on the CPU corresponding to rdp.
923 */
924static int
925check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
926{
927 unsigned long flags;
928 int ret = 0;
929
930 local_irq_save(flags);
931 if (rdp->gpnum != rsp->gpnum) {
932 note_new_gpnum(rsp, rdp);
933 ret = 1;
934 }
935 local_irq_restore(flags);
936 return ret;
937}
938
3f5d3ea6
PM
939/*
940 * Initialize the specified rcu_data structure's callback list to empty.
941 */
942static void init_callback_list(struct rcu_data *rdp)
943{
944 int i;
945
946 rdp->nxtlist = NULL;
947 for (i = 0; i < RCU_NEXT_SIZE; i++)
948 rdp->nxttail[i] = &rdp->nxtlist;
949}
950
d09b62df
PM
951/*
952 * Advance this CPU's callbacks, but only if the current grace period
953 * has ended. This may be called only from the CPU to whom the rdp
954 * belongs. In addition, the corresponding leaf rcu_node structure's
955 * ->lock must be held by the caller, with irqs disabled.
956 */
957static void
958__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
959{
960 /* Did another grace period end? */
961 if (rdp->completed != rnp->completed) {
962
963 /* Advance callbacks. No harm if list empty. */
964 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
965 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
966 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
967
968 /* Remember that we saw this grace-period completion. */
969 rdp->completed = rnp->completed;
d4c08f2a 970 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 971
5ff8e6f0
FW
972 /*
973 * If we were in an extended quiescent state, we may have
121dfc4b 974 * missed some grace periods that others CPUs handled on
5ff8e6f0 975 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
976 * spurious new grace periods. If another grace period
977 * has started, then rnp->gpnum will have advanced, so
978 * we will detect this later on.
5ff8e6f0 979 */
121dfc4b 980 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
981 rdp->gpnum = rdp->completed;
982
20377f32 983 /*
121dfc4b
PM
984 * If RCU does not need a quiescent state from this CPU,
985 * then make sure that this CPU doesn't go looking for one.
20377f32 986 */
121dfc4b 987 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 988 rdp->qs_pending = 0;
d09b62df
PM
989 }
990}
991
992/*
993 * Advance this CPU's callbacks, but only if the current grace period
994 * has ended. This may be called only from the CPU to whom the rdp
995 * belongs.
996 */
997static void
998rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
999{
1000 unsigned long flags;
1001 struct rcu_node *rnp;
1002
1003 local_irq_save(flags);
1004 rnp = rdp->mynode;
1005 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1006 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1007 local_irq_restore(flags);
1008 return;
1009 }
1010 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1011 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1012}
1013
1014/*
1015 * Do per-CPU grace-period initialization for running CPU. The caller
1016 * must hold the lock of the leaf rcu_node structure corresponding to
1017 * this CPU.
1018 */
1019static void
1020rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1021{
1022 /* Prior grace period ended, so advance callbacks for current CPU. */
1023 __rcu_process_gp_end(rsp, rnp, rdp);
1024
1025 /*
1026 * Because this CPU just now started the new grace period, we know
1027 * that all of its callbacks will be covered by this upcoming grace
1028 * period, even the ones that were registered arbitrarily recently.
1029 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1030 *
1031 * Other CPUs cannot be sure exactly when the grace period started.
1032 * Therefore, their recently registered callbacks must pass through
1033 * an additional RCU_NEXT_READY stage, so that they will be handled
1034 * by the next RCU grace period.
1035 */
1036 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1037 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1038
1039 /* Set state so that this CPU will detect the next quiescent state. */
1040 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1041}
1042
64db4cff
PM
1043/*
1044 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1045 * in preparation for detecting the next grace period. The caller must hold
1046 * the root node's ->lock, which is released before return. Hard irqs must
1047 * be disabled.
e5601400
PM
1048 *
1049 * Note that it is legal for a dying CPU (which is marked as offline) to
1050 * invoke this function. This can happen when the dying CPU reports its
1051 * quiescent state.
64db4cff
PM
1052 */
1053static void
1054rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1055 __releases(rcu_get_root(rsp)->lock)
1056{
394f99a9 1057 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1058 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1059
037067a1 1060 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1061 !cpu_needs_another_gp(rsp, rdp)) {
1062 /*
1063 * Either the scheduler hasn't yet spawned the first
1064 * non-idle task or this CPU does not need another
1065 * grace period. Either way, don't start a new grace
1066 * period.
1067 */
1068 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1069 return;
1070 }
b32e9eb6 1071
afe24b12 1072 if (rsp->fqs_active) {
b32e9eb6 1073 /*
afe24b12
PM
1074 * This CPU needs a grace period, but force_quiescent_state()
1075 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1076 */
afe24b12
PM
1077 rsp->fqs_need_gp = 1;
1078 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1079 return;
1080 }
1081
1082 /* Advance to a new grace period and initialize state. */
1083 rsp->gpnum++;
d4c08f2a 1084 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1085 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1086 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1087 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1088 record_gp_stall_check_time(rsp);
1304afb2 1089 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1090
64db4cff 1091 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1092 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1093
1094 /*
b835db1f
PM
1095 * Set the quiescent-state-needed bits in all the rcu_node
1096 * structures for all currently online CPUs in breadth-first
1097 * order, starting from the root rcu_node structure. This
1098 * operation relies on the layout of the hierarchy within the
1099 * rsp->node[] array. Note that other CPUs will access only
1100 * the leaves of the hierarchy, which still indicate that no
1101 * grace period is in progress, at least until the corresponding
1102 * leaf node has been initialized. In addition, we have excluded
1103 * CPU-hotplug operations.
64db4cff
PM
1104 *
1105 * Note that the grace period cannot complete until we finish
1106 * the initialization process, as there will be at least one
1107 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1108 * one corresponding to this CPU, due to the fact that we have
1109 * irqs disabled.
64db4cff 1110 */
a0b6c9a7 1111 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1112 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1113 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1114 rnp->qsmask = rnp->qsmaskinit;
de078d87 1115 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1116 rnp->completed = rsp->completed;
1117 if (rnp == rdp->mynode)
1118 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1119 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1120 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1121 rnp->level, rnp->grplo,
1122 rnp->grphi, rnp->qsmask);
1304afb2 1123 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1124 }
1125
83f5b01f 1126 rnp = rcu_get_root(rsp);
1304afb2 1127 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1128 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1129 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1130 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1131}
1132
f41d911f 1133/*
d3f6bad3
PM
1134 * Report a full set of quiescent states to the specified rcu_state
1135 * data structure. This involves cleaning up after the prior grace
1136 * period and letting rcu_start_gp() start up the next grace period
1137 * if one is needed. Note that the caller must hold rnp->lock, as
1138 * required by rcu_start_gp(), which will release it.
f41d911f 1139 */
d3f6bad3 1140static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1141 __releases(rcu_get_root(rsp)->lock)
f41d911f 1142{
15ba0ba8 1143 unsigned long gp_duration;
afe24b12
PM
1144 struct rcu_node *rnp = rcu_get_root(rsp);
1145 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1146
fc2219d4 1147 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1148
1149 /*
1150 * Ensure that all grace-period and pre-grace-period activity
1151 * is seen before the assignment to rsp->completed.
