rcu: Use smp_hotplug_thread facility for RCUs per-CPU kthread
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
037b64ed 65#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 66 .level = { &sname##_state.node[0] }, \
037b64ed 67 .call = cr, \
af446b70 68 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
6c90cc7b
PM
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
6c90cc7b 75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
6c90cc7b 76 .name = #sname, \
64db4cff
PM
77}
78
037b64ed
PM
79struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 81DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 82
037b64ed 83struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 84DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 85
27f4d280 86static struct rcu_state *rcu_state;
6ce75a23 87LIST_HEAD(rcu_struct_flavors);
27f4d280 88
f885b7f2
PM
89/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91module_param(rcu_fanout_leaf, int, 0);
92int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99};
100int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
b0d30417
PM
102/*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
bbad9379
PM
111int rcu_scheduler_active __read_mostly;
112EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
b0d30417
PM
114/*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126static int rcu_scheduler_fully_active __read_mostly;
127
a46e0899
PM
128#ifdef CONFIG_RCU_BOOST
129
a26ac245
PM
130/*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 136DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 137DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 138
a46e0899
PM
139#endif /* #ifdef CONFIG_RCU_BOOST */
140
5d01bbd1 141static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
142static void invoke_rcu_core(void);
143static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 144
4a298656
PM
145/*
146 * Track the rcutorture test sequence number and the update version
147 * number within a given test. The rcutorture_testseq is incremented
148 * on every rcutorture module load and unload, so has an odd value
149 * when a test is running. The rcutorture_vernum is set to zero
150 * when rcutorture starts and is incremented on each rcutorture update.
151 * These variables enable correlating rcutorture output with the
152 * RCU tracing information.
153 */
154unsigned long rcutorture_testseq;
155unsigned long rcutorture_vernum;
156
fc2219d4
PM
157/*
158 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
159 * permit this function to be invoked without holding the root rcu_node
160 * structure's ->lock, but of course results can be subject to change.
161 */
162static int rcu_gp_in_progress(struct rcu_state *rsp)
163{
164 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
165}
166
b1f77b05 167/*
d6714c22 168 * Note a quiescent state. Because we do not need to know
b1f77b05 169 * how many quiescent states passed, just if there was at least
d6714c22 170 * one since the start of the grace period, this just sets a flag.
e4cc1f22 171 * The caller must have disabled preemption.
b1f77b05 172 */
d6714c22 173void rcu_sched_qs(int cpu)
b1f77b05 174{
25502a6c 175 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 176
e4cc1f22 177 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 178 barrier();
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05
IM
182}
183
d6714c22 184void rcu_bh_qs(int cpu)
b1f77b05 185{
25502a6c 186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 187
e4cc1f22 188 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 189 barrier();
e4cc1f22 190 if (rdp->passed_quiesce == 0)
d4c08f2a 191 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 192 rdp->passed_quiesce = 1;
b1f77b05 193}
64db4cff 194
25502a6c
PM
195/*
196 * Note a context switch. This is a quiescent state for RCU-sched,
197 * and requires special handling for preemptible RCU.
e4cc1f22 198 * The caller must have disabled preemption.
25502a6c
PM
199 */
200void rcu_note_context_switch(int cpu)
201{
300df91c 202 trace_rcu_utilization("Start context switch");
25502a6c 203 rcu_sched_qs(cpu);
cba6d0d6 204 rcu_preempt_note_context_switch(cpu);
300df91c 205 trace_rcu_utilization("End context switch");
25502a6c 206}
29ce8310 207EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 208
90a4d2c0 209DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 210 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 211 .dynticks = ATOMIC_INIT(1),
90a4d2c0 212};
64db4cff 213
e0f23060 214static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
215static int qhimark = 10000; /* If this many pending, ignore blimit. */
216static int qlowmark = 100; /* Once only this many pending, use blimit. */
217
3d76c082
PM
218module_param(blimit, int, 0);
219module_param(qhimark, int, 0);
220module_param(qlowmark, int, 0);
221
13cfcca0
PM
222int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
223int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
224
f2e0dd70 225module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 226module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 227
64db4cff 228static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 229static int rcu_pending(int cpu);
64db4cff
PM
230
231/*
d6714c22 232 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 233 */
d6714c22 234long rcu_batches_completed_sched(void)
64db4cff 235{
d6714c22 236 return rcu_sched_state.completed;
64db4cff 237}
d6714c22 238EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
239
240/*
241 * Return the number of RCU BH batches processed thus far for debug & stats.
242 */
243long rcu_batches_completed_bh(void)
244{
245 return rcu_bh_state.completed;
246}
247EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
248
bf66f18e
PM
249/*
250 * Force a quiescent state for RCU BH.
251 */
252void rcu_bh_force_quiescent_state(void)
253{
254 force_quiescent_state(&rcu_bh_state, 0);
255}
256EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
257
4a298656
PM
258/*
259 * Record the number of times rcutorture tests have been initiated and
260 * terminated. This information allows the debugfs tracing stats to be
261 * correlated to the rcutorture messages, even when the rcutorture module
262 * is being repeatedly loaded and unloaded. In other words, we cannot
263 * store this state in rcutorture itself.
264 */
265void rcutorture_record_test_transition(void)
266{
267 rcutorture_testseq++;
268 rcutorture_vernum = 0;
269}
270EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
271
272/*
273 * Record the number of writer passes through the current rcutorture test.
274 * This is also used to correlate debugfs tracing stats with the rcutorture
275 * messages.
276 */
277void rcutorture_record_progress(unsigned long vernum)
278{
279 rcutorture_vernum++;
280}
281EXPORT_SYMBOL_GPL(rcutorture_record_progress);
282
bf66f18e
PM
283/*
284 * Force a quiescent state for RCU-sched.
285 */
286void rcu_sched_force_quiescent_state(void)
287{
288 force_quiescent_state(&rcu_sched_state, 0);
289}
290EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
291
64db4cff
PM
292/*
293 * Does the CPU have callbacks ready to be invoked?
294 */
295static int
296cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
297{
298 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
299}
300
301/*
302 * Does the current CPU require a yet-as-unscheduled grace period?
303 */
304static int
305cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
306{
fc2219d4 307 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
308}
309
310/*
311 * Return the root node of the specified rcu_state structure.
312 */
313static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
314{
315 return &rsp->node[0];
316}
317
64db4cff
PM
318/*
319 * If the specified CPU is offline, tell the caller that it is in
320 * a quiescent state. Otherwise, whack it with a reschedule IPI.
321 * Grace periods can end up waiting on an offline CPU when that
322 * CPU is in the process of coming online -- it will be added to the
323 * rcu_node bitmasks before it actually makes it online. The same thing
324 * can happen while a CPU is in the process of coming online. Because this
325 * race is quite rare, we check for it after detecting that the grace
326 * period has been delayed rather than checking each and every CPU
327 * each and every time we start a new grace period.
328 */
329static int rcu_implicit_offline_qs(struct rcu_data *rdp)
330{
331 /*
2036d94a
PM
332 * If the CPU is offline for more than a jiffy, it is in a quiescent
333 * state. We can trust its state not to change because interrupts
334 * are disabled. The reason for the jiffy's worth of slack is to
335 * handle CPUs initializing on the way up and finding their way
336 * to the idle loop on the way down.
64db4cff 337 */
2036d94a
PM
338 if (cpu_is_offline(rdp->cpu) &&
339 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 340 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
341 rdp->offline_fqs++;
342 return 1;
343 }
64db4cff
PM
344 return 0;
345}
346
9b2e4f18
PM
347/*
348 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
349 *
350 * If the new value of the ->dynticks_nesting counter now is zero,
351 * we really have entered idle, and must do the appropriate accounting.
352 * The caller must have disabled interrupts.
353 */
4145fa7f 354static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 355{
facc4e15 356 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 357 if (!is_idle_task(current)) {
0989cb46
PM
358 struct task_struct *idle = idle_task(smp_processor_id());
359
facc4e15 360 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 361 ftrace_dump(DUMP_ORIG);
0989cb46
PM
362 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
363 current->pid, current->comm,
364 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 365 }
aea1b35e 366 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
367 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
368 smp_mb__before_atomic_inc(); /* See above. */
369 atomic_inc(&rdtp->dynticks);
370 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
371 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
372
373 /*
374 * The idle task is not permitted to enter the idle loop while
375 * in an RCU read-side critical section.
376 */
377 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
378 "Illegal idle entry in RCU read-side critical section.");
379 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
380 "Illegal idle entry in RCU-bh read-side critical section.");
381 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
382 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 383}
64db4cff
PM
384
385/**
9b2e4f18 386 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 387 *
9b2e4f18 388 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 389 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
390 * critical sections can occur in irq handlers in idle, a possibility
391 * handled by irq_enter() and irq_exit().)
392 *
393 * We crowbar the ->dynticks_nesting field to zero to allow for
394 * the possibility of usermode upcalls having messed up our count
395 * of interrupt nesting level during the prior busy period.
64db4cff 396 */
9b2e4f18 397void rcu_idle_enter(void)
64db4cff
PM
398{
399 unsigned long flags;
4145fa7f 400 long long oldval;
64db4cff
PM
401 struct rcu_dynticks *rdtp;
402
64db4cff
PM
403 local_irq_save(flags);
404 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 405 oldval = rdtp->dynticks_nesting;
29e37d81
PM
406 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
407 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
408 rdtp->dynticks_nesting = 0;
409 else
410 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 411 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
412 local_irq_restore(flags);
413}
8a2ecf47 414EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 415
9b2e4f18
PM
416/**
417 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
418 *
419 * Exit from an interrupt handler, which might possibly result in entering
420 * idle mode, in other words, leaving the mode in which read-side critical
421 * sections can occur.
64db4cff 422 *
9b2e4f18
PM
423 * This code assumes that the idle loop never does anything that might
424 * result in unbalanced calls to irq_enter() and irq_exit(). If your
425 * architecture violates this assumption, RCU will give you what you
426 * deserve, good and hard. But very infrequently and irreproducibly.
427 *
428 * Use things like work queues to work around this limitation.
429 *
430 * You have been warned.
64db4cff 431 */
9b2e4f18 432void rcu_irq_exit(void)
64db4cff
PM
433{
434 unsigned long flags;
4145fa7f 435 long long oldval;
64db4cff
PM
436 struct rcu_dynticks *rdtp;
437
438 local_irq_save(flags);
439 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 440 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
441 rdtp->dynticks_nesting--;
442 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
443 if (rdtp->dynticks_nesting)
444 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
445 else
446 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
447 local_irq_restore(flags);
448}
449
450/*
451 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
452 *
453 * If the new value of the ->dynticks_nesting counter was previously zero,
454 * we really have exited idle, and must do the appropriate accounting.
455 * The caller must have disabled interrupts.
