rcu: Allow nesting of rcu_idle_enter() and rcu_idle_exit()
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
b668c9cf 63static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 64
4300aa64 65#define RCU_STATE_INITIALIZER(structname) { \
e99033c5 66 .level = { &structname##_state.node[0] }, \
64db4cff
PM
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
cf244dc0
PM
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 73 }, \
af446b70 74 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
75 .gpnum = -300, \
76 .completed = -300, \
e99033c5
PM
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
64db4cff
PM
79 .n_force_qs = 0, \
80 .n_force_qs_ngp = 0, \
4300aa64 81 .name = #structname, \
64db4cff
PM
82}
83
e99033c5 84struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 85DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 86
e99033c5 87struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 88DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 89
27f4d280
PM
90static struct rcu_state *rcu_state;
91
b0d30417
PM
92/*
93 * The rcu_scheduler_active variable transitions from zero to one just
94 * before the first task is spawned. So when this variable is zero, RCU
95 * can assume that there is but one task, allowing RCU to (for example)
96 * optimized synchronize_sched() to a simple barrier(). When this variable
97 * is one, RCU must actually do all the hard work required to detect real
98 * grace periods. This variable is also used to suppress boot-time false
99 * positives from lockdep-RCU error checking.
100 */
bbad9379
PM
101int rcu_scheduler_active __read_mostly;
102EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103
b0d30417
PM
104/*
105 * The rcu_scheduler_fully_active variable transitions from zero to one
106 * during the early_initcall() processing, which is after the scheduler
107 * is capable of creating new tasks. So RCU processing (for example,
108 * creating tasks for RCU priority boosting) must be delayed until after
109 * rcu_scheduler_fully_active transitions from zero to one. We also
110 * currently delay invocation of any RCU callbacks until after this point.
111 *
112 * It might later prove better for people registering RCU callbacks during
113 * early boot to take responsibility for these callbacks, but one step at
114 * a time.
115 */
116static int rcu_scheduler_fully_active __read_mostly;
117
a46e0899
PM
118#ifdef CONFIG_RCU_BOOST
119
a26ac245
PM
120/*
121 * Control variables for per-CPU and per-rcu_node kthreads. These
122 * handle all flavors of RCU.
123 */
124static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 126DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 127DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 128DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 129
a46e0899
PM
130#endif /* #ifdef CONFIG_RCU_BOOST */
131
0f962a5e 132static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
133static void invoke_rcu_core(void);
134static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 135
4a298656
PM
136/*
137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information.
144 */
145unsigned long rcutorture_testseq;
146unsigned long rcutorture_vernum;
147
fc2219d4
PM
148/*
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change.
152 */
153static int rcu_gp_in_progress(struct rcu_state *rsp)
154{
155 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
156}
157
b1f77b05 158/*
d6714c22 159 * Note a quiescent state. Because we do not need to know
b1f77b05 160 * how many quiescent states passed, just if there was at least
d6714c22 161 * one since the start of the grace period, this just sets a flag.
e4cc1f22 162 * The caller must have disabled preemption.
b1f77b05 163 */
d6714c22 164void rcu_sched_qs(int cpu)
b1f77b05 165{
25502a6c 166 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 167
e4cc1f22 168 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 169 barrier();
e4cc1f22 170 if (rdp->passed_quiesce == 0)
d4c08f2a 171 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 172 rdp->passed_quiesce = 1;
b1f77b05
IM
173}
174
d6714c22 175void rcu_bh_qs(int cpu)
b1f77b05 176{
25502a6c 177 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 178
e4cc1f22 179 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 180 barrier();
e4cc1f22 181 if (rdp->passed_quiesce == 0)
d4c08f2a 182 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 183 rdp->passed_quiesce = 1;
b1f77b05 184}
64db4cff 185
25502a6c
PM
186/*
187 * Note a context switch. This is a quiescent state for RCU-sched,
188 * and requires special handling for preemptible RCU.
e4cc1f22 189 * The caller must have disabled preemption.
25502a6c
PM
190 */
191void rcu_note_context_switch(int cpu)
192{
300df91c 193 trace_rcu_utilization("Start context switch");
25502a6c
PM
194 rcu_sched_qs(cpu);
195 rcu_preempt_note_context_switch(cpu);
300df91c 196 trace_rcu_utilization("End context switch");
25502a6c 197}
29ce8310 198EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 199
90a4d2c0 200DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 201 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 202 .dynticks = ATOMIC_INIT(1),
90a4d2c0 203};
64db4cff 204
e0f23060 205static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
206static int qhimark = 10000; /* If this many pending, ignore blimit. */
207static int qlowmark = 100; /* Once only this many pending, use blimit. */
208
3d76c082
PM
209module_param(blimit, int, 0);
210module_param(qhimark, int, 0);
211module_param(qlowmark, int, 0);
212
13cfcca0
PM
213int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
214int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
215
f2e0dd70 216module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 217module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 218
64db4cff 219static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 220static int rcu_pending(int cpu);
64db4cff
PM
221
222/*
d6714c22 223 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 224 */
d6714c22 225long rcu_batches_completed_sched(void)
64db4cff 226{
d6714c22 227 return rcu_sched_state.completed;
64db4cff 228}
d6714c22 229EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
230
231/*
232 * Return the number of RCU BH batches processed thus far for debug & stats.
233 */
234long rcu_batches_completed_bh(void)
235{
236 return rcu_bh_state.completed;
237}
238EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
239
bf66f18e
PM
240/*
241 * Force a quiescent state for RCU BH.
242 */
243void rcu_bh_force_quiescent_state(void)
244{
245 force_quiescent_state(&rcu_bh_state, 0);
246}
247EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
248
4a298656
PM
249/*
250 * Record the number of times rcutorture tests have been initiated and
251 * terminated. This information allows the debugfs tracing stats to be
252 * correlated to the rcutorture messages, even when the rcutorture module
253 * is being repeatedly loaded and unloaded. In other words, we cannot
254 * store this state in rcutorture itself.
255 */
256void rcutorture_record_test_transition(void)
257{
258 rcutorture_testseq++;
259 rcutorture_vernum = 0;
260}
261EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
262
263/*
264 * Record the number of writer passes through the current rcutorture test.
265 * This is also used to correlate debugfs tracing stats with the rcutorture
266 * messages.
267 */
268void rcutorture_record_progress(unsigned long vernum)
269{
270 rcutorture_vernum++;
271}
272EXPORT_SYMBOL_GPL(rcutorture_record_progress);
273
bf66f18e
PM
274/*
275 * Force a quiescent state for RCU-sched.
276 */
277void rcu_sched_force_quiescent_state(void)
278{
279 force_quiescent_state(&rcu_sched_state, 0);
280}
281EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
282
64db4cff
PM
283/*
284 * Does the CPU have callbacks ready to be invoked?
285 */
286static int
287cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
288{
289 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
290}
291
292/*
293 * Does the current CPU require a yet-as-unscheduled grace period?
294 */
295static int
296cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
297{
fc2219d4 298 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
299}
300
301/*
302 * Return the root node of the specified rcu_state structure.
303 */
304static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
305{
306 return &rsp->node[0];
307}
308
64db4cff
PM
309/*
310 * If the specified CPU is offline, tell the caller that it is in
311 * a quiescent state. Otherwise, whack it with a reschedule IPI.
312 * Grace periods can end up waiting on an offline CPU when that
313 * CPU is in the process of coming online -- it will be added to the
314 * rcu_node bitmasks before it actually makes it online. The same thing
315 * can happen while a CPU is in the process of coming online. Because this
316 * race is quite rare, we check for it after detecting that the grace
317 * period has been delayed rather than checking each and every CPU
318 * each and every time we start a new grace period.
319 */
320static int rcu_implicit_offline_qs(struct rcu_data *rdp)
321{
322 /*
2036d94a
PM
323 * If the CPU is offline for more than a jiffy, it is in a quiescent
324 * state. We can trust its state not to change because interrupts
325 * are disabled. The reason for the jiffy's worth of slack is to
326 * handle CPUs initializing on the way up and finding their way
327 * to the idle loop on the way down.
64db4cff 328 */
2036d94a
PM
329 if (cpu_is_offline(rdp->cpu) &&
330 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 331 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
332 rdp->offline_fqs++;
333 return 1;
334 }
64db4cff
PM
335 return 0;
336}
337
9b2e4f18
PM
338/*
339 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
340 *
341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts.
344 */
4145fa7f 345static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 346{
facc4e15 347 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 348 if (!is_idle_task(current)) {
0989cb46
PM
349 struct task_struct *idle = idle_task(smp_processor_id());
350
facc4e15 351 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 352 ftrace_dump(DUMP_ALL);
0989cb46
PM
353 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
354 current->pid, current->comm,
355 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 356 }
aea1b35e 357 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
358 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
359 smp_mb__before_atomic_inc(); /* See above. */
360 atomic_inc(&rdtp->dynticks);
361 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
362 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
363
364 /*
365 * The idle task is not permitted to enter the idle loop while
366 * in an RCU read-side critical section.
367 */
368 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
369 "Illegal idle entry in RCU read-side critical section.");
370 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
371 "Illegal idle entry in RCU-bh read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
373 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 374}
64db4cff
PM
375
376/**
9b2e4f18 377 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 378 *
9b2e4f18 379 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 380 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
381 * critical sections can occur in irq handlers in idle, a possibility
382 * handled by irq_enter() and irq_exit().)
383 *
384 * We crowbar the ->dynticks_nesting field to zero to allow for
385 * the possibility of usermode upcalls having messed up our count
386 * of interrupt nesting level during the prior busy period.
