rcu: Check for callback invocation from offline CPUs
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
64db4cff 53
9f77da9f 54#include "rcutree.h"
29c00b4a
PM
55#include <trace/events/rcu.h>
56
57#include "rcu.h"
9f77da9f 58
64db4cff
PM
59/* Data structures. */
60
b668c9cf 61static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 62
4300aa64 63#define RCU_STATE_INITIALIZER(structname) { \
e99033c5 64 .level = { &structname##_state.node[0] }, \
64db4cff
PM
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
cf244dc0
PM
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 71 }, \
af446b70 72 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
73 .gpnum = -300, \
74 .completed = -300, \
e99033c5
PM
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
64db4cff
PM
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
4300aa64 79 .name = #structname, \
64db4cff
PM
80}
81
e99033c5 82struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 84
e99033c5 85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 87
27f4d280
PM
88static struct rcu_state *rcu_state;
89
b0d30417
PM
90/*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
bbad9379
PM
99int rcu_scheduler_active __read_mostly;
100EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
b0d30417
PM
102/*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114static int rcu_scheduler_fully_active __read_mostly;
115
a46e0899
PM
116#ifdef CONFIG_RCU_BOOST
117
a26ac245
PM
118/*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 123DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 124DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 126DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 127
a46e0899
PM
128#endif /* #ifdef CONFIG_RCU_BOOST */
129
0f962a5e 130static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
131static void invoke_rcu_core(void);
132static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 133
4a298656
PM
134/*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143unsigned long rcutorture_testseq;
144unsigned long rcutorture_vernum;
145
fc2219d4
PM
146/*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151static int rcu_gp_in_progress(struct rcu_state *rsp)
152{
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154}
155
b1f77b05 156/*
d6714c22 157 * Note a quiescent state. Because we do not need to know
b1f77b05 158 * how many quiescent states passed, just if there was at least
d6714c22 159 * one since the start of the grace period, this just sets a flag.
e4cc1f22 160 * The caller must have disabled preemption.
b1f77b05 161 */
d6714c22 162void rcu_sched_qs(int cpu)
b1f77b05 163{
25502a6c 164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 165
e4cc1f22 166 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 167 barrier();
e4cc1f22 168 if (rdp->passed_quiesce == 0)
d4c08f2a 169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 170 rdp->passed_quiesce = 1;
b1f77b05
IM
171}
172
d6714c22 173void rcu_bh_qs(int cpu)
b1f77b05 174{
25502a6c 175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 176
e4cc1f22 177 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 178 barrier();
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05 182}
64db4cff 183
25502a6c
PM
184/*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
e4cc1f22 187 * The caller must have disabled preemption.
25502a6c
PM
188 */
189void rcu_note_context_switch(int cpu)
190{
300df91c 191 trace_rcu_utilization("Start context switch");
25502a6c
PM
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
300df91c 194 trace_rcu_utilization("End context switch");
25502a6c 195}
29ce8310 196EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 197
90a4d2c0 198DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
4145fa7f 199 .dynticks_nesting = DYNTICK_TASK_NESTING,
23b5c8fa 200 .dynticks = ATOMIC_INIT(1),
90a4d2c0 201};
64db4cff 202
e0f23060 203static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
204static int qhimark = 10000; /* If this many pending, ignore blimit. */
205static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
3d76c082
PM
207module_param(blimit, int, 0);
208module_param(qhimark, int, 0);
209module_param(qlowmark, int, 0);
210
a00e0d71 211int rcu_cpu_stall_suppress __read_mostly;
f2e0dd70 212module_param(rcu_cpu_stall_suppress, int, 0644);
742734ee 213
64db4cff 214static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 215static int rcu_pending(int cpu);
64db4cff
PM
216
217/*
d6714c22 218 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 219 */
d6714c22 220long rcu_batches_completed_sched(void)
64db4cff 221{
d6714c22 222 return rcu_sched_state.completed;
64db4cff 223}
d6714c22 224EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
225
226/*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229long rcu_batches_completed_bh(void)
230{
231 return rcu_bh_state.completed;
232}
233EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
bf66f18e
PM
235/*
236 * Force a quiescent state for RCU BH.
237 */
238void rcu_bh_force_quiescent_state(void)
239{
240 force_quiescent_state(&rcu_bh_state, 0);
241}
242EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
4a298656
PM
244/*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251void rcutorture_record_test_transition(void)
252{
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255}
256EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258/*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263void rcutorture_record_progress(unsigned long vernum)
264{
265 rcutorture_vernum++;
266}
267EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
bf66f18e
PM
269/*
270 * Force a quiescent state for RCU-sched.
271 */
272void rcu_sched_force_quiescent_state(void)
273{
274 force_quiescent_state(&rcu_sched_state, 0);
275}
276EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
64db4cff
PM
278/*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281static int
282cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283{
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285}
286
287/*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290static int
291cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292{
fc2219d4 293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
294}
295
296/*
297 * Return the root node of the specified rcu_state structure.
298 */
299static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300{
301 return &rsp->node[0];
302}
303
304#ifdef CONFIG_SMP
305
306/*
307 * If the specified CPU is offline, tell the caller that it is in
308 * a quiescent state. Otherwise, whack it with a reschedule IPI.
309 * Grace periods can end up waiting on an offline CPU when that
310 * CPU is in the process of coming online -- it will be added to the
311 * rcu_node bitmasks before it actually makes it online. The same thing
312 * can happen while a CPU is in the process of coming online. Because this
313 * race is quite rare, we check for it after detecting that the grace
314 * period has been delayed rather than checking each and every CPU
315 * each and every time we start a new grace period.
316 */
317static int rcu_implicit_offline_qs(struct rcu_data *rdp)
318{
319 /*
320 * If the CPU is offline, it is in a quiescent state. We can
321 * trust its state not to change because interrupts are disabled.
322 */
323 if (cpu_is_offline(rdp->cpu)) {
d4c08f2a 324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
325 rdp->offline_fqs++;
326 return 1;
327 }
328
9b2e4f18
PM
329 /*
330 * The CPU is online, so send it a reschedule IPI. This forces
331 * it through the scheduler, and (inefficiently) also handles cases
332 * where idle loops fail to inform RCU about the CPU being idle.
333 */
64db4cff
PM
334 if (rdp->cpu != smp_processor_id())
335 smp_send_reschedule(rdp->cpu);
336 else
337 set_need_resched();
338 rdp->resched_ipi++;
339 return 0;
340}
341
342#endif /* #ifdef CONFIG_SMP */
343
9b2e4f18
PM
344/*
345 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
346 *
347 * If the new value of the ->dynticks_nesting counter now is zero,
348 * we really have entered idle, and must do the appropriate accounting.
349 * The caller must have disabled interrupts.
350 */
4145fa7f 351static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 352{
facc4e15 353 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 354 if (!is_idle_task(current)) {
0989cb46
PM
355 struct task_struct *idle = idle_task(smp_processor_id());
356
facc4e15 357 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 358 ftrace_dump(DUMP_ALL);
0989cb46
PM
359 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
360 current->pid, current->comm,
361 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 362 }
aea1b35e 363 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
364 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
365 smp_mb__before_atomic_inc(); /* See above. */
366 atomic_inc(&rdtp->dynticks);
367 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
368 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
369}
64db4cff
PM
370
371/**
9b2e4f18 372 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 373 *
9b2e4f18 374 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 375 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
376 * critical sections can occur in irq handlers in idle, a possibility
377 * handled by irq_enter() and irq_exit().)
378 *
379 * We crowbar the ->dynticks_nesting field to zero to allow for
380 * the possibility of usermode upcalls having messed up our count
381 * of interrupt nesting level during the prior busy period.
64db4cff 382 */
9b2e4f18 383void rcu_idle_enter(void)
64db4cff
PM
384{
385 unsigned long flags;
4145fa7f 386 long long oldval;
64db4cff
PM
387 struct rcu_dynticks *rdtp;
388
64db4cff
PM
389 local_irq_save(flags);
390 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 391 oldval = rdtp->dynticks_nesting;
9b2e4f18 392 rdtp->dynticks_nesting = 0;
4145fa7f 393 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
394 local_irq_restore(flags);
395}
396
9b2e4f18
PM
397/**
398 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
399 *
400 * Exit from an interrupt handler, which might possibly result in entering
401 * idle mode, in other words, leaving the mode in which read-side critical
402 * sections can occur.
64db4cff 403 *
9b2e4f18
PM
404 * This code assumes that the idle loop never does anything that might
405 * result in unbalanced calls to irq_enter() and irq_exit(). If your
406 * architecture violates this assumption, RCU will give you what you
407 * deserve, good and hard. But very infrequently and irreproducibly.