456 */
457static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
458{
23b5c8fa
PM
459 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
460 atomic_inc(&rdtp->dynticks);
461 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
462 smp_mb__after_atomic_inc(); /* See above. */
463 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 464 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 465 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 466 if (!is_idle_task(current)) {
0989cb46
PM
467 struct task_struct *idle = idle_task(smp_processor_id());
468
4145fa7f
PM
469 trace_rcu_dyntick("Error on exit: not idle task",
470 oldval, rdtp->dynticks_nesting);
bf1304e9 471 ftrace_dump(DUMP_ORIG);
0989cb46
PM
472 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
473 current->pid, current->comm,
474 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
475 }
476}
477
478/**
479 * rcu_idle_exit - inform RCU that current CPU is leaving idle
480 *
481 * Exit idle mode, in other words, -enter- the mode in which RCU
482 * read-side critical sections can occur.
483 *
29e37d81 484 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 485 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
486 * of interrupt nesting level during the busy period that is just
487 * now starting.
488 */
489void rcu_idle_exit(void)
490{
491 unsigned long flags;
492 struct rcu_dynticks *rdtp;
493 long long oldval;
494
495 local_irq_save(flags);
496 rdtp = &__get_cpu_var(rcu_dynticks);
497 oldval = rdtp->dynticks_nesting;
29e37d81
PM
498 WARN_ON_ONCE(oldval < 0);
499 if (oldval & DYNTICK_TASK_NEST_MASK)
500 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
501 else
502 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
503 rcu_idle_exit_common(rdtp, oldval);
504 local_irq_restore(flags);
505}
8a2ecf47 506EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
507
508/**
509 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
510 *
511 * Enter an interrupt handler, which might possibly result in exiting
512 * idle mode, in other words, entering the mode in which read-side critical
513 * sections can occur.
514 *
515 * Note that the Linux kernel is fully capable of entering an interrupt
516 * handler that it never exits, for example when doing upcalls to
517 * user mode! This code assumes that the idle loop never does upcalls to
518 * user mode. If your architecture does do upcalls from the idle loop (or
519 * does anything else that results in unbalanced calls to the irq_enter()
520 * and irq_exit() functions), RCU will give you what you deserve, good
521 * and hard. But very infrequently and irreproducibly.
522 *
523 * Use things like work queues to work around this limitation.
524 *
525 * You have been warned.
526 */
527void rcu_irq_enter(void)
528{
529 unsigned long flags;
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
533 local_irq_save(flags);
534 rdtp = &__get_cpu_var(rcu_dynticks);
535 oldval = rdtp->dynticks_nesting;
536 rdtp->dynticks_nesting++;
537 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
538 if (oldval)
539 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
540 else
541 rcu_idle_exit_common(rdtp, oldval);
64db4cff 542 local_irq_restore(flags);
64db4cff
PM
543}
544
545/**
546 * rcu_nmi_enter - inform RCU of entry to NMI context
547 *
548 * If the CPU was idle with dynamic ticks active, and there is no
549 * irq handler running, this updates rdtp->dynticks_nmi to let the
550 * RCU grace-period handling know that the CPU is active.
551 */
552void rcu_nmi_enter(void)
553{
554 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
555
23b5c8fa
PM
556 if (rdtp->dynticks_nmi_nesting == 0 &&
557 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 558 return;
23b5c8fa
PM
559 rdtp->dynticks_nmi_nesting++;
560 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
561 atomic_inc(&rdtp->dynticks);
562 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
563 smp_mb__after_atomic_inc(); /* See above. */
564 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
565}
566
567/**
568 * rcu_nmi_exit - inform RCU of exit from NMI context
569 *
570 * If the CPU was idle with dynamic ticks active, and there is no
571 * irq handler running, this updates rdtp->dynticks_nmi to let the
572 * RCU grace-period handling know that the CPU is no longer active.
573 */
574void rcu_nmi_exit(void)
575{
576 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
577
23b5c8fa
PM
578 if (rdtp->dynticks_nmi_nesting == 0 ||
579 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 580 return;
23b5c8fa
PM
581 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
582 smp_mb__before_atomic_inc(); /* See above. */
583 atomic_inc(&rdtp->dynticks);
584 smp_mb__after_atomic_inc(); /* Force delay to next write. */
585 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
586}
587
588/**
9b2e4f18 589 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 590 *
9b2e4f18 591 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 592 * or NMI handler, return true.
64db4cff 593 */
9b2e4f18 594int rcu_is_cpu_idle(void)
64db4cff 595{
34240697
PM
596 int ret;
597
598 preempt_disable();
599 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
600 preempt_enable();
601 return ret;
64db4cff 602}
e6b80a3b 603EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 604
62fde6ed 605#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
606
607/*
608 * Is the current CPU online? Disable preemption to avoid false positives
609 * that could otherwise happen due to the current CPU number being sampled,
610 * this task being preempted, its old CPU being taken offline, resuming
611 * on some other CPU, then determining that its old CPU is now offline.
612 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
613 * the check for rcu_scheduler_fully_active. Note also that it is OK
614 * for a CPU coming online to use RCU for one jiffy prior to marking itself
615 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
616 * offline to continue to use RCU for one jiffy after marking itself
617 * offline in the cpu_online_mask. This leniency is necessary given the
618 * non-atomic nature of the online and offline processing, for example,
619 * the fact that a CPU enters the scheduler after completing the CPU_DYING
620 * notifiers.
621 *
622 * This is also why RCU internally marks CPUs online during the
623 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
624 *
625 * Disable checking if in an NMI handler because we cannot safely report
626 * errors from NMI handlers anyway.
627 */
628bool rcu_lockdep_current_cpu_online(void)
629{
2036d94a
PM
630 struct rcu_data *rdp;
631 struct rcu_node *rnp;
c0d6d01b
PM
632 bool ret;
633
634 if (in_nmi())
635 return 1;
636 preempt_disable();
2036d94a
PM
637 rdp = &__get_cpu_var(rcu_sched_data);
638 rnp = rdp->mynode;
639 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
640 !rcu_scheduler_fully_active;
641 preempt_enable();
642 return ret;
643}
644EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
645
62fde6ed 646#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 647
64db4cff 648/**
9b2e4f18 649 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 650 *
9b2e4f18
PM
651 * If the current CPU is idle or running at a first-level (not nested)
652 * interrupt from idle, return true. The caller must have at least
653 * disabled preemption.
64db4cff 654 */
9b2e4f18 655int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 656{
9b2e4f18 657 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
658}
659
64db4cff
PM
660/*
661 * Snapshot the specified CPU's dynticks counter so that we can later
662 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 663 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
664 */
665static int dyntick_save_progress_counter(struct rcu_data *rdp)
666{
23b5c8fa 667 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 668 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
669}
670
671/*
672 * Return true if the specified CPU has passed through a quiescent
673 * state by virtue of being in or having passed through an dynticks
674 * idle state since the last call to dyntick_save_progress_counter()
675 * for this same CPU.
676 */
677static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
678{
7eb4f455
PM
679 unsigned int curr;
680 unsigned int snap;
64db4cff 681
7eb4f455
PM
682 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
683 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
684
685 /*
686 * If the CPU passed through or entered a dynticks idle phase with
687 * no active irq/NMI handlers, then we can safely pretend that the CPU
688 * already acknowledged the request to pass through a quiescent
689 * state. Either way, that CPU cannot possibly be in an RCU
690 * read-side critical section that started before the beginning
691 * of the current RCU grace period.
692 */
7eb4f455 693 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 694 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
695 rdp->dynticks_fqs++;
696 return 1;
697 }
698
699 /* Go check for the CPU being offline. */
700 return rcu_implicit_offline_qs(rdp);
701}
702
13cfcca0
PM
703static int jiffies_till_stall_check(void)
704{
705 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
706
707 /*
708 * Limit check must be consistent with the Kconfig limits
709 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
710 */
711 if (till_stall_check < 3) {
712 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
713 till_stall_check = 3;
714 } else if (till_stall_check > 300) {
715 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
716 till_stall_check = 300;
717 }
718 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
719}
720
64db4cff
PM
721static void record_gp_stall_check_time(struct rcu_state *rsp)
722{
723 rsp->gp_start = jiffies;
13cfcca0 724 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
725}
726
727static void print_other_cpu_stall(struct rcu_state *rsp)
728{
729 int cpu;
730 long delta;
731 unsigned long flags;
285fe294 732 int ndetected = 0;
64db4cff 733 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
734
735 /* Only let one CPU complain about others per time interval. */
736
1304afb2 737 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 738 delta = jiffies - rsp->jiffies_stall;
fc2219d4 739 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 740 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
741 return;
742 }
13cfcca0 743 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 744 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 745
8cdd32a9
PM
746 /*
747 * OK, time to rat on our buddy...
748 * See Documentation/RCU/stallwarn.txt for info on how to debug
749 * RCU CPU stall warnings.
750 */
a858af28 751 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 752 rsp->name);
a858af28 753 print_cpu_stall_info_begin();
a0b6c9a7 754 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 755 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 756 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 757 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 758 if (rnp->qsmask == 0)
64db4cff 759 continue;
a0b6c9a7 760 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 761 if (rnp->qsmask & (1UL << cpu)) {
a858af28 762 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
763 ndetected++;
764 }
64db4cff 765 }
a858af28
PM
766
767 /*
768 * Now rat on any tasks that got kicked up to the root rcu_node
769 * due to CPU offlining.
770 */
771 rnp = rcu_get_root(rsp);
772 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 773 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
774 raw_spin_unlock_irqrestore(&rnp->lock, flags);
775
776 print_cpu_stall_info_end();
777 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 778 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
779 if (ndetected == 0)
780 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
781 else if (!trigger_all_cpu_backtrace())
4627e240 782 dump_stack();
c1dc0b9c 783
1ed509a2
PM
784 /* If so configured, complain about tasks blocking the grace period. */
785
786 rcu_print_detail_task_stall(rsp);
787
64db4cff
PM
788 force_quiescent_state(rsp, 0); /* Kick them all. */
789}
790
791static void print_cpu_stall(struct rcu_state *rsp)
792{
793 unsigned long flags;
794 struct rcu_node *rnp = rcu_get_root(rsp);
795
8cdd32a9
PM
796 /*
797 * OK, time to rat on ourselves...
798 * See Documentation/RCU/stallwarn.txt for info on how to debug
799 * RCU CPU stall warnings.