64db4cff 387 */
9b2e4f18 388void rcu_idle_enter(void)
64db4cff
PM
389{
390 unsigned long flags;
4145fa7f 391 long long oldval;
64db4cff
PM
392 struct rcu_dynticks *rdtp;
393
64db4cff
PM
394 local_irq_save(flags);
395 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 396 oldval = rdtp->dynticks_nesting;
29e37d81
PM
397 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
398 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
399 rdtp->dynticks_nesting = 0;
400 else
401 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 402 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
403 local_irq_restore(flags);
404}
405
9b2e4f18
PM
406/**
407 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
408 *
409 * Exit from an interrupt handler, which might possibly result in entering
410 * idle mode, in other words, leaving the mode in which read-side critical
411 * sections can occur.
64db4cff 412 *
9b2e4f18
PM
413 * This code assumes that the idle loop never does anything that might
414 * result in unbalanced calls to irq_enter() and irq_exit(). If your
415 * architecture violates this assumption, RCU will give you what you
416 * deserve, good and hard. But very infrequently and irreproducibly.
417 *
418 * Use things like work queues to work around this limitation.
419 *
420 * You have been warned.
64db4cff 421 */
9b2e4f18 422void rcu_irq_exit(void)
64db4cff
PM
423{
424 unsigned long flags;
4145fa7f 425 long long oldval;
64db4cff
PM
426 struct rcu_dynticks *rdtp;
427
428 local_irq_save(flags);
429 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 430 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
431 rdtp->dynticks_nesting--;
432 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
433 if (rdtp->dynticks_nesting)
434 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
435 else
436 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
437 local_irq_restore(flags);
438}
439
440/*
441 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
442 *
443 * If the new value of the ->dynticks_nesting counter was previously zero,
444 * we really have exited idle, and must do the appropriate accounting.
445 * The caller must have disabled interrupts.
446 */
447static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
448{
23b5c8fa
PM
449 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
450 atomic_inc(&rdtp->dynticks);
451 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
452 smp_mb__after_atomic_inc(); /* See above. */
453 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 454 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 455 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 456 if (!is_idle_task(current)) {
0989cb46
PM
457 struct task_struct *idle = idle_task(smp_processor_id());
458
4145fa7f
PM
459 trace_rcu_dyntick("Error on exit: not idle task",
460 oldval, rdtp->dynticks_nesting);
9b2e4f18 461 ftrace_dump(DUMP_ALL);
0989cb46
PM
462 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
463 current->pid, current->comm,
464 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
465 }
466}
467
468/**
469 * rcu_idle_exit - inform RCU that current CPU is leaving idle
470 *
471 * Exit idle mode, in other words, -enter- the mode in which RCU
472 * read-side critical sections can occur.
473 *
29e37d81 474 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 475 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
476 * of interrupt nesting level during the busy period that is just
477 * now starting.
478 */
479void rcu_idle_exit(void)
480{
481 unsigned long flags;
482 struct rcu_dynticks *rdtp;
483 long long oldval;
484
485 local_irq_save(flags);
486 rdtp = &__get_cpu_var(rcu_dynticks);
487 oldval = rdtp->dynticks_nesting;
29e37d81
PM
488 WARN_ON_ONCE(oldval < 0);
489 if (oldval & DYNTICK_TASK_NEST_MASK)
490 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
491 else
492 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
493 rcu_idle_exit_common(rdtp, oldval);
494 local_irq_restore(flags);
495}
496
497/**
498 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
499 *
500 * Enter an interrupt handler, which might possibly result in exiting
501 * idle mode, in other words, entering the mode in which read-side critical
502 * sections can occur.
503 *
504 * Note that the Linux kernel is fully capable of entering an interrupt
505 * handler that it never exits, for example when doing upcalls to
506 * user mode! This code assumes that the idle loop never does upcalls to
507 * user mode. If your architecture does do upcalls from the idle loop (or
508 * does anything else that results in unbalanced calls to the irq_enter()
509 * and irq_exit() functions), RCU will give you what you deserve, good
510 * and hard. But very infrequently and irreproducibly.
511 *
512 * Use things like work queues to work around this limitation.
513 *
514 * You have been warned.
515 */
516void rcu_irq_enter(void)
517{
518 unsigned long flags;
519 struct rcu_dynticks *rdtp;
520 long long oldval;
521
522 local_irq_save(flags);
523 rdtp = &__get_cpu_var(rcu_dynticks);
524 oldval = rdtp->dynticks_nesting;
525 rdtp->dynticks_nesting++;
526 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
527 if (oldval)
528 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
529 else
530 rcu_idle_exit_common(rdtp, oldval);
64db4cff 531 local_irq_restore(flags);
64db4cff
PM
532}
533
534/**
535 * rcu_nmi_enter - inform RCU of entry to NMI context
536 *
537 * If the CPU was idle with dynamic ticks active, and there is no
538 * irq handler running, this updates rdtp->dynticks_nmi to let the
539 * RCU grace-period handling know that the CPU is active.
540 */
541void rcu_nmi_enter(void)
542{
543 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
544
23b5c8fa
PM
545 if (rdtp->dynticks_nmi_nesting == 0 &&
546 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 547 return;
23b5c8fa
PM
548 rdtp->dynticks_nmi_nesting++;
549 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
550 atomic_inc(&rdtp->dynticks);
551 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
552 smp_mb__after_atomic_inc(); /* See above. */
553 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
554}
555
556/**
557 * rcu_nmi_exit - inform RCU of exit from NMI context
558 *
559 * If the CPU was idle with dynamic ticks active, and there is no
560 * irq handler running, this updates rdtp->dynticks_nmi to let the
561 * RCU grace-period handling know that the CPU is no longer active.
562 */
563void rcu_nmi_exit(void)
564{
565 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
566
23b5c8fa
PM
567 if (rdtp->dynticks_nmi_nesting == 0 ||
568 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 569 return;
23b5c8fa
PM
570 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
571 smp_mb__before_atomic_inc(); /* See above. */
572 atomic_inc(&rdtp->dynticks);
573 smp_mb__after_atomic_inc(); /* Force delay to next write. */
574 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
575}
576
9b2e4f18
PM
577#ifdef CONFIG_PROVE_RCU
578
64db4cff 579/**
9b2e4f18 580 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 581 *
9b2e4f18 582 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 583 * or NMI handler, return true.
64db4cff 584 */
9b2e4f18 585int rcu_is_cpu_idle(void)
64db4cff 586{
34240697
PM
587 int ret;
588
589 preempt_disable();
590 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
591 preempt_enable();
592 return ret;
64db4cff 593}
e6b80a3b 594EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 595
c0d6d01b
PM
596#ifdef CONFIG_HOTPLUG_CPU
597
598/*
599 * Is the current CPU online? Disable preemption to avoid false positives
600 * that could otherwise happen due to the current CPU number being sampled,
601 * this task being preempted, its old CPU being taken offline, resuming
602 * on some other CPU, then determining that its old CPU is now offline.
603 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
604 * the check for rcu_scheduler_fully_active. Note also that it is OK
605 * for a CPU coming online to use RCU for one jiffy prior to marking itself
606 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
607 * offline to continue to use RCU for one jiffy after marking itself
608 * offline in the cpu_online_mask. This leniency is necessary given the
609 * non-atomic nature of the online and offline processing, for example,
610 * the fact that a CPU enters the scheduler after completing the CPU_DYING
611 * notifiers.
612 *
613 * This is also why RCU internally marks CPUs online during the
614 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
615 *
616 * Disable checking if in an NMI handler because we cannot safely report
617 * errors from NMI handlers anyway.
618 */
619bool rcu_lockdep_current_cpu_online(void)
620{
2036d94a
PM
621 struct rcu_data *rdp;
622 struct rcu_node *rnp;
c0d6d01b
PM
623 bool ret;
624
625 if (in_nmi())
626 return 1;
627 preempt_disable();
2036d94a
PM
628 rdp = &__get_cpu_var(rcu_sched_data);
629 rnp = rdp->mynode;
630 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
631 !rcu_scheduler_fully_active;
632 preempt_enable();
633 return ret;
634}
635EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
636
637#endif /* #ifdef CONFIG_HOTPLUG_CPU */
638
9b2e4f18
PM
639#endif /* #ifdef CONFIG_PROVE_RCU */
640
64db4cff 641/**
9b2e4f18 642 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 643 *
9b2e4f18
PM
644 * If the current CPU is idle or running at a first-level (not nested)
645 * interrupt from idle, return true. The caller must have at least
646 * disabled preemption.
64db4cff 647 */
9b2e4f18 648int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 649{
9b2e4f18 650 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
651}
652
64db4cff
PM
653/*
654 * Snapshot the specified CPU's dynticks counter so that we can later
655 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 656 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
657 */
658static int dyntick_save_progress_counter(struct rcu_data *rdp)
659{
23b5c8fa 660 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 661 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
662}
663
664/*
665 * Return true if the specified CPU has passed through a quiescent
666 * state by virtue of being in or having passed through an dynticks
667 * idle state since the last call to dyntick_save_progress_counter()
668 * for this same CPU.
669 */
670static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
671{
7eb4f455
PM
672 unsigned int curr;
673 unsigned int snap;
64db4cff 674
7eb4f455
PM
675 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
676 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
677
678 /*
679 * If the CPU passed through or entered a dynticks idle phase with
680 * no active irq/NMI handlers, then we can safely pretend that the CPU
681 * already acknowledged the request to pass through a quiescent
682 * state. Either way, that CPU cannot possibly be in an RCU
683 * read-side critical section that started before the beginning
684 * of the current RCU grace period.
