rcu: Avoid rcu_print_detail_task_stall_rnp() segfault
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
037b64ed 65#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 66 .level = { &sname##_state.node[0] }, \
037b64ed 67 .call = cr, \
af446b70 68 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
6c90cc7b
PM
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
6c90cc7b 75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
6c90cc7b 76 .name = #sname, \
64db4cff
PM
77}
78
037b64ed
PM
79struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 81DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 82
037b64ed 83struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 84DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 85
27f4d280 86static struct rcu_state *rcu_state;
6ce75a23 87LIST_HEAD(rcu_struct_flavors);
27f4d280 88
f885b7f2
PM
89/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91module_param(rcu_fanout_leaf, int, 0);
92int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99};
100int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
b0d30417
PM
102/*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
bbad9379
PM
111int rcu_scheduler_active __read_mostly;
112EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
b0d30417
PM
114/*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126static int rcu_scheduler_fully_active __read_mostly;
127
a46e0899
PM
128#ifdef CONFIG_RCU_BOOST
129
a26ac245
PM
130/*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 136DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 138DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 139
a46e0899
PM
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
0f962a5e 142static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 145
4a298656
PM
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
fc2219d4
PM
158/*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163static int rcu_gp_in_progress(struct rcu_state *rsp)
164{
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166}
167
b1f77b05 168/*
d6714c22 169 * Note a quiescent state. Because we do not need to know
b1f77b05 170 * how many quiescent states passed, just if there was at least
d6714c22 171 * one since the start of the grace period, this just sets a flag.
e4cc1f22 172 * The caller must have disabled preemption.
b1f77b05 173 */
d6714c22 174void rcu_sched_qs(int cpu)
b1f77b05 175{
25502a6c 176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 177
e4cc1f22 178 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 179 barrier();
e4cc1f22 180 if (rdp->passed_quiesce == 0)
d4c08f2a 181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 182 rdp->passed_quiesce = 1;
b1f77b05
IM
183}
184
d6714c22 185void rcu_bh_qs(int cpu)
b1f77b05 186{
25502a6c 187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 188
e4cc1f22 189 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 190 barrier();
e4cc1f22 191 if (rdp->passed_quiesce == 0)
d4c08f2a 192 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 193 rdp->passed_quiesce = 1;
b1f77b05 194}
64db4cff 195
25502a6c
PM
196/*
197 * Note a context switch. This is a quiescent state for RCU-sched,
198 * and requires special handling for preemptible RCU.
e4cc1f22 199 * The caller must have disabled preemption.
25502a6c
PM
200 */
201void rcu_note_context_switch(int cpu)
202{
300df91c 203 trace_rcu_utilization("Start context switch");
25502a6c 204 rcu_sched_qs(cpu);
cba6d0d6 205 rcu_preempt_note_context_switch(cpu);
300df91c 206 trace_rcu_utilization("End context switch");
25502a6c 207}
29ce8310 208EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 209
90a4d2c0 210DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 211 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 212 .dynticks = ATOMIC_INIT(1),
90a4d2c0 213};
64db4cff 214
e0f23060 215static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
216static int qhimark = 10000; /* If this many pending, ignore blimit. */
217static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
3d76c082
PM
219module_param(blimit, int, 0);
220module_param(qhimark, int, 0);
221module_param(qlowmark, int, 0);
222
13cfcca0
PM
223int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
f2e0dd70 226module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 227module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 228
64db4cff 229static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 230static int rcu_pending(int cpu);
64db4cff
PM
231
232/*
d6714c22 233 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 234 */
d6714c22 235long rcu_batches_completed_sched(void)
64db4cff 236{
d6714c22 237 return rcu_sched_state.completed;
64db4cff 238}
d6714c22 239EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
240
241/*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244long rcu_batches_completed_bh(void)
245{
246 return rcu_bh_state.completed;
247}
248EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
bf66f18e
PM
250/*
251 * Force a quiescent state for RCU BH.
252 */
253void rcu_bh_force_quiescent_state(void)
254{
255 force_quiescent_state(&rcu_bh_state, 0);
256}
257EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
4a298656
PM
259/*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266void rcutorture_record_test_transition(void)
267{
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270}
271EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273/*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278void rcutorture_record_progress(unsigned long vernum)
279{
280 rcutorture_vernum++;
281}
282EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
bf66f18e
PM
284/*
285 * Force a quiescent state for RCU-sched.
286 */
287void rcu_sched_force_quiescent_state(void)
288{
289 force_quiescent_state(&rcu_sched_state, 0);
290}
291EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
64db4cff
PM
293/*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296static int
297cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298{
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
300}
301
302/*
303 * Does the current CPU require a yet-as-unscheduled grace period?
304 */
305static int
306cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
307{
a10d206e
PM
308 return *rdp->nxttail[RCU_DONE_TAIL +
309 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
310 !rcu_gp_in_progress(rsp);
64db4cff
PM
311}
312
313/*
314 * Return the root node of the specified rcu_state structure.
315 */
316static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
317{
318 return &rsp->node[0];
319}
320
9b2e4f18
PM
321/*
322 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
323 *
324 * If the new value of the ->dynticks_nesting counter now is zero,
325 * we really have entered idle, and must do the appropriate accounting.
326 * The caller must have disabled interrupts.
327 */
4145fa7f 328static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 329{
facc4e15 330 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 331 if (!is_idle_task(current)) {
0989cb46
PM
332 struct task_struct *idle = idle_task(smp_processor_id());
333
facc4e15 334 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 335 ftrace_dump(DUMP_ORIG);
0989cb46
PM
336 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
337 current->pid, current->comm,
338 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 339 }
aea1b35e 340 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
341 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
342 smp_mb__before_atomic_inc(); /* See above. */
343 atomic_inc(&rdtp->dynticks);
344 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
345 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
346
347 /*
348 * The idle task is not permitted to enter the idle loop while
349 * in an RCU read-side critical section.
350 */
351 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
352 "Illegal idle entry in RCU read-side critical section.");
353 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
354 "Illegal idle entry in RCU-bh read-side critical section.");
355 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
356 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 357}
64db4cff
PM
358
359/**
9b2e4f18 360 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 361 *
9b2e4f18 362 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 363 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
364 * critical sections can occur in irq handlers in idle, a possibility
365 * handled by irq_enter() and irq_exit().)
366 *
367 * We crowbar the ->dynticks_nesting field to zero to allow for
368 * the possibility of usermode upcalls having messed up our count
369 * of interrupt nesting level during the prior busy period.
64db4cff 370 */
9b2e4f18 371void rcu_idle_enter(void)
64db4cff
PM
372{
373 unsigned long flags;
4145fa7f 374 long long oldval;
64db4cff
PM
375 struct rcu_dynticks *rdtp;
376
64db4cff
PM
377 local_irq_save(flags);
378 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 379 oldval = rdtp->dynticks_nesting;
29e37d81
PM
380 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
381 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
382 rdtp->dynticks_nesting = 0;
383 else
384 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 385 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
386 local_irq_restore(flags);
387}
8a2ecf47 388EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 389
9b2e4f18
PM
390/**
391 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
392 *
393 * Exit from an interrupt handler, which might possibly result in entering
394 * idle mode, in other words, leaving the mode in which read-side critical
395 * sections can occur.
64db4cff 396 *
9b2e4f18
PM
397 * This code assumes that the idle loop never does anything that might
398 * result in unbalanced calls to irq_enter() and irq_exit(). If your
399 * architecture violates this assumption, RCU will give you what you
400 * deserve, good and hard. But very infrequently and irreproducibly.
401 *
402 * Use things like work queues to work around this limitation.
403 *
404 * You have been warned.
64db4cff 405 */
9b2e4f18 406void rcu_irq_exit(void)
64db4cff
PM
407{
408 unsigned long flags;
4145fa7f 409 long long oldval;
64db4cff
PM
410 struct rcu_dynticks *rdtp;
411
412 local_irq_save(flags);
413 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 414 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
415 rdtp->dynticks_nesting--;
416 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
417 if (rdtp->dynticks_nesting)
418 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
419 else
420 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
421 local_irq_restore(flags);
422}
423
424/*
425 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
426 *
427 * If the new value of the ->dynticks_nesting counter was previously zero,
428 * we really have exited idle, and must do the appropriate accounting.
429 * The caller must have disabled interrupts.
430 */
431static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
432{
23b5c8fa
PM
433 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
434 atomic_inc(&rdtp->dynticks);
435 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
436 smp_mb__after_atomic_inc(); /* See above. */
437 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 438 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 439 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 440 if (!is_idle_task(current)) {
0989cb46
PM
441 struct task_struct *idle = idle_task(smp_processor_id());
442
4145fa7f
PM
443 trace_rcu_dyntick("Error on exit: not idle task",
444 oldval, rdtp->dynticks_nesting);
bf1304e9 445 ftrace_dump(DUMP_ORIG);
0989cb46
PM
446 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
447 current->pid, current->comm,
448 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
449 }
450}
451
452/**
453 * rcu_idle_exit - inform RCU that current CPU is leaving idle
454 *
455 * Exit idle mode, in other words, -enter- the mode in which RCU
456 * read-side critical sections can occur.
457 *
29e37d81 458 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 459 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
460 * of interrupt nesting level during the busy period that is just
461 * now starting.
462 */
463void rcu_idle_exit(void)
464{
465 unsigned long flags;
466 struct rcu_dynticks *rdtp;
467 long long oldval;
468
469 local_irq_save(flags);
470 rdtp = &__get_cpu_var(rcu_dynticks);
471 oldval = rdtp->dynticks_nesting;
29e37d81
PM
472 WARN_ON_ONCE(oldval < 0);
473 if (oldval & DYNTICK_TASK_NEST_MASK)
474 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
475 else
476 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
477 rcu_idle_exit_common(rdtp, oldval);
478 local_irq_restore(flags);
479}
8a2ecf47 480EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
481
482/**
483 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
484 *
485 * Enter an interrupt handler, which might possibly result in exiting
486 * idle mode, in other words, entering the mode in which read-side critical
487 * sections can occur.
488 *
489 * Note that the Linux kernel is fully capable of entering an interrupt
490 * handler that it never exits, for example when doing upcalls to
491 * user mode! This code assumes that the idle loop never does upcalls to
492 * user mode. If your architecture does do upcalls from the idle loop (or
493 * does anything else that results in unbalanced calls to the irq_enter()
494 * and irq_exit() functions), RCU will give you what you deserve, good
495 * and hard. But very infrequently and irreproducibly.
496 *
497 * Use things like work queues to work around this limitation.
