rcu: Simplify rcu_pending()/rcu_check_callbacks() API
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <asm/atomic.h>
39#include <linux/bitops.h>
40#include <linux/module.h>
41#include <linux/completion.h>
42#include <linux/moduleparam.h>
43#include <linux/percpu.h>
44#include <linux/notifier.h>
45#include <linux/cpu.h>
46#include <linux/mutex.h>
47#include <linux/time.h>
48
9f77da9f
PM
49#include "rcutree.h"
50
64db4cff
PM
51#ifdef CONFIG_DEBUG_LOCK_ALLOC
52static struct lock_class_key rcu_lock_key;
53struct lockdep_map rcu_lock_map =
54 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
55EXPORT_SYMBOL_GPL(rcu_lock_map);
56#endif
57
58/* Data structures. */
59
60#define RCU_STATE_INITIALIZER(name) { \
61 .level = { &name.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_SIGNAL_INIT, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
72 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75}
76
d6714c22
PM
77struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
78DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 79
6258c4fb
IM
80struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
81DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05
IM
82
83/*
d6714c22 84 * Note a quiescent state. Because we do not need to know
b1f77b05 85 * how many quiescent states passed, just if there was at least
d6714c22 86 * one since the start of the grace period, this just sets a flag.
b1f77b05 87 */
d6714c22 88void rcu_sched_qs(int cpu)
b1f77b05 89{
d6714c22 90 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05
IM
91 rdp->passed_quiesc = 1;
92 rdp->passed_quiesc_completed = rdp->completed;
93}
94
d6714c22 95void rcu_bh_qs(int cpu)
b1f77b05
IM
96{
97 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
98 rdp->passed_quiesc = 1;
99 rdp->passed_quiesc_completed = rdp->completed;
100}
64db4cff
PM
101
102#ifdef CONFIG_NO_HZ
90a4d2c0
PM
103DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
104 .dynticks_nesting = 1,
105 .dynticks = 1,
106};
64db4cff
PM
107#endif /* #ifdef CONFIG_NO_HZ */
108
109static int blimit = 10; /* Maximum callbacks per softirq. */
110static int qhimark = 10000; /* If this many pending, ignore blimit. */
111static int qlowmark = 100; /* Once only this many pending, use blimit. */
112
113static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 114static int rcu_pending(int cpu);
64db4cff 115
d6714c22
PM
116/*
117 * Return the number of RCU-sched batches processed thus far for debug & stats.
118 */
119long rcu_batches_completed_sched(void)
120{
121 return rcu_sched_state.completed;
122}
123EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
124
64db4cff
PM
125/*
126 * Return the number of RCU batches processed thus far for debug & stats.
d6714c22 127 * @@@ placeholder, maps to rcu_batches_completed_sched().
64db4cff
PM
128 */
129long rcu_batches_completed(void)
130{
d6714c22 131 return rcu_batches_completed_sched();
64db4cff
PM
132}
133EXPORT_SYMBOL_GPL(rcu_batches_completed);
134
135/*
136 * Return the number of RCU BH batches processed thus far for debug & stats.
137 */
138long rcu_batches_completed_bh(void)
139{
140 return rcu_bh_state.completed;
141}
142EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
143
144/*
145 * Does the CPU have callbacks ready to be invoked?
146 */
147static int
148cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
149{
150 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
151}
152
153/*
154 * Does the current CPU require a yet-as-unscheduled grace period?
155 */
156static int
157cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
158{
159 /* ACCESS_ONCE() because we are accessing outside of lock. */
160 return *rdp->nxttail[RCU_DONE_TAIL] &&
161 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
162}
163
164/*
165 * Return the root node of the specified rcu_state structure.
166 */
167static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
168{
169 return &rsp->node[0];
170}
171
172#ifdef CONFIG_SMP
173
174/*
175 * If the specified CPU is offline, tell the caller that it is in
176 * a quiescent state. Otherwise, whack it with a reschedule IPI.
177 * Grace periods can end up waiting on an offline CPU when that
178 * CPU is in the process of coming online -- it will be added to the
179 * rcu_node bitmasks before it actually makes it online. The same thing
180 * can happen while a CPU is in the process of coming online. Because this
181 * race is quite rare, we check for it after detecting that the grace
182 * period has been delayed rather than checking each and every CPU
183 * each and every time we start a new grace period.
184 */
185static int rcu_implicit_offline_qs(struct rcu_data *rdp)
186{
187 /*
188 * If the CPU is offline, it is in a quiescent state. We can
189 * trust its state not to change because interrupts are disabled.
190 */
191 if (cpu_is_offline(rdp->cpu)) {
192 rdp->offline_fqs++;
193 return 1;
194 }
195
196 /* The CPU is online, so send it a reschedule IPI. */
197 if (rdp->cpu != smp_processor_id())
198 smp_send_reschedule(rdp->cpu);
199 else
200 set_need_resched();
201 rdp->resched_ipi++;
202 return 0;
203}
204
205#endif /* #ifdef CONFIG_SMP */
206
207#ifdef CONFIG_NO_HZ
208static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
209
210/**
211 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
212 *
213 * Enter nohz mode, in other words, -leave- the mode in which RCU
214 * read-side critical sections can occur. (Though RCU read-side
215 * critical sections can occur in irq handlers in nohz mode, a possibility
216 * handled by rcu_irq_enter() and rcu_irq_exit()).
217 */
218void rcu_enter_nohz(void)
219{
220 unsigned long flags;
221 struct rcu_dynticks *rdtp;
222
223 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
224 local_irq_save(flags);
225 rdtp = &__get_cpu_var(rcu_dynticks);
226 rdtp->dynticks++;
227 rdtp->dynticks_nesting--;
228 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
229 local_irq_restore(flags);
230}
231
232/*
233 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
234 *
235 * Exit nohz mode, in other words, -enter- the mode in which RCU
236 * read-side critical sections normally occur.