408 *
409 * Use things like work queues to work around this limitation.
410 *
411 * You have been warned.
64db4cff 412 */
9b2e4f18 413void rcu_irq_exit(void)
64db4cff
PM
414{
415 unsigned long flags;
4145fa7f 416 long long oldval;
64db4cff
PM
417 struct rcu_dynticks *rdtp;
418
419 local_irq_save(flags);
420 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 421 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
422 rdtp->dynticks_nesting--;
423 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
424 if (rdtp->dynticks_nesting)
425 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
426 else
427 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
428 local_irq_restore(flags);
429}
430
431/*
432 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
433 *
434 * If the new value of the ->dynticks_nesting counter was previously zero,
435 * we really have exited idle, and must do the appropriate accounting.
436 * The caller must have disabled interrupts.
437 */
438static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
439{
23b5c8fa
PM
440 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
441 atomic_inc(&rdtp->dynticks);
442 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
443 smp_mb__after_atomic_inc(); /* See above. */
444 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 445 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 446 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 447 if (!is_idle_task(current)) {
0989cb46
PM
448 struct task_struct *idle = idle_task(smp_processor_id());
449
4145fa7f
PM
450 trace_rcu_dyntick("Error on exit: not idle task",
451 oldval, rdtp->dynticks_nesting);
9b2e4f18 452 ftrace_dump(DUMP_ALL);
0989cb46
PM
453 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
454 current->pid, current->comm,
455 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
456 }
457}
458
459/**
460 * rcu_idle_exit - inform RCU that current CPU is leaving idle
461 *
462 * Exit idle mode, in other words, -enter- the mode in which RCU
463 * read-side critical sections can occur.
464 *
4145fa7f
PM
465 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
466 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
467 * of interrupt nesting level during the busy period that is just
468 * now starting.
469 */
470void rcu_idle_exit(void)
471{
472 unsigned long flags;
473 struct rcu_dynticks *rdtp;
474 long long oldval;
475
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
478 oldval = rdtp->dynticks_nesting;
479 WARN_ON_ONCE(oldval != 0);
4145fa7f 480 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
9b2e4f18
PM
481 rcu_idle_exit_common(rdtp, oldval);
482 local_irq_restore(flags);
483}
484
485/**
486 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
487 *
488 * Enter an interrupt handler, which might possibly result in exiting
489 * idle mode, in other words, entering the mode in which read-side critical
490 * sections can occur.
491 *
492 * Note that the Linux kernel is fully capable of entering an interrupt
493 * handler that it never exits, for example when doing upcalls to
494 * user mode! This code assumes that the idle loop never does upcalls to
495 * user mode. If your architecture does do upcalls from the idle loop (or
496 * does anything else that results in unbalanced calls to the irq_enter()
497 * and irq_exit() functions), RCU will give you what you deserve, good
498 * and hard. But very infrequently and irreproducibly.
499 *
500 * Use things like work queues to work around this limitation.
501 *
502 * You have been warned.
503 */
504void rcu_irq_enter(void)
505{
506 unsigned long flags;
507 struct rcu_dynticks *rdtp;
508 long long oldval;
509
510 local_irq_save(flags);
511 rdtp = &__get_cpu_var(rcu_dynticks);
512 oldval = rdtp->dynticks_nesting;
513 rdtp->dynticks_nesting++;
514 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
515 if (oldval)
516 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
517 else
518 rcu_idle_exit_common(rdtp, oldval);
64db4cff 519 local_irq_restore(flags);
64db4cff
PM
520}
521
522/**
523 * rcu_nmi_enter - inform RCU of entry to NMI context
524 *
525 * If the CPU was idle with dynamic ticks active, and there is no
526 * irq handler running, this updates rdtp->dynticks_nmi to let the
527 * RCU grace-period handling know that the CPU is active.
528 */
529void rcu_nmi_enter(void)
530{
531 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
532
23b5c8fa
PM
533 if (rdtp->dynticks_nmi_nesting == 0 &&
534 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 535 return;
23b5c8fa
PM
536 rdtp->dynticks_nmi_nesting++;
537 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
538 atomic_inc(&rdtp->dynticks);
539 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
540 smp_mb__after_atomic_inc(); /* See above. */
541 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
542}
543
544/**
545 * rcu_nmi_exit - inform RCU of exit from NMI context
546 *
547 * If the CPU was idle with dynamic ticks active, and there is no
548 * irq handler running, this updates rdtp->dynticks_nmi to let the
549 * RCU grace-period handling know that the CPU is no longer active.
550 */
551void rcu_nmi_exit(void)
552{
553 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
554
23b5c8fa
PM
555 if (rdtp->dynticks_nmi_nesting == 0 ||
556 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 557 return;
23b5c8fa
PM
558 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
559 smp_mb__before_atomic_inc(); /* See above. */
560 atomic_inc(&rdtp->dynticks);
561 smp_mb__after_atomic_inc(); /* Force delay to next write. */
562 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
563}
564
9b2e4f18
PM
565#ifdef CONFIG_PROVE_RCU
566
64db4cff 567/**
9b2e4f18 568 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 569 *
9b2e4f18 570 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 571 * or NMI handler, return true.
64db4cff 572 */
9b2e4f18 573int rcu_is_cpu_idle(void)
64db4cff 574{
34240697
PM
575 int ret;
576
577 preempt_disable();
578 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
579 preempt_enable();
580 return ret;
64db4cff 581}
e6b80a3b 582EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 583
9b2e4f18
PM
584#endif /* #ifdef CONFIG_PROVE_RCU */
585
64db4cff 586/**
9b2e4f18 587 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 588 *
9b2e4f18
PM
589 * If the current CPU is idle or running at a first-level (not nested)
590 * interrupt from idle, return true. The caller must have at least
591 * disabled preemption.
64db4cff 592 */
9b2e4f18 593int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 594{
9b2e4f18 595 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
596}
597
64db4cff
PM
598#ifdef CONFIG_SMP
599
64db4cff
PM
600/*
601 * Snapshot the specified CPU's dynticks counter so that we can later
602 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 603 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
604 */
605static int dyntick_save_progress_counter(struct rcu_data *rdp)
606{
23b5c8fa 607 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 608 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
609}
610
611/*
612 * Return true if the specified CPU has passed through a quiescent
613 * state by virtue of being in or having passed through an dynticks
614 * idle state since the last call to dyntick_save_progress_counter()
615 * for this same CPU.
616 */
617static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
618{
7eb4f455
PM
619 unsigned int curr;
620 unsigned int snap;
64db4cff 621
7eb4f455
PM
622 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
623 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
624
625 /*
626 * If the CPU passed through or entered a dynticks idle phase with
627 * no active irq/NMI handlers, then we can safely pretend that the CPU
628 * already acknowledged the request to pass through a quiescent
629 * state. Either way, that CPU cannot possibly be in an RCU
630 * read-side critical section that started before the beginning
631 * of the current RCU grace period.
632 */
7eb4f455 633 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 634 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
635 rdp->dynticks_fqs++;
636 return 1;
637 }
638
639 /* Go check for the CPU being offline. */
640 return rcu_implicit_offline_qs(rdp);
641}
642
643#endif /* #ifdef CONFIG_SMP */
644
64db4cff
PM
645static void record_gp_stall_check_time(struct rcu_state *rsp)
646{
647 rsp->gp_start = jiffies;
648 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
649}
650
651static void print_other_cpu_stall(struct rcu_state *rsp)
652{
653 int cpu;
654 long delta;
655 unsigned long flags;
9bc8b558 656 int ndetected;
64db4cff 657 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
658
659 /* Only let one CPU complain about others per time interval. */
660
1304afb2 661 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 662 delta = jiffies - rsp->jiffies_stall;
fc2219d4 663 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 664 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
665 return;
666 }
667 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
668
669 /*
670 * Now rat on any tasks that got kicked up to the root rcu_node
671 * due to CPU offlining.
672 */
9bc8b558 673 ndetected = rcu_print_task_stall(rnp);
1304afb2 674 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 675
8cdd32a9
PM
676 /*
677 * OK, time to rat on our buddy...
678 * See Documentation/RCU/stallwarn.txt for info on how to debug
679 * RCU CPU stall warnings.