1152 */
1153 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1154 gp_duration = jiffies - rsp->gp_start;
1155 if (gp_duration > rsp->gp_max)
1156 rsp->gp_max = gp_duration;
afe24b12
PM
1157
1158 /*
1159 * We know the grace period is complete, but to everyone else
1160 * it appears to still be ongoing. But it is also the case
1161 * that to everyone else it looks like there is nothing that
1162 * they can do to advance the grace period. It is therefore
1163 * safe for us to drop the lock in order to mark the grace
1164 * period as completed in all of the rcu_node structures.
1165 *
1166 * But if this CPU needs another grace period, it will take
1167 * care of this while initializing the next grace period.
1168 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1169 * because the callbacks have not yet been advanced: Those
1170 * callbacks are waiting on the grace period that just now
1171 * completed.
1172 */
1173 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1174 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1175
1176 /*
1177 * Propagate new ->completed value to rcu_node structures
1178 * so that other CPUs don't have to wait until the start
1179 * of the next grace period to process their callbacks.
1180 */
1181 rcu_for_each_node_breadth_first(rsp, rnp) {
1182 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1183 rnp->completed = rsp->gpnum;
1184 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1185 }
1186 rnp = rcu_get_root(rsp);
1187 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1188 }
1189
1190 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1191 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1192 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1193 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1194}
1195
64db4cff 1196/*
d3f6bad3
PM
1197 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1198 * Allows quiescent states for a group of CPUs to be reported at one go
1199 * to the specified rcu_node structure, though all the CPUs in the group
1200 * must be represented by the same rcu_node structure (which need not be
1201 * a leaf rcu_node structure, though it often will be). That structure's
1202 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1203 */
1204static void
d3f6bad3
PM
1205rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1206 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1207 __releases(rnp->lock)
1208{
28ecd580
PM
1209 struct rcu_node *rnp_c;
1210
64db4cff
PM
1211 /* Walk up the rcu_node hierarchy. */
1212 for (;;) {
1213 if (!(rnp->qsmask & mask)) {
1214
1215 /* Our bit has already been cleared, so done. */
1304afb2 1216 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1217 return;
1218 }
1219 rnp->qsmask &= ~mask;
d4c08f2a
PM
1220 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1221 mask, rnp->qsmask, rnp->level,
1222 rnp->grplo, rnp->grphi,
1223 !!rnp->gp_tasks);
27f4d280 1224 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1225
1226 /* Other bits still set at this level, so done. */
1304afb2 1227 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1228 return;
1229 }
1230 mask = rnp->grpmask;
1231 if (rnp->parent == NULL) {
1232
1233 /* No more levels. Exit loop holding root lock. */
1234
1235 break;
1236 }
1304afb2 1237 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1238 rnp_c = rnp;
64db4cff 1239 rnp = rnp->parent;
1304afb2 1240 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1241 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1242 }
1243
1244 /*
1245 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1246 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1247 * to clean up and start the next grace period if one is needed.
64db4cff 1248 */
d3f6bad3 1249 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1250}
1251
1252/*
d3f6bad3
PM
1253 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1254 * structure. This must be either called from the specified CPU, or
1255 * called when the specified CPU is known to be offline (and when it is
1256 * also known that no other CPU is concurrently trying to help the offline
1257 * CPU). The lastcomp argument is used to make sure we are still in the
1258 * grace period of interest. We don't want to end the current grace period
1259 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1260 */
1261static void
e4cc1f22 1262rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1263{
1264 unsigned long flags;
1265 unsigned long mask;
1266 struct rcu_node *rnp;
1267
1268 rnp = rdp->mynode;
1304afb2 1269 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1270 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1271
1272 /*
e4cc1f22
PM
1273 * The grace period in which this quiescent state was
1274 * recorded has ended, so don't report it upwards.
1275 * We will instead need a new quiescent state that lies
1276 * within the current grace period.
64db4cff 1277 */
e4cc1f22 1278 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1279 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1280 return;
1281 }
1282 mask = rdp->grpmask;
1283 if ((rnp->qsmask & mask) == 0) {
1304afb2 1284 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1285 } else {
1286 rdp->qs_pending = 0;
1287
1288 /*
1289 * This GP can't end until cpu checks in, so all of our
1290 * callbacks can be processed during the next GP.
1291 */
64db4cff
PM
1292 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1293
d3f6bad3 1294 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1295 }
1296}
1297
1298/*
1299 * Check to see if there is a new grace period of which this CPU
1300 * is not yet aware, and if so, set up local rcu_data state for it.
1301 * Otherwise, see if this CPU has just passed through its first
1302 * quiescent state for this grace period, and record that fact if so.
1303 */
1304static void
1305rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1306{
1307 /* If there is now a new grace period, record and return. */
1308 if (check_for_new_grace_period(rsp, rdp))
1309 return;
1310
1311 /*
1312 * Does this CPU still need to do its part for current grace period?
1313 * If no, return and let the other CPUs do their part as well.
1314 */
1315 if (!rdp->qs_pending)
1316 return;
1317
1318 /*
1319 * Was there a quiescent state since the beginning of the grace
1320 * period? If no, then exit and wait for the next call.
1321 */
e4cc1f22 1322 if (!rdp->passed_quiesce)
64db4cff
PM
1323 return;
1324
d3f6bad3
PM
1325 /*
1326 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1327 * judge of that).
1328 */
e4cc1f22 1329 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1330}
1331
1332#ifdef CONFIG_HOTPLUG_CPU
1333
e74f4c45 1334/*
b1420f1c
PM
1335 * Send the specified CPU's RCU callbacks to the orphanage. The
1336 * specified CPU must be offline, and the caller must hold the
1337 * ->onofflock.
e74f4c45 1338 */
b1420f1c
PM
1339static void
1340rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1341 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1342{
b1420f1c
PM
1343 /*
1344 * Orphan the callbacks. First adjust the counts. This is safe
1345 * because ->onofflock excludes _rcu_barrier()'s adoption of
1346 * the callbacks, thus no memory barrier is required.
1347 */
a50c3af9 1348 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1349 rsp->qlen_lazy += rdp->qlen_lazy;
1350 rsp->qlen += rdp->qlen;
1351 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1352 rdp->qlen_lazy = 0;
1d1fb395 1353 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1354 }
1355
1356 /*
b1420f1c
PM
1357 * Next, move those callbacks still needing a grace period to
1358 * the orphanage, where some other CPU will pick them up.
1359 * Some of the callbacks might have gone partway through a grace
1360 * period, but that is too bad. They get to start over because we
1361 * cannot assume that grace periods are synchronized across CPUs.
1362 * We don't bother updating the ->nxttail[] array yet, instead
1363 * we just reset the whole thing later on.
a50c3af9 1364 */
b1420f1c
PM
1365 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1366 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1367 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1368 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1369 }
1370
1371 /*
b1420f1c
PM
1372 * Then move the ready-to-invoke callbacks to the orphanage,
1373 * where some other CPU will pick them up. These will not be
1374 * required to pass though another grace period: They are done.
a50c3af9 1375 */
e5601400 1376 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1377 *rsp->orphan_donetail = rdp->nxtlist;
1378 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1379 }
e74f4c45 1380
b1420f1c 1381 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1382 init_callback_list(rdp);
b1420f1c
PM
1383}
1384
1385/*
1386 * Adopt the RCU callbacks from the specified rcu_state structure's
1387 * orphanage. The caller must hold the ->onofflock.