237 */
238void rcu_exit_nohz(void)
239{
240 unsigned long flags;
241 struct rcu_dynticks *rdtp;
242
243 local_irq_save(flags);
244 rdtp = &__get_cpu_var(rcu_dynticks);
245 rdtp->dynticks++;
246 rdtp->dynticks_nesting++;
247 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
248 local_irq_restore(flags);
249 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
250}
251
252/**
253 * rcu_nmi_enter - inform RCU of entry to NMI context
254 *
255 * If the CPU was idle with dynamic ticks active, and there is no
256 * irq handler running, this updates rdtp->dynticks_nmi to let the
257 * RCU grace-period handling know that the CPU is active.
258 */
259void rcu_nmi_enter(void)
260{
261 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
262
263 if (rdtp->dynticks & 0x1)
264 return;
265 rdtp->dynticks_nmi++;
266 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
267 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
268}
269
270/**
271 * rcu_nmi_exit - inform RCU of exit from NMI context
272 *
273 * If the CPU was idle with dynamic ticks active, and there is no
274 * irq handler running, this updates rdtp->dynticks_nmi to let the
275 * RCU grace-period handling know that the CPU is no longer active.
276 */
277void rcu_nmi_exit(void)
278{
279 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
280
281 if (rdtp->dynticks & 0x1)
282 return;
283 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
284 rdtp->dynticks_nmi++;
285 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
286}
287
288/**
289 * rcu_irq_enter - inform RCU of entry to hard irq context
290 *
291 * If the CPU was idle with dynamic ticks active, this updates the
292 * rdtp->dynticks to let the RCU handling know that the CPU is active.
293 */
294void rcu_irq_enter(void)
295{
296 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
297
298 if (rdtp->dynticks_nesting++)
299 return;
300 rdtp->dynticks++;
301 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
302 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
303}
304
305/**
306 * rcu_irq_exit - inform RCU of exit from hard irq context
307 *
308 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
309 * to put let the RCU handling be aware that the CPU is going back to idle
310 * with no ticks.
311 */
312void rcu_irq_exit(void)
313{
314 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
315
316 if (--rdtp->dynticks_nesting)
317 return;
318 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
319 rdtp->dynticks++;
320 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
321
322 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 323 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
324 __get_cpu_var(rcu_bh_data).nxtlist)
325 set_need_resched();
326}
327
328/*
329 * Record the specified "completed" value, which is later used to validate
330 * dynticks counter manipulations. Specify "rsp->completed - 1" to
331 * unconditionally invalidate any future dynticks manipulations (which is
332 * useful at the beginning of a grace period).
333 */
334static void dyntick_record_completed(struct rcu_state *rsp, long comp)
335{
336 rsp->dynticks_completed = comp;
337}
338
339#ifdef CONFIG_SMP
340
341/*
342 * Recall the previously recorded value of the completion for dynticks.
343 */
344static long dyntick_recall_completed(struct rcu_state *rsp)
345{
346 return rsp->dynticks_completed;
347}
348
349/*
350 * Snapshot the specified CPU's dynticks counter so that we can later
351 * credit them with an implicit quiescent state. Return 1 if this CPU
352 * is already in a quiescent state courtesy of dynticks idle mode.
353 */
354static int dyntick_save_progress_counter(struct rcu_data *rdp)
355{
356 int ret;
357 int snap;
358 int snap_nmi;
359
360 snap = rdp->dynticks->dynticks;
361 snap_nmi = rdp->dynticks->dynticks_nmi;
362 smp_mb(); /* Order sampling of snap with end of grace period. */
363 rdp->dynticks_snap = snap;
364 rdp->dynticks_nmi_snap = snap_nmi;
365 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
366 if (ret)
367 rdp->dynticks_fqs++;
368 return ret;
369}
370
371/*
372 * Return true if the specified CPU has passed through a quiescent
373 * state by virtue of being in or having passed through an dynticks
374 * idle state since the last call to dyntick_save_progress_counter()
375 * for this same CPU.
376 */
377static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
378{
379 long curr;
380 long curr_nmi;
381 long snap;
382 long snap_nmi;
383
384 curr = rdp->dynticks->dynticks;
385 snap = rdp->dynticks_snap;
386 curr_nmi = rdp->dynticks->dynticks_nmi;
387 snap_nmi = rdp->dynticks_nmi_snap;
388 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
389
390 /*
391 * If the CPU passed through or entered a dynticks idle phase with
392 * no active irq/NMI handlers, then we can safely pretend that the CPU
393 * already acknowledged the request to pass through a quiescent
394 * state. Either way, that CPU cannot possibly be in an RCU
395 * read-side critical section that started before the beginning
396 * of the current RCU grace period.
397 */
398 if ((curr != snap || (curr & 0x1) == 0) &&
399 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
400 rdp->dynticks_fqs++;
401 return 1;
402 }
403
404 /* Go check for the CPU being offline. */
405 return rcu_implicit_offline_qs(rdp);
406}
407
408#endif /* #ifdef CONFIG_SMP */
409
410#else /* #ifdef CONFIG_NO_HZ */
411
412static void dyntick_record_completed(struct rcu_state *rsp, long comp)
413{
414}
415
416#ifdef CONFIG_SMP
417
418/*
419 * If there are no dynticks, then the only way that a CPU can passively
420 * be in a quiescent state is to be offline. Unlike dynticks idle, which
421 * is a point in time during the prior (already finished) grace period,
422 * an offline CPU is always in a quiescent state, and thus can be
423 * unconditionally applied. So just return the current value of completed.