680 */
4300aa64
PM
681 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
682 rsp->name);
a0b6c9a7 683 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 684 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 685 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 687 if (rnp->qsmask == 0)
64db4cff 688 continue;
a0b6c9a7 689 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 690 if (rnp->qsmask & (1UL << cpu)) {
a0b6c9a7 691 printk(" %d", rnp->grplo + cpu);
9bc8b558
PM
692 ndetected++;
693 }
64db4cff 694 }
4300aa64 695 printk("} (detected by %d, t=%ld jiffies)\n",
64db4cff 696 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
697 if (ndetected == 0)
698 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
699 else if (!trigger_all_cpu_backtrace())
4627e240 700 dump_stack();
c1dc0b9c 701
1ed509a2
PM
702 /* If so configured, complain about tasks blocking the grace period. */
703
704 rcu_print_detail_task_stall(rsp);
705
64db4cff
PM
706 force_quiescent_state(rsp, 0); /* Kick them all. */
707}
708
709static void print_cpu_stall(struct rcu_state *rsp)
710{
711 unsigned long flags;
712 struct rcu_node *rnp = rcu_get_root(rsp);
713
8cdd32a9
PM
714 /*
715 * OK, time to rat on ourselves...
716 * See Documentation/RCU/stallwarn.txt for info on how to debug
717 * RCU CPU stall warnings.
718 */
4300aa64
PM
719 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
720 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
4627e240
PM
721 if (!trigger_all_cpu_backtrace())
722 dump_stack();
c1dc0b9c 723
1304afb2 724 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 725 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
726 rsp->jiffies_stall =
727 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 728 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 729
64db4cff
PM
730 set_need_resched(); /* kick ourselves to get things going. */
731}
732
733static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
734{
bad6e139
PM
735 unsigned long j;
736 unsigned long js;
64db4cff
PM
737 struct rcu_node *rnp;
738
742734ee 739 if (rcu_cpu_stall_suppress)
c68de209 740 return;
bad6e139
PM
741 j = ACCESS_ONCE(jiffies);
742 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 743 rnp = rdp->mynode;
bad6e139 744 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
745
746 /* We haven't checked in, so go dump stack. */
747 print_cpu_stall(rsp);
748
bad6e139
PM
749 } else if (rcu_gp_in_progress(rsp) &&
750 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 751
bad6e139 752 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
753 print_other_cpu_stall(rsp);
754 }
755}
756
c68de209
PM
757static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
758{
742734ee 759 rcu_cpu_stall_suppress = 1;
c68de209
PM
760 return NOTIFY_DONE;
761}
762
53d84e00
PM
763/**
764 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
765 *
766 * Set the stall-warning timeout way off into the future, thus preventing
767 * any RCU CPU stall-warning messages from appearing in the current set of
768 * RCU grace periods.
769 *
770 * The caller must disable hard irqs.
771 */
772void rcu_cpu_stall_reset(void)
773{
774 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
775 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
776 rcu_preempt_stall_reset();
777}
778
c68de209
PM
779static struct notifier_block rcu_panic_block = {
780 .notifier_call = rcu_panic,
781};
782
783static void __init check_cpu_stall_init(void)
784{
785 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
786}
787
64db4cff
PM
788/*
789 * Update CPU-local rcu_data state to record the newly noticed grace period.
790 * This is used both when we started the grace period and when we notice
9160306e
PM
791 * that someone else started the grace period. The caller must hold the
792 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
793 * and must have irqs disabled.
64db4cff 794 */
9160306e
PM
795static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
796{
797 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
798 /*
799 * If the current grace period is waiting for this CPU,
800 * set up to detect a quiescent state, otherwise don't
801 * go looking for one.
802 */
9160306e 803 rdp->gpnum = rnp->gpnum;
d4c08f2a 804 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
805 if (rnp->qsmask & rdp->grpmask) {
806 rdp->qs_pending = 1;
e4cc1f22 807 rdp->passed_quiesce = 0;
121dfc4b
PM
808 } else
809 rdp->qs_pending = 0;
9160306e
PM
810 }
811}
812
64db4cff
PM
813static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
814{
9160306e
PM
815 unsigned long flags;
816 struct rcu_node *rnp;
817
818 local_irq_save(flags);
819 rnp = rdp->mynode;
820 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 821 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
822 local_irq_restore(flags);
823 return;
824 }
825 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 826 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
827}
828
829/*
830 * Did someone else start a new RCU grace period start since we last
831 * checked? Update local state appropriately if so. Must be called
832 * on the CPU corresponding to rdp.
833 */
834static int
835check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
836{
837 unsigned long flags;
838 int ret = 0;
839
840 local_irq_save(flags);
841 if (rdp->gpnum != rsp->gpnum) {
842 note_new_gpnum(rsp, rdp);
843 ret = 1;
844 }
845 local_irq_restore(flags);
846 return ret;
847}
848
d09b62df
PM
849/*
850 * Advance this CPU's callbacks, but only if the current grace period
851 * has ended. This may be called only from the CPU to whom the rdp
852 * belongs. In addition, the corresponding leaf rcu_node structure's
853 * ->lock must be held by the caller, with irqs disabled.
854 */
855static void
856__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
857{
858 /* Did another grace period end? */
859 if (rdp->completed != rnp->completed) {
860
861 /* Advance callbacks. No harm if list empty. */
862 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
863 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
864 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
865
866 /* Remember that we saw this grace-period completion. */
867 rdp->completed = rnp->completed;
d4c08f2a 868 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 869
5ff8e6f0
FW
870 /*
871 * If we were in an extended quiescent state, we may have
121dfc4b 872 * missed some grace periods that others CPUs handled on
5ff8e6f0 873 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
874 * spurious new grace periods. If another grace period
875 * has started, then rnp->gpnum will have advanced, so
876 * we will detect this later on.
5ff8e6f0 877 */
121dfc4b 878 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
879 rdp->gpnum = rdp->completed;
880
20377f32 881 /*
121dfc4b
PM
882 * If RCU does not need a quiescent state from this CPU,
883 * then make sure that this CPU doesn't go looking for one.
20377f32 884 */
121dfc4b 885 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 886 rdp->qs_pending = 0;
d09b62df
PM
887 }
888}
889
890/*
891 * Advance this CPU's callbacks, but only if the current grace period
892 * has ended. This may be called only from the CPU to whom the rdp
893 * belongs.
894 */
895static void
896rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
897{
898 unsigned long flags;
899 struct rcu_node *rnp;
900
901 local_irq_save(flags);
902 rnp = rdp->mynode;
903 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 904 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
905 local_irq_restore(flags);
906 return;
907 }
908 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 909 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
910}
911
912/*
913 * Do per-CPU grace-period initialization for running CPU. The caller
914 * must hold the lock of the leaf rcu_node structure corresponding to
915 * this CPU.
916 */
917static void
918rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
919{
920 /* Prior grace period ended, so advance callbacks for current CPU. */
921 __rcu_process_gp_end(rsp, rnp, rdp);
922
923 /*
924 * Because this CPU just now started the new grace period, we know
925 * that all of its callbacks will be covered by this upcoming grace
926 * period, even the ones that were registered arbitrarily recently.
927 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
928 *
929 * Other CPUs cannot be sure exactly when the grace period started.
930 * Therefore, their recently registered callbacks must pass through
931 * an additional RCU_NEXT_READY stage, so that they will be handled
932 * by the next RCU grace period.
933 */
934 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
935 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
936
937 /* Set state so that this CPU will detect the next quiescent state. */
938 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
939}
940
64db4cff
PM
941/*
942 * Start a new RCU grace period if warranted, re-initializing the hierarchy
943 * in preparation for detecting the next grace period. The caller must hold
944 * the root node's ->lock, which is released before return. Hard irqs must
945 * be disabled.
e5601400
PM
946 *
947 * Note that it is legal for a dying CPU (which is marked as offline) to
948 * invoke this function. This can happen when the dying CPU reports its
949 * quiescent state.
64db4cff
PM
950 */
951static void
952rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
953 __releases(rcu_get_root(rsp)->lock)
954{
394f99a9 955 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 956 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 957
037067a1 958 if (!rcu_scheduler_fully_active ||
afe24b12
PM
959 !cpu_needs_another_gp(rsp, rdp)) {
960 /*
961 * Either the scheduler hasn't yet spawned the first
962 * non-idle task or this CPU does not need another
963 * grace period. Either way, don't start a new grace
964 * period.