1388 */
1389static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1390{
1391 int i;
1392 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1393
a50c3af9 1394 /*
b1420f1c
PM
1395 * If there is an rcu_barrier() operation in progress, then
1396 * only the task doing that operation is permitted to adopt
1397 * callbacks. To do otherwise breaks rcu_barrier() and friends
1398 * by causing them to fail to wait for the callbacks in the
1399 * orphanage.
a50c3af9 1400 */
b1420f1c
PM
1401 if (rsp->rcu_barrier_in_progress &&
1402 rsp->rcu_barrier_in_progress != current)
1403 return;
1404
1405 /* Do the accounting first. */
1406 rdp->qlen_lazy += rsp->qlen_lazy;
1407 rdp->qlen += rsp->qlen;
1408 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1409 if (rsp->qlen_lazy != rsp->qlen)
1410 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1411 rsp->qlen_lazy = 0;
1412 rsp->qlen = 0;
1413
1414 /*
1415 * We do not need a memory barrier here because the only way we
1416 * can get here if there is an rcu_barrier() in flight is if
1417 * we are the task doing the rcu_barrier().
1418 */
1419
1420 /* First adopt the ready-to-invoke callbacks. */
1421 if (rsp->orphan_donelist != NULL) {
1422 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1423 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1424 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1425 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1426 rdp->nxttail[i] = rsp->orphan_donetail;
1427 rsp->orphan_donelist = NULL;
1428 rsp->orphan_donetail = &rsp->orphan_donelist;
1429 }
1430
1431 /* And then adopt the callbacks that still need a grace period. */
1432 if (rsp->orphan_nxtlist != NULL) {
1433 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1434 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1435 rsp->orphan_nxtlist = NULL;
1436 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1437 }
1438}
1439
1440/*
1441 * Trace the fact that this CPU is going offline.
1442 */
1443static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1444{
1445 RCU_TRACE(unsigned long mask);
1446 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1447 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1448
1449 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1450 trace_rcu_grace_period(rsp->name,
1451 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1452 "cpuofl");
64db4cff
PM
1453}
1454
1455/*
e5601400 1456 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1457 * this fact from process context. Do the remainder of the cleanup,
1458 * including orphaning the outgoing CPU's RCU callbacks, and also
1459 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1460 * There can only be one CPU hotplug operation at a time, so no other
1461 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1462 */
e5601400 1463static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1464{
2036d94a
PM
1465 unsigned long flags;
1466 unsigned long mask;
1467 int need_report = 0;
e5601400 1468 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1469 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1470
2036d94a 1471 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1472 rcu_stop_cpu_kthread(cpu);
1473 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1474
b1420f1c 1475 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1476
1477 /* Exclude any attempts to start a new grace period. */
1478 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1479
b1420f1c
PM
1480 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1481 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1482 rcu_adopt_orphan_cbs(rsp);
1483
2036d94a
PM
1484 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1485 mask = rdp->grpmask; /* rnp->grplo is constant. */
1486 do {
1487 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1488 rnp->qsmaskinit &= ~mask;
1489 if (rnp->qsmaskinit != 0) {
1490 if (rnp != rdp->mynode)
1491 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1492 break;
1493 }
1494 if (rnp == rdp->mynode)
1495 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1496 else
1497 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1498 mask = rnp->grpmask;
1499 rnp = rnp->parent;
1500 } while (rnp != NULL);
1501
1502 /*
1503 * We still hold the leaf rcu_node structure lock here, and
1504 * irqs are still disabled. The reason for this subterfuge is
1505 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1506 * held leads to deadlock.
1507 */
1508 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1509 rnp = rdp->mynode;
1510 if (need_report & RCU_OFL_TASKS_NORM_GP)
1511 rcu_report_unblock_qs_rnp(rnp, flags);
1512 else
1513 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1514 if (need_report & RCU_OFL_TASKS_EXP_GP)
1515 rcu_report_exp_rnp(rsp, rnp, true);
64db4cff
PM
1516}
1517
1518#else /* #ifdef CONFIG_HOTPLUG_CPU */
1519
b1420f1c
PM
1520static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1521{
1522}
1523
e5601400 1524static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1525{
1526}
1527
e5601400 1528static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1529{
1530}
1531
1532#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1533
1534/*
1535 * Invoke any RCU callbacks that have made it to the end of their grace
1536 * period. Thottle as specified by rdp->blimit.
1537 */
37c72e56 1538static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1539{
1540 unsigned long flags;
1541 struct rcu_head *next, *list, **tail;
b41772ab 1542 int bl, count, count_lazy, i;
64db4cff
PM
1543
1544 /* If no callbacks are ready, just return.*/
29c00b4a 1545 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1546 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1547 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1548 need_resched(), is_idle_task(current),
1549 rcu_is_callbacks_kthread());
64db4cff 1550 return;
29c00b4a 1551 }
64db4cff
PM
1552
1553 /*
1554 * Extract the list of ready callbacks, disabling to prevent
1555 * races with call_rcu() from interrupt handlers.
1556 */
1557 local_irq_save(flags);
8146c4e2 1558 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1559 bl = rdp->blimit;
486e2593 1560 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1561 list = rdp->nxtlist;
1562 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1563 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1564 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1565 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1566 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1567 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1568 local_irq_restore(flags);
1569
1570 /* Invoke callbacks. */
486e2593 1571 count = count_lazy = 0;
64db4cff
PM
1572 while (list) {
1573 next = list->next;
1574 prefetch(next);
551d55a9 1575 debug_rcu_head_unqueue(list);
486e2593
PM
1576 if (__rcu_reclaim(rsp->name, list))
1577 count_lazy++;
64db4cff 1578 list = next;
dff1672d
PM
1579 /* Stop only if limit reached and CPU has something to do. */
1580 if (++count >= bl &&
1581 (need_resched() ||
1582 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1583 break;
1584 }
1585
1586 local_irq_save(flags);
4968c300
PM
1587 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1588 is_idle_task(current),
1589 rcu_is_callbacks_kthread());
64db4cff
PM
1590
1591 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1592 if (list != NULL) {
1593 *tail = rdp->nxtlist;
1594 rdp->nxtlist = list;
b41772ab
PM
1595 for (i = 0; i < RCU_NEXT_SIZE; i++)
1596 if (&rdp->nxtlist == rdp->nxttail[i])
1597 rdp->nxttail[i] = tail;
64db4cff
PM
1598 else
1599 break;
1600 }
b1420f1c
PM
1601 smp_mb(); /* List handling before counting for rcu_barrier(). */
1602 rdp->qlen_lazy -= count_lazy;
1d1fb395 1603 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1604 rdp->n_cbs_invoked += count;
64db4cff
PM
1605
1606 /* Reinstate batch limit if we have worked down the excess. */
1607 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1608 rdp->blimit = blimit;
1609
37c72e56
PM
1610 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1611 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1612 rdp->qlen_last_fqs_check = 0;
1613 rdp->n_force_qs_snap = rsp->n_force_qs;
1614 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1615 rdp->qlen_last_fqs_check = rdp->qlen;
1616
64db4cff
PM
1617 local_irq_restore(flags);
1618
e0f23060 1619 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1620 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1621 invoke_rcu_core();
64db4cff
PM
1622}
1623
1624/*
1625 * Check to see if this CPU is in a non-context-switch quiescent state
1626 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1627 * Also schedule RCU core processing.