424 */
425static long dyntick_recall_completed(struct rcu_state *rsp)
426{
427 return rsp->completed;
428}
429
430static int dyntick_save_progress_counter(struct rcu_data *rdp)
431{
432 return 0;
433}
434
435static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
436{
437 return rcu_implicit_offline_qs(rdp);
438}
439
440#endif /* #ifdef CONFIG_SMP */
441
442#endif /* #else #ifdef CONFIG_NO_HZ */
443
444#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
445
446static void record_gp_stall_check_time(struct rcu_state *rsp)
447{
448 rsp->gp_start = jiffies;
449 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
450}
451
452static void print_other_cpu_stall(struct rcu_state *rsp)
453{
454 int cpu;
455 long delta;
456 unsigned long flags;
457 struct rcu_node *rnp = rcu_get_root(rsp);
458 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
459 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
460
461 /* Only let one CPU complain about others per time interval. */
462
463 spin_lock_irqsave(&rnp->lock, flags);
464 delta = jiffies - rsp->jiffies_stall;
465 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
466 spin_unlock_irqrestore(&rnp->lock, flags);
467 return;
468 }
469 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
470 spin_unlock_irqrestore(&rnp->lock, flags);
471
472 /* OK, time to rat on our buddy... */
473
474 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
475 for (; rnp_cur < rnp_end; rnp_cur++) {
476 if (rnp_cur->qsmask == 0)
477 continue;
478 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
479 if (rnp_cur->qsmask & (1UL << cpu))
480 printk(" %d", rnp_cur->grplo + cpu);
481 }
482 printk(" (detected by %d, t=%ld jiffies)\n",
483 smp_processor_id(), (long)(jiffies - rsp->gp_start));
484 force_quiescent_state(rsp, 0); /* Kick them all. */
485}
486
487static void print_cpu_stall(struct rcu_state *rsp)
488{
489 unsigned long flags;
490 struct rcu_node *rnp = rcu_get_root(rsp);
491
492 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
493 smp_processor_id(), jiffies - rsp->gp_start);
494 dump_stack();
495 spin_lock_irqsave(&rnp->lock, flags);
496 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
497 rsp->jiffies_stall =
498 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
499 spin_unlock_irqrestore(&rnp->lock, flags);
500 set_need_resched(); /* kick ourselves to get things going. */
501}
502
503static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
504{
505 long delta;
506 struct rcu_node *rnp;
507
508 delta = jiffies - rsp->jiffies_stall;
509 rnp = rdp->mynode;
510 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
511
512 /* We haven't checked in, so go dump stack. */
513 print_cpu_stall(rsp);
514
515 } else if (rsp->gpnum != rsp->completed &&
516 delta >= RCU_STALL_RAT_DELAY) {
517
518 /* They had two time units to dump stack, so complain. */
519 print_other_cpu_stall(rsp);
520 }
521}
522
523#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
524
525static void record_gp_stall_check_time(struct rcu_state *rsp)
526{
527}
528
529static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
530{
531}
532
533#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
534
535/*
536 * Update CPU-local rcu_data state to record the newly noticed grace period.
537 * This is used both when we started the grace period and when we notice
538 * that someone else started the grace period.
539 */
540static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
541{
542 rdp->qs_pending = 1;
543 rdp->passed_quiesc = 0;
544 rdp->gpnum = rsp->gpnum;
64db4cff
PM
545}
546
547/*
548 * Did someone else start a new RCU grace period start since we last
549 * checked? Update local state appropriately if so. Must be called
550 * on the CPU corresponding to rdp.
551 */
552static int
553check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
554{
555 unsigned long flags;
556 int ret = 0;
557
558 local_irq_save(flags);
559 if (rdp->gpnum != rsp->gpnum) {
560 note_new_gpnum(rsp, rdp);
561 ret = 1;
562 }
563 local_irq_restore(flags);
564 return ret;
565}
566
567/*
568 * Start a new RCU grace period if warranted, re-initializing the hierarchy
569 * in preparation for detecting the next grace period. The caller must hold
570 * the root node's ->lock, which is released before return. Hard irqs must
571 * be disabled.
572 */
573static void
574rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
575 __releases(rcu_get_root(rsp)->lock)
576{
577 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
578 struct rcu_node *rnp = rcu_get_root(rsp);
579 struct rcu_node *rnp_cur;
580 struct rcu_node *rnp_end;
581
582 if (!cpu_needs_another_gp(rsp, rdp)) {
583 spin_unlock_irqrestore(&rnp->lock, flags);
584 return;
585 }
586
587 /* Advance to a new grace period and initialize state. */
588 rsp->gpnum++;
589 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
590 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
591 record_gp_stall_check_time(rsp);
592 dyntick_record_completed(rsp, rsp->completed - 1);
593 note_new_gpnum(rsp, rdp);
594
595 /*
596 * Because we are first, we know that all our callbacks will
597 * be covered by this upcoming grace period, even the ones
598 * that were registered arbitrarily recently.
599 */
600 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
601 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
602
603 /* Special-case the common single-level case. */
604 if (NUM_RCU_NODES == 1) {
605 rnp->qsmask = rnp->qsmaskinit;
c12172c0 606 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
607 spin_unlock_irqrestore(&rnp->lock, flags);
608 return;
609 }
610
611 spin_unlock(&rnp->lock); /* leave irqs disabled. */
612
613
614 /* Exclude any concurrent CPU-hotplug operations. */
615 spin_lock(&rsp->onofflock); /* irqs already disabled. */
616
617 /*
618 * Set the quiescent-state-needed bits in all the non-leaf RCU
619 * nodes for all currently online CPUs. This operation relies
620 * on the layout of the hierarchy within the rsp->node[] array.
621 * Note that other CPUs will access only the leaves of the
622 * hierarchy, which still indicate that no grace period is in
623 * progress. In addition, we have excluded CPU-hotplug operations.
624 *
625 * We therefore do not need to hold any locks. Any required
626 * memory barriers will be supplied by the locks guarding the
627 * leaf rcu_nodes in the hierarchy.
628 */
629
630 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
631 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
632 rnp_cur->qsmask = rnp_cur->qsmaskinit;
633
634 /*
635 * Now set up the leaf nodes. Here we must be careful. First,
636 * we need to hold the lock in order to exclude other CPUs, which
637 * might be contending for the leaf nodes' locks. Second, as
638 * soon as we initialize a given leaf node, its CPUs might run
639 * up the rest of the hierarchy. We must therefore acquire locks
640 * for each node that we touch during this stage. (But we still
641 * are excluding CPU-hotplug operations.)
642 *
643 * Note that the grace period cannot complete until we finish
644 * the initialization process, as there will be at least one
645 * qsmask bit set in the root node until that time, namely the
646 * one corresponding to this CPU.