498 *
499 * You have been warned.
500 */
501void rcu_irq_enter(void)
502{
503 unsigned long flags;
504 struct rcu_dynticks *rdtp;
505 long long oldval;
506
507 local_irq_save(flags);
508 rdtp = &__get_cpu_var(rcu_dynticks);
509 oldval = rdtp->dynticks_nesting;
510 rdtp->dynticks_nesting++;
511 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
512 if (oldval)
513 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
514 else
515 rcu_idle_exit_common(rdtp, oldval);
64db4cff 516 local_irq_restore(flags);
64db4cff
PM
517}
518
519/**
520 * rcu_nmi_enter - inform RCU of entry to NMI context
521 *
522 * If the CPU was idle with dynamic ticks active, and there is no
523 * irq handler running, this updates rdtp->dynticks_nmi to let the
524 * RCU grace-period handling know that the CPU is active.
525 */
526void rcu_nmi_enter(void)
527{
528 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
529
23b5c8fa
PM
530 if (rdtp->dynticks_nmi_nesting == 0 &&
531 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 532 return;
23b5c8fa
PM
533 rdtp->dynticks_nmi_nesting++;
534 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
535 atomic_inc(&rdtp->dynticks);
536 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
537 smp_mb__after_atomic_inc(); /* See above. */
538 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
539}
540
541/**
542 * rcu_nmi_exit - inform RCU of exit from NMI context
543 *
544 * If the CPU was idle with dynamic ticks active, and there is no
545 * irq handler running, this updates rdtp->dynticks_nmi to let the
546 * RCU grace-period handling know that the CPU is no longer active.
547 */
548void rcu_nmi_exit(void)
549{
550 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
551
23b5c8fa
PM
552 if (rdtp->dynticks_nmi_nesting == 0 ||
553 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 554 return;
23b5c8fa
PM
555 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
556 smp_mb__before_atomic_inc(); /* See above. */
557 atomic_inc(&rdtp->dynticks);
558 smp_mb__after_atomic_inc(); /* Force delay to next write. */
559 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
560}
561
562/**
9b2e4f18 563 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 564 *
9b2e4f18 565 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 566 * or NMI handler, return true.
64db4cff 567 */
9b2e4f18 568int rcu_is_cpu_idle(void)
64db4cff 569{
34240697
PM
570 int ret;
571
572 preempt_disable();
573 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
574 preempt_enable();
575 return ret;
64db4cff 576}
e6b80a3b 577EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 578
62fde6ed 579#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
580
581/*
582 * Is the current CPU online? Disable preemption to avoid false positives
583 * that could otherwise happen due to the current CPU number being sampled,
584 * this task being preempted, its old CPU being taken offline, resuming
585 * on some other CPU, then determining that its old CPU is now offline.
586 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
587 * the check for rcu_scheduler_fully_active. Note also that it is OK
588 * for a CPU coming online to use RCU for one jiffy prior to marking itself
589 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
590 * offline to continue to use RCU for one jiffy after marking itself
591 * offline in the cpu_online_mask. This leniency is necessary given the
592 * non-atomic nature of the online and offline processing, for example,
593 * the fact that a CPU enters the scheduler after completing the CPU_DYING
594 * notifiers.
595 *
596 * This is also why RCU internally marks CPUs online during the
597 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
598 *
599 * Disable checking if in an NMI handler because we cannot safely report
600 * errors from NMI handlers anyway.
601 */
602bool rcu_lockdep_current_cpu_online(void)
603{
2036d94a
PM
604 struct rcu_data *rdp;
605 struct rcu_node *rnp;
c0d6d01b
PM
606 bool ret;
607
608 if (in_nmi())
609 return 1;
610 preempt_disable();
2036d94a
PM
611 rdp = &__get_cpu_var(rcu_sched_data);
612 rnp = rdp->mynode;
613 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
614 !rcu_scheduler_fully_active;
615 preempt_enable();
616 return ret;
617}
618EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
619
62fde6ed 620#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 621
64db4cff 622/**
9b2e4f18 623 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 624 *
9b2e4f18
PM
625 * If the current CPU is idle or running at a first-level (not nested)
626 * interrupt from idle, return true. The caller must have at least
627 * disabled preemption.
64db4cff 628 */
9b2e4f18 629int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 630{
9b2e4f18 631 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
632}
633
64db4cff
PM
634/*
635 * Snapshot the specified CPU's dynticks counter so that we can later
636 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 637 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
638 */
639static int dyntick_save_progress_counter(struct rcu_data *rdp)
640{
23b5c8fa 641 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 642 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
643}
644
645/*
646 * Return true if the specified CPU has passed through a quiescent
647 * state by virtue of being in or having passed through an dynticks
648 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 649 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
650 */
651static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
652{
7eb4f455
PM
653 unsigned int curr;
654 unsigned int snap;
64db4cff 655
7eb4f455
PM
656 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
657 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
658
659 /*
660 * If the CPU passed through or entered a dynticks idle phase with
661 * no active irq/NMI handlers, then we can safely pretend that the CPU
662 * already acknowledged the request to pass through a quiescent
663 * state. Either way, that CPU cannot possibly be in an RCU
664 * read-side critical section that started before the beginning
665 * of the current RCU grace period.
666 */
7eb4f455 667 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 668 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
669 rdp->dynticks_fqs++;
670 return 1;
671 }
672
a82dcc76
PM
673 /*
674 * Check for the CPU being offline, but only if the grace period
675 * is old enough. We don't need to worry about the CPU changing
676 * state: If we see it offline even once, it has been through a
677 * quiescent state.
678 *
679 * The reason for insisting that the grace period be at least
680 * one jiffy old is that CPUs that are not quite online and that
681 * have just gone offline can still execute RCU read-side critical
682 * sections.
683 */
684 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
685 return 0; /* Grace period is not old enough. */
686 barrier();
687 if (cpu_is_offline(rdp->cpu)) {
688 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
689 rdp->offline_fqs++;
690 return 1;
691 }
692 return 0;
64db4cff
PM
693}
694
13cfcca0
PM
695static int jiffies_till_stall_check(void)
696{
697 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
698
699 /*
700 * Limit check must be consistent with the Kconfig limits
701 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
702 */
703 if (till_stall_check < 3) {
704 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
705 till_stall_check = 3;
706 } else if (till_stall_check > 300) {
707 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
708 till_stall_check = 300;
709 }
710 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
711}
712
64db4cff
PM
713static void record_gp_stall_check_time(struct rcu_state *rsp)
714{
715 rsp->gp_start = jiffies;
13cfcca0 716 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
717}
718
719static void print_other_cpu_stall(struct rcu_state *rsp)
720{
721 int cpu;
722 long delta;
723 unsigned long flags;
285fe294 724 int ndetected = 0;
64db4cff 725 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
726
727 /* Only let one CPU complain about others per time interval. */
728
1304afb2 729 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 730 delta = jiffies - rsp->jiffies_stall;
fc2219d4 731 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 732 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
733 return;
734 }
13cfcca0 735 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 736 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 737
8cdd32a9
PM
738 /*
739 * OK, time to rat on our buddy...
740 * See Documentation/RCU/stallwarn.txt for info on how to debug
741 * RCU CPU stall warnings.
742 */
a858af28 743 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 744 rsp->name);
a858af28 745 print_cpu_stall_info_begin();
a0b6c9a7 746 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 747 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 748 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 749 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 750 if (rnp->qsmask == 0)
64db4cff 751 continue;
a0b6c9a7 752 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 753 if (rnp->qsmask & (1UL << cpu)) {
a858af28 754 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
755 ndetected++;
756 }
64db4cff 757 }
a858af28
PM
758
759 /*
760 * Now rat on any tasks that got kicked up to the root rcu_node
761 * due to CPU offlining.
762 */
763 rnp = rcu_get_root(rsp);
764 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 765 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
766 raw_spin_unlock_irqrestore(&rnp->lock, flags);
767
768 print_cpu_stall_info_end();
769 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 770 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
771 if (ndetected == 0)
772 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
773 else if (!trigger_all_cpu_backtrace())
4627e240 774 dump_stack();
c1dc0b9c 775
1ed509a2
PM
776 /* If so configured, complain about tasks blocking the grace period. */
777
778 rcu_print_detail_task_stall(rsp);
779
64db4cff
PM
780 force_quiescent_state(rsp, 0); /* Kick them all. */
781}
782
783static void print_cpu_stall(struct rcu_state *rsp)
784{
785 unsigned long flags;
786 struct rcu_node *rnp = rcu_get_root(rsp);
787
8cdd32a9
PM
788 /*
789 * OK, time to rat on ourselves...
790 * See Documentation/RCU/stallwarn.txt for info on how to debug
791 * RCU CPU stall warnings.
792 */
a858af28
PM
793 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
794 print_cpu_stall_info_begin();
795 print_cpu_stall_info(rsp, smp_processor_id());
796 print_cpu_stall_info_end();
797 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
798 if (!trigger_all_cpu_backtrace())
799 dump_stack();
c1dc0b9c 800
1304afb2 801 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 802 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
803 rsp->jiffies_stall = jiffies +
804 3 * jiffies_till_stall_check() + 3;
1304afb2 805 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 806
64db4cff
PM
807 set_need_resched(); /* kick ourselves to get things going. */
808}
809
810static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
811{
bad6e139
PM
812 unsigned long j;
813 unsigned long js;
64db4cff
PM
814 struct rcu_node *rnp;
815
742734ee 816 if (rcu_cpu_stall_suppress)
c68de209 817 return;
bad6e139
PM
818 j = ACCESS_ONCE(jiffies);
819 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 820 rnp = rdp->mynode;
bad6e139 821 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
822
823 /* We haven't checked in, so go dump stack. */
824 print_cpu_stall(rsp);
825
bad6e139
PM
826 } else if (rcu_gp_in_progress(rsp) &&
827 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 828
bad6e139 829 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
830 print_other_cpu_stall(rsp);
831 }
832}
833
c68de209
PM
834static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
835{
742734ee 836 rcu_cpu_stall_suppress = 1;
c68de209
PM
837 return NOTIFY_DONE;
838}
839
53d84e00
PM
840/**
841 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
842 *
843 * Set the stall-warning timeout way off into the future, thus preventing
844 * any RCU CPU stall-warning messages from appearing in the current set of
845 * RCU grace periods.
846 *
847 * The caller must disable hard irqs.