685 */
7eb4f455 686 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 687 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
688 rdp->dynticks_fqs++;
689 return 1;
690 }
691
692 /* Go check for the CPU being offline. */
693 return rcu_implicit_offline_qs(rdp);
694}
695
13cfcca0
PM
696static int jiffies_till_stall_check(void)
697{
698 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
699
700 /*
701 * Limit check must be consistent with the Kconfig limits
702 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
703 */
704 if (till_stall_check < 3) {
705 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
706 till_stall_check = 3;
707 } else if (till_stall_check > 300) {
708 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
709 till_stall_check = 300;
710 }
711 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
712}
713
64db4cff
PM
714static void record_gp_stall_check_time(struct rcu_state *rsp)
715{
716 rsp->gp_start = jiffies;
13cfcca0 717 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
718}
719
720static void print_other_cpu_stall(struct rcu_state *rsp)
721{
722 int cpu;
723 long delta;
724 unsigned long flags;
9bc8b558 725 int ndetected;
64db4cff 726 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
727
728 /* Only let one CPU complain about others per time interval. */
729
1304afb2 730 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 731 delta = jiffies - rsp->jiffies_stall;
fc2219d4 732 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 733 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
734 return;
735 }
13cfcca0 736 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 737 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 738
8cdd32a9
PM
739 /*
740 * OK, time to rat on our buddy...
741 * See Documentation/RCU/stallwarn.txt for info on how to debug
742 * RCU CPU stall warnings.
743 */
a858af28 744 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 745 rsp->name);
a858af28 746 print_cpu_stall_info_begin();
a0b6c9a7 747 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 748 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 749 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 750 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 751 if (rnp->qsmask == 0)
64db4cff 752 continue;
a0b6c9a7 753 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 754 if (rnp->qsmask & (1UL << cpu)) {
a858af28 755 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
756 ndetected++;
757 }
64db4cff 758 }
a858af28
PM
759
760 /*
761 * Now rat on any tasks that got kicked up to the root rcu_node
762 * due to CPU offlining.
763 */
764 rnp = rcu_get_root(rsp);
765 raw_spin_lock_irqsave(&rnp->lock, flags);
766 ndetected = rcu_print_task_stall(rnp);
767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
768
769 print_cpu_stall_info_end();
770 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 771 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
772 if (ndetected == 0)
773 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
774 else if (!trigger_all_cpu_backtrace())
4627e240 775 dump_stack();
c1dc0b9c 776
1ed509a2
PM
777 /* If so configured, complain about tasks blocking the grace period. */
778
779 rcu_print_detail_task_stall(rsp);
780
64db4cff
PM
781 force_quiescent_state(rsp, 0); /* Kick them all. */
782}
783
784static void print_cpu_stall(struct rcu_state *rsp)
785{
786 unsigned long flags;
787 struct rcu_node *rnp = rcu_get_root(rsp);
788
8cdd32a9
PM
789 /*
790 * OK, time to rat on ourselves...
791 * See Documentation/RCU/stallwarn.txt for info on how to debug
792 * RCU CPU stall warnings.
793 */
a858af28
PM
794 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
795 print_cpu_stall_info_begin();
796 print_cpu_stall_info(rsp, smp_processor_id());
797 print_cpu_stall_info_end();
798 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
799 if (!trigger_all_cpu_backtrace())
800 dump_stack();
c1dc0b9c 801
1304afb2 802 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 803 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
804 rsp->jiffies_stall = jiffies +
805 3 * jiffies_till_stall_check() + 3;
1304afb2 806 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 807
64db4cff
PM
808 set_need_resched(); /* kick ourselves to get things going. */
809}
810
811static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
812{
bad6e139
PM
813 unsigned long j;
814 unsigned long js;
64db4cff
PM
815 struct rcu_node *rnp;
816
742734ee 817 if (rcu_cpu_stall_suppress)
c68de209 818 return;
bad6e139
PM
819 j = ACCESS_ONCE(jiffies);
820 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 821 rnp = rdp->mynode;
bad6e139 822 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
823
824 /* We haven't checked in, so go dump stack. */
825 print_cpu_stall(rsp);
826
bad6e139
PM
827 } else if (rcu_gp_in_progress(rsp) &&
828 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 829
bad6e139 830 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
831 print_other_cpu_stall(rsp);
832 }
833}
834
c68de209
PM
835static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
836{
742734ee 837 rcu_cpu_stall_suppress = 1;
c68de209
PM
838 return NOTIFY_DONE;
839}
840
53d84e00
PM
841/**
842 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
843 *
844 * Set the stall-warning timeout way off into the future, thus preventing
845 * any RCU CPU stall-warning messages from appearing in the current set of
846 * RCU grace periods.
847 *
848 * The caller must disable hard irqs.
849 */
850void rcu_cpu_stall_reset(void)
851{
852 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
853 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
854 rcu_preempt_stall_reset();
855}
856
c68de209
PM
857static struct notifier_block rcu_panic_block = {
858 .notifier_call = rcu_panic,
859};
860
861static void __init check_cpu_stall_init(void)
862{
863 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
864}
865
64db4cff
PM
866/*
867 * Update CPU-local rcu_data state to record the newly noticed grace period.
868 * This is used both when we started the grace period and when we notice
9160306e
PM
869 * that someone else started the grace period. The caller must hold the
870 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
871 * and must have irqs disabled.
64db4cff 872 */
9160306e
PM
873static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
874{
875 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
876 /*
877 * If the current grace period is waiting for this CPU,
878 * set up to detect a quiescent state, otherwise don't
879 * go looking for one.
880 */
9160306e 881 rdp->gpnum = rnp->gpnum;
d4c08f2a 882 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
883 if (rnp->qsmask & rdp->grpmask) {
884 rdp->qs_pending = 1;
e4cc1f22 885 rdp->passed_quiesce = 0;
121dfc4b
PM
886 } else
887 rdp->qs_pending = 0;
a858af28 888 zero_cpu_stall_ticks(rdp);
9160306e
PM
889 }
890}
891
64db4cff
PM
892static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
893{
9160306e
PM
894 unsigned long flags;
895 struct rcu_node *rnp;
896
897 local_irq_save(flags);
898 rnp = rdp->mynode;
899 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 900 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
901 local_irq_restore(flags);
902 return;
903 }
904 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 905 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
906}
907
908/*
909 * Did someone else start a new RCU grace period start since we last
910 * checked? Update local state appropriately if so. Must be called
911 * on the CPU corresponding to rdp.
912 */
913static int
914check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
915{
916 unsigned long flags;
917 int ret = 0;
918
919 local_irq_save(flags);
920 if (rdp->gpnum != rsp->gpnum) {
921 note_new_gpnum(rsp, rdp);
922 ret = 1;
923 }
924 local_irq_restore(flags);
925 return ret;
926}
927
d09b62df
PM
928/*
929 * Advance this CPU's callbacks, but only if the current grace period
930 * has ended. This may be called only from the CPU to whom the rdp
931 * belongs. In addition, the corresponding leaf rcu_node structure's
932 * ->lock must be held by the caller, with irqs disabled.
933 */
934static void
935__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
936{
937 /* Did another grace period end? */
938 if (rdp->completed != rnp->completed) {
939
940 /* Advance callbacks. No harm if list empty. */
941 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
942 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
943 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
944
945 /* Remember that we saw this grace-period completion. */
946 rdp->completed = rnp->completed;
d4c08f2a 947 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 948
5ff8e6f0
FW
949 /*
950 * If we were in an extended quiescent state, we may have
121dfc4b 951 * missed some grace periods that others CPUs handled on
5ff8e6f0 952 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
953 * spurious new grace periods. If another grace period
954 * has started, then rnp->gpnum will have advanced, so
955 * we will detect this later on.
5ff8e6f0 956 */
121dfc4b 957 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
958 rdp->gpnum = rdp->completed;
959
20377f32 960 /*
121dfc4b
PM
961 * If RCU does not need a quiescent state from this CPU,
962 * then make sure that this CPU doesn't go looking for one.
20377f32 963 */
121dfc4b 964 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 965 rdp->qs_pending = 0;
d09b62df
PM
966 }
967}
968
969/*
970 * Advance this CPU's callbacks, but only if the current grace period
971 * has ended. This may be called only from the CPU to whom the rdp
972 * belongs.
973 */
974static void
975rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
976{
977 unsigned long flags;
978 struct rcu_node *rnp;
979
980 local_irq_save(flags);
981 rnp = rdp->mynode;
982 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 983 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
984 local_irq_restore(flags);
985 return;
986 }
987 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 988 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
989}
990
991/*
992 * Do per-CPU grace-period initialization for running CPU. The caller
993 * must hold the lock of the leaf rcu_node structure corresponding to
994 * this CPU.
995 */
996static void
997rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
998{
999 /* Prior grace period ended, so advance callbacks for current CPU. */
1000 __rcu_process_gp_end(rsp, rnp, rdp);
1001
1002 /*
1003 * Because this CPU just now started the new grace period, we know
1004 * that all of its callbacks will be covered by this upcoming grace
1005 * period, even the ones that were registered arbitrarily recently.
1006 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1007 *
1008 * Other CPUs cannot be sure exactly when the grace period started.
1009 * Therefore, their recently registered callbacks must pass through
1010 * an additional RCU_NEXT_READY stage, so that they will be handled
1011 * by the next RCU grace period.
1012 */
1013 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1014 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1015
1016 /* Set state so that this CPU will detect the next quiescent state. */
1017 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1018}
1019
64db4cff
PM
1020/*
1021 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1022 * in preparation for detecting the next grace period. The caller must hold
1023 * the root node's ->lock, which is released before return. Hard irqs must
1024 * be disabled.
e5601400
PM
1025 *
1026 * Note that it is legal for a dying CPU (which is marked as offline) to
1027 * invoke this function. This can happen when the dying CPU reports its
1028 * quiescent state.
64db4cff
PM
1029 */
1030static void
1031rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1032 __releases(rcu_get_root(rsp)->lock)
1033{
394f99a9 1034 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1035 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1036
037067a1 1037 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1038 !cpu_needs_another_gp(rsp, rdp)) {
1039 /*
1040 * Either the scheduler hasn't yet spawned the first
1041 * non-idle task or this CPU does not need another
1042 * grace period. Either way, don't start a new grace
1043 * period.