647 */
648 rnp_end = &rsp->node[NUM_RCU_NODES];
649 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
650 for (; rnp_cur < rnp_end; rnp_cur++) {
651 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
652 rnp_cur->qsmask = rnp_cur->qsmaskinit;
653 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
654 }
655
656 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
657 spin_unlock_irqrestore(&rsp->onofflock, flags);
658}
659
660/*
661 * Advance this CPU's callbacks, but only if the current grace period
662 * has ended. This may be called only from the CPU to whom the rdp
663 * belongs.
664 */
665static void
666rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
667{
668 long completed_snap;
669 unsigned long flags;
670
671 local_irq_save(flags);
672 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
673
674 /* Did another grace period end? */
675 if (rdp->completed != completed_snap) {
676
677 /* Advance callbacks. No harm if list empty. */
678 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
679 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
680 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
681
682 /* Remember that we saw this grace-period completion. */
683 rdp->completed = completed_snap;
684 }
685 local_irq_restore(flags);
686}
687
688/*
689 * Similar to cpu_quiet(), for which it is a helper function. Allows
690 * a group of CPUs to be quieted at one go, though all the CPUs in the
691 * group must be represented by the same leaf rcu_node structure.
692 * That structure's lock must be held upon entry, and it is released
693 * before return.
694 */
695static void
696cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
697 unsigned long flags)
698 __releases(rnp->lock)
699{
700 /* Walk up the rcu_node hierarchy. */
701 for (;;) {
702 if (!(rnp->qsmask & mask)) {
703
704 /* Our bit has already been cleared, so done. */
705 spin_unlock_irqrestore(&rnp->lock, flags);
706 return;
707 }
708 rnp->qsmask &= ~mask;
709 if (rnp->qsmask != 0) {
710
711 /* Other bits still set at this level, so done. */
712 spin_unlock_irqrestore(&rnp->lock, flags);
713 return;
714 }
715 mask = rnp->grpmask;
716 if (rnp->parent == NULL) {
717
718 /* No more levels. Exit loop holding root lock. */
719
720 break;
721 }
722 spin_unlock_irqrestore(&rnp->lock, flags);
723 rnp = rnp->parent;
724 spin_lock_irqsave(&rnp->lock, flags);
725 }
726
727 /*
728 * Get here if we are the last CPU to pass through a quiescent
729 * state for this grace period. Clean up and let rcu_start_gp()
730 * start up the next grace period if one is needed. Note that
731 * we still hold rnp->lock, as required by rcu_start_gp(), which
732 * will release it.
733 */
734 rsp->completed = rsp->gpnum;
735 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
736 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
737}
738
739/*
740 * Record a quiescent state for the specified CPU, which must either be
741 * the current CPU or an offline CPU. The lastcomp argument is used to
742 * make sure we are still in the grace period of interest. We don't want
743 * to end the current grace period based on quiescent states detected in
744 * an earlier grace period!
745 */
746static void
747cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
748{
749 unsigned long flags;
750 unsigned long mask;
751 struct rcu_node *rnp;
752
753 rnp = rdp->mynode;
754 spin_lock_irqsave(&rnp->lock, flags);
755 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
756
757 /*
758 * Someone beat us to it for this grace period, so leave.
759 * The race with GP start is resolved by the fact that we
760 * hold the leaf rcu_node lock, so that the per-CPU bits
761 * cannot yet be initialized -- so we would simply find our
762 * CPU's bit already cleared in cpu_quiet_msk() if this race
763 * occurred.
764 */
765 rdp->passed_quiesc = 0; /* try again later! */
766 spin_unlock_irqrestore(&rnp->lock, flags);
767 return;
768 }
769 mask = rdp->grpmask;
770 if ((rnp->qsmask & mask) == 0) {
771 spin_unlock_irqrestore(&rnp->lock, flags);
772 } else {
773 rdp->qs_pending = 0;
774
775 /*
776 * This GP can't end until cpu checks in, so all of our
777 * callbacks can be processed during the next GP.
778 */
779 rdp = rsp->rda[smp_processor_id()];
780 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
781
782 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
783 }
784}
785
786/*
787 * Check to see if there is a new grace period of which this CPU
788 * is not yet aware, and if so, set up local rcu_data state for it.
789 * Otherwise, see if this CPU has just passed through its first
790 * quiescent state for this grace period, and record that fact if so.
791 */
792static void
793rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
794{
795 /* If there is now a new grace period, record and return. */
796 if (check_for_new_grace_period(rsp, rdp))
797 return;
798
799 /*
800 * Does this CPU still need to do its part for current grace period?
801 * If no, return and let the other CPUs do their part as well.
802 */
803 if (!rdp->qs_pending)
804 return;
805
806 /*
807 * Was there a quiescent state since the beginning of the grace
808 * period? If no, then exit and wait for the next call.
809 */
810 if (!rdp->passed_quiesc)
811 return;
812
813 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
814 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
815}
816
817#ifdef CONFIG_HOTPLUG_CPU
818
819/*
820 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
821 * and move all callbacks from the outgoing CPU to the current one.
822 */
823static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
824{
825 int i;
826 unsigned long flags;
827 long lastcomp;
828 unsigned long mask;
829 struct rcu_data *rdp = rsp->rda[cpu];
830 struct rcu_data *rdp_me;
831 struct rcu_node *rnp;
832
833 /* Exclude any attempts to start a new grace period. */
834 spin_lock_irqsave(&rsp->onofflock, flags);
835
836 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
837 rnp = rdp->mynode;
838 mask = rdp->grpmask; /* rnp->grplo is constant. */
839 do {
840 spin_lock(&rnp->lock); /* irqs already disabled. */
841 rnp->qsmaskinit &= ~mask;
842 if (rnp->qsmaskinit != 0) {
843 spin_unlock(&rnp->lock); /* irqs already disabled. */
844 break;
845 }
846 mask = rnp->grpmask;
847 spin_unlock(&rnp->lock); /* irqs already disabled. */
848 rnp = rnp->parent;
849 } while (rnp != NULL);
850 lastcomp = rsp->completed;
851
852 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
853
854 /* Being offline is a quiescent state, so go record it. */
855 cpu_quiet(cpu, rsp, rdp, lastcomp);
856
857 /*
858 * Move callbacks from the outgoing CPU to the running CPU.