848 */
849void rcu_cpu_stall_reset(void)
850{
6ce75a23
PM
851 struct rcu_state *rsp;
852
853 for_each_rcu_flavor(rsp)
854 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
855}
856
c68de209
PM
857static struct notifier_block rcu_panic_block = {
858 .notifier_call = rcu_panic,
859};
860
861static void __init check_cpu_stall_init(void)
862{
863 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
864}
865
64db4cff
PM
866/*
867 * Update CPU-local rcu_data state to record the newly noticed grace period.
868 * This is used both when we started the grace period and when we notice
9160306e
PM
869 * that someone else started the grace period. The caller must hold the
870 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
871 * and must have irqs disabled.
64db4cff 872 */
9160306e
PM
873static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
874{
875 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
876 /*
877 * If the current grace period is waiting for this CPU,
878 * set up to detect a quiescent state, otherwise don't
879 * go looking for one.
880 */
9160306e 881 rdp->gpnum = rnp->gpnum;
d4c08f2a 882 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
883 if (rnp->qsmask & rdp->grpmask) {
884 rdp->qs_pending = 1;
e4cc1f22 885 rdp->passed_quiesce = 0;
c701d5d9 886 } else {
121dfc4b 887 rdp->qs_pending = 0;
c701d5d9 888 }
a858af28 889 zero_cpu_stall_ticks(rdp);
9160306e
PM
890 }
891}
892
64db4cff
PM
893static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
894{
9160306e
PM
895 unsigned long flags;
896 struct rcu_node *rnp;
897
898 local_irq_save(flags);
899 rnp = rdp->mynode;
900 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 901 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
902 local_irq_restore(flags);
903 return;
904 }
905 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 906 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
907}
908
909/*
910 * Did someone else start a new RCU grace period start since we last
911 * checked? Update local state appropriately if so. Must be called
912 * on the CPU corresponding to rdp.
913 */
914static int
915check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
916{
917 unsigned long flags;
918 int ret = 0;
919
920 local_irq_save(flags);
921 if (rdp->gpnum != rsp->gpnum) {
922 note_new_gpnum(rsp, rdp);
923 ret = 1;
924 }
925 local_irq_restore(flags);
926 return ret;
927}
928
3f5d3ea6
PM
929/*
930 * Initialize the specified rcu_data structure's callback list to empty.
931 */
932static void init_callback_list(struct rcu_data *rdp)
933{
934 int i;
935
936 rdp->nxtlist = NULL;
937 for (i = 0; i < RCU_NEXT_SIZE; i++)
938 rdp->nxttail[i] = &rdp->nxtlist;
939}
940
d09b62df
PM
941/*
942 * Advance this CPU's callbacks, but only if the current grace period
943 * has ended. This may be called only from the CPU to whom the rdp
944 * belongs. In addition, the corresponding leaf rcu_node structure's
945 * ->lock must be held by the caller, with irqs disabled.
946 */
947static void
948__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
949{
950 /* Did another grace period end? */
951 if (rdp->completed != rnp->completed) {
952
953 /* Advance callbacks. No harm if list empty. */
954 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
955 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
956 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
957
958 /* Remember that we saw this grace-period completion. */
959 rdp->completed = rnp->completed;
d4c08f2a 960 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 961
5ff8e6f0
FW
962 /*
963 * If we were in an extended quiescent state, we may have
121dfc4b 964 * missed some grace periods that others CPUs handled on
5ff8e6f0 965 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
966 * spurious new grace periods. If another grace period
967 * has started, then rnp->gpnum will have advanced, so
968 * we will detect this later on.
5ff8e6f0 969 */
121dfc4b 970 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
971 rdp->gpnum = rdp->completed;
972
20377f32 973 /*
121dfc4b
PM
974 * If RCU does not need a quiescent state from this CPU,
975 * then make sure that this CPU doesn't go looking for one.
20377f32 976 */
121dfc4b 977 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 978 rdp->qs_pending = 0;
d09b62df
PM
979 }
980}
981
982/*
983 * Advance this CPU's callbacks, but only if the current grace period
984 * has ended. This may be called only from the CPU to whom the rdp
985 * belongs.
986 */
987static void
988rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
989{
990 unsigned long flags;
991 struct rcu_node *rnp;
992
993 local_irq_save(flags);
994 rnp = rdp->mynode;
995 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 996 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
997 local_irq_restore(flags);
998 return;
999 }
1000 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1001 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1002}
1003
1004/*
1005 * Do per-CPU grace-period initialization for running CPU. The caller
1006 * must hold the lock of the leaf rcu_node structure corresponding to
1007 * this CPU.
1008 */
1009static void
1010rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1011{
1012 /* Prior grace period ended, so advance callbacks for current CPU. */
1013 __rcu_process_gp_end(rsp, rnp, rdp);
1014
1015 /*
1016 * Because this CPU just now started the new grace period, we know
1017 * that all of its callbacks will be covered by this upcoming grace
1018 * period, even the ones that were registered arbitrarily recently.
1019 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1020 *
1021 * Other CPUs cannot be sure exactly when the grace period started.
1022 * Therefore, their recently registered callbacks must pass through
1023 * an additional RCU_NEXT_READY stage, so that they will be handled
1024 * by the next RCU grace period.
1025 */
1026 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1027 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1028
1029 /* Set state so that this CPU will detect the next quiescent state. */
1030 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1031}
1032
64db4cff
PM
1033/*
1034 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1035 * in preparation for detecting the next grace period. The caller must hold
1036 * the root node's ->lock, which is released before return. Hard irqs must
1037 * be disabled.
e5601400
PM
1038 *
1039 * Note that it is legal for a dying CPU (which is marked as offline) to
1040 * invoke this function. This can happen when the dying CPU reports its
1041 * quiescent state.
64db4cff
PM
1042 */
1043static void
1044rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1045 __releases(rcu_get_root(rsp)->lock)
1046{
394f99a9 1047 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1048 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1049
037067a1 1050 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1051 !cpu_needs_another_gp(rsp, rdp)) {
1052 /*
1053 * Either the scheduler hasn't yet spawned the first
1054 * non-idle task or this CPU does not need another
1055 * grace period. Either way, don't start a new grace
1056 * period.
1057 */
1058 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1059 return;
1060 }
b32e9eb6 1061
afe24b12 1062 if (rsp->fqs_active) {
b32e9eb6 1063 /*
afe24b12
PM
1064 * This CPU needs a grace period, but force_quiescent_state()
1065 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1066 */
afe24b12
PM
1067 rsp->fqs_need_gp = 1;
1068 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1069 return;
1070 }
1071
1072 /* Advance to a new grace period and initialize state. */
1073 rsp->gpnum++;
d4c08f2a 1074 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1075 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1076 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1077 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1078 record_gp_stall_check_time(rsp);
1304afb2 1079 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1080
64db4cff 1081 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1082 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1083
1084 /*
b835db1f
PM
1085 * Set the quiescent-state-needed bits in all the rcu_node
1086 * structures for all currently online CPUs in breadth-first
1087 * order, starting from the root rcu_node structure. This
1088 * operation relies on the layout of the hierarchy within the
1089 * rsp->node[] array. Note that other CPUs will access only
1090 * the leaves of the hierarchy, which still indicate that no
1091 * grace period is in progress, at least until the corresponding
1092 * leaf node has been initialized. In addition, we have excluded
1093 * CPU-hotplug operations.
64db4cff
PM
1094 *
1095 * Note that the grace period cannot complete until we finish
1096 * the initialization process, as there will be at least one
1097 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1098 * one corresponding to this CPU, due to the fact that we have
1099 * irqs disabled.
64db4cff 1100 */
a0b6c9a7 1101 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1102 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1103 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1104 rnp->qsmask = rnp->qsmaskinit;
de078d87 1105 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1106 rnp->completed = rsp->completed;
1107 if (rnp == rdp->mynode)
1108 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1109 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1110 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1111 rnp->level, rnp->grplo,
1112 rnp->grphi, rnp->qsmask);
1304afb2 1113 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1114 }
1115
83f5b01f 1116 rnp = rcu_get_root(rsp);
1304afb2 1117 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1118 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1119 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1120 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1121}
1122
f41d911f 1123/*
d3f6bad3
PM
1124 * Report a full set of quiescent states to the specified rcu_state
1125 * data structure. This involves cleaning up after the prior grace
1126 * period and letting rcu_start_gp() start up the next grace period
1127 * if one is needed. Note that the caller must hold rnp->lock, as
1128 * required by rcu_start_gp(), which will release it.
f41d911f 1129 */
d3f6bad3 1130static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1131 __releases(rcu_get_root(rsp)->lock)
f41d911f 1132{
15ba0ba8 1133 unsigned long gp_duration;
afe24b12
PM
1134 struct rcu_node *rnp = rcu_get_root(rsp);
1135 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1136
fc2219d4 1137 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1138
1139 /*
1140 * Ensure that all grace-period and pre-grace-period activity
1141 * is seen before the assignment to rsp->completed.
1142 */
1143 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1144 gp_duration = jiffies - rsp->gp_start;
1145 if (gp_duration > rsp->gp_max)
1146 rsp->gp_max = gp_duration;
afe24b12
PM
1147
1148 /*
1149 * We know the grace period is complete, but to everyone else
1150 * it appears to still be ongoing. But it is also the case
1151 * that to everyone else it looks like there is nothing that
1152 * they can do to advance the grace period. It is therefore
1153 * safe for us to drop the lock in order to mark the grace
1154 * period as completed in all of the rcu_node structures.
1155 *
1156 * But if this CPU needs another grace period, it will take
1157 * care of this while initializing the next grace period.
1158 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1159 * because the callbacks have not yet been advanced: Those
1160 * callbacks are waiting on the grace period that just now
1161 * completed.
1162 */
1163 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1164 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1165
1166 /*
1167 * Propagate new ->completed value to rcu_node structures
1168 * so that other CPUs don't have to wait until the start
1169 * of the next grace period to process their callbacks.