800 */
a858af28
PM
801 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
802 print_cpu_stall_info_begin();
803 print_cpu_stall_info(rsp, smp_processor_id());
804 print_cpu_stall_info_end();
805 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
806 if (!trigger_all_cpu_backtrace())
807 dump_stack();
c1dc0b9c 808
1304afb2 809 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 810 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
811 rsp->jiffies_stall = jiffies +
812 3 * jiffies_till_stall_check() + 3;
1304afb2 813 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 814
64db4cff
PM
815 set_need_resched(); /* kick ourselves to get things going. */
816}
817
818static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
819{
bad6e139
PM
820 unsigned long j;
821 unsigned long js;
64db4cff
PM
822 struct rcu_node *rnp;
823
742734ee 824 if (rcu_cpu_stall_suppress)
c68de209 825 return;
bad6e139
PM
826 j = ACCESS_ONCE(jiffies);
827 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 828 rnp = rdp->mynode;
bad6e139 829 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
830
831 /* We haven't checked in, so go dump stack. */
832 print_cpu_stall(rsp);
833
bad6e139
PM
834 } else if (rcu_gp_in_progress(rsp) &&
835 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 836
bad6e139 837 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
838 print_other_cpu_stall(rsp);
839 }
840}
841
c68de209
PM
842static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
843{
742734ee 844 rcu_cpu_stall_suppress = 1;
c68de209
PM
845 return NOTIFY_DONE;
846}
847
53d84e00
PM
848/**
849 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
850 *
851 * Set the stall-warning timeout way off into the future, thus preventing
852 * any RCU CPU stall-warning messages from appearing in the current set of
853 * RCU grace periods.
854 *
855 * The caller must disable hard irqs.
856 */
857void rcu_cpu_stall_reset(void)
858{
6ce75a23
PM
859 struct rcu_state *rsp;
860
861 for_each_rcu_flavor(rsp)
862 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
863}
864
c68de209
PM
865static struct notifier_block rcu_panic_block = {
866 .notifier_call = rcu_panic,
867};
868
869static void __init check_cpu_stall_init(void)
870{
871 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
872}
873
64db4cff
PM
874/*
875 * Update CPU-local rcu_data state to record the newly noticed grace period.
876 * This is used both when we started the grace period and when we notice
9160306e
PM
877 * that someone else started the grace period. The caller must hold the
878 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
879 * and must have irqs disabled.
64db4cff 880 */
9160306e
PM
881static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
882{
883 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
884 /*
885 * If the current grace period is waiting for this CPU,
886 * set up to detect a quiescent state, otherwise don't
887 * go looking for one.
888 */
9160306e 889 rdp->gpnum = rnp->gpnum;
d4c08f2a 890 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
891 if (rnp->qsmask & rdp->grpmask) {
892 rdp->qs_pending = 1;
e4cc1f22 893 rdp->passed_quiesce = 0;
c701d5d9 894 } else {
121dfc4b 895 rdp->qs_pending = 0;
c701d5d9 896 }
a858af28 897 zero_cpu_stall_ticks(rdp);
9160306e
PM
898 }
899}
900
64db4cff
PM
901static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
902{
9160306e
PM
903 unsigned long flags;
904 struct rcu_node *rnp;
905
906 local_irq_save(flags);
907 rnp = rdp->mynode;
908 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 909 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
910 local_irq_restore(flags);
911 return;
912 }
913 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 914 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
915}
916
917/*
918 * Did someone else start a new RCU grace period start since we last
919 * checked? Update local state appropriately if so. Must be called
920 * on the CPU corresponding to rdp.
921 */
922static int
923check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
924{
925 unsigned long flags;
926 int ret = 0;
927
928 local_irq_save(flags);
929 if (rdp->gpnum != rsp->gpnum) {
930 note_new_gpnum(rsp, rdp);
931 ret = 1;
932 }
933 local_irq_restore(flags);
934 return ret;
935}
936
3f5d3ea6
PM
937/*
938 * Initialize the specified rcu_data structure's callback list to empty.
939 */
940static void init_callback_list(struct rcu_data *rdp)
941{
942 int i;
943
944 rdp->nxtlist = NULL;
945 for (i = 0; i < RCU_NEXT_SIZE; i++)
946 rdp->nxttail[i] = &rdp->nxtlist;
947}
948
d09b62df
PM
949/*
950 * Advance this CPU's callbacks, but only if the current grace period
951 * has ended. This may be called only from the CPU to whom the rdp
952 * belongs. In addition, the corresponding leaf rcu_node structure's
953 * ->lock must be held by the caller, with irqs disabled.
954 */
955static void
956__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
957{
958 /* Did another grace period end? */
959 if (rdp->completed != rnp->completed) {
960
961 /* Advance callbacks. No harm if list empty. */
962 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
963 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
964 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
965
966 /* Remember that we saw this grace-period completion. */
967 rdp->completed = rnp->completed;
d4c08f2a 968 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 969
5ff8e6f0
FW
970 /*
971 * If we were in an extended quiescent state, we may have
121dfc4b 972 * missed some grace periods that others CPUs handled on
5ff8e6f0 973 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
974 * spurious new grace periods. If another grace period
975 * has started, then rnp->gpnum will have advanced, so
976 * we will detect this later on.
5ff8e6f0 977 */
121dfc4b 978 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
979 rdp->gpnum = rdp->completed;
980
20377f32 981 /*
121dfc4b
PM
982 * If RCU does not need a quiescent state from this CPU,
983 * then make sure that this CPU doesn't go looking for one.
20377f32 984 */
121dfc4b 985 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 986 rdp->qs_pending = 0;
d09b62df
PM
987 }
988}
989
990/*
991 * Advance this CPU's callbacks, but only if the current grace period
992 * has ended. This may be called only from the CPU to whom the rdp
993 * belongs.
994 */
995static void
996rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
997{
998 unsigned long flags;
999 struct rcu_node *rnp;
1000
1001 local_irq_save(flags);
1002 rnp = rdp->mynode;
1003 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1004 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1005 local_irq_restore(flags);
1006 return;
1007 }
1008 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1009 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1010}
1011
1012/*
1013 * Do per-CPU grace-period initialization for running CPU. The caller
1014 * must hold the lock of the leaf rcu_node structure corresponding to
1015 * this CPU.
1016 */
1017static void
1018rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1019{
1020 /* Prior grace period ended, so advance callbacks for current CPU. */
1021 __rcu_process_gp_end(rsp, rnp, rdp);
1022
1023 /*
1024 * Because this CPU just now started the new grace period, we know
1025 * that all of its callbacks will be covered by this upcoming grace
1026 * period, even the ones that were registered arbitrarily recently.
1027 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1028 *
1029 * Other CPUs cannot be sure exactly when the grace period started.
1030 * Therefore, their recently registered callbacks must pass through
1031 * an additional RCU_NEXT_READY stage, so that they will be handled
1032 * by the next RCU grace period.
1033 */
1034 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1035 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1036
1037 /* Set state so that this CPU will detect the next quiescent state. */
1038 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1039}
1040
64db4cff
PM
1041/*
1042 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1043 * in preparation for detecting the next grace period. The caller must hold
1044 * the root node's ->lock, which is released before return. Hard irqs must
1045 * be disabled.
e5601400
PM
1046 *
1047 * Note that it is legal for a dying CPU (which is marked as offline) to
1048 * invoke this function. This can happen when the dying CPU reports its
1049 * quiescent state.
64db4cff
PM
1050 */
1051static void
1052rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1053 __releases(rcu_get_root(rsp)->lock)
1054{
394f99a9 1055 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1056 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1057
037067a1 1058 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1059 !cpu_needs_another_gp(rsp, rdp)) {
1060 /*
1061 * Either the scheduler hasn't yet spawned the first
1062 * non-idle task or this CPU does not need another
1063 * grace period. Either way, don't start a new grace
1064 * period.
1065 */
1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067 return;
1068 }
b32e9eb6 1069
afe24b12 1070 if (rsp->fqs_active) {
b32e9eb6 1071 /*
afe24b12
PM
1072 * This CPU needs a grace period, but force_quiescent_state()
1073 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1074 */
afe24b12
PM
1075 rsp->fqs_need_gp = 1;
1076 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1077 return;
1078 }
1079
1080 /* Advance to a new grace period and initialize state. */
1081 rsp->gpnum++;
d4c08f2a 1082 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1083 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1084 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1085 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1086 record_gp_stall_check_time(rsp);
1304afb2 1087 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1088
64db4cff 1089 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1090 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1091
1092 /*
b835db1f
PM
1093 * Set the quiescent-state-needed bits in all the rcu_node
1094 * structures for all currently online CPUs in breadth-first
1095 * order, starting from the root rcu_node structure. This
1096 * operation relies on the layout of the hierarchy within the
1097 * rsp->node[] array. Note that other CPUs will access only
1098 * the leaves of the hierarchy, which still indicate that no
1099 * grace period is in progress, at least until the corresponding
1100 * leaf node has been initialized. In addition, we have excluded
1101 * CPU-hotplug operations.
64db4cff
PM
1102 *
1103 * Note that the grace period cannot complete until we finish
1104 * the initialization process, as there will be at least one
1105 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1106 * one corresponding to this CPU, due to the fact that we have
1107 * irqs disabled.
64db4cff 1108 */
a0b6c9a7 1109 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1110 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1111 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1112 rnp->qsmask = rnp->qsmaskinit;
de078d87 1113 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1114 rnp->completed = rsp->completed;
1115 if (rnp == rdp->mynode)
1116 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1117 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1118 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1119 rnp->level, rnp->grplo,
1120 rnp->grphi, rnp->qsmask);
1304afb2 1121 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1122 }
1123
83f5b01f 1124 rnp = rcu_get_root(rsp);
1304afb2 1125 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1126 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1127 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1128 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1129}
1130
f41d911f 1131/*
d3f6bad3
PM
1132 * Report a full set of quiescent states to the specified rcu_state
1133 * data structure. This involves cleaning up after the prior grace
1134 * period and letting rcu_start_gp() start up the next grace period
1135 * if one is needed. Note that the caller must hold rnp->lock, as
1136 * required by rcu_start_gp(), which will release it.
f41d911f 1137 */
d3f6bad3 1138static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1139 __releases(rcu_get_root(rsp)->lock)
f41d911f 1140{
15ba0ba8 1141 unsigned long gp_duration;
afe24b12
PM
1142 struct rcu_node *rnp = rcu_get_root(rsp);
1143 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1144
fc2219d4 1145 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1146
1147 /*
1148 * Ensure that all grace-period and pre-grace-period activity
1149 * is seen before the assignment to rsp->completed.
1150 */
1151 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1152 gp_duration = jiffies - rsp->gp_start;
1153 if (gp_duration > rsp->gp_max)
1154 rsp->gp_max = gp_duration;
afe24b12
PM
1155
1156 /*
1157 * We know the grace period is complete, but to everyone else
1158 * it appears to still be ongoing. But it is also the case
1159 * that to everyone else it looks like there is nothing that
1160 * they can do to advance the grace period. It is therefore
1161 * safe for us to drop the lock in order to mark the grace
1162 * period as completed in all of the rcu_node structures.