965 */
966 raw_spin_unlock_irqrestore(&rnp->lock, flags);
967 return;
968 }
b32e9eb6 969
afe24b12 970 if (rsp->fqs_active) {
b32e9eb6 971 /*
afe24b12
PM
972 * This CPU needs a grace period, but force_quiescent_state()
973 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 974 */
afe24b12
PM
975 rsp->fqs_need_gp = 1;
976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
977 return;
978 }
979
980 /* Advance to a new grace period and initialize state. */
981 rsp->gpnum++;
d4c08f2a 982 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
983 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
984 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 985 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 986 record_gp_stall_check_time(rsp);
64db4cff 987
64db4cff
PM
988 /* Special-case the common single-level case. */
989 if (NUM_RCU_NODES == 1) {
b0e165c0 990 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 991 rnp->qsmask = rnp->qsmaskinit;
de078d87 992 rnp->gpnum = rsp->gpnum;
d09b62df 993 rnp->completed = rsp->completed;
af446b70 994 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state OK */
d09b62df 995 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 996 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
997 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
998 rnp->level, rnp->grplo,
999 rnp->grphi, rnp->qsmask);
1304afb2 1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1001 return;
1002 }
1003
1304afb2 1004 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff
PM
1005
1006
1007 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1008 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1009
1010 /*
b835db1f
PM
1011 * Set the quiescent-state-needed bits in all the rcu_node
1012 * structures for all currently online CPUs in breadth-first
1013 * order, starting from the root rcu_node structure. This
1014 * operation relies on the layout of the hierarchy within the
1015 * rsp->node[] array. Note that other CPUs will access only
1016 * the leaves of the hierarchy, which still indicate that no
1017 * grace period is in progress, at least until the corresponding
1018 * leaf node has been initialized. In addition, we have excluded
1019 * CPU-hotplug operations.
64db4cff
PM
1020 *
1021 * Note that the grace period cannot complete until we finish
1022 * the initialization process, as there will be at least one
1023 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1024 * one corresponding to this CPU, due to the fact that we have
1025 * irqs disabled.
64db4cff 1026 */
a0b6c9a7 1027 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1028 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1029 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1030 rnp->qsmask = rnp->qsmaskinit;
de078d87 1031 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1032 rnp->completed = rsp->completed;
1033 if (rnp == rdp->mynode)
1034 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1035 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1036 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1037 rnp->level, rnp->grplo,
1038 rnp->grphi, rnp->qsmask);
1304afb2 1039 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1040 }
1041
83f5b01f 1042 rnp = rcu_get_root(rsp);
1304afb2 1043 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1044 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1045 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1046 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1047}
1048
f41d911f 1049/*
d3f6bad3
PM
1050 * Report a full set of quiescent states to the specified rcu_state
1051 * data structure. This involves cleaning up after the prior grace
1052 * period and letting rcu_start_gp() start up the next grace period
1053 * if one is needed. Note that the caller must hold rnp->lock, as
1054 * required by rcu_start_gp(), which will release it.
f41d911f 1055 */
d3f6bad3 1056static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1057 __releases(rcu_get_root(rsp)->lock)
f41d911f 1058{
15ba0ba8 1059 unsigned long gp_duration;
afe24b12
PM
1060 struct rcu_node *rnp = rcu_get_root(rsp);
1061 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1062
fc2219d4 1063 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1064
1065 /*
1066 * Ensure that all grace-period and pre-grace-period activity
1067 * is seen before the assignment to rsp->completed.
1068 */
1069 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1070 gp_duration = jiffies - rsp->gp_start;
1071 if (gp_duration > rsp->gp_max)
1072 rsp->gp_max = gp_duration;
afe24b12
PM
1073
1074 /*
1075 * We know the grace period is complete, but to everyone else
1076 * it appears to still be ongoing. But it is also the case
1077 * that to everyone else it looks like there is nothing that
1078 * they can do to advance the grace period. It is therefore
1079 * safe for us to drop the lock in order to mark the grace
1080 * period as completed in all of the rcu_node structures.
1081 *
1082 * But if this CPU needs another grace period, it will take
1083 * care of this while initializing the next grace period.
1084 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1085 * because the callbacks have not yet been advanced: Those
1086 * callbacks are waiting on the grace period that just now
1087 * completed.
1088 */
1089 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1090 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1091
1092 /*
1093 * Propagate new ->completed value to rcu_node structures
1094 * so that other CPUs don't have to wait until the start
1095 * of the next grace period to process their callbacks.
1096 */
1097 rcu_for_each_node_breadth_first(rsp, rnp) {
1098 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1099 rnp->completed = rsp->gpnum;
1100 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1101 }
1102 rnp = rcu_get_root(rsp);
1103 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1104 }
1105
1106 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1107 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1108 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1109 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1110}
1111
64db4cff 1112/*
d3f6bad3
PM
1113 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1114 * Allows quiescent states for a group of CPUs to be reported at one go
1115 * to the specified rcu_node structure, though all the CPUs in the group
1116 * must be represented by the same rcu_node structure (which need not be
1117 * a leaf rcu_node structure, though it often will be). That structure's
1118 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1119 */
1120static void
d3f6bad3
PM
1121rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1122 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1123 __releases(rnp->lock)
1124{
28ecd580
PM
1125 struct rcu_node *rnp_c;
1126
64db4cff
PM
1127 /* Walk up the rcu_node hierarchy. */
1128 for (;;) {
1129 if (!(rnp->qsmask & mask)) {
1130
1131 /* Our bit has already been cleared, so done. */
1304afb2 1132 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1133 return;
1134 }
1135 rnp->qsmask &= ~mask;
d4c08f2a
PM
1136 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1137 mask, rnp->qsmask, rnp->level,
1138 rnp->grplo, rnp->grphi,
1139 !!rnp->gp_tasks);
27f4d280 1140 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1141
1142 /* Other bits still set at this level, so done. */
1304afb2 1143 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1144 return;
1145 }
1146 mask = rnp->grpmask;
1147 if (rnp->parent == NULL) {
1148
1149 /* No more levels. Exit loop holding root lock. */
1150
1151 break;
1152 }
1304afb2 1153 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1154 rnp_c = rnp;
64db4cff 1155 rnp = rnp->parent;
1304afb2 1156 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1157 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1158 }
1159
1160 /*
1161 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1162 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1163 * to clean up and start the next grace period if one is needed.
64db4cff 1164 */
d3f6bad3 1165 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1166}
1167
1168/*
d3f6bad3
PM
1169 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1170 * structure. This must be either called from the specified CPU, or
1171 * called when the specified CPU is known to be offline (and when it is
1172 * also known that no other CPU is concurrently trying to help the offline
1173 * CPU). The lastcomp argument is used to make sure we are still in the
1174 * grace period of interest. We don't want to end the current grace period
1175 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1176 */
1177static void
e4cc1f22 1178rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1179{
1180 unsigned long flags;
1181 unsigned long mask;
1182 struct rcu_node *rnp;
1183
1184 rnp = rdp->mynode;
1304afb2 1185 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1186 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1187
1188 /*
e4cc1f22
PM
1189 * The grace period in which this quiescent state was
1190 * recorded has ended, so don't report it upwards.
1191 * We will instead need a new quiescent state that lies
1192 * within the current grace period.
64db4cff 1193 */
e4cc1f22 1194 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1195 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1196 return;
1197 }
1198 mask = rdp->grpmask;
1199 if ((rnp->qsmask & mask) == 0) {
1304afb2 1200 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1201 } else {
1202 rdp->qs_pending = 0;
1203
1204 /*
1205 * This GP can't end until cpu checks in, so all of our
1206 * callbacks can be processed during the next GP.
1207 */
64db4cff
PM
1208 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1209
d3f6bad3 1210 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1211 }
1212}
1213
1214/*
1215 * Check to see if there is a new grace period of which this CPU
1216 * is not yet aware, and if so, set up local rcu_data state for it.
1217 * Otherwise, see if this CPU has just passed through its first
1218 * quiescent state for this grace period, and record that fact if so.
1219 */
1220static void
1221rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1222{
1223 /* If there is now a new grace period, record and return. */
1224 if (check_for_new_grace_period(rsp, rdp))
1225 return;
1226
1227 /*
1228 * Does this CPU still need to do its part for current grace period?
1229 * If no, return and let the other CPUs do their part as well.
1230 */
1231 if (!rdp->qs_pending)
1232 return;
1233
1234 /*
1235 * Was there a quiescent state since the beginning of the grace
1236 * period? If no, then exit and wait for the next call.
1237 */
e4cc1f22 1238 if (!rdp->passed_quiesce)
64db4cff
PM
1239 return;
1240
d3f6bad3
PM
1241 /*
1242 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1243 * judge of that).
1244 */
e4cc1f22 1245 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1246}
1247
1248#ifdef CONFIG_HOTPLUG_CPU
1249
e74f4c45 1250/*
29494be7 1251 * Move a dying CPU's RCU callbacks to online CPU's callback list.
e5601400
PM
1252 * Also record a quiescent state for this CPU for the current grace period.
1253 * Synchronization and interrupt disabling are not required because
1254 * this function executes in stop_machine() context. Therefore, cleanup
1255 * operations that might block must be done later from the CPU_DEAD
1256 * notifier.