1170 */
1171 rcu_for_each_node_breadth_first(rsp, rnp) {
1172 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1173 rnp->completed = rsp->gpnum;
1174 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1175 }
1176 rnp = rcu_get_root(rsp);
1177 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1178 }
1179
1180 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1181 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1182 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1183 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1184}
1185
64db4cff 1186/*
d3f6bad3
PM
1187 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1188 * Allows quiescent states for a group of CPUs to be reported at one go
1189 * to the specified rcu_node structure, though all the CPUs in the group
1190 * must be represented by the same rcu_node structure (which need not be
1191 * a leaf rcu_node structure, though it often will be). That structure's
1192 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1193 */
1194static void
d3f6bad3
PM
1195rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1196 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1197 __releases(rnp->lock)
1198{
28ecd580
PM
1199 struct rcu_node *rnp_c;
1200
64db4cff
PM
1201 /* Walk up the rcu_node hierarchy. */
1202 for (;;) {
1203 if (!(rnp->qsmask & mask)) {
1204
1205 /* Our bit has already been cleared, so done. */
1304afb2 1206 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1207 return;
1208 }
1209 rnp->qsmask &= ~mask;
d4c08f2a
PM
1210 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1211 mask, rnp->qsmask, rnp->level,
1212 rnp->grplo, rnp->grphi,
1213 !!rnp->gp_tasks);
27f4d280 1214 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1215
1216 /* Other bits still set at this level, so done. */
1304afb2 1217 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1218 return;
1219 }
1220 mask = rnp->grpmask;
1221 if (rnp->parent == NULL) {
1222
1223 /* No more levels. Exit loop holding root lock. */
1224
1225 break;
1226 }
1304afb2 1227 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1228 rnp_c = rnp;
64db4cff 1229 rnp = rnp->parent;
1304afb2 1230 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1231 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1232 }
1233
1234 /*
1235 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1236 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1237 * to clean up and start the next grace period if one is needed.
64db4cff 1238 */
d3f6bad3 1239 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1240}
1241
1242/*
d3f6bad3
PM
1243 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1244 * structure. This must be either called from the specified CPU, or
1245 * called when the specified CPU is known to be offline (and when it is
1246 * also known that no other CPU is concurrently trying to help the offline
1247 * CPU). The lastcomp argument is used to make sure we are still in the
1248 * grace period of interest. We don't want to end the current grace period
1249 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1250 */
1251static void
e4cc1f22 1252rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1253{
1254 unsigned long flags;
1255 unsigned long mask;
1256 struct rcu_node *rnp;
1257
1258 rnp = rdp->mynode;
1304afb2 1259 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1260 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1261
1262 /*
e4cc1f22
PM
1263 * The grace period in which this quiescent state was
1264 * recorded has ended, so don't report it upwards.
1265 * We will instead need a new quiescent state that lies
1266 * within the current grace period.
64db4cff 1267 */
e4cc1f22 1268 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1269 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1270 return;
1271 }
1272 mask = rdp->grpmask;
1273 if ((rnp->qsmask & mask) == 0) {
1304afb2 1274 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1275 } else {
1276 rdp->qs_pending = 0;
1277
1278 /*
1279 * This GP can't end until cpu checks in, so all of our
1280 * callbacks can be processed during the next GP.
1281 */
64db4cff
PM
1282 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1283
d3f6bad3 1284 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1285 }
1286}
1287
1288/*
1289 * Check to see if there is a new grace period of which this CPU
1290 * is not yet aware, and if so, set up local rcu_data state for it.
1291 * Otherwise, see if this CPU has just passed through its first
1292 * quiescent state for this grace period, and record that fact if so.
1293 */
1294static void
1295rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1296{
1297 /* If there is now a new grace period, record and return. */
1298 if (check_for_new_grace_period(rsp, rdp))
1299 return;
1300
1301 /*
1302 * Does this CPU still need to do its part for current grace period?
1303 * If no, return and let the other CPUs do their part as well.
1304 */
1305 if (!rdp->qs_pending)
1306 return;
1307
1308 /*
1309 * Was there a quiescent state since the beginning of the grace
1310 * period? If no, then exit and wait for the next call.
1311 */
e4cc1f22 1312 if (!rdp->passed_quiesce)
64db4cff
PM
1313 return;
1314
d3f6bad3
PM
1315 /*
1316 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1317 * judge of that).
1318 */
e4cc1f22 1319 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1320}
1321
1322#ifdef CONFIG_HOTPLUG_CPU
1323
e74f4c45 1324/*
b1420f1c
PM
1325 * Send the specified CPU's RCU callbacks to the orphanage. The
1326 * specified CPU must be offline, and the caller must hold the
1327 * ->onofflock.
e74f4c45 1328 */
b1420f1c
PM
1329static void
1330rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1331 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1332{
b1420f1c
PM
1333 /*
1334 * Orphan the callbacks. First adjust the counts. This is safe
1335 * because ->onofflock excludes _rcu_barrier()'s adoption of
1336 * the callbacks, thus no memory barrier is required.
1337 */
a50c3af9 1338 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1339 rsp->qlen_lazy += rdp->qlen_lazy;
1340 rsp->qlen += rdp->qlen;
1341 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1342 rdp->qlen_lazy = 0;
1d1fb395 1343 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1344 }
1345
1346 /*
b1420f1c
PM
1347 * Next, move those callbacks still needing a grace period to
1348 * the orphanage, where some other CPU will pick them up.
1349 * Some of the callbacks might have gone partway through a grace
1350 * period, but that is too bad. They get to start over because we
1351 * cannot assume that grace periods are synchronized across CPUs.
1352 * We don't bother updating the ->nxttail[] array yet, instead
1353 * we just reset the whole thing later on.
a50c3af9 1354 */
b1420f1c
PM
1355 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1356 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1357 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1358 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1359 }
1360
1361 /*
b1420f1c
PM
1362 * Then move the ready-to-invoke callbacks to the orphanage,
1363 * where some other CPU will pick them up. These will not be
1364 * required to pass though another grace period: They are done.
a50c3af9 1365 */
e5601400 1366 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1367 *rsp->orphan_donetail = rdp->nxtlist;
1368 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1369 }
e74f4c45 1370
b1420f1c 1371 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1372 init_callback_list(rdp);
b1420f1c
PM
1373}
1374
1375/*
1376 * Adopt the RCU callbacks from the specified rcu_state structure's
1377 * orphanage. The caller must hold the ->onofflock.
1378 */
1379static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1380{
1381 int i;
1382 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1383
a50c3af9 1384 /*
b1420f1c
PM
1385 * If there is an rcu_barrier() operation in progress, then
1386 * only the task doing that operation is permitted to adopt
1387 * callbacks. To do otherwise breaks rcu_barrier() and friends
1388 * by causing them to fail to wait for the callbacks in the
1389 * orphanage.
a50c3af9 1390 */
b1420f1c
PM
1391 if (rsp->rcu_barrier_in_progress &&
1392 rsp->rcu_barrier_in_progress != current)
1393 return;
1394
1395 /* Do the accounting first. */
1396 rdp->qlen_lazy += rsp->qlen_lazy;
1397 rdp->qlen += rsp->qlen;
1398 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1399 if (rsp->qlen_lazy != rsp->qlen)
1400 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1401 rsp->qlen_lazy = 0;
1402 rsp->qlen = 0;
1403
1404 /*
1405 * We do not need a memory barrier here because the only way we
1406 * can get here if there is an rcu_barrier() in flight is if
1407 * we are the task doing the rcu_barrier().
1408 */
1409
1410 /* First adopt the ready-to-invoke callbacks. */
1411 if (rsp->orphan_donelist != NULL) {
1412 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1413 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1414 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1415 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1416 rdp->nxttail[i] = rsp->orphan_donetail;
1417 rsp->orphan_donelist = NULL;
1418 rsp->orphan_donetail = &rsp->orphan_donelist;
1419 }
1420
1421 /* And then adopt the callbacks that still need a grace period. */
1422 if (rsp->orphan_nxtlist != NULL) {
1423 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1424 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1425 rsp->orphan_nxtlist = NULL;
1426 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1427 }
1428}
1429
1430/*
1431 * Trace the fact that this CPU is going offline.
1432 */
1433static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1434{
1435 RCU_TRACE(unsigned long mask);
1436 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1437 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1438
1439 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1440 trace_rcu_grace_period(rsp->name,
1441 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1442 "cpuofl");
64db4cff
PM
1443}
1444
1445/*
e5601400 1446 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1447 * this fact from process context. Do the remainder of the cleanup,
1448 * including orphaning the outgoing CPU's RCU callbacks, and also
1449 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1450 * There can only be one CPU hotplug operation at a time, so no other
1451 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1452 */
e5601400 1453static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1454{
2036d94a
PM
1455 unsigned long flags;
1456 unsigned long mask;
1457 int need_report = 0;
e5601400 1458 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1459 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1460
2036d94a 1461 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1462 rcu_stop_cpu_kthread(cpu);
1463 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1464
b1420f1c 1465 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1466
1467 /* Exclude any attempts to start a new grace period. */
1468 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1469
b1420f1c
PM
1470 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1471 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1472 rcu_adopt_orphan_cbs(rsp);
1473
2036d94a
PM
1474 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1475 mask = rdp->grpmask; /* rnp->grplo is constant. */
1476 do {
1477 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1478 rnp->qsmaskinit &= ~mask;
1479 if (rnp->qsmaskinit != 0) {
1480 if (rnp != rdp->mynode)
1481 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1482 break;
1483 }
1484 if (rnp == rdp->mynode)
1485 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1486 else
1487 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1488 mask = rnp->grpmask;
1489 rnp = rnp->parent;
1490 } while (rnp != NULL);
1491
1492 /*
1493 * We still hold the leaf rcu_node structure lock here, and
1494 * irqs are still disabled. The reason for this subterfuge is
1495 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1496 * held leads to deadlock.
1497 */
1498 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1499 rnp = rdp->mynode;
1500 if (need_report & RCU_OFL_TASKS_NORM_GP)
1501 rcu_report_unblock_qs_rnp(rnp, flags);
1502 else
1503 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1504 if (need_report & RCU_OFL_TASKS_EXP_GP)
1505 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1506 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1507 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1508 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
1509}
1510
1511#else /* #ifdef CONFIG_HOTPLUG_CPU */
1512
b1420f1c
PM
1513static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1514{
1515}
1516
e5601400 1517static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1518{
1519}
1520
e5601400 1521static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1522{
1523}
1524
1525#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1526
1527/*
1528 * Invoke any RCU callbacks that have made it to the end of their grace
1529 * period. Thottle as specified by rdp->blimit.
1530 */
37c72e56 1531static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1532{
1533 unsigned long flags;
1534 struct rcu_head *next, *list, **tail;
b41772ab 1535 int bl, count, count_lazy, i;
64db4cff
PM
1536
1537 /* If no callbacks are ready, just return.*/
29c00b4a 1538 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1539 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1540 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1541 need_resched(), is_idle_task(current),
1542 rcu_is_callbacks_kthread());
64db4cff 1543 return;
29c00b4a 1544 }
64db4cff
PM
1545
1546 /*
1547 * Extract the list of ready callbacks, disabling to prevent
1548 * races with call_rcu() from interrupt handlers.