1163 *
1164 * But if this CPU needs another grace period, it will take
1165 * care of this while initializing the next grace period.
1166 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1167 * because the callbacks have not yet been advanced: Those
1168 * callbacks are waiting on the grace period that just now
1169 * completed.
1170 */
1171 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1172 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1173
1174 /*
1175 * Propagate new ->completed value to rcu_node structures
1176 * so that other CPUs don't have to wait until the start
1177 * of the next grace period to process their callbacks.
1178 */
1179 rcu_for_each_node_breadth_first(rsp, rnp) {
1180 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1181 rnp->completed = rsp->gpnum;
1182 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1183 }
1184 rnp = rcu_get_root(rsp);
1185 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1186 }
1187
1188 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1189 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1190 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1191 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1192}
1193
64db4cff 1194/*
d3f6bad3
PM
1195 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1196 * Allows quiescent states for a group of CPUs to be reported at one go
1197 * to the specified rcu_node structure, though all the CPUs in the group
1198 * must be represented by the same rcu_node structure (which need not be
1199 * a leaf rcu_node structure, though it often will be). That structure's
1200 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1201 */
1202static void
d3f6bad3
PM
1203rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1204 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1205 __releases(rnp->lock)
1206{
28ecd580
PM
1207 struct rcu_node *rnp_c;
1208
64db4cff
PM
1209 /* Walk up the rcu_node hierarchy. */
1210 for (;;) {
1211 if (!(rnp->qsmask & mask)) {
1212
1213 /* Our bit has already been cleared, so done. */
1304afb2 1214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1215 return;
1216 }
1217 rnp->qsmask &= ~mask;
d4c08f2a
PM
1218 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1219 mask, rnp->qsmask, rnp->level,
1220 rnp->grplo, rnp->grphi,
1221 !!rnp->gp_tasks);
27f4d280 1222 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1223
1224 /* Other bits still set at this level, so done. */
1304afb2 1225 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1226 return;
1227 }
1228 mask = rnp->grpmask;
1229 if (rnp->parent == NULL) {
1230
1231 /* No more levels. Exit loop holding root lock. */
1232
1233 break;
1234 }
1304afb2 1235 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1236 rnp_c = rnp;
64db4cff 1237 rnp = rnp->parent;
1304afb2 1238 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1239 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1240 }
1241
1242 /*
1243 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1244 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1245 * to clean up and start the next grace period if one is needed.
64db4cff 1246 */
d3f6bad3 1247 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1248}
1249
1250/*
d3f6bad3
PM
1251 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1252 * structure. This must be either called from the specified CPU, or
1253 * called when the specified CPU is known to be offline (and when it is
1254 * also known that no other CPU is concurrently trying to help the offline
1255 * CPU). The lastcomp argument is used to make sure we are still in the
1256 * grace period of interest. We don't want to end the current grace period
1257 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1258 */
1259static void
e4cc1f22 1260rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1261{
1262 unsigned long flags;
1263 unsigned long mask;
1264 struct rcu_node *rnp;
1265
1266 rnp = rdp->mynode;
1304afb2 1267 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1268 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1269
1270 /*
e4cc1f22
PM
1271 * The grace period in which this quiescent state was
1272 * recorded has ended, so don't report it upwards.
1273 * We will instead need a new quiescent state that lies
1274 * within the current grace period.
64db4cff 1275 */
e4cc1f22 1276 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1277 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1278 return;
1279 }
1280 mask = rdp->grpmask;
1281 if ((rnp->qsmask & mask) == 0) {
1304afb2 1282 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1283 } else {
1284 rdp->qs_pending = 0;
1285
1286 /*
1287 * This GP can't end until cpu checks in, so all of our
1288 * callbacks can be processed during the next GP.
1289 */
64db4cff
PM
1290 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1291
d3f6bad3 1292 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1293 }
1294}
1295
1296/*
1297 * Check to see if there is a new grace period of which this CPU
1298 * is not yet aware, and if so, set up local rcu_data state for it.
1299 * Otherwise, see if this CPU has just passed through its first
1300 * quiescent state for this grace period, and record that fact if so.
1301 */
1302static void
1303rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1304{
1305 /* If there is now a new grace period, record and return. */
1306 if (check_for_new_grace_period(rsp, rdp))
1307 return;
1308
1309 /*
1310 * Does this CPU still need to do its part for current grace period?
1311 * If no, return and let the other CPUs do their part as well.
1312 */
1313 if (!rdp->qs_pending)
1314 return;
1315
1316 /*
1317 * Was there a quiescent state since the beginning of the grace
1318 * period? If no, then exit and wait for the next call.
1319 */
e4cc1f22 1320 if (!rdp->passed_quiesce)
64db4cff
PM
1321 return;
1322
d3f6bad3
PM
1323 /*
1324 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1325 * judge of that).
1326 */
e4cc1f22 1327 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1328}
1329
1330#ifdef CONFIG_HOTPLUG_CPU
1331
e74f4c45 1332/*
b1420f1c
PM
1333 * Send the specified CPU's RCU callbacks to the orphanage. The
1334 * specified CPU must be offline, and the caller must hold the
1335 * ->onofflock.
e74f4c45 1336 */
b1420f1c
PM
1337static void
1338rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1339 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1340{
b1420f1c
PM
1341 /*
1342 * Orphan the callbacks. First adjust the counts. This is safe
1343 * because ->onofflock excludes _rcu_barrier()'s adoption of
1344 * the callbacks, thus no memory barrier is required.
1345 */
a50c3af9 1346 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1347 rsp->qlen_lazy += rdp->qlen_lazy;
1348 rsp->qlen += rdp->qlen;
1349 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1350 rdp->qlen_lazy = 0;
1d1fb395 1351 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1352 }
1353
1354 /*
b1420f1c
PM
1355 * Next, move those callbacks still needing a grace period to
1356 * the orphanage, where some other CPU will pick them up.
1357 * Some of the callbacks might have gone partway through a grace
1358 * period, but that is too bad. They get to start over because we
1359 * cannot assume that grace periods are synchronized across CPUs.
1360 * We don't bother updating the ->nxttail[] array yet, instead
1361 * we just reset the whole thing later on.
a50c3af9 1362 */
b1420f1c
PM
1363 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1364 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1365 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1366 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1367 }
1368
1369 /*
b1420f1c
PM
1370 * Then move the ready-to-invoke callbacks to the orphanage,
1371 * where some other CPU will pick them up. These will not be
1372 * required to pass though another grace period: They are done.
a50c3af9 1373 */
e5601400 1374 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1375 *rsp->orphan_donetail = rdp->nxtlist;
1376 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1377 }
e74f4c45 1378
b1420f1c 1379 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1380 init_callback_list(rdp);
b1420f1c
PM
1381}
1382
1383/*
1384 * Adopt the RCU callbacks from the specified rcu_state structure's
1385 * orphanage. The caller must hold the ->onofflock.
1386 */
1387static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1388{
1389 int i;
1390 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1391
a50c3af9 1392 /*
b1420f1c
PM
1393 * If there is an rcu_barrier() operation in progress, then
1394 * only the task doing that operation is permitted to adopt
1395 * callbacks. To do otherwise breaks rcu_barrier() and friends
1396 * by causing them to fail to wait for the callbacks in the
1397 * orphanage.
a50c3af9 1398 */
b1420f1c
PM
1399 if (rsp->rcu_barrier_in_progress &&
1400 rsp->rcu_barrier_in_progress != current)
1401 return;
1402
1403 /* Do the accounting first. */
1404 rdp->qlen_lazy += rsp->qlen_lazy;
1405 rdp->qlen += rsp->qlen;
1406 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1407 if (rsp->qlen_lazy != rsp->qlen)
1408 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1409 rsp->qlen_lazy = 0;
1410 rsp->qlen = 0;
1411
1412 /*
1413 * We do not need a memory barrier here because the only way we
1414 * can get here if there is an rcu_barrier() in flight is if
1415 * we are the task doing the rcu_barrier().
1416 */
1417
1418 /* First adopt the ready-to-invoke callbacks. */
1419 if (rsp->orphan_donelist != NULL) {
1420 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1421 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1422 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1423 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1424 rdp->nxttail[i] = rsp->orphan_donetail;
1425 rsp->orphan_donelist = NULL;
1426 rsp->orphan_donetail = &rsp->orphan_donelist;
1427 }
1428
1429 /* And then adopt the callbacks that still need a grace period. */
1430 if (rsp->orphan_nxtlist != NULL) {
1431 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1432 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1433 rsp->orphan_nxtlist = NULL;
1434 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1435 }
1436}
1437
1438/*
1439 * Trace the fact that this CPU is going offline.
1440 */
1441static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1442{
1443 RCU_TRACE(unsigned long mask);
1444 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1445 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1446
1447 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1448 trace_rcu_grace_period(rsp->name,
1449 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1450 "cpuofl");
64db4cff
PM
1451}
1452
1453/*
e5601400 1454 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1455 * this fact from process context. Do the remainder of the cleanup,
1456 * including orphaning the outgoing CPU's RCU callbacks, and also
1457 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1458 * There can only be one CPU hotplug operation at a time, so no other
1459 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1460 */
e5601400 1461static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1462{
2036d94a
PM
1463 unsigned long flags;
1464 unsigned long mask;
1465 int need_report = 0;
e5601400 1466 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1467 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1468
2036d94a 1469 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1470 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1471
b1420f1c 1472 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1473
1474 /* Exclude any attempts to start a new grace period. */
1475 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1476
b1420f1c
PM
1477 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1478 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1479 rcu_adopt_orphan_cbs(rsp);
1480
2036d94a
PM
1481 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1482 mask = rdp->grpmask; /* rnp->grplo is constant. */
1483 do {
1484 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1485 rnp->qsmaskinit &= ~mask;
1486 if (rnp->qsmaskinit != 0) {
1487 if (rnp != rdp->mynode)
1488 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1489 break;
1490 }
1491 if (rnp == rdp->mynode)
1492 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1493 else
1494 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1495 mask = rnp->grpmask;
1496 rnp = rnp->parent;
1497 } while (rnp != NULL);
1498
1499 /*
1500 * We still hold the leaf rcu_node structure lock here, and
1501 * irqs are still disabled. The reason for this subterfuge is
1502 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1503 * held leads to deadlock.
1504 */
1505 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1506 rnp = rdp->mynode;
1507 if (need_report & RCU_OFL_TASKS_NORM_GP)
1508 rcu_report_unblock_qs_rnp(rnp, flags);
1509 else
1510 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1511 if (need_report & RCU_OFL_TASKS_EXP_GP)
1512 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1513 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1514 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1515 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
1516}
1517
1518#else /* #ifdef CONFIG_HOTPLUG_CPU */
1519
b1420f1c
PM
1520static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1521{
1522}
1523
e5601400 1524static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1525{
1526}
1527
e5601400 1528static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1529{
1530}
1531
1532#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1533
1534/*
1535 * Invoke any RCU callbacks that have made it to the end of their grace
1536 * period. Thottle as specified by rdp->blimit.