1257 *
1258 * Note that the outgoing CPU's bit has already been cleared in the
1259 * cpu_online_mask. This allows us to randomly pick a callback
1260 * destination from the bits set in that mask.
e74f4c45 1261 */
e5601400 1262static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45 1263{
e5601400 1264 unsigned long flags;
e74f4c45 1265 int i;
e5601400
PM
1266 unsigned long mask;
1267 int need_report;
29494be7 1268 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1269 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1270 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
e5601400
PM
1271 struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */
1272
1273 /* Move callbacks to some other CPU. */
1274 if (rdp->nxtlist != NULL) {
1275 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1276 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1277 rdp->nxttail[RCU_NEXT_TAIL];
1278 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1279 receive_rdp->qlen += rdp->qlen;
1280 receive_rdp->n_cbs_adopted += rdp->qlen;
1281 rdp->n_cbs_orphaned += rdp->qlen;
1282
1283 rdp->nxtlist = NULL;
1284 for (i = 0; i < RCU_NEXT_SIZE; i++)
1285 rdp->nxttail[i] = &rdp->nxtlist;
1286 rdp->qlen_lazy = 0;
1287 rdp->qlen = 0;
1288 }
e74f4c45 1289
e5601400 1290 /* Record a quiescent state for the dying CPU. */
64db4cff 1291 mask = rdp->grpmask; /* rnp->grplo is constant. */
e5601400
PM
1292 trace_rcu_grace_period(rsp->name,
1293 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1294 "cpuofl");
1295 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1296 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1297
1298 /*
1299 * Remove the dying CPU from the bitmasks in the rcu_node
1300 * hierarchy. Because we are in stop_machine() context, we
1301 * automatically exclude ->onofflock critical sections.
1302 */
64db4cff 1303 do {
e5601400 1304 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1305 rnp->qsmaskinit &= ~mask;
1306 if (rnp->qsmaskinit != 0) {
e5601400 1307 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1308 break;
1309 }
d4c08f2a 1310 if (rnp == rdp->mynode) {
d9a3da06 1311 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
e5601400
PM
1312 if (need_report & RCU_OFL_TASKS_NORM_GP)
1313 rcu_report_unblock_qs_rnp(rnp, flags);
1314 else
1315 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1316 if (need_report & RCU_OFL_TASKS_EXP_GP)
1317 rcu_report_exp_rnp(rsp, rnp, true);
d4c08f2a 1318 } else
e5601400 1319 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1320 mask = rnp->grpmask;
64db4cff
PM
1321 rnp = rnp->parent;
1322 } while (rnp != NULL);
64db4cff
PM
1323}
1324
1325/*
e5601400
PM
1326 * The CPU has been completely removed, and some other CPU is reporting
1327 * this fact from process context. Do the remainder of the cleanup.
1328 * There can only be one CPU hotplug operation at a time, so no other
1329 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1330 */
e5601400 1331static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1332{
e5601400
PM
1333 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1334 struct rcu_node *rnp = rdp->mynode;
1335
1336 rcu_stop_cpu_kthread(cpu);
1337 rcu_node_kthread_setaffinity(rnp, -1);
64db4cff
PM
1338}
1339
1340#else /* #ifdef CONFIG_HOTPLUG_CPU */
1341
e5601400 1342static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1343{
1344}
1345
e5601400 1346static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1347{
1348}
1349
1350#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1351
1352/*
1353 * Invoke any RCU callbacks that have made it to the end of their grace
1354 * period. Thottle as specified by rdp->blimit.
1355 */
37c72e56 1356static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1357{
1358 unsigned long flags;
1359 struct rcu_head *next, *list, **tail;
486e2593 1360 int bl, count, count_lazy;
64db4cff
PM
1361
1362 /* If no callbacks are ready, just return.*/
29c00b4a 1363 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1364 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1365 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1366 need_resched(), is_idle_task(current),
1367 rcu_is_callbacks_kthread());
64db4cff 1368 return;
29c00b4a 1369 }
64db4cff
PM
1370
1371 /*
1372 * Extract the list of ready callbacks, disabling to prevent
1373 * races with call_rcu() from interrupt handlers.
1374 */
1375 local_irq_save(flags);
8146c4e2 1376 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1377 bl = rdp->blimit;
486e2593 1378 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1379 list = rdp->nxtlist;
1380 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1381 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1382 tail = rdp->nxttail[RCU_DONE_TAIL];
1383 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1384 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1385 rdp->nxttail[count] = &rdp->nxtlist;
1386 local_irq_restore(flags);
1387
1388 /* Invoke callbacks. */
486e2593 1389 count = count_lazy = 0;
64db4cff
PM
1390 while (list) {
1391 next = list->next;
1392 prefetch(next);
551d55a9 1393 debug_rcu_head_unqueue(list);
486e2593
PM
1394 if (__rcu_reclaim(rsp->name, list))
1395 count_lazy++;
64db4cff 1396 list = next;
dff1672d
PM
1397 /* Stop only if limit reached and CPU has something to do. */
1398 if (++count >= bl &&
1399 (need_resched() ||
1400 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1401 break;
1402 }
1403
1404 local_irq_save(flags);
4968c300
PM
1405 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1406 is_idle_task(current),
1407 rcu_is_callbacks_kthread());
64db4cff
PM
1408
1409 /* Update count, and requeue any remaining callbacks. */
486e2593 1410 rdp->qlen_lazy -= count_lazy;
64db4cff 1411 rdp->qlen -= count;
269dcc1c 1412 rdp->n_cbs_invoked += count;
64db4cff
PM
1413 if (list != NULL) {
1414 *tail = rdp->nxtlist;
1415 rdp->nxtlist = list;
1416 for (count = 0; count < RCU_NEXT_SIZE; count++)
1417 if (&rdp->nxtlist == rdp->nxttail[count])
1418 rdp->nxttail[count] = tail;
1419 else
1420 break;
1421 }
1422
1423 /* Reinstate batch limit if we have worked down the excess. */
1424 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1425 rdp->blimit = blimit;
1426
37c72e56
PM
1427 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1428 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1429 rdp->qlen_last_fqs_check = 0;
1430 rdp->n_force_qs_snap = rsp->n_force_qs;
1431 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1432 rdp->qlen_last_fqs_check = rdp->qlen;
1433
64db4cff
PM
1434 local_irq_restore(flags);
1435
e0f23060 1436 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1437 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1438 invoke_rcu_core();
64db4cff
PM
1439}
1440
1441/*
1442 * Check to see if this CPU is in a non-context-switch quiescent state
1443 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1444 * Also schedule RCU core processing.
64db4cff 1445 *
9b2e4f18 1446 * This function must be called from hardirq context. It is normally
64db4cff
PM
1447 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1448 * false, there is no point in invoking rcu_check_callbacks().
1449 */
1450void rcu_check_callbacks(int cpu, int user)
1451{
300df91c 1452 trace_rcu_utilization("Start scheduler-tick");
9b2e4f18 1453 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1454
1455 /*
1456 * Get here if this CPU took its interrupt from user
1457 * mode or from the idle loop, and if this is not a
1458 * nested interrupt. In this case, the CPU is in
d6714c22 1459 * a quiescent state, so note it.
64db4cff
PM
1460 *
1461 * No memory barrier is required here because both
d6714c22
PM
1462 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1463 * variables that other CPUs neither access nor modify,
1464 * at least not while the corresponding CPU is online.
64db4cff
PM
1465 */
1466
d6714c22
PM
1467 rcu_sched_qs(cpu);
1468 rcu_bh_qs(cpu);
64db4cff
PM
1469
1470 } else if (!in_softirq()) {
1471
1472 /*
1473 * Get here if this CPU did not take its interrupt from
1474 * softirq, in other words, if it is not interrupting
1475 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1476 * critical section, so note it.
64db4cff
PM
1477 */
1478
d6714c22 1479 rcu_bh_qs(cpu);
64db4cff 1480 }
f41d911f 1481 rcu_preempt_check_callbacks(cpu);
d21670ac 1482 if (rcu_pending(cpu))
a46e0899 1483 invoke_rcu_core();
300df91c 1484 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1485}
1486
1487#ifdef CONFIG_SMP
1488
1489/*
1490 * Scan the leaf rcu_node structures, processing dyntick state for any that
1491 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1492 * Also initiate boosting for any threads blocked on the root rcu_node.
1493 *
ee47eb9f 1494 * The caller must have suppressed start of new grace periods.