64db4cff 1628 *
9b2e4f18 1629 * This function must be called from hardirq context. It is normally
64db4cff
PM
1630 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1631 * false, there is no point in invoking rcu_check_callbacks().
1632 */
1633void rcu_check_callbacks(int cpu, int user)
1634{
300df91c 1635 trace_rcu_utilization("Start scheduler-tick");
a858af28 1636 increment_cpu_stall_ticks();
9b2e4f18 1637 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1638
1639 /*
1640 * Get here if this CPU took its interrupt from user
1641 * mode or from the idle loop, and if this is not a
1642 * nested interrupt. In this case, the CPU is in
d6714c22 1643 * a quiescent state, so note it.
64db4cff
PM
1644 *
1645 * No memory barrier is required here because both
d6714c22
PM
1646 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1647 * variables that other CPUs neither access nor modify,
1648 * at least not while the corresponding CPU is online.
64db4cff
PM
1649 */
1650
d6714c22
PM
1651 rcu_sched_qs(cpu);
1652 rcu_bh_qs(cpu);
64db4cff
PM
1653
1654 } else if (!in_softirq()) {
1655
1656 /*
1657 * Get here if this CPU did not take its interrupt from
1658 * softirq, in other words, if it is not interrupting
1659 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1660 * critical section, so note it.
64db4cff
PM
1661 */
1662
d6714c22 1663 rcu_bh_qs(cpu);
64db4cff 1664 }
f41d911f 1665 rcu_preempt_check_callbacks(cpu);
d21670ac 1666 if (rcu_pending(cpu))
a46e0899 1667 invoke_rcu_core();
300df91c 1668 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1669}
1670
64db4cff
PM
1671/*
1672 * Scan the leaf rcu_node structures, processing dyntick state for any that
1673 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1674 * Also initiate boosting for any threads blocked on the root rcu_node.
1675 *
ee47eb9f 1676 * The caller must have suppressed start of new grace periods.
64db4cff 1677 */
45f014c5 1678static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1679{
1680 unsigned long bit;
1681 int cpu;
1682 unsigned long flags;
1683 unsigned long mask;
a0b6c9a7 1684 struct rcu_node *rnp;
64db4cff 1685
a0b6c9a7 1686 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1687 mask = 0;
1304afb2 1688 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1689 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1690 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1691 return;
64db4cff 1692 }
a0b6c9a7 1693 if (rnp->qsmask == 0) {
1217ed1b 1694 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1695 continue;
1696 }
a0b6c9a7 1697 cpu = rnp->grplo;
64db4cff 1698 bit = 1;
a0b6c9a7 1699 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1700 if ((rnp->qsmask & bit) != 0 &&
1701 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1702 mask |= bit;
1703 }
45f014c5 1704 if (mask != 0) {
64db4cff 1705
d3f6bad3
PM
1706 /* rcu_report_qs_rnp() releases rnp->lock. */
1707 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1708 continue;
1709 }
1304afb2 1710 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1711 }
27f4d280 1712 rnp = rcu_get_root(rsp);
1217ed1b
PM
1713 if (rnp->qsmask == 0) {
1714 raw_spin_lock_irqsave(&rnp->lock, flags);
1715 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1716 }
64db4cff
PM
1717}
1718
1719/*
1720 * Force quiescent states on reluctant CPUs, and also detect which
1721 * CPUs are in dyntick-idle mode.
1722 */
1723static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1724{
1725 unsigned long flags;
64db4cff 1726 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1727
300df91c
PM
1728 trace_rcu_utilization("Start fqs");
1729 if (!rcu_gp_in_progress(rsp)) {
1730 trace_rcu_utilization("End fqs");
64db4cff 1731 return; /* No grace period in progress, nothing to force. */
300df91c 1732 }
1304afb2 1733 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1734 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1735 trace_rcu_utilization("End fqs");
64db4cff
PM
1736 return; /* Someone else is already on the job. */
1737 }
20133cfc 1738 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1739 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1740 rsp->n_force_qs++;
1304afb2 1741 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1742 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1743 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1744 rsp->n_force_qs_ngp++;
1304afb2 1745 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1746 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1747 }
07079d53 1748 rsp->fqs_active = 1;
af446b70 1749 switch (rsp->fqs_state) {
83f5b01f 1750 case RCU_GP_IDLE:
64db4cff
PM
1751 case RCU_GP_INIT:
1752
83f5b01f 1753 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1754
1755 case RCU_SAVE_DYNTICK:
64db4cff
PM
1756 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1757 break; /* So gcc recognizes the dead code. */
1758
f261414f
LJ
1759 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1760
64db4cff 1761 /* Record dyntick-idle state. */
45f014c5 1762 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1763 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1764 if (rcu_gp_in_progress(rsp))
af446b70 1765 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1766 break;
64db4cff
PM
1767
1768 case RCU_FORCE_QS:
1769
1770 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1771 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1772 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1773
1774 /* Leave state in case more forcing is required. */
1775
1304afb2 1776 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1777 break;
64db4cff 1778 }
07079d53 1779 rsp->fqs_active = 0;
46a1e34e 1780 if (rsp->fqs_need_gp) {
1304afb2 1781 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1782 rsp->fqs_need_gp = 0;
1783 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1784 trace_rcu_utilization("End fqs");
46a1e34e
PM
1785 return;
1786 }
1304afb2 1787 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1788unlock_fqs_ret:
1304afb2 1789 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1790 trace_rcu_utilization("End fqs");
64db4cff
PM
1791}
1792
64db4cff 1793/*
e0f23060
PM
1794 * This does the RCU core processing work for the specified rcu_state
1795 * and rcu_data structures. This may be called only from the CPU to
1796 * whom the rdp belongs.
64db4cff
PM
1797 */
1798static void
1799__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1800{
1801 unsigned long flags;
1802
2e597558
PM
1803 WARN_ON_ONCE(rdp->beenonline == 0);
1804
64db4cff
PM
1805 /*
1806 * If an RCU GP has gone long enough, go check for dyntick
1807 * idle CPUs and, if needed, send resched IPIs.
1808 */
20133cfc 1809 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1810 force_quiescent_state(rsp, 1);
1811
1812 /*
1813 * Advance callbacks in response to end of earlier grace
1814 * period that some other CPU ended.
1815 */
1816 rcu_process_gp_end(rsp, rdp);
1817
1818 /* Update RCU state based on any recent quiescent states. */
1819 rcu_check_quiescent_state(rsp, rdp);
1820
1821 /* Does this CPU require a not-yet-started grace period? */
1822 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1823 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1824 rcu_start_gp(rsp, flags); /* releases above lock */
1825 }
1826
1827 /* If there are callbacks ready, invoke them. */
09223371 1828 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1829 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1830}
1831
64db4cff 1832/*
e0f23060 1833 * Do RCU core processing for the current CPU.