1044 */
1045 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1046 return;
1047 }
b32e9eb6 1048
afe24b12 1049 if (rsp->fqs_active) {
b32e9eb6 1050 /*
afe24b12
PM
1051 * This CPU needs a grace period, but force_quiescent_state()
1052 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1053 */
afe24b12
PM
1054 rsp->fqs_need_gp = 1;
1055 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1056 return;
1057 }
1058
1059 /* Advance to a new grace period and initialize state. */
1060 rsp->gpnum++;
d4c08f2a 1061 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1062 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1063 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1064 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1065 record_gp_stall_check_time(rsp);
1304afb2 1066 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1067
64db4cff 1068 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1069 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1070
1071 /*
b835db1f
PM
1072 * Set the quiescent-state-needed bits in all the rcu_node
1073 * structures for all currently online CPUs in breadth-first
1074 * order, starting from the root rcu_node structure. This
1075 * operation relies on the layout of the hierarchy within the
1076 * rsp->node[] array. Note that other CPUs will access only
1077 * the leaves of the hierarchy, which still indicate that no
1078 * grace period is in progress, at least until the corresponding
1079 * leaf node has been initialized. In addition, we have excluded
1080 * CPU-hotplug operations.
64db4cff
PM
1081 *
1082 * Note that the grace period cannot complete until we finish
1083 * the initialization process, as there will be at least one
1084 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1085 * one corresponding to this CPU, due to the fact that we have
1086 * irqs disabled.
64db4cff 1087 */
a0b6c9a7 1088 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1089 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1090 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1091 rnp->qsmask = rnp->qsmaskinit;
de078d87 1092 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1093 rnp->completed = rsp->completed;
1094 if (rnp == rdp->mynode)
1095 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1096 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1097 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1098 rnp->level, rnp->grplo,
1099 rnp->grphi, rnp->qsmask);
1304afb2 1100 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1101 }
1102
83f5b01f 1103 rnp = rcu_get_root(rsp);
1304afb2 1104 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1105 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1106 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1107 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1108}
1109
f41d911f 1110/*
d3f6bad3
PM
1111 * Report a full set of quiescent states to the specified rcu_state
1112 * data structure. This involves cleaning up after the prior grace
1113 * period and letting rcu_start_gp() start up the next grace period
1114 * if one is needed. Note that the caller must hold rnp->lock, as
1115 * required by rcu_start_gp(), which will release it.
f41d911f 1116 */
d3f6bad3 1117static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1118 __releases(rcu_get_root(rsp)->lock)
f41d911f 1119{
15ba0ba8 1120 unsigned long gp_duration;
afe24b12
PM
1121 struct rcu_node *rnp = rcu_get_root(rsp);
1122 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1123
fc2219d4 1124 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1125
1126 /*
1127 * Ensure that all grace-period and pre-grace-period activity
1128 * is seen before the assignment to rsp->completed.
1129 */
1130 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1131 gp_duration = jiffies - rsp->gp_start;
1132 if (gp_duration > rsp->gp_max)
1133 rsp->gp_max = gp_duration;
afe24b12
PM
1134
1135 /*
1136 * We know the grace period is complete, but to everyone else
1137 * it appears to still be ongoing. But it is also the case
1138 * that to everyone else it looks like there is nothing that
1139 * they can do to advance the grace period. It is therefore
1140 * safe for us to drop the lock in order to mark the grace
1141 * period as completed in all of the rcu_node structures.
1142 *
1143 * But if this CPU needs another grace period, it will take
1144 * care of this while initializing the next grace period.
1145 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1146 * because the callbacks have not yet been advanced: Those
1147 * callbacks are waiting on the grace period that just now
1148 * completed.
1149 */
1150 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1151 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1152
1153 /*
1154 * Propagate new ->completed value to rcu_node structures
1155 * so that other CPUs don't have to wait until the start
1156 * of the next grace period to process their callbacks.
1157 */
1158 rcu_for_each_node_breadth_first(rsp, rnp) {
1159 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1160 rnp->completed = rsp->gpnum;
1161 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1162 }
1163 rnp = rcu_get_root(rsp);
1164 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1165 }
1166
1167 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1168 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1169 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1170 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1171}
1172
64db4cff 1173/*
d3f6bad3
PM
1174 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1175 * Allows quiescent states for a group of CPUs to be reported at one go
1176 * to the specified rcu_node structure, though all the CPUs in the group
1177 * must be represented by the same rcu_node structure (which need not be
1178 * a leaf rcu_node structure, though it often will be). That structure's
1179 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1180 */
1181static void
d3f6bad3
PM
1182rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1183 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1184 __releases(rnp->lock)
1185{
28ecd580
PM
1186 struct rcu_node *rnp_c;
1187
64db4cff
PM
1188 /* Walk up the rcu_node hierarchy. */
1189 for (;;) {
1190 if (!(rnp->qsmask & mask)) {
1191
1192 /* Our bit has already been cleared, so done. */
1304afb2 1193 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1194 return;
1195 }
1196 rnp->qsmask &= ~mask;
d4c08f2a
PM
1197 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1198 mask, rnp->qsmask, rnp->level,
1199 rnp->grplo, rnp->grphi,
1200 !!rnp->gp_tasks);
27f4d280 1201 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1202
1203 /* Other bits still set at this level, so done. */
1304afb2 1204 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1205 return;
1206 }
1207 mask = rnp->grpmask;
1208 if (rnp->parent == NULL) {
1209
1210 /* No more levels. Exit loop holding root lock. */
1211
1212 break;
1213 }
1304afb2 1214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1215 rnp_c = rnp;
64db4cff 1216 rnp = rnp->parent;
1304afb2 1217 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1218 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1219 }
1220
1221 /*
1222 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1223 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1224 * to clean up and start the next grace period if one is needed.
64db4cff 1225 */
d3f6bad3 1226 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1227}
1228
1229/*
d3f6bad3
PM
1230 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1231 * structure. This must be either called from the specified CPU, or
1232 * called when the specified CPU is known to be offline (and when it is
1233 * also known that no other CPU is concurrently trying to help the offline
1234 * CPU). The lastcomp argument is used to make sure we are still in the
1235 * grace period of interest. We don't want to end the current grace period
1236 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1237 */
1238static void
e4cc1f22 1239rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1240{
1241 unsigned long flags;
1242 unsigned long mask;
1243 struct rcu_node *rnp;
1244
1245 rnp = rdp->mynode;
1304afb2 1246 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1247 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1248
1249 /*
e4cc1f22
PM
1250 * The grace period in which this quiescent state was
1251 * recorded has ended, so don't report it upwards.
1252 * We will instead need a new quiescent state that lies
1253 * within the current grace period.
64db4cff 1254 */
e4cc1f22 1255 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1257 return;
1258 }
1259 mask = rdp->grpmask;
1260 if ((rnp->qsmask & mask) == 0) {
1304afb2 1261 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1262 } else {
1263 rdp->qs_pending = 0;
1264
1265 /*
1266 * This GP can't end until cpu checks in, so all of our
1267 * callbacks can be processed during the next GP.
1268 */
64db4cff
PM
1269 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1270
d3f6bad3 1271 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1272 }
1273}
1274
1275/*
1276 * Check to see if there is a new grace period of which this CPU
1277 * is not yet aware, and if so, set up local rcu_data state for it.
1278 * Otherwise, see if this CPU has just passed through its first
1279 * quiescent state for this grace period, and record that fact if so.
1280 */
1281static void
1282rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1283{
1284 /* If there is now a new grace period, record and return. */
1285 if (check_for_new_grace_period(rsp, rdp))
1286 return;
1287
1288 /*
1289 * Does this CPU still need to do its part for current grace period?
1290 * If no, return and let the other CPUs do their part as well.
1291 */
1292 if (!rdp->qs_pending)
1293 return;
1294
1295 /*
1296 * Was there a quiescent state since the beginning of the grace
1297 * period? If no, then exit and wait for the next call.
1298 */
e4cc1f22 1299 if (!rdp->passed_quiesce)
64db4cff
PM
1300 return;
1301
d3f6bad3
PM
1302 /*
1303 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1304 * judge of that).
1305 */
e4cc1f22 1306 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1307}
1308
1309#ifdef CONFIG_HOTPLUG_CPU
1310
e74f4c45 1311/*
29494be7 1312 * Move a dying CPU's RCU callbacks to online CPU's callback list.
e5601400
PM
1313 * Also record a quiescent state for this CPU for the current grace period.
1314 * Synchronization and interrupt disabling are not required because
1315 * this function executes in stop_machine() context. Therefore, cleanup
1316 * operations that might block must be done later from the CPU_DEAD
1317 * notifier.
1318 *
1319 * Note that the outgoing CPU's bit has already been cleared in the
1320 * cpu_online_mask. This allows us to randomly pick a callback
1321 * destination from the bits set in that mask.
e74f4c45 1322 */
e5601400 1323static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1324{
1325 int i;
e5601400 1326 unsigned long mask;
29494be7 1327 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1328 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1329 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
2036d94a 1330 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */
e5601400 1331
a50c3af9
PM
1332 /* First, adjust the counts. */
1333 if (rdp->nxtlist != NULL) {
1334 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1335 receive_rdp->qlen += rdp->qlen;
1336 rdp->qlen_lazy = 0;
1337 rdp->qlen = 0;
1338 }
1339
1340 /*
1341 * Next, move ready-to-invoke callbacks to be invoked on some
1342 * other CPU. These will not be required to pass through another
1343 * grace period: They are done, regardless of CPU.