64db4cff 1495 */
45f014c5 1496static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1497{
1498 unsigned long bit;
1499 int cpu;
1500 unsigned long flags;
1501 unsigned long mask;
a0b6c9a7 1502 struct rcu_node *rnp;
64db4cff 1503
a0b6c9a7 1504 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1505 mask = 0;
1304afb2 1506 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1507 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1508 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1509 return;
64db4cff 1510 }
a0b6c9a7 1511 if (rnp->qsmask == 0) {
1217ed1b 1512 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1513 continue;
1514 }
a0b6c9a7 1515 cpu = rnp->grplo;
64db4cff 1516 bit = 1;
a0b6c9a7 1517 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1518 if ((rnp->qsmask & bit) != 0 &&
1519 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1520 mask |= bit;
1521 }
45f014c5 1522 if (mask != 0) {
64db4cff 1523
d3f6bad3
PM
1524 /* rcu_report_qs_rnp() releases rnp->lock. */
1525 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1526 continue;
1527 }
1304afb2 1528 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1529 }
27f4d280 1530 rnp = rcu_get_root(rsp);
1217ed1b
PM
1531 if (rnp->qsmask == 0) {
1532 raw_spin_lock_irqsave(&rnp->lock, flags);
1533 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1534 }
64db4cff
PM
1535}
1536
1537/*
1538 * Force quiescent states on reluctant CPUs, and also detect which
1539 * CPUs are in dyntick-idle mode.
1540 */
1541static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1542{
1543 unsigned long flags;
64db4cff 1544 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1545
300df91c
PM
1546 trace_rcu_utilization("Start fqs");
1547 if (!rcu_gp_in_progress(rsp)) {
1548 trace_rcu_utilization("End fqs");
64db4cff 1549 return; /* No grace period in progress, nothing to force. */
300df91c 1550 }
1304afb2 1551 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1552 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1553 trace_rcu_utilization("End fqs");
64db4cff
PM
1554 return; /* Someone else is already on the job. */
1555 }
20133cfc 1556 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1557 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1558 rsp->n_force_qs++;
1304afb2 1559 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1560 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1561 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1562 rsp->n_force_qs_ngp++;
1304afb2 1563 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1564 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1565 }
07079d53 1566 rsp->fqs_active = 1;
af446b70 1567 switch (rsp->fqs_state) {
83f5b01f 1568 case RCU_GP_IDLE:
64db4cff
PM
1569 case RCU_GP_INIT:
1570
83f5b01f 1571 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1572
1573 case RCU_SAVE_DYNTICK:
64db4cff
PM
1574 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1575 break; /* So gcc recognizes the dead code. */
1576
f261414f
LJ
1577 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1578
64db4cff 1579 /* Record dyntick-idle state. */
45f014c5 1580 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1581 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1582 if (rcu_gp_in_progress(rsp))
af446b70 1583 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1584 break;
64db4cff
PM
1585
1586 case RCU_FORCE_QS:
1587
1588 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1589 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1590 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1591
1592 /* Leave state in case more forcing is required. */
1593
1304afb2 1594 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1595 break;
64db4cff 1596 }
07079d53 1597 rsp->fqs_active = 0;
46a1e34e 1598 if (rsp->fqs_need_gp) {
1304afb2 1599 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1600 rsp->fqs_need_gp = 0;
1601 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1602 trace_rcu_utilization("End fqs");
46a1e34e
PM
1603 return;
1604 }
1304afb2 1605 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1606unlock_fqs_ret:
1304afb2 1607 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1608 trace_rcu_utilization("End fqs");
64db4cff
PM
1609}
1610
1611#else /* #ifdef CONFIG_SMP */
1612
1613static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1614{
1615 set_need_resched();
1616}
1617
1618#endif /* #else #ifdef CONFIG_SMP */
1619
1620/*
e0f23060
PM
1621 * This does the RCU core processing work for the specified rcu_state
1622 * and rcu_data structures. This may be called only from the CPU to
1623 * whom the rdp belongs.
64db4cff
PM
1624 */
1625static void
1626__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1627{
1628 unsigned long flags;
1629
2e597558
PM
1630 WARN_ON_ONCE(rdp->beenonline == 0);
1631
64db4cff
PM
1632 /*
1633 * If an RCU GP has gone long enough, go check for dyntick
1634 * idle CPUs and, if needed, send resched IPIs.
1635 */
20133cfc 1636 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1637 force_quiescent_state(rsp, 1);
1638
1639 /*
1640 * Advance callbacks in response to end of earlier grace
1641 * period that some other CPU ended.
1642 */
1643 rcu_process_gp_end(rsp, rdp);
1644
1645 /* Update RCU state based on any recent quiescent states. */
1646 rcu_check_quiescent_state(rsp, rdp);
1647
1648 /* Does this CPU require a not-yet-started grace period? */
1649 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1650 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1651 rcu_start_gp(rsp, flags); /* releases above lock */
1652 }
1653
1654 /* If there are callbacks ready, invoke them. */
09223371 1655 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1656 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1657}
1658
64db4cff 1659/*
e0f23060 1660 * Do RCU core processing for the current CPU.
64db4cff 1661 */
09223371 1662static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1663{
300df91c 1664 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1665 __rcu_process_callbacks(&rcu_sched_state,
1666 &__get_cpu_var(rcu_sched_data));
64db4cff 1667 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1668 rcu_preempt_process_callbacks();
300df91c 1669 trace_rcu_utilization("End RCU core");
64db4cff
PM
1670}
1671
a26ac245 1672/*
e0f23060
PM
1673 * Schedule RCU callback invocation. If the specified type of RCU
1674 * does not support RCU priority boosting, just do a direct call,
1675 * otherwise wake up the per-CPU kernel kthread. Note that because we
1676 * are running on the current CPU with interrupts disabled, the
1677 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1678 */
a46e0899 1679static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1680{
b0d30417
PM
1681 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1682 return;
a46e0899
PM
1683 if (likely(!rsp->boost)) {
1684 rcu_do_batch(rsp, rdp);
a26ac245
PM
1685 return;
1686 }
a46e0899 1687 invoke_rcu_callbacks_kthread();
a26ac245
PM
1688}
1689
a46e0899 1690static void invoke_rcu_core(void)
09223371
SL
1691{
1692 raise_softirq(RCU_SOFTIRQ);
1693}
1694
64db4cff
PM
1695static void
1696__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1697 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1698{
1699 unsigned long flags;
1700 struct rcu_data *rdp;
1701
0bb7b59d 1702 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1703 debug_rcu_head_queue(head);
64db4cff
PM
1704 head->func = func;
1705 head->next = NULL;
1706
1707 smp_mb(); /* Ensure RCU update seen before callback registry. */
1708
1709 /*
1710 * Opportunistically note grace-period endings and beginnings.
1711 * Note that we might see a beginning right after we see an
1712 * end, but never vice versa, since this CPU has to pass through
1713 * a quiescent state betweentimes.
1714 */
1715 local_irq_save(flags);
e5601400 1716 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
394f99a9 1717 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1718
1719 /* Add the callback to our list. */
1720 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1721 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1722 rdp->qlen++;
486e2593
PM
1723 if (lazy)
1724 rdp->qlen_lazy++;
2655d57e 1725
d4c08f2a
PM
1726 if (__is_kfree_rcu_offset((unsigned long)func))
1727 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1728 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1729 else
486e2593 1730 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1731
2655d57e
PM
1732 /* If interrupts were disabled, don't dive into RCU core. */
1733 if (irqs_disabled_flags(flags)) {
1734 local_irq_restore(flags);
1735 return;
1736 }
64db4cff 1737
37c72e56
PM
1738 /*
1739 * Force the grace period if too many callbacks or too long waiting.
1740 * Enforce hysteresis, and don't invoke force_quiescent_state()
1741 * if some other CPU has recently done so. Also, don't bother
1742 * invoking force_quiescent_state() if the newly enqueued callback
1743 * is the only one waiting for a grace period to complete.