859 * Note that the outgoing CPU is now quiscent, so it is now
d6714c22 860 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
861 * Note also that we must carefully retain the order of the
862 * outgoing CPU's callbacks in order for rcu_barrier() to work
863 * correctly. Finally, note that we start all the callbacks
864 * afresh, even those that have passed through a grace period
865 * and are therefore ready to invoke. The theory is that hotplug
866 * events are rare, and that if they are frequent enough to
867 * indefinitely delay callbacks, you have far worse things to
868 * be worrying about.
869 */
870 rdp_me = rsp->rda[smp_processor_id()];
871 if (rdp->nxtlist != NULL) {
872 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
873 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
874 rdp->nxtlist = NULL;
875 for (i = 0; i < RCU_NEXT_SIZE; i++)
876 rdp->nxttail[i] = &rdp->nxtlist;
877 rdp_me->qlen += rdp->qlen;
878 rdp->qlen = 0;
879 }
880 local_irq_restore(flags);
881}
882
883/*
884 * Remove the specified CPU from the RCU hierarchy and move any pending
885 * callbacks that it might have to the current CPU. This code assumes
886 * that at least one CPU in the system will remain running at all times.
887 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
888 */
889static void rcu_offline_cpu(int cpu)
890{
d6714c22 891 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff
PM
892 __rcu_offline_cpu(cpu, &rcu_bh_state);
893}
894
895#else /* #ifdef CONFIG_HOTPLUG_CPU */
896
897static void rcu_offline_cpu(int cpu)
898{
899}
900
901#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
902
903/*
904 * Invoke any RCU callbacks that have made it to the end of their grace
905 * period. Thottle as specified by rdp->blimit.
906 */
907static void rcu_do_batch(struct rcu_data *rdp)
908{
909 unsigned long flags;
910 struct rcu_head *next, *list, **tail;
911 int count;
912
913 /* If no callbacks are ready, just return.*/
914 if (!cpu_has_callbacks_ready_to_invoke(rdp))
915 return;
916
917 /*
918 * Extract the list of ready callbacks, disabling to prevent
919 * races with call_rcu() from interrupt handlers.
920 */
921 local_irq_save(flags);
922 list = rdp->nxtlist;
923 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
924 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
925 tail = rdp->nxttail[RCU_DONE_TAIL];
926 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
927 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
928 rdp->nxttail[count] = &rdp->nxtlist;
929 local_irq_restore(flags);
930
931 /* Invoke callbacks. */
932 count = 0;
933 while (list) {
934 next = list->next;
935 prefetch(next);
936 list->func(list);
937 list = next;
938 if (++count >= rdp->blimit)
939 break;
940 }
941
942 local_irq_save(flags);
943
944 /* Update count, and requeue any remaining callbacks. */
945 rdp->qlen -= count;
946 if (list != NULL) {
947 *tail = rdp->nxtlist;
948 rdp->nxtlist = list;
949 for (count = 0; count < RCU_NEXT_SIZE; count++)
950 if (&rdp->nxtlist == rdp->nxttail[count])
951 rdp->nxttail[count] = tail;
952 else
953 break;
954 }
955
956 /* Reinstate batch limit if we have worked down the excess. */
957 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
958 rdp->blimit = blimit;
959
960 local_irq_restore(flags);
961
962 /* Re-raise the RCU softirq if there are callbacks remaining. */
963 if (cpu_has_callbacks_ready_to_invoke(rdp))
964 raise_softirq(RCU_SOFTIRQ);
965}
966
967/*
968 * Check to see if this CPU is in a non-context-switch quiescent state
969 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
970 * Also schedule the RCU softirq handler.
971 *
972 * This function must be called with hardirqs disabled. It is normally
973 * invoked from the scheduling-clock interrupt. If rcu_pending returns
974 * false, there is no point in invoking rcu_check_callbacks().
975 */
976void rcu_check_callbacks(int cpu, int user)
977{
a157229c
PM
978 if (!rcu_pending(cpu))
979 return; /* if nothing for RCU to do. */
64db4cff 980 if (user ||
a6826048
PM
981 (idle_cpu(cpu) && rcu_scheduler_active &&
982 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
983
984 /*
985 * Get here if this CPU took its interrupt from user
986 * mode or from the idle loop, and if this is not a
987 * nested interrupt. In this case, the CPU is in
d6714c22 988 * a quiescent state, so note it.
64db4cff
PM
989 *
990 * No memory barrier is required here because both
d6714c22
PM
991 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
992 * variables that other CPUs neither access nor modify,
993 * at least not while the corresponding CPU is online.
64db4cff
PM
994 */
995
d6714c22
PM
996 rcu_sched_qs(cpu);
997 rcu_bh_qs(cpu);
64db4cff
PM
998
999 } else if (!in_softirq()) {
1000
1001 /*
1002 * Get here if this CPU did not take its interrupt from
1003 * softirq, in other words, if it is not interrupting
1004 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1005 * critical section, so note it.
64db4cff
PM
1006 */
1007
d6714c22 1008 rcu_bh_qs(cpu);
64db4cff
PM
1009 }
1010 raise_softirq(RCU_SOFTIRQ);
1011}
1012
1013#ifdef CONFIG_SMP
1014
1015/*
1016 * Scan the leaf rcu_node structures, processing dyntick state for any that
1017 * have not yet encountered a quiescent state, using the function specified.
1018 * Returns 1 if the current grace period ends while scanning (possibly
1019 * because we made it end).