1344 */
1345 if (rdp->nxtlist != NULL &&
1346 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1347 struct rcu_head *oldhead;
1348 struct rcu_head **oldtail;
1349 struct rcu_head **newtail;
1350
1351 oldhead = rdp->nxtlist;
1352 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1353 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1354 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1355 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1356 newtail = rdp->nxttail[RCU_DONE_TAIL];
1357 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1358 if (receive_rdp->nxttail[i] == oldtail)
1359 receive_rdp->nxttail[i] = newtail;
1360 if (rdp->nxttail[i] == newtail)
1361 rdp->nxttail[i] = &rdp->nxtlist;
1362 }
1363 }
1364
1365 /*
1366 * Finally, put the rest of the callbacks at the end of the list.
1367 * The ones that made it partway through get to start over: We
1368 * cannot assume that grace periods are synchronized across CPUs.
1369 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1370 * this does not seem compelling. Not yet, anyway.)
1371 */
e5601400
PM
1372 if (rdp->nxtlist != NULL) {
1373 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1374 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1375 rdp->nxttail[RCU_NEXT_TAIL];
e5601400
PM
1376 receive_rdp->n_cbs_adopted += rdp->qlen;
1377 rdp->n_cbs_orphaned += rdp->qlen;
1378
1379 rdp->nxtlist = NULL;
1380 for (i = 0; i < RCU_NEXT_SIZE; i++)
1381 rdp->nxttail[i] = &rdp->nxtlist;
e5601400 1382 }
e74f4c45 1383
a50c3af9
PM
1384 /*
1385 * Record a quiescent state for the dying CPU. This is safe
1386 * only because we have already cleared out the callbacks.
1387 * (Otherwise, the RCU core might try to schedule the invocation
1388 * of callbacks on this now-offline CPU, which would be bad.)
1389 */
64db4cff 1390 mask = rdp->grpmask; /* rnp->grplo is constant. */
e5601400
PM
1391 trace_rcu_grace_period(rsp->name,
1392 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1393 "cpuofl");
1394 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1395 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
64db4cff
PM
1396}
1397
1398/*
e5601400
PM
1399 * The CPU has been completely removed, and some other CPU is reporting
1400 * this fact from process context. Do the remainder of the cleanup.
1401 * There can only be one CPU hotplug operation at a time, so no other
1402 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1403 */
e5601400 1404static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1405{
2036d94a
PM
1406 unsigned long flags;
1407 unsigned long mask;
1408 int need_report = 0;
e5601400 1409 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2036d94a 1410 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rnp. */
e5601400 1411
2036d94a 1412 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1413 rcu_stop_cpu_kthread(cpu);
1414 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a
PM
1415
1416 /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */
1417
1418 /* Exclude any attempts to start a new grace period. */
1419 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1420
1421 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1422 mask = rdp->grpmask; /* rnp->grplo is constant. */
1423 do {
1424 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1425 rnp->qsmaskinit &= ~mask;
1426 if (rnp->qsmaskinit != 0) {
1427 if (rnp != rdp->mynode)
1428 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1429 break;
1430 }
1431 if (rnp == rdp->mynode)
1432 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1433 else
1434 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1435 mask = rnp->grpmask;
1436 rnp = rnp->parent;
1437 } while (rnp != NULL);
1438
1439 /*
1440 * We still hold the leaf rcu_node structure lock here, and
1441 * irqs are still disabled. The reason for this subterfuge is
1442 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1443 * held leads to deadlock.
1444 */
1445 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1446 rnp = rdp->mynode;
1447 if (need_report & RCU_OFL_TASKS_NORM_GP)
1448 rcu_report_unblock_qs_rnp(rnp, flags);
1449 else
1450 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1451 if (need_report & RCU_OFL_TASKS_EXP_GP)
1452 rcu_report_exp_rnp(rsp, rnp, true);
64db4cff
PM
1453}
1454
1455#else /* #ifdef CONFIG_HOTPLUG_CPU */
1456
e5601400 1457static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1458{
1459}
1460
e5601400 1461static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1462{
1463}
1464
1465#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1466
1467/*
1468 * Invoke any RCU callbacks that have made it to the end of their grace
1469 * period. Thottle as specified by rdp->blimit.
1470 */
37c72e56 1471static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1472{
1473 unsigned long flags;
1474 struct rcu_head *next, *list, **tail;
486e2593 1475 int bl, count, count_lazy;
64db4cff
PM
1476
1477 /* If no callbacks are ready, just return.*/
29c00b4a 1478 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1479 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1480 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1481 need_resched(), is_idle_task(current),
1482 rcu_is_callbacks_kthread());
64db4cff 1483 return;
29c00b4a 1484 }
64db4cff
PM
1485
1486 /*
1487 * Extract the list of ready callbacks, disabling to prevent
1488 * races with call_rcu() from interrupt handlers.
1489 */
1490 local_irq_save(flags);
8146c4e2 1491 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1492 bl = rdp->blimit;
486e2593 1493 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1494 list = rdp->nxtlist;
1495 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1496 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1497 tail = rdp->nxttail[RCU_DONE_TAIL];
1498 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1499 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1500 rdp->nxttail[count] = &rdp->nxtlist;
1501 local_irq_restore(flags);
1502
1503 /* Invoke callbacks. */
486e2593 1504 count = count_lazy = 0;
64db4cff
PM
1505 while (list) {
1506 next = list->next;
1507 prefetch(next);
551d55a9 1508 debug_rcu_head_unqueue(list);
486e2593
PM
1509 if (__rcu_reclaim(rsp->name, list))
1510 count_lazy++;
64db4cff 1511 list = next;
dff1672d
PM
1512 /* Stop only if limit reached and CPU has something to do. */
1513 if (++count >= bl &&
1514 (need_resched() ||
1515 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1516 break;
1517 }
1518
1519 local_irq_save(flags);
4968c300
PM
1520 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1521 is_idle_task(current),
1522 rcu_is_callbacks_kthread());
64db4cff
PM
1523
1524 /* Update count, and requeue any remaining callbacks. */
486e2593 1525 rdp->qlen_lazy -= count_lazy;
64db4cff 1526 rdp->qlen -= count;
269dcc1c 1527 rdp->n_cbs_invoked += count;
64db4cff
PM
1528 if (list != NULL) {
1529 *tail = rdp->nxtlist;
1530 rdp->nxtlist = list;
1531 for (count = 0; count < RCU_NEXT_SIZE; count++)
1532 if (&rdp->nxtlist == rdp->nxttail[count])
1533 rdp->nxttail[count] = tail;
1534 else
1535 break;
1536 }
1537
1538 /* Reinstate batch limit if we have worked down the excess. */
1539 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1540 rdp->blimit = blimit;
1541
37c72e56
PM
1542 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1543 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1544 rdp->qlen_last_fqs_check = 0;
1545 rdp->n_force_qs_snap = rsp->n_force_qs;
1546 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1547 rdp->qlen_last_fqs_check = rdp->qlen;
1548
64db4cff
PM
1549 local_irq_restore(flags);
1550
e0f23060 1551 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1552 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1553 invoke_rcu_core();
64db4cff
PM
1554}
1555
1556/*
1557 * Check to see if this CPU is in a non-context-switch quiescent state
1558 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1559 * Also schedule RCU core processing.
64db4cff 1560 *
9b2e4f18 1561 * This function must be called from hardirq context. It is normally
64db4cff
PM
1562 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1563 * false, there is no point in invoking rcu_check_callbacks().
1564 */
1565void rcu_check_callbacks(int cpu, int user)
1566{
300df91c 1567 trace_rcu_utilization("Start scheduler-tick");
a858af28 1568 increment_cpu_stall_ticks();
9b2e4f18 1569 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1570
1571 /*
1572 * Get here if this CPU took its interrupt from user
1573 * mode or from the idle loop, and if this is not a
1574 * nested interrupt. In this case, the CPU is in
d6714c22 1575 * a quiescent state, so note it.
64db4cff
PM
1576 *
1577 * No memory barrier is required here because both
d6714c22
PM
1578 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1579 * variables that other CPUs neither access nor modify,
1580 * at least not while the corresponding CPU is online.
64db4cff
PM
1581 */
1582
d6714c22
PM
1583 rcu_sched_qs(cpu);
1584 rcu_bh_qs(cpu);
64db4cff
PM
1585
1586 } else if (!in_softirq()) {
1587
1588 /*
1589 * Get here if this CPU did not take its interrupt from
1590 * softirq, in other words, if it is not interrupting
1591 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1592 * critical section, so note it.
64db4cff
PM
1593 */
1594
d6714c22 1595 rcu_bh_qs(cpu);
64db4cff 1596 }
f41d911f 1597 rcu_preempt_check_callbacks(cpu);
d21670ac 1598 if (rcu_pending(cpu))
a46e0899 1599 invoke_rcu_core();
300df91c 1600 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1601}
1602
64db4cff
PM
1603/*
1604 * Scan the leaf rcu_node structures, processing dyntick state for any that
1605 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1606 * Also initiate boosting for any threads blocked on the root rcu_node.
1607 *
ee47eb9f 1608 * The caller must have suppressed start of new grace periods.
64db4cff 1609 */
45f014c5 1610static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1611{
1612 unsigned long bit;
1613 int cpu;
1614 unsigned long flags;
1615 unsigned long mask;
a0b6c9a7 1616 struct rcu_node *rnp;
64db4cff 1617
a0b6c9a7 1618 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1619 mask = 0;
1304afb2 1620 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1621 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1622 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1623 return;
64db4cff 1624 }
a0b6c9a7 1625 if (rnp->qsmask == 0) {
1217ed1b 1626 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1627 continue;
1628 }
a0b6c9a7 1629 cpu = rnp->grplo;
64db4cff 1630 bit = 1;
a0b6c9a7 1631 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1632 if ((rnp->qsmask & bit) != 0 &&
1633 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1634 mask |= bit;
1635 }
45f014c5 1636 if (mask != 0) {
64db4cff 1637
d3f6bad3
PM
1638 /* rcu_report_qs_rnp() releases rnp->lock. */
1639 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1640 continue;
1641 }
1304afb2 1642 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1643 }
27f4d280 1644 rnp = rcu_get_root(rsp);
1217ed1b
PM
1645 if (rnp->qsmask == 0) {
1646 raw_spin_lock_irqsave(&rnp->lock, flags);
1647 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1648 }
64db4cff
PM
1649}
1650
1651/*
1652 * Force quiescent states on reluctant CPUs, and also detect which
1653 * CPUs are in dyntick-idle mode.