1549 */
1550 local_irq_save(flags);
8146c4e2 1551 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1552 bl = rdp->blimit;
486e2593 1553 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1554 list = rdp->nxtlist;
1555 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1556 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1557 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1558 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1559 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1560 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1561 local_irq_restore(flags);
1562
1563 /* Invoke callbacks. */
486e2593 1564 count = count_lazy = 0;
64db4cff
PM
1565 while (list) {
1566 next = list->next;
1567 prefetch(next);
551d55a9 1568 debug_rcu_head_unqueue(list);
486e2593
PM
1569 if (__rcu_reclaim(rsp->name, list))
1570 count_lazy++;
64db4cff 1571 list = next;
dff1672d
PM
1572 /* Stop only if limit reached and CPU has something to do. */
1573 if (++count >= bl &&
1574 (need_resched() ||
1575 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1576 break;
1577 }
1578
1579 local_irq_save(flags);
4968c300
PM
1580 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1581 is_idle_task(current),
1582 rcu_is_callbacks_kthread());
64db4cff
PM
1583
1584 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1585 if (list != NULL) {
1586 *tail = rdp->nxtlist;
1587 rdp->nxtlist = list;
b41772ab
PM
1588 for (i = 0; i < RCU_NEXT_SIZE; i++)
1589 if (&rdp->nxtlist == rdp->nxttail[i])
1590 rdp->nxttail[i] = tail;
64db4cff
PM
1591 else
1592 break;
1593 }
b1420f1c
PM
1594 smp_mb(); /* List handling before counting for rcu_barrier(). */
1595 rdp->qlen_lazy -= count_lazy;
1d1fb395 1596 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1597 rdp->n_cbs_invoked += count;
64db4cff
PM
1598
1599 /* Reinstate batch limit if we have worked down the excess. */
1600 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1601 rdp->blimit = blimit;
1602
37c72e56
PM
1603 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1604 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1605 rdp->qlen_last_fqs_check = 0;
1606 rdp->n_force_qs_snap = rsp->n_force_qs;
1607 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1608 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1609 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1610
64db4cff
PM
1611 local_irq_restore(flags);
1612
e0f23060 1613 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1614 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1615 invoke_rcu_core();
64db4cff
PM
1616}
1617
1618/*
1619 * Check to see if this CPU is in a non-context-switch quiescent state
1620 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1621 * Also schedule RCU core processing.
64db4cff 1622 *
9b2e4f18 1623 * This function must be called from hardirq context. It is normally
64db4cff
PM
1624 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1625 * false, there is no point in invoking rcu_check_callbacks().
1626 */
1627void rcu_check_callbacks(int cpu, int user)
1628{
300df91c 1629 trace_rcu_utilization("Start scheduler-tick");
a858af28 1630 increment_cpu_stall_ticks();
9b2e4f18 1631 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1632
1633 /*
1634 * Get here if this CPU took its interrupt from user
1635 * mode or from the idle loop, and if this is not a
1636 * nested interrupt. In this case, the CPU is in
d6714c22 1637 * a quiescent state, so note it.
64db4cff
PM
1638 *
1639 * No memory barrier is required here because both
d6714c22
PM
1640 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1641 * variables that other CPUs neither access nor modify,
1642 * at least not while the corresponding CPU is online.
64db4cff
PM
1643 */
1644
d6714c22
PM
1645 rcu_sched_qs(cpu);
1646 rcu_bh_qs(cpu);
64db4cff
PM
1647
1648 } else if (!in_softirq()) {
1649
1650 /*
1651 * Get here if this CPU did not take its interrupt from
1652 * softirq, in other words, if it is not interrupting
1653 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1654 * critical section, so note it.
64db4cff
PM
1655 */
1656
d6714c22 1657 rcu_bh_qs(cpu);
64db4cff 1658 }
f41d911f 1659 rcu_preempt_check_callbacks(cpu);
d21670ac 1660 if (rcu_pending(cpu))
a46e0899 1661 invoke_rcu_core();
300df91c 1662 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1663}
1664
64db4cff
PM
1665/*
1666 * Scan the leaf rcu_node structures, processing dyntick state for any that
1667 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1668 * Also initiate boosting for any threads blocked on the root rcu_node.
1669 *
ee47eb9f 1670 * The caller must have suppressed start of new grace periods.
64db4cff 1671 */
45f014c5 1672static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1673{
1674 unsigned long bit;
1675 int cpu;
1676 unsigned long flags;
1677 unsigned long mask;
a0b6c9a7 1678 struct rcu_node *rnp;
64db4cff 1679
a0b6c9a7 1680 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1681 mask = 0;
1304afb2 1682 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1683 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1684 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1685 return;
64db4cff 1686 }
a0b6c9a7 1687 if (rnp->qsmask == 0) {
1217ed1b 1688 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1689 continue;
1690 }
a0b6c9a7 1691 cpu = rnp->grplo;
64db4cff 1692 bit = 1;
a0b6c9a7 1693 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1694 if ((rnp->qsmask & bit) != 0 &&
1695 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1696 mask |= bit;
1697 }
45f014c5 1698 if (mask != 0) {
64db4cff 1699
d3f6bad3
PM
1700 /* rcu_report_qs_rnp() releases rnp->lock. */
1701 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1702 continue;
1703 }
1304afb2 1704 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1705 }
27f4d280 1706 rnp = rcu_get_root(rsp);
1217ed1b
PM
1707 if (rnp->qsmask == 0) {
1708 raw_spin_lock_irqsave(&rnp->lock, flags);
1709 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1710 }
64db4cff
PM
1711}
1712
1713/*
1714 * Force quiescent states on reluctant CPUs, and also detect which
1715 * CPUs are in dyntick-idle mode.
1716 */
1717static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1718{
1719 unsigned long flags;
64db4cff 1720 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1721
300df91c
PM
1722 trace_rcu_utilization("Start fqs");
1723 if (!rcu_gp_in_progress(rsp)) {
1724 trace_rcu_utilization("End fqs");
64db4cff 1725 return; /* No grace period in progress, nothing to force. */
300df91c 1726 }
1304afb2 1727 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1728 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1729 trace_rcu_utilization("End fqs");
64db4cff
PM
1730 return; /* Someone else is already on the job. */
1731 }
20133cfc 1732 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1733 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1734 rsp->n_force_qs++;
1304afb2 1735 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1736 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1737 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1738 rsp->n_force_qs_ngp++;
1304afb2 1739 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1740 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1741 }
07079d53 1742 rsp->fqs_active = 1;
af446b70 1743 switch (rsp->fqs_state) {
83f5b01f 1744 case RCU_GP_IDLE:
64db4cff
PM
1745 case RCU_GP_INIT:
1746
83f5b01f 1747 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1748
1749 case RCU_SAVE_DYNTICK:
64db4cff 1750
f261414f
LJ
1751 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1752
64db4cff 1753 /* Record dyntick-idle state. */
45f014c5 1754 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1755 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1756 if (rcu_gp_in_progress(rsp))
af446b70 1757 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1758 break;
64db4cff
PM
1759
1760 case RCU_FORCE_QS:
1761
1762 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1763 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1764 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1765
1766 /* Leave state in case more forcing is required. */
1767
1304afb2 1768 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1769 break;
64db4cff 1770 }
07079d53 1771 rsp->fqs_active = 0;
46a1e34e 1772 if (rsp->fqs_need_gp) {
1304afb2 1773 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1774 rsp->fqs_need_gp = 0;
1775 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1776 trace_rcu_utilization("End fqs");
46a1e34e
PM
1777 return;
1778 }
1304afb2 1779 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1780unlock_fqs_ret:
1304afb2 1781 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1782 trace_rcu_utilization("End fqs");
64db4cff
PM
1783}
1784
64db4cff 1785/*
e0f23060
PM
1786 * This does the RCU core processing work for the specified rcu_state
1787 * and rcu_data structures. This may be called only from the CPU to
1788 * whom the rdp belongs.
64db4cff
PM
1789 */
1790static void
1bca8cf1 1791__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
1792{
1793 unsigned long flags;
1bca8cf1 1794 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 1795
2e597558
PM
1796 WARN_ON_ONCE(rdp->beenonline == 0);
1797
64db4cff
PM
1798 /*
1799 * If an RCU GP has gone long enough, go check for dyntick
1800 * idle CPUs and, if needed, send resched IPIs.
1801 */
20133cfc 1802 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1803 force_quiescent_state(rsp, 1);
1804
1805 /*
1806 * Advance callbacks in response to end of earlier grace
1807 * period that some other CPU ended.
1808 */
1809 rcu_process_gp_end(rsp, rdp);
1810
1811 /* Update RCU state based on any recent quiescent states. */
1812 rcu_check_quiescent_state(rsp, rdp);
1813
1814 /* Does this CPU require a not-yet-started grace period? */
1815 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1816 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1817 rcu_start_gp(rsp, flags); /* releases above lock */
1818 }
1819
1820 /* If there are callbacks ready, invoke them. */
09223371 1821 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1822 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1823}
1824
64db4cff 1825/*
e0f23060 1826 * Do RCU core processing for the current CPU.
64db4cff 1827 */
09223371 1828static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1829{
6ce75a23
PM
1830 struct rcu_state *rsp;
1831
300df91c 1832 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
1833 for_each_rcu_flavor(rsp)
1834 __rcu_process_callbacks(rsp);
300df91c 1835 trace_rcu_utilization("End RCU core");
64db4cff
PM
1836}
1837
a26ac245 1838/*
e0f23060
PM
1839 * Schedule RCU callback invocation. If the specified type of RCU
1840 * does not support RCU priority boosting, just do a direct call,
1841 * otherwise wake up the per-CPU kernel kthread. Note that because we
1842 * are running on the current CPU with interrupts disabled, the
1843 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1844 */
a46e0899 1845static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1846{
b0d30417
PM
1847 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1848 return;
a46e0899
PM
1849 if (likely(!rsp->boost)) {
1850 rcu_do_batch(rsp, rdp);
a26ac245
PM
1851 return;
1852 }
a46e0899 1853 invoke_rcu_callbacks_kthread();
a26ac245
PM
1854}
1855
a46e0899 1856static void invoke_rcu_core(void)
09223371
SL
1857{
1858 raise_softirq(RCU_SOFTIRQ);
1859}
1860
29154c57
PM
1861/*
1862 * Handle any core-RCU processing required by a call_rcu() invocation.