1744 */
2655d57e 1745 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1746
1747 /* Are we ignoring a completed grace period? */
1748 rcu_process_gp_end(rsp, rdp);
1749 check_for_new_grace_period(rsp, rdp);
1750
1751 /* Start a new grace period if one not already started. */
1752 if (!rcu_gp_in_progress(rsp)) {
1753 unsigned long nestflag;
1754 struct rcu_node *rnp_root = rcu_get_root(rsp);
1755
1756 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1757 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1758 } else {
1759 /* Give the grace period a kick. */
1760 rdp->blimit = LONG_MAX;
1761 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1762 *rdp->nxttail[RCU_DONE_TAIL] != head)
1763 force_quiescent_state(rsp, 0);
1764 rdp->n_force_qs_snap = rsp->n_force_qs;
1765 rdp->qlen_last_fqs_check = rdp->qlen;
1766 }
20133cfc 1767 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1768 force_quiescent_state(rsp, 1);
1769 local_irq_restore(flags);
1770}
1771
1772/*
d6714c22 1773 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1774 */
d6714c22 1775void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1776{
486e2593 1777 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1778}
d6714c22 1779EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1780
1781/*
486e2593 1782 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1783 */
1784void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1785{
486e2593 1786 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1787}
1788EXPORT_SYMBOL_GPL(call_rcu_bh);
1789
6ebb237b
PM
1790/**
1791 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1792 *
1793 * Control will return to the caller some time after a full rcu-sched
1794 * grace period has elapsed, in other words after all currently executing
1795 * rcu-sched read-side critical sections have completed. These read-side
1796 * critical sections are delimited by rcu_read_lock_sched() and
1797 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1798 * local_irq_disable(), and so on may be used in place of
1799 * rcu_read_lock_sched().
1800 *
1801 * This means that all preempt_disable code sequences, including NMI and
1802 * hardware-interrupt handlers, in progress on entry will have completed
1803 * before this primitive returns. However, this does not guarantee that
1804 * softirq handlers will have completed, since in some kernels, these
1805 * handlers can run in process context, and can block.
1806 *
1807 * This primitive provides the guarantees made by the (now removed)
1808 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1809 * guarantees that rcu_read_lock() sections will have completed.
1810 * In "classic RCU", these two guarantees happen to be one and
1811 * the same, but can differ in realtime RCU implementations.
1812 */
1813void synchronize_sched(void)
1814{
fe15d706
PM
1815 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1816 !lock_is_held(&rcu_lock_map) &&
1817 !lock_is_held(&rcu_sched_lock_map),
1818 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
1819 if (rcu_blocking_is_gp())
1820 return;
2c42818e 1821 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
1822}
1823EXPORT_SYMBOL_GPL(synchronize_sched);
1824
1825/**
1826 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1827 *
1828 * Control will return to the caller some time after a full rcu_bh grace
1829 * period has elapsed, in other words after all currently executing rcu_bh
1830 * read-side critical sections have completed. RCU read-side critical
1831 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1832 * and may be nested.
1833 */
1834void synchronize_rcu_bh(void)
1835{
fe15d706
PM
1836 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1837 !lock_is_held(&rcu_lock_map) &&
1838 !lock_is_held(&rcu_sched_lock_map),
1839 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
1840 if (rcu_blocking_is_gp())
1841 return;
2c42818e 1842 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
1843}
1844EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1845
64db4cff
PM
1846/*
1847 * Check to see if there is any immediate RCU-related work to be done
1848 * by the current CPU, for the specified type of RCU, returning 1 if so.
1849 * The checks are in order of increasing expense: checks that can be
1850 * carried out against CPU-local state are performed first. However,
1851 * we must check for CPU stalls first, else we might not get a chance.
1852 */
1853static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1854{
2f51f988
PM
1855 struct rcu_node *rnp = rdp->mynode;
1856
64db4cff
PM
1857 rdp->n_rcu_pending++;
1858
1859 /* Check for CPU stalls, if enabled. */
1860 check_cpu_stall(rsp, rdp);
1861
1862 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
1863 if (rcu_scheduler_fully_active &&
1864 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
1865
1866 /*
1867 * If force_quiescent_state() coming soon and this CPU
1868 * needs a quiescent state, and this is either RCU-sched
1869 * or RCU-bh, force a local reschedule.
1870 */
d21670ac 1871 rdp->n_rp_qs_pending++;
6cc68793 1872 if (!rdp->preemptible &&
d25eb944
PM
1873 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1874 jiffies))
1875 set_need_resched();
e4cc1f22 1876 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 1877 rdp->n_rp_report_qs++;
64db4cff 1878 return 1;
7ba5c840 1879 }
64db4cff
PM
1880
1881 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1882 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1883 rdp->n_rp_cb_ready++;
64db4cff 1884 return 1;
7ba5c840 1885 }
64db4cff
PM
1886
1887 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1888 if (cpu_needs_another_gp(rsp, rdp)) {
1889 rdp->n_rp_cpu_needs_gp++;
64db4cff 1890 return 1;
7ba5c840 1891 }
64db4cff
PM
1892
1893 /* Has another RCU grace period completed? */
2f51f988 1894 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1895 rdp->n_rp_gp_completed++;
64db4cff 1896 return 1;
7ba5c840 1897 }
64db4cff
PM
1898
1899 /* Has a new RCU grace period started? */
2f51f988 1900 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1901 rdp->n_rp_gp_started++;
64db4cff 1902 return 1;
7ba5c840 1903 }
64db4cff
PM
1904
1905 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1906 if (rcu_gp_in_progress(rsp) &&
20133cfc 1907 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1908 rdp->n_rp_need_fqs++;
64db4cff 1909 return 1;
7ba5c840 1910 }
64db4cff
PM
1911
1912 /* nothing to do */
7ba5c840 1913 rdp->n_rp_need_nothing++;
64db4cff
PM
1914 return 0;
1915}
1916
1917/*
1918 * Check to see if there is any immediate RCU-related work to be done
1919 * by the current CPU, returning 1 if so. This function is part of the
1920 * RCU implementation; it is -not- an exported member of the RCU API.
1921 */
a157229c 1922static int rcu_pending(int cpu)
64db4cff 1923{
d6714c22 1924 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1925 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1926 rcu_preempt_pending(cpu);
64db4cff
PM
1927}
1928
1929/*
1930 * Check to see if any future RCU-related work will need to be done
1931 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1932 * 1 if so.
64db4cff 1933 */
aea1b35e 1934static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
1935{
1936 /* RCU callbacks either ready or pending? */
d6714c22 1937 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1938 per_cpu(rcu_bh_data, cpu).nxtlist ||
1939 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1940}
1941
d0ec774c
PM
1942static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1943static atomic_t rcu_barrier_cpu_count;
1944static DEFINE_MUTEX(rcu_barrier_mutex);
1945static struct completion rcu_barrier_completion;
d0ec774c
PM
1946
1947static void rcu_barrier_callback(struct rcu_head *notused)
1948{
1949 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1950 complete(&rcu_barrier_completion);
1951}
1952
1953/*
1954 * Called with preemption disabled, and from cross-cpu IRQ context.
1955 */
1956static void rcu_barrier_func(void *type)
1957{
1958 int cpu = smp_processor_id();
1959 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1960 void (*call_rcu_func)(struct rcu_head *head,
1961 void (*func)(struct rcu_head *head));
1962
1963 atomic_inc(&rcu_barrier_cpu_count);
1964 call_rcu_func = type;
1965 call_rcu_func(head, rcu_barrier_callback);
1966}
1967
d0ec774c
PM
1968/*
1969 * Orchestrate the specified type of RCU barrier, waiting for all
1970 * RCU callbacks of the specified type to complete.
1971 */
e74f4c45
PM
1972static void _rcu_barrier(struct rcu_state *rsp,
1973 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1974 void (*func)(struct rcu_head *head)))
1975{
1976 BUG_ON(in_interrupt());
e74f4c45 1977 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1978 mutex_lock(&rcu_barrier_mutex);
1979 init_completion(&rcu_barrier_completion);
1980 /*
1981 * Initialize rcu_barrier_cpu_count to 1, then invoke
1982 * rcu_barrier_func() on each CPU, so that each CPU also has
1983 * incremented rcu_barrier_cpu_count. Only then is it safe to
1984 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1985 * might complete its grace period before all of the other CPUs
1986 * did their increment, causing this function to return too
2d999e03
PM
1987 * early. Note that on_each_cpu() disables irqs, which prevents
1988 * any CPUs from coming online or going offline until each online
1989 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
1990 */
1991 atomic_set(&rcu_barrier_cpu_count, 1);
1992 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1993 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1994 complete(&rcu_barrier_completion);
1995 wait_for_completion(&rcu_barrier_completion);
1996 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1997}
d0ec774c
PM
1998
1999/**
2000 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2001 */
2002void rcu_barrier_bh(void)
2003{
e74f4c45 2004 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2005}
2006EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2007
2008/**
2009 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2010 */
2011void rcu_barrier_sched(void)
2012{
e74f4c45 2013 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2014}
2015EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2016
64db4cff 2017/*
27569620 2018 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2019 */
27569620
PM
2020static void __init
2021rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2022{
2023 unsigned long flags;
2024 int i;
394f99a9 2025 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2026 struct rcu_node *rnp = rcu_get_root(rsp);
2027
2028 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2029 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2030 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2031 rdp->nxtlist = NULL;
2032 for (i = 0; i < RCU_NEXT_SIZE; i++)
2033 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2034 rdp->qlen_lazy = 0;
27569620 2035 rdp->qlen = 0;
27569620 2036 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4145fa7f 2037 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
9b2e4f18 2038 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2039 rdp->cpu = cpu;
d4c08f2a 2040 rdp->rsp = rsp;
1304afb2 2041 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2042}
2043
2044/*
2045 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2046 * offline event can be happening at a given time. Note also that we
2047 * can accept some slop in the rsp->completed access due to the fact
2048 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2049 */
e4fa4c97 2050static void __cpuinit
6cc68793 2051rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2052{
2053 unsigned long flags;
64db4cff 2054 unsigned long mask;
394f99a9 2055 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2056 struct rcu_node *rnp = rcu_get_root(rsp);
2057
2058 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2059 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2060 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2061 rdp->preemptible = preemptible;
37c72e56
PM
2062 rdp->qlen_last_fqs_check = 0;
2063 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2064 rdp->blimit = blimit;
c92b131b
PM
2065 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2066 atomic_set(&rdp->dynticks->dynticks,
2067 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2068 rcu_prepare_for_idle_init(cpu);
1304afb2 2069 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2070
2071 /*
2072 * A new grace period might start here. If so, we won't be part
2073 * of it, but that is OK, as we are currently in a quiescent state.