1654 */
1655static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1656{
1657 unsigned long flags;
64db4cff 1658 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1659
300df91c
PM
1660 trace_rcu_utilization("Start fqs");
1661 if (!rcu_gp_in_progress(rsp)) {
1662 trace_rcu_utilization("End fqs");
64db4cff 1663 return; /* No grace period in progress, nothing to force. */
300df91c 1664 }
1304afb2 1665 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1666 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1667 trace_rcu_utilization("End fqs");
64db4cff
PM
1668 return; /* Someone else is already on the job. */
1669 }
20133cfc 1670 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1671 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1672 rsp->n_force_qs++;
1304afb2 1673 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1674 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1675 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1676 rsp->n_force_qs_ngp++;
1304afb2 1677 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1678 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1679 }
07079d53 1680 rsp->fqs_active = 1;
af446b70 1681 switch (rsp->fqs_state) {
83f5b01f 1682 case RCU_GP_IDLE:
64db4cff
PM
1683 case RCU_GP_INIT:
1684
83f5b01f 1685 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1686
1687 case RCU_SAVE_DYNTICK:
64db4cff
PM
1688 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1689 break; /* So gcc recognizes the dead code. */
1690
f261414f
LJ
1691 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1692
64db4cff 1693 /* Record dyntick-idle state. */
45f014c5 1694 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1695 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1696 if (rcu_gp_in_progress(rsp))
af446b70 1697 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1698 break;
64db4cff
PM
1699
1700 case RCU_FORCE_QS:
1701
1702 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1703 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1704 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1705
1706 /* Leave state in case more forcing is required. */
1707
1304afb2 1708 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1709 break;
64db4cff 1710 }
07079d53 1711 rsp->fqs_active = 0;
46a1e34e 1712 if (rsp->fqs_need_gp) {
1304afb2 1713 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1714 rsp->fqs_need_gp = 0;
1715 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1716 trace_rcu_utilization("End fqs");
46a1e34e
PM
1717 return;
1718 }
1304afb2 1719 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1720unlock_fqs_ret:
1304afb2 1721 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1722 trace_rcu_utilization("End fqs");
64db4cff
PM
1723}
1724
64db4cff 1725/*
e0f23060
PM
1726 * This does the RCU core processing work for the specified rcu_state
1727 * and rcu_data structures. This may be called only from the CPU to
1728 * whom the rdp belongs.
64db4cff
PM
1729 */
1730static void
1731__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1732{
1733 unsigned long flags;
1734
2e597558
PM
1735 WARN_ON_ONCE(rdp->beenonline == 0);
1736
64db4cff
PM
1737 /*
1738 * If an RCU GP has gone long enough, go check for dyntick
1739 * idle CPUs and, if needed, send resched IPIs.
1740 */
20133cfc 1741 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1742 force_quiescent_state(rsp, 1);
1743
1744 /*
1745 * Advance callbacks in response to end of earlier grace
1746 * period that some other CPU ended.
1747 */
1748 rcu_process_gp_end(rsp, rdp);
1749
1750 /* Update RCU state based on any recent quiescent states. */
1751 rcu_check_quiescent_state(rsp, rdp);
1752
1753 /* Does this CPU require a not-yet-started grace period? */
1754 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1755 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1756 rcu_start_gp(rsp, flags); /* releases above lock */
1757 }
1758
1759 /* If there are callbacks ready, invoke them. */
09223371 1760 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1761 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1762}
1763
64db4cff 1764/*
e0f23060 1765 * Do RCU core processing for the current CPU.
64db4cff 1766 */
09223371 1767static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1768{
300df91c 1769 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1770 __rcu_process_callbacks(&rcu_sched_state,
1771 &__get_cpu_var(rcu_sched_data));
64db4cff 1772 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1773 rcu_preempt_process_callbacks();
300df91c 1774 trace_rcu_utilization("End RCU core");
64db4cff
PM
1775}
1776
a26ac245 1777/*
e0f23060
PM
1778 * Schedule RCU callback invocation. If the specified type of RCU
1779 * does not support RCU priority boosting, just do a direct call,
1780 * otherwise wake up the per-CPU kernel kthread. Note that because we
1781 * are running on the current CPU with interrupts disabled, the
1782 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1783 */
a46e0899 1784static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1785{
b0d30417
PM
1786 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1787 return;
a46e0899
PM
1788 if (likely(!rsp->boost)) {
1789 rcu_do_batch(rsp, rdp);
a26ac245
PM
1790 return;
1791 }
a46e0899 1792 invoke_rcu_callbacks_kthread();
a26ac245
PM
1793}
1794
a46e0899 1795static void invoke_rcu_core(void)
09223371
SL
1796{
1797 raise_softirq(RCU_SOFTIRQ);
1798}
1799
64db4cff
PM
1800static void
1801__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1802 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1803{
1804 unsigned long flags;
1805 struct rcu_data *rdp;
1806
0bb7b59d 1807 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1808 debug_rcu_head_queue(head);
64db4cff
PM
1809 head->func = func;
1810 head->next = NULL;
1811
1812 smp_mb(); /* Ensure RCU update seen before callback registry. */
1813
1814 /*
1815 * Opportunistically note grace-period endings and beginnings.
1816 * Note that we might see a beginning right after we see an
1817 * end, but never vice versa, since this CPU has to pass through
1818 * a quiescent state betweentimes.
1819 */
1820 local_irq_save(flags);
e5601400 1821 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
394f99a9 1822 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1823
1824 /* Add the callback to our list. */
1825 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1826 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1827 rdp->qlen++;
486e2593
PM
1828 if (lazy)
1829 rdp->qlen_lazy++;
2655d57e 1830
d4c08f2a
PM
1831 if (__is_kfree_rcu_offset((unsigned long)func))
1832 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1833 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1834 else
486e2593 1835 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1836
2655d57e
PM
1837 /* If interrupts were disabled, don't dive into RCU core. */
1838 if (irqs_disabled_flags(flags)) {
1839 local_irq_restore(flags);
1840 return;
1841 }
64db4cff 1842
37c72e56
PM
1843 /*
1844 * Force the grace period if too many callbacks or too long waiting.
1845 * Enforce hysteresis, and don't invoke force_quiescent_state()
1846 * if some other CPU has recently done so. Also, don't bother
1847 * invoking force_quiescent_state() if the newly enqueued callback
1848 * is the only one waiting for a grace period to complete.
1849 */
2655d57e 1850 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1851
1852 /* Are we ignoring a completed grace period? */
1853 rcu_process_gp_end(rsp, rdp);
1854 check_for_new_grace_period(rsp, rdp);
1855
1856 /* Start a new grace period if one not already started. */
1857 if (!rcu_gp_in_progress(rsp)) {
1858 unsigned long nestflag;
1859 struct rcu_node *rnp_root = rcu_get_root(rsp);
1860
1861 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1862 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1863 } else {
1864 /* Give the grace period a kick. */
1865 rdp->blimit = LONG_MAX;
1866 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1867 *rdp->nxttail[RCU_DONE_TAIL] != head)
1868 force_quiescent_state(rsp, 0);
1869 rdp->n_force_qs_snap = rsp->n_force_qs;
1870 rdp->qlen_last_fqs_check = rdp->qlen;
1871 }
20133cfc 1872 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1873 force_quiescent_state(rsp, 1);
1874 local_irq_restore(flags);
1875}
1876
1877/*
d6714c22 1878 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1879 */
d6714c22 1880void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1881{
486e2593 1882 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1883}
d6714c22 1884EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1885
1886/*
486e2593 1887 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1888 */
1889void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1890{
486e2593 1891 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1892}
1893EXPORT_SYMBOL_GPL(call_rcu_bh);
1894
6ebb237b
PM
1895/**
1896 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1897 *
1898 * Control will return to the caller some time after a full rcu-sched
1899 * grace period has elapsed, in other words after all currently executing
1900 * rcu-sched read-side critical sections have completed. These read-side
1901 * critical sections are delimited by rcu_read_lock_sched() and
1902 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1903 * local_irq_disable(), and so on may be used in place of
1904 * rcu_read_lock_sched().
1905 *
1906 * This means that all preempt_disable code sequences, including NMI and
1907 * hardware-interrupt handlers, in progress on entry will have completed
1908 * before this primitive returns. However, this does not guarantee that
1909 * softirq handlers will have completed, since in some kernels, these
1910 * handlers can run in process context, and can block.
1911 *
1912 * This primitive provides the guarantees made by the (now removed)
1913 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1914 * guarantees that rcu_read_lock() sections will have completed.
1915 * In "classic RCU", these two guarantees happen to be one and
1916 * the same, but can differ in realtime RCU implementations.
1917 */
1918void synchronize_sched(void)
1919{
fe15d706
PM
1920 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1921 !lock_is_held(&rcu_lock_map) &&
1922 !lock_is_held(&rcu_sched_lock_map),
1923 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
1924 if (rcu_blocking_is_gp())
1925 return;
2c42818e 1926 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
1927}
1928EXPORT_SYMBOL_GPL(synchronize_sched);
1929
1930/**
1931 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1932 *
1933 * Control will return to the caller some time after a full rcu_bh grace
1934 * period has elapsed, in other words after all currently executing rcu_bh
1935 * read-side critical sections have completed. RCU read-side critical
1936 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1937 * and may be nested.