1537 */
37c72e56 1538static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1539{
1540 unsigned long flags;
1541 struct rcu_head *next, *list, **tail;
b41772ab 1542 int bl, count, count_lazy, i;
64db4cff
PM
1543
1544 /* If no callbacks are ready, just return.*/
29c00b4a 1545 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1546 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1547 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1548 need_resched(), is_idle_task(current),
1549 rcu_is_callbacks_kthread());
64db4cff 1550 return;
29c00b4a 1551 }
64db4cff
PM
1552
1553 /*
1554 * Extract the list of ready callbacks, disabling to prevent
1555 * races with call_rcu() from interrupt handlers.
1556 */
1557 local_irq_save(flags);
8146c4e2 1558 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1559 bl = rdp->blimit;
486e2593 1560 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1561 list = rdp->nxtlist;
1562 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1563 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1564 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1565 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1566 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1567 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1568 local_irq_restore(flags);
1569
1570 /* Invoke callbacks. */
486e2593 1571 count = count_lazy = 0;
64db4cff
PM
1572 while (list) {
1573 next = list->next;
1574 prefetch(next);
551d55a9 1575 debug_rcu_head_unqueue(list);
486e2593
PM
1576 if (__rcu_reclaim(rsp->name, list))
1577 count_lazy++;
64db4cff 1578 list = next;
dff1672d
PM
1579 /* Stop only if limit reached and CPU has something to do. */
1580 if (++count >= bl &&
1581 (need_resched() ||
1582 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1583 break;
1584 }
1585
1586 local_irq_save(flags);
4968c300
PM
1587 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1588 is_idle_task(current),
1589 rcu_is_callbacks_kthread());
64db4cff
PM
1590
1591 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1592 if (list != NULL) {
1593 *tail = rdp->nxtlist;
1594 rdp->nxtlist = list;
b41772ab
PM
1595 for (i = 0; i < RCU_NEXT_SIZE; i++)
1596 if (&rdp->nxtlist == rdp->nxttail[i])
1597 rdp->nxttail[i] = tail;
64db4cff
PM
1598 else
1599 break;
1600 }
b1420f1c
PM
1601 smp_mb(); /* List handling before counting for rcu_barrier(). */
1602 rdp->qlen_lazy -= count_lazy;
1d1fb395 1603 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1604 rdp->n_cbs_invoked += count;
64db4cff
PM
1605
1606 /* Reinstate batch limit if we have worked down the excess. */
1607 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1608 rdp->blimit = blimit;
1609
37c72e56
PM
1610 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1611 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1612 rdp->qlen_last_fqs_check = 0;
1613 rdp->n_force_qs_snap = rsp->n_force_qs;
1614 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1615 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1616 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1617
64db4cff
PM
1618 local_irq_restore(flags);
1619
e0f23060 1620 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1621 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1622 invoke_rcu_core();
64db4cff
PM
1623}
1624
1625/*
1626 * Check to see if this CPU is in a non-context-switch quiescent state
1627 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1628 * Also schedule RCU core processing.
64db4cff 1629 *
9b2e4f18 1630 * This function must be called from hardirq context. It is normally
64db4cff
PM
1631 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1632 * false, there is no point in invoking rcu_check_callbacks().
1633 */
1634void rcu_check_callbacks(int cpu, int user)
1635{
300df91c 1636 trace_rcu_utilization("Start scheduler-tick");
a858af28 1637 increment_cpu_stall_ticks();
9b2e4f18 1638 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1639
1640 /*
1641 * Get here if this CPU took its interrupt from user
1642 * mode or from the idle loop, and if this is not a
1643 * nested interrupt. In this case, the CPU is in
d6714c22 1644 * a quiescent state, so note it.
64db4cff
PM
1645 *
1646 * No memory barrier is required here because both
d6714c22
PM
1647 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1648 * variables that other CPUs neither access nor modify,
1649 * at least not while the corresponding CPU is online.
64db4cff
PM
1650 */
1651
d6714c22
PM
1652 rcu_sched_qs(cpu);
1653 rcu_bh_qs(cpu);
64db4cff
PM
1654
1655 } else if (!in_softirq()) {
1656
1657 /*
1658 * Get here if this CPU did not take its interrupt from
1659 * softirq, in other words, if it is not interrupting
1660 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1661 * critical section, so note it.
64db4cff
PM
1662 */
1663
d6714c22 1664 rcu_bh_qs(cpu);
64db4cff 1665 }
f41d911f 1666 rcu_preempt_check_callbacks(cpu);
d21670ac 1667 if (rcu_pending(cpu))
a46e0899 1668 invoke_rcu_core();
300df91c 1669 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1670}
1671
64db4cff
PM
1672/*
1673 * Scan the leaf rcu_node structures, processing dyntick state for any that
1674 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1675 * Also initiate boosting for any threads blocked on the root rcu_node.
1676 *
ee47eb9f 1677 * The caller must have suppressed start of new grace periods.
64db4cff 1678 */
45f014c5 1679static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1680{
1681 unsigned long bit;
1682 int cpu;
1683 unsigned long flags;
1684 unsigned long mask;
a0b6c9a7 1685 struct rcu_node *rnp;
64db4cff 1686
a0b6c9a7 1687 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1688 mask = 0;
1304afb2 1689 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1690 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1691 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1692 return;
64db4cff 1693 }
a0b6c9a7 1694 if (rnp->qsmask == 0) {
1217ed1b 1695 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1696 continue;
1697 }
a0b6c9a7 1698 cpu = rnp->grplo;
64db4cff 1699 bit = 1;
a0b6c9a7 1700 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1701 if ((rnp->qsmask & bit) != 0 &&
1702 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1703 mask |= bit;
1704 }
45f014c5 1705 if (mask != 0) {
64db4cff 1706
d3f6bad3
PM
1707 /* rcu_report_qs_rnp() releases rnp->lock. */
1708 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1709 continue;
1710 }
1304afb2 1711 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1712 }
27f4d280 1713 rnp = rcu_get_root(rsp);
1217ed1b
PM
1714 if (rnp->qsmask == 0) {
1715 raw_spin_lock_irqsave(&rnp->lock, flags);
1716 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1717 }
64db4cff
PM
1718}
1719
1720/*
1721 * Force quiescent states on reluctant CPUs, and also detect which
1722 * CPUs are in dyntick-idle mode.
1723 */
1724static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1725{
1726 unsigned long flags;
64db4cff 1727 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1728
300df91c
PM
1729 trace_rcu_utilization("Start fqs");
1730 if (!rcu_gp_in_progress(rsp)) {
1731 trace_rcu_utilization("End fqs");
64db4cff 1732 return; /* No grace period in progress, nothing to force. */
300df91c 1733 }
1304afb2 1734 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1735 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1736 trace_rcu_utilization("End fqs");
64db4cff
PM
1737 return; /* Someone else is already on the job. */
1738 }
20133cfc 1739 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1740 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1741 rsp->n_force_qs++;
1304afb2 1742 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1743 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1744 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1745 rsp->n_force_qs_ngp++;
1304afb2 1746 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1747 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1748 }
07079d53 1749 rsp->fqs_active = 1;
af446b70 1750 switch (rsp->fqs_state) {
83f5b01f 1751 case RCU_GP_IDLE:
64db4cff
PM
1752 case RCU_GP_INIT:
1753
83f5b01f 1754 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1755
1756 case RCU_SAVE_DYNTICK:
64db4cff 1757
f261414f
LJ
1758 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1759
64db4cff 1760 /* Record dyntick-idle state. */
45f014c5 1761 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1762 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1763 if (rcu_gp_in_progress(rsp))
af446b70 1764 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1765 break;
64db4cff
PM
1766
1767 case RCU_FORCE_QS:
1768
1769 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1770 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1771 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1772
1773 /* Leave state in case more forcing is required. */
1774
1304afb2 1775 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1776 break;
64db4cff 1777 }
07079d53 1778 rsp->fqs_active = 0;
46a1e34e 1779 if (rsp->fqs_need_gp) {
1304afb2 1780 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1781 rsp->fqs_need_gp = 0;
1782 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1783 trace_rcu_utilization("End fqs");
46a1e34e
PM
1784 return;
1785 }
1304afb2 1786 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1787unlock_fqs_ret:
1304afb2 1788 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1789 trace_rcu_utilization("End fqs");
64db4cff
PM
1790}
1791
64db4cff 1792/*
e0f23060
PM
1793 * This does the RCU core processing work for the specified rcu_state
1794 * and rcu_data structures. This may be called only from the CPU to
1795 * whom the rdp belongs.
64db4cff
PM
1796 */
1797static void
1bca8cf1 1798__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
1799{
1800 unsigned long flags;
1bca8cf1 1801 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 1802
2e597558
PM
1803 WARN_ON_ONCE(rdp->beenonline == 0);
1804
64db4cff
PM
1805 /*
1806 * If an RCU GP has gone long enough, go check for dyntick
1807 * idle CPUs and, if needed, send resched IPIs.
1808 */
20133cfc 1809 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1810 force_quiescent_state(rsp, 1);
1811
1812 /*
1813 * Advance callbacks in response to end of earlier grace
1814 * period that some other CPU ended.
1815 */
1816 rcu_process_gp_end(rsp, rdp);
1817
1818 /* Update RCU state based on any recent quiescent states. */
1819 rcu_check_quiescent_state(rsp, rdp);
1820
1821 /* Does this CPU require a not-yet-started grace period? */
1822 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1823 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1824 rcu_start_gp(rsp, flags); /* releases above lock */
1825 }
1826
1827 /* If there are callbacks ready, invoke them. */
09223371 1828 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1829 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1830}
1831
64db4cff 1832/*
e0f23060 1833 * Do RCU core processing for the current CPU.
64db4cff 1834 */
09223371 1835static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1836{
6ce75a23
PM
1837 struct rcu_state *rsp;
1838
300df91c 1839 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
1840 for_each_rcu_flavor(rsp)
1841 __rcu_process_callbacks(rsp);
300df91c 1842 trace_rcu_utilization("End RCU core");
64db4cff
PM
1843}
1844
a26ac245 1845/*
e0f23060
PM
1846 * Schedule RCU callback invocation. If the specified type of RCU
1847 * does not support RCU priority boosting, just do a direct call,
1848 * otherwise wake up the per-CPU kernel kthread. Note that because we
1849 * are running on the current CPU with interrupts disabled, the
1850 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1851 */
a46e0899 1852static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1853{
b0d30417
PM
1854 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1855 return;
a46e0899
PM
1856 if (likely(!rsp->boost)) {
1857 rcu_do_batch(rsp, rdp);
a26ac245
PM
1858 return;
1859 }
a46e0899 1860 invoke_rcu_callbacks_kthread();
a26ac245
PM
1861}
1862
a46e0899 1863static void invoke_rcu_core(void)
09223371
SL
1864{
1865 raise_softirq(RCU_SOFTIRQ);
1866}
1867
29154c57
PM
1868/*
1869 * Handle any core-RCU processing required by a call_rcu() invocation.