64db4cff 1834 */
09223371 1835static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1836{
300df91c 1837 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1838 __rcu_process_callbacks(&rcu_sched_state,
1839 &__get_cpu_var(rcu_sched_data));
64db4cff 1840 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1841 rcu_preempt_process_callbacks();
300df91c 1842 trace_rcu_utilization("End RCU core");
64db4cff
PM
1843}
1844
a26ac245 1845/*
e0f23060
PM
1846 * Schedule RCU callback invocation. If the specified type of RCU
1847 * does not support RCU priority boosting, just do a direct call,
1848 * otherwise wake up the per-CPU kernel kthread. Note that because we
1849 * are running on the current CPU with interrupts disabled, the
1850 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1851 */
a46e0899 1852static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1853{
b0d30417
PM
1854 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1855 return;
a46e0899
PM
1856 if (likely(!rsp->boost)) {
1857 rcu_do_batch(rsp, rdp);
a26ac245
PM
1858 return;
1859 }
a46e0899 1860 invoke_rcu_callbacks_kthread();
a26ac245
PM
1861}
1862
a46e0899 1863static void invoke_rcu_core(void)
09223371
SL
1864{
1865 raise_softirq(RCU_SOFTIRQ);
1866}
1867
64db4cff
PM
1868static void
1869__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1870 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1871{
1872 unsigned long flags;
1873 struct rcu_data *rdp;
1874
0bb7b59d 1875 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1876 debug_rcu_head_queue(head);
64db4cff
PM
1877 head->func = func;
1878 head->next = NULL;
1879
1880 smp_mb(); /* Ensure RCU update seen before callback registry. */
1881
1882 /*
1883 * Opportunistically note grace-period endings and beginnings.
1884 * Note that we might see a beginning right after we see an
1885 * end, but never vice versa, since this CPU has to pass through
1886 * a quiescent state betweentimes.
1887 */
1888 local_irq_save(flags);
394f99a9 1889 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1890
1891 /* Add the callback to our list. */
1d1fb395 1892 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
1893 if (lazy)
1894 rdp->qlen_lazy++;
c57afe80
PM
1895 else
1896 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1897 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1898 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1899 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1900
d4c08f2a
PM
1901 if (__is_kfree_rcu_offset((unsigned long)func))
1902 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1903 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1904 else
486e2593 1905 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1906
2655d57e
PM
1907 /* If interrupts were disabled, don't dive into RCU core. */
1908 if (irqs_disabled_flags(flags)) {
1909 local_irq_restore(flags);
1910 return;
1911 }
64db4cff 1912
37c72e56
PM
1913 /*
1914 * Force the grace period if too many callbacks or too long waiting.
1915 * Enforce hysteresis, and don't invoke force_quiescent_state()
1916 * if some other CPU has recently done so. Also, don't bother
1917 * invoking force_quiescent_state() if the newly enqueued callback
1918 * is the only one waiting for a grace period to complete.
1919 */
2655d57e 1920 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1921
1922 /* Are we ignoring a completed grace period? */
1923 rcu_process_gp_end(rsp, rdp);
1924 check_for_new_grace_period(rsp, rdp);
1925
1926 /* Start a new grace period if one not already started. */
1927 if (!rcu_gp_in_progress(rsp)) {
1928 unsigned long nestflag;
1929 struct rcu_node *rnp_root = rcu_get_root(rsp);
1930
1931 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1932 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1933 } else {
1934 /* Give the grace period a kick. */
1935 rdp->blimit = LONG_MAX;
1936 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1937 *rdp->nxttail[RCU_DONE_TAIL] != head)
1938 force_quiescent_state(rsp, 0);
1939 rdp->n_force_qs_snap = rsp->n_force_qs;
1940 rdp->qlen_last_fqs_check = rdp->qlen;
1941 }
20133cfc 1942 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1943 force_quiescent_state(rsp, 1);
1944 local_irq_restore(flags);
1945}
1946
1947/*
d6714c22 1948 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1949 */
d6714c22 1950void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1951{
486e2593 1952 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1953}
d6714c22 1954EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1955
1956/*
486e2593 1957 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1958 */
1959void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1960{
486e2593 1961 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1962}
1963EXPORT_SYMBOL_GPL(call_rcu_bh);
1964
6d813391
PM
1965/*
1966 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1967 * any blocking grace-period wait automatically implies a grace period
1968 * if there is only one CPU online at any point time during execution
1969 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1970 * occasionally incorrectly indicate that there are multiple CPUs online
1971 * when there was in fact only one the whole time, as this just adds
1972 * some overhead: RCU still operates correctly.
1973 *
1974 * Of course, sampling num_online_cpus() with preemption enabled can
1975 * give erroneous results if there are concurrent CPU-hotplug operations.
1976 * For example, given a demonic sequence of preemptions in num_online_cpus()
1977 * and CPU-hotplug operations, there could be two or more CPUs online at
1978 * all times, but num_online_cpus() might well return one (or even zero).
1979 *
1980 * However, all such demonic sequences require at least one CPU-offline
1981 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1982 * is only a problem if there is an RCU read-side critical section executing
1983 * throughout. But RCU-sched and RCU-bh read-side critical sections
1984 * disable either preemption or bh, which prevents a CPU from going offline.
1985 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1986 * that there is only one CPU when in fact there was more than one throughout
1987 * is when there were no RCU readers in the system. If there are no
1988 * RCU readers, the grace period by definition can be of zero length,
1989 * regardless of the number of online CPUs.
1990 */
1991static inline int rcu_blocking_is_gp(void)
1992{
1993 might_sleep(); /* Check for RCU read-side critical section. */
1994 return num_online_cpus() <= 1;
1995}
1996
6ebb237b
PM
1997/**
1998 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1999 *
2000 * Control will return to the caller some time after a full rcu-sched
2001 * grace period has elapsed, in other words after all currently executing
2002 * rcu-sched read-side critical sections have completed. These read-side
2003 * critical sections are delimited by rcu_read_lock_sched() and
2004 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2005 * local_irq_disable(), and so on may be used in place of
2006 * rcu_read_lock_sched().
2007 *
2008 * This means that all preempt_disable code sequences, including NMI and
2009 * hardware-interrupt handlers, in progress on entry will have completed
2010 * before this primitive returns. However, this does not guarantee that
2011 * softirq handlers will have completed, since in some kernels, these
2012 * handlers can run in process context, and can block.
2013 *
2014 * This primitive provides the guarantees made by the (now removed)
2015 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2016 * guarantees that rcu_read_lock() sections will have completed.
2017 * In "classic RCU", these two guarantees happen to be one and
2018 * the same, but can differ in realtime RCU implementations.
2019 */
2020void synchronize_sched(void)
2021{
fe15d706
PM
2022 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2023 !lock_is_held(&rcu_lock_map) &&
2024 !lock_is_held(&rcu_sched_lock_map),
2025 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2026 if (rcu_blocking_is_gp())
2027 return;
2c42818e 2028 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2029}
2030EXPORT_SYMBOL_GPL(synchronize_sched);
2031
2032/**
2033 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2034 *
2035 * Control will return to the caller some time after a full rcu_bh grace
2036 * period has elapsed, in other words after all currently executing rcu_bh
2037 * read-side critical sections have completed. RCU read-side critical
2038 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2039 * and may be nested.