1020 */
1021static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1022 int (*f)(struct rcu_data *))
1023{
1024 unsigned long bit;
1025 int cpu;
1026 unsigned long flags;
1027 unsigned long mask;
1028 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1029 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1030
1031 for (; rnp_cur < rnp_end; rnp_cur++) {
1032 mask = 0;
1033 spin_lock_irqsave(&rnp_cur->lock, flags);
1034 if (rsp->completed != lastcomp) {
1035 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1036 return 1;
1037 }
1038 if (rnp_cur->qsmask == 0) {
1039 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1040 continue;
1041 }
1042 cpu = rnp_cur->grplo;
1043 bit = 1;
1044 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1045 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1046 mask |= bit;
1047 }
1048 if (mask != 0 && rsp->completed == lastcomp) {
1049
1050 /* cpu_quiet_msk() releases rnp_cur->lock. */
1051 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1052 continue;
1053 }
1054 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1055 }
1056 return 0;
1057}
1058
1059/*
1060 * Force quiescent states on reluctant CPUs, and also detect which
1061 * CPUs are in dyntick-idle mode.
1062 */
1063static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1064{
1065 unsigned long flags;
1066 long lastcomp;
64db4cff
PM
1067 struct rcu_node *rnp = rcu_get_root(rsp);
1068 u8 signaled;
1069
1070 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1071 return; /* No grace period in progress, nothing to force. */
1072 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1073 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1074 return; /* Someone else is already on the job. */
1075 }
1076 if (relaxed &&
ef631b0c 1077 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1078 goto unlock_ret; /* no emergency and done recently. */
1079 rsp->n_force_qs++;
1080 spin_lock(&rnp->lock);
1081 lastcomp = rsp->completed;
1082 signaled = rsp->signaled;
1083 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1084 if (lastcomp == rsp->gpnum) {
1085 rsp->n_force_qs_ngp++;
1086 spin_unlock(&rnp->lock);
1087 goto unlock_ret; /* no GP in progress, time updated. */
1088 }
1089 spin_unlock(&rnp->lock);
1090 switch (signaled) {
1091 case RCU_GP_INIT:
1092
1093 break; /* grace period still initializing, ignore. */
1094
1095 case RCU_SAVE_DYNTICK:
1096
1097 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1098 break; /* So gcc recognizes the dead code. */
1099
1100 /* Record dyntick-idle state. */
1101 if (rcu_process_dyntick(rsp, lastcomp,
1102 dyntick_save_progress_counter))
1103 goto unlock_ret;
1104
1105 /* Update state, record completion counter. */
1106 spin_lock(&rnp->lock);
1107 if (lastcomp == rsp->completed) {
1108 rsp->signaled = RCU_FORCE_QS;
1109 dyntick_record_completed(rsp, lastcomp);
1110 }
1111 spin_unlock(&rnp->lock);
1112 break;
1113
1114 case RCU_FORCE_QS:
1115
1116 /* Check dyntick-idle state, send IPI to laggarts. */
1117 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1118 rcu_implicit_dynticks_qs))
1119 goto unlock_ret;
1120
1121 /* Leave state in case more forcing is required. */
1122
1123 break;
1124 }
1125unlock_ret:
1126 spin_unlock_irqrestore(&rsp->fqslock, flags);
1127}
1128
1129#else /* #ifdef CONFIG_SMP */
1130
1131static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1132{
1133 set_need_resched();
1134}
1135
1136#endif /* #else #ifdef CONFIG_SMP */
1137
1138/*
1139 * This does the RCU processing work from softirq context for the
1140 * specified rcu_state and rcu_data structures. This may be called
1141 * only from the CPU to whom the rdp belongs.
1142 */
1143static void
1144__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1145{
1146 unsigned long flags;
1147
2e597558
PM
1148 WARN_ON_ONCE(rdp->beenonline == 0);
1149
64db4cff
PM
1150 /*
1151 * If an RCU GP has gone long enough, go check for dyntick
1152 * idle CPUs and, if needed, send resched IPIs.
1153 */
ef631b0c 1154 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1155 force_quiescent_state(rsp, 1);
1156
1157 /*
1158 * Advance callbacks in response to end of earlier grace
1159 * period that some other CPU ended.
1160 */
1161 rcu_process_gp_end(rsp, rdp);
1162
1163 /* Update RCU state based on any recent quiescent states. */
1164 rcu_check_quiescent_state(rsp, rdp);
1165
1166 /* Does this CPU require a not-yet-started grace period? */
1167 if (cpu_needs_another_gp(rsp, rdp)) {
1168 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1169 rcu_start_gp(rsp, flags); /* releases above lock */
1170 }
1171
1172 /* If there are callbacks ready, invoke them. */
1173 rcu_do_batch(rdp);
1174}
1175
1176/*
1177 * Do softirq processing for the current CPU.
1178 */
1179static void rcu_process_callbacks(struct softirq_action *unused)
1180{
1181 /*
1182 * Memory references from any prior RCU read-side critical sections
1183 * executed by the interrupted code must be seen before any RCU
1184 * grace-period manipulations below.
1185 */
1186 smp_mb(); /* See above block comment. */
1187
d6714c22
PM
1188 __rcu_process_callbacks(&rcu_sched_state,
1189 &__get_cpu_var(rcu_sched_data));
64db4cff
PM
1190 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1191
1192 /*
1193 * Memory references from any later RCU read-side critical sections
1194 * executed by the interrupted code must be seen after any RCU
1195 * grace-period manipulations above.
1196 */
1197 smp_mb(); /* See above block comment. */
1198}
1199
1200static void
1201__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1202 struct rcu_state *rsp)
1203{
1204 unsigned long flags;
1205 struct rcu_data *rdp;
1206
1207 head->func = func;
1208 head->next = NULL;
1209
1210 smp_mb(); /* Ensure RCU update seen before callback registry. */
1211
1212 /*
1213 * Opportunistically note grace-period endings and beginnings.
1214 * Note that we might see a beginning right after we see an
1215 * end, but never vice versa, since this CPU has to pass through
1216 * a quiescent state betweentimes.