2074 */
2075
2076 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2077 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2078
2079 /* Add CPU to rcu_node bitmasks. */
2080 rnp = rdp->mynode;
2081 mask = rdp->grpmask;
2082 do {
2083 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2084 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2085 rnp->qsmaskinit |= mask;
2086 mask = rnp->grpmask;
d09b62df 2087 if (rnp == rdp->mynode) {
06ae115a
PM
2088 /*
2089 * If there is a grace period in progress, we will
2090 * set up to wait for it next time we run the
2091 * RCU core code.
2092 */
2093 rdp->gpnum = rnp->completed;
d09b62df 2094 rdp->completed = rnp->completed;
06ae115a
PM
2095 rdp->passed_quiesce = 0;
2096 rdp->qs_pending = 0;
e4cc1f22 2097 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2098 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2099 }
1304afb2 2100 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2101 rnp = rnp->parent;
2102 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2103
1304afb2 2104 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2105}
2106
d72bce0e 2107static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2108{
f41d911f
PM
2109 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2110 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2111 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2112}
2113
2114/*
f41d911f 2115 * Handle CPU online/offline notification events.
64db4cff 2116 */
9f680ab4
PM
2117static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2118 unsigned long action, void *hcpu)
64db4cff
PM
2119{
2120 long cpu = (long)hcpu;
27f4d280 2121 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2122 struct rcu_node *rnp = rdp->mynode;
64db4cff 2123
300df91c 2124 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2125 switch (action) {
2126 case CPU_UP_PREPARE:
2127 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2128 rcu_prepare_cpu(cpu);
2129 rcu_prepare_kthreads(cpu);
a26ac245
PM
2130 break;
2131 case CPU_ONLINE:
0f962a5e
PM
2132 case CPU_DOWN_FAILED:
2133 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2134 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2135 break;
2136 case CPU_DOWN_PREPARE:
2137 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2138 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2139 break;
d0ec774c
PM
2140 case CPU_DYING:
2141 case CPU_DYING_FROZEN:
2142 /*
2d999e03
PM
2143 * The whole machine is "stopped" except this CPU, so we can
2144 * touch any data without introducing corruption. We send the
2145 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2146 */
e5601400
PM
2147 rcu_cleanup_dying_cpu(&rcu_bh_state);
2148 rcu_cleanup_dying_cpu(&rcu_sched_state);
2149 rcu_preempt_cleanup_dying_cpu();
7cb92499 2150 rcu_cleanup_after_idle(cpu);
d0ec774c 2151 break;
64db4cff
PM
2152 case CPU_DEAD:
2153 case CPU_DEAD_FROZEN:
2154 case CPU_UP_CANCELED:
2155 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2156 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2157 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2158 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2159 break;
2160 default:
2161 break;
2162 }
300df91c 2163 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2164 return NOTIFY_OK;
2165}
2166
bbad9379
PM
2167/*
2168 * This function is invoked towards the end of the scheduler's initialization
2169 * process. Before this is called, the idle task might contain
2170 * RCU read-side critical sections (during which time, this idle
2171 * task is booting the system). After this function is called, the
2172 * idle tasks are prohibited from containing RCU read-side critical
2173 * sections. This function also enables RCU lockdep checking.
2174 */
2175void rcu_scheduler_starting(void)
2176{
2177 WARN_ON(num_online_cpus() != 1);
2178 WARN_ON(nr_context_switches() > 0);
2179 rcu_scheduler_active = 1;
2180}
2181
64db4cff
PM
2182/*
2183 * Compute the per-level fanout, either using the exact fanout specified
2184 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2185 */
2186#ifdef CONFIG_RCU_FANOUT_EXACT
2187static void __init rcu_init_levelspread(struct rcu_state *rsp)
2188{
2189 int i;
2190
0209f649 2191 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2192 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 2193 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
2194}
2195#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2196static void __init rcu_init_levelspread(struct rcu_state *rsp)
2197{
2198 int ccur;
2199 int cprv;
2200 int i;
2201
2202 cprv = NR_CPUS;
2203 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2204 ccur = rsp->levelcnt[i];
2205 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2206 cprv = ccur;
2207 }
2208}
2209#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2210
2211/*
2212 * Helper function for rcu_init() that initializes one rcu_state structure.
2213 */
394f99a9
LJ
2214static void __init rcu_init_one(struct rcu_state *rsp,
2215 struct rcu_data __percpu *rda)
64db4cff 2216{
b6407e86
PM
2217 static char *buf[] = { "rcu_node_level_0",
2218 "rcu_node_level_1",
2219 "rcu_node_level_2",
2220 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2221 int cpustride = 1;
2222 int i;
2223 int j;
2224 struct rcu_node *rnp;
2225
b6407e86
PM
2226 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2227
64db4cff
PM
2228 /* Initialize the level-tracking arrays. */
2229
2230 for (i = 1; i < NUM_RCU_LVLS; i++)
2231 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2232 rcu_init_levelspread(rsp);
2233
2234 /* Initialize the elements themselves, starting from the leaves. */
2235
2236 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2237 cpustride *= rsp->levelspread[i];
2238 rnp = rsp->level[i];
2239 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2240 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2241 lockdep_set_class_and_name(&rnp->lock,
2242 &rcu_node_class[i], buf[i]);
f41d911f 2243 rnp->gpnum = 0;
64db4cff
PM
2244 rnp->qsmask = 0;
2245 rnp->qsmaskinit = 0;
2246 rnp->grplo = j * cpustride;
2247 rnp->grphi = (j + 1) * cpustride - 1;
2248 if (rnp->grphi >= NR_CPUS)
2249 rnp->grphi = NR_CPUS - 1;
2250 if (i == 0) {
2251 rnp->grpnum = 0;
2252 rnp->grpmask = 0;
2253 rnp->parent = NULL;
2254 } else {
2255 rnp->grpnum = j % rsp->levelspread[i - 1];
2256 rnp->grpmask = 1UL << rnp->grpnum;
2257 rnp->parent = rsp->level[i - 1] +
2258 j / rsp->levelspread[i - 1];
2259 }
2260 rnp->level = i;
12f5f524 2261 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2262 }
2263 }
0c34029a 2264
394f99a9 2265 rsp->rda = rda;
0c34029a
LJ
2266 rnp = rsp->level[NUM_RCU_LVLS - 1];
2267 for_each_possible_cpu(i) {
4a90a068 2268 while (i > rnp->grphi)
0c34029a 2269 rnp++;
394f99a9 2270 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2271 rcu_boot_init_percpu_data(i, rsp);
2272 }
64db4cff
PM
2273}
2274
9f680ab4 2275void __init rcu_init(void)
64db4cff 2276{
017c4261 2277 int cpu;
9f680ab4 2278
f41d911f 2279 rcu_bootup_announce();
394f99a9
LJ
2280 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2281 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2282 __rcu_init_preempt();
09223371 2283 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2284
2285 /*
2286 * We don't need protection against CPU-hotplug here because
2287 * this is called early in boot, before either interrupts
2288 * or the scheduler are operational.
2289 */
2290 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2291 for_each_online_cpu(cpu)
2292 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2293 check_cpu_stall_init();
64db4cff
PM
2294}
2295
1eba8f84 2296#include "rcutree_plugin.h"
This page took 0.331146 seconds and 5 git commands to generate.