2040 */
2041void synchronize_rcu_bh(void)
2042{
fe15d706
PM
2043 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2044 !lock_is_held(&rcu_lock_map) &&
2045 !lock_is_held(&rcu_sched_lock_map),
2046 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2047 if (rcu_blocking_is_gp())
2048 return;
2c42818e 2049 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2050}
2051EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2052
3d3b7db0
PM
2053static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2054static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2055
2056static int synchronize_sched_expedited_cpu_stop(void *data)
2057{
2058 /*
2059 * There must be a full memory barrier on each affected CPU
2060 * between the time that try_stop_cpus() is called and the
2061 * time that it returns.
2062 *
2063 * In the current initial implementation of cpu_stop, the
2064 * above condition is already met when the control reaches
2065 * this point and the following smp_mb() is not strictly
2066 * necessary. Do smp_mb() anyway for documentation and
2067 * robustness against future implementation changes.
2068 */
2069 smp_mb(); /* See above comment block. */
2070 return 0;
2071}
2072
236fefaf
PM
2073/**
2074 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2075 *
2076 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2077 * approach to force the grace period to end quickly. This consumes
2078 * significant time on all CPUs and is unfriendly to real-time workloads,
2079 * so is thus not recommended for any sort of common-case code. In fact,
2080 * if you are using synchronize_sched_expedited() in a loop, please
2081 * restructure your code to batch your updates, and then use a single
2082 * synchronize_sched() instead.
3d3b7db0 2083 *
236fefaf
PM
2084 * Note that it is illegal to call this function while holding any lock
2085 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2086 * to call this function from a CPU-hotplug notifier. Failing to observe
2087 * these restriction will result in deadlock.
3d3b7db0
PM
2088 *
2089 * This implementation can be thought of as an application of ticket
2090 * locking to RCU, with sync_sched_expedited_started and
2091 * sync_sched_expedited_done taking on the roles of the halves
2092 * of the ticket-lock word. Each task atomically increments
2093 * sync_sched_expedited_started upon entry, snapshotting the old value,
2094 * then attempts to stop all the CPUs. If this succeeds, then each
2095 * CPU will have executed a context switch, resulting in an RCU-sched
2096 * grace period. We are then done, so we use atomic_cmpxchg() to
2097 * update sync_sched_expedited_done to match our snapshot -- but
2098 * only if someone else has not already advanced past our snapshot.
2099 *
2100 * On the other hand, if try_stop_cpus() fails, we check the value
2101 * of sync_sched_expedited_done. If it has advanced past our
2102 * initial snapshot, then someone else must have forced a grace period
2103 * some time after we took our snapshot. In this case, our work is
2104 * done for us, and we can simply return. Otherwise, we try again,
2105 * but keep our initial snapshot for purposes of checking for someone
2106 * doing our work for us.
2107 *
2108 * If we fail too many times in a row, we fall back to synchronize_sched().
2109 */
2110void synchronize_sched_expedited(void)
2111{
2112 int firstsnap, s, snap, trycount = 0;
2113
2114 /* Note that atomic_inc_return() implies full memory barrier. */
2115 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2116 get_online_cpus();
1cc85961 2117 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2118
2119 /*
2120 * Each pass through the following loop attempts to force a
2121 * context switch on each CPU.
2122 */
2123 while (try_stop_cpus(cpu_online_mask,
2124 synchronize_sched_expedited_cpu_stop,
2125 NULL) == -EAGAIN) {
2126 put_online_cpus();
2127
2128 /* No joy, try again later. Or just synchronize_sched(). */
2129 if (trycount++ < 10)
2130 udelay(trycount * num_online_cpus());
2131 else {
2132 synchronize_sched();
2133 return;
2134 }
2135
2136 /* Check to see if someone else did our work for us. */
2137 s = atomic_read(&sync_sched_expedited_done);
2138 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2139 smp_mb(); /* ensure test happens before caller kfree */
2140 return;
2141 }
2142
2143 /*
2144 * Refetching sync_sched_expedited_started allows later
2145 * callers to piggyback on our grace period. We subtract
2146 * 1 to get the same token that the last incrementer got.
2147 * We retry after they started, so our grace period works
2148 * for them, and they started after our first try, so their
2149 * grace period works for us.
2150 */
2151 get_online_cpus();
2152 snap = atomic_read(&sync_sched_expedited_started);
2153 smp_mb(); /* ensure read is before try_stop_cpus(). */
2154 }
2155
2156 /*
2157 * Everyone up to our most recent fetch is covered by our grace
2158 * period. Update the counter, but only if our work is still
2159 * relevant -- which it won't be if someone who started later
2160 * than we did beat us to the punch.
2161 */
2162 do {
2163 s = atomic_read(&sync_sched_expedited_done);
2164 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2165 smp_mb(); /* ensure test happens before caller kfree */
2166 break;
2167 }
2168 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2169
2170 put_online_cpus();
2171}
2172EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2173
64db4cff
PM
2174/*
2175 * Check to see if there is any immediate RCU-related work to be done
2176 * by the current CPU, for the specified type of RCU, returning 1 if so.
2177 * The checks are in order of increasing expense: checks that can be
2178 * carried out against CPU-local state are performed first. However,
2179 * we must check for CPU stalls first, else we might not get a chance.
2180 */
2181static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2182{
2f51f988
PM
2183 struct rcu_node *rnp = rdp->mynode;
2184
64db4cff
PM
2185 rdp->n_rcu_pending++;
2186
2187 /* Check for CPU stalls, if enabled. */
2188 check_cpu_stall(rsp, rdp);
2189
2190 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2191 if (rcu_scheduler_fully_active &&
2192 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2193
2194 /*
2195 * If force_quiescent_state() coming soon and this CPU
2196 * needs a quiescent state, and this is either RCU-sched
2197 * or RCU-bh, force a local reschedule.
2198 */
d21670ac 2199 rdp->n_rp_qs_pending++;
6cc68793 2200 if (!rdp->preemptible &&
d25eb944
PM
2201 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2202 jiffies))
2203 set_need_resched();
e4cc1f22 2204 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2205 rdp->n_rp_report_qs++;
64db4cff 2206 return 1;
7ba5c840 2207 }
64db4cff
PM
2208
2209 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2210 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2211 rdp->n_rp_cb_ready++;
64db4cff 2212 return 1;
7ba5c840 2213 }
64db4cff
PM
2214
2215 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2216 if (cpu_needs_another_gp(rsp, rdp)) {
2217 rdp->n_rp_cpu_needs_gp++;
64db4cff 2218 return 1;
7ba5c840 2219 }
64db4cff
PM
2220
2221 /* Has another RCU grace period completed? */
2f51f988 2222 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2223 rdp->n_rp_gp_completed++;
64db4cff 2224 return 1;
7ba5c840 2225 }
64db4cff
PM
2226
2227 /* Has a new RCU grace period started? */
2f51f988 2228 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2229 rdp->n_rp_gp_started++;
64db4cff 2230 return 1;
7ba5c840 2231 }
64db4cff
PM
2232
2233 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2234 if (rcu_gp_in_progress(rsp) &&
20133cfc 2235 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2236 rdp->n_rp_need_fqs++;
64db4cff 2237 return 1;
7ba5c840 2238 }
64db4cff
PM
2239
2240 /* nothing to do */
7ba5c840 2241 rdp->n_rp_need_nothing++;
64db4cff
PM
2242 return 0;
2243}
2244
2245/*
2246 * Check to see if there is any immediate RCU-related work to be done
2247 * by the current CPU, returning 1 if so. This function is part of the
2248 * RCU implementation; it is -not- an exported member of the RCU API.