1938 */
1939void synchronize_rcu_bh(void)
1940{
fe15d706
PM
1941 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1942 !lock_is_held(&rcu_lock_map) &&
1943 !lock_is_held(&rcu_sched_lock_map),
1944 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
1945 if (rcu_blocking_is_gp())
1946 return;
2c42818e 1947 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
1948}
1949EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1950
3d3b7db0
PM
1951static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1952static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1953
1954static int synchronize_sched_expedited_cpu_stop(void *data)
1955{
1956 /*
1957 * There must be a full memory barrier on each affected CPU
1958 * between the time that try_stop_cpus() is called and the
1959 * time that it returns.
1960 *
1961 * In the current initial implementation of cpu_stop, the
1962 * above condition is already met when the control reaches
1963 * this point and the following smp_mb() is not strictly
1964 * necessary. Do smp_mb() anyway for documentation and
1965 * robustness against future implementation changes.
1966 */
1967 smp_mb(); /* See above comment block. */
1968 return 0;
1969}
1970
236fefaf
PM
1971/**
1972 * synchronize_sched_expedited - Brute-force RCU-sched grace period
1973 *
1974 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
1975 * approach to force the grace period to end quickly. This consumes
1976 * significant time on all CPUs and is unfriendly to real-time workloads,
1977 * so is thus not recommended for any sort of common-case code. In fact,
1978 * if you are using synchronize_sched_expedited() in a loop, please
1979 * restructure your code to batch your updates, and then use a single
1980 * synchronize_sched() instead.
3d3b7db0 1981 *
236fefaf
PM
1982 * Note that it is illegal to call this function while holding any lock
1983 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
1984 * to call this function from a CPU-hotplug notifier. Failing to observe
1985 * these restriction will result in deadlock.
3d3b7db0
PM
1986 *
1987 * This implementation can be thought of as an application of ticket
1988 * locking to RCU, with sync_sched_expedited_started and
1989 * sync_sched_expedited_done taking on the roles of the halves
1990 * of the ticket-lock word. Each task atomically increments
1991 * sync_sched_expedited_started upon entry, snapshotting the old value,
1992 * then attempts to stop all the CPUs. If this succeeds, then each
1993 * CPU will have executed a context switch, resulting in an RCU-sched
1994 * grace period. We are then done, so we use atomic_cmpxchg() to
1995 * update sync_sched_expedited_done to match our snapshot -- but
1996 * only if someone else has not already advanced past our snapshot.
1997 *
1998 * On the other hand, if try_stop_cpus() fails, we check the value
1999 * of sync_sched_expedited_done. If it has advanced past our
2000 * initial snapshot, then someone else must have forced a grace period
2001 * some time after we took our snapshot. In this case, our work is
2002 * done for us, and we can simply return. Otherwise, we try again,
2003 * but keep our initial snapshot for purposes of checking for someone
2004 * doing our work for us.
2005 *
2006 * If we fail too many times in a row, we fall back to synchronize_sched().
2007 */
2008void synchronize_sched_expedited(void)
2009{
2010 int firstsnap, s, snap, trycount = 0;
2011
2012 /* Note that atomic_inc_return() implies full memory barrier. */
2013 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2014 get_online_cpus();
2015 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2016
2017 /*
2018 * Each pass through the following loop attempts to force a
2019 * context switch on each CPU.
2020 */
2021 while (try_stop_cpus(cpu_online_mask,
2022 synchronize_sched_expedited_cpu_stop,
2023 NULL) == -EAGAIN) {
2024 put_online_cpus();
2025
2026 /* No joy, try again later. Or just synchronize_sched(). */
2027 if (trycount++ < 10)
2028 udelay(trycount * num_online_cpus());
2029 else {
2030 synchronize_sched();
2031 return;
2032 }
2033
2034 /* Check to see if someone else did our work for us. */
2035 s = atomic_read(&sync_sched_expedited_done);
2036 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2037 smp_mb(); /* ensure test happens before caller kfree */
2038 return;
2039 }
2040
2041 /*
2042 * Refetching sync_sched_expedited_started allows later
2043 * callers to piggyback on our grace period. We subtract
2044 * 1 to get the same token that the last incrementer got.
2045 * We retry after they started, so our grace period works
2046 * for them, and they started after our first try, so their
2047 * grace period works for us.
2048 */
2049 get_online_cpus();
2050 snap = atomic_read(&sync_sched_expedited_started);
2051 smp_mb(); /* ensure read is before try_stop_cpus(). */
2052 }
2053
2054 /*
2055 * Everyone up to our most recent fetch is covered by our grace
2056 * period. Update the counter, but only if our work is still
2057 * relevant -- which it won't be if someone who started later
2058 * than we did beat us to the punch.
2059 */
2060 do {
2061 s = atomic_read(&sync_sched_expedited_done);
2062 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2063 smp_mb(); /* ensure test happens before caller kfree */
2064 break;
2065 }
2066 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2067
2068 put_online_cpus();
2069}
2070EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2071
64db4cff
PM
2072/*
2073 * Check to see if there is any immediate RCU-related work to be done
2074 * by the current CPU, for the specified type of RCU, returning 1 if so.
2075 * The checks are in order of increasing expense: checks that can be
2076 * carried out against CPU-local state are performed first. However,
2077 * we must check for CPU stalls first, else we might not get a chance.
2078 */
2079static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2080{
2f51f988
PM
2081 struct rcu_node *rnp = rdp->mynode;
2082
64db4cff
PM
2083 rdp->n_rcu_pending++;
2084
2085 /* Check for CPU stalls, if enabled. */
2086 check_cpu_stall(rsp, rdp);
2087
2088 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2089 if (rcu_scheduler_fully_active &&
2090 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2091
2092 /*
2093 * If force_quiescent_state() coming soon and this CPU
2094 * needs a quiescent state, and this is either RCU-sched
2095 * or RCU-bh, force a local reschedule.
2096 */
d21670ac 2097 rdp->n_rp_qs_pending++;
6cc68793 2098 if (!rdp->preemptible &&
d25eb944
PM
2099 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2100 jiffies))
2101 set_need_resched();
e4cc1f22 2102 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2103 rdp->n_rp_report_qs++;
64db4cff 2104 return 1;
7ba5c840 2105 }
64db4cff
PM
2106
2107 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2108 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2109 rdp->n_rp_cb_ready++;
64db4cff 2110 return 1;
7ba5c840 2111 }
64db4cff
PM
2112
2113 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2114 if (cpu_needs_another_gp(rsp, rdp)) {
2115 rdp->n_rp_cpu_needs_gp++;
64db4cff 2116 return 1;
7ba5c840 2117 }
64db4cff
PM
2118
2119 /* Has another RCU grace period completed? */
2f51f988 2120 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2121 rdp->n_rp_gp_completed++;
64db4cff 2122 return 1;
7ba5c840 2123 }
64db4cff
PM
2124
2125 /* Has a new RCU grace period started? */
2f51f988 2126 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2127 rdp->n_rp_gp_started++;
64db4cff 2128 return 1;
7ba5c840 2129 }
64db4cff
PM
2130
2131 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2132 if (rcu_gp_in_progress(rsp) &&
20133cfc 2133 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2134 rdp->n_rp_need_fqs++;
64db4cff 2135 return 1;
7ba5c840 2136 }
64db4cff
PM
2137
2138 /* nothing to do */
7ba5c840 2139 rdp->n_rp_need_nothing++;
64db4cff
PM
2140 return 0;
2141}
2142
2143/*
2144 * Check to see if there is any immediate RCU-related work to be done
2145 * by the current CPU, returning 1 if so. This function is part of the
2146 * RCU implementation; it is -not- an exported member of the RCU API.
2147 */
a157229c 2148static int rcu_pending(int cpu)
64db4cff 2149{
d6714c22 2150 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2151 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2152 rcu_preempt_pending(cpu);
64db4cff
PM
2153}
2154
2155/*
2156 * Check to see if any future RCU-related work will need to be done
2157 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2158 * 1 if so.
64db4cff 2159 */
aea1b35e 2160static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2161{
2162 /* RCU callbacks either ready or pending? */
d6714c22 2163 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2164 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2165 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2166}
2167
d0ec774c
PM
2168static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2169static atomic_t rcu_barrier_cpu_count;
2170static DEFINE_MUTEX(rcu_barrier_mutex);
2171static struct completion rcu_barrier_completion;
d0ec774c
PM
2172
2173static void rcu_barrier_callback(struct rcu_head *notused)
2174{
2175 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2176 complete(&rcu_barrier_completion);
2177}
2178
2179/*
2180 * Called with preemption disabled, and from cross-cpu IRQ context.
2181 */
2182static void rcu_barrier_func(void *type)
2183{
2184 int cpu = smp_processor_id();
2185 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2186 void (*call_rcu_func)(struct rcu_head *head,
2187 void (*func)(struct rcu_head *head));
2188
2189 atomic_inc(&rcu_barrier_cpu_count);
2190 call_rcu_func = type;
2191 call_rcu_func(head, rcu_barrier_callback);
2192}
2193
d0ec774c
PM
2194/*
2195 * Orchestrate the specified type of RCU barrier, waiting for all
2196 * RCU callbacks of the specified type to complete.