1863 */
1864static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1865 struct rcu_head *head, unsigned long flags)
64db4cff 1866{
62fde6ed
PM
1867 /*
1868 * If called from an extended quiescent state, invoke the RCU
1869 * core in order to force a re-evaluation of RCU's idleness.
1870 */
a16b7a69 1871 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
1872 invoke_rcu_core();
1873
a16b7a69 1874 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 1875 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 1876 return;
64db4cff 1877
37c72e56
PM
1878 /*
1879 * Force the grace period if too many callbacks or too long waiting.
1880 * Enforce hysteresis, and don't invoke force_quiescent_state()
1881 * if some other CPU has recently done so. Also, don't bother
1882 * invoking force_quiescent_state() if the newly enqueued callback
1883 * is the only one waiting for a grace period to complete.
1884 */
2655d57e 1885 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1886
1887 /* Are we ignoring a completed grace period? */
1888 rcu_process_gp_end(rsp, rdp);
1889 check_for_new_grace_period(rsp, rdp);
1890
1891 /* Start a new grace period if one not already started. */
1892 if (!rcu_gp_in_progress(rsp)) {
1893 unsigned long nestflag;
1894 struct rcu_node *rnp_root = rcu_get_root(rsp);
1895
1896 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1897 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1898 } else {
1899 /* Give the grace period a kick. */
1900 rdp->blimit = LONG_MAX;
1901 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1902 *rdp->nxttail[RCU_DONE_TAIL] != head)
1903 force_quiescent_state(rsp, 0);
1904 rdp->n_force_qs_snap = rsp->n_force_qs;
1905 rdp->qlen_last_fqs_check = rdp->qlen;
1906 }
20133cfc 1907 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff 1908 force_quiescent_state(rsp, 1);
29154c57
PM
1909}
1910
64db4cff
PM
1911static void
1912__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1913 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1914{
1915 unsigned long flags;
1916 struct rcu_data *rdp;
1917
0bb7b59d 1918 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1919 debug_rcu_head_queue(head);
64db4cff
PM
1920 head->func = func;
1921 head->next = NULL;
1922
1923 smp_mb(); /* Ensure RCU update seen before callback registry. */
1924
1925 /*
1926 * Opportunistically note grace-period endings and beginnings.
1927 * Note that we might see a beginning right after we see an
1928 * end, but never vice versa, since this CPU has to pass through
1929 * a quiescent state betweentimes.
1930 */
1931 local_irq_save(flags);
394f99a9 1932 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1933
1934 /* Add the callback to our list. */
29154c57 1935 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
1936 if (lazy)
1937 rdp->qlen_lazy++;
c57afe80
PM
1938 else
1939 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1940 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1941 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1942 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1943
d4c08f2a
PM
1944 if (__is_kfree_rcu_offset((unsigned long)func))
1945 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1946 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1947 else
486e2593 1948 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1949
29154c57
PM
1950 /* Go handle any RCU core processing required. */
1951 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
1952 local_irq_restore(flags);
1953}
1954
1955/*
d6714c22 1956 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1957 */
d6714c22 1958void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1959{
486e2593 1960 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1961}
d6714c22 1962EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1963
1964/*
486e2593 1965 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1966 */
1967void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1968{
486e2593 1969 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1970}
1971EXPORT_SYMBOL_GPL(call_rcu_bh);
1972
6d813391
PM
1973/*
1974 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1975 * any blocking grace-period wait automatically implies a grace period
1976 * if there is only one CPU online at any point time during execution
1977 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1978 * occasionally incorrectly indicate that there are multiple CPUs online
1979 * when there was in fact only one the whole time, as this just adds
1980 * some overhead: RCU still operates correctly.
6d813391
PM
1981 */
1982static inline int rcu_blocking_is_gp(void)
1983{
95f0c1de
PM
1984 int ret;
1985
6d813391 1986 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
1987 preempt_disable();
1988 ret = num_online_cpus() <= 1;
1989 preempt_enable();
1990 return ret;
6d813391
PM
1991}
1992
6ebb237b
PM
1993/**
1994 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1995 *
1996 * Control will return to the caller some time after a full rcu-sched
1997 * grace period has elapsed, in other words after all currently executing
1998 * rcu-sched read-side critical sections have completed. These read-side
1999 * critical sections are delimited by rcu_read_lock_sched() and
2000 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2001 * local_irq_disable(), and so on may be used in place of
2002 * rcu_read_lock_sched().
2003 *
2004 * This means that all preempt_disable code sequences, including NMI and
2005 * hardware-interrupt handlers, in progress on entry will have completed
2006 * before this primitive returns. However, this does not guarantee that
2007 * softirq handlers will have completed, since in some kernels, these
2008 * handlers can run in process context, and can block.
2009 *
2010 * This primitive provides the guarantees made by the (now removed)
2011 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2012 * guarantees that rcu_read_lock() sections will have completed.
2013 * In "classic RCU", these two guarantees happen to be one and
2014 * the same, but can differ in realtime RCU implementations.
2015 */
2016void synchronize_sched(void)
2017{
fe15d706
PM
2018 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2019 !lock_is_held(&rcu_lock_map) &&
2020 !lock_is_held(&rcu_sched_lock_map),
2021 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2022 if (rcu_blocking_is_gp())
2023 return;
2c42818e 2024 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2025}
2026EXPORT_SYMBOL_GPL(synchronize_sched);
2027
2028/**
2029 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2030 *
2031 * Control will return to the caller some time after a full rcu_bh grace
2032 * period has elapsed, in other words after all currently executing rcu_bh
2033 * read-side critical sections have completed. RCU read-side critical
2034 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2035 * and may be nested.
2036 */
2037void synchronize_rcu_bh(void)
2038{
fe15d706
PM
2039 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2040 !lock_is_held(&rcu_lock_map) &&
2041 !lock_is_held(&rcu_sched_lock_map),
2042 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2043 if (rcu_blocking_is_gp())
2044 return;
2c42818e 2045 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2046}
2047EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2048
3d3b7db0
PM
2049static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2050static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2051
2052static int synchronize_sched_expedited_cpu_stop(void *data)
2053{
2054 /*
2055 * There must be a full memory barrier on each affected CPU
2056 * between the time that try_stop_cpus() is called and the
2057 * time that it returns.
2058 *
2059 * In the current initial implementation of cpu_stop, the
2060 * above condition is already met when the control reaches
2061 * this point and the following smp_mb() is not strictly
2062 * necessary. Do smp_mb() anyway for documentation and
2063 * robustness against future implementation changes.
2064 */
2065 smp_mb(); /* See above comment block. */
2066 return 0;
2067}
2068
236fefaf
PM
2069/**
2070 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2071 *
2072 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2073 * approach to force the grace period to end quickly. This consumes
2074 * significant time on all CPUs and is unfriendly to real-time workloads,
2075 * so is thus not recommended for any sort of common-case code. In fact,
2076 * if you are using synchronize_sched_expedited() in a loop, please
2077 * restructure your code to batch your updates, and then use a single
2078 * synchronize_sched() instead.
3d3b7db0 2079 *
236fefaf
PM
2080 * Note that it is illegal to call this function while holding any lock
2081 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2082 * to call this function from a CPU-hotplug notifier. Failing to observe
2083 * these restriction will result in deadlock.
3d3b7db0
PM
2084 *
2085 * This implementation can be thought of as an application of ticket
2086 * locking to RCU, with sync_sched_expedited_started and
2087 * sync_sched_expedited_done taking on the roles of the halves
2088 * of the ticket-lock word. Each task atomically increments
2089 * sync_sched_expedited_started upon entry, snapshotting the old value,
2090 * then attempts to stop all the CPUs. If this succeeds, then each
2091 * CPU will have executed a context switch, resulting in an RCU-sched
2092 * grace period. We are then done, so we use atomic_cmpxchg() to
2093 * update sync_sched_expedited_done to match our snapshot -- but
2094 * only if someone else has not already advanced past our snapshot.
2095 *
2096 * On the other hand, if try_stop_cpus() fails, we check the value
2097 * of sync_sched_expedited_done. If it has advanced past our
2098 * initial snapshot, then someone else must have forced a grace period
2099 * some time after we took our snapshot. In this case, our work is
2100 * done for us, and we can simply return. Otherwise, we try again,
2101 * but keep our initial snapshot for purposes of checking for someone
2102 * doing our work for us.
2103 *
2104 * If we fail too many times in a row, we fall back to synchronize_sched().
2105 */
2106void synchronize_sched_expedited(void)
2107{
2108 int firstsnap, s, snap, trycount = 0;
2109
2110 /* Note that atomic_inc_return() implies full memory barrier. */
2111 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2112 get_online_cpus();
1cc85961 2113 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2114
2115 /*
2116 * Each pass through the following loop attempts to force a
2117 * context switch on each CPU.
2118 */
2119 while (try_stop_cpus(cpu_online_mask,
2120 synchronize_sched_expedited_cpu_stop,
2121 NULL) == -EAGAIN) {
2122 put_online_cpus();
2123
2124 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2125 if (trycount++ < 10) {
3d3b7db0 2126 udelay(trycount * num_online_cpus());
c701d5d9 2127 } else {
3d3b7db0
PM
2128 synchronize_sched();
2129 return;
2130 }
2131
2132 /* Check to see if someone else did our work for us. */
2133 s = atomic_read(&sync_sched_expedited_done);
2134 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2135 smp_mb(); /* ensure test happens before caller kfree */
2136 return;
2137 }
2138
2139 /*
2140 * Refetching sync_sched_expedited_started allows later
2141 * callers to piggyback on our grace period. We subtract
2142 * 1 to get the same token that the last incrementer got.
2143 * We retry after they started, so our grace period works
2144 * for them, and they started after our first try, so their
2145 * grace period works for us.
2146 */
2147 get_online_cpus();
2148 snap = atomic_read(&sync_sched_expedited_started);
2149 smp_mb(); /* ensure read is before try_stop_cpus(). */
2150 }
2151
2152 /*
2153 * Everyone up to our most recent fetch is covered by our grace
2154 * period. Update the counter, but only if our work is still
2155 * relevant -- which it won't be if someone who started later
2156 * than we did beat us to the punch.
2157 */
2158 do {
2159 s = atomic_read(&sync_sched_expedited_done);
2160 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2161 smp_mb(); /* ensure test happens before caller kfree */
2162 break;
2163 }
2164 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2165
2166 put_online_cpus();
2167}
2168EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2169
64db4cff
PM
2170/*
2171 * Check to see if there is any immediate RCU-related work to be done
2172 * by the current CPU, for the specified type of RCU, returning 1 if so.