2249 */
a157229c 2250static int rcu_pending(int cpu)
64db4cff 2251{
d6714c22 2252 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2253 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2254 rcu_preempt_pending(cpu);
64db4cff
PM
2255}
2256
2257/*
2258 * Check to see if any future RCU-related work will need to be done
2259 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2260 * 1 if so.
64db4cff 2261 */
aea1b35e 2262static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2263{
2264 /* RCU callbacks either ready or pending? */
d6714c22 2265 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2266 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2267 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2268}
2269
b1420f1c
PM
2270/*
2271 * RCU callback function for _rcu_barrier(). If we are last, wake
2272 * up the task executing _rcu_barrier().
2273 */
d0ec774c
PM
2274static void rcu_barrier_callback(struct rcu_head *notused)
2275{
2276 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2277 complete(&rcu_barrier_completion);
2278}
2279
2280/*
2281 * Called with preemption disabled, and from cross-cpu IRQ context.
2282 */
2283static void rcu_barrier_func(void *type)
2284{
2285 int cpu = smp_processor_id();
2286 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2287 void (*call_rcu_func)(struct rcu_head *head,
2288 void (*func)(struct rcu_head *head));
2289
2290 atomic_inc(&rcu_barrier_cpu_count);
2291 call_rcu_func = type;
2292 call_rcu_func(head, rcu_barrier_callback);
2293}
2294
d0ec774c
PM
2295/*
2296 * Orchestrate the specified type of RCU barrier, waiting for all
2297 * RCU callbacks of the specified type to complete.
2298 */
e74f4c45
PM
2299static void _rcu_barrier(struct rcu_state *rsp,
2300 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
2301 void (*func)(struct rcu_head *head)))
2302{
b1420f1c
PM
2303 int cpu;
2304 unsigned long flags;
2305 struct rcu_data *rdp;
2306 struct rcu_head rh;
2307
2308 init_rcu_head_on_stack(&rh);
2309
e74f4c45 2310 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c 2311 mutex_lock(&rcu_barrier_mutex);
b1420f1c
PM
2312
2313 smp_mb(); /* Prevent any prior operations from leaking in. */
2314
d0ec774c 2315 /*
b1420f1c
PM
2316 * Initialize the count to one rather than to zero in order to
2317 * avoid a too-soon return to zero in case of a short grace period
2318 * (or preemption of this task). Also flag this task as doing
2319 * an rcu_barrier(). This will prevent anyone else from adopting
2320 * orphaned callbacks, which could cause otherwise failure if a
2321 * CPU went offline and quickly came back online. To see this,
2322 * consider the following sequence of events:
2323 *
2324 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2325 * 2. CPU 1 goes offline, orphaning its callbacks.
2326 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2327 * 4. CPU 1 comes back online.
2328 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2329 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2330 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2331 */
b1420f1c 2332 init_completion(&rcu_barrier_completion);
d0ec774c 2333 atomic_set(&rcu_barrier_cpu_count, 1);
b1420f1c
PM
2334 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2335 rsp->rcu_barrier_in_progress = current;
2336 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2337
2338 /*
2339 * Force every CPU with callbacks to register a new callback
2340 * that will tell us when all the preceding callbacks have
2341 * been invoked. If an offline CPU has callbacks, wait for
2342 * it to either come back online or to finish orphaning those
2343 * callbacks.
2344 */
2345 for_each_possible_cpu(cpu) {
2346 preempt_disable();
2347 rdp = per_cpu_ptr(rsp->rda, cpu);
2348 if (cpu_is_offline(cpu)) {
2349 preempt_enable();
2350 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2351 schedule_timeout_interruptible(1);
2352 } else if (ACCESS_ONCE(rdp->qlen)) {
2353 smp_call_function_single(cpu, rcu_barrier_func,
2354 (void *)call_rcu_func, 1);
2355 preempt_enable();
2356 } else {
2357 preempt_enable();
2358 }
2359 }
2360
2361 /*
2362 * Now that all online CPUs have rcu_barrier_callback() callbacks
2363 * posted, we can adopt all of the orphaned callbacks and place
2364 * an rcu_barrier_callback() callback after them. When that is done,
2365 * we are guaranteed to have an rcu_barrier_callback() callback
2366 * following every callback that could possibly have been
2367 * registered before _rcu_barrier() was called.
2368 */
2369 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2370 rcu_adopt_orphan_cbs(rsp);
2371 rsp->rcu_barrier_in_progress = NULL;
2372 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2373 atomic_inc(&rcu_barrier_cpu_count);
2374 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2375 call_rcu_func(&rh, rcu_barrier_callback);
2376
2377 /*
2378 * Now that we have an rcu_barrier_callback() callback on each
2379 * CPU, and thus each counted, remove the initial count.
2380 */
d0ec774c
PM
2381 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2382 complete(&rcu_barrier_completion);
b1420f1c
PM
2383
2384 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
d0ec774c 2385 wait_for_completion(&rcu_barrier_completion);
b1420f1c
PM
2386
2387 /* Other rcu_barrier() invocations can now safely proceed. */
d0ec774c 2388 mutex_unlock(&rcu_barrier_mutex);
b1420f1c
PM
2389
2390 destroy_rcu_head_on_stack(&rh);
d0ec774c 2391}
d0ec774c
PM
2392
2393/**
2394 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2395 */
2396void rcu_barrier_bh(void)
2397{
e74f4c45 2398 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2399}
2400EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2401
2402/**
2403 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2404 */
2405void rcu_barrier_sched(void)
2406{
e74f4c45 2407 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2408}
2409EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2410
64db4cff 2411/*
27569620 2412 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2413 */
27569620
PM
2414static void __init
2415rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2416{
2417 unsigned long flags;
394f99a9 2418 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2419 struct rcu_node *rnp = rcu_get_root(rsp);
2420
2421 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2422 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2423 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2424 init_callback_list(rdp);
486e2593 2425 rdp->qlen_lazy = 0;
1d1fb395 2426 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2427 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2428 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2429 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2430 rdp->cpu = cpu;
d4c08f2a 2431 rdp->rsp = rsp;
1304afb2 2432 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2433}
2434
2435/*
2436 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2437 * offline event can be happening at a given time. Note also that we
2438 * can accept some slop in the rsp->completed access due to the fact
2439 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2440 */
e4fa4c97 2441static void __cpuinit
6cc68793 2442rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2443{
2444 unsigned long flags;
64db4cff 2445 unsigned long mask;
394f99a9 2446 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2447 struct rcu_node *rnp = rcu_get_root(rsp);
2448
2449 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2450 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2451 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2452 rdp->preemptible = preemptible;
37c72e56
PM
2453 rdp->qlen_last_fqs_check = 0;
2454 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2455 rdp->blimit = blimit;
29e37d81 2456 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2457 atomic_set(&rdp->dynticks->dynticks,
2458 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2459 rcu_prepare_for_idle_init(cpu);
1304afb2 2460 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2461
2462 /*
2463 * A new grace period might start here. If so, we won't be part
2464 * of it, but that is OK, as we are currently in a quiescent state.