1217 */
1218 local_irq_save(flags);
1219 rdp = rsp->rda[smp_processor_id()];
1220 rcu_process_gp_end(rsp, rdp);
1221 check_for_new_grace_period(rsp, rdp);
1222
1223 /* Add the callback to our list. */
1224 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1225 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1226
1227 /* Start a new grace period if one not already started. */
1228 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1229 unsigned long nestflag;
1230 struct rcu_node *rnp_root = rcu_get_root(rsp);
1231
1232 spin_lock_irqsave(&rnp_root->lock, nestflag);
1233 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1234 }
1235
1236 /* Force the grace period if too many callbacks or too long waiting. */
1237 if (unlikely(++rdp->qlen > qhimark)) {
1238 rdp->blimit = LONG_MAX;
1239 force_quiescent_state(rsp, 0);
ef631b0c 1240 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1241 force_quiescent_state(rsp, 1);
1242 local_irq_restore(flags);
1243}
1244
1245/*
d6714c22
PM
1246 * Queue an RCU-sched callback for invocation after a grace period.
1247 */
1248void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1249{
1250 __call_rcu(head, func, &rcu_sched_state);
1251}
1252EXPORT_SYMBOL_GPL(call_rcu_sched);
1253
1254/*
1255 * @@@ Queue an RCU callback for invocation after a grace period.
1256 * @@@ Placeholder pending rcutree_plugin.h.
64db4cff
PM
1257 */
1258void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1259{
d6714c22 1260 call_rcu_sched(head, func);
64db4cff
PM
1261}
1262EXPORT_SYMBOL_GPL(call_rcu);
1263
d6714c22 1264
64db4cff
PM
1265/*
1266 * Queue an RCU for invocation after a quicker grace period.
1267 */
1268void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1269{
1270 __call_rcu(head, func, &rcu_bh_state);
1271}
1272EXPORT_SYMBOL_GPL(call_rcu_bh);
1273
1274/*
1275 * Check to see if there is any immediate RCU-related work to be done
1276 * by the current CPU, for the specified type of RCU, returning 1 if so.
1277 * The checks are in order of increasing expense: checks that can be
1278 * carried out against CPU-local state are performed first. However,
1279 * we must check for CPU stalls first, else we might not get a chance.
1280 */
1281static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1282{
1283 rdp->n_rcu_pending++;
1284
1285 /* Check for CPU stalls, if enabled. */
1286 check_cpu_stall(rsp, rdp);
1287
1288 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1289 if (rdp->qs_pending) {
1290 rdp->n_rp_qs_pending++;
64db4cff 1291 return 1;
7ba5c840 1292 }
64db4cff
PM
1293
1294 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1295 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1296 rdp->n_rp_cb_ready++;
64db4cff 1297 return 1;
7ba5c840 1298 }
64db4cff
PM
1299
1300 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1301 if (cpu_needs_another_gp(rsp, rdp)) {
1302 rdp->n_rp_cpu_needs_gp++;
64db4cff 1303 return 1;
7ba5c840 1304 }
64db4cff
PM
1305
1306 /* Has another RCU grace period completed? */
7ba5c840
PM
1307 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1308 rdp->n_rp_gp_completed++;
64db4cff 1309 return 1;
7ba5c840 1310 }
64db4cff
PM
1311
1312 /* Has a new RCU grace period started? */
7ba5c840
PM
1313 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1314 rdp->n_rp_gp_started++;
64db4cff 1315 return 1;
7ba5c840 1316 }
64db4cff
PM
1317
1318 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1319 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
7ba5c840
PM
1320 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1321 rdp->n_rp_need_fqs++;
64db4cff 1322 return 1;
7ba5c840 1323 }
64db4cff
PM
1324
1325 /* nothing to do */
7ba5c840 1326 rdp->n_rp_need_nothing++;
64db4cff
PM
1327 return 0;
1328}
1329
1330/*
1331 * Check to see if there is any immediate RCU-related work to be done
1332 * by the current CPU, returning 1 if so. This function is part of the
1333 * RCU implementation; it is -not- an exported member of the RCU API.
1334 */
a157229c 1335static int rcu_pending(int cpu)
64db4cff 1336{
d6714c22 1337 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
64db4cff
PM
1338 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu));
1339}
1340
1341/*
1342 * Check to see if any future RCU-related work will need to be done
1343 * by the current CPU, even if none need be done immediately, returning
1344 * 1 if so. This function is part of the RCU implementation; it is -not-
1345 * an exported member of the RCU API.
1346 */
1347int rcu_needs_cpu(int cpu)
1348{
1349 /* RCU callbacks either ready or pending? */
d6714c22 1350 return per_cpu(rcu_sched_data, cpu).nxtlist ||
64db4cff
PM
1351 per_cpu(rcu_bh_data, cpu).nxtlist;
1352}
1353
1354/*
27569620
PM
1355 * Do boot-time initialization of a CPU's per-CPU RCU data.
1356 */
1357static void __init
1358rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1359{
1360 unsigned long flags;
1361 int i;
1362 struct rcu_data *rdp = rsp->rda[cpu];
1363 struct rcu_node *rnp = rcu_get_root(rsp);
1364
1365 /* Set up local state, ensuring consistent view of global state. */
1366 spin_lock_irqsave(&rnp->lock, flags);
1367 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1368 rdp->nxtlist = NULL;
1369 for (i = 0; i < RCU_NEXT_SIZE; i++)
1370 rdp->nxttail[i] = &rdp->nxtlist;
1371 rdp->qlen = 0;
1372#ifdef CONFIG_NO_HZ
1373 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1374#endif /* #ifdef CONFIG_NO_HZ */
1375 rdp->cpu = cpu;
1376 spin_unlock_irqrestore(&rnp->lock, flags);
1377}
1378
1379/*
1380 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1381 * offline event can be happening at a given time. Note also that we
1382 * can accept some slop in the rsp->completed access due to the fact
1383 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1384 */
e4fa4c97 1385static void __cpuinit
64db4cff
PM
1386rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1387{
1388 unsigned long flags;
64db4cff
PM
1389 long lastcomp;
1390 unsigned long mask;
1391 struct rcu_data *rdp = rsp->rda[cpu];
1392 struct rcu_node *rnp = rcu_get_root(rsp);
1393
1394 /* Set up local state, ensuring consistent view of global state. */
1395 spin_lock_irqsave(&rnp->lock, flags);
1396 lastcomp = rsp->completed;
1397 rdp->completed = lastcomp;
1398 rdp->gpnum = lastcomp;
1399 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1400 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1401 rdp->beenonline = 1; /* We have now been online. */
1402 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1403 rdp->blimit = blimit;
64db4cff
PM
1404 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1405
1406 /*
1407 * A new grace period might start here. If so, we won't be part
1408 * of it, but that is OK, as we are currently in a quiescent state.