2173 * The checks are in order of increasing expense: checks that can be
2174 * carried out against CPU-local state are performed first. However,
2175 * we must check for CPU stalls first, else we might not get a chance.
2176 */
2177static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2178{
2f51f988
PM
2179 struct rcu_node *rnp = rdp->mynode;
2180
64db4cff
PM
2181 rdp->n_rcu_pending++;
2182
2183 /* Check for CPU stalls, if enabled. */
2184 check_cpu_stall(rsp, rdp);
2185
2186 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2187 if (rcu_scheduler_fully_active &&
2188 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2189
2190 /*
2191 * If force_quiescent_state() coming soon and this CPU
2192 * needs a quiescent state, and this is either RCU-sched
2193 * or RCU-bh, force a local reschedule.
2194 */
d21670ac 2195 rdp->n_rp_qs_pending++;
6cc68793 2196 if (!rdp->preemptible &&
d25eb944
PM
2197 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2198 jiffies))
2199 set_need_resched();
e4cc1f22 2200 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2201 rdp->n_rp_report_qs++;
64db4cff 2202 return 1;
7ba5c840 2203 }
64db4cff
PM
2204
2205 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2206 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2207 rdp->n_rp_cb_ready++;
64db4cff 2208 return 1;
7ba5c840 2209 }
64db4cff
PM
2210
2211 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2212 if (cpu_needs_another_gp(rsp, rdp)) {
2213 rdp->n_rp_cpu_needs_gp++;
64db4cff 2214 return 1;
7ba5c840 2215 }
64db4cff
PM
2216
2217 /* Has another RCU grace period completed? */
2f51f988 2218 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2219 rdp->n_rp_gp_completed++;
64db4cff 2220 return 1;
7ba5c840 2221 }
64db4cff
PM
2222
2223 /* Has a new RCU grace period started? */
2f51f988 2224 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2225 rdp->n_rp_gp_started++;
64db4cff 2226 return 1;
7ba5c840 2227 }
64db4cff
PM
2228
2229 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2230 if (rcu_gp_in_progress(rsp) &&
20133cfc 2231 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2232 rdp->n_rp_need_fqs++;
64db4cff 2233 return 1;
7ba5c840 2234 }
64db4cff
PM
2235
2236 /* nothing to do */
7ba5c840 2237 rdp->n_rp_need_nothing++;
64db4cff
PM
2238 return 0;
2239}
2240
2241/*
2242 * Check to see if there is any immediate RCU-related work to be done
2243 * by the current CPU, returning 1 if so. This function is part of the
2244 * RCU implementation; it is -not- an exported member of the RCU API.
2245 */
a157229c 2246static int rcu_pending(int cpu)
64db4cff 2247{
6ce75a23
PM
2248 struct rcu_state *rsp;
2249
2250 for_each_rcu_flavor(rsp)
2251 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2252 return 1;
2253 return 0;
64db4cff
PM
2254}
2255
2256/*
2257 * Check to see if any future RCU-related work will need to be done
2258 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2259 * 1 if so.
64db4cff 2260 */
aea1b35e 2261static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2262{
6ce75a23
PM
2263 struct rcu_state *rsp;
2264
64db4cff 2265 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2266 for_each_rcu_flavor(rsp)
2267 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2268 return 1;
2269 return 0;
64db4cff
PM
2270}
2271
a83eff0a
PM
2272/*
2273 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2274 * the compiler is expected to optimize this away.
2275 */
2276static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2277 int cpu, unsigned long done)
2278{
2279 trace_rcu_barrier(rsp->name, s, cpu,
2280 atomic_read(&rsp->barrier_cpu_count), done);
2281}
2282
b1420f1c
PM
2283/*
2284 * RCU callback function for _rcu_barrier(). If we are last, wake
2285 * up the task executing _rcu_barrier().
2286 */
24ebbca8 2287static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2288{
24ebbca8
PM
2289 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2290 struct rcu_state *rsp = rdp->rsp;
2291
a83eff0a
PM
2292 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2293 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2294 complete(&rsp->barrier_completion);
a83eff0a
PM
2295 } else {
2296 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2297 }
d0ec774c
PM
2298}
2299
2300/*
2301 * Called with preemption disabled, and from cross-cpu IRQ context.
2302 */
2303static void rcu_barrier_func(void *type)
2304{
037b64ed 2305 struct rcu_state *rsp = type;
06668efa 2306 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2307
a83eff0a 2308 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2309 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2310 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2311}
2312
d0ec774c
PM
2313/*
2314 * Orchestrate the specified type of RCU barrier, waiting for all
2315 * RCU callbacks of the specified type to complete.
2316 */
037b64ed 2317static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2318{
b1420f1c
PM
2319 int cpu;
2320 unsigned long flags;
2321 struct rcu_data *rdp;
24ebbca8 2322 struct rcu_data rd;
cf3a9c48
PM
2323 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2324 unsigned long snap_done;
b1420f1c 2325
24ebbca8 2326 init_rcu_head_on_stack(&rd.barrier_head);
a83eff0a 2327 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2328
e74f4c45 2329 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2330 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2331
cf3a9c48
PM
2332 /*
2333 * Ensure that all prior references, including to ->n_barrier_done,
2334 * are ordered before the _rcu_barrier() machinery.
2335 */
2336 smp_mb(); /* See above block comment. */
2337
2338 /*
2339 * Recheck ->n_barrier_done to see if others did our work for us.
2340 * This means checking ->n_barrier_done for an even-to-odd-to-even
2341 * transition. The "if" expression below therefore rounds the old
2342 * value up to the next even number and adds two before comparing.
2343 */
2344 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2345 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2346 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2347 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2348 smp_mb(); /* caller's subsequent code after above check. */
2349 mutex_unlock(&rsp->barrier_mutex);
2350 return;
2351 }
2352
2353 /*
2354 * Increment ->n_barrier_done to avoid duplicate work. Use
2355 * ACCESS_ONCE() to prevent the compiler from speculating
2356 * the increment to precede the early-exit check.
2357 */
2358 ACCESS_ONCE(rsp->n_barrier_done)++;
2359 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2360 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2361 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2362
d0ec774c 2363 /*
b1420f1c
PM
2364 * Initialize the count to one rather than to zero in order to
2365 * avoid a too-soon return to zero in case of a short grace period
2366 * (or preemption of this task). Also flag this task as doing
2367 * an rcu_barrier(). This will prevent anyone else from adopting
2368 * orphaned callbacks, which could cause otherwise failure if a
2369 * CPU went offline and quickly came back online. To see this,
2370 * consider the following sequence of events:
2371 *
2372 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2373 * 2. CPU 1 goes offline, orphaning its callbacks.
2374 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2375 * 4. CPU 1 comes back online.
2376 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2377 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2378 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2379 */
7db74df8 2380 init_completion(&rsp->barrier_completion);
24ebbca8 2381 atomic_set(&rsp->barrier_cpu_count, 1);
b1420f1c
PM
2382 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2383 rsp->rcu_barrier_in_progress = current;
2384 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2385
2386 /*
2387 * Force every CPU with callbacks to register a new callback
2388 * that will tell us when all the preceding callbacks have
2389 * been invoked. If an offline CPU has callbacks, wait for
2390 * it to either come back online or to finish orphaning those
2391 * callbacks.
2392 */
2393 for_each_possible_cpu(cpu) {
2394 preempt_disable();
2395 rdp = per_cpu_ptr(rsp->rda, cpu);
2396 if (cpu_is_offline(cpu)) {
a83eff0a
PM
2397 _rcu_barrier_trace(rsp, "Offline", cpu,
2398 rsp->n_barrier_done);
b1420f1c
PM
2399 preempt_enable();
2400 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2401 schedule_timeout_interruptible(1);
2402 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2403 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2404 rsp->n_barrier_done);
037b64ed 2405 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c
PM
2406 preempt_enable();
2407 } else {
a83eff0a
PM
2408 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2409 rsp->n_barrier_done);
b1420f1c
PM
2410 preempt_enable();
2411 }
2412 }
2413
2414 /*
2415 * Now that all online CPUs have rcu_barrier_callback() callbacks
2416 * posted, we can adopt all of the orphaned callbacks and place
2417 * an rcu_barrier_callback() callback after them. When that is done,
2418 * we are guaranteed to have an rcu_barrier_callback() callback
2419 * following every callback that could possibly have been
2420 * registered before _rcu_barrier() was called.
2421 */
2422 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2423 rcu_adopt_orphan_cbs(rsp);
2424 rsp->rcu_barrier_in_progress = NULL;
2425 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
24ebbca8 2426 atomic_inc(&rsp->barrier_cpu_count);
b1420f1c 2427 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
24ebbca8
PM
2428 rd.rsp = rsp;
2429 rsp->call(&rd.barrier_head, rcu_barrier_callback);
b1420f1c
PM
2430
2431 /*
2432 * Now that we have an rcu_barrier_callback() callback on each
2433 * CPU, and thus each counted, remove the initial count.
2434 */
24ebbca8 2435 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2436 complete(&rsp->barrier_completion);
b1420f1c 2437
cf3a9c48
PM
2438 /* Increment ->n_barrier_done to prevent duplicate work. */
2439 smp_mb(); /* Keep increment after above mechanism. */
2440 ACCESS_ONCE(rsp->n_barrier_done)++;
2441 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2442 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2443 smp_mb(); /* Keep increment before caller's subsequent code. */
2444
b1420f1c 2445 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2446 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2447
2448 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2449 mutex_unlock(&rsp->barrier_mutex);
b1420f1c 2450
24ebbca8 2451 destroy_rcu_head_on_stack(&rd.barrier_head);
d0ec774c 2452}
d0ec774c
PM
2453
2454/**
2455 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2456 */
2457void rcu_barrier_bh(void)
2458{
037b64ed 2459 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2460}
2461EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2462
2463/**
2464 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2465 */
2466void rcu_barrier_sched(void)
2467{
037b64ed 2468 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2469}
2470EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2471
64db4cff 2472/*
27569620 2473 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2474 */
27569620
PM
2475static void __init
2476rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2477{
2478 unsigned long flags;
394f99a9 2479 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2480 struct rcu_node *rnp = rcu_get_root(rsp);
2481
2482 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2483 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2484 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2485 init_callback_list(rdp);
486e2593 2486 rdp->qlen_lazy = 0;
1d1fb395 2487 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2488 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2489 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2490 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2491 rdp->cpu = cpu;
d4c08f2a 2492 rdp->rsp = rsp;
1304afb2 2493 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2494}
2495
2496/*
2497 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2498 * offline event can be happening at a given time. Note also that we
2499 * can accept some slop in the rsp->completed access due to the fact
2500 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2501 */
e4fa4c97 2502static void __cpuinit
6cc68793 2503rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2504{
2505 unsigned long flags;
64db4cff 2506 unsigned long mask;
394f99a9 2507 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2508 struct rcu_node *rnp = rcu_get_root(rsp);
2509
2510 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2511 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2512 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2513 rdp->preemptible = preemptible;
37c72e56
PM
2514 rdp->qlen_last_fqs_check = 0;
2515 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2516 rdp->blimit = blimit;
29e37d81 2517 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2518 atomic_set(&rdp->dynticks->dynticks,
2519 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2520 rcu_prepare_for_idle_init(cpu);
1304afb2 2521 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2522
2523 /*
2524 * A new grace period might start here. If so, we won't be part
2525 * of it, but that is OK, as we are currently in a quiescent state.