1870 */
1871static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1872 struct rcu_head *head, unsigned long flags)
64db4cff 1873{
62fde6ed
PM
1874 /*
1875 * If called from an extended quiescent state, invoke the RCU
1876 * core in order to force a re-evaluation of RCU's idleness.
1877 */
a16b7a69 1878 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
1879 invoke_rcu_core();
1880
a16b7a69 1881 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 1882 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 1883 return;
64db4cff 1884
37c72e56
PM
1885 /*
1886 * Force the grace period if too many callbacks or too long waiting.
1887 * Enforce hysteresis, and don't invoke force_quiescent_state()
1888 * if some other CPU has recently done so. Also, don't bother
1889 * invoking force_quiescent_state() if the newly enqueued callback
1890 * is the only one waiting for a grace period to complete.
1891 */
2655d57e 1892 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1893
1894 /* Are we ignoring a completed grace period? */
1895 rcu_process_gp_end(rsp, rdp);
1896 check_for_new_grace_period(rsp, rdp);
1897
1898 /* Start a new grace period if one not already started. */
1899 if (!rcu_gp_in_progress(rsp)) {
1900 unsigned long nestflag;
1901 struct rcu_node *rnp_root = rcu_get_root(rsp);
1902
1903 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1904 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1905 } else {
1906 /* Give the grace period a kick. */
1907 rdp->blimit = LONG_MAX;
1908 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1909 *rdp->nxttail[RCU_DONE_TAIL] != head)
1910 force_quiescent_state(rsp, 0);
1911 rdp->n_force_qs_snap = rsp->n_force_qs;
1912 rdp->qlen_last_fqs_check = rdp->qlen;
1913 }
20133cfc 1914 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff 1915 force_quiescent_state(rsp, 1);
29154c57
PM
1916}
1917
64db4cff
PM
1918static void
1919__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1920 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1921{
1922 unsigned long flags;
1923 struct rcu_data *rdp;
1924
0bb7b59d 1925 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1926 debug_rcu_head_queue(head);
64db4cff
PM
1927 head->func = func;
1928 head->next = NULL;
1929
1930 smp_mb(); /* Ensure RCU update seen before callback registry. */
1931
1932 /*
1933 * Opportunistically note grace-period endings and beginnings.
1934 * Note that we might see a beginning right after we see an
1935 * end, but never vice versa, since this CPU has to pass through
1936 * a quiescent state betweentimes.
1937 */
1938 local_irq_save(flags);
394f99a9 1939 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1940
1941 /* Add the callback to our list. */
29154c57 1942 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
1943 if (lazy)
1944 rdp->qlen_lazy++;
c57afe80
PM
1945 else
1946 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1947 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1948 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1949 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1950
d4c08f2a
PM
1951 if (__is_kfree_rcu_offset((unsigned long)func))
1952 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1953 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1954 else
486e2593 1955 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1956
29154c57
PM
1957 /* Go handle any RCU core processing required. */
1958 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
1959 local_irq_restore(flags);
1960}
1961
1962/*
d6714c22 1963 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1964 */
d6714c22 1965void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1966{
486e2593 1967 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1968}
d6714c22 1969EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1970
1971/*
486e2593 1972 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1973 */
1974void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1975{
486e2593 1976 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1977}
1978EXPORT_SYMBOL_GPL(call_rcu_bh);
1979
6d813391
PM
1980/*
1981 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1982 * any blocking grace-period wait automatically implies a grace period
1983 * if there is only one CPU online at any point time during execution
1984 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1985 * occasionally incorrectly indicate that there are multiple CPUs online
1986 * when there was in fact only one the whole time, as this just adds
1987 * some overhead: RCU still operates correctly.
6d813391
PM
1988 */
1989static inline int rcu_blocking_is_gp(void)
1990{
95f0c1de
PM
1991 int ret;
1992
6d813391 1993 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
1994 preempt_disable();
1995 ret = num_online_cpus() <= 1;
1996 preempt_enable();
1997 return ret;
6d813391
PM
1998}
1999
6ebb237b
PM
2000/**
2001 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2002 *
2003 * Control will return to the caller some time after a full rcu-sched
2004 * grace period has elapsed, in other words after all currently executing
2005 * rcu-sched read-side critical sections have completed. These read-side
2006 * critical sections are delimited by rcu_read_lock_sched() and
2007 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2008 * local_irq_disable(), and so on may be used in place of
2009 * rcu_read_lock_sched().
2010 *
2011 * This means that all preempt_disable code sequences, including NMI and
2012 * hardware-interrupt handlers, in progress on entry will have completed
2013 * before this primitive returns. However, this does not guarantee that
2014 * softirq handlers will have completed, since in some kernels, these
2015 * handlers can run in process context, and can block.
2016 *
2017 * This primitive provides the guarantees made by the (now removed)
2018 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2019 * guarantees that rcu_read_lock() sections will have completed.
2020 * In "classic RCU", these two guarantees happen to be one and
2021 * the same, but can differ in realtime RCU implementations.
2022 */
2023void synchronize_sched(void)
2024{
fe15d706
PM
2025 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2026 !lock_is_held(&rcu_lock_map) &&
2027 !lock_is_held(&rcu_sched_lock_map),
2028 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2029 if (rcu_blocking_is_gp())
2030 return;
2c42818e 2031 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2032}
2033EXPORT_SYMBOL_GPL(synchronize_sched);
2034
2035/**
2036 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2037 *
2038 * Control will return to the caller some time after a full rcu_bh grace
2039 * period has elapsed, in other words after all currently executing rcu_bh
2040 * read-side critical sections have completed. RCU read-side critical
2041 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2042 * and may be nested.
2043 */
2044void synchronize_rcu_bh(void)
2045{
fe15d706
PM
2046 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2047 !lock_is_held(&rcu_lock_map) &&
2048 !lock_is_held(&rcu_sched_lock_map),
2049 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2050 if (rcu_blocking_is_gp())
2051 return;
2c42818e 2052 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2053}
2054EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2055
3d3b7db0
PM
2056static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2057static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2058
2059static int synchronize_sched_expedited_cpu_stop(void *data)
2060{
2061 /*
2062 * There must be a full memory barrier on each affected CPU
2063 * between the time that try_stop_cpus() is called and the
2064 * time that it returns.
2065 *
2066 * In the current initial implementation of cpu_stop, the
2067 * above condition is already met when the control reaches
2068 * this point and the following smp_mb() is not strictly
2069 * necessary. Do smp_mb() anyway for documentation and
2070 * robustness against future implementation changes.
2071 */
2072 smp_mb(); /* See above comment block. */
2073 return 0;
2074}
2075
236fefaf
PM
2076/**
2077 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2078 *
2079 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2080 * approach to force the grace period to end quickly. This consumes
2081 * significant time on all CPUs and is unfriendly to real-time workloads,
2082 * so is thus not recommended for any sort of common-case code. In fact,
2083 * if you are using synchronize_sched_expedited() in a loop, please
2084 * restructure your code to batch your updates, and then use a single
2085 * synchronize_sched() instead.
3d3b7db0 2086 *
236fefaf
PM
2087 * Note that it is illegal to call this function while holding any lock
2088 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2089 * to call this function from a CPU-hotplug notifier. Failing to observe
2090 * these restriction will result in deadlock.
3d3b7db0
PM
2091 *
2092 * This implementation can be thought of as an application of ticket
2093 * locking to RCU, with sync_sched_expedited_started and
2094 * sync_sched_expedited_done taking on the roles of the halves
2095 * of the ticket-lock word. Each task atomically increments
2096 * sync_sched_expedited_started upon entry, snapshotting the old value,
2097 * then attempts to stop all the CPUs. If this succeeds, then each
2098 * CPU will have executed a context switch, resulting in an RCU-sched
2099 * grace period. We are then done, so we use atomic_cmpxchg() to
2100 * update sync_sched_expedited_done to match our snapshot -- but
2101 * only if someone else has not already advanced past our snapshot.
2102 *
2103 * On the other hand, if try_stop_cpus() fails, we check the value
2104 * of sync_sched_expedited_done. If it has advanced past our
2105 * initial snapshot, then someone else must have forced a grace period
2106 * some time after we took our snapshot. In this case, our work is
2107 * done for us, and we can simply return. Otherwise, we try again,
2108 * but keep our initial snapshot for purposes of checking for someone
2109 * doing our work for us.
2110 *
2111 * If we fail too many times in a row, we fall back to synchronize_sched().
2112 */
2113void synchronize_sched_expedited(void)
2114{
2115 int firstsnap, s, snap, trycount = 0;
2116
2117 /* Note that atomic_inc_return() implies full memory barrier. */
2118 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2119 get_online_cpus();
1cc85961 2120 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2121
2122 /*
2123 * Each pass through the following loop attempts to force a
2124 * context switch on each CPU.
2125 */
2126 while (try_stop_cpus(cpu_online_mask,
2127 synchronize_sched_expedited_cpu_stop,
2128 NULL) == -EAGAIN) {
2129 put_online_cpus();
2130
2131 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2132 if (trycount++ < 10) {
3d3b7db0 2133 udelay(trycount * num_online_cpus());
c701d5d9 2134 } else {
3d3b7db0
PM
2135 synchronize_sched();
2136 return;
2137 }
2138
2139 /* Check to see if someone else did our work for us. */
2140 s = atomic_read(&sync_sched_expedited_done);
2141 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2142 smp_mb(); /* ensure test happens before caller kfree */
2143 return;
2144 }
2145
2146 /*
2147 * Refetching sync_sched_expedited_started allows later
2148 * callers to piggyback on our grace period. We subtract
2149 * 1 to get the same token that the last incrementer got.
2150 * We retry after they started, so our grace period works
2151 * for them, and they started after our first try, so their
2152 * grace period works for us.
2153 */
2154 get_online_cpus();
2155 snap = atomic_read(&sync_sched_expedited_started);
2156 smp_mb(); /* ensure read is before try_stop_cpus(). */
2157 }
2158
2159 /*
2160 * Everyone up to our most recent fetch is covered by our grace
2161 * period. Update the counter, but only if our work is still
2162 * relevant -- which it won't be if someone who started later
2163 * than we did beat us to the punch.