1409 */
1410
1411 /* Exclude any attempts to start a new GP on large systems. */
1412 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1413
1414 /* Add CPU to rcu_node bitmasks. */
1415 rnp = rdp->mynode;
1416 mask = rdp->grpmask;
1417 do {
1418 /* Exclude any attempts to start a new GP on small systems. */
1419 spin_lock(&rnp->lock); /* irqs already disabled. */
1420 rnp->qsmaskinit |= mask;
1421 mask = rnp->grpmask;
1422 spin_unlock(&rnp->lock); /* irqs already disabled. */
1423 rnp = rnp->parent;
1424 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1425
1426 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1427
1428 /*
1429 * A new grace period might start here. If so, we will be part of
1430 * it, and its gpnum will be greater than ours, so we will
1431 * participate. It is also possible for the gpnum to have been
1432 * incremented before this function was called, and the bitmasks
1433 * to not be filled out until now, in which case we will also
1434 * participate due to our gpnum being behind.
1435 */
1436
1437 /* Since it is coming online, the CPU is in a quiescent state. */
1438 cpu_quiet(cpu, rsp, rdp, lastcomp);
1439 local_irq_restore(flags);
1440}
1441
1442static void __cpuinit rcu_online_cpu(int cpu)
1443{
d6714c22 1444 rcu_init_percpu_data(cpu, &rcu_sched_state);
64db4cff 1445 rcu_init_percpu_data(cpu, &rcu_bh_state);
64db4cff
PM
1446}
1447
1448/*
1449 * Handle CPU online/offline notifcation events.
1450 */
2e597558
PM
1451int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1452 unsigned long action, void *hcpu)
64db4cff
PM
1453{
1454 long cpu = (long)hcpu;
1455
1456 switch (action) {
1457 case CPU_UP_PREPARE:
1458 case CPU_UP_PREPARE_FROZEN:
1459 rcu_online_cpu(cpu);
1460 break;
1461 case CPU_DEAD:
1462 case CPU_DEAD_FROZEN:
1463 case CPU_UP_CANCELED:
1464 case CPU_UP_CANCELED_FROZEN:
1465 rcu_offline_cpu(cpu);
1466 break;
1467 default:
1468 break;
1469 }
1470 return NOTIFY_OK;
1471}
1472
1473/*
1474 * Compute the per-level fanout, either using the exact fanout specified
1475 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1476 */
1477#ifdef CONFIG_RCU_FANOUT_EXACT
1478static void __init rcu_init_levelspread(struct rcu_state *rsp)
1479{
1480 int i;
1481
1482 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1483 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1484}
1485#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1486static void __init rcu_init_levelspread(struct rcu_state *rsp)
1487{
1488 int ccur;
1489 int cprv;
1490 int i;
1491
1492 cprv = NR_CPUS;
1493 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1494 ccur = rsp->levelcnt[i];
1495 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1496 cprv = ccur;
1497 }
1498}
1499#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1500
1501/*
1502 * Helper function for rcu_init() that initializes one rcu_state structure.
1503 */
1504static void __init rcu_init_one(struct rcu_state *rsp)
1505{
1506 int cpustride = 1;
1507 int i;
1508 int j;
1509 struct rcu_node *rnp;
1510
1511 /* Initialize the level-tracking arrays. */
1512
1513 for (i = 1; i < NUM_RCU_LVLS; i++)
1514 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1515 rcu_init_levelspread(rsp);
1516
1517 /* Initialize the elements themselves, starting from the leaves. */
1518
1519 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1520 cpustride *= rsp->levelspread[i];
1521 rnp = rsp->level[i];
1522 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1523 spin_lock_init(&rnp->lock);
1524 rnp->qsmask = 0;
1525 rnp->qsmaskinit = 0;
1526 rnp->grplo = j * cpustride;
1527 rnp->grphi = (j + 1) * cpustride - 1;
1528 if (rnp->grphi >= NR_CPUS)
1529 rnp->grphi = NR_CPUS - 1;
1530 if (i == 0) {
1531 rnp->grpnum = 0;
1532 rnp->grpmask = 0;
1533 rnp->parent = NULL;
1534 } else {
1535 rnp->grpnum = j % rsp->levelspread[i - 1];
1536 rnp->grpmask = 1UL << rnp->grpnum;
1537 rnp->parent = rsp->level[i - 1] +
1538 j / rsp->levelspread[i - 1];
1539 }
1540 rnp->level = i;
1541 }
1542 }
1543}
1544
1545/*
1546 * Helper macro for __rcu_init(). To be used nowhere else!
1547 * Assigns leaf node pointers into each CPU's rcu_data structure.
1548 */
65cf8f86 1549#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1550do { \
65cf8f86 1551 rcu_init_one(rsp); \
64db4cff
PM
1552 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1553 j = 0; \
1554 for_each_possible_cpu(i) { \
1555 if (i > rnp[j].grphi) \
1556 j++; \
1557 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1558 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1559 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1560 } \
1561} while (0)
1562
64db4cff
PM
1563void __init __rcu_init(void)
1564{
1565 int i; /* All used by RCU_DATA_PTR_INIT(). */
1566 int j;
1567 struct rcu_node *rnp;
1568
f6faac71 1569 printk(KERN_INFO "Hierarchical RCU implementation.\n");
64db4cff
PM
1570#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1571 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1572#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1573 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1574 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
2e597558 1575 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1576}
1577
1578module_param(blimit, int, 0);
1579module_param(qhimark, int, 0);
1580module_param(qlowmark, int, 0);
This page took 0.116155 seconds and 5 git commands to generate.