2197 */
e74f4c45
PM
2198static void _rcu_barrier(struct rcu_state *rsp,
2199 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
2200 void (*func)(struct rcu_head *head)))
2201{
2202 BUG_ON(in_interrupt());
e74f4c45 2203 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
2204 mutex_lock(&rcu_barrier_mutex);
2205 init_completion(&rcu_barrier_completion);
2206 /*
2207 * Initialize rcu_barrier_cpu_count to 1, then invoke
2208 * rcu_barrier_func() on each CPU, so that each CPU also has
2209 * incremented rcu_barrier_cpu_count. Only then is it safe to
2210 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2211 * might complete its grace period before all of the other CPUs
2212 * did their increment, causing this function to return too
2d999e03
PM
2213 * early. Note that on_each_cpu() disables irqs, which prevents
2214 * any CPUs from coming online or going offline until each online
2215 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
2216 */
2217 atomic_set(&rcu_barrier_cpu_count, 1);
2218 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2219 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2220 complete(&rcu_barrier_completion);
2221 wait_for_completion(&rcu_barrier_completion);
2222 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 2223}
d0ec774c
PM
2224
2225/**
2226 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2227 */
2228void rcu_barrier_bh(void)
2229{
e74f4c45 2230 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2231}
2232EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2233
2234/**
2235 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2236 */
2237void rcu_barrier_sched(void)
2238{
e74f4c45 2239 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2240}
2241EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2242
64db4cff 2243/*
27569620 2244 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2245 */
27569620
PM
2246static void __init
2247rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2248{
2249 unsigned long flags;
2250 int i;
394f99a9 2251 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2252 struct rcu_node *rnp = rcu_get_root(rsp);
2253
2254 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2255 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2256 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2257 rdp->nxtlist = NULL;
2258 for (i = 0; i < RCU_NEXT_SIZE; i++)
2259 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2260 rdp->qlen_lazy = 0;
27569620 2261 rdp->qlen = 0;
27569620 2262 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2263 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2264 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2265 rdp->cpu = cpu;
d4c08f2a 2266 rdp->rsp = rsp;
1304afb2 2267 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2268}
2269
2270/*
2271 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2272 * offline event can be happening at a given time. Note also that we
2273 * can accept some slop in the rsp->completed access due to the fact
2274 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2275 */
e4fa4c97 2276static void __cpuinit
6cc68793 2277rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2278{
2279 unsigned long flags;
64db4cff 2280 unsigned long mask;
394f99a9 2281 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2282 struct rcu_node *rnp = rcu_get_root(rsp);
2283
2284 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2285 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2286 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2287 rdp->preemptible = preemptible;
37c72e56
PM
2288 rdp->qlen_last_fqs_check = 0;
2289 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2290 rdp->blimit = blimit;
29e37d81 2291 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2292 atomic_set(&rdp->dynticks->dynticks,
2293 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2294 rcu_prepare_for_idle_init(cpu);
1304afb2 2295 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2296
2297 /*
2298 * A new grace period might start here. If so, we won't be part
2299 * of it, but that is OK, as we are currently in a quiescent state.
2300 */
2301
2302 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2303 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2304
2305 /* Add CPU to rcu_node bitmasks. */
2306 rnp = rdp->mynode;
2307 mask = rdp->grpmask;
2308 do {
2309 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2310 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2311 rnp->qsmaskinit |= mask;
2312 mask = rnp->grpmask;
d09b62df 2313 if (rnp == rdp->mynode) {
06ae115a
PM
2314 /*
2315 * If there is a grace period in progress, we will
2316 * set up to wait for it next time we run the
2317 * RCU core code.
2318 */
2319 rdp->gpnum = rnp->completed;
d09b62df 2320 rdp->completed = rnp->completed;
06ae115a
PM
2321 rdp->passed_quiesce = 0;
2322 rdp->qs_pending = 0;
e4cc1f22 2323 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2324 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2325 }
1304afb2 2326 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2327 rnp = rnp->parent;
2328 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2329
1304afb2 2330 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2331}
2332
d72bce0e 2333static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2334{
f41d911f
PM
2335 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2336 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2337 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2338}
2339
2340/*
f41d911f 2341 * Handle CPU online/offline notification events.
64db4cff 2342 */
9f680ab4
PM
2343static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2344 unsigned long action, void *hcpu)
64db4cff
PM
2345{
2346 long cpu = (long)hcpu;
27f4d280 2347 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2348 struct rcu_node *rnp = rdp->mynode;
64db4cff 2349
300df91c 2350 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2351 switch (action) {
2352 case CPU_UP_PREPARE:
2353 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2354 rcu_prepare_cpu(cpu);
2355 rcu_prepare_kthreads(cpu);
a26ac245
PM
2356 break;
2357 case CPU_ONLINE:
0f962a5e
PM
2358 case CPU_DOWN_FAILED:
2359 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2360 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2361 break;
2362 case CPU_DOWN_PREPARE:
2363 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2364 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2365 break;
d0ec774c
PM
2366 case CPU_DYING:
2367 case CPU_DYING_FROZEN:
2368 /*
2d999e03
PM
2369 * The whole machine is "stopped" except this CPU, so we can
2370 * touch any data without introducing corruption. We send the
2371 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2372 */
e5601400
PM
2373 rcu_cleanup_dying_cpu(&rcu_bh_state);
2374 rcu_cleanup_dying_cpu(&rcu_sched_state);
2375 rcu_preempt_cleanup_dying_cpu();
7cb92499 2376 rcu_cleanup_after_idle(cpu);
d0ec774c 2377 break;
64db4cff
PM
2378 case CPU_DEAD:
2379 case CPU_DEAD_FROZEN:
2380 case CPU_UP_CANCELED:
2381 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2382 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2383 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2384 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2385 break;
2386 default:
2387 break;
2388 }
300df91c 2389 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2390 return NOTIFY_OK;
2391}
2392
bbad9379
PM
2393/*
2394 * This function is invoked towards the end of the scheduler's initialization
2395 * process. Before this is called, the idle task might contain
2396 * RCU read-side critical sections (during which time, this idle
2397 * task is booting the system). After this function is called, the
2398 * idle tasks are prohibited from containing RCU read-side critical
2399 * sections. This function also enables RCU lockdep checking.
2400 */
2401void rcu_scheduler_starting(void)
2402{
2403 WARN_ON(num_online_cpus() != 1);
2404 WARN_ON(nr_context_switches() > 0);
2405 rcu_scheduler_active = 1;
2406}
2407
64db4cff
PM
2408/*
2409 * Compute the per-level fanout, either using the exact fanout specified
2410 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2411 */
2412#ifdef CONFIG_RCU_FANOUT_EXACT
2413static void __init rcu_init_levelspread(struct rcu_state *rsp)
2414{
2415 int i;
2416
0209f649 2417 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2418 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 2419 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
2420}
2421#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2422static void __init rcu_init_levelspread(struct rcu_state *rsp)
2423{
2424 int ccur;
2425 int cprv;
2426 int i;
2427
2428 cprv = NR_CPUS;
2429 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2430 ccur = rsp->levelcnt[i];
2431 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2432 cprv = ccur;
2433 }
2434}
2435#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2436
2437/*
2438 * Helper function for rcu_init() that initializes one rcu_state structure.
2439 */
394f99a9
LJ
2440static void __init rcu_init_one(struct rcu_state *rsp,
2441 struct rcu_data __percpu *rda)
64db4cff 2442{
b6407e86
PM
2443 static char *buf[] = { "rcu_node_level_0",
2444 "rcu_node_level_1",
2445 "rcu_node_level_2",
2446 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2447 int cpustride = 1;
2448 int i;
2449 int j;
2450 struct rcu_node *rnp;
2451
b6407e86
PM
2452 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2453
64db4cff
PM
2454 /* Initialize the level-tracking arrays. */
2455
2456 for (i = 1; i < NUM_RCU_LVLS; i++)
2457 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2458 rcu_init_levelspread(rsp);
2459
2460 /* Initialize the elements themselves, starting from the leaves. */
2461
2462 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2463 cpustride *= rsp->levelspread[i];
2464 rnp = rsp->level[i];
2465 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2466 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2467 lockdep_set_class_and_name(&rnp->lock,
2468 &rcu_node_class[i], buf[i]);
f41d911f 2469 rnp->gpnum = 0;
64db4cff
PM
2470 rnp->qsmask = 0;
2471 rnp->qsmaskinit = 0;
2472 rnp->grplo = j * cpustride;
2473 rnp->grphi = (j + 1) * cpustride - 1;
2474 if (rnp->grphi >= NR_CPUS)
2475 rnp->grphi = NR_CPUS - 1;
2476 if (i == 0) {
2477 rnp->grpnum = 0;
2478 rnp->grpmask = 0;
2479 rnp->parent = NULL;
2480 } else {
2481 rnp->grpnum = j % rsp->levelspread[i - 1];
2482 rnp->grpmask = 1UL << rnp->grpnum;
2483 rnp->parent = rsp->level[i - 1] +
2484 j / rsp->levelspread[i - 1];
2485 }
2486 rnp->level = i;
12f5f524 2487 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2488 }
2489 }
0c34029a 2490
394f99a9 2491 rsp->rda = rda;
0c34029a
LJ
2492 rnp = rsp->level[NUM_RCU_LVLS - 1];
2493 for_each_possible_cpu(i) {
4a90a068 2494 while (i > rnp->grphi)
0c34029a 2495 rnp++;
394f99a9 2496 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2497 rcu_boot_init_percpu_data(i, rsp);
2498 }
64db4cff
PM
2499}
2500
9f680ab4 2501void __init rcu_init(void)
64db4cff 2502{
017c4261 2503 int cpu;
9f680ab4 2504
f41d911f 2505 rcu_bootup_announce();
394f99a9
LJ
2506 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2507 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2508 __rcu_init_preempt();
09223371 2509 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2510
2511 /*
2512 * We don't need protection against CPU-hotplug here because
2513 * this is called early in boot, before either interrupts
2514 * or the scheduler are operational.
2515 */
2516 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2517 for_each_online_cpu(cpu)
2518 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2519 check_cpu_stall_init();
64db4cff
PM
2520}
2521
1eba8f84 2522#include "rcutree_plugin.h"
This page took 0.377457 seconds and 5 git commands to generate.