2164 */
2165 do {
2166 s = atomic_read(&sync_sched_expedited_done);
2167 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2168 smp_mb(); /* ensure test happens before caller kfree */
2169 break;
2170 }
2171 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2172
2173 put_online_cpus();
2174}
2175EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2176
64db4cff
PM
2177/*
2178 * Check to see if there is any immediate RCU-related work to be done
2179 * by the current CPU, for the specified type of RCU, returning 1 if so.
2180 * The checks are in order of increasing expense: checks that can be
2181 * carried out against CPU-local state are performed first. However,
2182 * we must check for CPU stalls first, else we might not get a chance.
2183 */
2184static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2185{
2f51f988
PM
2186 struct rcu_node *rnp = rdp->mynode;
2187
64db4cff
PM
2188 rdp->n_rcu_pending++;
2189
2190 /* Check for CPU stalls, if enabled. */
2191 check_cpu_stall(rsp, rdp);
2192
2193 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2194 if (rcu_scheduler_fully_active &&
2195 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2196
2197 /*
2198 * If force_quiescent_state() coming soon and this CPU
2199 * needs a quiescent state, and this is either RCU-sched
2200 * or RCU-bh, force a local reschedule.
2201 */
d21670ac 2202 rdp->n_rp_qs_pending++;
6cc68793 2203 if (!rdp->preemptible &&
d25eb944
PM
2204 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2205 jiffies))
2206 set_need_resched();
e4cc1f22 2207 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2208 rdp->n_rp_report_qs++;
64db4cff 2209 return 1;
7ba5c840 2210 }
64db4cff
PM
2211
2212 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2213 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2214 rdp->n_rp_cb_ready++;
64db4cff 2215 return 1;
7ba5c840 2216 }
64db4cff
PM
2217
2218 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2219 if (cpu_needs_another_gp(rsp, rdp)) {
2220 rdp->n_rp_cpu_needs_gp++;
64db4cff 2221 return 1;
7ba5c840 2222 }
64db4cff
PM
2223
2224 /* Has another RCU grace period completed? */
2f51f988 2225 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2226 rdp->n_rp_gp_completed++;
64db4cff 2227 return 1;
7ba5c840 2228 }
64db4cff
PM
2229
2230 /* Has a new RCU grace period started? */
2f51f988 2231 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2232 rdp->n_rp_gp_started++;
64db4cff 2233 return 1;
7ba5c840 2234 }
64db4cff
PM
2235
2236 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2237 if (rcu_gp_in_progress(rsp) &&
20133cfc 2238 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2239 rdp->n_rp_need_fqs++;
64db4cff 2240 return 1;
7ba5c840 2241 }
64db4cff
PM
2242
2243 /* nothing to do */
7ba5c840 2244 rdp->n_rp_need_nothing++;
64db4cff
PM
2245 return 0;
2246}
2247
2248/*
2249 * Check to see if there is any immediate RCU-related work to be done
2250 * by the current CPU, returning 1 if so. This function is part of the
2251 * RCU implementation; it is -not- an exported member of the RCU API.
2252 */
a157229c 2253static int rcu_pending(int cpu)
64db4cff 2254{
6ce75a23
PM
2255 struct rcu_state *rsp;
2256
2257 for_each_rcu_flavor(rsp)
2258 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2259 return 1;
2260 return 0;
64db4cff
PM
2261}
2262
2263/*
2264 * Check to see if any future RCU-related work will need to be done
2265 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2266 * 1 if so.
64db4cff 2267 */
aea1b35e 2268static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2269{
6ce75a23
PM
2270 struct rcu_state *rsp;
2271
64db4cff 2272 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2273 for_each_rcu_flavor(rsp)
2274 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2275 return 1;
2276 return 0;
64db4cff
PM
2277}
2278
a83eff0a
PM
2279/*
2280 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2281 * the compiler is expected to optimize this away.
2282 */
2283static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2284 int cpu, unsigned long done)
2285{
2286 trace_rcu_barrier(rsp->name, s, cpu,
2287 atomic_read(&rsp->barrier_cpu_count), done);
2288}
2289
b1420f1c
PM
2290/*
2291 * RCU callback function for _rcu_barrier(). If we are last, wake
2292 * up the task executing _rcu_barrier().
2293 */
24ebbca8 2294static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2295{
24ebbca8
PM
2296 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2297 struct rcu_state *rsp = rdp->rsp;
2298
a83eff0a
PM
2299 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2300 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2301 complete(&rsp->barrier_completion);
a83eff0a
PM
2302 } else {
2303 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2304 }
d0ec774c
PM
2305}
2306
2307/*
2308 * Called with preemption disabled, and from cross-cpu IRQ context.
2309 */
2310static void rcu_barrier_func(void *type)
2311{
037b64ed 2312 struct rcu_state *rsp = type;
06668efa 2313 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2314
a83eff0a 2315 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2316 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2317 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2318}
2319
d0ec774c
PM
2320/*
2321 * Orchestrate the specified type of RCU barrier, waiting for all
2322 * RCU callbacks of the specified type to complete.
2323 */
037b64ed 2324static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2325{
b1420f1c
PM
2326 int cpu;
2327 unsigned long flags;
2328 struct rcu_data *rdp;
24ebbca8 2329 struct rcu_data rd;
cf3a9c48
PM
2330 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2331 unsigned long snap_done;
b1420f1c 2332
24ebbca8 2333 init_rcu_head_on_stack(&rd.barrier_head);
a83eff0a 2334 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2335
e74f4c45 2336 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2337 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2338
cf3a9c48
PM
2339 /*
2340 * Ensure that all prior references, including to ->n_barrier_done,
2341 * are ordered before the _rcu_barrier() machinery.
2342 */
2343 smp_mb(); /* See above block comment. */
2344
2345 /*
2346 * Recheck ->n_barrier_done to see if others did our work for us.
2347 * This means checking ->n_barrier_done for an even-to-odd-to-even
2348 * transition. The "if" expression below therefore rounds the old
2349 * value up to the next even number and adds two before comparing.
2350 */
2351 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2352 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2353 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2354 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2355 smp_mb(); /* caller's subsequent code after above check. */
2356 mutex_unlock(&rsp->barrier_mutex);
2357 return;
2358 }
2359
2360 /*
2361 * Increment ->n_barrier_done to avoid duplicate work. Use
2362 * ACCESS_ONCE() to prevent the compiler from speculating
2363 * the increment to precede the early-exit check.
2364 */
2365 ACCESS_ONCE(rsp->n_barrier_done)++;
2366 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2367 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2368 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2369
d0ec774c 2370 /*
b1420f1c
PM
2371 * Initialize the count to one rather than to zero in order to
2372 * avoid a too-soon return to zero in case of a short grace period
2373 * (or preemption of this task). Also flag this task as doing
2374 * an rcu_barrier(). This will prevent anyone else from adopting
2375 * orphaned callbacks, which could cause otherwise failure if a
2376 * CPU went offline and quickly came back online. To see this,
2377 * consider the following sequence of events:
2378 *
2379 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2380 * 2. CPU 1 goes offline, orphaning its callbacks.
2381 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2382 * 4. CPU 1 comes back online.
2383 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2384 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2385 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2386 */
7db74df8 2387 init_completion(&rsp->barrier_completion);
24ebbca8 2388 atomic_set(&rsp->barrier_cpu_count, 1);
b1420f1c
PM
2389 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2390 rsp->rcu_barrier_in_progress = current;
2391 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2392
2393 /*
2394 * Force every CPU with callbacks to register a new callback
2395 * that will tell us when all the preceding callbacks have
2396 * been invoked. If an offline CPU has callbacks, wait for
2397 * it to either come back online or to finish orphaning those
2398 * callbacks.
2399 */
2400 for_each_possible_cpu(cpu) {
2401 preempt_disable();
2402 rdp = per_cpu_ptr(rsp->rda, cpu);
2403 if (cpu_is_offline(cpu)) {
a83eff0a
PM
2404 _rcu_barrier_trace(rsp, "Offline", cpu,
2405 rsp->n_barrier_done);
b1420f1c
PM
2406 preempt_enable();
2407 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2408 schedule_timeout_interruptible(1);
2409 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2410 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2411 rsp->n_barrier_done);
037b64ed 2412 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c
PM
2413 preempt_enable();
2414 } else {
a83eff0a
PM
2415 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2416 rsp->n_barrier_done);
b1420f1c
PM
2417 preempt_enable();
2418 }
2419 }
2420
2421 /*
2422 * Now that all online CPUs have rcu_barrier_callback() callbacks
2423 * posted, we can adopt all of the orphaned callbacks and place
2424 * an rcu_barrier_callback() callback after them. When that is done,
2425 * we are guaranteed to have an rcu_barrier_callback() callback
2426 * following every callback that could possibly have been
2427 * registered before _rcu_barrier() was called.
2428 */
2429 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2430 rcu_adopt_orphan_cbs(rsp);
2431 rsp->rcu_barrier_in_progress = NULL;
2432 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
24ebbca8 2433 atomic_inc(&rsp->barrier_cpu_count);
b1420f1c 2434 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
24ebbca8
PM
2435 rd.rsp = rsp;
2436 rsp->call(&rd.barrier_head, rcu_barrier_callback);
b1420f1c
PM
2437
2438 /*
2439 * Now that we have an rcu_barrier_callback() callback on each
2440 * CPU, and thus each counted, remove the initial count.
2441 */
24ebbca8 2442 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2443 complete(&rsp->barrier_completion);
b1420f1c 2444
cf3a9c48
PM
2445 /* Increment ->n_barrier_done to prevent duplicate work. */
2446 smp_mb(); /* Keep increment after above mechanism. */
2447 ACCESS_ONCE(rsp->n_barrier_done)++;
2448 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2449 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2450 smp_mb(); /* Keep increment before caller's subsequent code. */
2451
b1420f1c 2452 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2453 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2454
2455 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2456 mutex_unlock(&rsp->barrier_mutex);
b1420f1c 2457
24ebbca8 2458 destroy_rcu_head_on_stack(&rd.barrier_head);
d0ec774c 2459}
d0ec774c
PM
2460
2461/**
2462 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2463 */
2464void rcu_barrier_bh(void)
2465{
037b64ed 2466 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2467}
2468EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2469
2470/**
2471 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2472 */
2473void rcu_barrier_sched(void)
2474{
037b64ed 2475 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2476}
2477EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2478
64db4cff 2479/*
27569620 2480 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2481 */
27569620
PM
2482static void __init
2483rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2484{
2485 unsigned long flags;
394f99a9 2486 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2487 struct rcu_node *rnp = rcu_get_root(rsp);
2488
2489 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2490 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2491 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2492 init_callback_list(rdp);
486e2593 2493 rdp->qlen_lazy = 0;
1d1fb395 2494 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2495 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2496 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2497 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2498 rdp->cpu = cpu;
d4c08f2a 2499 rdp->rsp = rsp;
1304afb2 2500 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2501}
2502
2503/*
2504 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2505 * offline event can be happening at a given time. Note also that we
2506 * can accept some slop in the rsp->completed access due to the fact
2507 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2508 */
e4fa4c97 2509static void __cpuinit
6cc68793 2510rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2511{
2512 unsigned long flags;
64db4cff 2513 unsigned long mask;
394f99a9 2514 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2515 struct rcu_node *rnp = rcu_get_root(rsp);
2516
2517 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2518 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2519 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2520 rdp->preemptible = preemptible;
37c72e56
PM
2521 rdp->qlen_last_fqs_check = 0;
2522 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2523 rdp->blimit = blimit;
29e37d81 2524 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2525 atomic_set(&rdp->dynticks->dynticks,
2526 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2527 rcu_prepare_for_idle_init(cpu);
1304afb2 2528 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2529
2530 /*
2531 * A new grace period might start here. If so, we won't be part
2532 * of it, but that is OK, as we are currently in a quiescent state.