2465 */
2466
2467 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2468 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2469
2470 /* Add CPU to rcu_node bitmasks. */
2471 rnp = rdp->mynode;
2472 mask = rdp->grpmask;
2473 do {
2474 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2475 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2476 rnp->qsmaskinit |= mask;
2477 mask = rnp->grpmask;
d09b62df 2478 if (rnp == rdp->mynode) {
06ae115a
PM
2479 /*
2480 * If there is a grace period in progress, we will
2481 * set up to wait for it next time we run the
2482 * RCU core code.
2483 */
2484 rdp->gpnum = rnp->completed;
d09b62df 2485 rdp->completed = rnp->completed;
06ae115a
PM
2486 rdp->passed_quiesce = 0;
2487 rdp->qs_pending = 0;
e4cc1f22 2488 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2489 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2490 }
1304afb2 2491 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2492 rnp = rnp->parent;
2493 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2494
1304afb2 2495 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2496}
2497
d72bce0e 2498static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2499{
f41d911f
PM
2500 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2501 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2502 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2503}
2504
2505/*
f41d911f 2506 * Handle CPU online/offline notification events.
64db4cff 2507 */
9f680ab4
PM
2508static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2509 unsigned long action, void *hcpu)
64db4cff
PM
2510{
2511 long cpu = (long)hcpu;
27f4d280 2512 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2513 struct rcu_node *rnp = rdp->mynode;
64db4cff 2514
300df91c 2515 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2516 switch (action) {
2517 case CPU_UP_PREPARE:
2518 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2519 rcu_prepare_cpu(cpu);
2520 rcu_prepare_kthreads(cpu);
a26ac245
PM
2521 break;
2522 case CPU_ONLINE:
0f962a5e
PM
2523 case CPU_DOWN_FAILED:
2524 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2525 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2526 break;
2527 case CPU_DOWN_PREPARE:
2528 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2529 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2530 break;
d0ec774c
PM
2531 case CPU_DYING:
2532 case CPU_DYING_FROZEN:
2533 /*
2d999e03
PM
2534 * The whole machine is "stopped" except this CPU, so we can
2535 * touch any data without introducing corruption. We send the
2536 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2537 */
e5601400
PM
2538 rcu_cleanup_dying_cpu(&rcu_bh_state);
2539 rcu_cleanup_dying_cpu(&rcu_sched_state);
2540 rcu_preempt_cleanup_dying_cpu();
7cb92499 2541 rcu_cleanup_after_idle(cpu);
d0ec774c 2542 break;
64db4cff
PM
2543 case CPU_DEAD:
2544 case CPU_DEAD_FROZEN:
2545 case CPU_UP_CANCELED:
2546 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2547 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2548 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2549 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2550 break;
2551 default:
2552 break;
2553 }
300df91c 2554 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2555 return NOTIFY_OK;
2556}
2557
bbad9379
PM
2558/*
2559 * This function is invoked towards the end of the scheduler's initialization
2560 * process. Before this is called, the idle task might contain
2561 * RCU read-side critical sections (during which time, this idle
2562 * task is booting the system). After this function is called, the
2563 * idle tasks are prohibited from containing RCU read-side critical
2564 * sections. This function also enables RCU lockdep checking.
2565 */
2566void rcu_scheduler_starting(void)
2567{
2568 WARN_ON(num_online_cpus() != 1);
2569 WARN_ON(nr_context_switches() > 0);
2570 rcu_scheduler_active = 1;
2571}
2572
64db4cff
PM
2573/*
2574 * Compute the per-level fanout, either using the exact fanout specified
2575 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2576 */
2577#ifdef CONFIG_RCU_FANOUT_EXACT
2578static void __init rcu_init_levelspread(struct rcu_state *rsp)
2579{
2580 int i;
2581
0209f649 2582 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2583 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
8932a63d 2584 rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF;
64db4cff
PM
2585}
2586#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2587static void __init rcu_init_levelspread(struct rcu_state *rsp)
2588{
2589 int ccur;
2590 int cprv;
2591 int i;
2592
2593 cprv = NR_CPUS;
2594 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2595 ccur = rsp->levelcnt[i];
2596 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2597 cprv = ccur;
2598 }
2599}
2600#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2601
2602/*
2603 * Helper function for rcu_init() that initializes one rcu_state structure.
2604 */
394f99a9
LJ
2605static void __init rcu_init_one(struct rcu_state *rsp,
2606 struct rcu_data __percpu *rda)
64db4cff 2607{
b6407e86
PM
2608 static char *buf[] = { "rcu_node_level_0",
2609 "rcu_node_level_1",
2610 "rcu_node_level_2",
2611 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2612 int cpustride = 1;
2613 int i;
2614 int j;
2615 struct rcu_node *rnp;
2616
b6407e86
PM
2617 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2618
64db4cff
PM
2619 /* Initialize the level-tracking arrays. */
2620
2621 for (i = 1; i < NUM_RCU_LVLS; i++)
2622 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2623 rcu_init_levelspread(rsp);
2624
2625 /* Initialize the elements themselves, starting from the leaves. */
2626
2627 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2628 cpustride *= rsp->levelspread[i];
2629 rnp = rsp->level[i];
2630 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2631 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2632 lockdep_set_class_and_name(&rnp->lock,
2633 &rcu_node_class[i], buf[i]);
f41d911f 2634 rnp->gpnum = 0;
64db4cff
PM
2635 rnp->qsmask = 0;
2636 rnp->qsmaskinit = 0;
2637 rnp->grplo = j * cpustride;
2638 rnp->grphi = (j + 1) * cpustride - 1;
2639 if (rnp->grphi >= NR_CPUS)
2640 rnp->grphi = NR_CPUS - 1;
2641 if (i == 0) {
2642 rnp->grpnum = 0;
2643 rnp->grpmask = 0;
2644 rnp->parent = NULL;
2645 } else {
2646 rnp->grpnum = j % rsp->levelspread[i - 1];
2647 rnp->grpmask = 1UL << rnp->grpnum;
2648 rnp->parent = rsp->level[i - 1] +
2649 j / rsp->levelspread[i - 1];
2650 }
2651 rnp->level = i;
12f5f524 2652 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2653 }
2654 }
0c34029a 2655
394f99a9 2656 rsp->rda = rda;
0c34029a
LJ
2657 rnp = rsp->level[NUM_RCU_LVLS - 1];
2658 for_each_possible_cpu(i) {
4a90a068 2659 while (i > rnp->grphi)
0c34029a 2660 rnp++;
394f99a9 2661 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2662 rcu_boot_init_percpu_data(i, rsp);
2663 }
64db4cff
PM
2664}
2665
9f680ab4 2666void __init rcu_init(void)
64db4cff 2667{
017c4261 2668 int cpu;
9f680ab4 2669
f41d911f 2670 rcu_bootup_announce();
394f99a9
LJ
2671 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2672 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2673 __rcu_init_preempt();
09223371 2674 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2675
2676 /*
2677 * We don't need protection against CPU-hotplug here because
2678 * this is called early in boot, before either interrupts
2679 * or the scheduler are operational.
2680 */
2681 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2682 for_each_online_cpu(cpu)
2683 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2684 check_cpu_stall_init();
64db4cff
PM
2685}
2686
1eba8f84 2687#include "rcutree_plugin.h"
This page took 0.339704 seconds and 5 git commands to generate.