2526 */
2527
2528 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2529 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2530
2531 /* Add CPU to rcu_node bitmasks. */
2532 rnp = rdp->mynode;
2533 mask = rdp->grpmask;
2534 do {
2535 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2536 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2537 rnp->qsmaskinit |= mask;
2538 mask = rnp->grpmask;
d09b62df 2539 if (rnp == rdp->mynode) {
06ae115a
PM
2540 /*
2541 * If there is a grace period in progress, we will
2542 * set up to wait for it next time we run the
2543 * RCU core code.
2544 */
2545 rdp->gpnum = rnp->completed;
d09b62df 2546 rdp->completed = rnp->completed;
06ae115a
PM
2547 rdp->passed_quiesce = 0;
2548 rdp->qs_pending = 0;
e4cc1f22 2549 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2550 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2551 }
1304afb2 2552 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2553 rnp = rnp->parent;
2554 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2555
1304afb2 2556 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2557}
2558
d72bce0e 2559static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2560{
6ce75a23
PM
2561 struct rcu_state *rsp;
2562
2563 for_each_rcu_flavor(rsp)
2564 rcu_init_percpu_data(cpu, rsp,
2565 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2566}
2567
2568/*
f41d911f 2569 * Handle CPU online/offline notification events.
64db4cff 2570 */
9f680ab4
PM
2571static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2572 unsigned long action, void *hcpu)
64db4cff
PM
2573{
2574 long cpu = (long)hcpu;
27f4d280 2575 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2576 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2577 struct rcu_state *rsp;
64db4cff 2578
300df91c 2579 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2580 switch (action) {
2581 case CPU_UP_PREPARE:
2582 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2583 rcu_prepare_cpu(cpu);
2584 rcu_prepare_kthreads(cpu);
a26ac245
PM
2585 break;
2586 case CPU_ONLINE:
0f962a5e
PM
2587 case CPU_DOWN_FAILED:
2588 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2589 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2590 break;
2591 case CPU_DOWN_PREPARE:
2592 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2593 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2594 break;
d0ec774c
PM
2595 case CPU_DYING:
2596 case CPU_DYING_FROZEN:
2597 /*
2d999e03
PM
2598 * The whole machine is "stopped" except this CPU, so we can
2599 * touch any data without introducing corruption. We send the
2600 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2601 */
6ce75a23
PM
2602 for_each_rcu_flavor(rsp)
2603 rcu_cleanup_dying_cpu(rsp);
7cb92499 2604 rcu_cleanup_after_idle(cpu);
d0ec774c 2605 break;
64db4cff
PM
2606 case CPU_DEAD:
2607 case CPU_DEAD_FROZEN:
2608 case CPU_UP_CANCELED:
2609 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2610 for_each_rcu_flavor(rsp)
2611 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2612 break;
2613 default:
2614 break;
2615 }
300df91c 2616 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2617 return NOTIFY_OK;
2618}
2619
bbad9379
PM
2620/*
2621 * This function is invoked towards the end of the scheduler's initialization
2622 * process. Before this is called, the idle task might contain
2623 * RCU read-side critical sections (during which time, this idle
2624 * task is booting the system). After this function is called, the
2625 * idle tasks are prohibited from containing RCU read-side critical
2626 * sections. This function also enables RCU lockdep checking.
2627 */
2628void rcu_scheduler_starting(void)
2629{
2630 WARN_ON(num_online_cpus() != 1);
2631 WARN_ON(nr_context_switches() > 0);
2632 rcu_scheduler_active = 1;
2633}
2634
64db4cff
PM
2635/*
2636 * Compute the per-level fanout, either using the exact fanout specified
2637 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2638 */
2639#ifdef CONFIG_RCU_FANOUT_EXACT
2640static void __init rcu_init_levelspread(struct rcu_state *rsp)
2641{
2642 int i;
2643
f885b7f2 2644 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2645 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2646 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2647}
2648#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2649static void __init rcu_init_levelspread(struct rcu_state *rsp)
2650{
2651 int ccur;
2652 int cprv;
2653 int i;
2654
2655 cprv = NR_CPUS;
f885b7f2 2656 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2657 ccur = rsp->levelcnt[i];
2658 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2659 cprv = ccur;
2660 }
2661}
2662#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2663
2664/*
2665 * Helper function for rcu_init() that initializes one rcu_state structure.
2666 */
394f99a9
LJ
2667static void __init rcu_init_one(struct rcu_state *rsp,
2668 struct rcu_data __percpu *rda)
64db4cff 2669{
b6407e86
PM
2670 static char *buf[] = { "rcu_node_level_0",
2671 "rcu_node_level_1",
2672 "rcu_node_level_2",
2673 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2674 int cpustride = 1;
2675 int i;
2676 int j;
2677 struct rcu_node *rnp;
2678
b6407e86
PM
2679 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2680
64db4cff
PM
2681 /* Initialize the level-tracking arrays. */
2682
f885b7f2
PM
2683 for (i = 0; i < rcu_num_lvls; i++)
2684 rsp->levelcnt[i] = num_rcu_lvl[i];
2685 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2686 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2687 rcu_init_levelspread(rsp);
2688
2689 /* Initialize the elements themselves, starting from the leaves. */
2690
f885b7f2 2691 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2692 cpustride *= rsp->levelspread[i];
2693 rnp = rsp->level[i];
2694 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2695 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2696 lockdep_set_class_and_name(&rnp->lock,
2697 &rcu_node_class[i], buf[i]);
f41d911f 2698 rnp->gpnum = 0;
64db4cff
PM
2699 rnp->qsmask = 0;
2700 rnp->qsmaskinit = 0;
2701 rnp->grplo = j * cpustride;
2702 rnp->grphi = (j + 1) * cpustride - 1;
2703 if (rnp->grphi >= NR_CPUS)
2704 rnp->grphi = NR_CPUS - 1;
2705 if (i == 0) {
2706 rnp->grpnum = 0;
2707 rnp->grpmask = 0;
2708 rnp->parent = NULL;
2709 } else {
2710 rnp->grpnum = j % rsp->levelspread[i - 1];
2711 rnp->grpmask = 1UL << rnp->grpnum;
2712 rnp->parent = rsp->level[i - 1] +
2713 j / rsp->levelspread[i - 1];
2714 }
2715 rnp->level = i;
12f5f524 2716 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2717 }
2718 }
0c34029a 2719
394f99a9 2720 rsp->rda = rda;
f885b7f2 2721 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2722 for_each_possible_cpu(i) {
4a90a068 2723 while (i > rnp->grphi)
0c34029a 2724 rnp++;
394f99a9 2725 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2726 rcu_boot_init_percpu_data(i, rsp);
2727 }
6ce75a23 2728 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2729}
2730
f885b7f2
PM
2731/*
2732 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2733 * replace the definitions in rcutree.h because those are needed to size
2734 * the ->node array in the rcu_state structure.
2735 */
2736static void __init rcu_init_geometry(void)
2737{
2738 int i;
2739 int j;
cca6f393 2740 int n = nr_cpu_ids;
f885b7f2
PM
2741 int rcu_capacity[MAX_RCU_LVLS + 1];
2742
2743 /* If the compile-time values are accurate, just leave. */
2744 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2745 return;
2746
2747 /*
2748 * Compute number of nodes that can be handled an rcu_node tree
2749 * with the given number of levels. Setting rcu_capacity[0] makes
2750 * some of the arithmetic easier.
2751 */
2752 rcu_capacity[0] = 1;
2753 rcu_capacity[1] = rcu_fanout_leaf;
2754 for (i = 2; i <= MAX_RCU_LVLS; i++)
2755 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2756
2757 /*
2758 * The boot-time rcu_fanout_leaf parameter is only permitted
2759 * to increase the leaf-level fanout, not decrease it. Of course,
2760 * the leaf-level fanout cannot exceed the number of bits in
2761 * the rcu_node masks. Finally, the tree must be able to accommodate
2762 * the configured number of CPUs. Complain and fall back to the
2763 * compile-time values if these limits are exceeded.
2764 */
2765 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2766 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2767 n > rcu_capacity[MAX_RCU_LVLS]) {
2768 WARN_ON(1);
2769 return;
2770 }
2771
2772 /* Calculate the number of rcu_nodes at each level of the tree. */
2773 for (i = 1; i <= MAX_RCU_LVLS; i++)
2774 if (n <= rcu_capacity[i]) {
2775 for (j = 0; j <= i; j++)
2776 num_rcu_lvl[j] =
2777 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2778 rcu_num_lvls = i;
2779 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2780 num_rcu_lvl[j] = 0;
2781 break;
2782 }
2783
2784 /* Calculate the total number of rcu_node structures. */
2785 rcu_num_nodes = 0;
2786 for (i = 0; i <= MAX_RCU_LVLS; i++)
2787 rcu_num_nodes += num_rcu_lvl[i];
2788 rcu_num_nodes -= n;
2789}
2790
9f680ab4 2791void __init rcu_init(void)
64db4cff 2792{
017c4261 2793 int cpu;
9f680ab4 2794
f41d911f 2795 rcu_bootup_announce();
f885b7f2 2796 rcu_init_geometry();
394f99a9
LJ
2797 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2798 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2799 __rcu_init_preempt();
09223371 2800 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2801
2802 /*
2803 * We don't need protection against CPU-hotplug here because
2804 * this is called early in boot, before either interrupts
2805 * or the scheduler are operational.
2806 */
2807 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2808 for_each_online_cpu(cpu)
2809 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2810 check_cpu_stall_init();
64db4cff
PM
2811}
2812
1eba8f84 2813#include "rcutree_plugin.h"
This page took 0.532278 seconds and 5 git commands to generate.