2533 */
2534
2535 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2536 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2537
2538 /* Add CPU to rcu_node bitmasks. */
2539 rnp = rdp->mynode;
2540 mask = rdp->grpmask;
2541 do {
2542 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2543 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2544 rnp->qsmaskinit |= mask;
2545 mask = rnp->grpmask;
d09b62df 2546 if (rnp == rdp->mynode) {
06ae115a
PM
2547 /*
2548 * If there is a grace period in progress, we will
2549 * set up to wait for it next time we run the
2550 * RCU core code.
2551 */
2552 rdp->gpnum = rnp->completed;
d09b62df 2553 rdp->completed = rnp->completed;
06ae115a
PM
2554 rdp->passed_quiesce = 0;
2555 rdp->qs_pending = 0;
e4cc1f22 2556 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2557 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2558 }
1304afb2 2559 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2560 rnp = rnp->parent;
2561 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2562
1304afb2 2563 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2564}
2565
d72bce0e 2566static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2567{
6ce75a23
PM
2568 struct rcu_state *rsp;
2569
2570 for_each_rcu_flavor(rsp)
2571 rcu_init_percpu_data(cpu, rsp,
2572 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2573}
2574
2575/*
f41d911f 2576 * Handle CPU online/offline notification events.
64db4cff 2577 */
9f680ab4
PM
2578static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2579 unsigned long action, void *hcpu)
64db4cff
PM
2580{
2581 long cpu = (long)hcpu;
27f4d280 2582 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2583 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2584 struct rcu_state *rsp;
64db4cff 2585
300df91c 2586 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2587 switch (action) {
2588 case CPU_UP_PREPARE:
2589 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2590 rcu_prepare_cpu(cpu);
2591 rcu_prepare_kthreads(cpu);
a26ac245
PM
2592 break;
2593 case CPU_ONLINE:
0f962a5e 2594 case CPU_DOWN_FAILED:
5d01bbd1 2595 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
2596 break;
2597 case CPU_DOWN_PREPARE:
5d01bbd1 2598 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 2599 break;
d0ec774c
PM
2600 case CPU_DYING:
2601 case CPU_DYING_FROZEN:
2602 /*
2d999e03
PM
2603 * The whole machine is "stopped" except this CPU, so we can
2604 * touch any data without introducing corruption. We send the
2605 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2606 */
6ce75a23
PM
2607 for_each_rcu_flavor(rsp)
2608 rcu_cleanup_dying_cpu(rsp);
7cb92499 2609 rcu_cleanup_after_idle(cpu);
d0ec774c 2610 break;
64db4cff
PM
2611 case CPU_DEAD:
2612 case CPU_DEAD_FROZEN:
2613 case CPU_UP_CANCELED:
2614 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2615 for_each_rcu_flavor(rsp)
2616 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2617 break;
2618 default:
2619 break;
2620 }
300df91c 2621 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2622 return NOTIFY_OK;
2623}
2624
bbad9379
PM
2625/*
2626 * This function is invoked towards the end of the scheduler's initialization
2627 * process. Before this is called, the idle task might contain
2628 * RCU read-side critical sections (during which time, this idle
2629 * task is booting the system). After this function is called, the
2630 * idle tasks are prohibited from containing RCU read-side critical
2631 * sections. This function also enables RCU lockdep checking.
2632 */
2633void rcu_scheduler_starting(void)
2634{
2635 WARN_ON(num_online_cpus() != 1);
2636 WARN_ON(nr_context_switches() > 0);
2637 rcu_scheduler_active = 1;
2638}
2639
64db4cff
PM
2640/*
2641 * Compute the per-level fanout, either using the exact fanout specified
2642 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2643 */
2644#ifdef CONFIG_RCU_FANOUT_EXACT
2645static void __init rcu_init_levelspread(struct rcu_state *rsp)
2646{
2647 int i;
2648
f885b7f2 2649 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2650 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2651 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2652}
2653#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2654static void __init rcu_init_levelspread(struct rcu_state *rsp)
2655{
2656 int ccur;
2657 int cprv;
2658 int i;
2659
2660 cprv = NR_CPUS;
f885b7f2 2661 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2662 ccur = rsp->levelcnt[i];
2663 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2664 cprv = ccur;
2665 }
2666}
2667#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2668
2669/*
2670 * Helper function for rcu_init() that initializes one rcu_state structure.
2671 */
394f99a9
LJ
2672static void __init rcu_init_one(struct rcu_state *rsp,
2673 struct rcu_data __percpu *rda)
64db4cff 2674{
b6407e86
PM
2675 static char *buf[] = { "rcu_node_level_0",
2676 "rcu_node_level_1",
2677 "rcu_node_level_2",
2678 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2679 int cpustride = 1;
2680 int i;
2681 int j;
2682 struct rcu_node *rnp;
2683
b6407e86
PM
2684 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2685
64db4cff
PM
2686 /* Initialize the level-tracking arrays. */
2687
f885b7f2
PM
2688 for (i = 0; i < rcu_num_lvls; i++)
2689 rsp->levelcnt[i] = num_rcu_lvl[i];
2690 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2691 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2692 rcu_init_levelspread(rsp);
2693
2694 /* Initialize the elements themselves, starting from the leaves. */
2695
f885b7f2 2696 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2697 cpustride *= rsp->levelspread[i];
2698 rnp = rsp->level[i];
2699 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2700 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2701 lockdep_set_class_and_name(&rnp->lock,
2702 &rcu_node_class[i], buf[i]);
f41d911f 2703 rnp->gpnum = 0;
64db4cff
PM
2704 rnp->qsmask = 0;
2705 rnp->qsmaskinit = 0;
2706 rnp->grplo = j * cpustride;
2707 rnp->grphi = (j + 1) * cpustride - 1;
2708 if (rnp->grphi >= NR_CPUS)
2709 rnp->grphi = NR_CPUS - 1;
2710 if (i == 0) {
2711 rnp->grpnum = 0;
2712 rnp->grpmask = 0;
2713 rnp->parent = NULL;
2714 } else {
2715 rnp->grpnum = j % rsp->levelspread[i - 1];
2716 rnp->grpmask = 1UL << rnp->grpnum;
2717 rnp->parent = rsp->level[i - 1] +
2718 j / rsp->levelspread[i - 1];
2719 }
2720 rnp->level = i;
12f5f524 2721 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2722 }
2723 }
0c34029a 2724
394f99a9 2725 rsp->rda = rda;
f885b7f2 2726 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2727 for_each_possible_cpu(i) {
4a90a068 2728 while (i > rnp->grphi)
0c34029a 2729 rnp++;
394f99a9 2730 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2731 rcu_boot_init_percpu_data(i, rsp);
2732 }
6ce75a23 2733 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2734}
2735
f885b7f2
PM
2736/*
2737 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2738 * replace the definitions in rcutree.h because those are needed to size
2739 * the ->node array in the rcu_state structure.
2740 */
2741static void __init rcu_init_geometry(void)
2742{
2743 int i;
2744 int j;
cca6f393 2745 int n = nr_cpu_ids;
f885b7f2
PM
2746 int rcu_capacity[MAX_RCU_LVLS + 1];
2747
2748 /* If the compile-time values are accurate, just leave. */
2749 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2750 return;
2751
2752 /*
2753 * Compute number of nodes that can be handled an rcu_node tree
2754 * with the given number of levels. Setting rcu_capacity[0] makes
2755 * some of the arithmetic easier.
2756 */
2757 rcu_capacity[0] = 1;
2758 rcu_capacity[1] = rcu_fanout_leaf;
2759 for (i = 2; i <= MAX_RCU_LVLS; i++)
2760 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2761
2762 /*
2763 * The boot-time rcu_fanout_leaf parameter is only permitted
2764 * to increase the leaf-level fanout, not decrease it. Of course,
2765 * the leaf-level fanout cannot exceed the number of bits in
2766 * the rcu_node masks. Finally, the tree must be able to accommodate
2767 * the configured number of CPUs. Complain and fall back to the
2768 * compile-time values if these limits are exceeded.
2769 */
2770 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2771 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2772 n > rcu_capacity[MAX_RCU_LVLS]) {
2773 WARN_ON(1);
2774 return;
2775 }
2776
2777 /* Calculate the number of rcu_nodes at each level of the tree. */
2778 for (i = 1; i <= MAX_RCU_LVLS; i++)
2779 if (n <= rcu_capacity[i]) {
2780 for (j = 0; j <= i; j++)
2781 num_rcu_lvl[j] =
2782 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2783 rcu_num_lvls = i;
2784 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2785 num_rcu_lvl[j] = 0;
2786 break;
2787 }
2788
2789 /* Calculate the total number of rcu_node structures. */
2790 rcu_num_nodes = 0;
2791 for (i = 0; i <= MAX_RCU_LVLS; i++)
2792 rcu_num_nodes += num_rcu_lvl[i];
2793 rcu_num_nodes -= n;
2794}
2795
9f680ab4 2796void __init rcu_init(void)
64db4cff 2797{
017c4261 2798 int cpu;
9f680ab4 2799
f41d911f 2800 rcu_bootup_announce();
f885b7f2 2801 rcu_init_geometry();
394f99a9
LJ
2802 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2803 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2804 __rcu_init_preempt();
09223371 2805 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2806
2807 /*
2808 * We don't need protection against CPU-hotplug here because
2809 * this is called early in boot, before either interrupts
2810 * or the scheduler are operational.
2811 */
2812 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2813 for_each_online_cpu(cpu)
2814 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2815 check_cpu_stall_init();
64db4cff
PM
2816}
2817
1eba8f84 2818#include "rcutree_plugin.h"
This page took 0.365034 seconds and 5 git commands to generate.